

jQuery	Design	Patterns

Table	of	Contents

jQuery	Design	Patterns

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	A	Refresher	on	jQuery	and	the	Composite	Pattern

jQuery	and	DOM	scripting

Manipulating	the	DOM	using	jQuery

Method	Chaining	and	Fluent	Interfaces

The	Composite	Pattern

How	the	Composite	Pattern	is	used	by	jQuery

Comparing	the	benefits	over	the	plain	DOM	API

Using	the	Composite	Pattern	to	develop	applications

A	sample	use	case

The	Composite	Collection	Implementation

An	example	execution

Alternative	implementations

The	Iterator	Pattern

How	the	Iterator	Pattern	is	used	by	jQuery

How	it	pairs	with	the	Composite	Pattern

Where	can	it	be	used

Summary

2.	The	Observer	Pattern

Introducing	the	Observer	Pattern

How	it	is	used	by	jQuery

The	jQuery	on	method

The	document-ready	observer

Demonstrate	a	sample	use	case

How	it	is	compared	with	event	attributes

Avoid	memory	leaks

Introducing	the	Delegated	Event	Observer	Pattern

How	it	simplifies	our	code

Compare	the	memory	usage	benefits

Summary

3.	The	Publish/Subscribe	Pattern

Introducing	the	Publish/Subscribe	Pattern

How	it	differs	from	the	Observer	Pattern

How	it	is	adopted	by	jQuery

Custom	events	in	jQuery

Implementing	a	Pub/Sub	scheme	using	custom	events

Demonstrating	a	sample	use	case

Using	Pub/Sub	on	the	dashboard	example

Extending	the	implementation

Using	any	object	as	a	broker

Using	custom	event	namespacing

Summary

4.	Divide	and	Conquer	with	the	Module	Pattern

Modules	and	Namespaces

Encapsulating	internal	parts	of	an	implementation

Avoiding	global	variables	with	Namespaces

The	benefits	of	these	patterns

The	wide	acceptance

The	Object	Literal	Pattern

The	Module	Pattern

The	IIFE	building	block

The	simple	IIFE	Module	Pattern

How	it	is	used	by	jQuery

The	Namespace	Parameter	Module	variant

The	IIFE-contained	Module	variant

The	Revealing	Module	Pattern

Using	ES5	Strict	Mode

Introducing	ES6	Modules

Using	Modules	in	jQuery	applications

The	main	dashboard	module

The	categories	module

The	informationBox	module

The	counter	module

Overview	of	the	implementation

Summary

5.	The	Facade	Pattern

Introducing	the	Facade	Pattern

The	benefits	of	this	pattern

How	it	is	adopted	by	jQuery

The	jQuery	DOM	Traversal	API

The	property	access	and	manipulation	API

Using	Facades	in	our	applications

Summary

6.	The	Builder	and	Factory	Patterns

Introducing	the	Factory	Pattern

How	it	is	adopted	by	jQuery

Using	Factories	in	our	applications

Introducing	the	Builder	Pattern

How	it	is	adopted	by	jQuery’s	API

How	it	is	used	by	jQuery	internally

How	to	use	it	in	our	applications

Summary

7.	Asynchronous	Control	Flow	Patterns

Programming	with	callbacks

Using	simple	callbacks	in	JavaScript

Setting	callbacks	as	object	properties

Using	callbacks	in	jQuery	applications

Writing	methods	that	accept	callbacks

Orchestrating	callbacks

Queuing	in	order	execution

Avoiding	the	Callback	Hell	anti-pattern

Running	concurrently

Introducing	the	concept	of	Promises

Using	Promises

Using	the	jQuery	Promise	API

Using	Promises/A+

Comparing	jQuery	and	A+	Promises

Advanced	concepts

Chaining	Promises

Handling	thrown	errors

Joining	Promises

How	jQuery	uses	Promises

Transforming	Promises	to	other	types

Transforming	to	Promises/A+

Transforming	to	jQuery	Promises

Summarizing	the	benefits	of	Promises

Summary

8.	Mock	Object	Pattern

Introducing	the	Mock	Object	Pattern

Using	Mock	Objects	in	jQuery	applications

Defining	the	actual	service	requirements

Implementing	a	Mock	Service

Using	the	Mock	Service

Summary

9.	Client-side	Templating

Introducing	Underscore.js

Using	Underscore.js	templates	in	our	applications

Separating	HTML	templates	from	JavaScript	code

Introducing	Handlebars.js

Using	Handlebars.js	in	our	applications

Separating	HTML	templates	from	JavaScript	code

Pre-compiling	templates

Retrieving	HTML	templates	asynchronously

Adopting	it	in	an	existing	implementation

Moderation	is	best	in	all	things

Summary

10.	Plugin	and	Widget	Development	Patterns

Introducing	jQuery	Plugins

Following	jQuery	principles

Working	on	Composite	Collection	Objects

Allowing	further	chaining

Working	with	$.noConflict()

Wrapping	with	an	IIFE

Creating	reusable	plugins

Accepting	configuration	parameters

Writing	stateful	jQuery	plugins

Implementing	a	stateful	jQuery	Plugin

Destroying	a	plugin	instance

Implementing	getter	and	setter	methods

Using	our	plugin	in	our	Dashboard	application

Using	the	jQuery	Plugin	Boilerplate

Adding	methods	to	your	plugin

Choosing	a	name

Summary

11.	Optimization	Patterns

Placing	scripts	near	the	end	of	the	page

Bundling	and	minifying	resources

Using	IIFE	parameters

Using	CDNs

Using	JSDelivr	API

Optimizing	common	JavaScript	code

Writing	better	for	loops

Writing	performant	CSS	selectors

Writing	efficient	jQuery	code

Minimizing	DOM	traversals

Caching	jQuery	objects

Scoping	element	traversals

Chaining	jQuery	methods

Don’t	overdo	it

Improving	DOM	manipulations

Creating	DOM	elements

Styling	and	animating

Manipulating	detached	elements

Introducing	the	Flyweight	Pattern

Using	Delegate	Observers

Using	$.noop()

Using	the	$.single	plugin

Lazy	Loading	Modules

Summary

Index

jQuery	Design	Patterns

jQuery	Design	Patterns
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2016

Production	reference:	1230216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-868-7

www.packtpub.com

http://www.packtpub.com

Credits
Author

Thodoris	Greasidis

Reviewer

Aamir	Afridi

Commissioning	Editor

Neil	Alexander

Acquisition	Editor

Aaron	Lazar

Content	Development	Editor

Riddhi	Tuljapurkar

Technical	Editor

Pramod	Kumavat

Copy	Editors

Trishya	Hazare

Kevin	McGowan

Project	Coordinator

Sanchita	Mandal

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Graphics

Abhinash	Sahu

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Thodoris	Greasidis	is	a	senior	web	engineer	from	Greece.	He	graduated	with	honors
from	the	University	of	Thessaly,	holds	a	polytechnic	diploma	in	computer,	networking,
and	communications	engineering,	and	a	master’s	degree	in	computer	science.	He	is	a	full-
stack	developer,	responsible	for	implementing	large-scale	web	applications	with	intuitive
interfaces	and	high-availability	web	services.

Thodoris	is	part	of	the	Angular-UI	team	and	has	made	many	open	source	contributions,
with	a	special	interest	in	Mozilla	projects.	He	is	also	an	active	member	of	the	Athens
AngularJS	Meetup	and	a	technical	reviewer	of	Mastering	jQuery	UI,	Packt	Publishing.

He	is	a	JavaScript	enthusiast	and	loves	bitwise	operations.	His	interests	also	include
NodeJS,	Python,	project	scaffolding,	automation,	and	artificial	intelligence,	especially
multi-agent	systems.

A	big	thanks	to	everyone	who	supported	me	and	showed	understanding	for	my	limited
free	time	while	writing	this	book.

About	the	Reviewer
Aamir	Afridi	has	been	passionate	about	the	Internet	and	web	development	since	2002.	He
holds	a	master’s	degree	in	e-commerce.	Over	the	years	that	have	followed,	he	has	worked
for	various	companies	and	provided	frontend	engineering,	including	mobile	web	apps	and
architecture	services	with	a	focus	on	semantic	HTML,	CSS,	and	JavaScript/jQuery	and
anything	else	he	can	get	his	hands	on.	He	has	contributed	to	JavaScript	books	as	a
technical	reviewer.	These	days,	he	is	exploring	the	microservices	architecture	with
NodeJS,	MongoDB,	and	ReactJS	at	www.tes.com.	He	blogs	on	http://aamirafridi.com.

http://www.tes.com
http://aamirafridi.com

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Since	its	introduction	in	2006,	the	jQuery	library	has	made	DOM	traversals	and
manipulations	much	easier.	This	has	resulted	in	the	appearance	of	Web	pages	with
increasingly	complex	user	interactions,	thus	contributing	to	the	maturing	of	Web	as	a
platform	capable	of	supporting	large	application	implementations.

This	book	presents	a	series	of	best	practices	that	make	the	implementation	of	Web
applications	more	efficient.	Moreover,	we	will	analyze	the	most	important	Design	Patterns
that	Computer	Science	has	to	offer,	which	can	be	applied	to	Web	development.	In	this
way,	we	will	learn	how	to	utilize	techniques	that	are	thoroughly	used	and	tested	in	other
fields	of	programming,	which	were	initially	created	as	generic	methods	to	model	solutions
of	complex	problems.

In	jQuery	Design	Patterns,	we	will	analyze	how	various	Design	Patterns	are	utilized	in	the
implementation	of	jQuery	and	how	they	can	be	used	to	improve	the	organization	of	our
implementations.	By	adopting	the	Design	Patterns	demonstrated	in	this	book,	you	will	be
able	to	create	better	organized	implementations	that	resolve	large	problem	categories
faster.	Moreover,	when	used	by	a	developer	team,	they	can	improve	the	communication
between	them	and	lead	to	homogenous	implementation,	where	every	part	of	the	code	is
easily	understood	by	others.

What	this	book	covers
Chapter	1,	A	Refresher	on	jQuery	and	the	Composite	Pattern,	will	teach	the	reader	how	to
write	the	code	using	the	Composite	Pattern	and	method	chaining	(Fluent	Interface)	by
analyzing	how	they	are	used	for	the	implementation	of	jQuery	itself.	It	also	demonstrates
the	Iterator	Pattern	that	nicely	pairs	with	the	Composite	Collection	objects	that	jQuery
returns.

Chapter	2,	The	Observer	Pattern,	will	teach	you	how	to	respond	to	user	actions	using	the
Observer	Pattern.	It	also	demonstrates	how	to	use	Event	Delegation	as	a	way	to	reduce	the
memory	consumption	and	complexity	of	the	code	that	handles	dynamically	injected	page
elements.	Finally,	it	will	teach	you	how	to	emit	and	listen	for	Custom	Events	in	order	to
achieve	greater	flexibility	and	code	decoupling.

Chapter	3,	The	Publish/Subscribe	Pattern,	will	teach	you	how	to	utilize	the	Pub/Sub
Pattern	to	create	a	central	point	to	emit	and	receive	application-level	events,	as	a	way	to
decouple	your	code	and	business	logic	from	the	HTML	that	is	used	for	presentation.

Chapter	4,	Divide	and	Conquer	with	the	Module	Pattern,	demonstrates	and	compares
some	of	the	most	commonly	used	Module	Patterns	in	the	industry.	It	will	teach	you	how	to
structure	your	application	in	small	independent	Modules	using	Namespacing,	leading	to
expandable	implementations	that	follow	the	Separation	of	Concerns	principle.

Chapter	5,	The	Facade	Pattern,	will	teach	you	how	to	use	the	Facade	Pattern	to	wrap
complex	APIs	into	simpler	ones	that	are	a	better	match	for	the	needs	of	your	application.	It
also	demonstrates	how	to	change	parts	of	your	application,	while	keeping	the	same
module-level	APIs	and	avoid	affecting	the	rest	of	your	implementation.

Chapter	6,	The	Builder	and	Factory	Patterns,	explains	the	concepts	of	and	the	differences
between	the	Builder	and	Factory	Patterns.	It	will	teach	you	how	and	when	to	use	each	of
them,	in	order	to	improve	the	clarity	of	your	code	by	abstracting	the	generation	of
complex	results	into	separate	dedicated	methods.

Chapter	7,	Asynchronous	Control	Flow	Patterns,	will	explain	how	jQuery’s	Deferred	and
Promise	APIs	work	and	compare	them	with	the	classical	Callbacks	Pattern.	You	will	learn
how	to	use	Promises	to	control	the	the	execution	of	asynchronous	procedures	to	run	either
in	an	order	or	parallel	to	each	other.

Chapter	8,	Mock	Object	Pattern,	teaches	you	how	to	create	and	use	Mock	Objects	and
Services	as	a	way	to	ease	the	development	of	your	application	and	get	a	sense	of	its
functionality,	long	before	all	its	parts	are	completed.

Chapter	9,	Client-side	Templating,	demonstrates	how	to	use	the	Underscore.js	and
Handlebars.js	templating	libraries	as	a	better	and	faster	way	to	create	complex	HTML
structures	with	JavaScript.	Through	this	chapter,	you	will	get	an	overview	of	their
conventions,	evaluate	their	features,	and	find	the	one	that	best	matches	your	taste.

Chapter	10,	Plugin	and	Widget	Development	Patterns,	introduces	the	basic	concepts	and
conventions	of	jQuery	Plugin	development	and	analyzes	the	most	commonly	used	design

patterns,	so	that	you	will	be	able	to	identify	and	use	the	best	match	for	any	use	case.

Chapter	11,	Optimization	Patterns,	guides	you	with	the	best	tips	to	create	a	highly
efficient	and	robust	implementation.	You	will	be	able	to	use	this	chapter	as	a	checklist	of
best	practices	that	improve	the	performance	and	lower	the	memory	consumption	of	your
applications,	before	moving	them	to	a	production	environment.

What	you	need	for	this	book
In	order	to	run	the	examples	in	this	book,	you	will	need	to	have	a	web	server	installed	on
your	system	to	serve	the	code	files.	For	example,	you	can	use	Apache	or	IIS	or	NGINX.	In
order	to	make	the	installation	process	of	Apache	easier,	you	can	use	more	complete
development	environment	solutions,	such	as	XAMPP	or	WAMP	Server.

In	terms	of	technical	proficiency,	this	book	assumes	that	you	already	have	some
experience	of	working	with	jQuery,	HTML,	CSS,	and	JSON.	All	the	code	samples	in	the
book	use	jQuery	v2.2.0	and	some	of	the	chapters	also	discuss	the	respective
implementation	in	jQuery	v1.12.0,	which	can	be	used	in	case	support	for	older	browsers	is
needed.

Who	this	book	is	for
This	book	targets	existing	jQuery	developers	or	new	developers	who	want	to	take	their
skills	and	understanding	to	an	advanced	level.	It	is	a	detailed	introduction	to	how	the
various	industry	standard	patterns	can	be	applied	to	jQuery	applications,	and	along	with	a
set	of	the	best	practices,	it	can	help	large	teams	collaborate	and	create	well	organized	and
extendable	implementations.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	folder	names,	filenames,	file	extensions,	pathnames,	dummy	URLs,
user	input,	and	Twitter	handles	are	shown	as	follows:	“In	the	preceding	CSS	code,	we	first
defined	some	basic	styles	for	the	box,	boxsizer,	and	clear	CSS	classes.”

A	block	of	code	is	set	as	follows:

$.each([3,	5,	7],	function(index){

				console.log(this	+	1	+	'!');

});

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

$('#categoriesSelector').change(function()	{	

				var	$selector	=	$(this);	

				var	message	=	{	categoryID:	$selector.val()	};	

				broker.trigger('dashboardCategorySelect',	[message]);	

});

We	are	following	Google’s	JavaScript	Style	Guide,	except	from	using	four	spaces	for
indentation,	in	order	to	improve	the	readability	of	the	code	in	the	book.	In	short,	we	are
placing	curly	brackets	on	top	and	use	single	quotes	for	string	literals.

Note
For	more	information	on	Google’s	JavaScript	Style	Guide	you	can	visit	the	following
URL:	https://google.github.io/styleguide/javascriptguide.xml

Any	command-line	input	or	output	is	written	as	follows:

npm	install	jquery

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“The	jQuery	Object
returned	is	an	Array-like	object	that	acts	as	a	wrapper	object	and	carries	the	collection	of
the	retrieved	elements.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

https://google.github.io/styleguide/javascriptguide.xml

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	A	Refresher	on	jQuery	and	the
Composite	Pattern
Until	the	Web	2.0	era	started,	the	Web	was	just	a	document-based	media	and	all	it	offered
was	just	interconnecting	different	pages/documents	and	client-side	scripting	that	was
mostly	limited	to	form	validation.	By	2005,	Gmail	and	Google	Maps	were	released,	and
JavaScript	proved	itself	as	a	language	used	by	big	enterprises	to	create	large-scale
applications	and	provide	rich	user	interface	interactions.

Even	though	JavaScript	has	had	very	few	changes	since	its	original	release,	there	was	a
tremendous	change	in	the	expectations	that	the	Enterprise	world	had	about	what	web
pages	should	be	capable	of	doing.	Since	then,	web	developers	were	required	to	deliver
complex	user	interactions	and,	finally,	the	term	“web	application”	appeared	on	the	market.
As	a	result,	it	started	to	become	obvious	that	they	should	create	some	code	abstractions,
define	some	best	practices,	and	adopt	all	the	applicable	Design	Patterns	that	computer
science	had	to	offer.	The	wide	adoption	of	JavaScript	for	enterprise-grade	applications
helped	the	evolution	of	the	language,	which	with	the	EcmaScript2015/EcmaScript6
(ES6)	specification	was	expanded	in	a	way	that	allowed	even	more	Design	Patterns	to	be
easily	utilized.

In	August	2006,	the	jQuery	library	was	first	released	by	John	Resig	at	http://jquery.com,
as	an	effort	to	create	a	convenient	API	to	locate	DOM	elements.	Since	then,	it	has	been	an
integral	part	of	a	web	developer’s	toolkit.	jQuery	in	its	core	uses	several	Design	Patterns
and	tries	to	urge	their	use	to	the	developer	through	the	methods	that	it	provides.	The
Composite	Pattern	is	one	of	them	and	it	is	exposed	to	the	developer	through	the	very	core
jQuery()	method,	which	is	used	for	DOM	traversal,	one	of	the	highlights	of	the	jQuery
library.

In	this	chapter,	we	will:

Have	a	refresher	on	DOM	scripting	using	jQuery
Introduce	the	Composite	Pattern
See	how	the	Composite	Pattern	is	used	by	jQuery
Discuss	the	gains	offered	by	jQuery	over	plain	JavaScript	DOM	manipulations
Introduce	the	Iterator	Pattern
Use	the	Iterator	Pattern	in	an	example	application

http://jquery.com

jQuery	and	DOM	scripting
By	DOM	scripting,	we	refer	to	any	procedure	that	alters	or	manipulates	the	elements	of	a
web	page	after	it	has	been	loaded	by	the	browser.	The	DOM	API	is	a	JavaScript	API	that
was	standardized	in	1998	and	it	provides	to	web	developers	a	collection	of	methods	that
allow	the	manipulation	of	the	DOM	tree	elements	that	the	browser	creates	after	loading
and	parsing	the	web	page’s	HTML	code.

Note
For	more	information	on	the	Document	Object	Mode	(DOM)	and	its	APIs,	you	can	visit
https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model/Introduction.

By	utilizing	the	DOM	API	in	their	JavaScript	code,	web	developers	can	manipulate	the
DOM’s	nodes	and	add	new	elements	or	remove	existing	elements	from	the	page.	The
primary	use	case	for	DOM	scripting	was	initially	limited	to	client-side	form	validation,
but	as	the	years	passed	and	JavaScript	gained	the	trust	of	the	Enterprise	world,	more
complex	user	interactions	started	to	be	implemented.

The	initial	version	of	the	jQuery	library	was	first	released	in	August	2006	and	it	tried	to
ease	the	way	the	web	developers	were	traversing	and	manipulating	the	DOM	tree.	One	of
its	main	goals	was	to	provide	abstractions	that	resulted	in	shorter,	easier-to-read,	and	less
error-prone	code,	while	also	ensuring	cross-browser	interoperability.

These	core	principles	that	jQuery	follows	are	clearly	visible	in	its	homepage,	where	it
presents	itself	as:

…a	fast,	small,	and	feature-rich	JavaScript	library.	It	makes	things	like	HTML
document	traversal	and	manipulation,	event	handling,	animation,	and	Ajax	much
simpler	with	an	easy-to-use	API	that	works	across	a	multitude	of	browsers.	With	a
combination	of	versatility	and	extensibility,	jQuery	has	changed	the	way	that	millions
of	people	write	JavaScript.

The	abstracted	APIs	that	jQuery	provided	from	the	beginning,	and	the	way	that	different
Design	Patterns	were	orchestrated,	led	to	wide	acceptance	among	the	web	developers.	As
a	result,	the	jQuery	library	is	referenced	by	more	than	60%	of	the	most	visited	websites
worldwide,	according	to	several	sources	such	as	BuiltWith.com
(http://trends.builtwith.com/javascript/jQuery).

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
http://trends.builtwith.com/javascript/jQuery

Manipulating	the	DOM	using	jQuery
To	have	a	refresher	on	jQuery,	we	will	go	through	an	example	web	page	that	does	some
simple	DOM	manipulations.	In	this	example,	we	will	load	a	simply	structured	page	that
initially	looks	like	the	following	figure:

We	will	use	some	jQuery	code	to	change	the	page’s	content	and	layout	and,	in	order	to
make	its	effects	clearly	visible,	we	will	set	it	to	run	about	700	milliseconds	after	the	page
has	loaded.	The	result	of	our	manipulations	will	look	like	the	following	figure:

Now	let’s	review	the	HTML	code	required	for	the	preceding	example:

<!DOCTYPE	html>	

<html>	

		<head>	

				<title>DOM	Manipulations</title>	

				<link	rel="stylesheet"	type="text/css"	href="dom-manipulations.css">

		</head>	

		<body>	

				<h1	id="pageHeader">DOM	Manipulations</h1>	

				<div	class="boxContainer">	

						<div>	

								<p	class="box">	

										Doing	DOM	Manipulations	is	easy	with	JS!	

								</p>	

						</div>	

						<div>	

								<p	class="box">	

										Doing	DOM	Manipulations	is	easy	with	JS!	

								</p>	

						</div>	

						<div>	

								<p	class="box">	

										Doing	DOM	Manipulations	is	easy	with	JS!	

								</p>	

						</div>	

				</div>	

				<p	class="box">	

						Doing	DOM	Manipulations	is	easy	with	JS!	

				</p>	

				<p	class="box">	

						Doing	DOM	Manipulations	is	easy	with	JS!	

				</p>

				<script	type="text/javascript"	src="https://code.jquery.com/jquery-

2.2.0.min.js"></script>

				<script	type="text/javascript"	src="jquery-dom-manipulations.js">

</script>

		</body>

</html>

The	CSS	code	used	is	quite	simple,	containing	only	three	CSS	classes	as	follows:

.box	{

				padding:	7px	10px;

				border:	solid	1px	#333;

				margin:	5px	3px;

				box-shadow:	0	1px	2px	#777;

}

.boxsizer	{

				float:	left;

				width:	33.33%;

}

.clear	{	clear:	both;	}

The	preceding	code	results	in	a	page	looking	like	the	first	figure	when	opened	in	a
browser	and	before	our	JavaScript	code	is	executed.	In	the	preceding	CSS	code,	we	first
defined	some	basic	styles	for	the	box,	boxsizer,	and	clear	CSS	classes.	The	box	class
styles	the	associated	elements	found	in	the	page	by	using	some	padding,	a	thin	border,
some	margin	around,	and	a	small	shadow	below	the	elements	in	order	to	make	them	look
like	a	box.	The	boxsizer	class	will	make	the	elements	that	use	it	to	take	just	1/3rd	of	the
width	of	their	parent	element	and	create	a	three-column	layout.	Finally,	the	clear	class
will	be	used	on	an	element	as	a	break	point	for	the	column	layout	so	that	all	the	elements
that	follow	will	be	positioned	below	it.	The	boxsizer	and	clear	classes	are	not	initially
used	by	any	element	defined	in	the	HTML	code,	but	will	be	used	after	the	DOM
manipulations	that	we	will	do	in	JavaScript.

In	the	<body>	element	of	our	HTML,	we	initially	define	an	<h1>	heading	element	with	ID
pageHeader	so	that	it	is	easily	selectable	through	JavaScript.	Right	below	it,	we	define
five	paragraph	elements	(<p>)	with	the	box	class,	having	the	first	three	of	them	wrapped
inside	the	three	<div>	elements	and	then	inside	another	<div>	element	with	the
boxContainer	class.

Reaching	our	two	<script>	tags,	we	first	include	a	reference	to	the	jQuery	library	from
jQuery	CDN.	For	more	information,	you	can	visit	http://code.jquery.com/.	In	the	second
<script>	tag,	we	reference	the	JavaScript	file	with	the	required	code,	for	this	example,
which	looks	as	follows:

setTimeout(function()	{

				$('#pageHeader').css('font-size',	'3em');

				var	$boxes	=	$('.boxContainer	.box');

				$boxes.append(

						'

<i>In	case	we	need	simple	things</i>.');

				$boxes.parent().addClass('boxsizer');

				$('.boxContainer').append('<div	class="clear">');

},	700);

All	our	code	is	wrapped	inside	a	setTimeout	call	to	delay	its	execution,	according	to	the
use	case	described	earlier.	The	first	parameter	of	the	setTimeout	function	call	is	an
anonymous	function	that	will	be	executed	after	a	timer	of	700	milliseconds	has	expired,	as
defined	in	the	second	argument.

At	the	first	line	of	our	anonymous	callback	function,	we	use	the	jQuery	$()	function	to
traverse	the	DOM	and	locate	the	element	with	the	ID	pageHeader,	and	use	the	css()
method	to	increase	its	font-size	to	3em.	Next	we	provide	a	more	complex	CSS	selector	to
the	$()	function,	to	locate	all	the	elements	with	the	box	class	that	are	descendants	of	the
element	with	the	boxContainer	class,	and	then	store	the	result	in	a	variable	named
$boxes.

Tip

http://code.jquery.com/

Variable	naming	conventions

It	is	a	common	practice	among	developers	to	use	naming	conventions	for	variables	that
hold	objects	of	a	certain	type.	Using	such	conventions	not	only	helps	you	remember	what
the	variable	is	holding,	but	also	makes	your	code	easier	to	understand	by	other	developers
of	your	team.	Among	jQuery	developers,	it	is	common	to	use	variable	names	starting	with
a	“$”	sign	when	the	variable	stores	the	result	of	the	$()	function	(also	know	as	a	jQuery
collection	object).

After	we	get	a	hold	of	the	box	elements	that	we	are	interested	in,	we	append	two	breaking
spaces	and	some	extra	text	in	italics,	at	the	end	of	each	of	them.	Then,	we	use	the	$boxes
variable	and	traverse	the	DOM	tree	one	level	up,	using	the	parent()	method.	The
parent()	method	returns	a	different	jQuery	object	holding	the	parent	<div>	elements	of
our	initially	selected	boxes	and	then	we	chain	a	call	to	the	addClass()	method	to	assign
them	the	boxsizer	CSS	class.

Tip
If	you	need	to	traverse	all	the	parent	nodes	of	a	selected	element,	you	can	use	the
$.fn.parents()	method.	If	you	just	need	to	find	the	first	ancestor	element	that	matches	a
given	CSS	selector,	consider	using	the	$.fn.closest()	method	instead.

Finally,	since	the	boxsizer	class	uses	floats	to	achieve	the	three-column	layout,	we	need
to	clear	the	floats	in	the	boxContainer.	Once	again,	we	traverse	the	DOM	using	the
simple	.boxContainer	CSS	selector	and	the	$()	function.	Then,	we	call	the	.append()
method	to	create	a	new	<div>	element	with	the	.clear	CSS	class	and	insert	it	at	the	end
of	the	boxContainer.

After	700	milliseconds,	our	jQuery	code	will	have	finished,	resulting	in	the	three-column
layout	as	shown	earlier.	In	its	final	state,	the	HTML	code	of	our	boxContainer	element
will	look	as	follows:

<div	class="boxContainer">	

		<div	class="boxsizer">	

				<p	class="box">	

						Doing	DOM	Manipulations	is	easy	with	JS!	

						

<i>In	case	we	need	simple	things</i>.	

				</p>	

		</div>	

		<div	class="boxsizer">	

				<p	class="box">	

						Doing	DOM	Manipulations	is	easy	with	JS!	

						

<i>In	case	we	need	simple	things</i>.	

				</p>	

		</div>	

		<div	class="boxsizer">	

				<p	class="box">	

						Doing	DOM	Manipulations	is	easy	with	JS!	

						

<i>In	case	we	need	simple	things</i>.	

				</p>	

		</div>	

		<div	class="clear"></div>	

</div>	

Method	Chaining	and	Fluent	Interfaces
Actually,	in	the	preceding	example,	we	can	also	go	one	step	further	and	combine	all	three
box-related	code	statements	into	just	one,	which	looks	something	as	follows:

$('.boxContainer	.box')	

		.append('

<i>In	case	we	need	simple	things</i>.')	

		.parent()	

		.addClass('boxsizer');

This	Syntax	Pattern	is	called	Method	Chaining	and	it	is	highly	recommended	by	jQuery
and	the	JavaScript	community	in	general.	Method	Chaining	is	part	of	the	Object	Oriented
Implementation	Pattern	of	Fluent	Interfaces	where	each	method	relays	its	instruction
context	to	the	subsequent	one.

Most	jQuery	methods	that	apply	on	a	jQuery	object	also	return	the	same	or	a	new	jQuery
element	collection	object.	This	allows	us	to	chain	several	methods,	not	only	resulting	in	a
more	readable	and	expressive	code	but	also	reducing	the	required	variable	declarations.

The	Composite	Pattern
The	key	concept	of	the	Composite	Pattern	is	to	enable	us	to	treat	a	collection	of	objects	in
the	same	way	as	we	treat	a	single	object	instance.	Manipulating	a	composition	by	using	a
method	on	the	collection	will	result	in	applying	the	manipulation	to	each	part	of	it.	Such
methods	can	be	applied	successfully,	regardless	of	the	number	of	elements	that	are	part	of
the	composite	collection,	or	even	when	the	collection	contains	no	elements.

Also,	the	objects	of	a	composite	collection	do	not	necessarily	have	to	provide	the	exact
same	methods.	The	Composite	Object	can	either	expose	only	the	methods	that	are
common	among	the	objects	of	the	collection,	or	can	provide	an	abstracted	API	and
appropriately	handle	the	method	differentiations	of	each	object.

Let’s	continue	by	exploring	how	the	intuitive	API	that	jQuery	exposes	is	highly	influenced
from	the	Composite	Pattern.

How	the	Composite	Pattern	is	used	by	jQuery
The	Composite	Pattern	is	an	integral	part	of	jQuery’s	architecture	and	is	applied	from	the
very	core	$()	function	itself.	Each	call	to	the	$()	function	creates	and	returns	an	element
collection	object,	which	is	often	simply	referred	as	a	jQuery	object.	This	is	exactly	where
we	see	the	first	principle	of	the	Composite	Patterns;	in	fact,	instead	of	returning	a	single
element,	the	$()	function	returns	a	collection	of	elements.

The	jQuery	object	returned	is	an	Array-like	object	that	acts	as	a	wrapper	object	and	carries
the	collection	of	the	retrieved	elements.	It	also	exposes	a	number	of	extra	properties	as
follows:

The	length	of	the	retrieved	element	collection
The	context	that	the	object	was	constructed
The	CSS	selector	that	was	used	on	the	$()	function	call
A	prevObject	property	in	case	we	need	to	access	the	previous	element	collection
after	chaining	a	method	call

Tip
Simple	Array-like	object	definition

An	Array-like	object	is	a	JavaScript	object	{	}	that	has	a	numeric	length	property	and	the
respective	number	of	properties,	with	sequential	numeric	property	names.	In	other	words,
an	Array-like	object	that	has	the	length	==	2	property	is	expected	to	also	have	two
properties	defined,	"0"	and	"1".	Given	the	above	properties,	Array-like	objects	allow	you
to	access	their	content	using	simple	for	loops,	by	utilizing	JavaScript’s	Bracket	Property
Accessor’s	syntax:

for	(var	i	=	0;	i	<	obj.length;	i++)	{	

		console.log(obj[i]);	

}

We	can	easily	experiment	with	the	jQuery	objects	returned	from	the	$()	function	and
inspect	the	properties	described	above,	by	using	the	developer	tools	of	our	favorite
browser.	To	open	the	developer	tools	on	most	of	them,	we	just	need	to	press	F12	on
Windows	and	Linux	or	Cmd	+	Opt	+	I	on	Mac,	and	right	after	that,	we	can	issue	some	$()
calls	in	the	console	and	click	on	the	returned	objects	to	inspect	their	properties.

In	the	following	figure,	we	can	see	what	the	result	of	the	$('#pageHeader')	call,	which
we	used	in	the	example	earlier,	looks	like	in	Firefox	Developer	Tools:

The	result	of	the	$('.boxContainer	.box')	call	looks	as	follows:

The	fact	that	jQuery	uses	Array-like	objects	as	a	wrapper	for	the	returned	elements	allows
it	to	expose	some	extra	methods	that	apply	on	the	collection	returned.	This	is	achieved
through	prototypical	inheritance	of	the	jQuery.fn	object,	resulting	in	each	jQuery	object
also	having	access	to	all	the	methods	that	jQuery	provides.	This	completes	the	Composite
Pattern,	which	provides	methods	that,	when	applied	to	a	collection,	are	appropriately
applied	to	each	of	its	members.	Because	jQuery	uses	Array-like	objects	with	prototypical
inheritance,	these	methods	can	be	easily	accessed	as	properties	on	each	jQuery	object,	as
shown	in	the	example	in	the	beginning	of	the	chapter:	$('#pageHeader').css('font-
size',	'3em');.	Moreover,	jQuery	adds	some	extra	goodies	to	its	DOM	manipulating
code,	following	the	goal	of	smaller	and	less	error-prone	code.	For	example,	when	using
the	jQuery.fn.html()	method	to	change	the	inner	HTML	of	a	DOM	node	that	already
contains	child	elements,	jQuery	first	tries	to	remove	any	data	and	event	handlers	that	are
associated	with	the	child	elements,	before	removing	them	from	the	page	and	appending
the	provided	HTML	code.

Let’s	take	a	look	at	how	jQuery	implements	these	collection-applicable	methods.	For	this
task,	we	can	either	download	and	view	the	source	code	from	the	GitHub	page	of	jQuery
(https://github.com/jquery/jquery/releases),	or	we	can	use	a	tool	such	as	the	jQuery	Source
Viewer	that	is	available	at	http://james.padolsey.com/jquery.

Note
Depending	on	the	version	you	are	using,	you	might	get	different	results	to	some	degree.
The	most	recent	stable	jQuery	version	that	was	released	and	used	as	a	reference	while
writing	this	book,	was	v2.2.0.

One	of	the	simplest	methods	to	demonstrate	how	methods	that	apply	to	collections	are
implemented,	is	jQuery.fn.empty().	You	can	easily	locate	its	implementation	in	jQuery’s
source	code	by	searching	for	"empty:"	or	using	the	jQuery	Source	Viewer	and	searching
for	"jQuery.fn.empty".	Using	either	one	of	the	ways	will	bring	us	to	the	following	code:

empty:	function()	{	

		var	elem,	i	=	0;	

		for	(;	(elem	=	this[i])	!=	null;	i++)	{

				if	(elem.nodeType	===	1)	{	

						//	Prevent	memory	leaks	

						jQuery.cleanData(getAll(elem,	false));	

						//	Remove	any	remaining	nodes	

https://github.com/jquery/jquery/releases
http://james.padolsey.com/jquery

						elem.textContent	=	"";	

				}	

		}	

		return	this;	

}

As	you	can	see,	the	code	is	not	complex	at	all.	jQuery	iterates	over	all	the	items	of	the
collection	object	(referred	to	as	this	since	we	are	inside	the	method	implementation)	by
using	a	plain	for	loop.	For	each	item	of	the	collection,	that	is,	an	Element	Node,	it	clears
any	data-*	property	values	using	the	jQuery.cleanData()	helper	function,	and	right	after
this,	it	clears	its	content	by	setting	it	to	an	empty	string.

Note
For	more	information	on	the	different	specified	Node	Types,	you	can	visit
https://developer.mozilla.org/en-US/docs/Web/API/Node/nodeType.

https://developer.mozilla.org/en-US/docs/Web/API/Node/nodeType

Comparing	the	benefits	over	the	plain	DOM	API
To	clearly	demonstrate	the	benefits	that	the	Composite	Pattern	provides,	we	will	rewrite
our	initial	example	without	the	abstractions	that	jQuery	offers.	By	using	just	plain
JavaScript	and	the	DOM	API,	we	can	write	an	equivalent	code	that	looks	as	follows:

setTimeout(function()	{	

		var	headerElement	=	document.getElementById('pageHeader');	

		if	(headerElement)	{	

				headerElement.style.fontSize	=	'3em';	

		}	

		var	boxContainerElement	=	document.getElementsByClassName('boxContainer')

[0];	

		if	(boxContainerElement)	{	

				var	innerBoxElements	=	

boxContainerElement.getElementsByClassName('box');	

				for	(var	i	=	0;	i	<	innerBoxElements.length;	i++)	{	

						var	boxElement	=	innerBoxElements[i];	

						boxElement.innerHTML	+='

<i>In	case	we	need	simple	

things</i>.';	

						boxElement.parentNode.className	+=	'	boxsizer';	

				}	

				var	clearFloatDiv	=	document.createElement('div');	

				clearFloatDiv.className	=	'clear';	

				boxContainerElement.appendChild(clearFloatDiv);	

		}	

},	700);

Once	again,	we	use	setTimeout	with	an	anonymous	function	and	set	700	milliseconds	as
the	second	parameter.	Inside	the	function	itself,	we	use	document.getElementById	to
retrieve	elements	that	are	known	to	have	a	unique	ID	in	the	page,	and	later
document.getElementsByClassName	when	we	need	to	retrieve	all	the	elements	that	have	a
specific	class.	We	also	use	boxContainerElement.getElementsByClassName('box')	to
retrieve	all	the	elements	with	the	box	class	that	are	descendants	of	the	element	with	the
boxContainer	class.

The	most	obvious	observation	is	that,	in	this	case,	we	needed	18	lines	of	code	in	order	to
achieve	the	same	results.	For	comparison,	when	using	jQuery,	we	only	needed	9	lines	of
code,	that’s	half	the	number	of	lines	of	code	compared	to	the	later	implementation.	Using
the	jQuery	$()	function	with	a	CSS	selector	was	an	easier	way	to	retrieve	the	elements
that	we	needed,	and	it	also	ensures	compatibility	with	browsers	that	do	not	support	the
getElementsByClassName()	method.	However,	there	are	more	benefits	than	just	the	code
line	count	and	the	improved	readability.	As	an	implementer	of	the	Composite	Pattern,	the
$()	function	always	retrieves	element	collections,	making	our	code	more	uniform	when
compared	to	the	differentiated	handling	of	each	getElement*	method	we	used.	We	use	the
$()	function	in	exactly	the	same	way,	regardless	of	whether	we	just	want	to	retrieve	an
element	with	a	unique	ID	or	a	number	of	elements	with	a	specific	class.

As	an	extra	benefit	of	returning	Array-like	objects,	jQuery	can	also	provide	more
convenient	methods	to	traverse	and	manipulate	the	DOM,	such	as	those	we	saw	in	our
first	example,	.css(),	.append()	and	.parent(),	which	are	accessible	as	properties	of	the

returned	object.	Additionally,	jQuery	also	offers	methods	that	abstract	more	complex	use
cases	such	as	.addClass()	and	.wrap()	that	have	no	equivalent	methods	available	as	part
of	the	DOM	API.

Since	the	returned	jQuery	collection	objects	do	not	differ	in	anything	other	than	the
elements	they	wrap,	we	can	use	any	method	of	the	jQuery	API	in	the	same	way.	As	we
saw	earlier,	these	methods	apply	to	each	element	of	the	retrieved	collection,	regardless	of
the	element	count.	As	a	result,	we	do	not	need	a	separate	for	loop	to	iterate	over	each
retrieved	element	and	apply	our	manipulations	individually;	instead,	we	apply	our
manipulations	(for	example,	.addClass())	directly	to	the	collection	object.

To	continue	providing	the	same	execution	safety	guaranties	in	the	later	example,	we	also
need	to	add	some	extra	if	statements	to	check	for	null	values.	This	is	required	because,
for	example,	if	the	headerElement	is	not	found,	an	error	will	occur	and	the	rest	of	the
lines	of	code	will	never	be	executed.	Someone	could	argue	that	these	checks,	such	as	if
(headerElement)	and	if	(boxContainerElement),	are	not	required	in	this	example	and
can	be	omitted.	This	might	appear	to	be	correct	in	this	example,	but	actually	this	is	among
the	top	reasons	for	errors	while	developing	large-scale	applications,	where	elements	are
created,	inserted,	and	removed	from	the	DOM	tree	continuously.	Unfortunately,
programmers	in	all	languages	and	target	platforms	tend	to	first	write	their	implementation
logic	and	fill	such	checks	at	a	later	time,	often	after	they	get	an	error	when	testing	their
implementation.

Following	the	Composite	Pattern,	even	an	empty	jQuery	collection	object	(one	that
contains	no	retrieved	elements)	is	still	a	valid	collection	object,	where	we	can	safely	apply
any	method	that	jQuery	provides.	As	a	result,	we	do	not	need	the	extra	if	statements	to
check	whether	a	collection	actually	contains	any	element	before	applying	a	method	such
as	.css(),	just	for	the	sake	of	avoiding	a	JavaScript	runtime	error.

Overall,	the	abstractions	that	jQuery	offers	by	using	the	Composite	Pattern	lead	to	fewer
lines	of	code,	which	is	more	readable,	uniform,	and	with	fewer	typo-prone	lines	(compare
typing	$('#elementID')	versus	document.getElementById('elementID')).

Using	the	Composite	Pattern	to	develop
applications
Now	that	we	have	seen	how	jQuery	uses	the	Composite	Pattern	in	its	architecture	and	also
did	a	comparison	on	the	benefits	it	provided,	let’s	try	to	write	an	example	use	case	of	our
own.	We	will	try	to	cover	all	concepts	that	we	have	seen	earlier	in	this	chapter.	We	will
structure	our	Composite	to	be	an	Array-like	object,	operate	on	totally	different	structured
objects,	provide	a	Fluent	API	to	allow	chaining,	and	have	methods	that	apply	on	all	the
items	of	the	collection.

A	sample	use	case
Let’s	say	that	we	have	an	application	that	at	some	point	needs	to	perform	operations	on
numbers.	On	the	other	hand,	the	items	that	it	needs	to	operate	on	come	from	different
sources	and	are	not	uniform	at	all.	To	make	this	example	interesting,	let’s	suppose	that	one
source	of	data	provides	plain	numbers	and	another	one	provides	objects	with	a	specific
property	that	holds	the	number	we	are	interested	in:

var	numberValues	=	[2,	5,	8];	

var	objectsWithValues	=	[

				{	value:	7	},	

				{	value:	4	},	

				{	value:	6	},	

				{	value:	9	}	

];

The	objects	returned	by	the	second	source	of	our	use	case	could	have	a	more	complex
structure	and	probably	some	extra	properties.	Such	changes	wouldn’t	differentiate	our
example	implementation	in	any	way,	since	when	developing	a	Composite	we	are	only
interested	in	providing	a	uniform	handling	over	the	common	parts	between	the	targeted
items.

The	Composite	Collection	Implementation
Let’s	proceed	and	define	the	Constructor	Function	and	the	prototype	that	will	describe	our
Composite	Collection	Object:

function	ValuesComposite()	{	

				this.length	=	0;	

}	

ValuesComposite.prototype.append	=	function(item)	{	

				if	((typeof	item	===	'object'	&&	'value'	in	item)	||	

								typeof	item	===	'number')	{	

								this[this.length]	=	item;	

								this.length++;	

				}	

				return	this;	

};	

ValuesComposite.prototype.increment	=	function(number)	{	

				for	(var	i	=	0;	i	<	this.length;	i++)	{	

								var	item	=	this[i];	

								if	(typeof	item	===	'object'	&&	'value'	in	item)	{	

												item.value	+=	number;	

								}	else	if	(typeof	item	===	'number')	{	

												this[i]	+=	number;	

								}	

				}	

				return	this;	

};	

ValuesComposite.prototype.getValues	=	function()	{	

				var	result	=	[];	

				for	(var	i	=	0;	i	<	this.length;	i++)	{	

								var	item	=	this[i];	

								if	(typeof	item	===	'object'	&&	'value'	in	item)	{	

												result.push(item.value);	

								}	else	if	(typeof	item	===	'number')	{	

												result.push(item);	

								}	

				}	

				return	result;	

};

The	ValuesComposite()	constructor	function	in	our	example	is	quite	simple.	When
invoked	with	the	new	operator,	it	returns	an	empty	object	with	a	length	property	equal	to
zero,	representing	that	the	collection	it	wraps	is	empty.

Note
For	more	information	on	the	Prototype-based	programming	model	of	JavaScript,	visit
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-
Oriented_JavaScript.

We	first	need	to	define	a	way	that	will	enable	us	to	populate	our	composite	collection
objects.	We	defined	the	append	method	that	checks	whether	the	provided	parameter	is	one
of	the	types	that	it	can	handle;	in	this	case,	it	appends	the	parameter	on	the	Composite
Object	on	the	next	available	numeric	property	and	increments	the	length	property	value.
For	example,	the	first	appended	item,	whether	it	is	an	object	with	a	value	property	or	a
plain	number,	will	be	exposed	to	the	“0”	property	of	the	Composite	Object	and	will	be
accessible	with	the	Bracket	Property	Accessor’s	syntax	as	myValuesComposition[0].

The	increment	method	is	presented	as	a	simple	example	method	that	can	manipulate	such
collections	by	operating	over	all	the	collection	items.	It	accepts	a	numeric	value	as	a
parameter	and	then	appropriately	handles	it	by	adding	it	to	each	item	of	our	collection,
based	on	their	type.	Since	our	composite	is	an	Array-like	object,	increment	uses	a	for
loop	to	iterate	over	all	the	collection	items	and	either	increases	the	item.value	(in	case
the	item	is	an	object)	or	the	actual	numeric	value	stored	(when	the	collection	item	stored	is
a	number).	In	the	same	manner,	we	can	continue	and	implement	other	methods	that	will,

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

for	example,	enable	us	to	multiply	the	collection	items	with	a	specific	number.

In	order	to	allow	chaining	the	methods	of	our	Composite	Object,	all	the	methods	of	the
prototype	need	to	return	a	reference	to	the	instance	of	the	object.	We	achieve	this	goal	by
simply	adding	a	return	this;	statement	as	the	last	line	for	all	the	methods	that
manipulate	the	collection,	such	as	append	and	increment.	Keep	in	mind	that	methods	such
as	getValues	that	do	not	manipulate	the	collection	but	are	used	to	return	a	result,	by
definition,	can’t	be	chained	to	relay	the	collection	object	instance	to	subsequent	method
calls.

Finally,	we	implement	the	getValues	method	as	a	convenient	way	to	retrieve	the	actual
numeric	values	of	all	the	items	in	our	collection.	Similar	to	the	increment	method,	the
getValues	method	abstracts	away	the	handling	between	the	different	item	types	of	our
collection.	It	iterates	over	the	collection	items,	extracts	each	numeric	value,	and	appends
them	to	a	result	array	that	it	returns	to	its	caller.

An	example	execution
Let’s	now	see	an	actual	example	that	will	use	the	Composite	Object	we	just	implemented:

var	valuesComposition	=	new	ValuesComposite();	

for	(var	i	=	0;	i	<	numberValues.length;	i++)	{	

				valuesComposition.append(numberValues[i]);	

}	

for	(var	i	=	0;	i	<	objectsWithValues.length;	i++)	{	

				valuesComposition.append(objectsWithValues[i]);	

}

valuesComposition.increment(2)	

				.append(1)	

				.append(2)	

				.append({	value:	3	});	

console.log(valuesComposition.getValues());	

When	the	preceding	code	is	executed	in	a	browser,	by	writing	the	code	either	in	an
existing	page	or	directly	in	the	browser’s	console,	it	will	log	a	result	that	looks	as	follows:

►	Array	[4,	7,	10,	9,	6,	8,	11,	1,	2,	3]

We	are	using	our	data	sources	such	as	the	numberValues	and	objectsWithValues
variables	that	were	shown	earlier.	The	preceding	code	iterates	over	both	of	them	and
appends	their	items	to	a	newly	created	Composite	Object	instance.	We	then	proceed	by
incrementing	the	values	of	our	composite	collection	by	2.	Right	after	this,	we	chain	the
three	item	insertions	using	append,	with	the	first	two	appending	numeric	values	and	the
third	appending	an	object	with	a	value	property.	Finally,	we	use	the	getValues	method	in
order	to	get	an	array	with	all	the	numeric	values	of	our	collection	and	log	it	in	our
browser’s	console.

Alternative	implementations

Keep	in	mind	that	a	Composite	does	not	need	to	be	an	Array-like	object,	but	is	commonly
preferred	since	JavaScript	makes	it	easy	to	create	such	an	implementation.	Additionally,
Array-like	implementations	also	have	the	benefit	of	allowing	us	to	iterate	over	the
collection	items	using	a	simple	for	loop.

On	the	other	hand,	in	case	an	Array-like	object	is	not	preferred,	we	can	easily	use	a
property	on	the	Composite	Object	to	hold	our	collection	items.	For	example,	this	property
can	be	named	as	items	and	be	used	to	store	and	access	the	items	of	the	collection	inside
our	methods	using	this.items.push(item)	and	this.items[i],	respectively.

The	Iterator	Pattern
The	key	concept	of	the	Iterator	Pattern	is	the	use	of	a	function	with	the	single
responsibility	to	traverse	a	collection	and	provide	access	to	its	items.	This	function	is
known	as	the	iterator	and	provides	a	way	to	access	the	items	of	the	collection,	without
exposing	implementation	specifics	and	the	underlying	data	structure	used	by	the	collection
object.

Iterators	provide	a	level	of	encapsulation	regarding	the	way	the	iteration	occurs,
decoupling	the	iteration	over	the	items	of	a	collection	from	the	implementation	logic	of
their	consumers.

Note
For	more	information	on	the	Single	Responsibility	principle,	you	can	visit
http://www.oodesign.com/single-responsibility-principle.html.

http://www.oodesign.com/single-responsibility-principle.html

How	the	Iterator	Pattern	is	used	by	jQuery
As	we	saw	earlier	in	this	chapter,	the	jQuery	core	$()	function	returns	an	Array-like	object
that	wraps	a	collection	of	page	elements	and	it	also	provides	an	iterator	function	to
traverse	it	and	access	each	element	individually.	It	actually	goes	one	step	further	and
provides	a	generic	helper	method	jQuery.each()	that	can	iterate	over	arrays,	Array-like
objects,	and	also	object	properties.

A	more	technical	description	can	be	found	in	jQuery	API	documentation	page	at
http://api.jquery.com/jQuery.each/,	where	the	description	of	jQuery.each()	reads	as
follows:

A	generic	iterator	function,	which	can	be	used	to	seamlessly	iterate	over	both	objects
and	arrays.	Arrays	and	Array-like	objects	with	a	length	property	(such	as	a	function’s
arguments	object)	are	iterated	by	numeric	index,	from	0	to	length-1.	Other	objects
are	iterated	via	their	named	properties.

The	jQuery.each()	helper	function	is	used	internally	in	several	places	of	the	jQuery
source	code.	One	of	its	uses	is	iterating	over	the	items	of	a	jQuery	object	and	applying
manipulations	on	each	of	them,	as	the	Composite	Pattern	suggests.	A	simple	search	for	the
keyword	.each(reveals	56	matches.

Note
As	of	writing	this	book,	the	latest	stable	version	is	v2.2.0	and	this	was	used	for	the	above
statistics.

We	can	easily	trace	its	implementation	in	jQuery’s	source,	either	by	searching	for	"each:"
(note	that	there	are	two	occurrences)	or	using	the	jQuery	Source	Viewer	and	searching	for
"jQuery.each()"	(like	we	did	earlier	in	this	chapter):

each:	function(obj,	callback)	{

		var	length,	i	=	0;

		if	(isArrayLike(obj))	{

				length	=	obj.length;

				for	(;	i	<	length;	i++)	{

						if	(callback.call(obj[i],	i,	obj[i])	===	false)	{

								break;

						}

				}

		}	else	{

				for	(i	in	obj)	{

						if	(callback.call(obj[i],	i,	obj[i])	===	false)	{

								break;

						}

				}

			}

		return	obj;

}

http://api.jquery.com/jQuery.each/

This	helper	function	is	also	accessible	on	any	jQuery	object	by	using	the	same
prototypical	inheritance	that	we	saw	earlier	for	methods	such	as	.append().	You	can
easily	find	the	code	that	does	exactly	this,	by	searching	for	"jQuery.fn.each()"	in
jQuery	Source	Viewer	or	directly	searching	jQuery	source	code	for	each:	(note	that	there
are	two	occurrences):

each:	function(callback)	{

		return	jQuery.each(this,	callback);

}

Using	the	method	version	of	".each()"	enables	us	to	directly	iterate	over	the	elements	of
a	jQuery	collection	object	with	a	more	convenient	syntax.

The	example	code	that	follows	showcases	how	the	two	flavors	of	.each()	can	be	used	in
our	code:

//	using	the	helper	function	on	an	array

$.each([3,	5,	7],	function(index){

				console.log(this	+	1);

});

//	using	the	method	on	a	jQuery	object

$('.boxContainer	.box').each(function(index)	{

				console.log('I\'m	box	#'	+	(index	+	1));	//	index	is	zero-based

});

When	executed,	the	preceding	code	will	log	the	following	on	the	browser’s	console:

How	it	pairs	with	the	Composite	Pattern
Since	the	Composite	Pattern	encapsulates	a	collection	of	items	into	a	single	object	and	the
Iterator	Pattern	can	be	used	to	iterate	over	an	abstracted	data	structure,	we	can	easily
characterize	these	two	patterns	as	complementary.

Where	can	it	be	used
The	Iterator	Pattern	can	be	used	in	our	applications	to	abstract	the	way	we	access	items
from	a	data	structure.	For	example,	let’s	suppose	we	need	to	retrieve	all	the	items	that	are
greater	than	4	from	the	following	tree	structure:

var	collection	=	{	

				nodeValue:	7,	

				left:	{	

								nodeValue:	4,	

								left:	2,	

								right:	{	

												nodeValue:	6,	

												left:	5,	

												right:	9	

								}	

				},	

				right:	{	

								nodeValue:	9,	

								left:	8	

				}	

};	

Let’s	now	implement	our	iterator	function.	Since	tree	data	structures	can	have	nesting,	we
end	up	with	the	following	recursive	implementation:

function	iterateTreeValues(node,	callback)	{	

				if	(node	===	null	||	node	===	undefined)	{	

								return;	

				}	

				if	(typeof	node	===	'object')	{	

								if	('left'	in	node)	{	

												iterateTreeValues(node.left,	callback);	

								}	

								if	('nodeValue'	in	node)	{	

												callback(node.nodeValue);	

								}	

								if	('right'	in	node)	{	

												iterateTreeValues(node.right,	callback);	

								}	

				}	else	{	

								//	its	a	leaf,	so	the	node	is	the	value	

								callback(node);	

				}	

}	

Finally,	we	end	up	with	an	implementation	that	looks	as	follows:

var	valuesArray	=	[];	

iterateTreeValues(collection,	function(value)	{	

				if	(value	>	4)	{	

								valuesArray.push(value);	

				}	

});	

console.log(valuesArray);

When	executed,	the	preceding	code	will	log	the	following	on	the	browser’s	console:

►	Array	[5,	6,	9,	7,	8,	9]

We	can	clearly	see	that	the	iterator	simplified	our	code.	We	no	longer	bother	with	the
implementation	specifics	of	the	data	structure	used	every	time	we	need	to	access	some
items	that	fulfill	certain	criteria.	Our	implementation	works	on	top	of	the	generic	API	that
the	iterator	exposes,	and	our	implementation	logic	appears	in	the	callback	that	we	provide
to	the	iterator.

This	encapsulation	allows	us	to	decouple	our	implementation	from	the	data	structure	used,
given	that	an	iterator	with	the	same	API	will	be	available.	For	instance,	in	this	example,
we	can	easily	change	the	data	structure	used	to	a	sorted	binary	tree	or	a	simple	array	and
preserve	our	implementation	logic	the	same.

