

Switching	to	Angular	2

Table	of	Contents

Switching	to	Angular	2

Credits

Foreword

About	the	Author

About	the	Reviewers

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started	with	Angular	2

The	evolution	of	the	Web	–	time	for	a	new	framework

The	evolution	of	ECMAScript

Web	Components

WebWorkers

Lessons	learned	from	AngularJS	1.x	in	the	wild

Controllers

Scope

Dependency	Injection

Server-side	rendering

Applications	that	scale

Templates

Change	detection

Summary

2.	The	Building	Blocks	of	an	Angular	2	Application

A	conceptual	overview	of	Angular	2

Changing	directives

Getting	to	know	Angular	2	components

Components	in	action

Components	in	Angular	2

Pipes

Defining	pipes

Change	detection

Classical	change	detection

AngularJS	1.x	change	detection

In	the	zone.js

Simplified	data	flow

Enhancing	AngularJS	1.x’s	change	detection

Understanding	services

Understanding	the	new	component-based	router

Angular	2	route	definition	syntax

Summary

3.	TypeScript	Crash	Course

Introduction	to	TypeScript

Compile-time	type	checking

Better	support	by	text	editors	and	IDEs

There’s	even	more	to	TypeScript

Using	TypeScript

Installing	TypeScript	with	npm

Running	our	first	TypeScript	program

TypeScript	syntax	and	features	introduced	by	ES2015	and	ES2016

ES2015	arrow	functions

Using	the	ES2015	and	ES2016	classes

Defining	variables	with	block	scope

Meta-programming	with	ES2016	decorators

Using	configurable	decorators

Writing	modular	code	with	ES2015

Using	the	ES2015	module	syntax

Taking	advantage	of	the	implicit	asynchronous	behavior

Using	aliases

Importing	all	the	module	exports

Default	exports

ES2015	module	loader

ES2015	and	ES2016	recap

Taking	advantage	of	static	typing

Using	explicit	type	definitions

The	type	any

Understanding	the	Primitive	types

The	Enum	types

Understanding	the	Object	types

The	Array	types

The	Function	types

Defining	classes

Using	access	modifiers

Defining	interfaces

Interface	inheritance

Implementing	multiple	interfaces

Further	expressiveness	with	TypeScript	decorators

Writing	generic	code	by	using	type	parameters

Using	generic	functions

Having	multiple	type	parameters

Writing	less	verbose	code	with	TypeScript’s	type	inference

Best	common	type

Contextual	type	inference

Using	ambient	type	definitions

Using	predefined	ambient	type	definitions

Custom	ambient	type	definitions

Defining	ts.d	files

Summary

4.	Getting	Started	with	Angular	2	Components	and	Directives

The	Hello	world!	application	in	Angular	2

Setting	up	our	environment

Installing	our	project	repository

Playing	with	Angular	2	and	TypeScript

Digging	into	the	index

Using	Angular	2	directives

The	ngFor	directive

Improved	semantics	of	the	directives	syntax

Declaring	variables	inside	a	template

Using	syntax	sugar	in	templates

Defining	Angular	2	directives

Setting	the	directive’s	inputs

Understanding	the	directive’s	constructor

Better	encapsulation	of	directives

Using	Angular	2’s	built-in	directives

Introducing	the	component’s	view	encapsulation

Implementing	the	component’s	controllers

Handling	user	actions

Using	a	directives’	inputs	and	outputs

Finding	out	directives’	inputs	and	outputs

Defining	the	component’s	inputs	and	outputs

Passing	inputs	and	consuming	the	outputs

Event	bubbling

Renaming	the	inputs	and	outputs	of	a	directive

An	alternative	syntax	to	define	inputs	and	outputs

Explaining	Angular	2’s	content	projection

Basic	content	projection	in	Angular	2

Projecting	multiple	content	chunks

Nesting	components

Using	ViewChildren	and	ContentChildren

ViewChild	versus	ContentChild

Hooking	into	the	component’s	life	cycle

The	order	of	execution

Defining	generic	views	with	TemplateRef

Understanding	and	enhancing	the	change	detection

The	order	of	execution	of	the	change	detectors

Change	detection	strategies

Performance	boosting	with	immutable	data	and	OnPush

Using	immutable	data	structures	in	Angular

Summary

5.	Dependency	Injection	in	Angular	2

Why	do	I	need	Dependency	Injection?