Summary
In	this	chapter,	we	had	a	refresher	on	JavaScript’s	DOM	Scripting	API	and	jQuery.	We
were	introduced	to	the	Composite	Pattern	and	saw	how	it	is	used	by	the	jQuery	library.	We
saw	how	the	Composite	Pattern	simplifies	our	workflow	after	we	rewrote	our	example
page	without	using	jQuery,	and	later	showcased	an	example	of	using	the	Composite
Pattern	in	our	applications.	Finally,	we	were	introduced	to	the	Iterator	Pattern	and	saw
how	well	it	pairs	when	used	along	with	the	Composite	Pattern.

Now	that	we	have	completed	our	introduction	on	how	the	Composite	Pattern	plays	an
important	role	in	the	way	we	use	jQuery	methods	every	day,	we	can	move	on	to	the	next
chapter	where	we	will	showcase	the	Observer	Pattern	and	the	convenient	way	to	utilize	it
in	our	pages	using	jQuery.

Chapter	2.	The	Observer	Pattern
In	this	chapter,	we	will	showcase	the	Observer	Pattern	and	the	convenient	way	in	which
we	can	utilize	it	in	our	pages	using	jQuery.	Later	on,	we	will	also	explain	the	Delegated
Event	Observer	Pattern	variant,	which	when	properly	applied	to	web	pages	can	lead	to
code	simplifications	and	also	lessen	the	memory	consumption	that	a	page	requires.

In	this	chapter,	we	will:

Introduce	the	Observer	Pattern
See	how	the	Observer	Pattern	is	used	by	jQuery
Compare	the	Observer	Pattern	with	using	the	event	attributes
Learn	how	to	avoid	memory	leaks	from	observers
Introduce	the	Delegated	Event	Observer	Pattern	and	showcasing	its	benefits

Introducing	the	Observer	Pattern
The	key	concept	of	the	Observer	Pattern	is	that	there	is	an	object,	often	referred	to	as	the
observable	or	the	subject,	whose	internal	state	changes	during	its	lifetime.	There	are	also
several	other	objects,	referred	as	the	observers,	that	want	to	be	notified	in	the	event	that
the	state	of	the	observable/subject	changes,	in	order	to	execute	some	operations.

The	observers	may	need	to	be	notified	about	any	kind	of	state	change	of	the	observable	or
only	specific	types	of	changes.	In	the	most	common	implementation,	the	observable
maintains	a	list	with	its	observers	and	notifies	them	when	an	appropriate	state	change
occurs.	In	case	a	state	change	occurs	to	the	observable,	it	iterates	through	the	list	of
observers	that	are	interested	for	that	type	of	state	change	and	executes	a	specific	method
that	they	have	defined.

According	to	the	definition	of	the	Observer	Pattern	and	the	reference	implementation	in
Computer	Science	books,	the	observers	are	described	as	objects	that	implement	a	well-
known	programming	interface,	in	most	cases,	specific	to	each	observable	they	are
interested	in.	In	the	case	of	a	state	change,	the	observable	will	execute	the	well-known
method	of	each	observer	as	it	is	defined	in	the	programming	interface.

Note
For	more	information	on	how	the	Observer	Pattern	is	used	in	traditional,	object-oriented
programming,	you	can	visit	http://www.oodesign.com/observer-pattern.html.

In	the	web	stack,	the	Observer	Pattern	often	uses	plain	anonymous	callback	functions	as
observers	instead	of	objects	with	well-known	methods.	An	equivalent	result,	as	defined	by

http://www.oodesign.com/observer-pattern.html

the	Observer	Pattern,	can	be	achieved	since	the	callback	function	keeps	references	to	the
variables	of	the	environment	that	it	was	defined	in—a	pattern	commonly	referenced	as	a
Closure.	The	main	benefit	of	using	the	Observer	Pattern	over	callbacks	as	invocation	or
initialization	parameters	is	that	the	Observer	Pattern	can	support	several	independent
handlers	on	a	single	target.

Note
For	more	information	on	closures,	you	can	visit	https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Closures.

Tip
Defining	a	simple	callback

A	callback	can	be	defined	as	a	function	that	is	passed	as	an	argument	to	another
function/method	or	is	assigned	to	a	property	of	an	object	and	expected	to	be	executed	at
some	later	point	of	time.	In	this	way,	the	piece	of	code	that	was	handed	our	callback	will
invoke	or	call	it,	propagating	the	results	of	an	operation	or	event	back	to	the	context	where
the	callback	was	defined.

Since	the	pattern	of	registering	functions	as	observers	has	proven	to	be	more	flexible	and
straightforward	to	program,	it	can	be	found	in	programming	languages	outside	the	web
stack	as	well.	Other	programming	languages	provide	an	equivalent	functionality	through
language	features	or	special	objects	such	as	subroutines,	lambda	expressions,	blocks,	and
function	pointers.	For	example,	Python	also	defines	functions	as	first-class	objects	such	as
JavaScript,	enabling	them	to	be	used	as	callbacks,	while	C#	defines	Delegates	as	a	special
object	type	in	order	to	achieve	the	same	result.

The	Observer	Pattern	is	an	integral	part	of	developing	web	interfaces	that	respond	to	user
actions,	and	every	web	developer	has	used	it	to	some	degree,	even	without	noticing	it.
This	is	because	the	first	thing	that	a	web	developer	needs	to	do	while	creating	a	rich	user
interface	is	to	add	event	listeners	to	page	elements	and	define	how	the	browser	should
respond	to	them.

This	is	traditionally	achieved	by	using	the	EventTarget.addEventListener()	method	on
the	page	elements	that	we	need	to	listen	to	for	events	such	as	a	“click”,	and	providing	a
callback	function	with	the	code	that	needs	to	be	executed	when	that	event	occurs.	It	is
worth	mentioning	that	in	order	to	support	older	versions	of	Internet	Explorer,	testing	for
the	existence	of	EventTarget.attachEvent(),	and	using	that	instead,	is	required.

Note
For	more	information	on	the	addEventListener()	and	attachEvent()	methods,	you	can
visit	https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
and	https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/attachEvent.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/attachEvent

How	it	is	used	by	jQuery
The	jQuery	library	heavily	uses	the	Observer	Pattern	in	several	parts	of	its
implementation,	either	directly	by	using	the	addEventListener	method	or	creating	its
own	abstraction	over	it.	Moreover,	jQuery	offers	a	series	of	abstractions	and	convenient
methods	to	make	working	with	the	Observer	Pattern	easier	on	the	web	and	also	uses	some
of	them	internally	to	implement	other	methods	as	well.

The	jQuery	on	method
The	jQuery.fn.on()	method	is	the	central	jQuery	method	for	attaching	event	handlers	to
elements,	providing	an	easy	way	to	adopt	the	Observer	Pattern,	while	keeping	our	code
easy	to	read	and	reason.	It	attaches	the	requested	event	handler	over	all	the	elements	of	a
composite	jQuery	collection	object	returned	by	the	$()	function.

Searching	for	jQuery.fn.on	in	jQuery’s	Source	Viewer	(which	is	available	at
http://james.padolsey.com/jquery),	or	directly	searching	jQuery’s	source	code	for	on:
function	(the	first	character	is	a	tab),	will	lead	us	to	the	method’s	definition,	which	counts
67	lines	of	code.	Actually,	the	first	55	lines	of	the	internal	on	function	are	just	handling	all
the	different	ways	that	the	jQuery.fn.on()	method	can	be	invoked;	near	its	end,	we	can
see	that	it	actually	uses	the	internal	method	jQuery.event.add():

jQuery.fn.extend({

		on:	function(types,	selector,	data,	fn)	{

				return	on(this,	types,	selector,	data,	fn);

		}

});

function	on(elem,	types,	selector,	data,	fn,	one)	{

		/*	55	lines	of	code	handling	the	method	overloads	*/

		return	elem.each(function()	{

				jQuery.event.add(this,	types,	fn,	data,	selector);

		});

}

The	jQuery.event	object	is	the	one-place	stop	for	event	handling	in	jQuery	and	its
implementation	counts	around	443	lines	of	code.	It	holds	several	helper	functions	for
managing	events	such	as	add,	dispatch,	fix,	handlers,	remove,	simulate,	and	trigger.
All	these	functions	are	used	internally	by	jQuery	itself	wherever	the	Observer	Pattern
appears	or	managing	events	is	required.

Searching	for	jQuery.event.add	in	jQuery’s	Source	Viewer	or	jQuery.event	=	directly
in	jQuery’s	source	code,	will	lead	us	to	the	relatively	long	implementation	of	the	helper
function	that	counts	around	107	lines	of	code	in	jQuery	v2.2.0.	The	following	code	snippet
shows	a	trimmed	down	version	of	that	method,	where	some	code	related	to	the	technical
implementation	of	jQuery	and	not	related	to	the	Observer	Pattern	has	been	removed	for
clarity:

add:	function(elem,	types,	handler,	data,	selector)	{	

				/*	...	4	lines	of	code…	*/

http://james.padolsey.com/jquery

								elemData	=	dataPriv.get(elem);	

				/*	...	13	lines	of	code…	*/

				//	Make	sure	that	the	handler	has	a	unique	ID,	

				//	used	to	find/remove	it	later	

				if	(!handler.guid)	{	

								handler.guid	=	jQuery.guid++;	

				}	

				//	Init	the	element's	event	structure	and	main	handler,	

				//	if	this	is	the	first	

				if	(!(events	=	elemData.events))	{	

								events	=	elemData.events	=	{};	

				}	

				/*	...	9	lines	of	code…	*/	

				//	Handle	multiple	events	separated	by	a	space	

				types	=	(types	||	"").match(rnotwhite)	||	[""];	

				t	=	types.length;	

				while	(t--)	{	

								/*	...	30	lines	of	code…	*/	

								//	Init	the	event	handler	queue	if	we're	the	first	

								if	(!(handlers	=	events[type]))	{	

												handlers	=	events[type]	=	[];	

												handlers.delegateCount	=	0;	

												//	Only	use	addEventListener	if	the	special	events	handler

												//	returns	false	

												if	(!special.setup	||	special.setup.call(elem,	data,	

namespaces,	eventHandle)	===	false)	{

																if	(elem.addEventListener)	{	

																				elem.addEventListener(type,	eventHandle);	

																}	

												}	

								}

								/*	...	9	lines	of	code…	*/	

								//	Add	to	the	element's	handler	list,	delegates	in	front	

								if	(selector)	{	

												handlers.splice(handlers.delegateCount++,	0,	handleObj);	

								}	else	{	

												handlers.push(handleObj);	

								}

								/*	...	3	lines	of	code…	*/

				}	

}

Now,	let’s	see	how	the	Observer	Pattern	is	implemented	by	jQuery.event.add(),	by
referring	to	the	preceding	highlighted	code.

The	handler	variable	in	the	arguments	of	the	jQuery.event.add()	method	stores	the
function	that	was	originally	passed	as	an	argument	to	the	jQuery.fn.on()	method.	We
can	refer	to	this	function	as	our	observer	function,	since	it	is	executed	when	the

appropriate	event	fires	on	the	element	that	it	was	attached	to.

In	the	first	highlighted	code	area,	jQuery	creates	and	assigns	a	guid	property	to	the
observer	function	that	is	stored	in	the	handler	variable.	Keep	in	mind	that	assigning
properties	to	functions	is	possible	in	JavaScript,	since	functions	are	first-class	objects.	The
jQuery.guid++	statement	is	executed	right	after	the	assignment	of	the	old	value	and	is
required	since	jQuery.guid	is	a	page-wide	counter	used	by	jQuery	and	jQuery	plugins
internally.	The	guid	property	on	the	observer	function	is	used	as	a	way	to	identify	and
locate	the	observer	function	inside	the	observer	list	that	jQuery	has	for	each	element.	For
example,	it	is	used	by	the	jQuery.fn.off()	method	to	locate	and	remove	an	observer
function	from	the	observer	list	associated	with	an	element.

Tip
jQuery.guid	is	a	page-wide	counter	that	is	used	by	the	plugins	and	jQuery	itself	as	a
centralized	way	to	retrieve	unique	integer	IDs.	It	is	often	used	to	assign	unique	IDs	to
elements,	objects,	and	functions,	in	order	to	make	it	easier	to	locate	them	in	collections.	It
is	the	responsibility	of	each	implementer	that	retrieves	and	uses	the	current	value	of
jQuery.guid	to	also	increase	the	property	value	(by	one)	after	each	use.	Otherwise,	and
since	this	is	a	page-wide	counter	that	is	used	by	both	jQuery	plugins	and	jQuery
themselves	for	identification,	the	page	will	probably	face	malfunctions	that	are	hard	to
debug.

In	the	second	and	third	highlighted	code	areas,	jQuery	initializes	an	array	to	hold	the
observer	lists	for	each	individual	event	that	may	fire	on	that	element.	One	thing	to	note	in
the	second	highlighted	code	area	is	that	the	observer	lists	found	in	the	elemData	variable
are	not	a	property	on	the	actual	DOM	element.	As	shown	in	the	dataPriv.get(elem)
statement,	near	the	start	of	the	jQuery.event.add()	method,	jQuery	uses	separate
mapping	objects	to	hold	the	associations	between	DOM	elements	and	their	observer	lists.
By	using	this	data	cache	mechanism,	jQuery	is	able	to	avoid	polluting	the	DOM	elements
with	the	extra	properties	that	are	needed	by	its	implementation.

Note
You	can	easily	locate	the	data	cache	mechanism	implementation	in	the	source	code	of
jQuery	by	searching	for	function	Data().	This	will	bring	you	to	the	constructor	function
of	the	Data	class	that	is	also	followed	by	the	implementation	of	the	class	methods	that	are
defined	in	the	Data.prototype	object.	For	more	information,	you	can	visit
http://api.jquery.com/data.

The	next	highlighted	code	area	is	where	jQuery	checks	whether	the
EventTarget.addEventListener()	method	is	actually	available	for	that	element	and	then
uses	it	to	add	the	event	listener	to	the	element.	In	the	final	highlighted	code	area,	jQuery
adds	the	observer	function	to	its	internal	list,	which	holds	all	the	observers	of	the	same
event	type	that	are	attached	to	that	specific	element.

Note
Depending	on	the	version	you	are	using,	you	might	get	different	results	to	some	degree.

http://api.jquery.com/data

The	most	recent	stable	jQuery	version	released	and	used	as	reference	while	writing	this
book	was	v2.2.0.

In	case	you	need	to	provide	support	for	older	browsers,	for	example,	Internet	Explorer
lower	than	version	9,	then	you	should	use	the	v1.x	versions	of	jQuery.	The	latest	version
as	of	the	writing	of	this	book	was	v1.12.0,	which	offers	the	exact	same	API	as	the	v2.2.x
versions,	but	also	has	the	required	code	to	work	on	older	browsers.

In	order	to	cover	the	implementation	inconsistencies	of	older	browsers,	the
implementation	of	jQuery.event.add()	in	jQuery	v1.x	is	a	bit	longer	and	more	complex.
One	of	the	reasons	for	this	is	because	jQuery	also	needs	to	test	whether
EventTarget.addEventListener()	is	actually	available	in	the	browser	that	it	is	running
and	try	to	use	EventTarget.attachEvent()	if	this	is	not	the	case.

As	we	saw	in	the	preceding	code,	the	jQuery	implementation	follows	the	operation	model
that	the	Observer	Pattern	describes,	but	it	also	incorporates	some	implementation	tricks	in
order	to	make	it	work	more	efficiently	with	the	APIs	available	to	web	browsers.

The	document-ready	observer
Another	convenient	method	that	jQuery	offers,	which	is	widely	used	by	developers,	is	the
$.fn.ready()	method.	This	method	accepts	a	function	parameter	and	executes	it	only
after	the	DOM	tree	of	the	page	has	been	fully	loaded.	Such	a	thing	can	be	useful	in	case
your	code	is	not	loaded	last	in	the	page	and	you	don’t	want	to	block	the	initial	page	render,
or	the	elements	that	it	needs	to	manipulate	are	defined	later	than	its	own	<script>	tag.

Note
Keep	in	mind	that	the	$.fn.ready()	method	works	slightly	differently	than	the
window.onload	callback	and	the	“load”	event	of	the	page,	which	wait	until	all	the
resources	of	the	page	are	loaded.	For	more	information,	you	can	visit
http://api.jquery.com/ready.

The	following	code	demonstrates	the	most	common	way	to	use	the	$.fn.ready()	method:

$(document).ready(function()	{

				/*	this	code	will	execute	only	after	the	page	has	been	fully	loaded	*/	

})

If	we	try	to	locate	the	implementation	of	jQuery.fn.ready,	we	will	see	that	it	actually
uses	jQuery.ready.promise	internally	to	work:

jQuery.fn.ready	=	function(fn)	{	

		//	Add	the	callback	

		jQuery.ready.promise().done(fn);	

		return	this;	

};

/*	…	a	lot	lines	of	code	in	between	*/

jQuery.ready.promise	=	function(obj)	{	

		if	(!readyList)	{	

				readyList	=	jQuery.Deferred();	

http://api.jquery.com/ready

				//	Catch	cases	where	$(document).ready()	is	called

				//	after	the	browser	event	has	already	occurred.

				//	Support:	IE9-10	only

				//	Older	IE	sometimes	signals	"interactive"	too	soon

				if	(document.readyState	===	"complete"	||	(document.readyState	!==	

"loading"	&&	!document.documentElement.doScroll))	{

						//	Handle	it	asynchronously	to	allow…	to	delay	ready	

						window.setTimeout(jQuery.ready);	

				}	else	{	

						//	Use	the	handy	event	callback	

						document.addEventListener("DOMContentLoaded",	completed);	

						//	A	fallback	to	window.onload,	that	will	always	work	

						window.addEventListener("load",	completed);	

				}	

		}	

		return	readyList.promise(obj);	

};

As	you	can	see	in	the	preceding	highlighted	code	areas	of	the	implementation,	jQuery	uses
addEventListener	to	observe	when	the	DOMContentLoaded	event	is	fired	on	the	document
object.	Moreover,	to	ensure	that	it	will	work	across	a	wide	range	of	browsers,	it	also
observes	for	the	load	event	to	be	fired	on	the	window	object.

The	jQuery	library	also	provides	shorter	methods	to	add	the	above	functionality	in	your
code.	Since	the	aforementioned	implementation	does	not	actually	need	a	reference	to	the
document,	we	can	instead	just	write	$().ready(function()	{/*	...	*/	}).	There	also
exists	an	overload	of	the	$()	function	that	achieves	the	same	result,	which	is	used	like
$(function()	{/*	...	*/	}).	These	two	alternative	ways	to	use	jQuery.fn.ready	have
been	heavily	criticized	among	developers,	since	they	commonly	lead	to
misunderstandings.	The	second,	shorter	version	in	particular	can	lead	to	confusion,	since	it
looks	like	an	Immediately	Invoked	Function	Expression	(IIFE),	a	pattern	that
JavaScript	developers	use	heavily	and	have	learned	to	recognize.	In	fact,	it	only	differs	by
one	character	($)	and	as	a	result,	its	use	is	not	suggested	before	a	discussion	with	the	rest
of	your	developer	team.

Note
The	$.fn.ready()	method	is	also	characterized	as	a	method	that	provides	an	easy	way	to
implement	the	Lazy	Initialization/Execution	Pattern	in	our	code.	The	core	concept	of	this
pattern	is	to	postpone	the	execution	of	a	piece	of	code	or	load	a	remote	resource	at	a	later
point	of	time.	For	example,	we	can	wait	for	the	page	to	be	fully	loaded	until	we	add	our
observers	or	wait	for	a	certain	event	to	happen	before	downloading	a	web	resource.

Demonstrate	a	sample	use	case
In	order	to	see	the	Observer	Pattern	in	action,	we	will	create	an	example	showcasing	a
skeleton	implementation	of	a	dashboard.	In	our	example,	the	user	will	be	able	to	add
information	boxes	to	his	dashboard	related	to	some	sample	items	and	categories	that	are
available	for	selection	on	the	header.

Our	example	will	have	three	predefined	categories	for	our	items:	Products,	Sales,	and
Advertisements.	Each	of	these	categories	will	have	a	series	of	related	items	that	will
appear	in	the	area	right	below	the	category	selector.	The	user	will	be	able	to	select	the
desired	category	by	using	a	drop-down	selector	and	this	will	change	the	visible	selection
items	of	the	dashboard.

Our	dashboard	will	initially	contain	a	hint	information	box	about	the	dashboard	usage.
Whenever	a	user	clicks	on	one	of	the	category	items,	a	new	information	box	will	appear	in
our	three-column	layout	dashboard.	In	the	preceding	image,	the	user	has	added	two	new
information	boxes	for	Product	B	and	Product	D	by	clicking	on	the	associated	buttons.

The	user	will	also	be	able	to	dismiss	any	of	these	information	boxes	by	clicking	on	a	red
close	button	on	the	top-right	of	each	information	box.	In	the	preceding	image,	the	user
dismissed	the	Product	D	information	box,	then	added	information	boxes	for	the
Advertisement	3	and	later	the	1st,	2nd,	and	3rd	week	items	of	the	Sales	category.

By	just	reading	the	above	description,	we	can	easily	isolate	all	the	user	interactions	that
are	required	for	the	implementation	of	our	dashboard.	We	will	need	to	add	observers	for
each	one	of	these	user	interactions	and	write	code	inside	the	callback	functions	that
execute	the	appropriate	DOM	manipulations.

In	detail,	our	code	will	need	to:

Observe	changes	done	to	the	currently	selected	element	and	respond	to	such	event	by
hiding	or	revealing	the	appropriate	items
Observe	the	clicks	on	each	item	button	and	respond	by	adding	a	new	information	box
Observe	the	clicks	on	the	close	button	of	each	information	box	and	respond	by
removing	it	from	the	page

Now	let’s	proceed	and	review	the	HTML,	CSS,	and	JavaScript	code	required	for	the
preceding	example.	Let’s	start	with	the	HTML	code	and	for	reference,	let’s	say	that	we
saved	it	in	a	file	named	Dashboard	Example.html,	as	follows:

<!DOCTYPE	html>	

<html>	

		<head>	

				<title>Dashboard	Example</title>	

				<link	rel="stylesheet"	type="text/css"	href="dashboard-example.css">	

		</head>	

		<body>	

				<h1	id="pageHeader">Dashboard	Example</h1>	

				<div	class="dashboardContainer">	

						<section	class="dashboardCategories">	

								<select	id="categoriesSelector">	

										<option	value="0"	selected>Products</option>	

										<option	value="1">Sales</option>	

										<option	value="2">Advertisements</option>	

								</select>	

								<section	class="dashboardCategory">	

										<button>Product	A</button>	

										<button>Product	B</button>	

										<button>Product	C</button>	

										<button>Product	D</button>	

										<button>Product	E</button>	

								</section>	

								<section	class="dashboardCategory	hidden">	

										<button>1st	week</button>	

										<button>2nd	week</button>	

										<button>3rd	week</button>	

										<button>4th	week</button>	

								</section>	

								<section	class="dashboardCategory	hidden">	

										<button>Advertisement	1</button>	

										<button>Advertisement	2</button>	

										<button>Advertisement	3</button>	

								</section>	

								<div	class="clear"></div>	

						</section>	

						<section	class="boxContainer">	

								<div	class="boxsizer">	

										<article	class="box">	

												<header	class="boxHeader">	

														Hint!	

														<button	class="boxCloseButton">✖</button>	

												</header>	

												Press	the	buttons	above	to	add	information	boxes…	

										</article>	

								</div>	

						</section>	

						<div	class="clear"></div>	

				</div>	

				<script	type="text/javascript"	src="jquery.js"></script>	

				<script	type="text/javascript"	src="dashboard-example.js">

				</script>	

		</body>	

</html>

In	the	preceding	HTML,	we	placed	all	our	dashboard-related	elements	inside	a	<div>
element	with	the	dashboardContainer	CSS	class	.	This	will	enable	us	to	have	a	centric
starting	point	to	search	for	our	dashboard’s	elements	and	also	scope	our	CSS.	Inside	it,	we
define	two	<section>	elements	in	order	to	divide	the	dashboard	into	logical	areas	using
some	HTML5	semantic	elements.

The	first	<section>	with	the	dashboardCategories	class	is	used	to	hold	the	categories
selector	of	our	dashboard.	Inside	it,	we	have	a	<select>	element	with	the	ID
categoriesSelector	that	is	used	to	filter	the	visible	category	items	and	three	subsections
with	the	dashboardCategory	class	that	are	used	to	wrap	the	<button>	elements	that	will
populate	the	dashboard	with	information	boxes	when	clicked.	Two	of	them	also	have	the
hidden	class	so	that	only	the	first	one	is	visible	when	the	page	loads	by	matching	the
initially	selected	option	(<option>)	of	the	category	selector.	Also,	at	the	end	of	the	first
section,	we	also	added	a	<div>	with	the	clear	class	that,	as	we	saw	in	the	first	chapter,
will	be	used	to	clear	the	floated	<button>	elements.

The	second	<section>	with	the	boxContainer	class	is	used	to	hold	the	information	boxes
of	our	dashboard.	Initially,	it	contains	only	one	with	a	hint	about	how	to	use	the
dashboard.	We	use	a	<div>	element	with	the	boxsizer	class	to	set	the	box	dimensions	and
an	HTML5	<article>	element	with	the	box	class	to	add	the	required	border	padding	and
shadow,	similar	to	the	box	elements	from	the	first	chapter.

Each	information	box,	besides	its	content,	also	contains	a	<header>	element	with	the
boxHeader	class	and	a	<button>	element	with	the	boxCloseButton	class	that,	when
clicked,	removes	the	information	box	that	contains	it.	We	also	used	the	✖	HTML
character	code	as	the	button’s	content	in	order	to	get	a	better-looking	“x”	mark	and	avoid

using	a	separate	image	for	that	purpose.

Lastly,	since	the	information	boxes	are	also	floated,	we	also	need	a	<div>	with	the	clear
class	at	the	end	of	the	boxContainer.

In	the	<head>	of	the	preceding	HTML,	we	also	reference	a	CSS	file	named	as	dashboard-
example.css	with	the	following	content:

.dashboardCategories	{	

				margin-bottom:	10px;	

}	

.dashboardCategories	select,	

.dashboardCategories	button	{	

				display:	block;	

				width:	200px;	

				padding:	5px	3px;	

				border:	1px	solid	#333;	

				margin:	3px	5px;	

				border-radius:	3px;	

				background-color:	#FFF;	

				text-align:	center;	

				box-shadow:	0	1px	1px	#777;	

				cursor:	pointer;	

}	

.dashboardCategories	select:hover,	

.dashboardCategories	button:hover	{	

				background-color:	#DDD;	

}	

.dashboardCategories	button	{	

				float:	left;	

}	

.box	{	

				padding:	7px	10px;	

				border:	solid	1px	#333;	

				margin:	5px	3px;	

				box-shadow:	0	1px	2px	#777;	

}	

.boxsizer	{	

				float:	left;	

				width:	33.33%;	

}	

.boxHeader	{	

				padding:	3px	10px;

				margin:	-7px	-10px	7px;

				background-color:	#AAA;	

				box-shadow:	0	1px	1px	#999;	

}	

.boxCloseButton	{	

				float:	right;	

				height:	20px;	

				width:	20px;	

				padding:	0;	

				border:	1px	solid	#000;	

				border-radius:	3px;	

				background-color:	red;	

				font-weight:	bold;	

				text-align:	center;	

				color:	#FFF;	

				cursor:	pointer;	

}	

.clear	{	clear:	both;	}	

.hidden	{	display:	none;	}

As	you	can	see	in	our	CSS	file,	first	of	all	we	add	some	space	below	the	element	with	the
dashboardCategories	class	and	also	define	the	same	styling	for	the	<select>	element
and	the	buttons	inside	it.	In	order	to	differentiate	it	from	the	default	browser	styling,	we
add	some	padding,	a	border	with	rounded	corners,	a	different	background	color	when
hovering	the	mouse	pointer,	and	some	space	in	between	them.	We	also	define	that	our
<select>	element	should	be	displayed	alone	in	its	row	as	a	block	and	that	the	category
item	buttons	should	float	next	to	each	other.	We	again	use	the	boxsizer	and	box	CSS
classes,	as	we	did	in	Chapter	1,	A	Refresher	on	jQuery	and	the	Composite	Pattern;	the	first
one	to	create	a	three-column	layout	and	the	second	one	to	actually	provide	the	styling	of
an	information	box.	We	continue	by	defining	the	boxHeader	class	that	is	applied	to	the
<header>	elements	of	our	information	boxes,	and	define	some	padding,	a	grey	background
color,	a	light	shadow,	and	also	some	negative	margins	so	that	it	counterbalances	the	effect
of	the	box’s	paddings	and	places	itself	next	to	its	border.

To	complete	the	styling	of	the	information	boxes,	we	also	define	the	boxCloseButton	CSS
class	that	(i)	floats	the	box’s	close	buttons	to	the	upper-right	corner	inside	the	box
<header>,	(ii)	defines	a	20px	width	and	height,	(iii)	overrides	the	default	browser’s
<button>	styling	to	zero	padding,	and	(iv)	adds	a	single-pixel	black	border	with	rounded
corners	and	a	red	background	color.	Lastly,	like	in	Chapter	1,	A	Refresher	on	jQuery	and
the	Composite	Pattern	we	define	the	clear	utility	CSS	class	to	prevent	the	element	from
being	placed	next	to	the	previous	floating	elements	and	also	define	the	hidden	class	as	a
convenient	way	of	hiding	elements	of	the	page.

In	our	HTML	file,	we	reference	the	jQuery	library	itself	and	also	a	JavaScript	file	named
as	dashboard-example.js	that	contains	our	dashboard	implementation.	Following	the
best	practices	of	creating	performant	web	pages,	we	have	placed	them	right	before	the
</body>	tag,	in	order	to	avoid	delaying	the	initial	page	rendering:

$(document).ready(function()	{	

				$('#categoriesSelector').change(function()	{	

								var	$selector	=	$(this);	

								var	selectedIndex	=	+$selector.val();	

								var	$dashboardCategories	=	$('.dashboardCategory');	

								var	$selectedItem	=	$dashboardCategories.eq(selectedIndex).show();	

								$dashboardCategories.not($selectedItem).hide();

				});	

				function	setupBoxCloseButton($box)	{	

								$box.find('.boxCloseButton').click(function()	{	

												$(this).closest('.boxsizer').remove();	

								});	

				}	

				//	make	the	close	button	of	the	hint	box	work	

				setupBoxCloseButton($('.box'));	

				$('.dashboardCategory	button').on('click',	function()	{	

								var	$button	=	$(this);	

								var	boxHtml	=	'<div	class="boxsizer"><article	class="box">'	+	

																'<header	class="boxHeader">'	+	

																				$button.text()	+	

																				'<button	class="boxCloseButton">✖'	+	

																				'</button>'	+	

																'</header>'	+	

																'Information	box	regarding	'	+	$button.text()	+	

												'</article></div>';	

								$('.boxContainer').append(boxHtml);	

								setupBoxCloseButton($('.box:last-child'));	

				});

});	

We	have	placed	all	our	code	inside	a	$(document).ready()	call,	in	order	to	delay	its
execution	until	the	DOM	tree	of	the	page	is	fully	loaded.	This	would	be	absolutely
required	if	we	placed	our	code	in	the	<head>	element,	but	it	is	also	a	best	practice	that	is
good	to	follow	in	any	case.

We	first	add	an	observer	for	the	change	event	on	the	categoriesSelector	element	using
the	`$.fn.change()`	method,	which	is	actually	a	shorthand	method	for	the
$.fn.on('change',	/*	…	*/)	method.	In	jQuery,	the	value	of	the	this	keyword	inside	a
function	that	is	used	as	an	observer	holds	a	reference	to	the	DOM	element	that	the	event
was	fired.	This	applies	to	all	jQuery	methods	that	register	observers,	from	the	core
$.fn.on()	to	the	$.fn.change()	and	$.fn.click()	convenient	methods.	So	we	use	the
$()	function	to	make	a	jQuery	object	with	the	<select>	element	and	store	it	in	the
$selector	variable.	Then,	we	use	$selector.val()	to	retrieve	the	value	of	the	selected
<option>	and	cast	it	to	a	numeric	value	by	using	the	+	operator.	Right	after	this,	we
retrieve	the	<section>	elements	of	dashboardCategory	and	cache	the	result	to	the
$dashboardCategories	variable.	Then,	we	proceed	by	finding	and	revealing	the	category
whose	position	is	equal	to	the	value	of	the	selectedIndex	variable	and	also	store	the
resulting	jQuery	object	to	the	$selectedItem	variable.	Finally,	we	are	using	the
$selectedItem	variable	with	the	$.fn.not()	method	to	retrieve	and	hide	all	the	category
elements,	except	from	the	one	we	just	revealed.

In	the	next	code	section,	we	define	the	setupBoxCloseButton	function	that	will	be	used	to
initialize	the	functionality	of	the	close	button.	It	expects	a	jQuery	object	with	the	box
elements	as	a	parameter,	and	for	each	of	them,	searches	their	descendants	for	the

boxCloseButton	CSS	class	that	we	use	on	the	close	buttons.	Using	$.fn.click(),	which
is	a	convenient	method	for	$.fn.on('click',	/*	fn	*/),	we	register	an	anonymous
function	to	be	executed	whenever	a	click	event	is	fired	that	uses	the	$.fn.closest()
method	to	find	the	first	ancestor	element	with	the	boxsizer	class	and	removes	it	from	the
page.	Right	after	this,	we	call	this	function	once	for	the	box	elements	that	already	existed
in	the	page	at	the	time	when	the	page	was	loaded.	In	this	case,	the	box	element	with	the
usage	hint.

Note
An	extra	thing	to	keep	in	mind	when	using	the	$.fn.closest()	method	is	that	it	begins
testing	the	given	selector	from	the	current	element	of	the	jQuery	collection	before
proceeding	with	its	ancestor	elements.	For	more	information,	you	can	visit	its
documentation	at	http://api.jquery.com/closest.

In	the	final	code	section,	we	use	the	$.fn.on()	method	to	add	an	observer	for	the	click
event	on	each	of	the	category	buttons.	In	this	case,	inside	the	anonymous	observer
function,	we	use	the	this	keyword,	which	holds	the	DOM	element	of	the	<button>	that
was	clicked,	and	use	the	$()	method	to	create	a	jQuery	object	and	cache	its	reference	in
the	$button	variable.	Right	after	this,	we	retrieve	the	button’s	text	content	using	the
$.fn.text()	method	and	along	with	it,	construct	the	HTML	code	for	the	information	box.
For	the	close	button,	we	use	the	✖	HTML	character	code	that	will	be	rendered	as	a
prettier	“X”	icon.	The	template	we	created	is	based	on	the	HTML	code	of	the	initially
visible	hint	box;	for	the	needs	of	this	chapter’s	example,	we	use	plain	string	concatenation.
Lastly,	we	append	the	generated	HTML	code	for	our	box	to	the	boxContainer,	and	since
we	expect	it	to	be	the	last	element,	we	use	the	$()	function	to	find	it	and	provide	it	as	a
parameter	to	the	setupBoxCloseButton.

http://api.jquery.com/closest

How	it	is	compared	with	event	attributes
Before	the	EventTarget.addEventListener()	was	defined	in	the	DOM	Level	2	Events
specification,	the	event	listeners	were	registered	either	by	using	the	event	attributes	that
are	available	for	HTML	elements	or	the	element	event	properties	that	are	available	for
DOM	nodes.

Note
For	more	information	on	the	DOM	Level	2	Event	specification	and	event	attributes,	you
can	visit	http://www.w3.org/TR/DOM-Level-2-Events	and
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Event_attributes,
respectively.

The	event	attributes	are	a	set	of	attributes	that	are	available	to	HTML	elements	and
provide	a	declarative	way	of	defining	pieces	of	JavaScript	code	(preferably	function	calls)
that	should	be	executed	when	a	specific	event	is	triggered	on	that	element.	Because	of
their	declarative	nature	and	how	simply	they	can	be	used,	this	is	often	the	first	way	that
new	developers	get	introduced	to	events	in	web	development.

If	we	used	event	attributes	in	the	above	example,	then	the	HTML	code	for	the	close
buttons	in	the	information	boxes	will	look	as	follows:

<article	class="box">	

				<header	class="boxHeader">	

								Hint!	

								<button	onclick="closeInfoBox();"	

																class="boxCloseButton">✖</button>	

				</header>	

				Press	the	buttons	above	to	add	information	boxes…	

</article>

Also,	we	should	change	the	template	that	is	used	to	create	new	information	boxes	and
expose	the	closeInfoBox	function	on	the	window	object,	in	order	for	it	to	be	accessible
from	the	HTML	event	attribute:

window.closeInfoBox	=	function()	{	

				$(this).closest('.boxsizer').remove();	

};

Some	of	the	disadvantages	of	using	event	attributes	over	the	Observer	Pattern	are:

It	makes	it	harder	to	define	multiple	separate	actions	that	have	to	be	executed	when
an	event	fires	on	an	element
It	makes	the	HTML	code	of	the	page	bigger	and	less	readable
It	is	against	the	separation	of	concerns	principle,	since	it	adds	JavaScript	code	inside
our	HTML,	possibly	making	a	bug	harder	to	track	and	fix
Most	of	the	time,	it	leads	to	the	functions	being	called	in	the	event	attribute	getting
exposed	to	the	global	window	object,	thereby	“polluting”	the	global	namespace

Using	the	element	event	properties	would	not	require	any	changes	to	our	HTML,	keeping
all	the	implementation	in	our	JavaScript	files.	The	changes	required	in	our

http://www.w3.org/TR/DOM-Level-2-Events
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Event_attributes

setupBoxCloseButton	function	will	make	it	look	as	follows:

function	setupBoxCloseButton($box)	{	

				var	$closeButtons	=	$box.find('.boxCloseButton');	

				for	(var	i	=	0;	i	<	$closeButtons.length;	i++)	{	

								$closeButtons[i].onclick	=	function()	{	

												this.onclick	=	null;	

												$(this).closest('.boxsizer').remove();	

								};	

				}	

}

Note	that,	for	convenience,	we	are	still	using	jQuery	for	DOM	manipulations,	but	the
resulting	code	still	has	some	of	the	aforementioned	disadvantages.	More	importantly,	in
order	to	avoid	memory	leaks,	we	are	also	required	to	remove	the	function	assigned	to	the
onclick	property	before	removing	the	element	from	the	page,	if	it	contains	references	to
the	DOM	element	that	it	is	applied	on.

Using	the	tools	that	today’s	browsers	offer,	we	can	even	match	the	convenience	that	the
declarative	nature	of	event	attributes	offers.	In	the	following	image,	you	can	see	how	the
Firefox	developer	tools	provide	us	with	helpful	feedback	when	we	use	them	to	inspect	a
page	element	that	has	an	event	listener	attached:

As	you	can	see	in	the	preceding	image,	all	the	elements	that	have	observers	attached	also
have	an	ev	sign	right	next	to	them,	which	when	clicked,	displays	a	dialog	showing	all	the
event	listeners	that	are	currently	attached.	To	make	our	developing	experience	even	better,
we	can	directly	see	the	file	and	the	line	that	these	handlers	were	defined	in.	Moreover,	we
can	click	on	them	in	order	to	expand	and	reveal	their	code,	or	click	on	the	sign	in	front	of
them	to	navigate	to	their	source	and	add	breakpoints.

One	of	the	biggest	benefits	of	using	the	Observer	Pattern	over	event	attributes	is	clearly
visible	in	the	case	where	we	need	to	take	more	than	one	action	when	a	certain	event
happens.	Suppose	that	we	also	need	to	add	a	new	feature	in	our	example	dashboard,	which
would	prevent	a	user	from	accidentally	double-clicking	a	category	item	button	and	adding
the	same	information	box	twice	to	the	dashboard.	The	new	implementation	should	ideally
be	completely	independent	from	the	existing	one.	Using	the	Observer	Pattern,	all	we	need
to	do	is	add	the	following	code	that	observes	for	button	clicks	and	disables	that	button	for
700	milliseconds:

$(document).ready(function()	{	

		$('.dashboardCategory	button').on('click',	function()	{	

				var	$button	=	$(this);	

				$button.prop('disabled',	true);	

				

				setTimeout(function()	{	

						$button.prop('disabled',	false);	

				},	700);	

		});	

});

The	preceding	code	is	indeed	completely	independent	from	the	basic	implementation	and
we	could	place	it	inside	the	same	or	a	different	JS	file	and	load	it	to	our	page.	This	would
be	more	difficult	when	using	event	attributes,	since	it	would	require	us	to	define	both
actions	at	the	same	time	inside	the	same	event	handler	function;	as	a	result,	it	would
strongly	couple	the	two	independent	actions.

Avoid	memory	leaks
As	we	saw	earlier,	there	are	some	strong	advantages	of	using	the	Observer	Pattern	to
handle	events	on	a	web	page.	When	using	the	EventTarget.addEventListener()	method
to	add	an	observer	to	an	element,	we	also	need	to	keep	in	mind	that	in	order	to	avoid
memory	leaks,	we	also	have	to	call	the	EventTarget.removeEventListener()	method
before	removing	such	elements	from	the	page	so	that	the	observers	are	also	removed.

Note
For	more	information	on	removing	event	listeners	from	elements,	you	can	visit
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener,	or
for	the	jQuery	equivalent	method,	visit	http://api.jquery.com/off/.

The	jQuery	library	developers	understood	that	such	an	implementation	concern	could
easily	be	forgotten	or	not	handled	properly,	thereby	making	the	adoption	of	the	Observer
Pattern	look	more	complex,	so	they	decided	to	encapsulate	the	appropriate	handling	inside
the	jQuery.event	implementation.	As	a	result,	when	using	any	event	handling	jQuery
method,	such	as	the	core	$.fn.on()	or	any	of	the	convenient	methods	such	as
$.fn.click()	or	$.fn.change(),	the	observer	functions	are	tracked	by	jQuery	itself	and
are	properly	unregistered	if	we	later	decide	to	remove	the	element	from	the	page.	As	we
saw	earlier	in	the	implementation	of	jQuery.event,	jQuery	stores	a	reference	to	the
observers	of	each	element	in	a	separate	mapping	object.	Every	time	we	a	use	a	jQuery
method	that	removes	DOM	elements	from	the	page,	it	first	makes	sure	to	remove	any
observers	attached	to	those	elements	or	any	of	the	descendant	elements,	by	checking	the
mapping	object.	As	a	result,	the	example	code	we	used	earlier	is	not	causing	memory
leaks	even	though	we	are	not	using	any	method	that	explicitly	removes	the	observers	we
add	to	the	created	elements.

Tip
Be	careful	when	mixing	jQuery	and	plain	DOM	manipulations

Even	though	all	jQuery	methods	keep	you	safe	from	memory	leaks	caused	from	observers
that	are	never	unregistered,	keep	in	mind	it	can’t	protect	you	if	you	remove	elements	using
plain	methods	from	the	DOM	API.	If	methods	such	as	Element.remove()	and
Element.removeChild()	are	used	and	the	removed	elements	or	their	descendants	have
observers	attached,	then	they	are	not	going	to	be	unregistered	automatically.	The	same
applies	when	assigning	to	the	Element.innerHTML	property.

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener
http://api.jquery.com/off/

Introducing	the	Delegated	Event	Observer
Pattern
Now	that	we	have	learned	some	advanced	details	about	how	to	use	the	Observer	Pattern
using	jQuery,	we	will	get	introduced	to	a	special	variation	of	it	that	fits	perfectly	to	the
web	platform	and	provides	some	extra	benefits.	The	Delegated	Event	Observer	Pattern	(or
simply	Delegate	Observer	Pattern)	is	often	used	in	web	development	and	it	utilizes	the
bubbling	feature	that	most	events	that	are	fired	on	DOM	elements	have.	For	example,
when	we	click	on	a	page	element,	the	click	event	is	immediately	fired	on	it,	and	right	after
this	it	also	fires	on	all	its	parent	elements	until	it	reaches	the	root	of	our	HTML	document.
Using	a	slightly	different	overloaded	version	of	the	jQuery’s	$.fn.on	method,	we	can
easily	create	and	attach	observers	on	page	elements	for	delegated	events	that	are	fired	on
specific	child	elements.

Note
The	term	“Event	Delegation”	describes	the	programming	pattern	where	the	handler	of	an
event	is	not	attached	directly	to	the	element	of	interest,	but	is	instead	attached	to	one	of	its
ancestor	elements.

How	it	simplifies	our	code
Reimplementing	our	dashboard	example	using	the	Delegated	Event	Observer	Pattern	will
require	us	to	change	only	the	code	of	the	included	JavaScript	file	to	the	following:

$(document).ready(function()	{	

				$('#categoriesSelector').change(function()	{	

								var	$selector	=	$(this);	

								var	selectedIndex	=	+$selector.val();	

								var	$dashboardCategories	=	$('.dashboardCategory');	

								var	$selectedItem	=	$dashboardCategories.eq(selectedIndex).show();	

								$dashboardCategories.not($selectedItem).hide();	

				});	

				$('.dashboardCategories').on('click',	'button',	function()	{	

								var	$button	=	$(this);	

								var	boxHtml	=	'<div	class="boxsizer"><article	class="box">'	+	

																'<header	class="boxHeader">'	+	

																				$button.text()	+	

																				'<button	class="boxCloseButton">✖'	+	

																				'</button>'	+	

																'</header>'	+	

																'Information	box	regarding	'	+	$button.text()	+	

												'</article></div>';	

								$('.boxContainer').append(boxHtml);	

				});	

				$('.boxContainer').on('click',	'.boxCloseButton',	function()	{	

								$(this).closest('.boxsizer').remove();	

				});	

});

The	most	obvious	difference	is	that	the	new	implementation	is	shorter.	The	benefits	come
by	defining	just	one	observer	to	a	common	ancestor	element,	for	each	action	that	applies
to	more	than	one	page	element.	For	this	reason,	we	use	the	$.fn.on(events,	selector,
handler)	overload	variation	of	the	$.fn.on()	method.

Specifically,	we	add	an	observer	to	the	page	element	with	the	dashboardCategories	CSS
class	and	listen	for	the	click	events	that	originate	from	any	of	its	<button>	descendants.
Similarly,	we	add	a	single	observer	to	the	boxContainer	element	that	will	be	executed
whenever	a	click	event	fires	on	any	of	its	descendants	that	match	the	.boxCloseButton
CSS	selector.

Since	the	above	observers	apply	not	only	to	the	elements	that	existed	in	the	page	at	the
moment	they	were	registered,	but	also	to	any	element	that	is	added	at	any	later	point	of
time	and	matches	the	specified	CSS	selector;	we	are	able	to	decouple	the	code	that	handles
the	clicks	on	the	close	buttons	and	place	it	in	a	separate	observer,	instead	of	registering	a
new	one	every	time	a	new	information	box	is	added.	As	a	result,	the	observer	that	adds	the
new	information	boxes	in	the	dashboard	is	simpler	and	only	has	to	deal	with	creating	the
HTML	of	the	box	and	insert	it	into	the	dashboard,	leading	to	a	greater	separation	of

concerns.	Moreover,	we	no	longer	need	to	handle	the	registration	of	the	observer	for	the
close	button	of	the	hint	box	in	a	separate	piece	of	code.

Compare	the	memory	usage	benefits
We	will	now	compare	the	difference	in	memory	usage	when	using	the	$.fn.on()	method
with	the	simple	and	Delegated	Event	Observer	Pattern	variation.	To	achieve	this	we	will
open	the	two	implementations	of	our	dashboard	example	and	compare	their	memory	usage
on	Chrome.	To	open	Chrome’s	developer	tools,	just	press	F12	and	then	navigate	to	the
Timeline	tab.	We	press	the	“record”	button	in	the	Chrome’s	Timeline	tab	and	then	press
each	category	item	button	10	times,	resulting	in	the	addition	of	120	information	boxes	to
our	dashboard.	After	adding	all	the	boxes,	we	end	up	with	121	open	boxes	in	total,	since
the	hint	box	will	still	be	open	and	then	stop	the	timeline	recording.

The	results	in	the	timeline	for	our	initial	Observer	Pattern	implementation	will	look	as
follows:

Repeating	the	same	process	for	the	Delegated	Event	Observer	Pattern	implementation	will
give	a	smoother	timeline,	revealing	less	object	allocations	and	Garbage	Collections,	as
follows:

As	you	can	see	in	the	preceding	images,	we	end	up	with	1192	page	elements	in	both	cases,
but	in	the	first	implementation	we	are	using	134	event	listeners,	as	compared	to	the
implementation	with	event	delegation	where	we	initially	created	three	event	listeners	and
never	actually	added	another.

Finally,	as	you	can	see	from	the	blue	line	in	the	graph,	the	memory	consumption	of	the
delegate	version	stayed	relatively	the	same,	adding	up	to	just	around	200	KB.	On	the	other
hand,	in	the	original	implementation,	the	heap	size	increased	more	than	five	times,	gaining
more	than	1	MB	of	increase.

Adding	so	many	elements	may	not	be	an	actual	use	case,	but	the	dashboard	will	probably
not	be	the	only	dynamic	part	of	your	page.	As	a	result,	in	a	relatively	complex	web	page,
we	could	get	similar	improvements	if	we	reimplemented	every	applicable	part	of	it	using

the	Delegated	Event	Observer	Pattern	variant.

Summary
In	this	chapter,	we	learned	about	the	Observer	Pattern,	how	it	can	make	the	HTML	code	of
our	web	pages	cleaner,	and	the	way	that	decouples	it	from	our	application’s	code.	We
learned	how	jQuery	adds	a	protection	layer	to	its	methods	in	order	to	protect	us	from
undetected	memory	leaks,	which	may	occur	by	adding	observers	to	elements,	when	not
using	the	jQuery	DOM	manipulation	methods.

We	also	tried	the	Delegated	Event	Observer	Pattern	variant	and	used	it	to	rewrite	our
initial	example.	We	compared	the	two	implementations	and	saw	how	it	simplifies	writing
code	that	applies	to	many	page	elements	when	they	are	generated	after	the	page	has	been
loaded.	Finally,	we	had	a	comparison	regarding	the	memory	consumption	of	the	plain
Observer	Pattern	with	its	delegate	variant	and	highlighted	how	it	also	lessens	the	memory
consumption	of	our	page	by	reducing	the	required	number	of	attached	observers.

Now	that	we	have	completed	our	introduction	on	how	the	Observer	Pattern	is	used	to
listen	to	user	actions,	we	can	move	on	to	the	next	chapter	where	we	will	learn	about
custom	events	and	the	Publish/Subscribe	Pattern	and	the	way	they	can	lead	to	a	more
decoupled	implementation.

Chapter	3.	The	Publish/Subscribe	Pattern
In	this	chapter,	we	will	showcase	the	Publish/Subscribe	Pattern,	a	design	pattern	quite
similar	to	the	Observer	Pattern	but	with	a	more	distinct	role	that	is	a	better	fit	for	more
complex	use	cases.	We	will	see	how	it	differs	from	the	Observer	Pattern	and	how	jQuery
adopted	some	of	its	concepts	and	brought	them	to	its	Observer	Pattern	implementation.

Later,	we	will	proceed	and	rewrite	our	previous	chapter’s	example	using	this	pattern.	We
will	use	this	pattern’s	benefits	to	add	some	extra	features	and	also	reduce	the	coupling	of
our	code	with	the	elements	of	the	web	page.

In	this	chapter,	we	will:

Introduce	the	Publish/Subscribe	Pattern
Learn	how	it	differs	and	what	advantages	it	has	over	the	Observer	Pattern
Learn	how	jQuery	brings	some	of	its	features	to	its	methods
Learn	how	to	emit	custom	events	with	jQuery
Rewrite	and	extend	the	example	from	Chapter	2,	The	Observer	Pattern,	using	this
pattern

Introducing	the	Publish/Subscribe	Pattern
The	Publish/Subscribe	Pattern	is	a	Messaging	Pattern	where	the	emitters	of	the	messages,
called	the	publishers,	multicast	messages	to	a	number	of	recipients,	called	the
subscribers,	that	have	expressed	their	interest	in	receiving	such	messages.	The	key
concept	of	this	pattern,	which	is	also	commonly	referred	to	as	the	Pub/Sub	Pattern	in
short,	is	to	provide	a	way	to	avoid	dependencies	between	the	publishers	and	their
subscribers.

An	extra	concept	of	this	pattern	is	the	use	of	topics	that	are	used	by	the	subscribers	in
order	to	express	that	they	are	only	interested	in	messages	of	a	specific	type.	This	way,
publishers	filter	subscribers	before	sending	a	message	and	distribute	that	message	only	to
the	appropriate	ones,	thereby	reducing	the	amount	of	traffic	and	work	required	on	both
sides.

Another	common	variant	is	to	use	a	central,	application-wide	object,	known	as	the	broker,
that	relays	messages	produced	by	the	publishers	to	the	relevant	subscribers.	The	broker,	in
this	case,	acts	as	a	well-known	message	handler	to	send	and	subscribe	to	message	topics.
This	enables	us,	instead	of	coupling	different	application	parts	together,	to	only	reference
the	broker	itself	and	also	the	topic	that	our	components	are	interested	in.	Even	though
topics	might	not	be	an	absolute	requirement	in	the	first	variant	of	this	pattern,	this	variant
plays	an	essential	role	in	scalability	since	there	will	commonly	exist	way	less	brokers	(if
not	just	one)	than	publishers	and	subscribers.

By	following	a	subscription	scheme,	the	code	of	the	publisher	is	completely	decoupled
from	the	subscribers,	meaning	that	the	publisher	does	not	have	to	know	the	objects	depend
on	them.	As	a	result,	we	do	not	need	to	hard	code	to	the	publisher	each	separate	action	that
should	be	executed	on	the	different	parts	of	our	application.	Instead,	the	components	of	an
application,	and	possibly	third-party	extensions,	subscribe	to	be	notified	only	about
topics/events	that	they	need	to	know.	In	such	distributed	architecture,	adding	a	new	feature
to	an	existing	application	requires	minimal	to	no	changes	to	the	application	components	it
depends	on.

How	it	differs	from	the	Observer	Pattern
The	most	basic	difference	is	that,	by	definition,	the	Pub/Sub	Pattern	is	a	one-way-
Messaging	Pattern	that	can	also	pass	a	message,	unlike	the	Observer	Pattern	that	just
describes	how	to	notify	the	observers	about	a	specific	state	change	on	the	subject.

Moreover,	unlike	the	Observer	Pattern,	the	Pub/Sub	Pattern	with	a	broker	results	in	more
loosely	coupled	code	for	the	different	parts	of	an	implementation.	This	is	because	the
observers	need	to	know	their	subject	that	is	emitting	the	events;	however,	on	the	other
hand,	the	publishers	and	their	subscribers	only	need	to	know	the	broker	that	is	used.

How	it	is	adopted	by	jQuery
Once	again,	the	jQuery	library	provides	us	with	a	convenient	way	to	take	advantage	of	the
Pub/Sub	Pattern	in	our	code.	Instead	of	extending	its	API	by	adding	new	methods
specifically	named	“publish”	and	“subscribe”	and	introducing	new	concepts,	the
developers	decided	to	extend	the	jQuery.fn.on()	and	jQuery.fn.trigger()	methods
with	the	ability	to	handle	and	emit	custom	events.	This	way,	jQuery	can	be	used	to
implement	a	publisher/subscriber	communication	scheme	using	the	already	known
convenient	methods	it	provides.

Custom	events	in	jQuery
Custom	events	allow	us	to	use	almost	any	user-defined	string	value	as	a	common	event
that	we	can	add	listeners	for,	and	also	manually	fire	it	on	page	elements.	As	an	extra	but	a
precious	feature,	custom	events	can	also	carry	some	extra	data	to	be	delivered	to	the
listeners	of	the	event.

The	jQuery	library	added	its	own	custom	events	implementation,	before	it	was	actually
added	to	any	web	specification.	This	way,	it	was	proved	how	useful	they	can	be	when
used	in	web	development.	As	we	saw	in	the	previous	chapter,	in	jQuery,	there	is	a	specific
part	of	the	implementation	that	handles	both	the	common	element	event	and	also	custom
events.	The	jQuery.event	object	holds	all	the	internal	implementations	related	to	firing
and	listening	to	events.	Also,	the	jQuery.Event	class	is	a	dedicated	wrapper	that	jQuery
uses	for	the	needs	of	both	the	common	element	events	and	its	custom	events
implementation.

Implementing	a	Pub/Sub	scheme	using	custom
events
In	the	previous	chapter,	we	saw	how	the	jQuery.fn.on()	method	can	be	used	to	add	event
listeners	on	elements.	We	also	saw	that	its	implementation	is	maintaining	lists	with	the
added	handlers	and	notifying	them	when	required.	Moreover,	the	event	name	seems	to
have	the	same	coordination	purpose,	just	like	the	topic.	This	implementation	semantics
seem	to	match	exactly	with	the	Pub/Sub	Pattern	as	well.

The	jQuery.fn.trigger()	method	actually	uses	the	internal	jQuery.event.trigger()
method	that	is	used	to	fire	events	in	jQuery.	It	iterates	over	the	internal	handlers	list	and
executes	them	with	the	requested	event	along	with	any	extra	parameters	that	the	custom
event	defines.	Once	again,	this	also	matches	the	operation	requirements	of	the	Pub/Sub
Pattern.

As	a	result,	jQuery.fn.trigger()	and	jQuery.fn.on()	seem	to	match	the	needs	of	the
Pub/Sub	Pattern	and	can	be	used	instead	of	separate	“publish”	and	“subscribe”	methods,
respectively.	Since	they	are	both	available	on	the	jQuery.fn	object,	we	can	use	these
methods	on	any	jQuery	object.	This	jQuery	object	will	act	as	an	intermediate	entity
between	the	publishers	and	the	subscribers,	in	a	way	that	perfectly	aligns	with	the
definition	of	the	broker.

A	good	common	practice,	which	is	also	used	by	a	lot	of	jQuery	plugins,	is	to	use	the
outermost	page	element	that	holds	the	implementation	of	the	application	or	the	plugin	as
the	broker.	On	the	other	hand,	jQuery	actually	allows	us	to	use	any	object	as	a	broker,
since	all	that	it	actually	needs	is	a	target	to	emit	an	observe	for	our	custom	events.	As	a
result,	we	could	even	use	an	empty	object	as	our	broker	such	as	$({}),	in	case	using	a
page	element	seems	too	restricting	or	not	clean	enough	according	to	the	Pub/Sub	Pattern.
This	is	actually	what	the	jQuery	Tiny	Pub/Sub	library	does,	along	with	some	method
aliasing,	so	that	we	actually	use	methods	named	“publish”	and	“subscribe”	instead	of
jQuery’s	“on”	and	“trigger”.	For	more	information	on	Tiny,	you	can	visit	its	repository
page	at	https://github.com/cowboy/jquery-tiny-pubsub.

https://github.com/cowboy/jquery-tiny-pubsub

Demonstrating	a	sample	use	case
In	order	to	see	how	the	Pub/Sub	Pattern	is	used,	and	make	it	easy	to	compare	it	with	the
Observer	Pattern,	we	are	going	to	rewrite	the	dashboard	example	from	Chapter	2,	The
Observer	Pattern,	using	this	pattern.	This	will	also	clearly	demonstrate	how	this	pattern
can	help	us	decouple	the	individual	parts	of	an	implementation	and	make	it	more
extendable	and	scalable.

Using	Pub/Sub	on	the	dashboard	example
For	the	needs	of	this	demonstration,	we	will	use	the	HTML	and	CSS	files	exactly	as	we
saw	them	in	Chapter	2,	The	Observer	Pattern.

To	apply	this	pattern,	we	will	only	need	to	change	the	code	in	the	JavaScript	file	with	our
new	implementation.	In	the	following	code	snippet,	we	can	see	how	the	code	was	changed
in	order	to	adapt	to	the	Publisher/Subscriber	Pattern:

$(document).ready(function()	{	

				window.broker	=	$('.dashboardContainer');	

				$('#categoriesSelector').change(function()	{	

								var	$selector	=	$(this);	

								var	message	=	{	categoryID:	$selector.val()	};	

								broker.trigger('dashboardCategorySelect',	[message]);	

				});	

				broker.on('dashboardCategorySelect',	function(event,	message)	{	

								var	$dashboardCategories	=	$('.dashboardCategory');	

								var	selectedIndex	=	+message.categoryID;	

								var	$selectedItem	=	$dashboardCategories.eq(selectedIndex).show();	

								$dashboardCategories.not($selectedItem).hide();	

				});	

				$('.dashboardCategory').on('click',	'button',	function()	{	

								var	$button	=	$(this);	

								var	message	=	{	categoryName:	$button.text()	};	

								broker.trigger('categoryItemOpen',	[message]);	

				});	

				broker.on('categoryItemOpen',	function(event,	message)	{	

								var	boxHtml	=	'<div	class="boxsizer"><article	class="box">'	+	

																'<header	class="boxHeader">'	+	

																				message.categoryName	+	

																				'<button	class="boxCloseButton">✖'	+

																				'</button>'	+	

																'</header>'	+	

																'Information	box	regarding	'	+	message.categoryName	+	

												'</article></div>';	

								$('.boxContainer').append(boxHtml);	

				});	

				$('.boxContainer').on('click',	'.boxCloseButton',	function()	{	

								var	boxIndex	=	$(this).closest('.boxsizer').index();	

								var	message	=	{	boxIndex:	boxIndex	};	

								broker.trigger('categoryItemClose',	[message]);	

				});	

				broker.on('categoryItemClose',	function(event,	message)	{	

								$('.boxContainer	.boxsizer').eq(message.boxIndex).remove();	

				});

});	

Just	like	in	our	previous	implementation,	we	use	$(document).ready()	in	order	to	delay
the	execution	of	our	code	until	the	page	has	been	fully	loaded.	First	of	all,	we	declare	our
broker	and	assign	it	to	a	new	variable	on	the	window	object	so	that	it	is	globally	available
on	the	page.	For	our	application’s	broker,	we	are	using	a	jQuery	object	with	the	outermost
container	of	our	implementation,	which	in	our	case	is	the	<div>	element	with	the
dashboardContainer	class.

Tip
Even	though	using	global	variables	is	generally	an	anti-pattern,	we	store	the	broker	into	a
global	variable	since	it	is	an	important	synchronization	point	of	the	whole	application	and
must	be	available	for	every	piece	of	our	implementation,	even	to	those	that	are	stored	in
separate	.js	files.	As	we	will	discuss	in	the	next	chapter	about	the	Module	Pattern,	the
preceding	code	could	be	improved	by	storing	the	broker	as	a	property	of	the	application’s
namespace.

In	order	to	implement	the	category	selector,	we	are	first	observing	the	<select>	element
for	the	change	event.	When	the	selected	category	changes,	we	create	our	message	using	a
plain	JavaScript	object	with	the	value	of	the	selected	<option>	stored	in	the	categoryID
property.	Then,	we	publish	it	in	the	dashboardCategorySelect	topic	using	the	jQuery
jQuery.fn.trigger()	method	on	our	broker.	This	way,	we	move	from	a	UI	element	event
to	a	message	with	application	semantics	that	contains	all	the	required	information.	Right
below,	in	our	subscriber’s	code,	we	are	using	the	jQuery.fn.on()	method	on	our	broker
with	the	dashboardCategorySelect	topic	as	a	parameter	(our	custom	event),	just	like	we
would	do	to	listen	for	a	simple	DOM	event.	The	subscriber	then	uses	the	categoryID	from
the	received	message,	just	like	we	did	in	the	implementation	of	the	previous	chapter,	to
display	the	appropriate	category	items.

Following	the	same	approach,	we	split	the	code	that	handles	adding	and	closing
information	boxes	in	our	dashboard	in	publishers	and	subscribers.	For	the	needs	of	this
demonstration,	the	message	of	the	categoryItemOpen	topic	contains	just	the	name	of	the
category	we	want	to	open.	However,	in	an	application	where	the	box	content	is	retrieved
from	a	server,	we	would	probably	use	a	category	item	ID	instead.	The	subscriber	then	uses
the	category	item	name	from	the	message	to	create	and	insert	the	requested	information

box.

Similarly,	the	message	for	the	categoryItemClose	topic	contains	the	index	of	the	box	that
we	want	removed.	Our	publisher	uses	the	jQuery.fn.closest()	method	to	traverse	the
DOM	and	reach	the	child	elements	of	our	boxContainer	element	and	then	uses	the
jQuery.fn.index()	method	to	find	its	position	among	its	siblings.	The	subscriber	then
uses	jQuery.fn.eq()	and	the	boxIndex	property	from	the	received	message	to	filter	and
remove	only	the	requested	information	box	from	the	dashboard.

Tip
In	a	more	complex	application,	instead	of	the	box	index,	we	can	associate	each
information	box	element	with	a	newly	retrieved	jQuery.guid	using	a	mapping	object.
This	will	allow	our	publisher	to	use	that	guid	in	the	message	instead	of	the	(DOM-related)
element	index.	The	subscriber	will	then	search	the	mapping	object	for	that	guid	in	order	to
locate	and	remove	the	appropriate	box.

Since	we	are	trying	to	demonstrate	the	advantages	of	the	Pub/Sub	Pattern,	this
implementation	change	was	not	introduced	in	order	to	ease	the	comparison	with	the
Observer	Pattern	and	is	instead	left	as	a	recommended	exercise	for	the	reader.

To	summarize	the	above,	we	used	the	dashboardCategorySelect,	categoryItemOpen,
and	categoryItemClose	topics	as	our	application-level	events	in	order	to	decouple	the
handling	of	the	user	actions	from	their	origin	(the	UI	element).	As	a	result,	we	now	have
dedicated	reusable	pieces	of	code	that	manipulate	our	dashboard’s	content,	which	is
equivalent	to	abstracting	them	into	separate	functions.	This	allows	us	to	programmatically
publish	a	series	of	messages	so	that	we	can,	for	example,	remove	all	the	existing
information	boxes	and	add	all	the	category	items	of	the	currently	selected	category.
Alternatively,	even	better,	make	the	dashboard	show	all	the	items	of	each	category	for	10
seconds	and	then	move	to	the	next	one.

Extending	the	implementation
In	order	to	demonstrate	the	scalability	that	the	Pub/Sub	Pattern	brings	with	it,	we	will
extend	our	current	example	by	adding	a	counter	with	the	number	of	boxes	that	are
currently	open	in	the	dashboard.

For	the	counter	implementation,	we	will	need	to	add	some	extra	HTML	to	our	page	and
also	create	and	reference	a	new	JavaScript	file	to	hold	the	counter	implementation:

						...

						</section>	

						<div	style="margin-left:	5px;">	

								Open	boxes:	

								<output	id="dashboardItemCounter">1</output>	

						</div>	

						<section	class="boxContainer">

						...

In	the	HTML	page	of	the	example,	we	will	need	to	add	an	extra	<div>	element	to	hold	our
counter	and	some	description	text.	For	our	counter,	we	are	using	an	<output>	element,
which	is	a	semantic	HTML5	element	ideal	to	present	results	of	user	actions.	The	browser
will	use	it	just	like	a	normal		element,	so	it	will	appear	right	next	to	its	description.
Also,	since	there	is	initially	a	hint	box	open	in	our	dashboard,	we	use	a	1	for	its	initial
content:

$(document).ready(function()	{	

				broker.on('categoryItemOpen	categoryItemClose',	function	(event,	

message)	{	

								var	$counter	=	$('#dashboardItemCounter');	

								var	count	=	parseInt($counter.text());	

								

								if	(event.type	===	'categoryItemOpen')	{	

												$counter.text(count	+	1);	

								}	else	if	(event.type	===	'categoryItemClose'	&&	count	>	0)	{	

												$counter.text(count	-	1);	

								}

				});	

});

For	the	counter	implementation	itself,	all	we	need	to	do	is	add	an	extra	subscriber	to	the
dashboard’s	broker,	which	is	globally	available	to	other	JavaScript	files	loaded	in	the
page,	since	we	have	attached	it	to	the	window	object.	We	are	simultaneously	subscribing	to
two	topics,	by	passing	them	space	delimited	to	the	jQuery.fn.on()	method.	Right	after
this,	we	locate	the	counter	<output>	element	that	has	the	ID	dashboardItemCounter	and
parse	its	text	content	as	a	number.	In	order	to	differentiate	our	action,	based	on	the	topic
that	the	message	has	received,	we	use	the	event	object	that	jQuery	passes	as	the	first
parameter	to	our	anonymous	function,	which	is	our	subscriber.	Specifically,	we	use	the
type	property	of	the	event	object	that	holds	the	topic	name	of	the	message	that	was
received	and	based	on	its	value,	we	change	the	content	of	the	counter.

Note
For	more	information	on	the	event	object	that	jQuery	provides,	you	can	visit
http://api.jquery.com/category/events/event-object/.

Similarly,	we	could	also	rewrite	the	code	that	prevents	accidental	double-clicks	on	the
category	item	buttons.	All	that	is	needed	is	to	add	an	extra	subscriber	for	the
categoryItemOpen	topic	and	use	the	categoryName	property	of	the	message	to	locate	the
pressed	button.

http://api.jquery.com/category/events/event-object/

Using	any	object	as	a	broker
While	in	our	example	we	used	the	outermost	container	element	of	our	dashboard	for	our
broker,	it	is	also	common	to	use	the	$(document)	object	as	a	broker.	Using	the
application’s	container	element	is	considered	a	good	semantic	practice,	which	also	scopes
the	emitted	events.

As	we	described	earlier	in	this	chapter,	jQuery	actually	allows	us	to	use	any	object	as	a
broker,	even	an	empty	one.	As	a	result,	we	could	instead	use	something	such	as
window.broker	=	$({});	for	our	broker,	in	case	we	prefer	it	over	using	a	page	element.

By	using	newly	constructed	empty	objects,	we	can	also	easily	create	several	brokers,	in
case	such	a	thing	would	be	preferred	for	a	specific	implementation.	Moreover,	in	case	a
centralized	broker	is	not	preferred,	we	could	just	make	each	publisher	the	broker	of	itself,
leading	to	an	implementation	more	like	the	first/basic	variant	of	the	Pub/Sub	Pattern.

Since	in	most	cases,	a	declared	variable	is	used	to	access	the	application’s	broker	within	a
page,	there	is	little	difference	between	the	above	approaches.	Just	choose	the	one	that
better	matches	your	team’s	taste,	and	in	case	you	change	your	mind	at	a	later	point,	all	you
have	to	do	is	use	a	different	assignment	on	your	broker	variable.

Using	custom	event	namespacing
As	a	closing	note	for	this	chapter,	we	will	present,	in	short,	the	mechanism	that	jQuery
provides	for	namespacing	custom	events.	The	main	benefit	of	event	namespacing	is	that	it
allows	us	to	use	more	specific	event	names	that	better	describe	their	purpose,	while	also
helping	us	to	avoid	conflicts	between	different	implementation	parts	and	plugins.	It	also
provides	a	convenient	way	to	unbind	all	the	events	of	a	given	namespace	from	any	target
(element	or	broker).

A	simple	example	implementation	will	look	as	follows:

var	broker	=	$({});

broker.on('close.dialog',	function	(event,	message){

				console.log(event.type,	event.namespace);

});

broker.trigger('close.dialog',	['messageEmitted']);

broker.off('.dialog');

//	removes	all	event	handlers	of	the	"dialog"	namespace

For	more	information,	you	can	visit	the	documentation	page	at
http://docs.jquery.com/Namespaced_Events	and	the	article	at	https://css-
tricks.com/namespaced-events-jquery/	from	the	CSS-Tricks	website.

http://docs.jquery.com/Namespaced_Events
https://css-tricks.com/namespaced-events-jquery/

Summary
In	this	chapter,	we	were	introduced	to	the	Publish/Subscribe	Pattern.	We	saw	its
similarities	with	the	Observer	Pattern	and	also	learned	its	benefits	by	doing	a	comparison
of	the	two.	We	analyzed	how	the	more	distinct	roles	and	the	extra	features	that	the
Publish/Subscribe	Pattern	offers	make	it	an	ideal	pattern	for	more	complex	use	cases.	We
saw	how	jQuery	developers	adopted	some	of	its	concepts	and	brought	them	to	their
Observer	Pattern	implementation	as	custom	events.	Finally,	we	rewrote	the	example	from
the	previous	chapter	using	the	Publish/Subscribe	Pattern,	adding	some	extra	features	and
also	achieving	greater	decoupling	between	the	different	parts	and	page	elements	of	our
application.

Now	that	we	have	completed	our	introduction	to	how	the	Publish/Subscribe	Pattern	can	be
used	as	a	first	step	to	decouple	the	different	parts	of	an	implementation,	we	can	move	on
to	the	next	chapter	where	we	will	be	introduced	to	the	Module	Pattern.	In	the	next	chapter,
we	will	learn	how	to	separate	the	different	parts	of	an	implementation	into	independent
modules	and	how	to	use	namespacing	to	achieve	better	code	organization	and	define	a
strict	API	to	achieve	communication	between	the	different	modules.

Chapter	4.	Divide	and	Conquer	with	the
Module	Pattern
In	this	chapter,	we	will	be	introduced	to	the	concepts	of	Modules	and	Namespacing	and
see	how	they	can	lead	to	more	robust	implementations.	We	will	showcase	how	these
design	principles	can	be	used	in	applications,	by	demonstrating	some	of	the	most
commonly	used	development	patterns	to	create	Modules	in	JavaScript.

In	this	chapter,	we	will:

Review	the	concept	of	Modules	and	Namespacing
Introduce	the	Object	Literal	Pattern
Introduce	the	Module	Pattern	and	its	variants
Introduce	the	Revealing	Module	Pattern	and	its	variants
Have	a	small	dive	into	ES5	Strict	Mode	and	ES6	Modules
Explain	how	Modules	can	be	used	and	benefit	jQuery	applications

Modules	and	Namespaces
The	two	main	practices	of	this	chapter	are	Modules	and	Namespaces,	which	are	used
together	in	order	to	structure	and	organize	our	code.	We	will	first	analyze	the	main
concept	of	Modules	that	is	code	encapsulation	and	right	after	this,	we	will	proceed	to
Namespacing,	which	is	used	to	logically	organize	an	implementation.

Encapsulating	internal	parts	of	an	implementation
While	developing	a	large-scale	and	complex	web	application,	the	need	for	a	well-defined,
structured	architecture	becomes	clear	from	the	beginning.	In	order	to	avoid	creating	a
spaghetti	code	implementation,	where	different	parts	of	our	code	call	each	other	in	a
chaotic	way,	we	have	to	split	our	application	into	small,	self-contained	parts.

These	self-contained	pieces	of	code	can	be	defined	as	Modules.	To	document	this
architecture	principle,	Computer	Science	has	defined	concepts	such	as	Separation	of
Concerns,	where	the	role,	operation,	and	the	exposed	API	of	each	Module	should	be
strictly	defined	and	focused	on	providing	a	generic	solution	to	a	specific	problem.

Note
For	more	information	on	Encapsulation	and	Separation	of	Concerns,	you	can	visit
https://developer.mozilla.org/en-US/docs/Glossary/Encapsulation	and
http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/.

https://developer.mozilla.org/en-US/docs/Glossary/Encapsulation
http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/

Avoiding	global	variables	with	Namespaces
In	JavaScript,	the	window	object	is	also	known	as	the	Global	Namespace,	where	each
declared	variable	and	function	identifier	is	attached	by	default.	A	Namespace	can	be
defined	as	a	naming	context	where	each	identifier	has	to	be	unique.	The	main	concept	of
Namespacing	is	to	provide	a	way	to	logically	group	all	the	related	pieces	of	a	distinct	and
self-contained	part	of	an	application.	In	other	words,	it	suggests	that	we	create	groups	with
related	functions	and	variables	and	make	them	accessible	under	the	same	umbrella
identifier.	This	helps	to	avoid	naming	collisions	between	different	parts	of	an	application
and	other	JavaScript	libraries	that	are	used,	since	we	only	need	to	keep	all	the	identifiers
unique	under	each	different	Namespace.

A	good	example	of	Namespacing	is	the	mathematical	functions	and	constants	that
JavaScript	provides,	which	are	grouped	under	the	built-in	JavaScript	object	called	Math.
Since	JavaScript	provides	more	than	40	short-named	mathematical	identifiers,	such	as	E,
PI,	and	floor(),	in	order	to	avoid	naming	conflicts	and	grouping	them	together,	it	was
designed	to	make	them	accessible	as	properties	of	the	Math	object	that	acts	as	the
Namespace	of	this	built-in	library.

Without	proper	Namespacing,	each	function	and	variable	needs	to	be	uniquely	named
through	the	entire	application,	and	collisions	could	happen	between	the	identifiers	of
different	application	parts	or	even	with	those	of	a	third-party	library	that	an	application
uses.	Finally,	while	Modules	provide	a	way	to	isolate	each	independent	part	of	your
application,	Namespacing	provides	a	way	to	structure	your	different	Modules	to	what
becomes	the	architecture	of	the	application.

The	benefits	of	these	patterns
Designing	an	application	architecture	based	on	Modules	and	namespacing	leads	to	better
code	organization	and	clearly	separated	parts.	In	such	architectures,	Modules	are	used	to
group	together	parts	of	the	implementation	that	are	related,	while	Namespaces	connect
them	to	each	other	to	create	the	application	structure.

This	architecture	helps	to	coordinate	large	developer	teams,	enabling	the	implementation
of	independent	parts	to	take	place	in	parallel.	It	can	also	shorten	the	development	time
needed	to	add	a	new	functionality	to	the	existing	implementation.	This	is	because	the
existing	pieces	that	are	used	can	be	located	easily	and	the	added	implementation	has	less
chance	of	conflicting	with	the	existing	code.

The	resulting	code	structures	are	not	only	cleanly	separated,	but	since	each	Module	is
designed	to	achieve	a	single	goal,	there	is	a	good	chance	that	it	can	also	be	used	in	other
similar	applications.	As	an	added	benefit,	since	the	role	of	each	Module	is	strictly	defined,
it	also	makes	tracing	the	origin	of	a	bug	a	lot	easier	in	a	large	codebase.

The	wide	acceptance
Both	the	community	and	the	enterprise	world	realized	that,	in	order	to	have	maintainable,
large	frontend	applications	written	in	JavaScript,	they	should	end	up	with	a	set	of	best
practices	that	should	be	incorporated	in	every	part	of	their	implementations.

The	acceptance	and	adoption	of	Modules	and	Namespacing	in	JavaScript	implementations
is	clearly	visible	in	the	best	practices	and	coding	style	guides	that	the	community	and
enterprises	have	released.

For	example,	Google’s	JavaScript	Style	Guide	(available	at
https://google.github.io/styleguide/javascriptguide.xml#Naming)	describes	and	suggests
adopting	namespacing	in	our	implementations:

ALWAYS	prefix	identifiers	in	the	global	scope	with	a	unique	pseudo	namespace
related	to	the	project	or	library.

Moreover,	the	jQuery	JavaScript	Style	Guide	(available	at
https://contribute.jquery.org/style-guide/js/#global-variables)	suggests	using	global
variables	so	that:

Each	project	may	expose	at	most	one	global	variable.

Another	example	of	acceptance	among	the	developer	community,	comes	from	the	Mozilla
Developer	Network.	Its	guide	for	object-oriented	JavaScript	(available	at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-
Oriented_JavaScript#Namespace)	also	suggests	using	Namespaces,	to	wrap	the
implementation	of	our	application	under	a	single	exposed	variable,	using	something	as
simple	as	follows:

//	global	namespace

var	MYAPP	=	MYAPP	||	{};

https://google.github.io/styleguide/javascriptguide.xml#Naming
https://contribute.jquery.org/style-guide/js/#global-variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript#Namespace

The	Object	Literal	Pattern
The	Object	Literal	Pattern	is	probably	the	simplest	way	to	wrap	all	the	related	parts	of	an
implementation	under	an	umbrella	object	that	works	as	a	Module.	The	name	of	this	pattern
accurately	describes	the	way	it	is	used.	The	developer	just	needs	to	declare	a	variable	and
assign	an	object	with	all	the	related	parts	that	need	to	be	encapsulated	into	this	Module.

Let’s	see	how	we	can	create	a	Module	that	provides	unique	integers	to	a	page,	in	a	similar
way	how	jquery.guid	does	it:

var	simpleguid	=	{	

		guid:	1,	

		init:	function()	{	

				this.guid	=	1;	

		},	

		increaseCounter:	function()	{	

				this.guid++;	

				//	or	simpleguid.guid++;

		},	

		getNext:	function()	{	

				var	nextGuid	=	this.guid;	

				this.increaseCounter();	

				return	nextGuid;	

		}	

};

As	seen	above,	a	simple	rule	that	you	can	follow	in	order	to	adopt	this	pattern	is	to	define
all	the	variables	and	functions	that	each	implementation	needs	as	properties	of	an	object.
Our	code	is	reusable	and	does	not	pollute	the	Global	Namespace,	other	than	just	defining	a
single	variable	name	for	our	Module,	simpleguid	in	this	case.

We	can	access	the	Module	properties	internally,	either	by	using	the	this	keyword,	such	as
this.guid,	or	using	the	full	name	of	the	Module	such	as	simpleguid.guid.	In	order	to
use	the	above	Module	in	our	code,	we	just	need	to	access	its	property	by	using	its	name.
For	example,	calling	the	simpleguid.getNext()	method	will	return	to	our	code	the	next-
in-order	numeric	guid	and	also	change	the	Module’s	state	by	increasing	the	internal
counter.

One	of	the	negatives	of	this	pattern	is	that	it	does	not	provide	any	privacy	to	the	internal
parts	of	the	Module.	All	the	internal	parts	of	the	Module	can	be	accessed	and	be
overridden	by	external	code,	even	though	we	ideally	prefer	to	only	expose	the
simpleguid.init()	and	simpleguid.getNext()	methods.	There	are	several	naming
conventions	that	describe	prepending	or	appending	an	underscore	(_)	to	the	names	of
properties	that	are	intended	only	for	internal	use,	but	this	technically	doesn’t	fix	this
disadvantage.

Another	disadvantage	is	that	writing	a	big	Module	using	an	object	literal	can	easily	get
tiring.	It’s	true	that	JavaScript	developers	are	used	to	end	their	variables	and	function
definitions	with	semicolons	(;),	and	trying	to	write	a	big	Module	using	commas	(,)	after
each	property	can	easily	lead	to	syntactic	errors.

Even	though	this	pattern	makes	it	easy	to	declare	nested	Namespaces	for	a	Module,	it	can
also	lead	to	big	code	structures	with	bad	readability	in	case	we	need	several	levels	of
nesting.	For	example,	let’s	take	a	look	at	the	following	skeleton	of	a	Todo	application:

var	myTodoApp	=	{	

		todos:	[],	

		addTodo:	function(todo)	{	this.todos.push(todo);	},	

		getTodos:	function()	{	return	this.todos;	},	

		updateTodo:	function(todo)	{	/*...*/	},

		imports:	{	

				fromGDrive:	function()	{	/*...*/	},	

				fromUrl:	function()	{	/*...*/	},	

				fromText:	function()	{	/*...*/	}	

		},	

		exports:	{	

				gDrivePublicKey:	'#wnanqAASnsmkkw',

				toGDrive:	function()	{	/*...*/	},	

				toFile:	function()	{	/*...*/	},	

		},	

		share:	{	

				toTwitter:	function(todo)	{	/*...*/	}	

		}

};

Fortunately,	this	can	be	easily	fixed	by	splitting	the	object	literal	to	multiple	assignments
for	each	submodule	(and	preferably	to	different	files)	as	follows:

var	myTodoApp	=	{	

		todos:	[],	

		addTodo:	function(todo)	{	this.todos.push(todo);	},	

		getTodos:	function()	{	return	this.todos;	},	

		updateTodo:	function(todo)	{	/*...*/	},

};

/*	…	*/

myTodoApp.exports	=	{	

		gDrivePublicKey:	'#wnanqAASnsmkkw',	

		toGDrive:	function()	{	/*...*/	},	

		toFile:	function()	{	/*...*/	},	

};

/*...*/

The	Module	Pattern
The	key	concept	of	the	basic	Module	Pattern	is	to	provide	a	simple	function,	class,	or
object	that	the	rest	of	the	application	can	use,	through	a	well-known	variable	name.	It
enables	us	to	provide	a	minimal	API	for	a	Module,	by	hiding	the	parts	of	the
implementation	that	do	not	need	to	be	exposed.	This	way,	we	also	avoid	polluting	the
Global	Namespace	with	variables	and	utility	functions	that	are	needed	for	internal	use	by
our	Module.

The	IIFE	building	block
In	this	subsection,	we	will	get	a	small	introduction	to	the	IIFE	Design	Pattern	since	it’s	an
integral	part	for	all	the	variants	of	the	Module	Pattern	that	we	will	see	in	this	chapter.	The
Immediately	Invoked	Function	Expression	(IIFE)	is	a	very	commonly	used	Design
Pattern	among	JavaScript	developers	because	of	the	clean	way	in	which	it	isolates	blocks
of	code.	In	the	Module	Pattern,	an	IIFE	is	used	to	wrap	all	the	implementation	in	order	to
avoid	polluting	the	Global	Namespace	and	provide	privacy	to	the	declarations	to	the
Module	itself.

Each	IIFE	creates	a	Closure	with	the	variables	and	functions	declared	inside	it.	The
Closure	that	is	created	enables	the	exposed	function	of	the	IIFE	to	keep	references	to	the
rest	of	the	declarations	of	their	environment	and	access	them	normally	when	executed
from	other	parts	of	an	implementation.	As	a	result,	the	non-exposed	declarations	of	the
IIFE	do	not	leak	outside	it,	but	are	kept	private	and	are	accessible	only	by	the	functions
that	are	part	of	the	created	Closure.

Note
For	more	information	on	IIFEs	and	Closures,	you	can	visit
https://developer.mozilla.org/en-US/docs/Glossary/IIFE	and
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures.

An	IIFE	is	most	commonly	used	as	follows:

(function()	{	

		var	x	=	7;	

		console.log(x);	

		//	prints	7	

})();	

Since	the	preceding	code	construct	might	look	bizarre	on	first	sight,	let’s	see	the	pieces
that	it	is	composed	from.	An	IIFE	is	almost	equivalent	to	declaring	an	anonymous
function,	assigning	it	to	a	variable,	and	then	executing	it,	as	shown	in	the	following	code:

var	tmp	=	function()	{	

		var	x	=	7;	

		console.log(x);	

};	

tmp();	

//	or	

(tmp)();	

In	the	preceding	code,	we	define	a	function	expression	and	execute	it	using	tmp().	Since,
in	JavaScript,	we	can	use	parentheses	around	an	identifier	without	changing	its	meaning,
we	can	also	execute	the	stored	function	with	(tmp)();.	The	final	step,	in	order	to	turn	the
preceding	code	into	an	IIFE,	is	to	replace	the	tmp	variable	with	the	actual	anonymous
function	declaration.

As	we	saw	earlier,	the	only	difference	is	that,	with	an	IIFE,	we	do	need	to	declare	a

https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

variable	just	to	hold	the	function	itself.	We	only	create	an	anonymous	function	and	invoke
it	immediately	right	after	defining	it.

Since	the	creation	of	an	IIFE	can	be	achieved	in	several	ways,	which	might	look	like	an
exercise	of	JavaScript’s	rules,	the	community	of	JavaScript	developers	has	concluded	to
the	above	code	structure	as	a	point	of	reference	for	this	pattern.	This	way	of	creating	an
IIFE	is	considered	to	have	better	readability	and	is	used	by	large	libraries	and	as	a	result	of
its	adoption,	developers	can	easily	recognize	it	inside	large	JavaScript	implementations.

An	example	of	the	less-widely-used	ways	to	create	an	IIFE	is	the	following	code	structure:

(function()	{	

		//	code	

}());

The	simple	IIFE	Module	Pattern
Since	there	is	no	actual	name	for	this	pattern,	it	is	recognized	by	the	fact	that	the	defined
Module	returns	a	single	entity.	For	reference	on	how	to	create	a	reusable	library	using	this
pattern,	we	will	rewrite	the	simpleguid	Module	that	we	saw	earlier.	The	resulting
implementation	will	look	as	follows:

var	simpleguid	=	(function()	{	

		var	simpleguid	=	{};	

		var	guid;	

		simpleguid.init	=	function()	{	

				guid	=	1;	

		};	

		simpleguid.increaseCounter	=	function()	{	

				guid++;	

		};	

		simpleguid.getNext	=	function()	{	

				var	nextGuid	=	guid;	

				this.increaseCounter();	

				return	nextGuid;	

		};	

		simpleguid.init();	

		return	simpleguid;

})();	

This	pattern	uses	an	IIFE	to	define	an	object	that	acts	as	the	Module	container,	attaches
properties	to	it,	and	later	returns	it.	The	variable	simpleguid	in	the	first	line	of	the
preceding	code	is	used	as	the	Namespace	of	the	Module	and	is	assigned	with	the	value
that	is	returned	by	the	IIFE.	The	methods	and	properties	that	are	defined	on	the	returned
object	are	the	only	exposed	parts	of	the	Modules	and	constitute	its	public	API.

Once	again,	this	pattern	allows	us	to	use	the	this	keyword,	in	order	to	access	the	exposed
methods	and	properties	of	our	Module.	Furthermore,	it	also	provides	the	flexibility	to
execute	any	required	initialization	code	before	completing	the	Module’s	definition.

Unlike	the	Object	Literal	Pattern,	the	Module	Pattern	enables	us	to	create	actual
private	members	in	our	Modules.	Variables	declared	inside	the	IIFE,	that	are	not	attached
to	the	return	value,	such	as	the	guid	variable,	act	as	private	members	and	are	only
accessible	inside	the	Module	by	rest	members	of	the	created	Closure.

Lastly,	in	case	we	need	to	define	a	nested	Namespace,	all	we	have	to	do	is	change	the
assignment	of	the	value	returned	by	the	IIFE.	As	an	example	of	an	application	structured
with	submodules,	let’s	see	how	we	will	define	the	exporting	submodule	for	the	Todo
application	skeleton	that	we	saw	earlier:

var	myTodoApp	=	(function()	{	

		var	myTodoApp	=	{};	

		

		var	todos	=	[];	

		myTodoApp.addTodo	=	function(todo)	{	

				todos.push(todo);	

		};

		myTodoApp.getTodos	=	function()	{	

				return	todos;	

		};

		return	myTodoApp;	

})();	

myTodoApp.exports	=	(function()	{	

		var	exports	=	{};	

		

		var	gDrivePublicKey	=	'#wnanqAASnsmkkw';	

		

		exports.toGDrive	=	function()	{	/*...*/	};	

		

		exports.toFile	=	function()	{	/*...*/	};	

		return	exports;	

})();

Given	that	our	application’s	Namespace	myTodoApp	has	already	been	defined	earlier,	the
exports	submodule	can	be	defined	as	a	simple	property	on	it.	A	good	practice	to	follow
will	be	to	create	one	file	for	each	one	of	the	above	Modules,	using	the	IIFEs	as	the
landmarks	to	split	your	code.	A	widely	used	naming	convention,	which	is	also	suggested
by	Google’s	JavaScript	Style	Guide,	is	to	use	lowercase	naming	for	your	files	and	add
dashes	to	separate	submodules.	For	example,	by	following	this	naming	convention,	the
preceding	code	should	be	defined	in	two	files	named	as	mytodoapp.js	and	mytodoapp-
exports.js	for	each	Module,	respectively.

How	it	is	used	by	jQuery
The	Module	Pattern	is	used	within	jQuery	itself,	in	order	to	isolate	the	source	code	of	the
CSS	selector	engine	(Sizzle),	which	powers	the	$()	function,	from	the	rest	of	the	jQuery
source.	From	the	beginning,	Sizzle	was	a	big	part	of	the	jQuery	source,	which	is	currently
counting	about	2135	lines	of	code;	since	2009,	it	has	been	split	into	a	separate	project
named	Sizzle,	so	it	can	be	more	easily	maintained,	be	developed	independently,	and	be
reusable	by	other	libraries:

var	Sizzle	=	(function(window)	{	

		/*	179	lines	of	code	*/	

		function	Sizzle(selector,	context,	results,	seed)	{	

				/*	131	lines	of	code	*/	

		}	

		/*	

				1804	lines	of	code	,	defining	methods	like:	

				Sizzle.attr	

				Sizzle.compile	

				Sizzle.contains	

				Sizzle.getText	

				Sizzle.matches	

				Sizzle.matchesSelector	

				Sizzle.select	

		*/	

		return	Sizzle;	

})(window);	

jQuery.find	=	Sizzle;	

Sizzle	is	added	to	the	jQuery’s	source	inside	an	IIFE,	while	its	main	function	is	returned
and	assigned	to	jQuery.find	for	use.

Note
For	more	information	on	Sizzle,	you	can	visit	https://github.com/jquery/sizzle.

https://github.com/jquery/sizzle

The	Namespace	Parameter	Module	variant
In	this	variant,	instead	of	returning	an	object	from	our	IIFE	and	then	assigning	it	to	the
variable	that	acts	as	the	Namespace	of	the	Module,	we	create	the	Namespace	and	pass	it	as
a	parameter	to	the	IIFE	itself:

(function(simpleguid)	{	

		var	guid;	

		simpleguid.init	=	function()	{	

				guid	=	1;	

		};	

		simpleguid.increaseCounter	=	function()	{	

				guid++;	

		};

		simpleguid.getNext	=	function()	{	

				var	nextGuid	=	guid;	

				this.increaseCounter();	

				return	nextGuid;	

		};	

		simpleguid.init();	

})(window.simpleguid	=	window.simpleguid	||	{});

The	last	line	of	the	Module	definition	tests	whether	the	Module	is	already	defined;	in	case
it	is	not,	it	initializes	it	to	an	empty	object	literal	and	assigns	it	to	the	global	object
(window).	In	any	case,	the	simpleguid	parameter	in	the	first	line	of	the	IIFE	will	hold	the
Module’s	Namespace.

Note
The	above	expression	is	almost	equivalent	to	writing:

window.simpleguid	=	window.simpleguid	!==	undefined	?	window.simpleguid	:	

{};

Using	the	logical	OR	operator	(||)	makes	the	expression	both	shorter	and	more	readable.
Moreover,	this	is	a	pattern	that	most	web	developers	have	learned	to	easily	recognize,	and
it	appears	in	a	lot	of	development	patterns	and	best	practices.

Once	again,	this	pattern	allows	us	to	use	the	this	keyword	to	access	public	members	from
within	the	exported	methods	of	the	Module.	At	the	same	time,	it	allows	us	to	keep	some
functions	and	variables	private,	which	will	be	accessible	only	by	other	functions	of	the
Module.

Even	though	it’s	considered	a	good	practice	to	define	each	Module	to	its	own	JS	file,	this
variant	also	allows	us	to	split	the	implementation	of	large	Modules	to	more	than	one	file.
This	benefit	comes	as	a	result	of	checking	whether	the	Module	is	already	defined,	before
initializing	it	to	an	empty	object.	This	might	be	useful	in	some	cases,	with	the	only
limitation	being	that	each	partial	file	of	a	Module	can	access	the	private	members	defined
in	its	own	IIFE.

Moreover,	in	order	to	avoid	repetition,	we	can	use	a	simpler	identifier	for	the	parameter	of
the	IIFE	and	write	our	Module	as	follows:

(function(namespace)	{	

		/*	…	*/

		namespace.getNext	=	function()	{	

				var	nextGuid	=	guid;	

				this.increaseCounter();	

				return	nextGuid;	

		};	

		namespace.init();	

})(window.simpleguid	=	window.simpleguid	||	{});

When	it	comes	to	applications	with	nested	Namespaces,	this	pattern	might	start	feeling	a
little	uncomfortable	to	read.	The	last	line	of	the	Module	definition	will	start	to	get	longer
for	every	extra	level	of	nested	namespacing	that	we	define.	For	example,	let’s	see	how	the
exports	submodule	of	our	Todo	application	would	look:

(function(exports)	{	

		var	gDrivePublicKey	=	'#wnanqAASnsmkkw';	

		exports.toGDrive	=	function()	{	/*...*/	};	

		exports.toFile	=	function()	{	/*...*/	};	

})(myTodoApp.exports	=	myTodoApp.exports	||	{});	

As	you	can	see,	each	extra	level	of	the	nested	Namespace	needs	to	be	added	on	both	sides
of	the	assignment	that	is	passed	as	a	parameter	to	the	IIFE.	For	applications	with	complex
features	that	lead	to	multiple	levels	of	nested	Namespaces,	this	could	lead	to	Module
definitions	looking	something	like	this:

(function(smallModule)	{	

		smallModule.method	=	function()	{	/*...*/	};	

		return	smallModule;	

})(myApp.bigFeature.featurePart.smallModule	=	

myApp.bigFeature.featurePart.smallModule	||	{});	

Moreover,	if	we	want	to	provide	the	same	safety	guaranties,	as	in	the	original	code
sample,	then	we	would	need	to	add	similar	safe	checks	for	each	Namespace	level.	With
this	in	mind,	the	exports	Module	of	our	Todo	application	that	we	saw	earlier	would	need
to	have	the	following	form:

(function(exports)	{	

		var	gDrivePublicKey	=	'#wnanqAASnsmkkw';	

		exports.toGDrive	=	function()	{	/*...*/	};	

		exports.toFile	=	function()	{	/*...*/	};	

})((window.myTodoApp	=	window.myTodoApp	||	{},	myTodoApp.exports	=	

myTodoApp.exports	||	{}));	

As	seen	in	the	preceding	code,	we	used	the	comma	operator	(,)	to	separate	each
namespace	existence	check	and	wrapped	the	whole	expression	in	an	extra	pair	of
parenthesis	so	that	the	whole	expression	is	used	as	the	first	parameter	of	the	IIFE.	Using
the	comma	operator	(,)	to	join	expressions	will	lead	them	to	be	evaluated	in	order	and
pass	the	result	of	the	last	evaluated	expression	as	the	parameter	of	the	IIFE,	and	that	result
will	be	used	as	the	Namespace	of	the	Module.	Keep	in	mind	that,	for	each	extra	nested
Namespace	level,	we	need	to	add	an	extra	existence	check	expression	using	the	comma
operator	(,).

A	disadvantage	of	this	pattern,	especially	when	used	for	nested	namespacing,	is	that	the
Namespace	definition	of	the	Module	is	at	the	end	of	the	file.	Even	though	it	is	highly
recommended	to	name	your	JS	files	so	that	they	properly	represent	the	Modules	that	they
contain,	for	example,	mytodoapp.exports.js;	not	having	the	Namespace	near	the	top	of
the	file	can	sometimes	be	counterproductive	or	misleading.	An	easy	work-around	for	this
problem	would	be	to	define	the	Namespace	before	the	IIFE	and	then	pass	it	as	a
parameter.	For	example,	the	preceding	code	using	this	technique	would	be	transformed	to
something	as	follows:

window.myTodoApp	=	window.myTodoApp	||	{};	

myTodoApp.exports	=	myTodoApp.exports	||	{};	

(function(exports)	{	

		var	gDrivePublicKey	=	'#wnanqAASnsmkkw';	

		exports.toGDrive	=	function()	{	/*...*/	};	

		exports.toFile	=	function()	{	/*...*/	};	

})(myTodoApp.exports);	

The	IIFE-contained	Module	variant
Like	in	the	previous	variants	of	the	Module	Pattern,	this	variant	does	not	actually	have	a
specific	variant	name,	but	is	recognized	by	the	way	the	code	is	structured.	The	key
concept	of	this	variant	is	to	move	all	the	Module’s	code	inside	the	IIFE:

(function()	{	

		window.simpleguid	=	window.simpleguid	||	{};	

		var	guid;	

		simpleguid.init	=	function()	{	

				guid	=	1;	

		};	

		simpleguid.increaseCounter	=	function()	{	

				guid++;	

		};	

		simpleguid.getNext	=	function()	{	

				var	nextGuid	=	guid;	

				this.increaseCounter();	

				return	nextGuid;	

		};	

		simpleguid.init();	

})();	

This	variant	looks	very	similar	to	the	previous	one	and	mainly	differs	in	the	way	that	the
Namespace	is	created.	First	of	all,	it	keeps	the	Namespace	check	and	initialization	near	the
top	of	the	Module,	like	a	heading,	making	our	code	more	readable	regardless	of	whether
we	use	a	separate	file	for	the	Module	or	not.	Like	other	variants	of	the	Module	Pattern,	it
supports	private	members	for	our	Modules	and	also	allows	us	to	use	the	this	keyword	to
access	public	methods	and	properties,	making	our	code	look	more	object-oriented.

Regarding	implementations	with	nested	Namespaces,	the	code	structure	of	the	exports
submodule	of	our	Todo	application	skeleton	will	look	as	follows:

(function()	{	

		window.myTodoApp	=	window.myTodoApp	||	{};	

		myTodoApp.exports	=	myTodoApp.exports	||	{};	

		var	gDrivePublicKey	=	'#wnanqAASnsmkkw';	

		myTodoApp.exports.toGDrive	=	function()	{	/*...*/	};	

		myTodoApp.exports.toFile	=	function()	{	/*...*/	};	

})();

As	seen	in	the	preceding	code,	we	also	borrowed	the	Namespace	definition	checks	from
the	previous	variant	and,	likewise,	applied	it	to	every	level	of	nested	namespacing.	Even

though	this	is	not	absolutely	necessary,	it	brings	the	benefits	that	we	discussed	earlier	such
as	enabling	us	to	split	a	Module	definition	into	several	files	and	even	results	in	a	more
error-tolerant	implementation	regarding	the	import	order	of	the	application’s	Modules.

The	Revealing	Module	Pattern
The	Revealing	Module	Pattern	is	a	variant	of	the	Module	Pattern	with	a	known	and
widely	recognized	name.	What	makes	this	pattern	special	is	that	it	combines	the	best	parts
of	the	Object	Literal	Pattern	and	the	Module	Pattern.	All	the	members	of	the	Module
are	declared	inside	an	IIFE,	which	at	the	end,	returns	an	Object	Literal	containing	only
the	public	members	of	the	Module	and	is	assigned	to	the	variable	that	acts	as	our
Namespace:

var	simpleguid	=	(function()	{	

		var	guid	=	1;	

		function	init()	{	

				guid	=	1;	

		}	

		function	increaseCounter()	{	

				guid++;	

		}	

		function	getNext()	{	

				var	nextGuid	=	guid;	

				increaseCounter();	

				return	nextGuid;	

		}	

		return	{	

				init:	init,	

				getNext:	getNext	

		};	

})();	

One	of	the	main	benefits	of	this	pattern	that	differentiates	it	from	other	variants	is	that	it
allows	us	to	write	all	the	code	of	our	Module	inside	the	IIFE,	just	like	we	would	if	they
would	be	declared	on	the	Global	Namespace.	Moreover,	this	pattern	does	not	require	any
variation	on	the	way	that	the	public	and	private	members	are	declared,	making	the	code	of
the	Module	look	uniform.

Since	the	returned	Object	Literal	defines	the	publicly	available	members	of	the	Module,	it
is	also	a	convenient	easy	way	to	inspect	its	public	API,	even	if	it	is	written	by	someone
else.	Moreover,	in	case	we	need	to	expose	a	private	method	on	our	Module’s	API,	all	we
need	to	do	is	add	an	extra	property	to	the	returned	Object	Literal	without	changing	any
part	of	its	definition.	Additionally,	the	use	of	an	Object	Literal	enables	us	to	change	the
exposed	identifiers	for	the	Module’s	API,	without	changing	the	names	used	by	the
Module’s	implementation	internally.

Even	if	this	is	not	clearly	visible,	the	this	keyword	can	be	used	for	calls	between	the
public	members	of	the	Module.	Unfortunately,	using	the	this	keyword	is	discouraged	for
this	pattern,	since	it	breaks	the	uniformity	of	the	function	declarations	and	can	easily	lead
to	errors,	especially	when	changing	the	visibility	of	a	public	method	to	private.

Since	the	Namespace	definition	is	kept	outside	the	body	of	the	IIFE,	this	pattern	clearly
separates	the	Namespace	definition	from	the	actual	implementation	of	the	Module.	Using
this	pattern	to	define	a	Module	in	a	nested	Namespace	does	not	affect	the	Module’s
implementation,	which	will	not	look	different	at	any	point	from	a	top-level	Namespace
Module.	Rewriting	the	exports	submodule	of	our	Todo	skeleton	application	using	this
pattern	will	make	it	look	like	this:

myTodoApp.exports	=	(function()	{	

		var	gDrivePublicKey	=	'#wnanqAASnsmkkw';	

		function	toGDrive()	{	/*...*/	}	

		

		function	toFile()	{	/*...*/	}	

		return	{	

				toGDrive:	toGDrive,	

				toFile:	toFile	

		};	

})();

As	a	result	of	this	separation,	we	have	less	code	repetition	and	we	can	easily	change	the
Namespace	of	a	Module	without	affecting	its	implementation	at	all.

Using	ES5	Strict	Mode
A	small	but	precious	addition	to	all	the	Module	Patterns	that	use	IIFEs	as	their	basic
building	blocks,	is	the	use	of	Strict	Mode	for	JavaScript	execution.	This	was	standardized
in	the	fifth	edition	of	JavaScript,	and	is	an	opt-in	execution	mode	with	slightly	different
semantics,	in	order	to	prevent	some	of	the	common	pitfalls	of	JavaScript,	but	also	having
backwards	compatibility	in	mind.

Under	this	mode,	the	JavaScript	runtime	engine	will	prevent	you	from	accidentally
creating	a	global	variable	and	polluting	the	Global	Namespace.	Even	in	not-so-large
applications,	it	is	quite	possible	that	a	var	declaration	before	the	initial	assignment	of	a
variable	can	be	missing,	automatically	promoting	that	to	a	global	variable.	To	prevent	this
case,	strict	mode	throws	an	error	in	case	an	assignment	is	issued	to	an	undeclared	variable.
The	following	image	show	the	error	that	is	thrown	by	Firefox	and	Chrome	when	a	Strict
Mode	violation	happens.

This	mode	can	be	enabled	by	adding	the	"use	strict";	or	'use	strict';	statement
before	any	other	statements.	Even	though	this	can	be	enabled	on	the	global	scope,	it	is
highly	recommended	that	you	enable	it	only	inside	the	scope	of	a	function.	Enabling	it	on
the	global	scope	might	make	third-party	libraries	that	are	non-strict-mode	compliant	stop
working	or	misbehave.	On	the	other	hand,	the	best	place	to	enable	Strict	Mode	is	inside
the	IIFE	of	a	Module.	The	Strict	Mode	will	be	recursively	applied	to	all	nested
Namespaces,	methods,	and	functions	of	that	IIFE.

Note
For	more	information	on	JavaScript’s	strict	execution	mode,	you	can	visit
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Introducing	ES6	Modules
Even	though	JavaScript	initially	had	no	built-in	packaging	and	namespacing	support	like
other	programming	languages,	web	developers	filled	the	gaps	by	defining	and	adopting
some	design	patterns	for	this	purpose.	These	software	development	practices	worked
around	the	missing	features	of	JavaScript	and	allowed	large	and	scalable	implementations
of	complex	applications	on	a	programming	language	that	some	years	ago	was	mostly	used
for	form	validation.

This	was	until	the	6th	version	of	JavaScript,	commonly	referred	to	as	ES6,	was	released	as
a	standard	on	June	2015	and	introduced	the	concept	of	Modules	as	part	of	the	language.

Note
ES6	is	an	abbreviation	of	ECMAScript	6th	edition,	which	is	also	referred	to	as	Harmony
or	ECMAScript	2015,	where	ECMAScript	is	the	term	that	is	used	for	the	standardization
process	of	JavaScript.	The	specification	can	be	found	at	http://www.ecma-
international.org/ecma-262/6.0/index.html#sec-modules.

As	an	example	of	ES6	Modules,	we	will	see	one	of	the	many	ways	in	which	the
simpleguid	Module	can	be	written:

var	es6simpleguid	=	{};	

export	default	es6simpleguid;	

var	guid;	

es6simpleguid.init	=	function()	{	

		guid	=	1;	

};	

es6simpleguid.increaseCounter	=	function()	{	

		guid++;	

};	

es6simpleguid.getNext	=	function()	{	

		var	nextGuid	=	guid;	

		this.increaseCounter();	

		return	nextGuid;	

};	

es6simpleguid.init();

If	we	save	this	as	a	file	named	es6simpleguid.js,	then	we	can	import	and	use	it	in	a
different	file	by	simply	writing	the	following	code:

import	es6simpleguid	from	'es6simpleguid';	

console.log(es6simpleguid.getNext());

Since	ES6	Modules	are	by	default	in	Strict	Mode,	writing	your	Modules	today	using	your
preferred	Module	Pattern	variant	with	Strict	Mode	enabled	will	make	your	transition	to
ES6	Modules	easier.	Some	of	the	above	patterns	require	very	few	changes	to	achieve	this.

http://www.ecma-international.org/ecma-262/6.0/index.html#sec-modules

For	example,	in	the	IIFE-contained	Module	Pattern	variant,	all	that	is	needed	is	remove
the	IIFE	and	the	"use	strict";	statement,	replace	the	creation	of	the	Module’s
Namespace	with	a	variable,	and	use	the	export	keyword	on	it.

Unfortunately,	at	the	time	of	writing	this	book,	no	browser	has	100%	support	for	ES6
Modules.	As	a	result,	special	loaders	or	tools	that	transpile	ES6	to	ES5	are	required	so	that
we	can	start	writing	our	code	using	the	new	features	of	ES6.

Note
For	more	information,	you	can	visit	ES6	Module	loader’s	documentation	page	at
https://github.com/ModuleLoader/es6-module-loader,	and	Babel	transpiler	(earlier	known
as	ES6toES5)	at	http://babeljs.io/.

https://github.com/ModuleLoader/es6-module-loader
http://babeljs.io/

Using	Modules	in	jQuery	applications
In	order	to	demonstrate	how	the	Module	Pattern	can	lead	to	a	better	application	structure,
we	will	reimplement	the	dashboard	example	that	we	saw	in	the	previous	chapters.	We	will
include	all	the	functionalities	that	we	have	seen	until	now,	including	the	counter	of	the
open	information	boxes.	The	HTML	and	CSS	code	used	is	exactly	the	same	as	in	the
previous	chapter	and,	as	a	result,	our	dashboard	looks	exactly	the	same	as	before:

For	this	demonstration,	we	will	refactor	our	JavaScript	code	into	four	small	Modules	using
the	simple	IIFE-contained	Module	variant.	The	dashboard	Module	will	act	as	the	main
entry	of	code	execution	and	also	as	the	central	coordination	point	of	the	dashboard
application.	The	categories	submodule	will	be	responsible	for	the	implementation	of	the
upper-top	part	of	our	dashboard.	This	includes	category	selection,	the	presentation	of
appropriate	buttons,	and	the	handling	of	button	clicks.	The	informationBox	submodule
will	be	responsible	for	the	main	part	of	our	dashboard.	It	will	provide	methods	to	create
and	remove	information	boxes	from	the	dashboard.	Finally,	the	counter	submodule	will	be
responsible	for	keeping	the	field	with	the	number	of	the	currently	open	information	boxes
up-to-date,	responding	to	the	user	actions.

A	single	change	that	we	need	to	make	to	the	HTML	of	the	page	in	order	to	support	this
multimodule	architecture	is	limited	to	the	way	in	which	the	JavaScript	files	are	included:

<script	type="text/javascript"	src="jquery.js"></script>

<script	type="text/javascript"	src="dashboard.js"></script>

<script	type="text/javascript"	src="dashboard.categories.js"></script>	

<script	type="text/javascript"	src="dashboard.informationbox.js">

</script>

<script	type="text/javascript"	src="dashboard.counter.js"></script>

Tip
Even	if	this	multifile	structure	makes	the	development	and	debugging	processes	a	lot
easier,	it	is	recommended	that	we	combine	all	these	files	before	moving	our	application	to
a	production	environment.	Several	tools	specialized	for	this	job	exist;	for	example,	the
very	simple	and	effective	grunt-contrib-concat	project	that	is	available	at
https://github.com/gruntjs/grunt-contrib-concat.

https://github.com/gruntjs/grunt-contrib-concat

The	main	dashboard	module
The	resulting	code	for	the	dashboard	module	will	look	as	follows:

(function()	{	

				'use	strict';	

				window.dashboard	=	window.dashboard	||	{};

	

				dashboard.$container	=	null;	

				dashboard.init	=	function()	{	

								dashboard.$container	=	$('.dashboardContainer');	

								dashboard.categories.init();	

								dashboard.informationBox.init();	

								dashboard.counter.init();	

				};	

				$(document).ready(dashboard.init);

})();	

As	we	already	mentioned,	the	dashboard	module	will	be	the	central	point	of	our
application.	Since	this	is	the	starting	point	of	execution	for	our	application,	its	main	duty	is
to	do	all	the	required	initializations	for	itself	and	each	submodule.	The	invocation	of	the
init()	method	is	wrapped	inside	a	call	to	the	$(document).ready()	method	so	that	its
execution	is	delayed	until	the	DOM	tree	of	the	page	is	fully	loaded.

One	important	thing	to	note	is	that,	during	the	initialization,	we	do	a	DOM	traversal	in
order	to	find	the	container	element	of	the	dashboard	and	store	it	to	a	public	property	of	the
Module	named	$container.	This	element	will	be	used	by	all	the	methods	of	the
dashboard	that	need	to	access	the	DOM	tree,	in	order	to	scope	their	code	inside	that
container	element,	removing	the	need	to	constantly	traverse	the	whole	DOM	tree	using
complex	selectors.	Keeping	references	to	key	DOM	elements	and	reusing	them	in	the
different	submodules,	can	make	the	application	snappier	and	also	lessen	the	chance	of
accidentally	interfering	with	the	rest	of	the	page;	thus,	leading	to	less	bugs	that	are	also
easier	to	resolve.

Tip
Cache	elements	but	avoid	memory	leaks.

Keep	in	mind	that	maintaining	references	to	DOM	elements	that	are	constantly	added	and
removed	from	the	page	adds	extra	complexity	to	our	application.	This	can	even	lead	to
memory	leaks	in	case	we	are	accidentally	keeping	a	reference	to	an	element	that	has
already	been	removed	from	the	page.	For	such	elements,	such	as	the	information	boxes,	it
might	be	safer	and	more	effective	to	have	delegated	handling	for	the	events	triggered	on
them	and	to	do	a	scoped	DOM	traversal	when	needed,	in	order	to	retrieve	a	jQuery	object
with	fresh	references	of	the	elements.

The	categories	module
Let’s	proceed	with	the	categories	submodule:

(function()	{	

				'use	strict';	

	

				dashboard.categories	=	dashboard.categories	||	{};	

				dashboard.categories.init	=	function()	{	

								dashboard.$container.find('#categoriesSelector').change(function()	

{	

												var	$selector	=	$(this);	

												var	categoryIndex	=	+$selector.val();	

												dashboard.categories.selectCategory(categoryIndex);	

								});	

								dashboard.$container.find('.dashboardCategories').on('click',	

'button',	function()	{	

												var	$button	=	$(this);	

												var	itemName	=	$button.text();	

												dashboard.informationBox.openNew(itemName);	

								});	

				};	

				dashboard.categories.selectCategory	=	function(categoryIndex)	{	

								var	$dashboardCategories	=	

dashboard.$container.find('.dashboardCategory');	

								var	$selectedItem	=	$dashboardCategories.eq(categoryIndex).show();	

								$dashboardCategories.not($selectedItem).hide();	

				};	

})();	

This	submodule’s	initialization	method	uses	the	reference	to	the	$container	element	that
the	main	Module	provides	and	adds	two	observers	to	the	page.	The	first	handles	the
change	event	on	the	<select>	category	and	calls	the	selectCategory()	method	with	the
numeric	value	of	the	selected	category.	The	selectCategory()	method	of	this	submodule
will	then	handle	revealing	the	appropriate	category	items,	decoupling	it	from	the	event
handling	code	and	making	it	a	reusable	functionality	available	to	the	entire	application.

Right	after	this,	we	create	a	single	Delegated	Event	Observer	that	handles	the	click
event	on	the	<button>	category	item.	It	extracts	the	text	of	the	<button>	pressed	and	calls
the	openNew()	method	of	the	informationBox	submodule	that	contains	all	the
implementation	related	to	information	boxes.	In	a	non-demo	grade	application,	a
parameter	to	such	a	method	would	probably	be	an	identifier	instead	of	a	text	value	that
would	be	used	to	retrieve	more	details	from	a	remote	server.

The	informationBox	module
The	informationBox	submodule	that	contains	the	implementation	parts	related	to	the
main	area	of	our	dashboard	has	the	following	form:

(function()	{	

				'use	strict';	

				dashboard.informationBox	=	dashboard.informationBox	||	{};	

				var	$boxContainer	=	null;	

				dashboard.informationBox.init	=	function()	{	

								$boxContainer	=	dashboard.$container.find('.boxContainer');	

								$boxContainer.on('click',	'.boxCloseButton',	function()	{	

												var	$button	=	$(this);	

												dashboard.informationBox.close($button);	

								});	

				};	

				dashboard.informationBox.openNew	=	function(itemName)	{	

								var	boxHtml	=	'<div	class="boxsizer"><article	class="box">'	+	

																'<header	class="boxHeader">'	+	

																				itemName	+	

																				'<button	class="boxCloseButton">✖'	+	

																				'</button>'+	

																'</header>'	+	

																'Information	box	regarding	'	+	itemName	+	

												'</article></div>';	

								$boxContainer.append(boxHtml);	

				};	

				dashboard.informationBox.close	=	function($boxElement)	{	

								$boxElement.closest('.boxsizer').remove();

				};	

})();

The	first	thing	that	this	submodule’s	initialization	code	does	is	retrieve	and	store	a
reference	of	the	container	that	holds	the	information	boxes	to	the	$boxContainer	variable,
using	the	$container	property	of	the	dashboard	for	scoping.

The	openNew()	method	is	responsible	for	creating	the	HTML	required	for	a	new
information	box	and	adding	it	to	the	dashboard	using	the	$boxContainer	variable,	which
acts	like	a	private	member	of	the	Module,	and	is	used	for	caching	the	reference	of	the
previously	assigned	DOM	element.	This	is	a	good	practice	that	can	improve	the
application’s	performance,	since	the	stored	element	is	never	removed	from	the	page	and	is
used	during	the	initialization	and	the	openNew()	methods	of	the	Module.	This	way,	we	no
longer	need	to	execute	slow	DOM	traversals	every	time	the	openNew()	method	is	called.

The	close()	method,	on	the	other	hand,	is	responsible	for	removing	an	existing
information	box	from	the	dashboard.	It	receives	a	jQuery	composite	collection	object	as	a

parameter	related	to	the	target	information	box,	which	is	based	on	the	way	that	the
$.fn.closest()	method	works,	and	can	either	be	the	box	element	container	or	any	of	its
descendants.

Tip
Implementations	of	methods	that	provide	flexibility	regarding	the	way	that	they	can	be
called	can	make	them	usable	by	more	parts	of	a	large	application.	The	next	logical	step	for
this	method,	which	is	left	as	an	exercise	to	the	reader,	would	be	to	make	it	accept	as	a
parameter,	the	index,	or	an	identifier	of	the	information	box	that	needs	to	be	closed.

The	counter	module
Lastly,	here	is	how	we	rewrote	the	counter	implementation,	which	we	saw	in	the	previous
chapter,	as	an	independent	submodule:

(function()	{	

				'use	strict';	

				dashboard.counter	=	dashboard.counter	||	{};	

				var	dashboardItemCounter;	

				var	$counter;	

				dashboard.counter.init	=	function()	{	

								$counter	=	$('#dashboardItemCounter');	

								

								var	$boxContainer	=	dashboard.$container.find('.boxContainer');	

								var	initialCount	=	$boxContainer.find('.boxsizer').length;	

								dashboard.counter.setValue(initialCount);	

								dashboard.$container.find('.dashboardCategories').on('click',	

'button',	function()	{	

												dashboard.counter.setValue(dashboardItemCounter	+	1);	

								});	

								$boxContainer.on('click',	'.boxCloseButton',	function()	{	

												dashboard.counter.setValue(dashboardItemCounter	-	1);	

								});	

				};	

				dashboard.counter.setValue	=	function	(value)	{	

								dashboardItemCounter	=	value;	

								$counter.text(dashboardItemCounter);	

				};	

})();	

For	this	submodule,	we	are	using	the	$counter	variable	as	a	private	member	to	cache	a
reference	to	the	element	that	displays	the	count.	Another	private	member	of	the	Module	is
the	dashboardItemCounter	variable,	which	at	any	point	of	time	will	hold	the	number	of
visible	information	boxes	in	the	dashboard.	Keeping	such	information	on	the	members	of
our	Modules	reduces	the	times	we	need	to	reach	the	DOM	tree	to	extract	information	on
the	state	of	the	application,	making	the	implementation	more	efficient.

Tip
Preserving	the	state	of	the	application	in	the	properties	of	JavaScript	objects	or	Modules
instead	of	reaching	the	DOM	to	extract	them,	is	a	very	good	practice	that	makes	the
application’s	architecture	more	object-oriented,	and	is	also	adopted	by	most	of	the	modern
web	development	frameworks.

During	the	initialization	of	the	Module,	we	are	giving	an	initial	value	to	our	counter
variable	so	that	we	are	no	longer	dependent	on	the	initial	HTML	of	the	page	and	have	a

more	robust	implementation.	Moreover,	we	are	attaching	two	Delegated	Event
Observers,	one	for	clicks	that	will	lead	to	the	creation	of	new	information	boxes	and
another	one	for	clicks	that	will	close	them.

Overview	of	the	implementation
With	the	above,	we	completed	the	rewrite	of	the	dashboard	skeleton	application	to	a
modular	architecture.	All	the	available	actions	are	exposed	as	public	methods	of	each	of
our	submodules	that	can	be	invoked	programmatically	and	this	way	they	are	decoupled
from	the	events	that	trigger	them.

A	good	exercise	for	the	reader	would	be	to	promote	the	decoupling	even	further,	by	also
adopting	the	Publisher/Subscriber	Pattern	in	the	above	implementation.	The	fact	that	the
code	is	already	structured	into	Modules	will	make	such	change	a	lot	easier	to	implement.

Another	part	that	can	be	implemented	in	a	different	way	is	the	way	in	which	the
submodules	are	initialized.	Instead	of	explicitly	orchestrating	the	initialization	of	each
Module	in	our	main	dashboard	Module,	we	could	instead	initialize	each	submodule	on	its
own	by	wrapping	the	invocation	of	the	init()	method	in	a	$(document).ready()	call	and
issuing	its	initialization	right	after	its	declaration.	On	the	other	hand,	not	having	a	central
point	to	coordinate	the	initializations	and	relying	on	page	events	can	feel	less
deterministic.	Another	way	to	implement	it	would	be	like	the	Publisher/Subscriber	Pattern,
by	exposing	a	registerForInit()	method	on	our	main	Module,	which	would	keep	track
of	the	Modules	that	have	been	requested	to	be	initialized	using	an	array.

Note
For	more	jQuery	code	organization	tips,	you	can	visit	http://learn.jquery.com/code-
organization/concepts/.

http://learn.jquery.com/code-organization/concepts/

Summary
In	this	chapter,	we	learned	the	concepts	of	Modules	and	Namespaces	and	also	the	benefits
that	come	from	their	adoption	in	large	applications.	We	had	an	in-depth	analysis	of	the
most	widely	adopted	patterns	and	compared	their	benefits	and	limitations.	We	learned	by
example	how	to	develop	Modules	using	the	Object	Literal	Pattern,	the	variants	of	the
Module	Pattern,	and	the	Revealing	Module	Pattern.

We	continued	with	a	small	introduction	to	ES5’s	Strict	Mode	and	saw	how	it	can	benefit
today’s	Modules.	Then	we	proceeded	by	learning	some	details	about	the	standardized	but
not	yet	widely	supported	ES6	Modules.	Lastly,	we	saw	how	the	architecture	of	the
dashboard	application	can	change	dramatically	after	using	the	Module	Pattern	in	its
implementation.

Now	that	we	have	completed	our	introduction	on	how	to	use	Modules	and	Namespaces,
we	can	move	on	to	the	next	chapter	where	we	will	be	introduced	to	the	facade	pattern.	In
the	next	chapter,	we	will	learn	about	the	philosophy	of	facades	and	the	uniform	way	that
they	define	how	code	abstractions	should	be	created	so	that	they	are	easily	understandable
and	reusable	by	other	developers.

Chapter	5.	The	Facade	Pattern
In	this	chapter,	we	will	showcase	the	Facade	Pattern,	a	structural	design	pattern	that	tries
to	define	a	uniform	way	regarding	how	developers	should	create	abstractions	in	their	code.
Initially,	we	will	use	this	pattern	to	wrap	complex	APIs	and	expose	simpler	ones	that	focus
on	the	needs	of	our	application.	We	will	see	how	jQuery	embraces	the	concepts	of	this
pattern	in	its	implementation,	how	it	achieves	encapsulating	complex	implementations	that
are	integral	parts	of	the	web	developer’s	tool-belt	into	easy-to-use	API’s,	and	how	this
plays	a	critical	role	for	its	wide	adoption.

In	this	chapter,	we	will:

Introduce	the	Facade	Pattern
Document	its	key	concepts	and	benefits
See	how	jQuery	uses	it	in	its	implementation
Write	an	example	implementation	where	Facades	are	used	to	completely	abstract	and
decouple	a	third-party	library

Introducing	the	Facade	Pattern
The	Facade	is	a	structural	software	design	pattern	that	deals	with	how	abstractions	of	the
various	parts	of	an	implementation	should	be	created.	The	key	concept	of	the	Facade
Pattern	is	to	abstract	an	existing	implementation	and	provide	a	simplified	API	that	better
matches	the	use	cases	of	the	developed	application.	According	to	most	Computer	Science
bibliographies	describing	this	pattern,	a	Facade	is	most	commonly	implemented	as	a
specialized	class	that	is	used	to	segment	the	implementation	of	an	application	into	smaller
pieces	of	code,	while	providing	an	interface	that	completely	hides	the	encapsulated
complexity.	In	the	web	development	world,	it	is	also	common	to	use	plain	objects	or
functions	for	the	implementation	of	a	Facade,	taking	advantage	of	the	way	in	which
JavaScript	treats	functions	as	objects.

In	applications	that	have	a	modular	structure,	like	the	examples	of	the	previous	chapter,	it
is	also	common	to	implement	Facades	as	separate	modules	with	their	own	namespace.
Moreover,	for	a	larger	implementation	with	very	complex	parts,	an	approach	with	multiple
levels	of	Facades	can	also	be	followed.	Once	again,	the	Facades	will	be	implemented	as
modules	and	submodules,	having	the	top-level	Facade	orchestrating	the	methods	of	its
submodules,	while	providing	an	API	that	completely	hides	the	complexity	of	the	entire
subsystem.

The	benefits	of	this	pattern
Most	of	the	time,	the	Facade	Pattern	is	adopted	for	implementation	parts	that	have	a
relatively	high	degree	of	complexity	and	are	used	in	several	places	of	an	application,
wherein	large	pieces	of	code	can	be	replaced	with	a	simple	call	to	the	created	Facade,
leading	not	only	to	less	code	repetition,	but	also	helping	us	to	increase	the	readability	of
the	implementation.	Since	the	Facade	methods	are	usually	named	by	the	higher-level
application	concepts	that	they	encapsulate,	the	resulting	code	is	also	easier	to	understand.
The	simplified	API	that	a	Facade	provides	through	its	convenient	methods,	leads	to	an
implementation	that	is	easier	to	use,	understand,	and	also	write	unit	tests	for.

Moreover,	having	Facades	to	abstract	complex	implementations	proves	its	usefulness	in
cases	where	there	is	a	need	to	introduce	a	change	to	the	business	logic	of	the
implementation.	In	case	a	Facade	has	a	well-designed	API	with	a	prediction	for	future
requirements,	such	changes	can	often	require	modifications	just	to	the	Facade’s	code,
leaving	the	rest	of	the	application’s	implementation	untouched	and	following	the
Separation	of	Concerns	principle.

In	the	same	manner,	using	Facades	to	abstract	the	API	of	a	third-party	library	to	better
match	the	needs	of	each	application,	provides	a	degree	of	decoupling	between	our	code
and	the	used	library.	In	case	the	third-party	library	changes	its	API	or	needs	to	be	replaced
with	another	one,	the	different	modules	of	the	application	will	not	need	to	be	rewritten,
since	the	implementation	changes	would	be	limited	to	the	wrapper	Facade.	In	this	case,	all
that	is	needed	is	to	provide	an	equivalent	implementation	using	the	new	library	API	while
keeping	the	Facade’s	API	intact.

As	an	example	of	orchestrating	method	calls	and	using	sensible	defaults	for	specific	use
cases,	take	a	look	at	the	following	sample	implementation:

function	do	(x,	y)	{

		var	z	=	y	-	x	/	2;

		var	yy	=	Math.pow(y,	2);

		var	b	=	3	*	Math.random();	//	add	some	randomness	to	the	result

		var	i	=	0;	//	for	this	case

		return	LibraryA.doingMethod(x,	z,	i,	yy,	b);

}

How	it	is	adopted	by	jQuery
A	very	large	part	of	the	jQuery	implementation	is	dedicated	to	providing	simpler,	shorter,
and	more	convenient-to-use	methods	for	things	that	the	different	JavaScript	APIs	already
allow	us	to	achieve,	but	with	more	lines	of	code	and	effort.	By	taking	a	look	at	the
provided	APIs	of	jQuery,	we	can	distinguish	some	groups	of	related	methods.	This
grouping	can	also	be	seen	in	the	way	in	which	the	source	code	is	structured,	placing
methods	for	related	APIs	near	to	each	other.

Even	if	the	word	Facade	does	not	appear	in	jQuery’s	source	code,	the	use	of	this	pattern
can	be	witnessed	by	the	way	in	which	the	related	methods	are	defined	on	the	exposed
jQuery	object.	Most	of	the	time,	the	related	methods	that	form	a	group	are	implemented
and	defined	as	properties	on	an	Object	Literal	and	then	attached	to	the	jQuery	object	with
a	single	call	to	the	$.extend()	or	the	$.fn.extend()	method.	As	you	might	remember,
from	the	beginning	of	this	chapter,	this	matches	almost	exactly	with	the	implementation
that	Computer	Science	commonly	uses	to	describe	how	a	Facade	is	implemented,	with	the
exception	that,	in	JavaScript,	we	can	create	a	plain	object	without	needing	to	first	define	a
class.	As	a	result,	jQuery	itself	can	be	seen	as	a	collection	of	Facades,	where	each	one
independently	adds	great	value	to	the	library	with	the	API	of	convenient	methods	that	it
provides.

Note
For	more	information	on	$.extend()	and	$.fn.extend(),	you	can	visit
http://api.jquery.com/jQuery.extend/	and	http://api.jquery.com/jQuery.fn.extend/.

Some	of	the	abstracted	API	groups	that	are	big	parts	of	the	jQuery	implementation	and
play	a	critical	role	to	its	adoption	are	as	follows:

The	DOM	Traversal	API
The	AJAX	API
The	DOM	Manipulation	API
The	Effects	API

Also,	a	great	example	of	how	this	pattern	can	be	used	to	provide	simplified	APIs	is
jQuery’s	Events	API,	which	provides	a	variety	of	convenient	methods	for	the	most
common	use	cases	that	are	easier	to	use	than	the	respective	plain	JavaScript	APIs.

http://api.jquery.com/jQuery.extend/
http://api.jquery.com/jQuery.fn.extend/

The	jQuery	DOM	Traversal	API
At	the	time	that	jQuery	was	released,	web	developers	could	locate	specific	DOM	elements
of	a	page	only	by	using	the	very	limited	getElementById()	and
getElementsByTagName()	methods,	since	other	methods,	such	as
getElementsByClassName(),	were	not	widely	supported	by	the	existing	browsers.	The
jQuery	team	realized	how	the	web	development	could	be	leveraged	if	there	was	a	simple
API	that	would	ease	such	DOM	traversals,	which	would	work	the	same	way	across	all
browsers,	be	as	effective	as	the	familiar	CSS	Selectors,	and	did	their	best	to	make	such	an
implementation	a	reality.

The	result	of	this	effort	is	the	now	famous	jQuery	DOM	Traversal	API	that	is	exposed
through	the	$()	function,	which	played	a	serious	role	in	the	standardization	of	the
querySelectorAll()	method	as	part	of	the	Level	2	Selector	API.	The	implementation
under	the	hood	uses	the	methods	provided	by	the	DOM	API	and	counts	about	2,135	lines
of	code	in	jQuery	v2.2.0,	while	it	is	even	bigger	in	the	v1.x	versions	that	needed	to	support
older	browsers	as	well.	As	we	saw	in	this	chapter,	because	of	its	complexity	this
implementation	is	now	part	of	a	separate	stand-alone	project	that	is	named	Sizzle.

Note
For	more	information	on	Sizzle	and	the	querySelectorAll()	method,	you	can	visit
https://github.com/jquery/sizzle	and	https://developer.mozilla.org/en-
US/docs/Web/API/document/querySelectorAll.

Regardless	of	its	complex	implementation,	the	exposed	APIs	are	quite	easy	to	use,	mostly
using	simple	CSS	Selectors	as	string	parameters,	making	it	an	excellent	example	of	how	a
Facade	can	be	used	to	completely	hide	the	complexity	of	its	inner	workings	and	expose	a
convenient	API.	Since	Sizzle’s	API	is	still	quite	complex,	the	jQuery	library	actually
wraps	it	with	its	own	API	acting	as	an	extra	Facade	level:

//	Line	733

function	Sizzle(selector,	context,	results,	seed)	{	/*	...	*/	}

//	Line	2678

jQuery.find	=	Sizzle;

The	jQuery	library	first	keeps	a	reference	of	Sizzle	to	the	internal	jQuery.find()	method
and	then	uses	it	to	implement	all	its	exposed	DOM	Traversal	methods,	which	work	on
Composite	Objects	such	as	$.fn.find():

//	Line	2769

jQuery.fn.extend({	

		find:	function(selector)	{	

				/*	15	lines	of	code	*/	

				for	(i	=	0;	i	<	len;	i++)	{	

						jQuery.find(selector,	self[i],	ret);	

				}	

				/*	3	lines	of	code	*/

				return	ret;	

		}	

https://github.com/jquery/sizzle
https://developer.mozilla.org/en-US/docs/Web/API/document/querySelectorAll

});

Finally,	the	famous	$()	function	can	actually	be	invoked	in	several	ways,	but	even	when	it
is	invoked	with	a	CSS	Selector	as	a	string	parameter,	it	actually	has	an	extra	level	of
hidden	complexity:

//	Line	71

jQuery	=	function(selector,	context)	{	

		return	new	jQuery.fn.init(selector,	context);	

};	

//	Line	2825

rquickExpr	=	/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,	

//	Line	2735	

init	=	jQuery.fn.init	=	function(selector,	context,	root)	{	

		/*	12	lines	of	code	*/	

		if	(typeof	selector	===	"string")	{	

				if	(/*	...	*/)	{	

						/*	3	lines	of	code	*/	

				}	else	{	

						match	=	rquickExpr.exec(selector);	

				}	

				//	Match	html	or	make	sure	no	context	is	specified	for	#id	

				if	(match	&&	(match[1]	||	!context))	{	

						if	(match[1])	{

						/*	27	lines	of	code	*/	

						//	HANDLE:	$(#id)	

						}	else	{	

								elem	=	document.getElementById(match[2]);	

								//	Support:	Blackberry	4.6	

								//	gEBID	returns	nodes	no	longer	in	the	document	(#6963)	

								if	(elem	&&	elem.parentNode)	{	

										//	Inject	the	element	directly	into	the	jQuery	object	

										this.length	=	1;	

										this[0]	=	elem;	

								}	

								this.context	=	document;	

								this.selector	=	selector;	

								return	this;	

						}	

				//	HANDLE:	$(expr,	$(...))	

				}	else	if	(!context	||	context.jquery)	{	

						return	(context	||	root).find(selector);	

				//	HANDLE:	$(expr,	context)	

				//	(which	is	just	equivalent	to:	$(context).find(expr)	

				}	else	{	

						return	this.constructor(context).find(selector);	

				}	

		}	/*	else…	21	lines	of	code	*/

};

As	you	can	see,	in	the	preceding	code,	the	$()	is	actually	creating	a	new	object	with
$.fn.init().	Instead	of	being	just	an	entry	point	to	$.fn.find()	or	jQuery.find(),	it	is
actually	a	Facade	that	hides	a	level	of	optimization.	Specifically,	it	makes	jQuery	faster	by
avoiding	invoking	$.fn.find()	and	Sizzle,	when	simple	ID	selectors	are	used	by	directly
invoking	the	getElementById()	method.

The	property	access	and	manipulation	API
Another	very	interesting	abstraction	that	follows	the	principles	of	the	Facade	Pattern	and
can	be	found	in	jQuery’s	source,	is	the	$.fn.prop()	method.	Like	the	$.fn.attr(),
$.fn.val(),	$.fn.text(),	and	$.fn.html(),	it	belongs	to	a	family	of	methods	that	is
characterized	by	the	fact	that	each	method	is	both	a	getter	and	a	setter	of	the	related
subject.	The	distinction	of	the	method’s	execution	mode	is	done	by	inspecting	the	number
of	parameters	that	are	passed	during	its	invocation.	This	convenient	API	allows	us	to	have
to	remember	less	method	signatures	and	make	the	setters	differ	only	by	one	extra
parameter.	For	example,	$('#myCheckBox').prop('checked')	will	return	true	or	false,
based	on	the	state	of	the	selected	checkbox.	On	the	other	hand,
$('#myCheckBox').prop('checked',	true);	will	programmatically	check	that	checkbox
for	us.	In	the	same	concept,	$('button').prop('disabled',	true);	will	disable	all	the
<button>	elements	on	a	page.

The	$.fn.prop()	method	does	the	jQuery	Composite	Object	handling,	but	the	actual
implementation	of	the	Facade	is	the	internal	jQuery.prop()	method.	An	extra	concern
that	adds	complexity	to	the	Facade’s	implementation	is	the	fact	that	there	are	some	HTML
attributes	that	have	different	identifiers	for	the	corresponding	properties	on	the	DOM
elements:

jQuery.extend({	

		prop:	function(elem,	name,	value)	{	

				/*	8	lies	of	code	*/

				if	(nType	!==	1	||	!jQuery.isXMLDoc(elem))	{

						//	Fix	name	and	attach	hooks	

						name	=	jQuery.propFix[name]	||	name;	

						hooks	=	jQuery.propHooks[name];	

				}	

				if	(value	!==	undefined)	{	

						if	(hooks	&&	"set"	in	hooks	&&

								(ret	=	hooks.set(elem,	value,	name))	!==	undefined)	{

								return	ret;

						}

						return	(elem[name]	=	value);

				}

				if	(hooks	&&	"get"	in	hooks	&&(ret	=	hooks.get(elem,	name))	!==	

null)	{

						return	ret;

				}

				return	elem[name];

		},	

		propHooks:	{	

				tabIndex:	{	

						get:	function(elem)	{	

								var	tabindex	=	jQuery.find.attr(elem,	"tabindex");

								return	tabindex	?parseInt(tabindex,	10)	:	/*...*/;

						}

				}

		},

		propFix:	{

				"for":	"htmlFor",

				"class":	"className"

		}	

});

The	first	highlighted	code	area	efficiently	resolves	the	property	to	attribute	identifier
mismatch	by	using	the	propFix	and	propHooks	objects	to	do	the	matching.	The	propFix
object	acts	like	a	simple	dictionary	to	match	the	identifiers,	while	the	propHooks	object
holds	a	function	that	does	the	matching	in	a	less-hard-coded	way,	with	programmatic
testing.	This	is	a	generic	implementation	that	can	easily	be	extended	by	adding	extra
properties	to	those	two	objects.

The	rest	of	the	highlighted	areas	are	responsible	for	the	getter/setter	mode	of	the	method.
The	overall	implementation	is	to	perform	the	following	tasks:

Check	whether	a	value	is	passed	as	an	argument	and,	if	the	property	finds	that	the
assignment	is	successful,	do	the	assignment	and	return	the	value.
Alternatively,	if	there	was	no	value	passed,	return	the	value	of	the	requested	property
if	it	is	retrievable.

Using	Facades	in	our	applications
In	order	to	demonstrate	how	facades	can	be	used	both	to	encapsulate	complexity,	helping
us	enforce	the	Separation	of	Concerns	principle,	and	also	abstract	third-party	library	APIs
into	more	convenient	methods	that	are	application	centric,	we	are	going	to	demonstrate	a
very	simple	lottery	application.	Our	“Element	Lottery”	application	will	populate	its
container	with	some	Lottery	Ticket	elements	that	will	have	a	unique	ID	and	contain	a
random	number.

The	winning	ticket	will	be	picked	by	randomly	selecting	one	of	the	lottery	elements,	based
on	a	random	index	among	the	created	unique	IDs.	The	winning	number	will	then	be
announced	to	be	the	numeric	content	of	the	picked	element.	Let’s	see	the	modules	of	our
application:

(function()	{	

		window.elementLottery	=	window.elementLottery	||	{};	

		var	elementIDs;	

		var	$lottery;	

		var	ticketCount	=	30;	

		elementLottery.init	=	function()	{	

				elementIDs	=	[];	

				$lottery	=	$('#lottery').empty();	

				elementLottery.add(ticketCount);	

				$('#lotteryTicketButton').on('click',	elementLottery.pick);	

		};	

		elementLottery.add	=	function(n)	{	

				for	(var	i	=	0;	i	<	n;	i++)	{	

						var	id	=	this.uidProvider.get();	

						elementIDs.push(id);	

						$lottery.append(this.ticket.createHtml(id));	

				}	

		};	

		elementLottery.pick	=	function()	{	

				var	index	=	Math.floor(Math.random()	*	elementIDs.length);	

				var	result	=	$lottery.find('#'	+	elementIDs[index]).text();	

				alert(result);	

				return	result;	

		};	

		$(document).ready(elementLottery.init);

})();	

The	main	elementLottery	module	of	our	application	initialized	itself	right	after	the	page
was	fully	loaded.	The	add	method	is	used	to	populate	the	lottery	container	element	with
tickets.	It	uses	the	uidProvider	submodule	to	generate	unique	identifiers	for	the	ticket
elements,	keeps	track	of	them	on	the	elementIDs	array,	uses	the	ticket	submodule	to
construct	the	appropriate	HTML	code,	and	finally	appends	the	element	to	the	lottery.	The
pick	method	is	used	to	randomly	select	the	winning	ticket	by	randomly	selecting	one	of
the	generated	identifiers,	retrieving	the	page	element	with	that	ID,	and	displaying	its
content	inside	an	alert	box	as	the	winning	result.	The	pick	method	is	triggered	by	clicking
on	the	button	that	we	have	added	an	Observer	during	the	initialization	phase:

(function()	{	

		elementLottery.ticket	=	elementLottery.ticket	||	{};	

		elementLottery.ticket.createHtml	=	function(id)	{	

				var	ticketNumber	=	Math.floor(Math.random()	*	1000	*	10);	

				return	'<div	id="'	+	id	+	'"	class="ticket">'	+	ticketNumber	+	

'</div>';	

		};	

})();	

(function()	{	

		elementLottery.uidProvider	=	elementLottery.uidProvider	||	{};	

		elementLottery.uidProvider.get	=	function()	{	

				return	'Lot'	+	simpleguid.getNext();	

		};	

})();	

The	ticket	submobule	acts	as	a	Facade	with	a	single	method	that	is	used	to	encapsulate
the	generation	of	a	random	number	and	the	creation	of	the	HTML	code	that	will	be	used
as	the	ticket.	On	the	other	hand,	the	uidProvide	submodule	is	a	Facade	that	provides	a
single	get	method	that	encapsulates	the	way	we	use	the	simpleguid	module	that	we	saw	in
the	previous	chapters.	As	a	result,	we	can	easily	change	the	library	that	is	used	to	generate
unique	identifiers	and	the	only	place	that	we	will	have	to	modify	the	existing
implementation	will	be	the	uidProvide	submodule.	For	example,	let’s	see	how	it	will	look
if	we	decided	to	use	the	great	node-uuid	library	that	generates	128-bit	unique	identifiers	as
strings	of	hexadecimal	characters:

(function()	{	

		elementLottery.uidProvider	=	elementLottery.uidProvider	||	{};	

		elementLottery.uidProvider.get	=	function()	{	

				return	uuid.v4();

		};	

})();	

Note
For	more	information	on	the	node-uui	library,	you	can	visit
https://github.com/broofa/node-uuid.

https://github.com/broofa/node-uuid

Summary
In	this	chapter,	we	learned	what	a	Facade	actually	is.	We	learned	its	philosophy	and	the
uniform	way	in	which	it	defines	how	code	abstractions	should	be	created	so	that	they	are
easily	understandable	and	reusable	by	other	developers.

Starting	from	the	simplest	use	cases	of	this	pattern,	we	learned	how	to	wrap	a	complex
API	with	a	Facade	and	expose	a	simpler	one	that	is	focused	on	the	needs	of	our
application	and	is	a	better	match	to	its	specific	use	cases.	We	also	saw	how	jQuery
embraces	the	concepts	of	this	pattern	in	its	implementation	and	how	providing	simple
APIs	for	more	basic	web-developing	techniques,	such	as	DOM	Traversals,	played	a
critical	role	for	its	wide	adoption.

Now	that	we	have	completed	our	introduction	to	how	the	Facade	Pattern	can	be	used	to
decouple	and	abstract	parts	of	an	implementation,	we	can	move	on	to	the	next	chapter
where	we	will	be	introduced	to	the	Builder	and	Factory	Patterns.	In	the	next	chapter,	we
will	learn	how	to	use	these	two	Creational	Design	Patterns	to	abstract	the	process	of
generating	and	initializing	new	objects	for	specific	use	cases	and	analyze	how	their
adoption	can	benefit	our	implementations.

Chapter	6.	The	Builder	and	Factory
Patterns
In	this	chapter,	we	will	showcase	the	Builder	and	Factory	Patterns,	two	of	the	most
commonly	used	Creational	Design	Patterns.	These	two	design	patterns	have	some
similarities	with	each	other,	share	some	common	goals,	and	are	dedicated	to	easing	the
creation	of	complex	results.	We	will	analyze	the	benefits	that	their	adoption	can	bring	to
our	implementations	and	also	the	ways	in	which	they	differ.	Finally,	we	will	learn	how	to
use	them	properly	and	choose	the	most	appropriate	one	for	the	different	use	cases	of	our
implementations.

In	this	chapter,	we	will:

Introduce	the	Factory	Pattern
See	how	the	Factory	Pattern	is	used	by	jQuery
Have	an	example	of	the	Factory	Patten	in	a	jQuery	application
Introduce	the	Builder	Pattern
Compare	the	Builder	and	Factory	Patterns
See	how	the	Builder	Pattern	is	used	by	jQuery
Have	an	example	of	the	Builder	Patten	in	a	jQuery	application

Introducing	the	Factory	Pattern
The	Factory	Pattern	is	part	of	the	group	of	Creational	Patterns	and	overall	it	describes	a
generic	way	for	object	creation	and	initialization.	It	is	commonly	implemented	as	an
object	or	function	that	is	used	to	generate	other	objects.	According	to	the	majority	of
Computer	Science	resources,	the	reference	implementation	of	the	Factory	Pattern	is
described	as	a	class	that	provides	a	method	that	returns	newly	created	objects.	The
returned	objects	are	commonly	the	instances	of	a	specific	class	or	subclass,	or	they	expose
a	set	of	specific	characteristics.

The	key	concept	of	the	Factory	pattern	is	to	abstract	the	way	an	object	or	a	group	of
related	objects	are	created	and	initialized	for	a	specific	purpose.	The	point	of	this
abstraction	is	to	avoid	coupling	an	implementation	with	specific	classes	or	the	way	that
each	object	instance	needs	to	be	created	and	configured.	The	result	is	an	implementation
that	works	as	an	abstract	way	for	object	creation	and	initialization,	which	follows	the
concept	of	Separation	of	Concerns.

The	resulting	implementations	are	only	based	on	the	object	methods	and	properties	that
are	required	by	their	algorithm	or	business	logic.	Such	an	approach	can	benefit	the
modularity	and	extensibility	of	an	implementation,	by	following	the	concept	of
programming	over	Object	Features	and	Functionality	instead	of	Object	Classes.	This	gives
us	the	flexibility	to	change	the	used	classes	with	any	other	object	that	exposes	the	same
functionality.

How	it	is	adopted	by	jQuery
As	we	have	already	noted	in	the	earlier	chapters,	one	of	the	early	goals	of	jQuery	was	to
provide	a	solution	that	worked	the	same	across	all	browsers.	The	1.12.x	version	series	of
jQuery	are	focused	on	providing	support	for	browsers	as	old	as	Internet	Explorer	6	(IE6),
while	maintaining	the	same	API	with	the	newer	v2.2.x	versions	that	only	focus	on	modern
browsers.

In	order	to	have	a	similar	structure	and	maximize	the	common	code	between	the	two
versions,	the	jQuery	team	tried	to	abstract	most	compatibility	mechanisms	in	a	different
implementation	layer.	Such	a	development	practice	greatly	improves	the	readability	of	the
code	and	reduces	the	complexity	of	the	main	implementation,	encapsulating	it	into
different	smaller	pieces.

A	great	example	of	this	is	the	implementation	of	the	AJAX-related	methods	that	jQuery
provides.	Specifically,	in	the	following	code,	you	can	find	a	part	of	it,	as	found	in	version
1.12.0	of	jQuery:

//	Create	the	request	object	

//	(This	is	still	attached	to	ajaxSettings	for	backward	compatibility)	

jQuery.ajaxSettings.xhr	=	window.ActiveXObject	!==	undefined	?	

		//	Support:	IE6-IE8

		function()	{	

				//	XHR	cannot	access	local	files,	always	use	ActiveX	for	that	case	

				if	(this.isLocal)	{

						return	createActiveXHR();

				}

				//	Support:	IE	9-11

				if	(document.documentMode	>	8)	{

						return	createStandardXHR();

				}

				//	Support:	IE<9

				return	/^(get|post|head|put|delete|options)$/i.test(this.type)	&&	

createStandardXHR()	||	createActiveXHR();

		}	:	

		//	For	all	other	browsers,	use	the	standard	XMLHttpRequest	object	

		createStandardXHR;	

//	Functions	to	create	xhrs	

function	createStandardXHR()	{	

		try	{	

				return	new	window.XMLHttpRequest();	

		}	catch	(e)	{}	

}	

function	createActiveXHR()	{	

		try	{	

				return	new	window.ActiveXObject("Microsoft.XMLHTTP");	

		}	catch	(e)	{}	

}

Every	time	a	new	AJAX	request	is	issued	on	jQuery,	the	jQuery.ajaxSettings.xhr
method	is	used	as	a	Factory	that	creates	a	new	instance	of	the	appropriate	XHR	object
based	on	the	support	of	the	current	browser.	Looking	in	more	detail,	we	can	see	that	the
jQuery.ajaxSettings.xhr	method	orchestrates	the	use	of	two	smaller	Factory	functions,
with	each	responsible	for	a	specific	implementation	of	AJAX.	Moreover,	we	can	see	that	it
actually	tries	to	avoid	running	the	compatibility	tests	on	every	call	by	directly	wiring	up	its
reference	to	the	smaller	createStandardXHR	Factory	function	when	appropriate.

Using	Factories	in	our	applications
As	an	example	use	case	of	Factories,	we	will	create	a	data-driven	form	where	our	users
will	be	able	to	fill	some	fields	that	are	dynamically	created	and	inserted	into	the	page.	We
will	assume	the	existence	of	an	array	containing	objects	that	describe	each	form	field	that
needs	to	be	presented.	Our	Factory	method	will	encapsulate	the	way	in	which	each	form
field	needs	to	be	constructed,	and	properly	handle	each	specific	case,	based	on	the
characteristics	defined	on	the	related	objects.

The	HTML	code	for	this	page	is	quite	simple:

				<h1>Data	Driven	Form</h1>	

				<form></form>	

				<script	type="text/javascript"	src="jquery.js"></script>	

				<script	type="text/javascript"	src="datadrivenform.js"></script>	

It	only	contains	an	<h1>	element	with	the	page	heading	and	an	empty	<form>	element	that
will	host	the	generated	fields.	As	for	the	CSS	used,	we	only	style	the	<button>	elements
in	the	same	way	as	we	did	in	the	previous	chapters.

As	for	the	JavaScript	implementation	of	the	application,	we	create	a	module	and	declare

dataDrivenForm	as	the	namespace	of	this	example.	This	module	will	contain	the	data	that
describes	our	form,	the	Factory	method	that	will	generate	the	HTML	of	each	form	element
and,	of	course,	the	initialization	code	that	will	combine	the	aforementioned	parts	to	create
the	resulting	form:

(function()	{	

		'use	strict';	

		window.dataDrivenForm	=	window.dataDrivenForm	||	{};	

		dataDrivenForm.formElementHTMLFactory	=	function	(type,	name,	title)	{	

				if	(!title	||	!title.length)	{	

						title	=	name;	

				}	

				var	topPart	=	'<div><label>'	+	title	+	':
';	

				var	bottomPart	=	'</label></div>';	

				if	(type	===	'text')	{	

						return	topPart	+	

								'<input	type="text"	maxlength="200"	name="'	+name	+	'"	/>'	+	

								bottomPart;	

				}	else	if	(type	===	'email')	{	

						return	topPart	+	

								'<input	type="email"	required	name="'	+	name	+	'"	/>'	+	

								bottomPart;	

				}	else	if	(type	===	'number')	{	

						return	topPart	+	

								'<input	type="number"	min="0"	max="2147483647"	'	+'name="'	+	name	+	

'"	/>'	+	

								bottomPart;	

				}	else	if	(type	===	'date')	{	

						return	topPart	+	

								'<input	type="date"	min="1900-01-01"	name="'	+

										name	+	'"	/>'	+	

								bottomPart;	

				}	else	if	(type	===	'textarea')	{	

						return	topPart	+	

								'<textarea	cols="30"	rows="3"	maxlength="800"	name="'	+name	+	'"	

/>'	+	

								bottomPart;	

				}	else	if	(type	===	'checkbox')	{	

						return	'<div><label>'	+	title	+	':'	+	

								'<input	type="checkbox"	name="'	+	name	+	'"	/>'	+	

								'</label></div>';	

				}	else	if	(type	===	'notice')	{	

						return	'<p>'	+	name	+	'</p>';	

				}		else	if	(type	===	'button')	{	

						return	'<button	name="'	+	name	+	'">'	+	title	+	'!</button>';	

				}	

		};	

})();	

Our	Factory	method	will	be	invoked	with	three	parameters.	Starting	from	the	most
important	one,	it	accepts	the	type	and	the	name	of	the	form	field	and	also	the	title	that
will	be	used	as	its	description.	Since	most	form	fields	share	some	common	characteristics,

like	their	title,	the	Factory	method	tries	to	abstract	them	in	order	to	have	less	code
repetition.	As	you	can	see,	the	Factory	method	also	contains	some	sensible	extra
configuration	for	each	field	type,	like	the	maxlength	attribute	of	the	text	fields,	that	is
specific	for	this	use	case.

The	object	structure	that	will	be	used	to	represent	each	form	element	will	be	a	plain
JavaScript	object	that	has	a	type,	name,	and	title	property.	The	collection	of	objects	that
describe	the	form	fields	will	be	grouped	in	an	array	and	be	available	on	the
dataDrivenForm.parts	property	of	our	module.	In	a	real-world	application,	these	fields
would	commonly	either	be	retrieved	with	an	AJAX	request	or	be	injected	into	some	part
of	the	HTML	of	the	page.	In	the	following	code	snippet,	we	can	see	the	data	that	will	be
used	to	drive	the	creation	of	our	form:

dataDrivenForm.parts	=	[{	

				type:	'text',	

				name:	'firstname',	

				title:	'First	Name'	

		},	{	

				type:	'text',	

				name:	'lastname',	

				title:	'Last	Name'	

		},	{	

				type:	'email',	

				name:	'email',	

				title:	'e-mail	address'	

		},	{	

				type:	'date',	

				name:	'birthdate',	

				title:	'Date	of	birth'	

		},	{	

				type:	'number',	

				name:	'experience',	

				title:	'Years	of	experience'	

		},	{	

				type:	'textarea',	

				name:	'summary',	

				title:	'Summary'	

		},	{	

				type:	'checkbox',	

				name:	'receivenotifications',	

				title:	'Receive	notification	e-mails'	

		},	{	

				type:	'notice',	

				name:	'By	using	this	form	you	accept	the	terms	of	use'	

		},	{	

				type:	'button',	

				name:	'save'	

		},	{	

				type:	'button',	

				name:	'submit'	

		}];

Finally,	we	define	and	immediately	invoke	an	init	method	for	our	module:

dataDrivenForm.init	=	function()	{	

		for	(var	i	=	0;	i	<	dataDrivenForm.parts.length;	i++)	{	

				var	part	=	dataDrivenForm.parts[i];	

				var	elementHTML	=	dataDrivenForm.formElementHTMLFactory(part.type,	

part.name,	part.title);	

				//	check	if	the	result	is	null,	undefined	or	empty	string

				if	(elementHTML	&&	elementHTML.length)	{	

						$('form').append(elementHTML);	

				}	

		}	

};	

$(document).ready(dataDrivenForm.init);	

The	initialization	code	waits	until	the	DOM	of	the	page	is	fully	loaded	and	then	uses	the
Factory	method	to	create	the	form	elements	and	attach	them	to	the	<form>	element	of	our
page.	An	extra	concern	of	the	preceding	code	is	to	check	the	result	of	the	Factory	method
invocation	before	actually	starting	to	use	it.

Most	Factories,	when	invoked	with	parameters	for	a	case	they	can’t	handle,	return	null	or
empty	objects.	As	a	result,	it’s	a	good	common	practice,	when	using	Factories,	to	check
whether	the	result	of	each	invocation	is	actually	valid.

As	you	can	see,	having	Factories	that	accept	only	simple	parameters	(for	example,	strings
and	numbers),	in	many	cases,	leads	to	an	increased	number	of	parameters.	Even	though
these	parameters	may	only	be	used	in	specific	cases,	the	API	of	our	Factory	starts	to	be
awkwardly	long	and	needs	proper	documentation	for	each	special	case	in	order	to	be
usable.

Ideally,	a	Factory	method	should	accept	as	few	arguments	as	possible,	otherwise	it	will
start	looking	like	a	Facade	that	only	provides	a	different	API.	Since,	in	some	cases,	using	a
single	string	or	numeric	argument	does	not	suffice,	in	order	to	avoid	using	a	huge	number
of	parameters,	we	can	follow	a	practice	where	the	Factory	is	designed	to	accept	a	single
object	as	its	parameter.

For	example,	in	our	case,	we	can	just	pass	the	whole	object	that	describes	the	form	field	as
a	parameter	to	the	Factory	method:

dataDrivenForm.formElementHTMLFactory	=	function	(formElementDefinition)	{	

		var	topPart	=	'<div><label>'	+	formElementDefinition.title	+	':

';	

		var	bottomPart	=	'</label></div>';	

		if	(formElementDefinition.type	===	'text')	{	

				return	topPart	+	

						'<input	type="text"	maxlength="200"	name="'	

+formElementDefinition.name	+	'"	/>'	+	

						bottomPart;	

		}	/*	...	*/	

};

This	practice	is	suggested	for	the	following	cases:

When	we	create	generic	Factories	that	are	not	focused	on	specific	use	cases	and	we
need	to	configure	their	results	differently	for	each	specific	use	case.

When	the	constructed	objects	have	many	optional	configuration	parameters	that
largely	differ.	In	this	case,	adding	them	as	separate	parameters	to	the	Factory	method
would	lead	to	invocations	that	have	a	number	of	null	arguments,	depending	on
which	exact	argument	we	are	interested	in	defining.

Another	practice,	especially	in	JavaScript	programming,	is	to	create	a	Factory	method	that
accepts	a	simple	string	or	numeric	value	as	its	first	argument	and	optionally	provide	a
complementary	object	as	a	second	parameter.	This	enables	us	to	have	a	simple	generic
API	that	can	be	use-case-specific	and	also	gives	us	some	extra	points	of	freedom	to
configure	some	special	cases.	This	approach	is	used	by	the	$.ajax(url	[,	settings]
)	method	that	allows	us	to	generate	simple	GET	requests	by	just	providing	a	URL	and	also
accepts	an	optional	settings	parameter	that	allows	us	to	configure	any	aspect	of	the
request.	Changing	the	above	implementation	to	use	this	variation	is	left	as	an	exercise	for
the	reader,	in	order	to	experiment	and	get	familiar	with	the	use	of	Factory	methods.

Introducing	the	Builder	Pattern
The	Builder	Pattern	is	part	of	the	group	of	Creational	Patterns	and	provides	us	a	way	to
create	objects	that	require	a	lot	of	configuration	before	they	reach	the	point	where	they	can
be	used.	The	Builder	Pattern	is	often	used	for	objects	that	accept	many	optional
parameters	in	order	to	define	their	operation.	Another	matching	case	is	for	the	creation	of
objects	where	their	configuration	needs	to	be	done	in	several	steps	or	in	a	specific	order.

The	common	paradigm	for	the	Builder	Pattern	according	to	Computer	Science	is	that	there
is	a	Builder	Object	that	provides	one	or	more	setter	methods	(setA(...),	setB(...))	and
a	single	generation	method	that	constructs	and	returns	the	newly	created	result	object
(getResult()).

This	pattern	has	two	important	concepts.	The	first	one	is	that	the	Builder	Object	exposes	a
number	of	methods	as	a	way	to	configure	the	different	parts	of	the	object	that	is	under
construction.	During	the	configuration	phase,	the	Builder	Object	preserves	an	internal
state	that	reflects	the	effects	of	the	invocations	of	the	provided	setter	methods.	This	can	be
beneficial	when	used	to	create	objects	that	accept	a	large	number	of	configuration
parameters,	solving	the	problem	of	Telescopic	Constructors.

Note
Telescopic	Constructors	is	an	anti-pattern	of	object-oriented	programming	that	describes
the	situation	where	a	class	provides	several	constructors	that	tend	to	differ	on	the	number,
the	type,	and	the	combination	of	the	arguments	that	they	require.	Object	classes	with
several	parameters	that	can	be	used	in	many	different	combinations	can	often	lead	to
implementations	falling	into	this	anti-pattern.

The	second	important	concept	is	that	it	also	provides	a	generation	method	that	returns	the
actual	constructed	object	based	on	the	preceding	configuration.	Most	of	the	time,	the
instantiation	of	the	requested	object	is	done	lazily	and	actually	takes	place	at	the	moment
that	this	method	is	invoked.	In	some	cases,	the	Builder	Object	allows	us	to	invoke	the
generation	method	more	than	once,	allowing	us	to	generate	several	objects	with	the	same
configuration.

How	it	is	adopted	by	jQuery’s	API
The	Builder	Pattern	can	also	be	found	as	part	of	the	API	that	jQuery	exposes.	Specifically,
the	jQuery	$()	function	can	also	be	used	to	create	new	DOM	elements	by	invoking	it	with
an	HTML	string	as	an	argument.	As	a	result,	we	can	create	new	DOM	elements	and	set
their	different	parts	as	we	need	them,	instead	of	having	to	create	the	exact	HTML	string
that	is	needed	for	the	final	result:

var	$input	=	$('<input	/>');	

$input.attr('type','number');	

$input.attr('min',	'0');	

$input.attr('max',	'100');	

$input.prop('required',	true);

$input.val(4);

$input.appendTo('form');

The	$('<input	/>')	call	returns	a	Composite	Object	containing	an	element	that	is	not
attached	to	the	DOM	tree	of	the	page.	This	unattached	element	is	only	an	in-memory
object	that	is	neither	fully	constructed	nor	fully	functional	until	we	attach	it	to	the	page.	In
this	case,	this	Composite	Object	acts	like	a	Builder	Object	Instance	having	an	internal
state	of	objects	that	are	not	yet	finalized.	Right	after	this,	we	do	a	series	of	manipulations
on	it	using	some	jQuery	methods	that	act	like	the	setter	methods	described	by	the	Builder
Pattern.

Finally,	after	we	apply	all	the	required	configurations,	so	that	the	resulting	object	behaves
in	the	desired	way,	we	invoke	the	$.fn.appendTo()	method.	The	$.fn.appendTo()
method	works	as	the	generation	method	of	the	Builder	Pattern,	by	attaching	the	in-
memory	element	of	the	$input	variable	to	the	DOM	tree	of	the	page,	transforming	it	into
an	actual	attached	DOM	element.

Of	course,	the	above	example	can	get	more	readable	and	less	repetitive	by	utilizing	the
Fluent	API	that	jQuery	provides	for	its	methods,	and	also	combine	the	$.fn.attr()
method	invocations.	Moreover,	jQuery	allows	us	to	use	almost	all	its	methods	to	do
traversals	and	manipulations	on	the	elements	that	are	under	construction,	just	as	we	can	on
normal	DOM	element	Composite	Objects.	As	a	result,	the	above	example	can	get	a	little
more	complete	as	follows:

$('<input	/>').attr({

				'type':'number',

				'min':	'0',

				'max':	'100'

		})

		.prop('required',	true)	

		.val(4)

		.css('display',	'block')	

		.wrap('<label>')	//	wrap	the	input	with	a	<label>	

		.parent()	//	traverse	one	level	up,	to	the	<label>	

		.prepend('Qty:#</span')	

		.appendTo('form');

The	result	will	look	as	follows:

The	criteria	that	allow	us	to	categorize	this	overloaded	way	of	invoking	the	$()	function
as	an	implementation	that	adopts	the	Builder	Pattern,	is	the	fact	that:

It	returns	an	object	with	an	internal	state	containing	partially	constructed	elements.
The	contained	elements	are	only	in-memory	objects	that	are	not	part	of	the	page’s
DOM	tree.
It	provides	us	methods	to	manipulate	its	internal	state.	Most	jQuery	methods	can	be
used	for	this	purpose.
It	provides	us	method(s)	to	generate	the	final	result.	We	can	use	jQuery	methods	such
as	$.fn.appendTo()	and	$.fn.insertAfter(),	as	a	way	to	complete	the
construction	of	the	internal	elements	and	make	them	part	of	the	DOM	tree	with
properties	that	reflect	their	earlier	in-memory	representation.

As	we	have	already	seen	in	Chapter	1,	A	Refresher	on	jQuery	and	the	Composite	Pattern,
the	primary	way	to	use	the	$()	function	is	to	invoke	it	with	a	CSS	selector	as	a	string
parameter	and	in	turn	it	will	retrieve	the	matching	page	elements	and	return	them	in	a
Composite	Object.	On	the	other	hand,	when	the	$()	function	detects	that	it	has	been
invoked	with	a	string	parameter	that	looks	like	a	piece	of	HTML,	it	works	as	a	DOM
element	Builder.	This	overloaded	way	of	invoking	the	$()	function	bases	its	detection	on
the	assumption	that	the	provided	HTML	code	starts	and	ends	with	the	inequality	symbols
<	and	>:

		init	=	jQuery.fn.init	=	function(selector,	context)	{	

				/*	11	lines	of	code	*/	

				//	Handle	HTML	strings	

				if	(typeof	selector	===	"string")	{	

						if	(selector[0]	===	"<"	&&selector[selector.length	-	1]	===	">"	

&&selector.length	>=	3)	{	

								//	Assume	that	strings	that	start	and	end	with	<>	are	HTML	//	and	

skip	the	regex	check	

								match	=	[null,	selector,	null];	

						}	/*...*/

						//	Match	html	or	make	sure	no	context	is	specified	for	#id	

						if	(match	&&	(match[1]	||	!context))	{	

								//	HANDLE:	$(html)	->	$(array)	

								if	(match[1])	{	

										/*	4	lines	of	code	*/

										jQuery.merge(this,	jQuery.parseHTML(match[1],	/*...*/));	

										/*	16	lines	of	code	*/	

										return	this;	

								}/*...*/	

						}/*...*/	

				}/*...*/	

		};	

As	we	can	see	in	the	preceding	code,	this	overload	uses	the	jQuery.parseHTML()	helper
method	that	ultimately	leads	to	a	call	of	the	createDocumentFragment()	method.	The
created	Document	Fragment	is	then	used	as	a	host	of	the	under	construction	tree
structure	of	elements.	After	jQuery	finishes	converting	the	HTML	into	elements,	the
Document	Fragment	is	discarded	and	only	it’s	hosted	elements	are	returned:

jQuery.parseHTML	=	function(data,	context,	keepScripts)	{	

		/*	17	lines	of	code	*/	

		//	Single	tag	

		if	(parsed)	{	

				return	[context.createElement(parsed[1])];	

		}	

		parsed	=	buildFragment([data],	context,	scripts);	

		/*	5	lines	of	code	*/

		return	jQuery.merge([],	parsed.childNodes);	

};

This	results	in	the	creation	of	a	new	jQuery	Composite	Object	containing	an	in-memory
tree	structure	of	elements.	Even	though	these	elements	are	not	attached	to	the	actual	DOM
tree	of	the	page,	we	can	still	do	traversals	and	manipulations	on	them	like	any	other
jQuery	Composite	Object.

Note
For	more	information	on	Document	Fragments,	you	can	visit:
https://developer.mozilla.org/en-US/docs/Web/API/Document/createDocumentFragment.

https://developer.mozilla.org/en-US/docs/Web/API/Document/createDocumentFragment

How	it	is	used	by	jQuery	internally
An	undoubtedly	big	part	of	jQuery	is	its	AJAX-related	implementation,	which	aims	to
provide	a	simple	API	for	asynchronous	calls	that	is	also	configurable	to	a	large	degree.
Using	the	jQuery	Source	Viewer	and	searching	for	jQuery.ajax,	or	directly	searching
jQuery’s	source	code	for	"ajax:",	will	bring	us	the	aforementioned	implementation.	In
order	to	make	its	implementation	more	straightforward	and	also	allow	it	to	be
configurable,	jQuery	internally	uses	a	special	object	structure	that	acts	as	a	Builder	Object
for	the	creation	and	handling	of	each	AJAX	request.	As	we	will	see,	this	is	not	the	most
common	way	of	using	a	Builder	Object,	but	it	is	actually	a	special	variant	with	some
modifications	in	order	to	fit	the	requirements	of	this	complex	implementation:

jqXHR	=	{	

		readyState:	0,	

		//	Builds	headers	hashtable	if	needed	

		getResponseHeader:	function(key)	{/*	...	*/},	

		//	Raw	string	

		getAllResponseHeaders:	function()	{/*	...	*/},	

		//	Caches	the	header	

		setRequestHeader:	function(name,	value)	{/*	...	*/},	

		//	Overrides	response	content-type	header	

		overrideMimeType:	function(type)	{/*	...	*/},	

		//	Status-dependent	callbacks	

		statusCode:	function(map)	{/*	...	*/},	

		//	Cancel	the	request	

		abort:	function(statusText)	{/*	...	*/}	

};	

The	main	method	that	the	jqXHR	object	exposes	to	configure	the	generated	asynchronous
request	is	the	setRequestHeader()	method.	The	implementation	of	this	method	is	quite
generic,	enabling	jQuery	to	set	all	the	different	HTTP	headers	for	the	request,	using	only
one	method.

In	order	to	provide	an	even	greater	degree	of	flexibility	and	abstraction,	jQuery	internally
uses	a	separate	transport	object	as	a	wrapper	of	the	jqXHR	object.	This	transport	object
handles	the	part	of	actually	sending	the	AJAX	request	to	the	server,	working	like	a	partner
builder	object	that	cooperates	with	the	jqXHR	object	for	the	creation	of	the	final	result.
This	way,	jQuery	can	fetch	Scripts,	XML,	JSON,	and	JSONP	responses	from	the	same	or
cross-origin	servers,	using	the	same	API	and	overall	implementation:

transport	=	inspectPrefiltersOrTransports(transports,	s,	options,	jqXHR);		

//	If	no	transport,	we	auto-abort	

if	(!transport)	{	

		done(-1,	"No	Transport");	

}	else	{	

		jqXHR.readyState	=	1;	

		/*	12	lines	of	code	*/	

		try	{	

				state	=	1;	

				transport.send(requestHeaders,	done);	

		}	catch	(e)	{/*	7	lines	of	code	*/}	

}

Another	special	thing	about	this	implementation	of	the	Builder	Pattern	is	that	it	should	be
able	to	operate	in	both	synchronous	and	asynchronous	manner.	As	a	result,	the	send()
method	of	the	transport	object	that	acts	as	the	result	generator	method	of	the	wrapped
jqXHR	object	can’t	just	return	a	result	object,	but	it	is	instead	invoked	with	a	callback.

Finally,	after	the	request	is	complete,	jQuery	uses	the	getResponseHeader()	method	to
retrieve	all	the	required	response	headers.	Right	after	this,	the	headers	are	used	to	properly
convert	the	received	response	that	is	stored	in	the	responseText	property	of	the	jqXHR
object.

How	to	use	it	in	our	applications
As	an	example	use	case	of	the	Builder	Pattern	in	a	client-side	application	that	uses	jQuery,
we	will	create	a	simple	data-driven	multiple-choice	quiz.	The	main	reason	that	the	Builder
Pattern	is	a	better	match	for	this	case,	as	compared	to	the	Factory	Pattern	example	that	we
saw	earlier,	is	that	the	result	is	more	complex	and	has	more	degrees	of	configuration.	Each
question	will	be	generated	based	on	a	model	object	that	will	represent	its	desired
properties.

Once	again,	the	required	HTML	is	very	simple,	containing	just	an	<h1>	element	with	the
header	of	the	page,	an	empty	<form>	tag,	and	some	references	to	our	CSS	and	JavaScript
resources:

				<h1>Data	Driven	Quiz</h1>	

				<form>	</form>	

				<script	type="text/javascript"	src="jquery.js"></script>	

				<script	type="text/javascript"	src="datadrivenquiz.js"></script>	

Besides	the	common,	simple	styles	that	we	have	seen	in	the	previous	chapters,	the	CSS	of

this	example	additionally	defines:

ul.unstyled	>	li	{	

				margin:	0;	

				padding:	0;	

				list-style:	none;	

}

For	the	needs	of	this	example,	we	will	create	a	module	with	a	new	namespace	named
dataDrivenQuiz.	As	we	saw	earlier	in	this	chapter,	we	will	assume	the	existence	of	an
array	containing	the	model	objects	that	describe	each	multiple-choice	question	that	needs
to	be	presented.	Each	of	these	model	objects	will	have:

A	title	property	that	will	hold	the	question
An	options	property	that	will	be	an	array	with	the	available	answers	to	choose	from
An	optional	acceptsMultiple	property	to	signify	whether	we	should	use	radio	or
check	boxes

The	array	with	the	model	objects	that	describe	the	form	questions	will	be	available	at	the
dataDrivenQuiz.parts	property	of	our	module,	while	keeping	in	mind	that	our
implementation	could	easily	be	modified	to	fetch	the	models	with	an	AJAX	request:

dataDrivenQuiz.questions	=	[{	

		title:	'Which	is	the	most	preferred	way	to	write	our	JavaScript	code?',	

		options:	[

				'inline	along	with	our	HTML',	

				'flat	inside	*.js	files',	

				'in	small	Modules,	one	per	*.js	file'	

]	

},	{	

		title:	'What	does	the	$()	function	returns	when	invoked	with	a	CSS	

selector?',	

		options:	[

				'a	single	element',	

				'an	array	of	elements',	

				'the	HTML	of	the	selected	element',	

				'a	Composite	Object'	

]	

},	{	

		title:	'Which	of	the	following	are	Design	Patterns',	

		acceptsMultiple:	true,	

		options:	[

				'Garbage	Collector',	

				'Class',	

				'Object	Literal',	

				'Observer'	

]	

},	{	

		title:	'How	can	get	a	hold	to	the	<body>	element	of	a	page?',	

		acceptsMultiple:	true,	

		options:	[

				'document.body',	

				'document.getElementsByTagName(\'body\')[0]',	

				'$(\'body\')[0]',	

				'document.querySelector(\'body\')'	

]	

}];

Tip
Defining	the	data	structures	that	are	required	to	describe	a	problem,	before	starting	the
actual	implementation,	allows	us	to	focus	on	the	needs	of	the	application	and	get	an
estimate	of	its	overall	complexity.

Given	the	preceding	sample	data,	let’s	now	proceed	to	the	implementation	of	our	Builder:

function	MultipleChoiceBuilder()	{	

		this.title	=	'Untitled';	

		this.options	=	[];	

}	

dataDrivenQuiz.MultipleChoiceBuilder	=	MultipleChoiceBuilder;	

MultipleChoiceBuilder.prototype.setTitle	=	function(title)	{	

		this.title	=	title;	

		return	this;	

};	

MultipleChoiceBuilder.prototype.setAcceptsMultiple	=	

function(acceptsMultiple)	{	

				this.acceptsMultiple	=	acceptsMultiple;	

				return	this;	

		};	

MultipleChoiceBuilder.prototype.addOption	=	function(title)	{	

		this.options.push(title);	

		return	this;	

};	

MultipleChoiceBuilder.prototype.getResult	=	function()	{	

		var	$header	=	$('<header>').text(this.title	||	'Untitled');	

		var	questionGuid	=	'quizQuestion'	+	(jQuery.guid++);	

		var	$optionsList	=	$('<ul	class="unstyled">');	

		for	(var	i	=	0;	i	<	this.options.length;	i++)	{	

				var	$input	=	$('<input	/>').attr({

						'type':	this.acceptsMultiple	?	'checkbox'	:	'radio',

						'value':	i,

						'name':	questionGuid,

				});

					

				var	$option	=	$('');	

				$('<label>').append($input,	$('').text(this.options[i]))

						.appendTo($option);	

				$optionsList.append($option);	

		}	

		return	$('<article>').append($header,	$optionsList);

};

Using	the	Prototypical	Object-Oriented	approach	of	JavaScript,	we	firstly	define	the
Constructor	Function	for	our	MultipleChoiceBuilder	class.	When	the	Constructor

Function	is	invoked	using	the	new	operator,	it	will	create	a	new	instance	of	the	Builder	and
initialize	its	title	property	to	"Untitled"	and	the	options	property	to	an	empty	array.

Right	after	this,	we	complete	the	definition	of	the	Constructor	Function	of	our	Builder,	we
attach	it	as	a	member	of	our	module,	and	continue	with	the	definition	of	its	setter	methods.
Following	the	Prototypical	Class	paradigm,	the	setTitle(),	setAcceptsMultiple(),	and
addOption()	methods	are	defined	as	properties	of	our	Builder’s	Prototype	and	are	used	to
modify	the	internal	state	of	the	under	construction	element.	Additionally,	in	order	to
enable	us	to	chain	several	invocations	of	these	methods,	which	results	in	a	more	readable
implementation,	all	of	them	end	with	the	return	this;	statement.

We	complete	the	implementation	of	the	Builder	with	the	getResult()	method	that	has	the
duty	of	gathering	all	the	parameters	that	are	applied	on	the	Builder	object	instance	and
generating	the	resulting	element	wrapped	inside	a	jQuery	Composite	Object.	In	its	first
line,	it	creates	a	header	of	the	question.	Right	after	this,	it	creates	a		element	with	the
unstyled	CSS	class	to	hold	the	possible	answers	to	the	question	and	a	unique	identifier
that	will	be	used	as	the	name	of	the	generated	<input>	of	the	question.

In	the	for	loop	that	follows,	we	will:

Create	an	<input	/>	element	for	each	option	of	the	question
Properly	set	its	type	as	a	checkbox	or	a	radio	button,	based	on	the	value	of	the
acceptsMultiple	property
Use	the	for	loop’s	iteration	number	as	its	value
Set	the	unique	identifier	that	we	generated	earlier	for	the	question	as	the	input’s	name
in	order	to	group	the	answers
Finally,	add	a	<label>	with	the	option’s	text,	which	wraps	all	of	them	inside	an	,
and	append	it	to	the	question’s	.

Lastly,	the	header	and	the	list	of	options	are	wrapped	in	an	<article>	element,	which	is
then	returned	as	the	final	result	of	the	Builder.

In	the	above	implementation,	we	use	the	$.fn.text()	method	to	assign	the	content	of	the
question’s	header	and	its	available	choices	instead	of	string	concatenation,	in	order	to
properly	escape	the	<	and	>	characters	that	are	found	in	their	descriptions.	As	an	extra
note,	since	some	of	the	answers	also	contain	single	quotes,	we	need	to	escape	them	in	the
model	objects	using	a	backslash	(\').

Finally,	in	our	module’s	implementation,	we	define	and	immediately	invoke	the	init
method:

dataDrivenQuiz.init	=	function()	{	

		for	(var	i	=	0;	i	<	dataDrivenQuiz.questions.length;	i++)	{	

				var	question	=	dataDrivenQuiz.questions[i];	

				var	builder	=	new	dataDrivenQuiz.MultipleChoiceBuilder();	

				builder.setTitle(question.title)	

.setAcceptsMultiple(question.acceptsMultiple);	

				for	(var	j	=	0;	j	<	question.options.length;	j++)	{	

						builder.addOption(question.options[j]);	

				}	

				$('form').append(builder.getResult());

		}

};	

$(document).ready(dataDrivenQuiz.init);

The	execution	of	the	initialization	code	is	delayed	until	the	DOM	tree	of	the	page	is	fully
loaded.	Then	the	init()	method	iterates	over	the	model	objects	array	and	uses	the	Builder
to	create	each	question	and	populate	the	<form>	element	of	our	page.

A	good	exercise	for	the	reader	would	be	to	extend	the	above	implementation	in	order	to
support	the	client-side	evaluation	of	the	quiz.	Firstly,	this	would	require	you	to	extend	the
question	objects	to	contain	information	about	the	validity	of	each	choice.	Then,	it	would
be	suggested	that	you	create	a	Builder	that	would	retrieve	the	answers	from	the	form,
evaluate	them,	and	create	a	result	object	with	the	user	choices	and	the	overall	success	on
the	quiz.

Summary
In	this	chapter,	we	learned	the	concepts	of	the	Builder	and	Factory	Patterns,	two	of	the
most	commonly	used	Creational	Design	Patterns.	We	analyzed	their	common	goals,	their
different	approaches	on	abstracting	the	process	of	generating	and	initializing	new	objects
for	specific	use	cases,	and	how	their	adoption	can	benefit	our	implementations.	Finally,	we
learned	how	to	use	them	properly	and	how	to	choose	the	most	appropriate	one	for	the
different	use	cases	of	any	given	implementations.

Now	that	we	have	completed	our	introduction	to	the	most	important	Creational	Design
Patterns,	we	can	move	on	to	the	next	chapter	where	we	will	be	introduced	to	the
development	patterns	that	are	used	to	program	asynchronous	and	concurrent	procedures.
In	more	detail,	we	will	learn	how	to	orchestrate	the	execution	of	asynchronous	procedures
that	run	either	in	order	or	parallel	to	each	other,	by	using	callbacks	and	jQuery	Deferred
and	Promises	APIs.

Chapter	7.	Asynchronous	Control	Flow
Patterns
This	chapter	is	dedicated	to	development	patterns	that	are	used	to	ease	the	programming
of	asynchronous	and	concurrent	procedures.

At	first,	we	will	have	a	refresher	on	how	Callbacks	are	used	in	JavaScript	programming
and	how	they	are	an	integral	part	of	web	development.	We	will	then	proceed	and	identify
their	benefits	and	limitations	when	used	in	large	and	complex	implementations.

Right	after	this,	we	will	be	introduced	to	the	concept	of	Promises.	We	will	learn	how
jQuery’s	Deferred	and	Promise	APIs	work	and	how	they	differ	from	ES6	Promises.	We
will	see	where	and	how	they	are	used	internally	by	jQuery	to	simplify	its	implementation
and	lead	to	more	readable	code.	We	will	analyze	their	benefits,	classify	the	best	matching
use	cases,	and	compare	them	with	the	classic	Callback	Pattern.

By	the	end	of	this	chapter,	we	will	be	able	to	use	jQuery	Deferred	and	Promises	to
efficiently	orchestrate	the	execution	of	asynchronous	procedures	that	run	either	in	order	or
parallel	to	each	other.

In	this	chapter,	we	will:

Have	a	refresher	on	how	Callbacks	are	used	in	JavaScript	programming
Get	introduced	to	the	concept	of	Promises
Learn	how	to	use	jQuery’s	Deferred	and	Promise	APIs
Compare	jQuery	Promises	with	ES6	Promises
Learn	how	to	orchestrate	asynchronous	tasks	using	Promises.

Programming	with	callbacks
A	Callback	can	be	defined	as	a	function	that	is	passed	as	an	invocation	argument	to
another	function	or	method	(which	is	referred	to	as	a	Higher-Order	Function)	and	is
expected	to	be	executed	at	some	later	point	of	time.	In	this	way,	the	piece	of	code	that	was
handed	our	Callback	will	eventually	invoke	it,	propagating	the	results	of	an	operation	or
event	back	to	the	context	that	the	Callback	was	defined.

Callbacks	can	be	characterized	as	synchronous	or	asynchronous,	based	on	the	way	that	the
invoked	method	operates.	A	Callback	is	characterized	as	synchronous	when	it	is	executed
by	a	blocking	method.	On	the	other	hand,	JavaScript	developers	are	more	familiar	with
asynchronous	callbacks,	also	called	deferred	callbacks,	which	are	set	to	be	executed
after	an	asynchronous	procedure	finishes	or	when	a	specific	event	occurs	(page	load,	click,
AJAX	response	arrival,	and	so	on).

Callbacks	are	widely	used	in	JavaScript	applications	since	they	are	an	integral	part	of
many	core	JavaScript	APIs	such	as	AJAX.	Moreover,	JavaScript	implementations	of	this
pattern	are	almost	word	for	word	as	described	by	the	above	simple	definition.	This	is	a
result	of	the	way	that	JavaScript	treats	functions	as	objects	and	allows	us	to	store	and	pass
method	references	as	simple	variables.

Using	simple	callbacks	in	JavaScript
Perhaps	one	of	the	simplest	examples	of	asynchronous	callbacks	in	JavaScript	is	the
setTimeout()	function.	The	following	code	demonstrates	a	simple	use	of	it,	where	we
invoke	setTimeout()	with	the	doLater()	function	as	a	callback	parameter	and,	after	1000
milliseconds	of	waiting,	the	doLater()	callback	is	invoked:

var	alertMessage	=	'One	second	passed!';	

function	doLater()	{	

				alert(alertMessage);	

}

setTimeout(doLater,	1000);

As	seen	in	the	simple	preceding	example,	the	callback	is	executed	in	the	context	that	it
was	defined.	The	callback	still	has	access	to	the	variables	of	the	context	that	it	was	defined
by	creating	a	closure.	Even	though	the	preceding	example	uses	a	named	function	defined
earlier,	the	same	applies	for	anonymous	callbacks:

var	alertMessage	=	'One	second	passed!';

setTimeout(function()	{	

				alert(alertMessage);	

},	1000);

In	many	cases,	using	anonymous	callbacks	is	a	more	convenient	way	of	programming,
since	it	results	in	shorter	code	and	also	reduces	the	readability	noise,	which	is	a	result	of
defining	several	different	named	functions	that	are	used	only	once.

Setting	callbacks	as	object	properties
A	small	variation	of	the	above	definition	also	exists,	where	the	callback	function	is
assigned	to	a	property	of	an	object	instead	of	being	passed	as	an	argument	of	a	method
invocation.	This	is	commonly	used	in	cases	where	there	are	several	different	actions	that
need	to	take	place	during	or	after	a	method	invocation	is	completed:

var	c	=	new	Countdown();	

c.onProgress	=	function(progressStatus)	{	/*...*/	};

c.onDone	=	function(result)	{		/*...*/	};

c.onError	=	function(error)	{		/*...*/	};

c.start();

Another	use	case	of	the	above	variant	is	to	add	handlers	on	objects	that	have	already	been
instantiated	and	initialized.	A	good	example	of	this	case	is	the	way	we	set	up	a	result
handler	for	simple	(non-jQuery)	AJAX	calls:

var	r	=	new	XMLHttpRequest();	

r.open('GET',	'data.json',	true);	

r.onreadystatechange	=	function()	{	

				if	(r.readyState	!=	4	||	r.status	!=	200)	{	

								return;	

				}	

				alert(r.responseText);	

};

r.send();

In	the	preceding	code,	we	set	an	anonymous	function	on	the	onreadystatechange
property	of	the	XMLHttpRequest	object.	This	function	acts	as	a	callback	and	is	invoked
every	time	there	is	a	state	change	on	the	ongoing	request.	Inside	our	callback,	we	check
whether	the	request	has	completed	with	a	successful	HTTP	status	code	and	display	an	alert
with	the	response	body.	Like	in	this	example,	where	we	initiate	the	AJAX	call	by	invoking
the	send()	method	without	passing	any	arguments,	it	is	common	for	APIs	that	use	this
variant	to	lead	to	minimal	ways	of	invoking	their	methods.

Using	callbacks	in	jQuery	applications
Perhaps	the	most	common	way	in	which	callbacks	are	used	in	jQuery	applications	is	for
event	handling.	This	is	logical	since	the	first	thing	that	every	interactive	application	should
do	is	handle	and	respond	to	user	actions.	As	we	saw	in	earlier	chapters,	one	of	the	most
convenient	ways	to	attach	event	handlers	to	elements	is	by	using	jQuery’s	$.fn.on()
method.

Another	common	place	where	callbacks	are	used	in	jQuery	is	for	AJAX	requests,	where
the	$.ajax()	method	has	the	central	role.	Moreover,	the	jQuery	library	also	provides
several	other	convenient	methods	to	make	AJAX	requests	that	are	focused	on	the	most
common	use	cases.	Since	all	these	methods	are	executed	asynchronously,	they	also	accept
a	callback	as	a	parameter,	as	a	way	to	make	the	retrieved	data	available	back	to	the	context
that	initiated	the	AJAX	request.	One	of	these	convenient	methods	is	$.getJSON(),	which
is	a	wrapper	around	$.ajax(),	and	is	used	as	a	better	matching	API	to	execute	AJAX
requests	that	intend	to	retrieve	JSON	responses.

Other	widely	used	jQuery	APIs	accepting	callbacks	are	as	follows:

The	effects-related	jQuery	methods	such	as	$.animate()
The	$(document).ready()	method

Let’s	now	continue	by	demonstrating	a	code	example	where	all	the	above	methods	are
used.

$(document).ready(function()	{	

		$('#fetchButton').on('click',	function()	{	

				$.getJSON('AjaxContent.json',	function(json)	{	

						console.log('done	loading	new	content');	

						$('#newContent').css({	'display':	'none'	})	

								.text(json.data)	

								.slideDown(function()	{	

										console.log('done	displaying	new	content');	

								});	

				});	

		});	

});	

The	preceding	code	firstly	delays	its	execution	until	the	DOM	tree	of	the	page	has	been
fully	loaded	and	then	adds	an	Observer	for	clicks	on	the	<button>	with	ID	fetchButton
by	using	the	jQuery’s	$.fn.on()	method.	Whenever	the	click	event	is	fired,	the	provided
callback	will	be	invoked	and	initiate	an	AJAX	call	to	fetch	the	AjaxContent.json	file.	For
the	needs	of	this	example,	we	are	using	a	simple	JSON	file,	like	the	following:

{	"data":	"I'm	the	text	content	fetched	by	an	AJAX	call!"	}

When	the	response	is	received	and	the	JSON	is	parsed	successfully,	the	callback	is
invoked	with	the	parsed	object	as	a	parameter.	Finally,	the	callback	itself	locates	the	page
element	with	the	ID	newContent	in	the	page,	hides	it,	and	then	sets	the	data	field	of	the
retrieved	JSON	as	its	text	content.	Right	after	this,	we	use	the	jQuery	$.fn.slideDown()

method	that	makes	the	newly	set	page	content	appear,	by	progressively	increasing	its
height.	Finally,	after	the	animation	is	complete,	we	write	a	log	message	to	the	browser
console.

Note
Further	documentation	regarding	jQuery’s	$.ajax(),	$.getJSON(),	and
$.fn.slideDown()	methods	can	be	found	at	http://api.jquery.com/jQuery.ajax/,
http://api.jquery.com/jQuery.getJSON/,	and	http://api.jquery.com/slideDown/.

Keep	in	mind	that	the	$.getJSON()	method	might	not	work	in	some	browsers	when	the
page	is	loaded	through	the	filesystem,	but	works	as	intended	when	served	using	any	web
server	such	as	Apache,	IIS,	or	nginx.

http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.getJSON/
http://api.jquery.com/slideDown/

Writing	methods	that	accept	callbacks
When	writing	a	function	that	utilizes	one	or	more	asynchronous	APIs,	that	also	dictates
that	the	resulting	function	will	be	asynchronous	by	definition.	In	that	case,	it	is	obvious
that	simply	returning	a	result	value	is	not	an	option,	since	the	result	will	probably	be
available	after	the	function	invocation	has	already	finished.

The	easiest	solution	for	asynchronous	implementations	is	to	use	a	callback	as	a	parameter
of	your	function,	which,	as	we	discussed	earlier,	is	hassle-free	in	JavaScript.	As	an
example,	we	will	create	an	asynchronous	function	that	generates	a	random	number	of	a
specified	range:

function	getRandomNumberAsync	(max,	callbackFn)	{	

				var	runFor	=	1000	+	Math.random()	*	1000;	

				setTimeout(function()	{	

								var	result	=	Math.random()	*	max;	

								callbackFn(result);	

				},	runFor);	

}

The	getRandomNumberAsync()	function	accepts	its	max	argument	as	the	numeric	upper
bound	for	the	generated	random	number	and	also	a	callback	function	that	it	will	invoke
with	the	generated	result.	It	uses	setTimeout()	to	emulate	an	asynchronous	calculation
that	ranges	from	1000	to	2000	milliseconds.	For	the	generation	of	the	result,	it	uses	the
Math.random()	method,	multiplying	it	with	the	maximum	allowed	value,	and	finally
invokes	the	provided	callback	with	it.	A	simple	way	to	invoke	this	function	will	look	as
follows:

getRandomNumberAsync(10,	function(number)	{	

				console.log(number);	//	returns	a	number	between	0	and	10

});

Even	though	the	above	example	uses	setTimeout()	to	emulate	asynchronous	processing,
the	implementation	principles	remain	the	same	regardless	of	the	asynchronous	API(s)	that
is	used.	For	example,	we	can	rewrite	the	above	function	to	retrieve	its	result	through	an
AJAX	call:

function	getRandomNumberWS	(max,	callbackFn,	errorFn)	{	

		$.ajax({	

				url:	'https://qrng.anu.edu.au/API/jsonI.php?length=1&type=uint16',	

				dataType:	'json',	

				success:	function(json)	{	

						var	result	=	json.data[0]	/	65535	*	max;	

						callbackFn(result);	

				},	

				error:	errorFn	

		});

}

The	preceding	implementation	uses	the	$.ajax()	method	that	is	invoked	with	an	object
parameter,	enclosing	all	the	options	of	the	request.	Except	for	the	URL	for	the	request,	the
object	also	defines	the	expected	dataType	of	the	result	and	the	success	and	error

callbacks,	which	are	wired	with	the	respective	parameters	of	our	function.

Perhaps	the	only	extra	concern	that	the	preceding	code	has	to	resolve	is	how	to	handle
errors	inside	the	success	callback	so	that	the	caller	of	the	function	can	be	notified	in	case
something	goes	wrong	during	the	creation	of	the	result.	For	example,	the	AJAX	request
might	return	an	empty	object.	Adding	proper	handling	for	such	cases	is	left	as	an	exercise
for	the	reader,	after	reading	the	rest	of	this	chapter.

Note
The	Australian	National	University	(ANU)	provides	free,	truly	random,	numbers	to	the
public,	through	their	REST	Web	Service.	For	more	information,	you	can	visit
http://qrng.anu.edu.au/API/api-demo.php.

http://qrng.anu.edu.au/API/api-demo.php

Orchestrating	callbacks
We	will	now	continue	by	analyzing	some	patterns	that	are	commonly	used	to	control	the
execution	flow	when	dealing	with	asynchronous	methods	that	accept	callbacks.

Queuing	in	order	execution
As	our	first	example,	we	will	create	a	function	that	demonstrates	how	we	can	queue	the
execution	of	several	asynchronous	tasks:

function	getThreeRandomNumbers(callbackFn,	errorFn)	{

				var	results	=	[];	

				getRandomNumberAsync(10,	function(number)	{	

								results.push(number);	

								getRandomNumberAsync(10,	function(number)	{	

												results.push(number);	

												getRandomNumberWS(10,	function(number)	{

																results.push(number);	

																callbackFn(results);	

												},	function	(error)	{	

																errorFn(error);	

												});	

								});	

				});

}

In	the	preceding	implementation,	our	function	creates	a	queue	of	three	random	number
generations.	The	first	two	random	numbers	are	generated	from	our	sample	setTimeout()
implementation	and	the	third	is	retrieved	from	the	aforementioned	web	service	though	an
AJAX	call.	In	this	example,	all	the	numbers	are	gathered	in	the	result	array,	which	is
passed	as	an	invocation	parameter	to	the	callbackFn	after	all	the	asynchronous	tasks	have
completed.

The	preceding	implementation	is	quite	straightforward	and	just	applies	the	simple
principles	of	the	Callback	Pattern	repeatedly.	For	every	extra	or	queued	asynchronous
task,	we	just	need	to	nest	its	invocation	inside	the	callback	of	the	task	that	it	depends	on.
Keep	in	mind	that,	in	different	use	cases,	we	might	only	care	to	return	the	result	of	the
final	task	and	have	the	results	of	the	intermediate	steps	be	propagated	as	arguments	for
each	subsequent	asynchronous	call.

Avoiding	the	Callback	Hell	anti-pattern

Even	though	writing	code	as	shown	in	the	above	example	is	easy,	when	applied	to	large
and	complex	implementations,	it	can	lead	to	bad	readability.	The	triangular	shape	that	is
created	by	the	white-spaces	in	front	of	our	code	and	the	stacking	of	several	});	near	its
end,	are	the	two	signs	that	our	code	might	lead	to	an	anti-pattern	known	as	Callback	Hell.

Note
For	more	information,	you	can	visit	http://callbackhell.com/.

http://callbackhell.com/

A	way	to	avoid	this	anti-pattern	is	to	unfold	the	nested	callbacks,	by	creating	separate
named	functions	at	the	same	level	with	the	asynchronous	task	that	they	are	used.	After
applying	this	simple	tip	to	the	above	example,	the	resulting	code	looks	a	lot	cleaner:

function	getThreeRandomNumbers(callbackFn,	errorFn)	{	

				var	results	=	[];	

				getRandomNumberAsync(10,	function(number)	{	//	task	1	

								results.push(number);	

								task2();	

				});	

				function	task2	()	{	

								getRandomNumberAsync(10,	function(number)	{	

												results.push(number);	

												task3();	

								});	

				}	

				function	task3	()	{	

								getRandomNumberWS(10,	function(number)	{	

												results.push(number);	

												callbackFn(results);	

								},	errorFn);	

				}	

}

As	you	can	see,	the	resulting	code	surely	does	not	remind	us	of	the	characteristics	of	the
Callback	Hell	anti-pattern.	On	the	other	hand,	it	now	needs	more	lines	of	code	for	its
implementation,	mostly	used	for	the	additional	function	declarations	function	taskX	()
{	}	that	are	now	required.

Tip
A	middle	ground	solution	between	the	above	two	approaches	is	to	organize	the	related
parts	of	such	asynchronous	execution	queues	in	small	and	manageable	functions.

Running	concurrently
Even	though	JavaScript	in	web	browsers	is	single-threaded,	making	independent
asynchronous	tasks	run	concurrently	can	make	our	applications	work	faster.	As	an
example,	we	will	rewrite	the	preceding	implementation	to	fetch	all	three	random	numbers
in	parallel,	which	can	make	the	result	to	be	retrieved	a	lot	faster	than	before:

function	getRandomNumbersConcurent(callbackFn,	errorFn)	{	

				var	results	=	[];	

				var	resultCount	=	0;	

				var	n	=	3;	

				function	gatherResult	(resultPos)	{	

								return	function	(result)	{	

												results[resultPos]	=	result;	

												resultCount++;	

												if	(resultCount	===	n)	{	

																callbackFn(results);	

												}	

								};	

				}	

				

				getRandomNumberAsync(10,	gatherResult(0));	

				getRandomNumberAsync(10,	gatherResult(1));	

				getRandomNumberWS(10,	gatherResult(2),	errorFn);	

}

In	the	preceding	code,	we	defined	the	gatherResult()	helper	function,	which	returns	an
anonymous	function	that	is	used	as	a	callback	for	our	random	number	generators.	The
returned	callback	function	uses	the	resultPos	parameter	as	the	index	of	the	array	where	it
will	store	the	generated	or	retrieved	random	number.	Additionally,	it	tracks	how	many
times	it	has	been	invoked,	as	a	way	to	know	whether	all	three	concurrent	tasks	have
ended.	Finally,	right	after	the	third	and	final	invocation	of	the	callback,	the	callbackFn
function	is	invoked	with	the	results	array	as	a	parameter.

Another	great	application	of	this	technique,	other	than	AJAX	calls,	is	to	access	data	stored
in	IndexedDB.	Retrieving	many	values	from	the	database	concurrently	can	lead	to
performance	gains,	since	the	data	retrievals	can	execute	in	parallel	without	blocking	each
other.

Note
For	more	information	on	IndexedDB,	you	can	visit	https://developer.mozilla.org/en-
US/docs/Web/API/IndexedDB_API/Using_IndexedDB.

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB

Introducing	the	concept	of	Promises
Promises,	also	known	as	Futures,	are	described	by	Computer	Science	as	specialized
objects	that	are	used	for	synchronization	of	asynchronous,	concurrent,	or	parallel
procedures.	They	are	also	used	as	proxies	to	propagate	the	result	of	a	task	when	its
generation	completes.	This	way,	a	Promise	object	is	like	a	contract	where	an	operation
will	eventually	complete	its	execution,	and	anyone	having	a	reference	to	this	contract	can
declare	their	interest	to	be	notified	about	the	result.

Since	they	were	introduced	to	JavaScript	developers,	as	part	of	several	libraries,	they
revolutionized	the	way	we	use	asynchronous	functions	and	compose	them	in
implementation	with	complex	synchronization	schemes.	This	way,	web	developers	can
create	more	flexible,	scalable,	and	readable	implementations,	making	method	invocations
with	callbacks	look	like	a	primitive	pattern	and	effectively	eliminating	the	Callback	Hell
situations.

One	of	the	key	concepts	of	Promises	is	that	asynchronous	methods	return	an	object	that
represents	their	eventual	result.	Every	Promise	has	an	internal	state	that	initially	starts	as
Pending.	This	internal	state	can	change	only	once,	from	Pending	to	either	Resolved	or
Rejected,	by	using	one	of	the	resolve()	or	reject()	methods	that	every	implementation
provides.	These	methods	can	be	invoked	only	to	change	the	state	of	a	Pending	Promise;	in
most	cases,	they	are	intended	to	be	used	only	by	the	original	creator	of	the	Promise	object
and	not	be	available	to	its	consumers.	The	resolve()	method	can	be	invoked	with	the

result	of	the	operation	as	a	single	parameter,	while	the	reject()	method	is	usually
invoked	with	the	Error	that	caused	the	Promise	object	to	get	Rejected.

Another	key	concept	of	Promises	is	the	existence	of	a	then()	method,	giving	them	the
characterization	of	the	“thenable”,	as	a	general	term	to	describe	promises	among	all	the
different	implementations.	Every	Promise	object	exposes	a	then()	method	that	is	used	by
a	caller	in	order	to	provide	the	function(s)	that	will	be	invoked	when	the	Promise	is	settled
(Resolved	or	Rejected).	The	then()	method	can	be	invoked	with	two	functions	as
parameters,	where	the	first	is	invoked	in	case	the	Promise	gets	Resolved,	while	the	second
is	invoked	when	it	is	Rejected.	The	first	argument	is	commonly	referred	to	as	the
onFulfilled()	callback,	while	the	second	is	referred	to	as	the	onRejected().

Every	Promise	preserves	two	internal	list	containing	all	the	onFulfilled()	and
onRejected()	callback	functions	that	are	passed	as	arguments	to	the	then()	method.	The
then()	method	can	be	invoked	several	times	for	each	Promise,	adding	new	entries	to	the
appropriate	internal	list,	as	far	as	the	respective	parameter	is	actually	a	function.	When	a
Promise	eventually	gets	Resolved	or	Rejected,	it	iterates	over	the	appropriate	list	of
callbacks	and	invokes	them	in	order.	Moreover,	from	the	point	that	a	Promise	gets	settled
and	after,	every	further	usage	of	the	then()	method	has,	as	a	result,	the	immediate
invocation	of	the	appropriate	provided	callback.

Note
Based	on	its	characteristics,	a	Promise	can	be	likened	to	a	Broker	from	the

Publish/Subscribe	Pattern	to	some	degree.	Their	key	differences	include	the	facts	that	it
can	only	be	used	for	a	single	Publish	and	that	the	Subscribers	get	notified	of	the	result
even	if	they	expressed	their	interest	after	the	Publish	took	place.

Using	Promises
As	we	said	earlier,	the	concept	of	Promises	revolutionized	programming	of	asynchronous
tasks	in	JavaScript	and,	for	a	long	time,	they	were	the	new	big	thing	that	everyone	was
enthusiastic	about.	At	that	time,	many	specialized	libraries	appeared	where	each	one
provided	an	implementation	of	Promises	with	slight	differences	to	each	other.	Moreover,
Promise	implementations	became	available	as	part	of	utility	libraries	such	as	jQuery	and
web	frameworks	such	as	AngularJS	and	EmberJS.	At	that	time,	the	“CommonJS
Promises/A”	specification	made	its	appearance	as	a	reference	point	and	was	the	first
attempt	to	define	how	Promises	should	actually	work	across	all	implementations.

Note
For	more	information	on	the	“CommonJS	Promises/A”	specification,	you	can	visit
http://wiki.commonjs.org/wiki/Promises/A.

Using	the	jQuery	Promise	API
A	Promise-based	API	first	appeared	in	the	jQuery	library	in	v1.5,	based	on	the
“CommonJS	Promises/A”	design.	This	implementation	introduced	the	additional	concept
of	the	Deferred	object,	which	works	like	a	Promise	Factory.	The	Deferred	objects	expose
a	superset	of	the	methods	that	Promises	provide,	where	the	additional	methods	can	be	used
to	do	manipulations	to	the	state	of	its	internal	Promise.	Additionally,	the	Deferred	object
exposes	a	promise()	method	and	returns	the	actual	Promise	object,	which	does	not	expose
any	way	to	manipulate	its	internal	state	and	just	exposes	observation	methods	such	as
then().

In	other	words:

Only	code	that	has	a	reference	to	a	Deferred	object	can	actually	change	the	internal
state	of	its	Promise,	by	either	resolving	or	rejecting	it.
Any	piece	of	code	that	has	a	reference	to	a	Promise	object	can’t	change	its	state	but
just	observe	for	its	state	to	change.

Note
For	more	information	on	jQuery’s	Deferred	object,	you	can	visit
http://api.jquery.com/jQuery.Deferred/.

As	a	simple	example	of	jQuery’s	Deferred	object,	let’s	see	how	we	can	rewrite	the
getRandomNumberAsync()	function	that	we	saw	earlier	in	this	chapter,	to	use	Promises
instead	of	Callbacks:

function	getRandomNumberAsync	(max)	{	

				var	d	=	$.Deferred();	

				var	runFor	=	1000	+	Math.random()	*	1000;	

				setTimeout(function()	{	

								var	result	=	Math.random()	*	max;	

								d.resolve(result);	

				},	runFor);	

				return	d.promise();	

http://wiki.commonjs.org/wiki/Promises/A
http://api.jquery.com/jQuery.Deferred/

}	

getRandomNumberAsync(10).then(function(number)	{	

				console.log(number);	//	returns	a	number	between	0	and	10	

});

Our	target	is	to	make	an	asynchronous	function	that	returns	a	Promise	that	is	eventually
resolved	to	the	resulting	random	number.	At	first,	a	new	Deferred	object	is	created	and
then	the	respective	Promise	object	is	returned,	by	using	the	promise()	method	of	the
Deferred.	When	the	asynchronous	generation	of	the	result	is	complete,	our	method	uses
the	resolve()	method	of	the	Deferred	object	to	set	the	final	state	of	the	Promise	that	was
returned	earlier.

The	caller	of	our	function	uses	the	then()	method	of	the	returned	Promise,	to	attach	a
callback	that	will	be	invoked	with	the	result	as	a	parameter	as	soon	as	the	Promise	gets
Resolved.	Moreover,	a	second	callback	can	also	be	passed	in	order	to	get	notified	in	case
the	Promise	gets	Rejected.	An	important	thing	to	notice	is	that,	by	following	the	above
pattern	where	functions	always	return	Promises	and	never	the	actual	Deferred	objects,	we
can	be	sure	that	only	the	creator	of	the	Deferred	object	can	change	the	state	of	the
Promise.

Using	Promises/A+
After	some	time	of	hands-on	experimentation	with	CommonJS	Promises/A,	the
community	identified	some	of	their	limitations	and	also	recommended	some	ways	to
improve	them.	The	result	was	the	creation	of	the	Promises/A+	specification,	as	a	way	to
improve	the	existing	specification	and	also	as	a	second	attempt	to	unify	the	various
available	implementations.	The	most	important	parts	of	the	new	specification	focused	on
how	chaining	Promises	should	work,	making	them	even	more	useful	and	convenient	to
work	with.

Note
For	more	information	on	the	Promises/A+	specification,	you	can	visit
https://promisesaplus.com/.

Finally,	the	Promises/A+	specification	was	published	as	part	of	the	6th	version	of
JavaScript,	commonly	referred	as	ES6,	that	was	released	as	a	standard	on	June,	2015.	As	a
result,	Promises/A+	started	to	be	implemented	natively	in	browsers,	removing	the	need	to
use	custom	third-party	libraries	and	pushing	most	of	the	existing	libraries	to	upgrade	their
semantics.	As	of	writing	of	this	book,	native	Promises/A+	compliant	implementations
have	been	available	in	most	modern	browsers,	except	for	IE11,	making	them	available
out-of-the-box	to	more	than	65%	of	web	users.

Note
For	more	information	on	the	adoption	of	A+	Promises	in	browsers,	you	can	visit
http://caniuse.com/#feat=promises.

A	rewrite	of	the	getRandomNumberAsync()	function	using	the	now	natively	implemented
ES6	A+	Promises	will	look	as	follows:

https://promisesaplus.com/
http://caniuse.com/#feat=promises

function	getRandomNumberAsync	(max)	{	

				return	new	Promise(function	(resolve,	reject)	{	

								var	runFor	=	1000	+	Math.random()	*	1000;	

								setTimeout(function()	{	

												var	result	=	Math.random()	*	max;	

												resolve(result);	

								},	runFor);	

				});	

}	

getRandomNumberAsync(10).then(function(number)	{	

				console.log(number);	//	returns	a	number	between	0	and	10	

});

As	you	can	see,	ES6	/	A+	Promises	are	created	by	using	the	Promise	constructor	function
with	the	new	keyword.	The	constructor	is	invoked	with	a	function	as	a	parameter,	which
makes	a	closure	that	has	access	to	both	the	variables	of	the	context	that	the	Promise	is
created,	but	also	gets	access	to	the	resolve()	and	reject()	functions	as	parameters,
which	is	the	only	way	to	change	the	state	of	the	newly	created	Promise.	After	the
setTimeout()	function	fires	its	callback,	the	resolve()	function	is	invoked	with	the
generated	random	number	as	a	parameter,	changing	the	state	of	the	Promise	object	to
Fulfilled.	Finally,	the	caller	of	our	function	uses	the	then()	method	of	the	returned
Promise	in	exactly	the	same	way	as	we	saw	in	the	earlier	implementation	that	was	using
jQuery.

Comparing	jQuery	and	A+	Promises
We	will	now	have	an	in-depth	step-by-step	analysis	of	the	core	concepts	of	the	jQuery	and
A+	Promise	APIs,	by	also	doing	a	side-by-side	code	comparison	of	the	two.	This	can	be	a
great	asset	to	have,	since	you	will	also	be	able	to	use	it	as	a	reference	while	the
implementations	of	Promises	are	gradually	adapting	to	the	ES6	A+	specification.

The	need	to	understand	from	the	beginning	how	the	two	variants	differ	seems	even
greater,	since	the	jQuery	team	has	already	announced	that	Version	3.0	of	the	library	will
have	Promises/A+	compliant	implementation.	Specifically,	as	of	writing	this	book,	the
first	beta	version	is	already	out,	making	the	time	that	the	migration	will	happen	to	appear
even	closer.

Note
For	more	information	on	jQuery	v3.0	A+	Promises	implementation,	you	can	visit
http://blog.jquery.com/2016/01/14/jquery-3-0-beta-released/.

One	of	the	most	obvious	differences	between	the	two	implementations	is	the	way	that	new
Promises	are	created.	As	we	saw,	jQuery	uses	the	$.Deferred()	function	like	a	factory	of
a	more	complex	object	that	provides	direct	access	to	the	state	of	the	Promise	and
eventually	extracts	the	actual	Promise	using	a	separate	method.	On	the	other	hand,	A+
Promises	use	the	new	keyword	and	a	function	as	a	parameter,	which	will	be	invoked	by	the
runtime	with	the	resolve()	and	reject()	functions	as	parameters:

var	d	=	$.Deferred();	

http://blog.jquery.com/2016/01/14/jquery-3-0-beta-released/

setTimeout(function()	{	

				d.resolve(7);	

},	2000);	

var	p	=	d.promise();	//	jQuery	Promise

var	p	=	new	Promise(function(resolve,	reject)	{	//	Promises/A+

				setTimeout(function()	{	

								resolve(7);	

				},	2000);	

});

Moreover,	jQuery	also	provides	another	way	to	create	Promises	that	look	more	like	the
way	that	A+	Promises	work.	In	this	case,	$.Deferred()	can	be	invoked	with	a	function	as
an	argument	that	receives	the	Deferred	object	as	a	parameter:

var	d	=	$.Deferred(function	(deferred)	{	

				setTimeout(function()	{	

								deferred.resolve(7);	

				},	2000);	

});	

var	p	=	d.promise();	

As	we	discussed	earlier,	the	second	possible	outcome	of	a	Promise	is	to	be	Rejected,	a
feature	that	nicely	pairs	with	the	classical	exceptions	of	JavaScript	in	synchronous
programming.	Rejecting	a	Promise	is	commonly	used	for	cases	where	an	error	occurs
during	the	processing	of	the	result,	or	in	situations	where	the	result	is	not	valid.	While	ES6
Promises	provide	a	reject()	function	as	an	argument	to	the	function	passed	to	its
constructor,	in	jQuery’s	implementation	a	reject()	method	is	simply	exposed	on	the
Deferred	object	itself.

var	p	=	$.Deferred(function	(deferred)	{	

				deferred.reject(new	Error('Something	happened!'));	

}).promise();	

var	p	=	new	Promise(function(resolve,	reject)	{	

				reject(new	Error('Something	happened!'));	

});

In	both	the	implementations,	the	result	of	a	Promise	can	be	retrieved	using	the	then()
method,	which	can	be	invoked	with	two	functions	as	arguments,	one	to	handle	the	case
that	the	Promise	gets	Fulfilled	and	one	for	the	case	where	it	is	Rejected:

p.then(function(result)	{	//	works	the	same	in	jQuery	&	ES6

				console.log(result);	

},	function(error)	{	

				console.error('An	error	occurred:	',	error);	

});

Both	implementations	also	provide	convenient	methods	to	handle	the	case	where	the
Promise	gets	Rejected,	but	with	different	method	names.	Instead	of	using	p.then(null,
fn),	ES6	Promises	provide	the	catch()	method	that	nicely	pairs	with	the	try…catch
JavaScript	expression,	while	jQuery’s	implementation	provides,	for	the	same	purpose,	the
fail()	method:

p.fail(function(error)	{	//	jQuery

				console.error(error);	

});	

p.catch(function(error)	{	//	ES6

				console.error(error);	

});

Moreover,	as	a	jQuery	exclusive	feature,	jQuery	Promises	also	expose	a	done()	and	an
always()	method.	The	callbacks	provided	to	done()	are	invoked	when	the	Promise	gets
Fulfilled	and	is	equivalent	to	using	the	then()	method	with	a	single	parameter,	while	the
callbacks	of	the	always()	method	are	invoked	when	the	promise	gets	settled	in	both
possible	outcomes.

Note
For	more	information	on	done()	and	always(),	you	can	visit
http://api.jquery.com/deferred.done	and	http://api.jquery.com/deferred.always.

Finally,	both	implementations	provide	an	easy	way	to	directly	create	Promises	that	are
already	Resolved	or	Rejected.	This	can	be	useful	as	a	starting	value	to	implement	complex
synchronization	schemes	or	as	an	easy	way	to	make	synchronous	functions	to	operate	like
asynchronous	ones:

var	pResolved	=	$.Deferred().resolve(7).promise();	//	jQuery

var	pRejected	=	$.Deferred().reject(new	Error('Something	

happened!')).promise();	

var	pResolved	=	Promise.resolve(7);	//	ES6

var	pRejected	=	Promise.reject(new	Error('Something	happened!'));

http://api.jquery.com/deferred.done
http://api.jquery.com/deferred.always

Advanced	concepts
Another	key	concept	of	Promises	that	makes	them	unique	and	greatly	increases	their
usefulness	is	the	ability	to	easily	create	compositions	of	several	Promises	that	in	turn	are
Promises	themselves.	Composition	is	available	in	two	forms,	serial	composition	that
chains	Promises	together	and	parallel	composition	that	uses	special	methods	to	join	the
resolution	of	concurrent	Promises	into	a	new	one.	As	we	saw	earlier	in	this	chapter,
implementing	such	synchronization	schemes	can	be	hard	to	implement	with	the	traditional
callback	approach.	Promises,	on	the	other	hand,	try	to	solve	this	problem	in	a	more
convenient	and	readable	way.

Chaining	Promises
Every	invocation	of	the	then()	method	returns	a	new	Promise,	whose	both	final	status	and
result	depends	on	the	Promise	that	the	then()	method	was	called	on,	but	is	also	subject	to
the	value	returned	by	the	attached	callbacks.	This	allows	us	to	chain	calls	of	the	then()
method,	enabling	us	to	compose	Promises	by	serially	joining	them.	This	way,	we	can
easily	orchestrate	both	asynchronous	and	synchronous	code,	where	each	chaining	step
propagates	its	result	to	the	next	one	and	allows	us	to	construct	the	final	result	in	a	readable
and	declarative	way.

Let’s	now	proceed	to	analyzing	all	the	different	ways	that	chaining	of	calls	to	the	then()
method	works.	Since	we	will	be	focusing	on	the	concepts	of	Promise	composition	by
chaining,	which	works	the	same	as	jQuery	and	ES6	Promises,	let’s	suppose	that	there	is	a
p	variable	that	is	holding	a	Promise	object	created	by	either	of	the	following	lines	of	code:

var	p	=	$.Deferred().resolve(7).promise();	

//or	

var	p	=	Promise.resolve(7);

The	simplest	use	case	that	demonstrates	the	power	of	chaining	is	when	the	invoked
callback	returns	a	(non-promise)	value.	The	newly	created	Promise	uses	the	returned	value
as	its	result,	while	preserving	the	same	state	as	the	Promise	that	the	then()	method	was
called	on:

p.then(function(x)	{	//	works	the	same	in	jQuery	&	ES6

				console.log(x);	//	logs	7	

				return	x	*	3;	

}).then(function(x)	{	

				console.log(x);	//	logs	21	

});

A	special	case	to	have	in	mind	is	that	functions	that	do	not	return	anything	as	a	result	are
handled	like	returning	undefined.	This	essentially	removes	the	result	value	from	the
newly	returned	Promise,	which	now	only	preserves	the	parent	settlement	status:

p.then(function(x)	{	//	works	the	same	in	jQuery	&	ES6

				console.log(x);	//	logs	7	

}).then(function(x)	{	

				console.log(x);	//	logs	undefined	

});

In	the	case	where	the	invoked	callback	returns	another	Promise,	its	state	and	result	are
used	for	the	Promise	returned	by	the	then()	method:

p.then(function(x)	{	//	for	jQuery	Promises

				console.log(x);	//	logs	7	

				var	d2	=	$.Deferred();	

				setTimeout(function()	{	

								d2.resolve(x*3);	

				},	2000);	

				return	d2.promise();	

}).then(function(x)	{	

				console.log(x);	//	logs	21	

});	

p.then(function(x)	{	//	for	the	A+	Promises

				console.log(x);	//	logs	7	

				return	new	Promise(function(resolve)	{	

								setTimeout(function()	{	

												resolve(x*3);	

								},	2000);	

				});	

}).then(function(x)	{	

				console.log(x);	//	logs	21	

});

The	preceding	code	samples	demonstrate	the	implementations	for	both	the	jQuery	and	A+
Promises,	and	both	have	equivalent	results.	In	both	cases,	7	is	logged	into	the	console
from	the	first	then()	method	invocation	and	a	new	Promise	is	then	returned	that	will	be
Resolved	at	a	later	time	using	setTimeout().	After	2000	milliseconds,	that	setTimeout()
will	fire	its	callback,	the	returned	Promise	will	be	Resolved	with	21	as	a	value	and,	at	that
point,	21	will	also	be	logged	into	the	console.

One	extra	thing	to	note	is	the	case	where	the	original	Promise	gets	settled	and	there	is	no
appropriate	callback	provided	to	the	chained	then()	method.	In	this	case,	the	newly
created	Promise	settles	to	the	same	state	and	result,	as	the	Promise	where	the	then()
method	was	called	on:

p.then(null,	function	(error)	{	//	works	the	same	in	jQuery	&	ES6

				console.error('An	error	happened!');//	does	not	run,	since	the	promise	

is	resolved

}).then(function(x)	{	

				console.log(x);	//	logs	7	

});

In	the	preceding	example,	the	callback	with	the	console.error	statement	that	is	passed	as
the	second	argument	of	the	then()	method,	does	not	get	invoked	since	the	Promise	is
resolved	with	7	as	its	value.	As	a	result,	the	callback	of	the	chain	eventually	receives	a
new	Promise,	which	is	also	resolved	with	7	as	its	value	and	logs	that	in	the	console.
Something	to	have	in	mind	in	order	to	deeply	understand	how	chaining	of	Promises
works,	is	that	p	!=	p.then()	in	all	cases.

Handling	thrown	errors
The	final	concept	of	chaining	defines	the	case	where	exceptions	are	thrown	during	the
invocation	of	a	then()	callback.	The	Promise/A+	specification	defined	that	the	newly
created	Promise	is	Rejected	and	that	its	result	is	the	Error	that	was	thrown.	Moreover,	the
Rejection	will	bubble	through	the	entire	chain	of	Promises,	enabling	us	to	be	notified
about	any	error	in	the	chain	only	defining	the	error	handling	once,	near	to	the	end	of	the
chain.

Unfortunately,	this	is	not	consistent	in	the	implementation	of	the	latest	stable	version	of
jQuery,	which	as	of	the	writing	of	this	book	is	v2.2.0:

$.Deferred().resolve().promise().then(function()	{	

				throw	new	Error('Something	happened!');	

				//	the	execution	stops	here

}).then(null,	function(x)	{	

				console.log(x);	//	nothing	gets	printed

});	

$.Deferred().resolve().promise().then(function()	{	

				try	{	//	this	is	a	workaround	

								throw	new	Error('Something	happened!');	

				}	catch	(e)	{	

								return	$.Deferred().reject(e).promise();	

				}	

}).then(function(){	

				console.log('Success');	//	not	printed	

}).then(null,	function(x)	{	//	almost	equivalent	to	.fail()

				console.log(x);	//	logs	'Something	happened!''	

});	

Promise.resolve().then(function()	{	

				throw	new	Error('Something	happened!');	

}).then(function(){	

				console.log('Success');	//	not	printed	

}).then(null,	function(x)	{	//	equivalent	to	.catch()

				console.log(x);	//	logs	'Something	happened!''

});

In	the	first	case,	the	exception	that	is	thrown	stops	the	execution	of	the	Promise	chain.	The
only	way	around	it	is	probably	explicitly	adding	a	try…catch	statement	inside	the	callback
that	is	passed	to	the	then()	method,	as	shown	in	the	second	case	that	is	demonstrated.

Joining	Promises
The	other	way	of	orchestrating	Promises	that	run	concurrently	is	by	composing	them
together.	As	an	example,	let’s	suppose	the	existence	of	two	Promises,	p1	and	p2,	that	get
resolved	with	7	and	11	as	their	values,	after	2000	and	3000	milliseconds,	respectively.
Since	these	two	Promises	are	executed	concurrently,	the	composed	Promise	will	only	need
3000	milliseconds	to	get	Resolved,	as	it	is	the	greater	of	the	two	durations:

//	jQuery

$.when(p1,	p2).then(function(result1,	result2)	{	

				console.log('p1',	result1);	//	logs	7	

				console.log('p2',	result2);	//	logs	11	

				//	this	can	be	used	to	make	our	code	look	like	A+	

				var	results	=	arguments;

});	

//	A+	

Promise.all([p1,	p2]).then(function(results)	{	

				console.log('p1',	results[0]);	//	logs	7	

				console.log('p2',	results[1]);	//	logs	11	

});

Both	Promise	APIs	provide	a	specialized	function	that	allows	us	to	easily	create	Promise
compositions	and	also	retrieve	the	individual	results	of	the	composition.	A	composed
Promise	gets	Resolved	when	all	its	parts	get	Resolved,	while	it	gets	Rejected	when	any
one	of	its	parts	gets	Rejected.	Unfortunately,	the	two	Promise	APIs	differ,	not	only	by	the
name	of	the	functions,	but	also	by	the	way	they	are	invoked	and	the	way	they	provide	their
results.

The	jQuery	implementation	provides	the	$.when()	method	that	can	be	invoked	with	any
number	of	arguments	that	we	want	to	be	composed.	By	using	the	then()	method	on	a
composed	jQuery	Promise,	we	can	get	notified	when	the	composition	gets	settled	as	a
whole	and	also	access	each	individual	result	as	arguments	of	our	callback.

On	the	other	hand,	the	A+	Promises	specification	provides	us	the	Promise.all()	method
that	is	invoked	with	an	array	as	its	single	parameter	that	contains	all	the	Promises	that	we
want	to	get	composed.	The	returned	composed	Promise	does	not	differ	at	all	from	the
Promises	that	we	have	seen	so	far	and	the	callback	of	the	then()	method	is	invoked	with
an	array	as	its	parameter,	which	contains	all	the	results	of	the	Promises	that	are	part	of	the
composition.

How	jQuery	uses	Promises
At	the	time	that	jQuery	added	an	implementation	of	Promises	to	its	API,	it	also	started	to
expose	it	through	other	asynchronous	methods	of	its	API.	Perhaps	the	most	well-known
example	of	this	kind	is	the	method	of	the	$.ajax()	family	that	returns	a	jqXHR	object,
which	is	a	specialized	Promise	object	that	also	provides	some	extra	methods	related	to	the
AJAX	request.

Note
For	more	information	on	the	jQuery’s	$.ajax()	method	and	the	jqXHR	object,	you	can
visit	http://api.jquery.com/jQuery.ajax/#jqXHR.	The	jQuery	team	also	decided	to	change
the	implementation	of	several	internal	parts	of	the	library	to	use	Promises,	in	order	to
improve	their	implementations.	First	of	all,	the	$.ready()	method	is	implemented	using
Promises	so	that	the	provided	callbacks	fire	even	if	the	page	has	already	been	loaded	a
long	time	before	its	invocation.	Also,	some	of	the	complex	animations	that	jQuery
provides	use	Promises	internally	as	the	preferred	way	to	synchronize	the	execution	of	the
sequential	parts	of	the	animation	queue.

http://api.jquery.com/jQuery.ajax/#jqXHR

Transforming	Promises	to	other	types
Developing	by	using	several	different	JavaScript	libraries	often	makes	many	Promise
implementations	available	to	our	projects	that	unfortunately	tend	to	have	different	levels
of	compliance	to	the	reference	Promises	specification.	Composing	Promises	returned	by
the	methods	of	different	libraries	can	often	lead	to	problems	that	are	hard	to	track	and
resolve,	as	a	result	of	their	implementation	inconsistencies.

In	order	to	avoid	confusions	in	such	situations,	it	isn’t	considered	a	good	practice	to
transform	all	the	Promises	to	a	single	type	before	attempting	to	compose	them.	The
suggested	type	for	such	situations	is	the	Promises/A+	specification,	since	not	only	is	it
widely	accepted	by	the	community	but	it	is	also	part	of	the	newly	released	version	of
JavaScript	(the	ES6	language	specification)	that	is	already	natively	implemented	in	many
browsers.

Transforming	to	Promises/A+
For	example,	let’s	see	how	a	jQuery	Promise	can	be	transformed	to	an	A+	Promise	that	is
available	in	most	recent	browsers:

var	jqueryPromise	=	$.Deferred().resolve('I	will	be	A+	

compliant').promise();	

var	p	=	Promise.resolve(jqueryPromise);	

p.then(function(result)	{	

				console.log(result);	

});

In	the	preceding	example,	the	Promise.resolve()	method	detects	that	it	has	been	invoked
with	a	“thenable”	and	that	the	newly	created	A+	Promise	that	is	returned	binds	its	status
and	result	to	those	of	the	provided	jQuery	Promise.	This	is	essentially	equivalent	to	doing
something	as	follows:

var	p	=	new	Promise(function	(resolve,	reject)	{	

				jqueryPromise.then(resolve,	reject);	

});

Of	course,	this	is	not	limited	to	Promises	that	are	created	by	direct	invocations	of	the
$.Deferred()	method.	The	above	technique	can	also	be	used	to	transform	Promises	that
are	returned	by	any	jQuery	method.	For	example,	this	is	how	it	can	be	used	with	the
$.getJSON()	method:

var	aPlusAjaxPromise	=	Promise.resolve($.getJSON('AjaxContent.json'));	

aPlusAjaxPromise.then(function(result)	{	

				console.log(result);	

});	

Transforming	to	jQuery	Promises
Even	though	I	would	generally	not	recommend	this,	it	is	also	possible	to	transform	any
Promise	to	a	jQuery	variant.	The	newly	created	jQuery	Promise	receives	all	the	extra
functionalities	that	jQuery	provides,	but	the	transformation	is	not	as	straightforward	as	the
previous	one:

var	aPromise	=	Promise.resolve('I	will	be	a	jQuery	Promise');	

var	p	=	$.Deferred(function	(deferred)	{	

				aPromise.then(function(result)	{	

								return	deferred.resolve(result);	

				},	function(error)	{	

								return	deferred.reject(error);	

				});	

}).promise();

p.then(function(result)	{	

				console.log(result);	

});

You	should	only	use	the	preceding	technique	in	cases	where	you	need	to	extend	a	big	web
application	that	is	already	implemented	using	jQuery	Promises.	On	the	other	hand,	you
should	also	consider	upgrading	such	implementations,	since	the	jQuery	team	has	already
announced	that	Version	3.0	of	the	library	will	have	Promises/A+	compliant
implementation.

Note
For	more	information	on	jQuery	v3.0	A+	Promises	implementation,	you	can	visit
http://blog.jquery.com/2016/01/14/jquery-3-0-beta-released/.

http://blog.jquery.com/2016/01/14/jquery-3-0-beta-released/

Summarizing	the	benefits	of	Promises
Overall,	the	benefits	of	using	Promises	over	plain	Callbacks	include:

Having	a	unified	way	to	handle	the	result	of	asynchronous	invocations
Having	predictable	invocation	parameters	for	the	used	callbacks
The	ability	to	attach	multiple	handlers	for	each	outcome	of	the	Promise
The	guarantee	that	the	appropriate	attached	handlers	will	execute	even	if	the	Promise
has	already	been	Resolved	(or	Rejected)
The	ability	to	chain	asynchronous	operations,	making	them	run	in	order
The	ability	to	easily	create	compositions	of	asynchronous	operations,	making	them
run	concurrently
The	convenient	way	of	handling	errors	in	Promise	chains

Using	a	method	that	returns	a	Promise	removes	the	need	to	directly	pass	functions	of	one
context	to	another	as	an	invocation	argument	and	the	question	regarding	which	parameters
are	used	as	the	success	and	the	error	Callbacks.	Moreover,	we	already	know	to	some
degree	how	to	retrieve	the	result	of	any	operation	that	returns	a	Promise,	by	using	the
then()	method,	even	before	reading	the	documentation	about	the	method’s	invocation
parameters.

Less	parameters	often	means	less	complexity,	smaller	documentation,	and	less	searching
every	time	we	want	to	do	a	method	invocation.	Even	better,	there	is	a	good	chance	that
there	will	only	be	a	single	or	a	few	parameters,	making	the	invocation	more	sensible	and
readable.	The	implementation	of	asynchronous	methods	also	becomes	less	complex,	since
there	is	no	longer	the	need	to	accept	callback	functions	as	an	extra	argument	or	having	to
properly	invoke	them	with	the	result.

Summary
In	this	chapter,	we	analyzed	the	development	patterns	that	are	used	to	program
asynchronous	and	concurrent	procedures.	We	also	learned	how	to	use	them	to	efficiently
orchestrate	the	execution	of	asynchronous	procedures	that	run	either	in	order	or	parallel	to
each	other.

At	first,	we	had	a	refresher	on	how	Callbacks	are	used	in	JavaScript	programming	and
how	they	are	an	integral	part	of	web	development.	We	analyzed	their	benefits	and
limitations	when	used	in	large	and	complex	implementations.

Right	after	this,	we	were	introduced	to	the	concepts	of	Promises.	We	learned	how	jQuery’s
Deferred	and	Promise	APIs	work	and	how	they	differ	from	ES6	Promises.	We	also	saw
where	and	how	they	are	used	internally	by	jQuery	itself,	as	an	example	of	how	they	can
lead	to	more	readable	code	and	simplify	such	complex	implementations.

In	the	next	chapter,	we	will	proceed	to	learning	how	to	design,	create,	and	use	Mock
Objects	and	Mock	Services	in	our	applications.	We	will	analyze	the	characteristics	that	a
proper	Mock	Object	should	have	and	understand	how	they	can	be	used	as	representative
use	cases	and	even	as	test	cases	for	our	code.

Chapter	8.	Mock	Object	Pattern
In	this	chapter	we	will	showcase	the	Mock	Object	Pattern,	a	pattern	to	facilitate	the
development	of	applications	without	actually	being	part	of	the	final	implementation.	We
will	learn	how	to	design,	create	and	use	this	industry-standard	design	pattern	in	order	to
coordinate	and	complete	the	development	of	multi-part	jQuery	applications	faster.	We	will
analyze	the	characteristics	that	a	proper	Mock	Object	should	have	and	understand	how
they	can	be	used	as	representative	use	cases	and	even	as	test	cases	for	our	code.

We	will	see	how	good	application	architecture	makes	it	easier	for	us	to	use	Mock	Objects
&	Services	by	matching	individual	parts	of	the	application,	and	also	realize	the	benefits	of
using	them	during	development.	By	the	end	of	this	chapter,	we	will	be	able	to	create	Mock
Objects	&	Services	to	accelerate	the	implementation	of	our	application	and	also	to	get	a
sense	of	the	overall	functionality	long	before	all	of	its	parts	are	completed.

In	this	chapter,	we	shall:

Introduce	the	Mock	Object	and	Mock	Service	Patterns
Analyze	the	characteristics	that	Mock	Objects	&	Services	should	have
Understand	why	they	fit	better	with	applications	with	good	architecture
Learn	how	to	use	them	in	jQuery	applications	as	a	way	to	drive	the	development	and
accelerate	it

Introducing	the	Mock	Object	Pattern
The	key	concept	of	the	Mock	Object	Pattern	is	in	creating	and	using	a	dummy	object	that
simulates	the	behavior	of	a	more	complex	object	that	is	(or	will	be)	part	of	an
implementation.	The	Mock	Object	should	have	the	same	API	as	the	actual	(or	real)	object,
return	similar	results	using	the	same	data	structures,	and	also	operate	in	a	similar	manner
with	regards	to	how	its	methods	alter	its	exposed	state	(the	properties).

Mock	Objects	are	usually	created	during	the	early	development	phases	of	an	application.
Their	primary	use	case	is	to	enable	us	to	proceed	with	the	development	of	a	Module,	even
if	it	depends	on	others	that	have	not	yet	been	implemented.	Mock	Objects	can	also	be
described	as	prototypes	of	the	data	exchanged	between	the	different	parts	of	the
implementation,	acting	like	contracts	between	the	developers	and	easing	the	parallel
development	of	interdependent	modules.

Tip
In	the	same	way	that	the	principles	of	the	Module	Pattern	decouple	the	implementations	of
the	different	parts	of	an	application,	creating	and	using	Mock	Objects	and	Mock	Services
decouples	their	development.

Creating	Mock	Objects	for	every	Module	before	starting	their	implementation	clearly
defines	the	data	structures	and	APIs	that	will	be	used	by	the	application,	removing	any
misconceptions	and	enabling	us	to	detect	insufficiencies	in	the	proposed	APIs.

Tip
Defining	the	data	structures	that	are	required	to	describe	a	problem	before	starting	the
actual	implementation	allows	us	to	focus	on	the	needs	of	the	application	and	get	an	idea	of
its	overall	complexity	and	structure.

You	can	always	test	any	part	of	your	implementation	after	any	code	change	by	using	the
Mock	Objects	that	were	created	for	the	original	implementation.	You	can	be	sure	that	the
original	use	case	still	works	by	using	the	Mock	Objects	on	the	modified	methods.	This	is
very	useful	when	the	modified	implementation	is	a	part	of	a	use	case	involving	several
stages.

Mock	Objects	are	especially	useful	for	tracing	errors	if	the	implementation	of	a	Module
has	changed	and	caused	the	rest	of	the	application	to	misbehave.	By	using	the	existing
Mock	Objects,	we	can	easily	identify	the	Module	that	diverged	from	the	original
specification.	Moreover,	the	same	Mock	Objects	can	be	used	as	the	basis	for	high	quality
test	cases	since	they	often	contain	more	realistic	sample	data,	something	especially	useful
if	your	team	is	following	a	Test	Driven	Development	(TDD)	paradigm.

Note
In	Test	Driven	Development	(TDD),	the	developer	firstly	defines	a	test	case	for	a	use	case
or	a	new	feature	that	needs	to	be	added	and	then	proceeds	with	its	implementation	by
trying	to	satisfy	the	created	test	case.	For	more	information,	you	can	visit:

https://www.packtpub.com/books/content/overview-tdd.

The	Mock	Object	Pattern	is	commonly	used	among	frontend	web	developers	to	decouple
the	client-side	development	from	the	web	services	that	the	backend	will	expose.	That	has
led	to	witty	comments	such	as:

“The	web	service	will	always	be	late	&	change	suddenly,	so	use	a	Mock	instead.”

Summarizing	all	of	this,	the	main	reasons	to	create	Mock	Objects	and	Services	include:

The	actual	object	or	service	is	not	yet	implemented.
The	actual	object	is	difficult	to	set	up	for	a	specific	use	case.
We	need	to	emulate	a	rare	or	non-deterministic	behavior.
The	actual	object	behaves	in	a	way	that	is	hard	to	reproduce,	such	as	network	errors
or	UI	events.

https://www.packtpub.com/books/content/overview-tdd

Using	Mock	Objects	in	jQuery
applications
In	order	to	demonstrate	how	the	Mock	Object	Pattern	can	be	used	during	the	development
of	a	multi-part	application,	we	will	extend	the	dashboard	example,	as	we	saw	in	Chapter	4,
Divide	and	Conquer	with	the	Module	Pattern,	in	order	to	present	thumbnails	of	YouTube
videos	from	web	developing	conferences.	The	video	references	are	grouped	into	four
predefined	categories	and	the	related	buttons	will	be	displayed	based	on	the	current
category	selection,	as	illustrated	below:

The	changes	that	need	to	be	introduced	to	the	HTML	and	the	CSS	are	minimal.	The	only
extra	CSS	that	is	needed	for	the	above	implementation,	when	compared	to	the	existing
implementation	from	Chapter	4,	Divide	and	Conquer	with	the	Module	Pattern,	is	related
to	the	width	of	the	thumbnails:

.box	img	{	

		width:	100%;	

}

The	change	in	the	HTML	is	intended	to	organize	the	<button>	elements	of	each	category.
This	change	will	make	our	implementation	more	straightforward	since	the	categories	and
their	items	are	no	longer	statically	defined	in	the	HTML	but	are	instead	created
dynamically,	driven	by	the	available	data.

						<!--	…	-->

						<section	class="dashboardCategories">	

								<select	id="categoriesSelector"></select>	

								<div	class="dashboardCategoriesList"></div>	

								<div	class="clear"></div>	

						</section>	

						<!--	…	-->

In	the	above	piece	of	HTML,	the	<div>	element	with	the	dashboardCategoriesList	CSS
class,	will	be	used	as	a	container	for	the	grouped	buttons	of	the	different	video	categories.
After	covering	the	UI	elements,	let’s	now	move	on	to	the	analysis	of	the	JavaScript
implementation.

Defining	the	actual	service	requirements
The	video	references	to	be	displayed	in	our	dashboard	could	be	retrieved	from	various
sources.	For	example,	you	could	make	a	direct	call	to	YouTube’s	client-side	API	or	an
AJAX	call	to	a	backend	web	service	.	In	all	of	the	above	cases,	it	is	considered	a	good
practice	to	abstract	this	data	retrieval	mechanism	into	a	separate	module,	following	the
code	structuring	recommendations	of	the	previous	chapters.

For	this	reason,	we	need	to	add	an	extra	module	to	the	existing	implementation.	This	will
be	a	service,	responsible	for	providing	the	methods	that	will	allow	us	to	retrieve	the	most
relevant	videos	from	each	category	and	load	information	for	each	video	individually.	This
will	be	achieved	by	using	the	searchVideos()	and	getVideo()	methods	respectively.

As	we	have	already	said,	one	of	the	most	important	phases	of	each	implementation,
especially	in	case	of	parallel	development,	is	the	analysis	and	definition	of	the	data
structures	to	be	used.	Since	our	dashboard	will	be	using	the	YouTube	API,	we	need	to
create	some	sample	data	which	follow	its	data	structure	rules.	After	inspecting	the	API,	we
end	up	with	a	sub-set	of	the	fields	that	are	required	for	our	dashboard,	and	can	proceed	to
create	a	JSON	object	with	mock	data	to	demonstrate	the	used	data	structure:

{	

		"items":	[{	

				"id":	{	"videoId":	"UdQbBq3APAQ"	},	

				"snippet":	{	

						"title":	"jQuery	UI	Development	Tutorial:	jQuery	UI	Tooltip	|	

packtpub.com",	

						"thumbnails":	{	

								"default":	{	"url":	

"https://i.ytimg.com/vi/UdQbBq3APAQ/default.jpg"	},	

								"medium":	{	"url":	

"https://i.ytimg.com/vi/UdQbBq3APAQ/mqdefault.jpg"	},	

								"high":	{	"url":	"https://i.ytimg.com/vi/UdQbBq3APAQ/hqdefault.jpg"	

}	

						}	

				}	

		}/*,...*/]

}

Note
For	more	information	about	the	YouTube	API,	you	can	visit:
https://developers.google.com/youtube/v3/getting-started.

Our	service	provides	two	core	methods,	one	for	searching	for	videos	in	a	specified
category	and	one	for	retrieving	information	about	a	specific	video.	The	structure	of	the
sample	object	is	used	for	the	search	method	to	retrieve	a	set	of	relevant	items,	while	the
method	for	retrieving	information	for	a	single	video	uses	the	data	structure	of	each
individual	item.	The	resulting	implementation	for	the	video	information	retrieval	is	in	a
separate	module	named	videoService,	which	will	be	available	on	the
dashboard.videoService	namespace,	and	our	HTML	would	contain	a	<script>
reference	like	the	following:

https://developers.google.com/youtube/v3/getting-started

<script	type="text/javascript"	src="dashboard.videoservice.js"></script>

Implementing	a	Mock	Service
Changing	the	<script>	references	of	the	service	implementation	with	the	Mock	Service
and	vice	versa	should	leave	us	with	a	working	application,	helping	us	progress	and	test	the
rest	of	the	implementation	before	the	actual	implementation	of	the	video	service	is
finished.	As	a	result,	the	Mock	Service	needs	to	use	the	same	dashboard.videoService
namespace,	but	its	implementation	should	be	in	a	differently	named	file	such	as
dashboard.videoservicemock.js	that	simply	adds	the	“mock”	suffix.

As	we	have	already	mentioned,	it	is	a	good	practice	to	place	all	our	mock	data	under	a
single	variable.	Moreover,	if	there	are	a	lot	of	Mocked	Objects,	it	is	common	to	place
them	in	a	different	file	altogether,	with	a	nested	namespace.	In	our	case,	the	file	with	the
mock	data	is	named	dashboard.videoservicemock.mockdata.js	and	its	namespace	is
dashboard.videoService.mockData,	while	exposing	the	searches	and	videos	properties
that	will	be	used	by	the	two	core	methods	of	our	Mock	Service.

Even	though	the	implementations	of	Mock	Services	should	be	simple,	they	have	their	own
complexity	since	they	need	to	provide	the	same	methods	as	the	target	implementations,
accept	the	same	arguments,	and	look	as	if	they	are	operating	in	the	exact	same	way.	For
example,	in	our	case,	the	video	retrieval	service	needs	to	be	asynchronous	and	its
implementation	needs	to	return	Promises:

(function()	{	//	dashboard.videoservicemock.js

				'use	strict';	

				dashboard.videoService	=	dashboard.videoService	||	{};	

				dashboard.videoService.searchVideos	=	function(searchKeywords)	{	

								return	$.Deferred(function(deferred)	{	

												var	searches	=	dashboard.videoService.mockData.searches;	

												for	(var	i	=	0;	i	<	searches.length;	i++)	{	

																if	(searches[i].keywords	===	searchKeywords)	{	

																				//	return	the	first	matching	search	results	

																				deferred.resolve(searches[i].data);	

																				return;	

																}	

												}	

												deferred.reject('Not	found!');	

								}).promise();	

				};	

				dashboard.videoService.getVideo	=	function(videoTitle)	{	

								return	$.Deferred(function(deferred)	{	

												var	videos	=	dashboard.videoService.mockData.allVideos;

												for	(var	i	=	0;	i	<	videos.length;	i++)	{	

																if	(videos[i].snippet.title	===	videoTitle)	{	

																				//	return	the	first	matching	item	

																				deferred.resolve(videos[i]);	

																				return;	

																}	

												}	

												deferred.reject('Not	found!');	

								}).promise();	

				};	

				var	videoBaseUrl	=	'https://www.youtube.com/watch?v=';	

				dashboard.videoService.getVideoUrl	=	function(videoId)	{	

								return	videoBaseUrl	+	videoId;	

				};	

})();	

As	shown	in	the	Mock	Service	implementation	above,	the	searchVideos()	and
getVideo()	methods,	are	iterating	over	the	arrays	with	the	mock	data	and	return	a
Promise	that	is	either	Resolved	with	an	appropriate	Mock	Object	or	Rejected	when	such
an	object	is	not	found.	Finally,	you	can	see	below	the	code	for	the	sub-module	containing
the	Mock	Objects,	following	the	data	structure	that	we	described	earlier.	Note	that	we
store	the	Mock	Objects	of	all	categories	in	the	allVideos	property	in	order	to	make
searching	with	the	mock	getVideo()	method	simpler.

(function()	{	//	dashboard.videoservicemock.mockdata.js

				'use	strict';	

				dashboard.videoService.mockData	=	dashboard.videoService.mockData	||	

{};	

				dashboard.videoService.mockData.searches	=	[{	

								keywords:	'jQuery	conference',	

								data:	{	

												"items":	[/*...*/]	

								}	

				}/*,...*/];	

				var	allVideos	=	[];	

				var	searches	=	dashboard.videoService.mockData.searches;	

				for	(var	i	=	0;	i	<	searches.length;	i++)	{	

								allVideos	=	allVideos.concat(searches[i].data.items);

				}	

				dashboard.videoService.mockData.allVideos	=	allVideos;	

})();	

Experimenting	with	the	implementation	of	some	Mock	Services	will	get	you	familiar	with
their	common	implementation	patterns	in	a	very	short	period	of	time.	Beyond	that,	you
will	be	able	to	easily	create	Mock	Objects	and	Services,	helping	you	design	the	APIs	of
your	applications,	try	them	out	by	using	the	mocks	and	finally	settle	on	the	best	matching
methods	and	data	structures	for	each	use	case.

Tip
Using	the	jQuery	Mockjax	library

The	Mockjax	jQuery	Plugin	library	(available	at	https://github.com/jakerella/jquery-
mockjax)	focuses	on	providing	a	simple	way	of	mocking	or	simulating	AJAX	requests	and
responses.	This	reduces	the	code	needed	to	fully	implement	your	own	Mock	Services,	if
all	that	you	need	is	to	intercept	an	AJAX	request	to	a	web	service	and	return	a	Mock

https://github.com/jakerella/jquery-mockjax

Object	instead.

Using	the	Mock	Service
In	order	to	add	the	functionality	that	we	described	earlier	to	the	existing	dashboard
implementation,	we	need	to	introduce	some	changes	to	the	categories	and	the
informationBox	modules,	adding	the	code	that	will	consume	the	methods	of	our	service.
As	a	representative	example	of	using	the	newly	created	Mock	Service,	let’s	take	a	look	at
the	implementation	of	the	openNew()	method,	in	the	informationBox	module:

dashboard.informationBox.openNew	=	function(itemName)	{

				var	$box	=	$('<div	class="boxsizer"><article	class="box">'	+

												'<header	class="boxHeader">'	+

																'<button	class="boxCloseButton">✖</button>'	+

																itemName	+

												'</header>'	+

												'<div	class="boxContent">Loading…</div>'	+

								'</article></div>');

				$boxContainer.append($box);

				dashboard.videoService.getVideo(itemName).then(function(result)	{

								var	$a	=	$('<a>').attr('href',	

dashboard.videoService.getVideoUrl(result.id.videoId));

								$a.append($('').attr('src',	

result.snippet.thumbnails.medium.url));

								$box.find('.boxContent').empty().append($a);

				}).fail(function()	{

								$buttonContainer.html('An	error	occurred!');

				});

};

This	method	initially	opens	a	new	information	box	with	a	Loading…	label	as	its	content
and	uses	the	dashboard.videoService.getVideo()	method	to	retrieve	the	details	of	the
requested	video	asynchronously.	Finally,	when	the	returned	Promise	gets	resolved,	it
replaces	the	Loading…	label	with	an	anchor	containing	the	thumbnail	of	the	video.

Summary
In	this	chapter,	we	learned	how	to	design,	create	and	use	Mock	Objects	and	Mock
Services	in	our	applications.	We	analyzed	the	characteristics	that	Mock	Objects	should
have	and	understood	how	they	can	be	used	as	representative	use	cases.	We	are	now	able	to
use	Mock	Objects	&	Services	to	accelerate	the	implementation	of	our	applications	and	get
a	better	sense	of	its	overall	functionality,	long	before	all	of	its	individual	parts	are
completed.

In	the	next	chapter,	we	will	be	introduced	to	client-side	templating	and	learn	how	to
generate	complex	HTML	structures	in	the	browser	from	readable	templates	efficiently.	We
will	get	an	introduction	to	Underscore.js	and	Handlebars.js,	analyze	their	conventions,
evaluate	their	features	and	find	which	one	better	suits	our	taste.

Chapter	9.	Client-side	Templating
This	chapter	will	demonstrate	some	of	the	most	widely	used	libraries	to	create	complex
HTML	templates	faster,	while	making	our	implementation	easier	to	read	and	understand
when	compared	to	traditional	string	concatenation	techniques.	We	will	learn	in	more	detail
how	to	use	the	Underscore.js	and	Handlebars.js	templating	libraries,	get	a	taste	of	their
conventions,	evaluate	their	features	and	find	the	one	that	best	suits	our	taste.

By	the	end	of	this	chapter,	we	will	be	able	to	generate	complex	HTML	structures	in	the
browser	efficiently	by	using	readable	templates	and	utilizing	the	unique	characteristics	of
each	templating	library.

In	this	chapter,	we	will:

Discuss	the	benefits	of	using	a	specialized	templating	library
Introduce	the	current	trends	in	client-side	templating,	specifically	the	top
representative	of	the	families	that	use	<%	%>	and	{{	}}	as	their	placeholders
Introduce	Underscore.js	as	an	example	of	the	family	of	templating	engines	that	use
<%	%>	placeholders
Introduce	Handlebars.js	as	an	example	of	the	family	of	templating	engines	that	use
curly	braces	{{	}}	placeholders

Introducing	Underscore.js
Underscore.js	is	a	JavaScript	library	that	provides	a	collection	of	utility	methods	that
help	web	developers	work	more	efficiently	and	focus	on	the	actual	implementation	of	their
application	rather	than	bothering	with	repetitive	algorithmic	problems.	Underscore.js	is,
by	default,	accessible	through	the	“_”	identifier	of	the	global	namespace	and	that’s	exactly
where	its	name	comes	from.

Note
As	with	the	$	identifier	in	jQuery,	the	underscore	“_”	identifier	can	also	be	used	as	a
variable	name	in	JavaScript.

One	of	the	utility	functions	that	it	provides	is	the	_.template()	method,	which	provides
us	with	a	convenient	way	of	interpolating	specific	values	into	existing	template	strings	that
follow	a	specific	format.	The	_.template()	method	recognizes	three	special	placeholder
notations	inside	templates,	which	are	used	to	add	dynamic	characteristics:

The	<%=	%>	notation	is	used	as	the	simplest	way	to	interpolate	a	value	of	a	variable	or
an	expression	in	a	template.
The	<%-	%>	notation	performs	HTML	escaping	on	a	variable	or	expression	and	then
interpolates	it	in	a	template.
The	<%	%>	notation	is	used	to	execute	any	valid	JavaScript	statement	as	part	of	the
template	generation.

The	_.template()	method	accepts	a	template	string	that	follows	these	characteristics	and
returns	a	plain	JavaScript	function,	commonly	referred	to	as	the	template	function,	which
can	be	invoked	with	an	object	containing	the	values	that	are	going	to	be	interpolated	in	the
template.	The	result	of	the	invocation	of	the	template	function	is	a	string	value,	which	is
the	result	of	the	interpolation	of	the	provided	values	inside	the	template:

var	templateFn	=	_.template('<h1><%=	title	%></h1>');

var	resultHtml	=	templateFn({	

		title:	'Underscore.js	example'	

});

As	an	example,	the	above	code	returns	<h1>Underscore.js	example</h1>	and	is
equivalent	to	the	following	shorthand	invocation:

var	resultHtml	=	_.template('<h1><%=	title	%></h1>')({	

		title:	'Underscore.js	example'	

});

Note
For	more	information	about	the	_.template	method,	you	can	read	the	documentation	at:
http://underscorejs.org/#template.

What	makes	Underscore.js	templates	very	flexible	is	the	<%	%>	notation,	which	allows
us	to	perform	any	method	invocation	and	is,	for	example,	used	as	the	recommended	way
to	create	loops	in	a	template.	On	the	other	hand,	overusing	this	feature	may	add	too	much

http://underscorejs.org/#template

logic	to	your	templates,	which	is	a	known	anti-pattern	found	in	many	other	frameworks,
violating	the	principle	of	Separation	of	Concerns.

Using	Underscore.js	templates	in	our	applications
As	an	example	of	using	Underscore.js	for	templating,	we	will	now	use	it	to	refactor	the
HTML	code	generation	which	takes	place	in	some	modules	of	the	dashboard	example,	as
we	saw	in	previous	chapters.	The	modifications	required	to	the	existing	implementation
are	limited	to	the	categories	and	the	informationBox	modules,	which	manipulate	the
DOM	tree	of	the	page	by	adding	new	elements.

The	first	place	that	such	a	refactor	can	be	applied	is	in	the	init()	method	of	the
categories	module.	We	can	modify	the	code	that	creates	the	available	<option>s	of	the
<select>	category	to	look	like	this:

var	optionTemplate	=	_.template('<option	value="<%=	value	%>"><%-	title	%>

</option>');	

var	optionsHtmlArray	=	[];

for	(var	i	=	0;	i	<	dashboard.categories.data.length;	i++)	{	

				var	categoryInfo	=	dashboard.categories.data[i];	

				optionsHtmlArray.push(optionTemplate({	

								value:	i,	

								title:	categoryInfo.title	

				}));		

}

$categoriesSelector.append(optionsHtmlArray.join(''));

As	you	can	see,	we	iterate	over	the	categories	of	the	dashboard	in	order	to	create	and
append	the	appropriate	<option>	elements	to	the	<select>	category	element.	In	our
template,	we	are	using	the	<%=	%>	notation	for	the	value	attribute	of	the	<option>	since
we	know	that	it	will	hold	an	integer	value	that	does	not	need	escaping.	On	the	other	hand,
we	are	using	the	<%-	%>	notation	for	the	content	part	of	each	<option>	in	order	to	escape
the	title	of	each	category	for	the	case	its	value	is	not	an	HTML-safe	string.

We	are	using	the	_.template()	method	outside	the	for	loop	in	order	to	create	a	single
compiled	template	function	that	will	be	reused	on	each	iteration	of	the	for	loop.	In	this
way,	the	browser	not	only	executes	the	_.template()	method	just	once,	but	also
optimizes	the	generated	template	function	and	makes	it	run	faster	on	each	subsequent
execution	inside	the	for	loop.	Lastly,	we	are	using	the	join('')	method	to	combine	all
the	HTML	strings	of	the	optionsHtmlArray	variable	and	append()	the	result	to	the	DOM
with	a	single	operation.

An	alternative	and	possibly	simpler	way	to	achieve	the	same	result	is	by	combining	the	<%
%>	notation	and	the	_.each()	method	that	Underscore.js	provides,	enabling	us	to
implement	a	loop	inside	the	template	itself.	In	this	way,	the	template	will	be	responsible
for	the	iteration	over	the	provided	array	of	categories,	moving	the	complexity	from	the
implementation	of	the	module	into	the	template.

var	templateSource	=	''.concat(

				'<%	_.each(categoryInfos,	function(categoryInfo,	i)	{	%>',	

								'<option	value="<%=	i	%>"><%-	categoryInfo.title	%></option>',	

				'<%	});	%>');	

var	optionsHtml	=	_.template(templateSource)({	

				categoryInfos:	dashboard.categories.data	

});	

$categoriesSelector.append(optionsHtml);

As	you	can	see	in	the	above	code,	our	JavaScript	implementation	no	longer	contains	a	for
loop,	reducing	its	complexity	and	the	required	nesting.	There	is	only	a	single	call	to	the
_.template()	method,	which	nicely	abstracts	the	implementation	to	an	operation	that
generates	the	HTML	and	renders	the	<option>	elements	for	all	the	categories.	You	can
also	see	how	nicely	this	technique	fits	in	with	the	Composite	logic	that	jQuery	itself
follows,	in	which	the	methods	are	designed	to	operate	over	collections	of	elements	instead
of	single	items.

Separating	HTML	templates	from	JavaScript	code
Even	after	introducing	all	of	the	above	improvements,	it	soon	starts	to	become	obvious
that	writing	templates	in	between	your	application	logic	might	not	be	the	best	approach	to
follow.	As	soon	as	your	application	becomes	complex	enough,	or	when	you	need	to	use
templates	that	are	more	than	a	few	lines	long,	the	implementation	starts	to	feel	fragmented
by	the	mix	of	the	application’s	logic	and	the	HTML	templates.

A	cleaner	approach	to	this	problem	is	to	store	your	templates	alongside	the	rest	of	the
HTML	code	of	your	page.	This	is	a	good	step	towards	better	Separation	of	Concerns
since	it	properly	isolates	the	presentation	from	the	application	logic.

In	order	to	include	HTML	templates	as	part	of	web	pages	in	an	inactive	form,	we	need	to
use	a	host	tag	that	will	prevent	them	from	being	rendered,	but	also	allow	us	to	retrieve	its
content	programmatically	when	needed.	For	this	purpose,	we	can	use	<script>	tags	inside
the	<head>	or	the	<body>	of	our	page	and	specify	any	type	other	than	the	common
text/javascript	that	we	normally	use	for	our	JavaScript	code.	The	operation	principle
behind	this	is	that	browsers	do	not	try	to	parse,	execute	or	render	the	content	of	<script>
tags,	in	case	their	type	attribute	isn’t	recognized.	After	some	experimentation,	the
community	of	Underscore.js	users	has	largely	adopted	this	practice	and	agreed	to	specify
text/template	as	the	preferred	type	for	these	<script>	tags,	in	an	attempt	to	make	these
implementations	more	uniform	among	developers.

Tip
Even	though	Underscore.js	is	neither	opinionated	nor	contains	any	implementation
specific	to	the	way	that	the	templates	become	available,	using	text/template	<script>
tags	and/or	AJAX	requests	have	been	valuable	techniques	that	are	widely	used	and	are
considered	best	practices.

As	an	example	of	a	complex	template	that	would	be	beneficial	to	move	into	a	<script>
tag,	we	will	refactor	to	the	openNew()	method	of	the	informationBox	module.	As	you	can
see	in	the	code	below,	the	resulting	<script>	tag	is	cleanly	formatted	and	we	no	longer
need	to	use	string	concatenation	for	the	definition	of	the	multi-line	template:

<script	id="box-template"	type="text/template">	

		<div	class="boxsizer">	

				<article	class="box">	

						<header	class="boxHeader">	

								<button	class="boxCloseButton">✖</button>	

								<%-	itemName	%>	

						</header>	

						<div	class="boxContent">Loading…</div>	

				</article>	

		</div>	

</script>

A	good	practice	when	moving	HTML	templates	out	of	our	code	is	to	write	an	abstracted
mechanism	to	be	responsible	for	retrieving	them	and	providing	the	compiled	template
function.	This	approach	not	only	decouples	the	rest	of	the	implementation	from	the
template	retrieval	mechanism	but	also	makes	it	less	repetitive	and	creates	a	centralized
method	designed	to	provide	templates	for	the	rest	of	the	application.	Moreover,	as	we	can
see	below,	this	approach	also	allows	us	to	optimize	the	way	that	templates	are	retrieved,
propagating	the	benefits	to	all	the	places	that	they	are	used.

var	templateCache	=	{};	

function	getEmbeddedTemplate(templateName)	{	

				var	compiledTemplate	=	templateCache[templateName];	

				if	(!compiledTemplate)	{	

								var	template	=	$('#'	+	templateName).html();	

								compiledTemplate	=	_.template(template);	

								templateCache[templateName]	=	compiledTemplate;	

				}	

				return	compiledTemplate;	

}

dashboard.informationBox.openNew	=	function(itemName)	{	

				var	boxCompiledTemplate	=	getEmbeddedTemplate('box-template');	

				var	boxHtml	=	boxCompiledTemplate({	

								itemName:	itemName	

				});	

				var	$box	=	$(boxHtml).appendTo($boxContainer);	

				/*	...	*/

};

As	shown	in	the	above	implementation,	the	openNew()	method	of	the	informationBox
module	simply	invokes	the	getEmbeddedTemplate()	function	by	passing	a	unique
identifier	that	is	associated	with	the	requested	template	and	uses	the	returned	template
function	to	generate	the	new	box’s	HTML	and	finally	append	it	to	the	page.	The	most
interesting	part	of	the	implementation	is	the	getEmbeddedTemplate()	method,	which	uses
the	templateCache	variable	as	a	dictionary	to	hold	all	the	previously	compiled	template
functions.

The	first	step	is	always	to	check	whether	the	requested	template	identifier	exists	in	our
template	cache.	If	not,	then	the	DOM	tree	of	the	page	is	searched	for	the	<script>	tag
with	the	related	ID	and	its	HTML	content	is	used	to	create	the	template	function,	which	is
then	stored	in	the	cache	and	returned	to	the	caller.

Keep	in	mind	that	it	is	a	good	practice	to	use	a	specific	prefix	or	suffix	for	all	the
identifiers	of	your	HTML	templates	in	order	to	avoid	conflicts	with	the	IDs	of	other	page

elements.	For	this	purpose,	in	the	above	example	we	used	the	-template	as	a	suffix	of	the
identifier	of	our	box	template.

Ideally,	the	implementation	of	the	template	provider	method	should	be	in	a	separate
module	that	will	be	used	by	all	the	parts	of	an	application	but,	since	in	our	dashboard	this
is	used	in	only	one	place,	we	met	the	needs	of	our	demonstration	by	simply	using	a
function.

Introducing	Handlebars.js
Handlebars.js,	or	simply	Handlebars,	is	a	specialized	client-side	templating	library	that
enables	web	developers	to	create	semantic	templates	effectively.	Using	Handlebars	for
templating	leads	to	the	creation	of	logic-free	templates	which	ensures	that	the	view	and
the	code	are	isolated,	helping	preserve	the	Separation	of	Concerns	principle.	It	is	largely
compatible	with	Mustache	templates,	which	are	a	templating	language	specification	that
have	proven	their	effectiveness	over	time	and	have	many	implementations	for	all	the
major	programming	languages.	Additionally,	Handlebars	provides	a	set	of	extensions	on
top	of	the	Mustache	template	specification,	such	as	helper	methods	and	partials,	as	a
means	of	extending	the	templating	engine	and	creating	more	effective	templates.

Note
You	can	see	all	the	documentation	for	Handlebars	at:	http://handlebarsjs.com/.	You	can	get
more	information	about	Mustache	in	JavaScript	at:	https://github.com/janl/mustache.js/.

The	main	template	notation	that	Handlebars	provides	is	the	double	curly	braces	syntax	{{
}}.	As	Handlebars	was	designed	to	be	used	for	HTML	templates	from	the	beginning,	this
notation	also	applies	HTML	escaping	by	default,	lowering	the	chances	that	a	non-escaped
value	could	reach	the	template	causing	potential	security	problems.	If	a	non-escaped
interpolation	is	required	for	a	specific	part	of	a	template,	we	can	use	the	triple	curly	braces
notation	{{{	}}}.

Moreover,	since	Handlebars	prevents	us	from	invoking	methods	directly	from	within	a
template,	it	provides	us	with	the	ability	to	define	and	use	helper	methods	and	block
expressions	as	a	way	to	cover	more	complex	use	cases	while	also	helping	to	maintain	our
templates	as	clean	and	readable	as	possible.	The	set	of	built-in	helpers	includes	the	{{#if
}}	and	{{#each	}}	helpers	which	allow	us	to	perform	iterations	over	arrays	and	change
the	outcomes	of	a	template	based	on	conditions	very	easily.

The	central	method	of	the	Handlebars	library	is	the	Handlebars.compile()	method,
which	accepts	a	template	string	as	a	parameter	and	returns	a	function	that	can	be	used	to
generate	string	values	that	follow	the	form	of	the	provided	template.	This	function	can
then	be	invoked	(as	in	Underscore.js)	with	an	object	as	a	parameter,	the	properties	of
which	will	be	used	as	a	context	for	the	evaluation	of	all	the	Handlebars	expressions	(the
curly	braces	notations)	that	were	defined	in	the	original	template:

var	templateFn	=	Handlebars.compile('<h1>!!!{{	title	}}!!!</h1>');

var	resultHtml	=	templateFn({	

		title:	'>	Handlebars	example	<'

});

As	an	example,	the	above	code	returns	"<h1>!!!>	Handlebars	example	<!!!
</h1>",	turning	the	interpolated	title	into	a	safe	HTML	string,	but	one	which	would
otherwise	render	properly	when	attached	to	the	DOM	tree	of	a	page.	Of	course,	the	same
result	can	be	achieved	with	the	following	shorthand	invocation,	if	we	don’t	need	to	keep	a
reference	to	the	compiled	template	function	for	future	use:

http://handlebarsjs.com/
https://github.com/janl/mustache.js/

var	resultHtml	=	Handlebars.compile('<h1>!!!{{	title	}}!!!</h1>')({	

		title:	'>	Handlebars	example	<'	

});

Using	Handlebars.js	in	our	applications
As	an	example	of	using	Handlebars.js	for	templating	and	in	order	to	demonstrate	its
differences	from	Underscore.js	templates,	we	will	now	use	it	to	refactor	our	dashboard
example,	like	we	did	in	the	previous	section.	Like	before,	the	refactoring	is	limited	to	the
categories	and	the	informationBox	modules,	which	manipulate	the	DOM	tree	of	the
page	by	adding	new	elements.

The	refactored	implementation	of	the	init()	method	of	the	categories	module	should
look	like	this:

var	optionTemplate	=	Handlebars.compile('<option	value=	"{{	value	}}">{{	

title	}}</option>');	

var	optionsHtmlArray	=	[];	

for	(var	i	=	0;	i	<	dashboard.categories.data.length;	i++)	{	

				var	categoryInfo	=	dashboard.categories.data[i];	

				optionsHtmlArray	.push(optionTemplate({	

								value:	i,	

								title:	categoryInfo.title	

				}));	

}

$categoriesSelector.append(optionsHtmlArray.join(''));

First	of	all,	we	have	used	the	Handlebars.compile()	method	which	generates	and	returns
a	template	function	based	on	the	provided	template	string.	The	main	difference	with	the
Underscore.js	implementation	we	saw	in	the	previous	section,	is	that	we	now	use	the
double	curly	braces	notation	{{	}}	to	interpolate	values	in	our	template.	Apart	from	the
different	appearance,	Handlebars.js	also	does	HTML	string	escaping	by	default	in	an
attempt	to	eliminate	HTML	injection	security	holes	by	making	escaping	part	of	its	primary
use	case.

As	we	did	earlier	in	this	chapter,	we	will	create	the	template	function	outside	the	for	loop
and	use	it	to	generate	the	HTML	for	each	<option>	element.	All	the	generated	HTML
strings	are	gathered	in	an	array	and	are	finally	combined	and	attached	to	the	DOM	tree
with	a	single	operation,	using	the	$.append()	method.

The	next	incremental	step	to	reduce	the	complexity	of	our	implementation	is	to	abstract
the	iterations	away	from	our	JavaScript	code	using	the	looping	capabilities	of	the
templating	engine	itself:

var	templateSource	=	''.concat(

				'{{#each	categoryInfos}}',	

								'<option	value="{{@index}}">{{	title	}}</option>',	

				'{{/each}}');	

var	optionsHtml	=	Handlebars.compile(templateSource)({	

				categoryInfos:	dashboard.categories.data	

});	

$categoriesSelector.append(optionsHtml);

The	Handlebars.js	library	allows	us	to	achieve	that	by	using	the	special	{{#each	}}
notation.	In	between	the	{{#each	}}	and	{{/each}},	the	context	of	the	template	is
changed	to	match	each	individual	object	of	the	iteration,	allowing	to	directly	access	and

interpolate	the	{{	title	}}	of	each	object	in	the	categoryInfos	array.	Moreover,	in
order	to	access	the	loop	counter,	Handlebars	provides	us	with	the	special	@index	variable
as	part	of	the	context	of	the	loop.

Note
For	a	full	list	of	all	the	special	notations	that	Handlebars	provides,	you	can	read	the
documentation	at:	http://handlebarsjs.com/reference.html

Separating	HTML	templates	from	JavaScript	code
Like	most	templating	engines,	Handlebars	also	leads	us	to	isolate	our	templates	from	the
JavaScript	implementation	of	our	application	and	deliver	them	to	the	browser	by	including
them	in	<script>	tags,	inside	the	HTML	of	our	pages.	Moreover,	Handlebars	is
opinionated	and	prefers	the	special	text/x-handlebars-template	as	the	type	attribute	for
all	<script>	tags	that	contain	Handlebars	templates.	For	example,	here	is	how	the
template	for	the	dashboard’s	boxes	should	be	defined	according	to	the	library
recommendations:

<script	id="box-template"	type="text/x-handlebars-template">	

		<div	class="boxsizer">	

				<article	class="box">	

						<header	class="boxHeader">	

								<button	class="boxCloseButton">✖</button>	

								{{	itemName	}}	

						</header>	

						<div	class="boxContent">Loading…</div>	

				</article>	

		</div>	

</script>

Tip
Even	though	our	implementation	would	still	work	if	a	different	type	was	specified	for	the
<script>	tag,	following	the	library’s	guidelines	can	obviously	make	implementations
more	uniform	among	developers.

As	we	did	earlier	in	this	chapter,	we	will	follow	the	best	practice	of	creating	a	separate
function	to	be	responsible	for	providing	the	templates	wherever	they	are	needed	in	the
application:

var	templateCache	=	{};	

function	getEmbeddedTemplate(templateName)	{	

				var	compiledTemplate	=	templateCache[templateName];	

				if	(!compiledTemplate)	{	

								var	template	=	$('#'	+	templateName).html();	

								compiledTemplate	=	Handlebars.compile(template);	

								templateCache[templateName]	=	compiledTemplate;	

				}	

				return	compiledTemplate;	

}	

dashboard.informationBox.openNew	=	function(itemName)	{	

http://handlebarsjs.com/reference.html

				var	boxCompiledTemplate	=	getEmbeddedTemplate('box-template');	

				var	boxHtml	=	boxCompiledTemplate({	

								itemName:	itemName	

				});	

				var	$box	=	$(boxHtml).appendTo($boxContainer);	

				/*	...	*/	

};

As	you	can	see,	the	implementation	is	mostly	the	same	as	the	Undescore.js	example	that
we	saw	earlier	in	this	chapter.	The	only	difference	is	that	we	are	now	using	the
Handlebars.compile()	method	to	generate	the	compiled	template	functions	from	the
retrieved	templates.

Pre-compiling	templates
An	extra	feature	of	the	Handlebars	library	is	the	support	for	template	pre-compilation.
This	allows	us	to	pre-generate	all	the	template	functions	with	a	simple	terminal	command
and	then	have	our	server	deliver	to	them	to	the	browser,	instead	of	the	actual	templates.	In
this	way,	the	browser	will	be	able	to	use	the	pre-compiled	templates	directly,	removing	the
need	for	the	compilation	of	each	individual	template	and	making	the	execution	of	the
library	and	our	application	faster.

In	order	to	pre-compile	our	templates,	we	first	need	to	place	them	in	separate	files.	The
Handlebars	documentation	suggests	using	the	.handlebars	extension	for	our	files	but	we
can	still	use	the	.html	extension	if	it	is	preferred.	After	installing	the	compilation	tool	on
our	development	machine	(with	npm	install	handlebars	-g),	we	can	issue	the
following	command	in	our	terminal	to	compile	a	template:

handlebars	box-template.handlebars	-f	box-template.js

This	will	generate	the	box-template.js	file	that	is	actually	a	mini-module	definition	that
adds	the	template	to	Handlebars.templates.	The	generated	file	can	then	be	combined	and
minified	like	regular	JavaScript	files	and,	when	loaded	by	a	browser,	the	template	function
will	become	available	through	the	Handlebars.templates['box-template']	property.

Note
Keep	in	mind	that	if	the	.html	extension	is	being	used	for	the	templates,	then	the	pre-
compiled	template	function	will	be	available	through	the	Handlebars.templates['box-
template.html']	property.

As	you	can	see,	using	a	template	provider	function	assists	with	the	migration	of	an
existing	application	to	pre-compiled	templates	since	it	allows	us	to	encapsulate	the	way
that	the	templates	are	retrieved.	Moving	to	pre-compiled	templates	only	requires	changing
the	getEmbeddedTemplate()	to	something	like	this:

function	getEmbeddedTemplate(templateName)	{	

				return	Handlebars.templates[templateName];	

}

Note

For	more	information	about	template	pre-compilation	in	Handlebars,	read	the
documentation	at:	http://handlebarsjs.com/precompilation.html.

http://handlebarsjs.com/precompilation.html

Retrieving	HTML	templates
asynchronously
The	final	step	to	mastering	client-side	templating	is	a	development	practice	that	allows	us
to	load	templates	dynamically	and	use	them	in	a	web	page	that	has	already	been	loaded.
This	approach	can	lead	to	more	scalable	implementations	than	the	approach	of	embedding
all	the	available	templates	as	<script>	tags	inside	the	HTML	source	of	each	page.

The	key	element	of	this	technique	is	to	load	each	template	only	when	it	is	required	for	the
presentation	of	a	web	page,	commonly	after	a	user	action.	The	main	benefits	of	this
approach	are	that:

The	initial	page	load	time	is	reduced	since	the	HTML	of	the	page	is	smaller.	The
gains	from	the	reduction	of	the	page	size	become	even	greater	if	our	application	has	a
lot	of	templates	that	are	used	only	under	certain	circumstances,	for	example,	after
specific	user	interactions.
The	user	only	downloads	a	template	if	it	is	actually	going	to	be	used.	In	this	way,	the
size	of	the	total	downloaded	resources	for	each	page	load	can	be	reduced.
Subsequent	requests	for	an	already	loaded	template	will	not	lead	to	an	extra
download,	since	the	browser’s	HTTP	caching	mechanism	will	return	the	cached
resource.	Additionally,	since	the	browser	cache	is	used	for	all	HTTP	requests
regardless	of	the	page	from	which	they	originate,	users	only	have	to	download	the
required	template	once	while	using	our	web	application.

Because	of	its	benefits	to	user	experience	and	its	scalability,	this	technique	is	widely	used
by	the	most	popular	webmail	and	social	networking	web	sites,	where	various	HTML
templates	and	JavaScript	modules	are	loaded	dynamically,	based	on	user	actions.

Note
For	more	information	on	how	jQuery	can	be	used	to	load	JavaScript	modules	on	a	page
dynamically,	read	the	documentation	for	the	$.getScript()	method	at:
https://api.jquery.com/jQuery.getScript/.

https://api.jquery.com/jQuery.getScript/

Adopting	it	in	an	existing	implementation
To	illustrate	this	technique,	we	will	change	the	Underscore.js	and	Handlebars.js
implementations	of	the	informationBox	module	so	that	it	fetches	the	box	template	for	our
dashboard	using	an	AJAX	request.

Let’s	proceed	by	analyzing	the	necessary	changes	for	our	Underscore.js	implementation:

var	templateCache	=	{};	

function	getAjaxTemplate(templateName)	{	

				var	compiledTemplate	=	templateCache[templateName];	

				if	(compiledTemplate)	{	

								return	$.Deferred().resolve(compiledTemplate);	

				}	

				return	$.ajax({	

								mimeType:	'text/html',	

								url:	templateName	+	'.html'	

				}).then(function(template)	{	

								templateCache[templateName]	=	_.template(template);	

								return	templateCache[templateName];	

				});	

}	

As	you	can	see	in	the	above	code,	we	have	implemented	the	getAjaxTemplate()	function
as	a	way	of	decoupling	the	mechanism	that	is	responsible	for	fetching	the	template	from
the	implementation	that	uses	it.	This	implementation	has	a	lot	in	common	with	the
getEmbeddedTemplate()	function	that	we	used	earlier,	the	main	difference	being	that	the
getAjaxTemplate()	function	is	asynchronous	and,	as	a	result,	returns	a	Promise.

The	getAjaxTemplate()	function	firstly	checks	whether	or	not	the	requested	template
already	exists	in	its	cache,	as	an	extra	attempt	to	reduce	HTTP	requests	to	the	server.	If	the
template	is	found	in	the	cache,	then	it	is	returned	as	part	of	a	Resolved	Promise,	otherwise
we	initiate	an	AJAX	request	using	the	$.ajax()	method	to	retrieve	it	from	the	server.	Like
before,	we	need	to	have	a	convention	regarding	the	naming	of	the	template	HTML	files
and	the	path	used	to	store	them	in	the	server.	In	our	example,	we	are	looking	in	the	same
directory	as	the	web	page	itself	and	just	appending	the	.html	file	extension.	An	extra
concern	in	some	cases,	depending	on	the	web	server	used,	is	the	definition	of	the
mimeType	of	the	resource	as	text/html.

When	the	AJAX	request	completes,	the	then()	method	is	executed	with	the	content	of	the
template	as	a	string	parameter,	which	is	used	to	generate	the	compiled	template	function.
Our	implementation	finally	returns	the	compiled	template	function	as	the	result	of	the
chained	Promise,	right	after	adding	it	to	its	cache.	Since	the	getAjaxTemplate()	function
is	asynchronous,	we	also	had	to	change	the	implementation	of	the	openNew()	method	and
move	all	the	code	using	the	returned	template	function	inside	a	then()	callback.	Apart
from	this,	the	implementation	has	remained	the	same	and	uses	the	template	function	in
exactly	the	same	way	as	before.

dashboard.informationBox.openNew	=	function(itemName)	{	

				var	templatePromise	=	getAjaxTemplate('box-template');	

				templatePromise.then(function(boxCompiledTemplate)	{	

								var	boxHtml	=	boxCompiledTemplate({	

												itemName:	itemName	

								});	

								var	$box	=	$(boxHtml).appendTo($boxContainer);	box);	

								/*	...	*/	

				});	

};

When	re-implementing	the	getAjaxTemplate()	function	to	use	Handlebars.js,	the
resulting	code	is	mostly	the	same	as	before.	The	only	difference	is	in	the	invocation	of	the
Handlebars.compile()	method	instead	of	the	Undescore.js	equivalent.	This	is	an	added
benefit	as	many	client-side	templating	engines	influenced	each	other	and	have	converged
into	a	very	similar	API	regarding	the	way	that	their	template	functions	are	used,	largely
because	of	the	positive	user	feedback	on	the	existing	implementations.

function	getAjaxTemplate(templateName)	{	

				/*	…same	as	before…	*/

				return	$.ajax({	/*	…same	as	before…	*/	}).then(function(template)	{	

								templateCache[templateName]	=	Handlebars.compile(template);	

								return	templateCache[templateName];	

				});	

}

Note
Keep	in	mind	that	the	$.ajax()	method	might	not	work	in	some	browsers	when	the	page
is	loaded	through	the	filesystem,	but	works	as	intended	when	served	using	a	web	server
like	Apache,	IIS,	or	nginx.

Moderation	is	best	in	all	things
Even	though	this	technique	reduces	the	overall	download	footprint	of	each	web	page,	it
also	inevitably	increases	the	number	of	HTTP	requests	made.	Moreover,	the	practice	of
loading	every	template	lazily	can	sometimes	increase	the	time	that	the	user	will	have	to
wait	if	the	templates	are	required	for	the	initial	rendering	of	the	page.

Balancing	the	way	that	we	load	our	templates	between	lazy	loading	and	embedding	them
in	<script>	tags	usually	brings	the	best	of	both	worlds.	This	hybrid	approach	is
considered	a	best	practice	by	the	industry	since	it	allows	us	to	micromanage	and	fine	tune
each	implementation	based	on	its	needs.	According	to	this	practice,	the	templates	that	are
required	for	the	presentation	of	the	main	content	of	a	page	are	embedded	in	its	HTML,
while	the	rest	of	them	are	delivered	lazily	when	needed,	taking	advantage	of	browser
caching.

The	implementation	of	such	a	template	provider	function	is	left	as	an	exercise	for	the
reader.	As	a	hint,	such	methods	have	to	be	asynchronous	since,	when	the	requested
template	is	not	found	embedded	in	the	<script>	tag	of	the	page,	it	will	have	to	proceed
and	make	an	AJAX	request	to	retrieve	it	from	the	server.

Tip
Keep	in	mind	that	it	is	generally	preferable	to	generate	the	complete	initial	HTML	content
of	the	page	on	the	server	side	instead	of	using	client-side	templating.	This	not	only	leads
to	a	smaller	loading	time	of	the	initial	page	content	but	it	also	prevents	situations	in	which
the	user	is	presented	with	an	empty	page	when	JavaScript	is	unavailable	or	an	error	has
occurred.

Summary
In	this	chapter,	we	learned	how	to	use	two	of	the	most	common	client-side	templating
libraries:	Underscore.js	and	Handlebars.js.	We	also	learned	how	they	allow	us	to	create
complex	HTML	templates	faster	while	making	our	implementations	easier	to	read	and
understand.	We	then	went	on	to	analyze	their	conventions	and	evaluate	their	features	and
learned	by	example	how	they	can	be	effectively	and	efficiently	used	in	our
implementations.

After	completing	this	chapter,	we	are	now	able	to	generate	complex	HTML	structures	in	a
browser	efficiently	by	using	readable	templates	and	utilizing	the	unique	characteristics	of
the	templating	libraries.

In	the	next	chapter,	we	will	learn	how	to	create	jQuery	Plugins	as	a	way	to	abstract	parts
of	our	applications	into	reusable	and	extensible	implementations.	We	will	introduce	the
most	widely	used	patterns	for	developing	jQuery	Plugins	and	analyze	the	implementation
problems	that	each	of	them	helps	to	solve.

Chapter	10.	Plugin	and	Widget
Development	Patterns
This	chapter	focuses	on	the	design	patterns	and	best	practices	used	when	implementing
jQuery	Plugins.	We	will	learn	here	how	to	abstract	parts	of	an	application	into	separate
jQuery	Plugins,	promoting	the	Separation	of	Concerns	principle	and	code	reusability.

We	will	firstly	analyze	the	simplest	ways	that	a	jQuery	Plugin	can	be	implemented,	learn
the	various	conventions	of	jQuery	Plugin	development	and	the	basic	characteristics	that
every	plugin	should	satisfy	in	order	to	follow	jQuery	principles.	We	will	then	proceed	with
an	introduction	to	the	most	widely	used	design	patterns	and	analyze	the	characteristics	and
benefits	of	each	of	them.	By	the	end	of	this	chapter,	we	will	be	able	to	implement
extensible	jQuery	Plugins	using	the	development	pattern	that	best	suits	each	use	case.

In	this	chapter	we	will:

Introduce	the	jQuery	Plugin	API	and	its	conventions
Analyze	the	characteristics	that	make	an	excellent	plugin
Learn	how	to	create	a	plugin	by	extending	the	$.fn	object
Learn	how	to	implement	generic	plugins	that	are	extensible	in	order	to	make	them
reusable	in	more	use	cases
Learn	how	to	provide	options	and	methods	to	your	plugins
Introduce	the	most	common	design	patterns	for	jQuery	plugin	development	and
analyze	the	common	implementation	problems	that	each	of	them	helps	to	solve

Introducing	jQuery	Plugins
The	key	concept	of	jQuery	plugins	lies	in	extending	the	jQuery	API	by	making	their
functionality	accessible	as	a	method	on	jQuery	Composite	Collection	Objects.	A	jQuery
plugin	is	simply	a	function	that	is	defined	as	a	new	method	on	the	$.fn	object,	which	is
the	Prototype	Object	that	every	jQuery	Collection	Object	inherits	from.

$.fn.simplePlugin101	=	function(arg1,	arg2/*,	...*/)	{	

				//	Plugin's	implementation…	

};

By	defining	a	method	on	the	$.fn	object,	we	are	actually	extending	the	core	jQuery	API
itself,	since	this	makes	the	method	available	on	all	created	jQuery	Collection	Objects	from
that	point	onwards.	As	a	result,	after	a	plugin	has	been	loaded	in	a	web	page,	its
functionality	is	available	as	a	method	on	every	object	returned	by	the	$()	function:

$('h1').simplePlugin101('test',	1);

The	main	convention	of	the	jQuery	plugin	API	is	that	the	jQuery	Collection	Object	that
the	plugin	was	invoked	on	is	made	available	to	the	plugin’s	method	as	its	execution
context.	In	other	words,	we	can	use	the	this	identifier	in	the	plugin	method,	as	shown
below:

$.fn.simplePlugin101	=	function()	{	

				this.slideToggle();	

				//	"this"	is	a	jQuery	object	where	all	

				//	jQuery	methods	are	available

};

Following	jQuery	principles
One	of	the	goals	when	creating	a	plugin	is	to	make	it	feel	like	a	part	of	jQuery	itself.	After
reading	the	previous	chapters,	you	should	be	familiar	with	some	of	the	principles	that	all
jQuery	methods	follow	and	the	characteristics	that	make	its	approach	special.
Implementing	a	plugin	that	follows	these	principles	makes	users	feel	more	comfortable
with	its	API,	be	more	productive,	and	make	fewer	implementation	errors,	which	leads	to
an	increase	in	the	plugin’s	popularity	and	adoption.

Two	of	the	most	important	characteristics	that	a	great	jQuery	plugin	should	have	are	as
follows:

It	should	apply	on	all	the	elements	of	the	jQuery	Collection	Object	it	is	invoked	on
whenever	applicable
It	should	allow	further	chaining	of	other	jQuery	methods

Let’s	now	move	on	and	analyze	each	of	these	principles.

Working	on	Composite	Collection	Objects
One	of	the	most	important	features	of	jQuery	methods	is	that	they	are	applied	on	every
item	of	the	Composite	Collection	Object	that	they	are	invoked	on.	As	an	example,	the
$.fn.addClass()	method	adds	one	or	more	CSS	classes	to	every	item	of	the	collection
after	individually	checking	whether	each	class	has	already	been	defined	on	each	individual
element.

As	a	result,	our	jQuery	plugins	should	also	follow	this	principle	by	operating	on	every
element	of	a	collection,	when	such	a	thing	seems	logical.	If	you	are	using	only	jQuery
methods	in	your	plugin’s	implementation,	most	of	the	time,	you	get	this	for	free.	On	the
other	hand,	an	important	consideration	to	bear	in	mind	is	that	not	all	jQuery	methods
operate	on	every	element	of	a	collection	object.	Methods	like	$.fn.html(),	$.fn.css()
and	$.fn.data()	apply	on	all	the	items	of	the	collection	when	used	as	setter	methods,	but
operate	only	on	the	first	element	when	used	as	getters.

Let’s	see	an	example	implementation	of	a	plugin	that	uses	$.fn.animate()	to	create	a
shake	effect	on	all	items	of	a	jQuery	object:

$.fn.vibrate	=	function()	{	

		this.each(function(i,	element)	{	

				//	specifically	handle	every	element

				var	$element	=	$(element);	

				if	($element.css('position')	===	'static')	{	

						$element.css({	position:	'relative'	});	

				}	

		});	

		this.animate({	left:	'+=3'	},	30)	

				.animate({	left:	'-=6'	},	60)	

				.animate({	left:	'+=6'	},	60)	

				.animate({	left:	'-=3'	},	30);	

		return	this;	//	allow	further	chaining

};

Invoking	this	plugin	with	$('button').vibrate();	applies	the	shaking	animation	on
every	matched	element	of	the	page.	To	achieve	that,	the	plugin	changes	the	left	CSS
property	of	all	matched	elements	using	the	$.fn.animate()	method,	which	conveniently
operates	on	every	element.	On	the	other	hand,	since	the	$.fn.css()	method	applies	only
on	the	first	element	of	the	collection	when	used	as	a	getter,	we	had	to	iterate	over	all	the
elements	using	the	$.fn.each()	method	and	ensure	that	each	of	them	was	not	statically
positioned,	in	which	case	the	left	CSS	property	would	not	affect	its	appearance.

Obviously,	using	only	jQuery	methods	is	not	always	sufficient	for	the	implementation	of	a
plugin.	In	most	cases,	a	new	plugin	will	have	to	use	at	least	one	non-jQuery	API	for	its
implementation,	requiring	us	to	iterate	over	the	items	of	the	collection	and	apply	the	logic
of	the	plugin	to	each	of	them	individually.	The	same	approach	should	be	used	when	each
element	of	the	collection	has	to	be	handled	slightly	differently	based	on	its	state.

As	a	result,	it	is	quite	common	for	plugins	to	wrap	almost	all	of	their	implementations
inside	a	$.fn.each()	invocation.	By	recognizing	the	common	needs	that	are	covered	by
explicit	iteration,	the	jQuery	team	and	most	jQuery	plugin	boilerplates	now	make	it	part	of
their	standard	practice.

Allowing	further	chaining
In	general,	when	your	plugin’s	code	does	not	need	to	return	anything,	all	that	you	have	to
do	to	enable	further	chaining	is	to	add	a	return	this;	statement	to	its	last	line,	as	we	saw
in	the	previous	example.	Make	sure	that	all	the	code	paths	return	a	reference	of	the
invocation	context	(this)	or	another	relevant	jQuery	collection	object,	in	the	same	way
that	$.fn.parent()	and	$.fn.find()	do.	Alternatively,	when	all	your	code	is	wrapped
inside	another	jQuery	method,	such	as	$.fn.each(),	it	is	common	practice	to	simply
return	the	result	of	that	invocation,	as	demonstrated	below:

$.fn.myLogPlugin	=	function()	{	

				return	this.each(function(i,	element)	{	

								console.log($(element).text());	

				});	

};

Keep	in	mind	that,	if	your	code	manipulates	the	collection	object	that	it	was	invoked	on,
instead	of	returning	the	this	reference,	you	might	need	to	return	the	new	collection	that
was	the	result	of	your	plugin’s	manipulations.

Note
You	should	avoid	basing	your	plugin’s	implementation	on	a	return	value	in	order	to	allow
further	chaining.	Instead	of	doing	that,	it	is	preferable	to	initialize	the	plugin	on	its	first
invocation	and	then	provide	some	overloaded	ways	to	invoke	it,	as	a	way	of	returning
values.

Working	with	$.noConflict()
The	first	step	to	improve	a	plugin’s	implementation	is	to	make	it	work	in	environments
that	do	not	have	access	to	the	$	identifier.	An	example	of	this	is	when	a	web	page	uses	the
jQuery.noConflict()	method,	which	prevents	jQuery	from	assigning	itself	to	the	$
global	identifier	(or	window.$)	and	keeps	it	available	only	on	the	jQuery	namespace
(window.jQuery).

Note
The	jQuery.noConflict()	method	allows	us	to	prevent	jQuery	from	conflicting	with
other	libraries	and	implementations	that	also	happen	to	use	the	$	variable.	For	more
information,	you	can	visit	the	jQuery	documentation	page	at:
http://api.jquery.com/jQuery.noConflict/

In	such	cases,	the	plugin	definition	would	throw	an	$	is	not	defined	error	or	even	worse;	it
might	try	to	use	the	$	variable	that	the	developer	has	reserved	to	use	in	an	implementation,
leading	to	errors	that	are	hard	to	debug.

Fortunately,	the	changes	required	to	fix	this	problem	are	easy	to	implement	and	do	not
affect	the	functionality	of	the	plugin.	All	that	we	have	to	do	is	rename	all	of	the
occurrences	of	the	$	identifier	in	our	plugin	with	jQuery,	as	shown	below:

jQuery.fn.simplePlugin101	=	function(arg1,	arg2/*,	...*/)	{	

				var	$buttons	=	jQuery('button');

				//	...

};

http://api.jquery.com/jQuery.noConflict/

Wrapping	with	an	IIFE
The	next	best	practice	to	follow	is	to	wrap	the	definition	and	implementation	of	our	plugin
with	an	IIFE.	This	not	only	makes	our	plugin	look	like	the	Module	Pattern	but	also
makes	our	implementation	more	robust	by	adding	several	other	benefits	to	it.

First	of	all,	the	IIFE	pattern	allows	us	to	create	and	use	private	variables	and	functions	in
the	context	of	the	plugin’s	definition.	These	variables	are	shared	across	all	the	instances	of
the	plugin	in	a	similar	way	to	how	static	variables	work	in	other	programming	languages,
enabling	us	to	use	them	as	synchronization	points	between	the	plugin	instances:

(function($)	{	

				var	callCounter	=	0;	

				function	utilityLogMethod(message)	{	

								if	(window.console	&&	console.log)	{	

												console.log(message);	

								}	

				}	

				$.fn.simplePlugin101	=	function(arg1,	arg2/*,	...*/)	{	

								callCounter++;	

								utilityLogMethod(callCounter);	

								return	this;

				};	

})(jQuery);

Otherwise,	we	would	have	to	use	something	like	$.simplePlugin101._callCounter	or
$.simplePlugin101._utilityLogMethod()	to	emulate	privacy,	which	is	just	a	naming
convention	and	does	not	provide	any	actual	privacy.

The	second	benefit,	as	demonstrated	in	the	above	example,	is	that	it	allows	us	to	use	the	$
identifier	again	to	access	jQuery	with	no	concerns	about	conflicts.	In	order	to	achieve	this,
we	are	passing	the	jQuery	namespace	variable	as	an	invocation	parameter	to	our	IIFE	and
use	the	$	identifier	to	name	the	respective	parameter.	In	this	way,	we	effectively	alias	the
jQuery	namespace	to	$	in	the	context	created	by	the	IIFE,	enabling	us	to	use	the	minimal	$
identifier	in	our	implementation	to	keep	our	code	slim	and	readable,	even	if
jQuery.noConflict()	is	used.

Additionally,	adding	the	use	strict;	statement	on	the	top	of	our	IIFE	helps	us	to
eliminate	any	leaking	of	variables	into	the	global	namespace.	For	example,	the	following
code	would	throw	a	ReferenceError:	assignment	to	undeclared	variable	x	error	during
the	invocation	of	the	plugin’s	method,	enabling	us	to	catch	those	errors	during	the
development	phase	of	the	plugin	helping	produce	a	more	robust	final	implementation:

(function($)	{	

				'use	strict';	

				$.fn.leakingPlugin	=	function()	{	

								x	=	0;//	there	is	no	"var	x"	declaration,	

								//	so	an	error	is	thrown	when	executed

				};	

})(jQuery);	

$('div').leakingPlugin();

Note
For	more	information	about	JavaScript’s	strict	execution	mode,	you	can	visit:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Finally,	this	pattern,	as	with	all	the	namespace	aliasing	practices	that	use	IIFEs,	can	also
help	increase	the	gains	when	minifying	your	plugin’s	source	code,	when	compared	to	an
implementation	that	references	the	jQuery	namespace	variable	directly.	In	an	attempt	to
maximize	the	benefits	of	this	technique,	it’s	also	common	to	alias	all	the	global	namespace
variables	that	our	plugin	accesses,	as	demonstrated	below:

(function	($,	window,	document,	undefined)	{	

				//	Plugin's	implementation…	

})(jQuery,	window,	document);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Creating	reusable	plugins
After	analyzing	the	most	important	aspects	of	the	development	of	jQuery	plugins,	we	are
now	ready	to	analyze	an	implementation	that	is	used	for	something	more	than	a	simple
demonstration.	In	order	to	create	a	really	useful	and	reusable	plugin,	it	must	be	designed
such	that	its	operations	are	not	restricted	by	the	demands	of	its	original	use	case.

The	most	popular	plugins,	like	the	most	useful	jQuery	methods,	are	those	that	provide	a
high	degree	of	configuration	of	their	functionality.	Creating	a	plugin	that	is	configurable
adds	a	degree	of	flexibility	to	its	implementation,	which	enables	us	to	match	the	needs	of
several	other	use	cases	that	are	governed	by	the	same	operation	principles.

As	we	said	earlier,	a	jQuery	plugin	is	just	a	function	attached	to	the	$.fn	object	and,	as	a
result,	we	can	make	its	implementation	more	abstract	and	generic	in	the	same	way	as	with
plain	functions	of	our	modules.	As	in	simple	functions,	the	easiest	way	to	differentiate	the
operation	of	a	jQuery	plugin	is	by	using	invocation	parameters.	A	plugin	that	exposes	a	lot
of	configuration	parameters	has	great	potential	of	being	able	to	be	match	the	requirements
of	several	different	use	cases.

Accepting	configuration	parameters
In	contrast	to	how	we	implement	functions	that	usually	accept	up	to	five	arguments	and
still	have	a	manageable	and	relatively	clean	API,	this	practice	does	not	work	so	well	with
jQuery	plugins.	In	order	to	expose	a	clear	API	and	maintain	a	high	level	of	usability,
regardless	of	the	various	configuration	options	that	are	exposed,	most	jQuery	plugins
provide	a	minimal	API	that	accepts	up	to	three	invocation	arguments.	This	is	achieved	by
using	dedicated	setting	objects	with	a	specific	format,	as	a	way	of	encapsulating	multiple
options	and	passing	them	as	a	single	argument.	Another	approach	is	to	expose	an	API	with
two	parameters,	where	the	first	one	is	a	regular	value	that	defines	the	operation	of	the
plugin	and	the	second	one	is	used	to	wrap	the	less	important	configuration	options.

A	great	example	of	both	of	these	practices	is	the	$.ajax(settings)	method,	which	is
invoked	with	a	single	settings	object	as	a	parameter	to	define	how	it	should	operate,	but
also	exposes	another	overloaded	way	to	be	invoked	with	two	arguments.	The	two
argument	overload	is	invoked	with	$.ajax(url,	settings),	where	the	first	is	the	target
URL	for	the	HTTP	request	and	the	second	is	an	object	with	the	rest	configuration	options.
What	applies	to	both	of	them	is	that	the	method	itself	contains	a	set	of	sensible	defaults
that	are	used	instead	of	any	configuration	parameter	that	the	user	has	not	defined.
Moreover,	the	second	overload	also	defines	the	second	parameter	as	optional	and,	if	that
was	not	provided	during	its	invocation,	it	bases	its	operation	on	the	default	settings.

Adopting	the	settings	object	practice	in	our	plugins	not	only	brings	all	the	aforementioned
benefits,	but	also	allows	us	to	extend	the	implementation	in	a	more	scalable	way,	since	the
addition	of	an	extra	configuration	parameter	has	little	effect	on	the	rest	of	its	API.	As	an
example	of	this,	we	will	reimplement	the	$.fn.vibrate	plugin	that	we	saw	earlier	in	this
chapter	in	a	more	generic	way,	so	that	a	setting	object	with	default	values	is	used	for	its
configuration:

(function($)	{	

		$.fn.vibrate	=	function(options)	{	

				var	opts	=	$.extend({},	$.fn.vibrate.defaultOptions,	options);

				this.each(function(i,	element)	{	

						var	$element	=	$(element);	

						if	($element.css('position')	===	'static')	{	

								$element.css({	position:	'relative'	});	

						}	

				});	

				for	(var	i	=	0,	len	=	opts.loops	*	4;	i	<	len;	i++)	{	

						var	animationProperties	=	{};	

						var	movement	=	(i	%	2)	?	'+=':	'-=';	

						movement	+=	(i	===	0	||	i	===	len	-	1)	?	

								opts.amplitude	/	2:	

								opts.amplitude;	

						var	t	=	(i	===	0	||	i	===	len	-	1)	?	

								opts.period	/	4:	

								opts.period	/	2;	

						animationProperties[opts.direction]	=	movement;	

						this.animate(animationProperties,	t);	

				}

				return	this;	

		};	

		$.fn.vibrate.defaultOptions	=	{	

				loops:	2,	

				amplitude:	8,	

				period:	100,	

				direction:	'left'	

		};	

})(jQuery);

In	contrast	to	the	original	fixed	implementation,	this	one	accepts	a	single	object	as	an
invocation	parameter	which	wraps	four	different	options	that	can	be	used	to	diversify	the
operation	of	the	plugin.	The	options	object	allows	us	to	diversify	the	operation	of	the
plugin	by	exposing	four	customization	points:

The	number	of	loops	that	the	shake	effect	should	run
The	amplitude	of	the	animation,	as	a	means	of	controlling	how	much	an	element
should	move	away	from	its	original	position
The	period	of	each	loop,	as	a	means	of	controlling	how	fast	the	movement	will	be
The	direction	of	the	animation,	which	is	horizontal	when	left	is	used	or	vertical
when	top	is	used

By	following	a	widely	accepted	best	practice,	we	have	defined	all	the	default	values	for
the	configuration	options	as	a	separate	object.	This	pattern	not	only	allows	us	to	gather	all
the	related	values	under	a	single	object,	but	also	enables	us	to	use	the	$.extend()	method
as	an	effective	way	of	composing	all	the	defined	options	with	the	default	values	of	the
undefined	ones.	We	can	thus	avoid	checking	explicitly	for	the	existence	of	each	individual
property,	reducing	the	complexity	and	the	size	of	our	code.

In	brief,	the	$.extend()	method	returns	the	object	passed	as	its	first	argument	after
merging	the	properties	of	the	subsequent	objects	together	into	the	first	object.	As	a	result,
the	returned	object	will	contain	all	the	default	values	except	those	that	were	defined	in	the
options	object	that	was	passed	as	an	invocation	parameter.

Note
For	more	information	about	the	$.extend()	helper	method,	you	can	visit	the
documentation	page	at:	http://api.jquery.com/jQuery.extend/

Moreover,	instead	of	using	a	simple	variable,	we	are	exposing	the	default	options	object	as
a	property	of	the	plugin’s	function,	enabling	users	to	change	them	to	better	suit	their
needs.	As	an	example,	consider	a	case	in	which	a	smooth	animation	is	required	for	the
needs	of	a	specific	application.	By	setting	$.fn.vibrate.defaultOptions.period	=
250,	the	developer	would	completely	remove	the	need	to	specify	the	period	option	in

http://api.jquery.com/jQuery.extend/

every	invocation	of	the	plugin,	which	would	lead	to	an	implementation	with	less	repetitive
code.

Note
The	jQuery	library	itself	adopts	this	practice	for	defining	the	default	configuration
parameters	of	the	$.ajax()	method.	Because	of	the	increased	complexity	of	this	method,
jQuery	provides	us	with	the	jQuery.ajaxSetup()	method	as	a	way	of	setting	up	the
default	parameters	for	every	AJAX	request.

Finally,	in	order	to	create	a	generic	variant	of	the	original	implementation	and	utilize	the
aforementioned	configuration	options,	we	replaced	the	four	fixed	invocations	of	the
$.fn.animate()	method	of	the	original	implementation	with	a	for	loop	that	utilized	the
loops	option.	Inside	the	for	loop	itself,	we	construct	the	parameters	for	each	call	of	the
$.fn.animate()	method	and	briefly	alternate	the	direction	of	the	animated	movement	on
each	subsequent	execution	of	the	loop,	and	also	ensure	that	the	first	and	last	movements
have	half	of	the	time	duration	and	half	of	the	shift	of	all	of	the	other	steps.

The	final	implementation	can	be	configured	to	produce	different	animations,	based	on	the
needs	of	each	specific	use	case,	ranging	from	short	horizontal	animations	that	are	ideal	for
notifying	a	user	about	an	invalid	action,	to	vertical	long	animations	that	look	like	a
levitation	effect.	The	plugin	can	be	invoked	with	any	combination	of	the	aforementioned
options,	use	the	default	values	for	missing	options	and	even	operate	with	no	invocation
argument,	as	shown	below:

//	do	the	default	intense	animation	on	a	button

//	that	appears	disabled,	to	designate	an	invalid	action	

$('button.disabled').on('click',	function()	{	

		$(this).vibrate();	

});	

//	do	a	smother	shake	animation	to	catch	the	user's	

//	attention	on	an	important	part	of	the	page	

$('.save-button').vibrate({loops:	3,	period:	250});	

//	start	a	long	running	levitation	effect	on	the	header	of	the	page	

$('h1').vibrate({direction:	'top',	loops:	1000,	period:	5000});

Writing	stateful	jQuery	plugins
The	plugin	implementations	that	we	have	looked	at	so	far	were	stateless	since,	after
completing	their	execution,	they	revert	their	manipulations	on	the	DOM’s	state	and	don’t
leave	allocated	objects	in	the	browser’s	memory.	As	a	result,	subsequent	invocations	of
stateless	plugins	always	produce	the	same	results.

As	you	can	probably	guess,	such	plugins	have	limited	applications	since	they	can’t	be
used	to	create	a	series	of	complex	interactions	with	the	user	of	the	web	page.	In	order	to
orchestrate	complex	user	interactions,	a	plugin	needs	to	preserve	an	internal	state	with	the
actions	taken	up	to	that	point	in	order	to	change	its	operation	mode	appropriately	and
handle	subsequent	interactions.	Comparing	the	characteristic	of	stateful	and	stateless
plugins	could	be	defined	as	the	equivalent	to	comparing	plain	(static)	functions	with
methods	that	are	part	of	an	object	and	can	operate	on	its	state.

Another	popular	category	of	plugins,	in	which	having	an	internal	state	is	essential,	is	the
family	of	plugins	that	manipulate	the	DOM	tree.	These	plugins	usually	create	complex
element	structures	such	as	a	rich	text	editors,	date	pickers	and	calendars,	commonly	by
building	on	a	user-defined	empty	<div>	element.

Implementing	a	stateful	jQuery	Plugin
As	an	example	of	the	patterns	used	for	the	implementation	of	plugins	of	this	family,	we
will	write	a	generic	Element	Mutation	Observer	plugin.	This	plugin	will	provide	us	with
a	convenient	way	of	adding	event	listeners	for	changes	to	the	DOM	tree	that	originate
from	any	of	the	elements	that	this	plugin	was	invoked	on.	As	a	way	of	achieving	that,	the
following	implementation	uses	the	MutationObserver	API,	which,	at	the	time	of	writing,
is	implemented	by	all	modern	browsers	and	is	available	to	more	than	86%	of	web	users.

Note
For	more	information	on	the	Mutation	Observer,	you	can	visit:
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

Let’s	now	proceed	with	the	implementation	and	analyze	the	practices	that	were	used:

(function($)	{	

		$.fn.mutationObserver	=	function(action)	{	

				return	this.each(function(i,	element)	{	

						var	$element	=	$(element);	

						var	instance	=	$element.data('plugin_mutationObserver');	

						if	(!instance)	{	

								var	observer	=	new	MutationObserver(function(mutations)	{	

										mutations.forEach(function(mutation)	{	

												instance.callbacks.forEach(function(callbackFn)	{	

														callbackFn(mutation);	

												});	

										});	

								});	

								observer.observe(element,	{

										attributes:	true,

										childList:	true,

										characterData:	true

								});	

								instance	=	{	

										observer:	observer,	

										callbacks:	[]	

								};	

								$element.data('plugin_mutationObserver',	instance);	

						}	

						if	(typeof	action	===	'function')	{	

								instance.callbacks.push(action);	

						}	

				});	

		};	

})(jQuery);

Firstly,	we	define	our	plugin	inside	an	IIFE,	as	recommended	earlier	in	this	chapter.	Right
after	the	declaration	of	the	plugin	on	the	$.fn	object,	we	use	the	$.fn.each()	method	as	a

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

direct	approach	to	ensure	that	the	functionality	of	our	plugin	is	applied	to	every	item	of	the
jQuery	Collection	Object	that	it	was	invoked	on.

Two	of	the	main	issues	that	stateful	plugin	implementations	have	is	the	lack	of	a
mechanism	to	preserve	the	internal	state	of	each	instantiation	of	the	plugin	and	a	way	of
avoiding	being	initialized	many	times	on	the	same	page	element.	In	order	to	solve	both	of
these	problems,	we	need	to	use	something	like	a	hash	table	in	which	the	key	is	the	element
itself	and	the	value	is	an	object	with	the	state	of	the	plugin’s	instance.

Fortunately,	this	is	more	or	less	how	the	$.fn.data()	method	works	by	associating	DOM
elements	and	JavaScript	object	values	using	specific	string	keys.	By	using	the
$.fn.data()	method	and	the	plugin’s	name	as	an	association	key,	we	are	able	to	store	and
retrieve	the	state	object	of	our	plugin	very	easily.

Tip
Using	the	$.fn.data()	method	for	this	use	case	is	considered	a	best	practice	and	is	used
by	most	stateful	plugin	implementations	and	boilerplates	since	it	is	a	robust	part	of	jQuery
that	enables	us	to	reduce	the	size	of	our	plugin’s	implementation.

If	an	existing	state	object	is	not	found	then	we	can	assume	that	the	plugin	is	not	yet
initialized	on	that	specific	element	and	start	its	initialization	right	away.	The	state	object	of
this	plugin	will	contain	the	instance	of	the	active	MutationObserver	responsible	for
tracking	the	changes	that	happen	on	the	observed	DOM	element,	and	an	array	with	all	the
callbacks	that	have	subscribed	to	it	to	get	notifications	about	changes.

After	creating	a	new	MutationObserver	instance,	we	configure	it	to	look	for	three	specific
types	of	DOM	changes	and	instruct	it	to	invoke	all	the	callbacks	of	the	plugin’s	state
object	whenever	such	DOM	changes	occur.	Finally,	we	create	the	state	object	itself	to	hold
the	observer	and	the	associated	callbacks	and	use	the	$.fn.data()	method	as	a	setter	and
associate	it	with	the	page	element.

After	ensuring	that	the	plugin	is	instantiated	and	initialized	on	the	provided	element,	we
check	whether	the	plugin	is	invoked	with	a	function	as	a	parameter	and,	if	so,	we	add	it	to
the	list	of	the	plugin’s	callbacks.

Tip
Keep	in	mind	that	using	a	single	MutationObserver	instance	per	element	and	having	it
notify	about	DOM	changes	by	iterating	over	an	array	of	callbacks	greatly	reduces	the
memory	requirements	of	the	implementation,	just	like	when	we	are	using	a	single	delegate
observer.

An	example	of	using	our	newly	implemented	plugin	to	observe	for	changes	of	a	specific
DOM	element	would	look	like	this:

$('.container').mutationObserver(function(mutation)	{	

		console.log('Something	changed	on	the	DOM	tree!');	

});

Destroying	a	plugin	instance
An	extra	consideration	that	a	stateful	plugin	has	to	take	into	account	is	offering	the
developer	a	way	to	reverse	the	changes	that	it	introduced	to	the	state	of	the	page.	The	most
common	and	simple	API	for	achieving	this	is	to	invoke	the	plugin	with	the	destroy	literal
as	its	first	parameter.	Let’s	proceed	with	the	required	implementation	changes:

(function($)	{	

		$.fn.mutationObserver	=	function(action)	{	

				return	this.each(function(i,	element)	{	

						var	$element	=	$(element);	

						var	instance	=	$element.data('plugin_mutationObserver');	

						if	(action	===	'destroy'	&&	instance)	{	

								instance.observer.disconnect();	

								instance.observer	=	null;

								$element.removeData('plugin_mutationObserver');	

								return;	

						}	

						if	(!instance)	{	

								/*	...	*/	

						}	

				});	

		};	

})(jQuery);

In	order	to	adapt	our	implementation	to	the	above	requirement,	all	we	had	to	do	was	to
check	whether	the	plugin	was	invoked	with	the	destroy	string	value	as	its	first	parameter,
right	after	retrieving	the	plugin’s	state	object.	If	we	find	that	the	plugin	has	already	been
instantiated	on	the	specified	element	and	that	the	destroy	string	value	has	been	used,	we
can	proceed	to	stop	the	Mutation	Observer	itself	and	clear	the	association	that
$.fn.data()	created	by	using	the	$.fn.removeData()	method.	Finally,	at	the	end	of	the
if	statement	we	added	a	return	statement	since,	after	completing	the	destruction	of	the
plugin	instance,	we	no	longer	need	to	execute	any	other	code.	An	example	of	destroying	a
plugin	instance	with	this	implementation	would	look	like	this:

$('.container').mutationObserver('destroy');

Implementing	getter	and	setter	methods
By	using	the	same	technique	that	we	demonstrated	earlier	for	the	implementation	of	the
destroy	method	of	our	plugin,	we	can	provide	several	other	overloaded	ways	to	invoke
our	plugin	that	work	like	normal	methods.	This	pattern	is	not	only	used	by	plain	jQuery
plugins,	but	is	also	adopted	by	more	complex	plugin	architectures,	as	with	jQuery-UI.

On	the	other	hand,	we	might	end	up	with	a	plugin	implementation	that	results	in	a	large
number	of	invocation	overloads,	which	is	something	that	would	make	it	difficult	to	use
and	document.	A	way	to	work	around	this	is	to	combine	the	getter	and	setter	methods	of
your	API	into	multi-purpose	methods.	This	not	only	reduces	the	API	surface	of	your
plugin	so	that	a	developer	has	to	remember	fewer	method	names	but	it	also	increases	the
productivity	since	the	same	pattern	is	used	in	many	jQuery	methods	like	$.fn.html(),
$.fn.css(),	$.fn.prop(),	$.fn.val(),	and	$.fn.data().

As	a	demonstration	of	this,	let’s	see	how	we	can	add	a	new	method	to	our
MutationObserver	plugin	that	works	both	as	a	getter	and	a	setter	for	the	registered
callbacks:

(function($)	{	

		$.fn.mutationObserver	=	function(action,	callbackFn)	{	

				var	result	=	this;	

				this.each(function(i,	element)	{	

						var	$element	=	$(element);	

						var	instance	=	$element.data('plugin_mutationObserver');	

						/*	...	*/	

						if	(typeof	action	===	'function')	{	

								instance.callbacks.push(action);	

						}	else	if	(action	===	'callbacks')	{	

								if	(callbackFn	&&	callbackFn.length	>=	0)	{	

										//	used	as	a	setter	

										instance.callbacks	=	callbackFn;	

								}	else	{	

										//	used	as	a	getter	for	the	first	element	

										result	=	instance.callbacks;	

										return	false;//	break	the	$.fn.each()	iteration	

								}	

						}

				});	

				return	result;	

		};	

})(jQuery);	

As	shown	in	the	above	code,	we	have	created	an	overloaded	invocation	method	which
uses	the	callbacks	string	value	as	the	first	argument	of	the	plugin	invocation.	This	getter
and	setter	method	allows	us	to	retrieve	or	overwrite	all	of	the	callbacks	that	are	registered
on	the	MutationObserver	and	works	in	addition	to	the	pre-existing	methods	for	invoking
the	plugin,	by	using	a	function	parameter	and	the	destroy	method.

The	getter	and	setter	implementation	is	based	on	the	assumption	that,	when	trying	to	use
the	callbacks	method	as	a	getter,	you	don’t	need	to	pass	any	extra	parameters	and,	when
trying	to	use	it	as	a	setter,	you	will	pass	an	extra	array	as	an	invocation	parameter.	In	order
to	support	the	getter	variant,	which	prevents	further	chaining	and	only	operates	on	the	first
element	of	the	composite	collection,	we	had	to	declare	and	use	the	result	variable	which
is	initialized	to	the	value	of	the	this	identifier.	If	the	callbacks	getter	is	used,	we	assign
the	callbacks	of	the	first	element	of	the	collection	to	the	result	variable	and	break	out	of
the	$.fn.each()	iteration	by	returning	false	to	finish	the	execution	of	the	plugin’s
method.

Here	is	an	example	use	case	for	our	newly	implemented	getter	and	setter	method:

//	retrieve	the	callbacks	

var	oldCallbacks	=	$('.container').mutationObserver('callbacks');	

//	clear	them	

$('.container').mutationObserver('callbacks',	[]);	

//	add	a	new	one	

$('.container').mutationObserver(function()	{	

		console.log('Printed	only	once');	

		//	restore	the	old	callbacks

		$('.container').mutationObserver('callbacks',	oldCallbacks);	

});

Tip
Keep	in	mind	that	invocation	overloads	that	prevent	further	chaining	by	returning	non-
jQuery	object	results	should	be	well	documented	since	this	technique	conflicts	with	the
chaining	principle	that	everyone	expects	to	work.

Using	our	plugin	in	our	Dashboard	application
After	completing	our	mutationObserver	plugin,	lets	now	see	how	we	can	use	it	for	the
implementation	of	the	counter	sub-module	that	we	used	in	our	Dashboard’s
implementation	in	previous	chapters:

(function()	{	

				'use	strict';	

				dashboard.counter	=	dashboard.counter	||	{};	

				var	$counter;	

				dashboard.counter.init	=	function()	{	

								$counter	=	$('#dashboardItemCounter');	

								var	$boxContainer	=	dashboard.$container

										.find('.boxContainer');	

								$boxContainer.mutationObserver(function(mutation)	{	

												dashboard.counter.setValue($boxContainer.children().length);	

								});	

				};	

				dashboard.counter.setValue	=	function	(value)	{	

								$counter.text(value);	

				};	

})();	

As	you	can	see	in	the	above	implementation,	our	plugin	abstracts	nicely	and	replaces	the
old	implementation	by	providing	a	generic,	flexible	and	reusable	API.	Instead	of	listening
for	click	events	on	the	different	buttons	of	the	page,	the	implementation	is	now	using	the
mutationObserver	plugin	and	observes	the	boxContainer	element	for	the	additions	or
removals	of	child	elements.	Moreover,	this	implementation	change	does	not	affect	the
functionality	of	the	counter	module	which	appears	to	work	in	the	same	way	since	all	the
changes	are	encapsulated	in	the	module.

Using	the	jQuery	Plugin	Boilerplate
The	jQuery	Boilerplate	project,	which	is	available	at	https://github.com/jquery-
boilerplate/jquery-patterns,	offers	several	templates	that	can	be	used	as	starting	points	for
the	implementation	of	robust	and	extensible	plugins.	These	templates	incorporate	a	lot	of
best	practices	and	design	patterns	such	as	those	analyzed	earlier	in	this	chapter.	Each	of
the	templates	packs	a	number	of	best	practices	that	work	well	together,	in	an	attempt	to
provide	good	starting	points	that	better	match	the	various	use	cases.

Perhaps	the	most	widely	used	template	is	jquery.basic.plugin-boilerplate	from
Adam	Sontag	and	Addy	Osmani,	which	even	though	it	is	characterized	as	a	generic
template	for	beginners	and	above,	successfully	covers	most	aspects	of	jQuery	plugin
development.	What	makes	this	template	unique	is	the	Object-Oriented	approach	that	it
follows	which	is	presented	in	such	a	way	that	it	helps	you	write	better	structured	code,
without	making	it	harder	to	introduce	customizations	on	the	implementation.	Let’s
proceed	and	analyze	its	source	code:

/*!	

	*	jQuery	lightweight	plugin	boilerplate	

	*	Original	author:	@ajpiano	

	*	Further	changes,	comments:	@addyosmani	

	*	Licensed	under	the	MIT	license	

	*/	

;(function	($,	window,	document,	undefined)	{	

		var	pluginName	=	"defaultPluginName",	

				defaults	=	{	

						propertyName:	"value"	

				};	

		function	Plugin(element,	options)	{	

				this.element	=	element;	

				this.options	=	$.extend({},	defaults,	options)	;	

				this._defaults	=	defaults;	

				this._name	=	pluginName;	

				this.init();	

		}	

		Plugin.prototype	=	{	

				init:	function()	{	/*	Place	initialization	logic	here		*/	},

				yourOtherFunction:	function(options)	{	/*	some	logic	*/	}

		};

		//	A	really	lightweight	plugin	wrapper	around	the	constructor,	

		//	preventing	against	multiple	instantiations	

		$.fn[pluginName]	=	function	(options)	{	

				return	this.each(function	()	{	

						if	(!$.data(this,	"plugin_"	+	pluginName))	{	

								$.data(this,	"plugin_"	+	pluginName,	

								new	Plugin(this,	options));	

						}	

				});	

		};	

})(jQuery,	window,	document);	

https://github.com/jquery-boilerplate/jquery-patterns

The	semi-colon	right	before	the	IIFE	is	there	to	avoid	errors	in	case	of	unfortunate	script
concatenation	(and	possibly	minification)	with	a	file	that	might	be	missing	an	ending
semi-colon.	Right	below,	the	boilerplate	uses	the	pluginName	variable	as	a	DRY	way	of
naming	our	plugin	and	using	its	name	for	any	other	case.	As	an	added	benefit,	all	that	we
have	to	do	if	we	need	to	rename	our	plugin	is	change	the	value	of	this	variable	and	rename
the	.js	file	of	our	plugin	accordingly.

Following	the	best	practices	that	we	saw	earlier,	a	variable	is	used	to	hold	the	default
options	of	the	plugin	and,	as	we	can	see	a	few	lines	later,	it	is	merged	with	the	user-
provided	options	using	the	$.extend()	method.	Keep	in	mind	that,	if	we	want	to	expose
the	default	options,	all	that	we	have	to	do	is	define	it	as	part	of	the	plugin’s	namespace:
$.fn[pluginName].defaultOptions	=	defaults;

The	actual	plugin	definition	can	be	found	near	the	end	of	this	boilerplate	code.	Following
the	already	discussed	best	practices,	it	iterates	over	the	items	of	the	collection	using
$.fn.each()	and	returns	its	result,	which	is	equivalent	to	returning	this.	It	then	ensures
that	a	plugin	state	instance	exists	for	each	item	of	the	collection	by	using	the	$.data()
method	and	the	prefixed	plugin	name	as	an	association	key.

The	Plugin	constructor	function	is	used	for	the	creation	of	the	plugin’s	state	object	which,
after	storing	the	DOM	element	and	the	final	plugin	options	as	properties	of	the	object,
invokes	the	init()	method	of	its	prototype.	The	init()	method	is	the	suggested	place	to
define	our	initialization	code,	for	example,	it	could	instantiate	a	new	MutationObserver	as
we	did	earlier	in	this	chapter.

Adding	methods	to	your	plugin
By	default,	every	method	that	is	defined	as	part	of	the	prototype	is	only	available	for
internal	use.	On	the	other	hand,	we	can	easily	extend	the	above	implementation	to	make	a
method	available	to	all	our	users,	as	shown	below:

$.fn[pluginName]	=	function	(options,	extraParam)	{	

		return	this.each(function	()	{	

				var	instance	=	$.data(this,	"plugin_"	+	pluginName);	

				if	(!instance)	{	

						instance	=	new	Plugin(this,	options);	

						$.data(this,	"plugin_"	+	pluginName,	instance);	

				}	else	if	(options	===	'yourOtherFunction')	{	

						instance.yourOtherFunction(this,	extraParam);	

				}	

		});	

};

One	guideline	to	follow	when	working	with	this	boilerplate	is	to	extend	your	plugin	by
adding	extra	methods	to	the	Plugin‘s	prototype.	Additionally,	try	to	keep	any
modifications	to	the	plugin’s	definition	as	small	as	possible,	ideally	single	line	method
invocations.

In	order	to	make	the	implementation	more	scalable,	with	regards	to	how	the	plugin
methods	are	invoked	and	if	we	want	to	add	an	abstract	approach	for	methods	that	are
intended	for	internal	or	private	use	by	the	plugin,	we	can	introduce	the	following	changes:

$.fn[pluginName]	=	function	(options)	{

		var	restArgs	=	Array.prototype.slice.call(arguments,	1);

		return	this.each(function	()	{

				var	instance	=	$.data(this,	"plugin_"	+	pluginName);

				if	(!instance)	{

						instance	=	new	Plugin(this,	options);

						$.data(this,	"plugin_"	+	pluginName,	instance);

				}	else	if	(typeof	options	===	'string'	&&	//	method	name

						options[0]	!==	'_'	&&	//	protect	private	methods

						typeof	instance[options]	===	'function')	{

						instance[options].apply(instance,	restArgs);

				}

		});

};

In	the	above	implementation,	we	used	the	first	argument	to	identify	the	method	that	needs
to	be	invoked	and	then	invoked	it	with	the	rest	arguments.	We	also	added	a	check	to
prevent	the	invocation	of	methods	that	start	with	an	underscore	which,	according	to
common	conventions,	are	intended	to	be	for	internal	or	private	use.	As	a	result,	in	order	to
add	an	extra	method	to	your	plugin’s	public	API,	we	just	need	to	declare	it	in	the
Plugin.prototype	that	we	saw	earlier.

Note
Another	great	way	to	implement	your	plugin	when	you	are	already	using	jQuery-UI	in
your	application	is	to	use	the	$.widget()	method	which	is	also	known	as	jQuery-UI

Widget	Factory.	Its	implementation	abstracts	several	parts	of	the	boilerplate	code	that	we
saw	in	this	chapter	and	helps	create	complex	and	robust	plugins.	For	more	information,
you	can	read	the	documentation	at:	http://api.jqueryui.com/jQuery.widget/

http://api.jqueryui.com/jQuery.widget/

Choosing	a	name
Lastly,	after	learning	the	best	practices	that	we	need	to	create	a	jQuery	plugin,	let’s	say
something	about	the	naming	conventions	and	where	to	publish	your	new	and	shiny	plugin.

As	you	have	probably	already	seen,	most	jQuery	plugins	use	the	following	naming
convention:	jQuery-myPluginName	for	their	project	sites	and	repositories	and	store	their
implementations	in	a	file	named	jquery.mypluginname.js.	After	settling	on	some
prospective	names	for	your	plugin,	take	a	moment	and	search	the	web	to	verify	that	there
is	no	one	else	with	the	same	project	name.	The	jQuery	documentation	suggests	searching
for	plugins	on	NPM	and	refining	your	results	by	using	the	jquery-plugin	keyword.	This
is	obviously	the	best	way	to	publish	your	plugin	so	that	it	can	be	easily	found	by	others.

Note
For	more	information	about	NPM,	you	can	visit:	https://www.npmjs.com/

Another	popular	place	for	searching	and	hosting	JavaScript	libraries	is	GitHub.	You	can
find	its	repository	search	page	at	https://github.com/search?l=JavaScript,	where	it	filters
the	search	results	to	include	only	JavaScript	projects	and	searches	for	existing	plugins	and
already	used	project	names.	Since	in	our	case	we	are	focusing	on	jQuery	plugins,	you	will
get	better	results	by	searching	for	project	names	that	follow	the	aforementioned	naming
convention,	jQuery-myPluginName.

Note
Until	recently,	developers	could	search	for	existing	plugins	and	register	a	new	one	at	the
official	jQuery	Plugin	Registry	(http://plugins.jquery.com/).	Unfortunately,	it	has	been
discontinued	and	now	only	allows	searching	for	older	plugins	with	no	new	submissions.

https://www.npmjs.com/
https://github.com/search?l=JavaScript
http://plugins.jquery.com/

Summary
In	this	chapter	we	learned	how	jQuery	can	be	extended	by	implementing	and	using
plugins.	We	first	saw	an	example	of	the	simplest	way	that	a	jQuery	plugin	can	be
implemented	and	analyzed	the	characteristics	that	make	a	great	plugin,	and	one	which
follows	the	principles	of	the	jQuery	library.

We	were	then	introduced	to	the	most	common	development	patterns	in	the	developer
community	for	creating	jQuery	Plugins.	We	analyzed	the	implementation	problems	that
each	of	them	solves	and	the	use	cases	that	are	a	better	match	for	them.

After	completing	this	chapter,	we	are	now	able	to	abstract	parts	of	our	applications	into
reusable	and	extensible	jQuery	plugins	that	are	structured	using	the	development	pattern
that	best	matches	each	use	case.

In	the	next	chapter,	we	will	present	several	optimization	techniques	that	can	be	used	to
improve	the	performance	of	our	jQuery	applications,	especially	when	they	become	large
and	complex.	We	will	discuss	simple	practices	such	as	using	CDNs	to	load	third-party
libraries	and	continue	with	more	advanced	subjects	such	as	lazy	loading	the	modules	of	an
implementation.

Chapter	11.	Optimization	Patterns
This	chapter	presents	several	optimization	techniques	that	can	be	used	to	improve	the
performance	of	jQuery	applications,	especially	when	they	become	large	and	complex.

We	will	start	with	simple	practices	like	bundling	and	minifying	our	JavaScript	files	and
discuss	the	benefits	of	using	CDNs	to	load	third-party	libraries.	We	will	then	move	on	to
analyze	some	simple	patterns	for	writing	efficient	JavaScript	code	and	learn	how	to	write
efficient	CSS	selectors	in	order	to	improve	the	page’s	rendering	speed	and	DOM	traversals
using	jQuery.

We	will	then	study	jQuery-specific	practices	such	as	the	caching	of	jQuery	Composite
Collection	Objects,	how	to	minimize	DOM	manipulations,	and	have	a	reminder	of	the
Delegate	Observer	Pattern	as	a	good	example	of	the	Flyweight	Pattern.	Lastly,	we	will
get	an	introduction	to	the	advanced	technique	of	Lazy	Loading	and	have	a	demonstration
of	how	to	load	the	different	modules	of	an	implementation	progressively,	based	on	user
actions.

By	the	end	of	this	chapter,	we	will	be	able	to	apply	the	most	common	optimization
patterns	to	our	implementations	and	use	this	chapter	as	a	checklist	of	best	practices	and
performance	tips	before	moving	the	application	to	a	production	environment.

In	this	chapter,	we	shall:

Learn	the	benefits	of	bundling	and	minifying	our	JavaScript	files
Learn	how	to	load	third-party	libraries	through	the	CDN	server
Learn	some	simple	JavaScript	performance	tips
Learn	how	to	optimize	our	jQuery	code
Introduce	the	Flyweight	pattern	and	showcase	some	examples	of	it
Learn	how	to	lazyload	parts	of	our	application	when	required	by	a	user	action

Placing	scripts	near	the	end	of	the	page
The	first	tip	for	making	your	page’s	initial	rendering	faster	is	to	gather	all	the	required
JavaScript	files	and	place	their	<script>	tags	near	the	end	of	the	page,	preferably	just
before	the	closing	</body>	tag.	This	change	will	have	a	great	impact	on	the	time	needed
for	the	initial	rendering	of	the	page,	especially	for	users	with	low	speed	connections	such
as	mobile	users.	If	you	are	already	using	the	$(document).ready()	method	for	all
initialization	purposes	that	relate	to	the	DOM,	moving	the	<script>	tags	around	should
not	affect	the	functionality	of	your	implementation	at	all.

The	main	reason	for	this	is	that,	even	though	browsers	download	the	page’s	HTML	and
other	resources	(CSS,	images,	and	so	on)	in	parallel,	when	a	<script>	tag	is	encountered,
the	browser	pauses	everything	else	until	it	is	downloaded	and	executed.	In	order	to	work
around	this	limitation	of	the	specification,	attributes	like	defer	and	async	from	HTLM5
have	been	introduced	as	parts	of	the	<script>	tag	specification	but	unfortunately	have
only	started	to	be	adopted	by	some	browsers	recently.	As	a	result,	this	practice	is	still
widely	used	to	obtain	good	page	loading	speeds	even	on	older	browsers.

Note
For	more	information	about	the	<script>	tag	you	can	visit:
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

Bundling	and	minifying	resources
The	first	place	to	look	when	trying	to	make	a	page	load	faster	is	for	ways	to	reduce	the
number	and	total	size	of	HTTP	requests.	The	benefits	come	from	the	fact	that	the	browser
downloads	the	content	in	larger	chunks	instead	of	spending	time	waiting	for	a	lot	of	small
round-trips	to	the	server	to	complete.	This	is	especially	beneficial	for	users	with	low	speed
connections	such	as	mobile	users.

Resource	concatenation	is	a	simple	concept	that	does	not	need	any	introduction.	This	can
be	done	manually	but	it	is	preferable	to	automate	this	task	with	a	bundling	script	or
introduce	a	build	step	for	your	project.	Depending	on	your	development	environment,
there	are	different	bundling	solutions	to	choose	from.	If	you	are	using	grunt	or	gulp	as
part	of	your	development	stack,	you	can	use	solutions	like	grunt-contrib-concat
(https://github.com/gruntjs/grunt-contrib-concat)	and	gulp-concat
(https://github.com/contra/gulp-concat)	respectively.

Minifying	JavaScript	files	is	a	more	complex	procedure	which	includes	a	series	of	code
transformations	that	are	applied	to	the	target	source	code,	ranging	from	something	as
simple	as	white	space	removal	to	more	complex	tasks	like	variable	renaming.	Popular
solutions	for	minifying	JavaScript	include:

YUI	Compressor	available	at	http://yui.github.io/yuicompressor/
Google’s	Closure	Compiler	available	at
https://developers.google.com/closure/compiler/
UglifyJS	available	at	https://github.com/mishoo/UglifyJS2

Once	again,	various	solutions	exist	that	integrate	the	above	libraries	nicely	with	your
preferred	development	environment	and	make	minification	a	simple	task.	Examples	of
integrations	for	grunt	and	gulp	include	grunt-contrib-uglify
(https://github.com/gruntjs/grunt-contrib-uglify)	and	gulp-uglify
(https://github.com/terinjokes/gulp-uglify)	respectively.

As	a	final	word,	keep	in	mind	that	your	code	should	be	as	readable	and	as	logically
structured	as	possible.	Bundling	and	minifying	your	JavaScript	and	CSS	files	is	most
effectively	done	as	a	build	step	of	your	development	and	deployment	procedures.

https://github.com/gruntjs/grunt-contrib-concat
https://github.com/contra/gulp-concat
http://yui.github.io/yuicompressor/
https://developers.google.com/closure/compiler/
https://github.com/mishoo/UglifyJS2
https://github.com/gruntjs/grunt-contrib-uglify
https://github.com/terinjokes/gulp-uglify

Using	IIFE	parameters
Apart	from	helping	to	avoid	polluting	the	global	namespace,	using	IIFEs	to	wrap	your
implementation	can	also	be	beneficial	for	the	size	of	your	minified	JavaScript	files.	Let’s
take	a	look	at	the	following	code	in	which	the	jQuery,	the	window,	and	the	document
variables	are	passed	as	invocation	parameters	to	the	module’s	IIFE.

(function	($,	window,	document,	undefined)	{	

				if	(window.myModule	===	undefined)	{	

								window.myModule	=	{};	

				}	

				myModule.init	=	function()	{	/*...*/	};

				$(document).ready(myModule.init);	

})(jQuery,	window,	document);	

We	saw	a	similar	pattern	in	the	previous	chapter,	as	part	of	the	suggested	template	for
creating	jQuery	plugins.	Even	though	the	variable	aliasing	does	not	affect	the	functionality
of	the	implementation,	it	allows	the	code	minifiers	to	apply	variable	renaming	in	more
places	than	before,	resulting	in	code	like	the	following:

(function(b,	a,	c,	d)	{	

				a.myModule	===	d	&&	(a.myModule	=	{});	

				myModule.init	=	function()	{	/*...*/	};

				b(c).ready(myModule.init);	

})(jQuery,	window,	document);	

As	you	can	see	in	the	above	code,	all	the	invocation	parameters	of	the	IIFE	were	renamed
by	the	minifier	to	single	letter	identifiers,	which	increases	the	gains	of	the	minification
especially	if	the	original	identifiers	are	used	in	several	places.

Tip
As	an	added	benefit,	aliasing	also	protects	our	modules	from	the	case	that	the	original
variables	get	accidentally	assigned	a	different	value.	For	example,	when	IIFE	parameters
are	not	used,	an	assignment	like	$	=	{}	or	undefined	=	7	from	within	a	different	module
would	break	all	the	implementation.

Using	CDNs
Instead	of	serving	all	of	the	JavaScript	and	CSS	files	of	the	third-party	libraries	from	your
web	server,	you	should	consider	using	a	Content	Delivery	Network	(CDN).	Using	a
CDN	to	serve	the	static	files	of	the	libraries	that	are	used	by	your	website	can	make	it	load
faster	since:

CDNs	have	high	speed	connections	and	several	caching	levels.
CDNs	have	many	geographically	distributed	servers	that	can	deliver	the	requested
files	faster	since	they	are	closer	to	the	end	user.
CDNs	help	parallelize	resource	requests,	since	most	browsers	can	only	download	up
to	four	resources	concurrently	from	any	specific	domain.

Moreover,	if	a	user	has	static	resources	cached	from	a	previous	visit	to	another	website
that	uses	the	same	CDN,	he	or	she	will	not	have	to	download	them	again,	reducing	the
time	that	your	site	needs	to	load.

Below	is	a	list	with	the	most	widely	used	CDNs	for	JavaScript	libraries	which	you	can	use
in	your	implementations:

https://code.jquery.com/
https://developers.google.com/speed/libraries/
https://cdnjs.com/
http://www.jsdelivr.com/

https://code.jquery.com/
https://developers.google.com/speed/libraries/
https://cdnjs.com/
http://www.jsdelivr.com/

Using	JSDelivr	API
A	newcomer	to	the	CDN	world	is	JSDelivr,	which	is	gaining	popularity	because	of	its
unique	features.	Beyond	simply	serving	existing	static	files,	JSDelivr	provides	an	API
(https://github.com/jsdelivr/api)	that	allows	us	to	create	and	use	custom	bundles	with	the
resources	that	we	need	to	load,	helping	us	to	minimize	the	HTTP	requests	that	our	site
needs.	Moreover,	its	API	allows	us	to	target	libraries	with	different	levels	of	specificity
(major,	minor,	or	bug	fix	releases)	and	even	allows	us	to	load	only	specific	parts	of	a
library.

As	an	example,	take	a	look	at	the	following	URL,	which	allows	us	to	load	the	most	recent
bug	fix	releases	of	jQuery	v1.11.x	with	a	single	request	as	well	as	some	parts	of	jQuery-UI
v1.10.x	and	Bootstrap	v3.3.x:
http://cdn.jsdelivr.net/g/jquery@1.11,jquery.ui@1.10(jquery.ui.core.min.js+jquery.ui.widget.min.js+jquery.ui.mouse.min.js+jquery.ui.sortable.min.js),bootstrap@3.3

https://github.com/jsdelivr/api
http://cdn.jsdelivr.net/g/jquery@1.11,jquery.ui@1.10(jquery.ui.core.min.js+jquery.ui.widget.min.js+jquery.ui.mouse.min.js+jquery.ui.sortable.min.js),bootstrap@3.3

Optimizing	common	JavaScript	code
In	this	section,	we	will	analyze	some	performance	tips	that	are	not	jQuery-specific	and	can
be	applied	to	most	JavaScript	implementations.

Writing	better	for	loops
When	iterating	over	the	items	of	an	array	or	an	array-like	collection	with	a	for	loop,	a
simple	way	to	improve	the	performance	of	the	iteration	is	to	avoid	accessing	the	length
property	on	every	loop.	This	can	easily	be	done	by	storing	the	iteration	length	to	a
separate	variable,	declared	just	before	the	loop	or	even	along	with	it,	as	shown	below:

for	(var	i	=	0,	len	=	myArray.length;	i	<	len;	i++)	{	

				var	item	=	myArray[i];	

				/*...*/	

}	

Moreover,	if	we	need	to	iterate	over	the	items	of	an	array	that	does	not	contain	falsy
values,	we	can	use	an	even	better	pattern	which	is	commonly	applied	for	iterating	over
arrays	that	contain	objects:

var	objects	=	[{	},	{	},	{	}];	

for	(var	i	=	0,	item;	item	=	objects[i];	i++)	{	

				console.log(item);	

}

In	this	case,	instead	of	relying	on	the	length	property	of	the	array,	we	exploit	the	fact	that
access	to	an	out-of-bounds	position	of	the	array	returns	undefined	which	is	falsy	and
stops	the	iteration.	Another	sample	case	that	this	trick	can	be	used	in	is	when	iterating	over
Node	Lists	or	jQuery	Composite	Collection	Objects	as	shown	below:

var	anchors	=	$('a');	//	or	document.getElementsByTagName('a');

for	(var	i	=	0,	anchor;	anchor	=	anchors[i];	i++)	{	

				console.log(anchor.href);	

}	

Note
For	more	information	about	the	truthy	and	falsy	JavaScript	values,	visit:
https://developer.mozilla.org/en-US/docs/Glossary/Truthy	and
https://developer.mozilla.org/en-US/docs/Glossary/Falsy

https://developer.mozilla.org/en-US/docs/Glossary/Truthy
https://developer.mozilla.org/en-US/docs/Glossary/Falsy

Writing	performant	CSS	selectors
Even	though	Sizzle	(jQuery’s	selector	engine)	hides	the	complexity	of	DOM	traversals
based	on	complex	CSS	selectors,	we	should	have	an	idea	of	how	our	selectors	are
performing.	Understanding	how	CSS	selectors	are	matched	against	the	elements	of	the
DOM	helps	us	write	more	efficient	selectors	which	perform	better	when	used	with	jQuery.

The	key	characteristic	of	efficient	CSS	selectors	is	specificity.	According	to	this,	ID	and
Class	selectors	are	always	more	efficient	than	selectors	with	many	results	like	div	and	*.
When	writing	complex	CSS	selectors,	keep	in	mind	that	they	are	evaluated	from	the	right
to	the	left	and	that	a	selector	gets	rejected	after	recursively	testing	it	against	every	parent
element	until	the	root	of	the	DOM.

As	a	result,	try	to	be	as	specific	as	possible	with	the	rightmost	selector	in	order	to	cut
down	the	matched	elements	as	quickly	as	possible	during	the	execution	of	the	selector.

//	initially	matches	all	the	anchors	of	the	page	

//	and	then	removes	those	that	are	not	children	of	the	container	

$('.container	a');	

//	performs	better,	since	it	matches	fewer	elements	

//	in	the	first	step	of	the	selector's	evaluation	

$('.container	.mySpecialLinks');

The	other	performance	tip	is	using	the	Child	Selector	(“parent	>	child”)	wherever
applicable,	in	an	effort	to	eliminate	the	recursion	over	all	the	hierarchy	of	the	DOM	tree.	A
great	example	where	this	can	be	applied	is	in	cases	where	the	target	elements	can	be	found
at	a	specific	descendant	level	of	a	common	ancestor	element:

//	initially	matches	all	the	div's	of	the	page,	which	is	bad	

$('.container	div')	;

//	a	lot	faster	than	the	previous	one,

//	since	it	avoids	the	recursive	class	checks

//	until	reaching	the	root	of	the	DOM	tree	

$('.container	>	div');

//	best	of	all,	but	can't	be	used	always	

$('.container	>	.specialDivs');

Tip
The	same	tips	can	also	be	applied	to	CSS	selectors	that	are	used	for	styling	pages.	Even
though	browsers	have	been	trying	to	optimize	any	given	CSS	selector,	the	tips	described
above	can	greatly	reduce	the	time	that	is	required	to	render	a	web	page.

Note
For	more	information	on	jQuery	CSS	selector	performance,	you	can	visit:
http://learn.jquery.com/performance/optimize-selectors/

http://learn.jquery.com/performance/optimize-selectors/

Writing	efficient	jQuery	code
Let’s	now	proceed	and	analyze	the	most	important	jQuery-specific	performance	tips.	For
more	information	about	the	most	up-to-date	performance	tips	on	jQuery,	keep	an	eye	on
the	relevant	page	for	jQuery’s	Learning	Center:	http://learn.jquery.com/performance

http://learn.jquery.com/performance

Minimizing	DOM	traversals
Since	jQuery	made	DOM	traversals	so	simple,	many	web	developers	overused	the	$()
function	everywhere,	even	in	subsequent	lines	of	code,	making	their	implementations
slower	by	executing	unnecessary	code.	One	of	the	main	reasons	that	the	complexity	of	the
operation	is	so	often	overlooked	is	the	elegant	and	minimalistic	syntax	that	jQuery	uses.
Despite	the	fact	that	JavaScript	browser	engines	became	many	times	faster	in	the	last	few
years,	with	performance	comparable	to	many	compiled	languages,	the	DOM	API	is	still
one	of	their	slowest	components	and,	as	a	result,	developers	have	to	minimize	their
interactions	with	it.

Caching	jQuery	objects
Storing	the	result	of	the	$()	function	to	a	local	variable	and	subsequently	using	it	to
operate	on	the	retrieved	elements	is	the	simplest	way	of	eliminating	unnecessary
executions	of	the	same	DOM	traversals.

var	$element	=	$('.boxHeader');

if	($element.css('position')	===	'static')	{

		$element.css({	position:	'relative'	});

}

$element.height('40px');

$element.wrapInner('');

In	the	previous	chapters,	we	even	suggested	storing	Composite	Collection	Objects	of
important	page	elements	as	properties	of	our	modules	and	reusing	them	everywhere	in	our
application:

				dashboard.$container	=	null;	

				dashboard.init	=	function()	{	

								dashboard.$container	=	$('.dashboardContainer');	

				};

Tip
Caching	retrieved	elements	on	modules	is	a	very	good	practice	when	the	elements	are	not
going	to	be	removed	from	the	page.	Keep	in	mind	that,	when	dealing	with	elements	with
shorter	lifespans,	in	order	to	avoid	memory	leaks,	you	have	to	either	ensure	that	you	clear
all	their	references	when	they	are	removed	from	the	page	or	have	a	fresh	reference
retrieved	when	required	and	cache	it	only	inside	your	functions.

Scoping	element	traversals
Instead	of	writing	complex	CSS	selectors	for	your	traversals	like:

$('.dashboardContainer	.dashboardCategories');

You	can	instead	have	the	same	result	in	a	more	efficient	way	by	using	an	already	retried
ancestor	element	to	scope	the	DOM	traversal.	This	way,	you	are	not	only	using	simpler
CSS	selectors	that	are	faster	to	match	against	page	elements,	but	you	are	also	reducing	the
number	of	elements	that	have	to	be	checked.	Moreover,	the	resulting	implementations
have	less	code	repetitions	(are	DRYer)	and	the	CSS	selectors	used	are	simple	and	as	a

result	more	readable.

var	$container	=	$('.dashboardContainer');

$container.find('.dashboardCategories');

Additionally,	this	practice	works	even	better	with	module-wide	cached	elements	like	those
we	used	in	the	previous	chapters:

$boxContainer	=	dashboard.$container.find('.boxContainer');

Chaining	jQuery	methods
One	of	the	characteristics	of	all	jQuery	APIs	is	that	they	are	Fluent	interface
implementations	that	enable	us	to	chain	several	method	invocations	on	a	single	Composite
Collection	Object.

$('.boxContent').html('')	

				.append('')	

				.height('40px')	

				.wrapInner('');

As	we	discussed	in	previous	chapters,	chaining	allows	us	to	reduce	the	number	of	used
variables	and	leads	to	more	readable	implementations	with	fewer	code	repetitions.

Don’t	overdo	it
Keep	in	mind	that	jQuery	also	provides	the	$.fn.end()	method
(http://api.jquery.com/end/)	as	a	way	of	moving	back	from	a	chained	traversal.

$('.box')	

				.filter(':even')	

				.find('.boxHeader')	

				.css('background-color',	'#0F0')	

				.end()	

				.end()	//	undo	the	filter	and	find	traversals

				.filter(':odd')	//	applied	on		the	initial	.box	results

				.find('.boxHeader')	

				.css('background-color',	'#F00');

Even	though	this	is	a	handy	method	in	many	cases,	you	should	avoid	overusing	it	since	it
can	damage	the	readability	and	performance	of	your	code.	In	many	cases,	using	cached
element	collections	instead	of	$.fn.end()	results	in	faster	and	more	readable
implementations.

http://api.jquery.com/end/

Improving	DOM	manipulations
As	we	said	earlier,	the	extensive	use	of	the	DOM	API	is	one	of	the	most	common	things
that	makes	an	application	slower,	especially	when	used	to	manipulate	the	state	of	the
DOM	tree.	In	this	section,	we	will	showcase	some	tips	to	improve	performance	when
manipulating	the	DOM	tree.

Creating	DOM	elements
The	most	efficient	way	to	create	DOM	elements	is	to	construct	a	HTML	string	and	append
it	to	the	DOM	tree	using	the	$.fn.html()	method.	Additionally,	since	this	is	too	limiting
in	some	use	cases,	you	can	also	use	the	$.fn.append()	and	$.fn.prepend()	methods,
which	are	slightly	slower	but	may	be	a	better	match	for	your	implementation.	Ideally,	if
multiple	elements	need	to	be	created,	you	should	try	to	minimize	the	invocation	of	these
methods	by	creating	a	HTML	string	that	defines	all	the	elements	and	then	inserting	it	into
the	DOM	tree,	as	shown	below:

var	finalHtml	=	'';	

for	(var	i	=	0,	len	=	questions.length;	i	<	len;	i++)	{	

		var	question	=	questions[i];	

		finalHtml	+=	'<div><label>'	+	question.title	+	':'	+	

				'<input	type="checkbox"	name="'	+	question.name	+	'"	/>'	+	

		'</label></div>';	

}	

$('form').html(finalHtml);

Another	way	to	achieve	the	same	result,	is	by	using	an	array	to	store	the	HTML	for	each
intermediate	element	and	then	join	them	right	before	the	insertion	to	the	DOM	tree:

var	parts	=	[];	

for	(var	i	=	0,	len	=	questions.length;	i	<	len;	i++)	{	

		var	question	=	questions[i];	

		parts.push('<div><label>'	+	question.title	+	':'	+	

				'<input	type="checkbox"	name="'	+	question.name	+	'"	/>'	+	

		'</label></div>');	

}	

$('form').html(parts.join(''));

Note
This	is	a	commonly	used	pattern	since,	until	recently,	it	performed	better	than
concatenating	the	intermediate	results	with	“+=”.

Styling	and	animating
Whenever	possible,	use	CSS	classes	for	your	styling	manipulations	by	utilizing	the
$.fn.addClass()	and	$.fn.removeClass()	methods	instead	of	manually	manipulating
the	style	of	the	elements	with	the	$.fn.css()	method.	That’s	especially	useful	when	you
need	to	style	a	large	number	of	elements	since	this	is	the	main	purpose	of	CSS	classes	and
browsers	have	already	spent	years	optimizing	it.

Tip

As	an	extra	optimization	step	to	minimize	the	number	of	manipulated	elements,	you	can
apply	CSS	classes	on	a	single	common	ancestor	element	and	use	a	descendant	CSS
selector	to	apply	your	styling,	as	demonstrated	here:	https://developer.mozilla.org/en-
US/docs/Web/CSS/Descendant_selectors

When	you	still	need	to	use	the	$.fn.css()	method,	for	example,	when	your
implementation	needs	to	be	imperative,	use	the	invocation	overload	that	accepts	object
parameters:	http://api.jquery.com/css/#css-properties.	In	this	way,	the	required	method
invocations	are	minimized	when	applying	multiple	styles	on	elements	and	your	code	is
better	organized.

Moreover,	avoid	mixing	methods	that	manipulate	the	DOM	with	methods	that	read	from
the	DOM	since	this	will	force	a	reflow	of	the	page	so	that	the	browser	can	calculate	the
new	positions	of	the	page	elements.

Instead	of	doing	something	like	this:

$('h1').css('padding-left',	'2%');	

$('h1').css('padding-right',	'2%');	

$('h1').append('!!');	

var	h1OuterWidth	=	$('h1').outerWidth();	

$('h1').css('margin-top',	'5%');	

$('body').prepend('--!!--');	

var	h1Offset	=	$('h1').offset();

Prefer	grouping	the	non-conflicting	manipulations	together	like	this:

$('h1').css({	

				'padding-left':	'2%',	

				'padding-right':	'2%',	

				'margin-top':	'5%'	

}).append('!!');	

$('body').prepend('--!!--');	

var	h1OuterWidth	=	$('h1').outerWidth();	

var	h1Offset	=	$('h1').offset();

The	browser	can	thus	skip	some	re-renderings	of	the	page,	resulting	in	fewer	pauses	of	the
execution	of	your	code.

Note
For	more	information	about	reflows,	visit	the	following	page:
https://developers.google.com/speed/articles/reflow

Lastly,	note	that	all	jQuery-generated	animations	in	v1.x	and	v2.x	are	implemented	using
the	setTimeout()	function.	This	is	going	to	change	in	v3.x	of	jQuery	which	plans	to	use
the	requestAnimationFrame()	function,	which	is	a	better	match	for	creating	imperative
animations.	Until	then,	you	can	use	the	jQuery-requestAnimationFrame	plugin
(https://github.com/gnarf/jquery-requestAnimationFrame)	which	monkey-patches	jQuery
to	use	the	requestAnimationFrame()	function	for	its	animations	when	it	is	available.

https://developer.mozilla.org/en-US/docs/Web/CSS/Descendant_selectors
http://api.jquery.com/css/#css-properties
https://developers.google.com/speed/articles/reflow
https://github.com/gnarf/jquery-requestAnimationFrame

Manipulating	detached	elements
Another	way	to	avoid	unnecessary	repaints	of	the	page	while	manipulating	DOM	elements
is	to	detach	the	element	from	the	page	and	re-attach	it	after	completing	your
manipulations.	Working	with	a	detached	in-memory	element	is	much	faster	and	does	not
cause	reflows	on	the	page.

In	order	to	achieve	that,	we	use	the	$.fn.detach()	method	which,	in	contrast	to
$.fn.remove(),	preserves	all	event	handlers	and	jQuery	data	on	the	detached	element.

var	$h1	=	$('#pageHeader');	

var	$h1Cont	=	$h1.parent();	

$h1.detach();	

$h1.css({	

				'padding-left':	'2%',	

				'padding-right':	'2%',	

				'margin-top':	'5%'	

}).append('!!');	

$h1Cont.append($h1);	

Additionally,	to	be	able	to	place	the	manipulated	element	back	into	its	original	position,
we	can	create	and	insert	a	hidden	placeholder	element	into	the	DOM.	This	empty	and
hidden	element	does	not	affect	the	rendering	of	the	page	and	is	removed	after	the	original
item	is	placed	back	into	its	original	position.

var	$h1PlaceHolder	=	$('<div	style="display:	none;"></div>');	

var	$h1	=	$('#pageHeader');	

$h1PlaceHolder.insertAfter($h1);	

$h1.detach();	

$h1.css({	

				'padding-left':	'2%',	

				'padding-right':	'2%',	

				'margin-top':	'5%'	

}).append('!!');	

$h1.insertAfter($h1PlaceHolder);	

$h1PlaceHolder.remove();	

$h1PlaceHolder	=	null;	

Note
For	more	information	about	the	$.fn.detach()	method,	you	can	read	the	documentation
at:	http://api.jquery.com/detach/

Introducing	the	Flyweight	Pattern
According	to	Computer	Science,	a	Flyweight	is	an	object	that	is	used	as	a	means	of
reducing	the	memory	consumption	of	an	implementation	by	providing	functionality	and/or
data	that	are	shared	with	other	object	instances.	The	Prototypes	of	JavaScript	constructor
functions	can	be	characterized	as	Flyweights	since	every	object	instance	can	use	all	of	the

http://api.jquery.com/detach/

methods	and	properties	that	are	defined	in	its	prototype	until	it	overwrites	them.	On	the
other	hand,	classical	Flyweights	are	separate	objects	from	the	object	family	that	they	are
used	with	and	often	hold	the	shared	data	and	functionality	in	special	data	structures.

Using	Delegate	Observers
A	great	example	of	Flyweights	in	jQuery	applications	is	Delegate	Observers	which,	as	we
saw	in	the	Dashboard	example	in	Chapter	2,	The	Observer	Pattern,	can	greatly	reduce	the
memory	demands	of	an	implementation	by	working	as	a	centralized	event	handler	for	a
large	group	of	elements.	In	this	way,	we	can	avoid	the	cost	of	setting	up	separate	observers
and	event	handlers	for	every	element	and	use	the	browser’s	event	bubbling	mechanism	to
observe	for	them	on	a	single	common	ancestor	element	and	filter	their	origin.

$boxContainer.on('click',	'.boxCloseButton',	function()	{	

				var	$button	=	$(this);	

				dashboard.informationBox.close($button);	

});

Note
The	actual	Flyweight	object	is	the	event	handler	along	with	the	callback	that	is	attached	to
the	ancestor	element.

Using	$.noop()
The	jQuery	library	offers	the	$.noop()	method	which	is	actually	an	empty	function	that
can	be	shared	among	implementations.	Using	empty	functions	as	default	callback	values
simplifies	and	improves	the	readability	of	an	implementation	by	reducing	the	number	of
if	statements.	This	is	handy	for	jQuery	plugins	that	already	encapsulate	complex
functionality.

function	doLater(callbackFn)	{	

				setTimeout(function()	{	

								if	(callbackFn)	{	

												callbackFn();	

								}	

				},	500);	

}	

//	with	$.noop()	

function	doLater(callbackFn)	{	

				callbackFn	=	callbackFn	||	$.noop();	

				setTimeout(function()	{	

								callbackFn();	

				},	500);	

}	

In	such	situations,	where	the	implementation	requirements	or	the	personal	taste	of	the
developer	has	led	to	using	empty	functions,	the	$.noop()	method	is	useful	as	a	way	to
lower	memory	consumption	by	sharing	a	single	empty	function	instance	among	all	the
different	parts	of	an	implementation.	An	added	benefit	of	using	the	$.noop()	method	for
every	part	of	an	implementation	is	that	we	can	also	check	whether	a	passed	function
reference	is	the	empty	function	by	simply	checking	callbackFn	===	$.noop().

Note
For	more	information,	you	can	find	the	documentation	at:
http://api.jquery.com/jQuery.noop/

http://api.jquery.com/jQuery.noop/

Using	the	$.single	plugin
Another	simple	example	of	the	Flyweight	pattern	in	jQuery	applications	is	the
jQuery.single	plugin	as	described	by	James	Padolsey	in	his	article,	76	bytes	for	faster
jQuery,	which	tries	to	eliminate	the	creation	of	new	jQuery	objects	whenever	we	need	to
apply	jQuery	methods	on	a	single	page	element.	The	implementation	is	quite	small	and
creates	a	single	jQuery	composite	collection	object	that	is	returned	on	every	invocation	of
the	jQuery.single()	method,	containing	the	page	element	that	was	used	as	an	argument.

jQuery.single	=	(function(){	

				var	collection	=	jQuery([1]);

				//	Fill	with	1	item,	to	make	sure	length	===	1	

				return	function(element)	{	

								collection[0]	=	element;	//	Give	collection	the	element:	

								return	collection;	//	Return	the	collection:	

				};	

}());

The	jQuery.single	plugin	is	useful	when	used	in	observers	like	$.fn.on()	and	iterations
with	methods	like	$.each().

$boxContainer.on('click',	'.boxCloseButton',	function()	{	

				//	var	$button	=	$(this);	

				var	$button	=	$.single(this);

				//	this	is	not	creating	any	new	object

				dashboard.informationBox.close($button);	

});

The	benefits	of	using	the	jQuery.single	plugin	come	from	the	fact	that	we	are	creating
fewer	objects	and,	as	a	result,	the	browser’s	Garbage	Collector	will	also	have	less	work	to
do	when	freeing	up	the	memory	of	short	lived	objects.

As	a	side	note,	keep	in	mind	the	side	effects	of	having	a	single	jQuery	object	returned	by
every	invocation	of	the	$.single()	method	and	the	fact	that	the	last	invocation	argument
will	be	stored	until	the	next	invocation	of	the	method:

var	buttons	=	document.getElementsByTagName('button');	

var	$btn0	=	$.single(buttons[0]);	

var	$btn1	=	$.single(buttons[1]);	

$btn0	===	$btn1	//	this	is	true

Additionally,	in	case	that	you	use	something	like	$btn1.remove()	then	the	element	will
not	be	freed	until	the	next	invocation	of	the	$.single()	method	which	will	remove	it
from	the	plugin’s	internal	collection	object.

Another	similar	but	more	extensive	plugin	is	the	jQuery.fly	plugin	which	can	be	invoked
with	arrays	and	jQuery	objects	as	parameters.

Note
For	more	information	about	jQuery.single	and	jQuery.fly,	you	can	visit	the	following
URLs:	http://james.padolsey.com/javascript/76-bytes-for-faster-jquery/	and
https://github.com/matjaz/jquery.fly.

http://james.padolsey.com/javascript/76-bytes-for-faster-jquery/
https://github.com/matjaz/jquery.fly

On	the	other	hand,	the	jQuery	implementation	that	handles	the	invocation	of	the	$()
method	with	a	single	page	element	is	not	complex	at	all	and	only	creates	a	single	simple
object.

jQuery	=	function(selector,	context)	{	

		return	new	jQuery.fn.init(selector,	context);	

};	

/*...*/	init	=	jQuery.fn.init	=	function(selector,	context,	root)	{	

		/*...	else	*/	

		if	(selector.nodeType)	{	

				this.context	=	this[0]	=	selector;	

				this.length	=	1;	

				return	this;	

		}	/*	...	*/	

};	

Moreover,	the	JavaScript	engines	of	modern	browsers	have	already	become	quite	efficient
when	dealing	with	short-lived	objects	since	such	objects	are	commonly	passed	around	an
application	as	method	invocation	parameters.

Lazy	Loading	Modules
Finally,	we	will	get	an	introduction	to	the	advanced	technique	of	Lazy	Loading	Modules.
The	key	concept	of	this	practice	is	that,	during	the	page	load,	the	browser	will	only
download	and	execute	those	modules	that	are	required	for	the	initial	rendering	of	the	page
while	the	rest	of	the	application	modules	are	requested	after	the	page	is	fully	loaded	and	is
required	to	respond	to	a	user	action.	RequireJS	(http://requirejs.org/)	is	a	popular
JavaScript	library	that	is	used	as	a	module	loader	but,	for	simple	cases,	we	can	achieve	the
same	result	with	jQuery.

As	an	example	of	this,	we	will	use	it	to	lazy	load	the	informationBox	module	of	the
Dashboard	example	that	we	saw	in	previous	chapters,	after	the	first	click	of	the	user	on	the
Dashboard’s	<button>.	We	will	abstract	the	implementation	that	is	responsible	for
downloading	and	executing	JavaScript	files	into	a	generic	and	reusable	module	named
moduleUtils:

(function()	{	

				'use	strict';	

				dashboard.moduleUtils	=	dashboard.moduleUtils	||	{};	

				dashboard.moduleUtils.getModule	=	function(namespaceString)	{	

								var	parts	=	namespaceString.split('.');	

								var	result	=	parts.reduce(function(crnt,	next){	

												return	crnt	&&	crnt[next];	

								},	window);	

								return	result;	

				};	

				var	ongoingModuleRequests	=	{};	

				dashboard.moduleUtils.ensureLoaded	=	function(namespaceString)	{	

								var	existingNamespace	=	this.getModule(namespaceString);	

								if	(existingNamespace)	{	

												return	$.Deferred().resolve(existingNamespace);	

								}	

								if	(ongoingModuleRequests[namespaceString])	{	

												return	ongoingModuleRequests[namespaceString];	

								}	

								var	modulePromise	=	$.getScript(namespaceString.toLowerCase()	+	

'.js')	

												.always(function()	{	

																ongoingModuleRequests[namespaceString]	=	null;	

												}).then(function()	{	

															return	dashboard.moduleUtils.getModule(namespaceString);	

												});	

								ongoingModuleRequests[namespaceString]	=	modulePromise;	

								return	modulePromise;	

				};

http://requirejs.org/

})();	

The	getModule()	method	accepts	the	module’s	namespace	as	a	string	parameter	and
returns	either	the	Module’s	Singleton	Object	itself	or	a	falsy	value	if	the	module	is	not
already	loaded.	This	is	done	with	the	Array.reduce()	method	which	is	used	to	iterate
over	the	different	parts	of	the	namespace	string,	using	the	dot	(.)	as	a	delimiter	and
evaluating	each	part	on	the	previous	object	context,	starting	with	window.

Note
For	more	information	about	the	Array.reduce()	method,	you	can	visit:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

ensureLoaded()	is	the	primary	method	of	the	moduleUtils	module	and	is	responsible	for
retrieving	and	executing	modules	that	are	not	already	loaded.	It	first	uses	the	getModule()
method	to	check	whether	the	requested	module	has	already	been	loaded	and,	if	so,	returns
its	namespace	object	as	a	Resolved	Promise.

The	next	step,	if	a	module	has	not	yet	been	loaded,	is	to	check	the
ongoingModuleRequests	object	to	verify	whether	the	requested	module	is	not	already
being	downloaded.	In	order	to	do	that,	the	ongoingModuleRequests	object	uses	the
module’s	namespace	string	as	a	property	and	stores	the	Promises	of	the	AJAX	requests
that	are	used	to	retrieve	the	.js	files	from	the	server.	If	a	Promise	object	is	available	then
we	can	infer	that	the	AJAX	request	is	still	ongoing	and,	instead	of	starting	a	new	one,	we
return	the	existing	Promise.

Finally,	when	none	of	the	above	returns	a	result,	we	use	the	lower	case	module	file	naming
convention	that	we	discussed	in	previous	chapters	and	use	jQuery’s	$.getScript()
method	to	initiate	an	AJAX	request	to	retrieve	the	requested	module	file.	The	Promise
created	for	the	AJAX	request	is	assigned	as	to	the	appropriate	property	of	the
ongoingModuleRequests	object	and	is	then	returned	to	the	caller	of	the	method.	When,	at
a	later	point	in	time,	the	Promise	is	Fulfilled,	we	re-evaluate	the	module	and	return	it	as
the	final	result	of	the	returned	Promise.	Moreover,	regardless	of	the	result	of	the	AJAX
request,	the	Promise	is	also	removed	from	the	ongoingModuleRequests	object	in	order	to
keep	the	implementation	reusable	in	case	of	a	network	failure	and	also	free	up	the	memory
that	was	allocated	for	the	request.

Note
Keep	in	mind	that	the	$.getScript()	method	might	not	work	in	some	browsers	when	the
page	is	loaded	through	the	filesystem,	but	does	work	as	intended	when	served	using	a	web
server	like	Apache,	IIS	or	nginx.	For	more	information	about	$.getScript(),	you	can
visit:	http://api.jquery.com/jQuery.getScript/

The	only	change	that	we	introduced	to	the	existing	implementation	of	the	informationBox
module	for	this	demonstration	was	to	make	it	self-initializable	in	an	attempt	to	reduce	the
complexity	of	the	ensureLoaded()	method.

(function()	{	

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
http://api.jquery.com/jQuery.getScript/

				'use	strict';	

				dashboard.informationBox	=	dashboard.informationBox	||	{};	

				var	$boxContainer	=	null;	

				dashboard.informationBox.init	=	function()	{	/*	…	*/	};

	

				$(document).ready(dashboard.informationBox.init);	

			/*...*/

})();	

Finally,	we	also	had	to	change	the	implementation	of	the	categories	module	so	that	it
would	use	the	ensureLoaded()	method	before	using	the	informationBox	module.	As	you
can	see	below,	we	had	to	refactor	the	code	handling	the	click	event	on	the	dashboard’s
<button>	since	the	ensureLoaded()	method	returns	a	Promise	as	a	result:

//	in	dashboard.categories.init	

dashboard.$container.find('.dashboardCategories').on('click',	'button',	

function()	{	

				var	$button	=	$(this);	

				var	itemName	=	$button.text();	

				var	p	=	dashboard.moduleUtils.ensureLoaded('dashboard.informationBox');

				p.then(function(){	

								dashboard.informationBox.openNew(itemName);	

				});	

});

Summary
In	this	chapter,	we	learned	several	optimization	techniques	that	can	be	used	to	improve	the
performance	of	jQuery	applications,	especially	when	they	become	large	and	complex.

We	started	with	simple	practices	like	bundling	and	minifying	our	JavaScript	files	and
discussed	the	benefits	of	using	CDNs	to	load	third-party	libraries.	We	then	went	on	to
analyze	some	simple	patterns	to	writing	efficient	JavaScript	code	and	learned	how	to	write
efficient	CSS	selectors	to	improve	the	page’s	rendering	speed	and	DOM	traversals	using
jQuery.

We	continued	with	jQuery-specific	practices	such	as	caching	of	jQuery	Composite
Collection	Objects,	how	to	minimize	DOM	manipulations,	and	had	a	reminder	of	the
Delegate	Observer	pattern,	as	a	good	example	of	the	Flyweight	Pattern.	Lastly,	we	got	an
introduction	to	the	advanced	technique	of	Lazy	Loading	and	saw	a	demonstration	of	how
to	load	the	various	modules	of	an	implementation	progressively,	based	on	user	actions.

After	completing	this	chapter,	we	are	now	able	to	apply	the	most	common	optimization
patterns	to	our	implementations	and	use	this	chapter	as	a	checklist	of	best	practices	and
performance	tips	before	moving	an	application	to	a	production	environment.

Index
A

$.ajax()	method	/	Accepting	configuration	parameters
addEventListener()	methods

URL	/	Introducing	the	Observer	Pattern
applications

developing,	with	Composite	Pattern	/	Using	the	Composite	Pattern	to	develop
applications
Underscore.js	templates,	using	/	Using	Underscore.js	templates	in	our
applications
Handlebars.js	templates,	using	/	Using	Handlebars.js	in	our	applications

Array.reduce()	method
reference	/	Lazy	Loading	Modules

attachEvent()	method
URL	/	Introducing	the	Observer	Pattern

Australian	National	University	(ANU)	/	Writing	methods	that	accept	callbacks

B
Babel	transpiler

URL	/	Introducing	ES6	Modules
broker	/	Introducing	the	Publish/Subscribe	Pattern
Builder	Pattern

about	/	Introducing	the	Builder	Pattern
adopting,	by	jQuery	/	How	it	is	adopted	by	jQuery’s	API
using,	by	jQuery	internally	/	How	it	is	used	by	jQuery	internally
using,	in	applications	/	How	to	use	it	in	our	applications

C
Callback	Hell

URL	/	Avoiding	the	Callback	Hell	anti-pattern
callbacks

about	/	Programming	with	callbacks
programming	with	/	Programming	with	callbacks
simple	callbacks,	using	in	JavaScript	/	Using	simple	callbacks	in	JavaScript
setting,	as	object	properties	/	Setting	callbacks	as	object	properties
using,	in	jQuery	applications	/	Using	callbacks	in	jQuery	applications
methods,	writing	/	Writing	methods	that	accept	callbacks

callbacks,	orchestrating
about	/	Orchestrating	callbacks
queuing,	in	order	execution	/	Queuing	in	order	execution
Callback	Hell	anti-pattern,	avoiding	/	Avoiding	the	Callback	Hell	anti-pattern
running	concurrently	/	Running	concurrently

categories	module	/	The	categories	module
CDNs

about	/	Using	CDNs
using	/	Using	CDNs
JSDelivr	API,	using	/	Using	JSDelivr	API

closure
about	/	Introducing	the	Observer	Pattern
URL	/	Introducing	the	Observer	Pattern

Closure	Compiler
reference	/	Bundling	and	minifying	resources

closures
URL	/	The	IIFE	building	block

common	JavaScript	code
optimizing	/	Optimizing	common	JavaScript	code
for	loops,	writing	for	/	Writing	better	for	loops

Composite	Pattern
about	/	The	Composite	Pattern
using,	by	jQuery	/	How	the	Composite	Pattern	is	used	by	jQuery
comparing,	with	plain	DOM	API	benefits	/	Comparing	the	benefits	over	the
plain	DOM	API
used,	for	developing	applications	/	Using	the	Composite	Pattern	to	develop
applications
sample	use	case	/	A	sample	use	case
Collection	Implementation	/	The	Composite	Collection	Implementation
example	execution	/	An	example	execution
alternative	implementations	/	Alternative	implementations
pairing,	with	Iterator	Pattern	/	How	it	pairs	with	the	Composite	Pattern

configuration	parameters

accepting	/	Accepting	configuration	parameters
Content	Delivery	Network	(CDN)	/	Using	CDNs
counter	module	/	The	counter	module
CSS	Selectors	/	The	jQuery	DOM	Traversal	API
custom	event	namespacing

using	/	Using	custom	event	namespacing
URL	/	Using	custom	event	namespacing

custom	events
in	jQuery	/	Custom	events	in	jQuery
used,	for	implementing	Publish/Subscribe	Pattern	/	Implementing	a	Pub/Sub
scheme	using	custom	events

D
Dashboard	application

reusable	plugins,	using	/	Using	our	plugin	in	our	Dashboard	application
dashboard	example

Publish/Subscribe	Pattern,	using	/	Using	Pub/Sub	on	the	dashboard	example
dashboard	module	/	The	main	dashboard	module
deferred	observer	/	The	categories	module
deferred	observers	/	The	counter	module
Delegated	Event	Observer	Pattern

about	/	Introducing	the	Delegated	Event	Observer	Pattern
used,	for	simplifying	code	/	How	it	simplifies	our	code
memory	usage	benefits,	comparing	/	Compare	the	memory	usage	benefits

Delegate	Observers
using	/	Using	Delegate	Observers

descendant	CSS	selector
reference	/	Styling	and	animating

Document	Fragment
about	/	How	it	is	adopted	by	jQuery’s	API

Document	Fragments
reference	/	How	it	is	adopted	by	jQuery’s	API

Document	Object	Mode	(DOM)
URL	/	jQuery	and	DOM	scripting
manipulating,	with	jQuery	/	Manipulating	the	DOM	using	jQuery

DOM	API	/	The	jQuery	DOM	Traversal	API
DOM	Level	2	Event	specification

URL	/	How	it	is	compared	with	event	attributes
DOM	manipulations,	improving

about	/	Improving	DOM	manipulations
DOM	elements,	creating	/	Creating	DOM	elements
animating	/	Styling	and	animating
styling	/	Styling	and	animating
detached	elements,	manipulating	/	Manipulating	detached	elements
Flyweight	Pattern	/	Introducing	the	Flyweight	Pattern

DOM	scripting
and	jQuery	/	jQuery	and	DOM	scripting

DOM	traversals,	minimizing
about	/	Minimizing	DOM	traversals
jQuery	objects,	caching	/	Caching	jQuery	objects
element	traversals,	scoping	/	Scoping	element	traversals
jQuery	methods,	chaining	/	Chaining	jQuery	methods

E
$.extend()	helper	method

URL	/	Accepting	configuration	parameters
efficient	jQuery	code

writing	/	Writing	efficient	jQuery	code
DOM	traversals,	minimizing	/	Minimizing	DOM	traversals
overuse,	avoiding	/	Don’t	overdo	it
DOM	manipulations,	improving	/	Improving	DOM	manipulations
Delegate	Observers,	using	/	Using	Delegate	Observers
$.noop(),	using	/	Using	$.noop()
$.single	plugin,	using	/	Using	the	$.single	plugin

Encapsulation
URL	/	Encapsulating	internal	parts	of	an	implementation

ES5	Strict	Mode
using	/	Using	ES5	Strict	Mode

ES6	modules
about	/	Introducing	ES6	Modules
URL	/	Introducing	ES6	Modules

event	attributes
URL	/	How	it	is	compared	with	event	attributes

event	listeners
removing,	URL	/	Avoid	memory	leaks

event	object
URL	/	Extending	the	implementation

F
$.fn.addClass()	method	/	Working	on	Composite	Collection	Objects
$.fn.closest()	method

URL	/	Demonstrate	a	sample	use	case
$.fn.data()	method	/	Implementing	a	stateful	jQuery	Plugin
$.fn.end()	method

reference	/	Don’t	overdo	it
$.fn.ready()	method	/	The	document-ready	observer

URL	/	The	document-ready	observer
Facade	Pattern

about	/	Introducing	the	Facade	Pattern
benefits	/	The	benefits	of	this	pattern
adopting,	by	jQuery	/	How	it	is	adopted	by	jQuery

Facades
using,	in	applications	/	Using	Facades	in	our	applications

Factories
using,	in	applications	/	Using	Factories	in	our	applications

Factory	Pattern
about	/	Introducing	the	Factory	Pattern
key	concept	/	Introducing	the	Factory	Pattern
adopting,	by	jQuery	/	How	it	is	adopted	by	jQuery

falsy	JavaScript	value
reference	/	Writing	better	for	loops

Flyweight	Pattern
about	/	Introducing	the	Flyweight	Pattern

function	Data()
URL	/	The	jQuery	on	method

G
$.getScript()	method

URL	/	Retrieving	HTML	templates	asynchronously
reference	/	Lazy	Loading	Modules

generic	iterator	function	/	How	the	Iterator	Pattern	is	used	by	jQuery
getter	method

implementing	/	Implementing	getter	and	setter	methods
getValues	method	/	The	Composite	Collection	Implementation
global	namespace	/	Avoiding	global	variables	with	Namespaces,	The	Revealing
Module	Pattern
Google’s	JavaScript	Style	Guide

URL	/	The	wide	acceptance
grunt-contrib-concat	project

URL	/	Using	Modules	in	jQuery	applications

H
Handlebars.js

about	/	Introducing	Handlebars.js
URL	/	Introducing	Handlebars.js,	Using	Handlebars.js	in	our	applications,	Pre-
compiling	templates
using,	in	applications	/	Using	Handlebars.js	in	our	applications
template	pre-compilation,	URL	/	Pre-compiling	templates

HTML	templates
separating,	from	JavaScript	code	/	Separating	HTML	templates	from	JavaScript
code,	Separating	HTML	templates	from	JavaScript	code
retrieving	asynchronously	/	Retrieving	HTML	templates	asynchronously
adopting,	in	existing	implementation	/	Adopting	it	in	an	existing	implementation
moderation	/	Moderation	is	best	in	all	things

I
IIFE

used,	for	wrapping	jQuery	Plugin	/	Wrapping	with	an	IIFE
about	/	Wrapping	with	an	IIFE

IIFE-contained	module	variant	/	The	IIFE-contained	Module	variant
IIFE	parameters

using	/	Using	IIFE	parameters
Immediately	Invoked	Function	Expression	(IIFE)	/	The	document-ready	observer

about	/	The	IIFE	building	block
URL	/	The	IIFE	building	block

increment	method	/	The	Composite	Collection	Implementation
IndexedDB

URL	/	Running	concurrently
informationBox	module	/	The	informationBox	module
Iterator	Pattern

about	/	The	Iterator	Pattern
using,	by	jQuery	/	How	the	Iterator	Pattern	is	used	by	jQuery
pairing,	with	Composite	Pattern	/	How	it	pairs	with	the	Composite	Pattern
using	/	Where	can	it	be	used

J
JavaScript

Prototype-based	programming	model,	URL	/	The	Composite	Collection
Implementation

JavaScript	code
HTML	templates,	separating	/	Separating	HTML	templates	from	JavaScript
code,	Separating	HTML	templates	from	JavaScript	code

JavaScript	libraries
URL	/	Choosing	a	name

jQuery
and	DOM	scripting	/	jQuery	and	DOM	scripting
URL	/	jQuery	and	DOM	scripting,	Manipulating	the	DOM	using	jQuery,	How
the	Iterator	Pattern	is	used	by	jQuery
used,	for	manipulating	DOM	/	Manipulating	the	DOM	using	jQuery
Method	Chaining	/	Method	Chaining	and	Fluent	Interfaces
Fluent	Interfaces	/	Method	Chaining	and	Fluent	Interfaces
Composite	Pattern,	using	/	How	the	Composite	Pattern	is	used	by	jQuery
GitHub	page,	URL	/	How	the	Composite	Pattern	is	used	by	jQuery
Iterator	Pattern,	using	/	How	the	Iterator	Pattern	is	used	by	jQuery
Observer	Pattern,	using	/	How	it	is	used	by	jQuery
Publish/Subscribe	Pattern	/	How	it	is	adopted	by	jQuery
custom	events	/	Custom	events	in	jQuery
code	organization,	URL	/	Overview	of	the	implementation

jQuery-requestAnimationFrame	plugin
reference	/	Styling	and	animating

jQuery-UI	Widget	Factory
URL	/	Adding	methods	to	your	plugin

jQuery.ajaxSetup()	method	/	Accepting	configuration	parameters
jQuery.guid	/	The	jQuery	on	method
jQuery.noConflict()	method

URL	/	Working	with	$.noConflict()
jQuery	applications

modules,	using	/	Using	Modules	in	jQuery	applications
Mock	Object	Pattern,	using	/	Using	Mock	Objects	in	jQuery	applications

jQuery	equivalent	method
URL	/	Avoid	memory	leaks

jQuery	implementation
about	/	How	it	is	adopted	by	jQuery
jQuery	DOM	Traversal	API	/	The	jQuery	DOM	Traversal	API
property	access	and	manipulation	API	/	The	property	access	and	manipulation
API

jQuery	JavaScript	Style	Guide
URL	/	The	wide	acceptance

jQuery	on	method	/	The	jQuery	on	method
jQuery	Plugin

about	/	Introducing	jQuery	Plugins
principles,	following	/	Following	jQuery	principles
characteristics	/	Following	jQuery	principles
$.noConflict(),	working	with	/	Working	with	$.noConflict()
wrapping,	with	IIFE	/	Wrapping	with	an	IIFE
naming	conventions	/	Choosing	a	name

jQuery	Plugin	Boilerplate
URL	/	Using	the	jQuery	Plugin	Boilerplate
using	/	Using	the	jQuery	Plugin	Boilerplate
methods,	adding	/	Adding	methods	to	your	plugin

jQuery	Plugin	Registry
URL	/	Choosing	a	name

jQuery	principles
following	/	Following	jQuery	principles
Composite	Collection	Objects,	working	on	/	Working	on	Composite	Collection
Objects
further	chaining	/	Allowing	further	chaining

jQuery	Promises
transforming,	to	/	Transforming	to	jQuery	Promises

jQuery	source	viewer
URL	/	The	jQuery	on	method

jQuery	Source	Viewer
URL	/	How	the	Composite	Pattern	is	used	by	jQuery

jQuery	v3.0	A+	Promises	implementation
reference	/	Comparing	jQuery	and	A+	Promises

JSDelivr	API
using	/	Using	JSDelivr	API
reference	/	Using	JSDelivr	API

L
Lazy	Loading	Modules

about	/	Lazy	Loading	Modules
Level	2	Selector	API	/	The	jQuery	DOM	Traversal	API

M
memory	usage	benefits

comparing	/	Compare	the	memory	usage	benefits
Method	Chaining	/	Method	Chaining	and	Fluent	Interfaces
Mockjax	jQuery	Plugin	library

reference	/	Implementing	a	Mock	Service
using	/	Implementing	a	Mock	Service

Mock	Object	Pattern
about	/	Introducing	the	Mock	Object	Pattern
using,	in	jQuery	applications	/	Using	Mock	Objects	in	jQuery	applications
actual	service	requirements,	defining	/	Defining	the	actual	service	requirements
Mock	Service,	implementing	/	Implementing	a	Mock	Service
Mock	Service,	using	/	Using	the	Mock	Service

Module	Pattern
about	/	The	Module	Pattern
Immediately	Invoked	Function	Expression	(IIFE)	building	block	/	The	IIFE
building	block
simple	IIFE	Module	Pattern	/	The	simple	IIFE	Module	Pattern
using,	in	jQuery	/	How	it	is	used	by	jQuery
namespace	parameter	module	variant	/	The	Namespace	Parameter	Module
variant
IIFE-contained	module	variant	/	The	IIFE-contained	Module	variant

modules
about	/	Modules	and	Namespaces,	Encapsulating	internal	parts	of	an
implementation
internal	part	implementation,	encapsulating	/	Encapsulating	internal	parts	of	an
implementation
acceptance	/	The	wide	acceptance
using,	in	jQuery	applications	/	Using	Modules	in	jQuery	applications

modules,	jQuery	applications
using	/	Using	Modules	in	jQuery	applications
dashboard	module	/	The	main	dashboard	module
categories	module	/	The	categories	module
informationBox	module	/	The	informationBox	module
counter	module	/	The	counter	module
implementation,	overview	/	Overview	of	the	implementation

Mustache
URL	/	Introducing	Handlebars.js

Mutation	Observer
URL	/	Implementing	a	stateful	jQuery	Plugin

N
$.noConflict()

working	/	Working	with	$.noConflict()
$.noop()

using	/	Using	$.noop()
reference	/	Using	$.noop()

namespaced	events
URL	/	Using	custom	event	namespacing

namespace	parameter	module	variant	/	The	Namespace	Parameter	Module	variant
namespaces

about	/	Modules	and	Namespaces,	Avoiding	global	variables	with	Namespaces
internal	part	implementation,	encapsulating	/	Encapsulating	internal	parts	of	an
implementation
global	variables,	avoiding	/	Avoiding	global	variables	with	Namespaces
benefits	/	The	benefits	of	these	patterns
acceptance	/	The	wide	acceptance

namespacing	/	Avoiding	global	variables	with	Namespaces
naming	conventions,	jQuery	Plugin

selecting	/	Choosing	a	name
NPM

URL	/	Choosing	a	name

O
object-oriented	JavaScript

URL	/	The	wide	acceptance
Object	Literal	/	How	it	is	adopted	by	jQuery
Object	Literal	Pattern	/	The	Object	Literal	Pattern,	The	simple	IIFE	Module	Pattern,
The	Revealing	Module	Pattern
Observer	Pattern

about	/	Introducing	the	Observer	Pattern
URL	/	Introducing	the	Observer	Pattern
using,	in	jQuery	/	How	it	is	used	by	jQuery
jQuery.fn.on()	method	/	The	jQuery	on	method
document-ready	observer	/	The	document-ready	observer
sample	use	case,	demonstrating	/	Demonstrate	a	sample	use	case
comparing,	with	event	attributes	/	How	it	is	compared	with	event	attributes
event	attributes,	comparing	with	/	How	it	is	compared	with	event	attributes
memory	leaks,	avoiding	/	Avoid	memory	leaks
and	Publish/Subscribe	Pattern,	differentiating	between	/	How	it	differs	from	the
Observer	Pattern

P
patterns

benefits	/	The	benefits	of	these	patterns
performance	tips	on	jQuery

reference	/	Writing	efficient	jQuery	code
performant	CSS	selectors

writing	/	Writing	performant	CSS	selectors
placeholder	notations,	_.tempate()	method

<%=	%>	notation	/	Introducing	Underscore.js
<%-	%>	/	Introducing	Underscore.js
<%	%>	notation	/	Introducing	Underscore.js

Promises
about	/	Introducing	the	concept	of	Promises
using	/	Using	Promises
jQuery	Promise	API,	using	/	Using	the	jQuery	Promise	API
advanced	concepts	/	Advanced	concepts
joining	/	Joining	Promises
using,	by	jQuery	/	How	jQuery	uses	Promises
transforming,	to	other	types	/	Transforming	Promises	to	other	types
benefits	/	Summarizing	the	benefits	of	Promises

Promises,	chaining
about	/	Chaining	Promises
thrown	errors,	handling	/	Handling	thrown	errors

Promises/A+
using	/	Using	Promises/A+
reference	/	Using	Promises/A+
comparing,	with	jQuery	/	Comparing	jQuery	and	A+	Promises
transforming,	to	/	Transforming	to	Promises/A+

Publish/Subscribe	Pattern
about	/	Introducing	the	Publish/Subscribe	Pattern
and	Observer	Pattern,	differentiating	between	/	How	it	differs	from	the	Observer
Pattern
using,	by	jQuery	/	How	it	is	adopted	by	jQuery
implementing,	with	custom	events	/	Implementing	a	Pub/Sub	scheme	using
custom	events
sample	use	case	/	Demonstrating	a	sample	use	case
using,	on	dashboard	example	/	Using	Pub/Sub	on	the	dashboard	example
implementation,	extending	/	Extending	the	implementation

publishers	/	Introducing	the	Publish/Subscribe	Pattern

R
RequireJS

URL	/	Lazy	Loading	Modules
resources

bundling	/	Bundling	and	minifying	resources
minifying	/	Bundling	and	minifying	resources

reusable	plugins
creating	/	Creating	reusable	plugins
configuration	parameters,	accepting	/	Accepting	configuration	parameters
stateful	jQuery	Plugins,	writing	/	Writing	stateful	jQuery	plugins
stateful	jQuery	Plugin,	implementing	/	Implementing	a	stateful	jQuery	Plugin
instance,	destroying	/	Destroying	a	plugin	instance
getter	method,	implementing	/	Implementing	getter	and	setter	methods
setter	methods,	implementing	/	Implementing	getter	and	setter	methods
using,	in	Dashboard	application	/	Using	our	plugin	in	our	Dashboard	application

Revealing	Module	Pattern
about	/	The	Revealing	Module	Pattern

S
$.single	plugin

using	/	Using	the	$.single	plugin
<script>	tag	/	Placing	scripts	near	the	end	of	the	page
sample	use	case,	Observer	Pattern

demonstrating	/	Demonstrate	a	sample	use	case
sample	use	case,	Publish/Subscribe	Pattern

demonstrating	/	Demonstrating	a	sample	use	case
object,	using	as	broker	/	Using	any	object	as	a	broker

scripts
placing,	near	end	of	page	/	Placing	scripts	near	the	end	of	the	page

Separation	of	Concerns
about	/	Encapsulating	internal	parts	of	an	implementation
URL	/	Encapsulating	internal	parts	of	an	implementation

Separation	of	Concerns	principle	/	The	benefits	of	this	pattern
setter	method

implementing	/	Implementing	getter	and	setter	methods
simple	callback

defining	/	Introducing	the	Observer	Pattern
simple	IIFE	Module	Pattern

about	/	The	simple	IIFE	Module	Pattern
Single	Responsibility	principle

URL	/	The	Iterator	Pattern
Sizzle	/	The	jQuery	DOM	Traversal	API,	Writing	performant	CSS	selectors

URL	/	How	it	is	used	by	jQuery
reference	/	The	jQuery	DOM	Traversal	API

specified	Node	Types
URL	/	How	the	Composite	Pattern	is	used	by	jQuery

stateful	jQuery	Plugins
writing	/	Writing	stateful	jQuery	plugins
implementing	/	Implementing	a	stateful	jQuery	Plugin
instance,	destroying	/	Destroying	a	plugin	instance

strict	execution	mode
URL	/	Wrapping	with	an	IIFE

strict	mode,	JavaScript
URL	/	Using	ES5	Strict	Mode

subscribers	/	Introducing	the	Publish/Subscribe	Pattern

T
Tiny

URL	/	Implementing	a	Pub/Sub	scheme	using	custom	events
truthy	JavaScript	value

reference	/	Writing	better	for	loops

U
UglifyJS

reference	/	Bundling	and	minifying	resources
Underscore.js

about	/	Introducing	Underscore.js
using,	in	applications	/	Using	Underscore.js	templates	in	our	applications
HTML	templates,	separating	from	JavaScript	code	/	Separating	HTML
templates	from	JavaScript	code,	Separating	HTML	templates	from	JavaScript
code
templates,	pre-compiling	/	Pre-compiling	templates

V
variable

naming	conventions	/	Manipulating	the	DOM	using	jQuery

Y
YUI	Compressor

reference	/	Bundling	and	minifying	resources

	jQuery Design Patterns
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. A Refresher on jQuery and the Composite Pattern
	jQuery and DOM scripting
	Manipulating the DOM using jQuery
	Method Chaining and Fluent Interfaces
	The Composite Pattern
	How the Composite Pattern is used by jQuery
	Comparing the benefits over the plain DOM API
	Using the Composite Pattern to develop applications
	A sample use case
	The Composite Collection Implementation
	An example execution
	Alternative implementations
	The Iterator Pattern
	How the Iterator Pattern is used by jQuery
	How it pairs with the Composite Pattern
	Where can it be used
	Summary
	2. The Observer Pattern
	Introducing the Observer Pattern
	How it is used by jQuery
	The jQuery on method
	The document-ready observer
	Demonstrate a sample use case
	How it is compared with event attributes
	Avoid memory leaks
	Introducing the Delegated Event Observer Pattern
	How it simplifies our code
	Compare the memory usage benefits
	Summary
	3. The Publish/Subscribe Pattern
	Introducing the Publish/Subscribe Pattern
	How it differs from the Observer Pattern
	How it is adopted by jQuery
	Custom events in jQuery
	Implementing a Pub/Sub scheme using custom events
	Demonstrating a sample use case
	Using Pub/Sub on the dashboard example
	Extending the implementation
	Using any object as a broker
	Using custom event namespacing
	Summary
	4. Divide and Conquer with the Module Pattern
	Modules and Namespaces
	Encapsulating internal parts of an implementation
	Avoiding global variables with Namespaces
	The benefits of these patterns
	The wide acceptance
	The Object Literal Pattern
	The Module Pattern
	The IIFE building block
	The simple IIFE Module Pattern
	How it is used by jQuery
	The Namespace Parameter Module variant
	The IIFE-contained Module variant
	The Revealing Module Pattern
	Using ES5 Strict Mode
	Introducing ES6 Modules
	Using Modules in jQuery applications
	The main dashboard module
	The categories module
	The informationBox module
	The counter module
	Overview of the implementation
	Summary
	5. The Facade Pattern
	Introducing the Facade Pattern
	The benefits of this pattern
	How it is adopted by jQuery
	The jQuery DOM Traversal API
	The property access and manipulation API
	Using Facades in our applications
	Summary
	6. The Builder and Factory Patterns
	Introducing the Factory Pattern
	How it is adopted by jQuery
	Using Factories in our applications
	Introducing the Builder Pattern
	How it is adopted by jQuery's API
	How it is used by jQuery internally
	How to use it in our applications
	Summary
	7. Asynchronous Control Flow Patterns
	Programming with callbacks
	Using simple callbacks in JavaScript
	Setting callbacks as object properties
	Using callbacks in jQuery applications
	Writing methods that accept callbacks
	Orchestrating callbacks
	Queuing in order execution
	Avoiding the Callback Hell anti-pattern
	Running concurrently
	Introducing the concept of Promises
	Using Promises
	Using the jQuery Promise API
	Using Promises/A+
	Comparing jQuery and A+ Promises
	Advanced concepts
	Chaining Promises
	Handling thrown errors
	Joining Promises
	How jQuery uses Promises
	Transforming Promises to other types
	Transforming to Promises/A+
	Transforming to jQuery Promises
	Summarizing the benefits of Promises
	Summary
	8. Mock Object Pattern
	Introducing the Mock Object Pattern
	Using Mock Objects in jQuery applications
	Defining the actual service requirements
	Implementing a Mock Service
	Using the Mock Service
	Summary
	9. Client-side Templating
	Introducing Underscore.js
	Using Underscore.js templates in our applications
	Separating HTML templates from JavaScript code
	Introducing Handlebars.js
	Using Handlebars.js in our applications
	Separating HTML templates from JavaScript code
	Pre-compiling templates
	Retrieving HTML templates asynchronously
	Adopting it in an existing implementation
	Moderation is best in all things
	Summary
	10. Plugin and Widget Development Patterns
	Introducing jQuery Plugins
	Following jQuery principles
	Working on Composite Collection Objects
	Allowing further chaining
	Working with $.noConflict()
	Wrapping with an IIFE
	Creating reusable plugins
	Accepting configuration parameters
	Writing stateful jQuery plugins
	Implementing a stateful jQuery Plugin
	Destroying a plugin instance
	Implementing getter and setter methods
	Using our plugin in our Dashboard application
	Using the jQuery Plugin Boilerplate
	Adding methods to your plugin
	Choosing a name
	Summary
	11. Optimization Patterns
	Placing scripts near the end of the page
	Bundling and minifying resources
	Using IIFE parameters
	Using CDNs
	Using JSDelivr API
	Optimizing common JavaScript code
	Writing better for loops
	Writing performant CSS selectors
	Writing efficient jQuery code
	Minimizing DOM traversals
	Caching jQuery objects
	Scoping element traversals
	Chaining jQuery methods
	Don't overdo it
	Improving DOM manipulations
	Creating DOM elements
	Styling and animating
	Manipulating detached elements
	Introducing the Flyweight Pattern
	Using Delegate Observers
	Using $.noop()
	Using the $.single plugin
	Lazy Loading Modules
	Summary
	Index