Dependency	Injection	in	Angular	2

Benefits	of	DI	in	Angular	2

Configuring	an	injector

Dependency	resolution	with	generated	metadata

Instantiating	an	injector

Introducing	forward	references

Configuring	providers

Using	existing	providers

Defining	factories	for	instantiating	services

Child	injectors	and	visibility

Building	a	hierarchy	of	injectors

Configuring	dependencies

Using	the	@Self	decorator

Skipping	the	self	injector

Having	optional	dependencies

Using	multiproviders

Using	DI	with	components	and	directives

Introducing	the	element	injectors

Declaring	providers	for	the	element	injectors

Exploring	DI	with	components

viewProviders	versus	providers

Using	Angular’s	DI	with	ES5

Summary

6.	Working	with	the	Angular	2	Router	and	Forms

Developing	the	“Coders	repository”	application

Exploring	the	Angular	2	router

Defining	the	root	component	and	bootstrapping	the	application

Using	PathLocationStrategy

Configuring	routes	with	@RouteConfig

Using	routerLink	and	router-outlet

Lazy-loading	with	AsyncRoute

Using	Angular	2	forms

Developing	template-driven	forms

Digging	into	the	template-driven	form’s	markup

Using	the	built-in	form	validators

Defining	custom	control	validators

Using	select	inputs	with	Angular

Using	the	NgForm	directive

Two-way	data-binding	with	Angular	2

Storing	the	form	data

Listing	all	the	stored	developers

Summary

7.	Explaining	Pipes	and	Communicating	with	RESTful	Services

Developing	model-driven	forms	in	Angular	2

Using	composition	of	control	validators

Exploring	the	HTTP	module	of	Angular

Using	Angular’s	HTTP	module

Defining	parameterized	views

Defining	nested	routes

Transforming	data	with	pipes

Developing	stateless	pipes

Using	Angular’s	built-in	pipes

Developing	stateful	pipes

Using	stateful	pipes

Using	Angular’s	AsyncPipe

Using	AsyncPipe	with	observables

Summary

8.	Development	Experience	and	Server-Side	Rendering

Running	applications	in	Web	Workers

Web	Workers	and	Angular	2

Bootstrapping	an	application	running	in	Web	Worker

Migrating	an	application	to	Web	Worker

Making	an	application	compatible	with	Web	Workers

Initial	load	of	a	single-page	application

Initial	load	of	a	SPA	with	server-side	rendering

Server-side	rendering	with	Angular	2

Enhancing	our	development	experience

Text	editors	and	IDEs

Hot	reloading

Hot	reloading	in	Angular	2

Bootstrapping	a	project	with	angular-cli

Using	angular-cli

Angular	2	quick	starters

Angular	2	seed

Angular	2	Webpack	starter

Summary

Index

Switching	to	Angular	2

Switching	to	Angular	2
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1220316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-620-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Minko	Gechev

Reviewers

Miško	Hevery

Daniel	Lamb

Commissioning	Editor

Edward	Gordon

Acquisition	Editor

Kirk	D’costa

Content	Development	Editor

Shweta	Pant

Technical	Editor

Mohita	Vyas

Copy	Editor

Akshata	Lobo

Project	Coordinator

Kinjal	Bari

Proofreader

Safis	Editing

Indexer

Mariammal	Chettiyar

Graphics

Disha	Haria

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

Foreword
Angular	2	is	still	Angular,	just	better.	It	is	still	built	on	the	same	principles	that	made	you
love	AngularJS:	a	quick	and	powerful	solution	to	building	Single	Page	Applications.	In
Angular	2,	the	applications	are	faster,	more	visible	to	SEO	and	mobile,	and	are	cross-
platform	ready.	So	whilst	Angular	2	has	improved	many	of	the	concepts	over	AngularJS,
the	philosophy	remains	true	to	the	original	vision.

Switching	to	Angular	2	is	a	book	that	recognizes	this.	Minko’s	book	successfully	helps
you	to	switch	your	thinking	from	AngularJS	1.x	to	Angular	2.	From	your	first	interactions
with	Angular	2	to	the	last,	the	core	concepts	of	Angular	are	maintained	throughout.	This
guide	will	help	you	to	switch	to	Angular’s	new	way	of	doing	things.	Minko	guides	you
through	the	changes	and	new	features	that	have	been	introduced—components,	directives,
TypeScript,	the	new	router,	and	everything	else	you	need	to	start	using	Angular	2	for	your
next	project.

As	Angular	2	takes	up	the	challenge	set	by	today’s	changing	web	development	landscape
and	builds	on	the	legacy	of	AngularJS,	it’s	incredibly	important	for	the	Angular
community	that	there	are	high	quality	learning	materials	such	as	Minko’s	book	to	help
Angular	developers	make	that	first	switch	over	to	the	future.

Miško	Hevery

Creator	of	AngularJS	and	Angular	2

About	the	Author
Minko	Gechev	is	a	software	engineer	who	strongly	believes	in	open	source	software.	He
has	developed	numerous	such	projects,	including	AngularJS	1.x	and	Angular	2	style
guides,	angular2-seed,	a	static	code	analyzer	for	Angular	2	projects,	aspect.js,	angular-aop,
and	many	others.	He	runs	training	courses	in	JavaScript,	Angular,	and	other	web
technologies.

Minko	loves	to	experiment	with	theoretical	concepts	from	computer	science	and	apply
them	in	practice.	He	has	spoken	about	Angular	and	software	development	at	worldwide
conferences	and	meetups,	including	ng-vegas,	AngularConnect,	ITWeekend	Kiev,
AngularJS-SF,	and	Angular	Berlin.

I	want	to	thank	Miško	Hevery	for	his	great	contributions	in	software	engineering	and	the
technical	review	of	this	book.	He	helped	me	provide	as	precise	content	as	possible.	To
make	the	code	samples	for	the	book	easy	to	run,	I	used	angular2-seed.	Core	contributor	of
the	project	is	Ludovic	Hénin,	who	helped	make	it	much	more	than	an	Angular	2	starter.	I
also	want	to	thank	to	Daniel	Lamb,	Radoslav	Kirov	and	Tero	Parviainen	who	gave	me
extremely	valuable	feedback!.

I	couldn’t	complete	the	book	without	the	dedicated	work	of	the	Packt	Publishing	team.

Finally,	I	want	to	thank	the	team	at	Google	for	giving	us	Angular.	They	are	a	constant
inspiration.

About	the	Reviewers
Miško	Hevery	is	the	creator	of	the	AngularJS	framework.	He	has	a	passion	for	making
complex	things	simple.	He	currently	works	at	Google,	but	has	previously	worked	at
Adobe,	Sun	Microsystems,	Intel,	and	Xerox,	where	he	became	an	expert	in	building	web
applications	in	web-related	technologies,	such	as	Java,	JavaScript,	Flex,	and	ActionScript.

Daniel	Lamb	is	a	senior	software	development	professional	and	an	author	who	enjoys
sharing	the	knowledge	he	has	gained,	specializing	in	large-scale	architecture	and	frontend
web	development.	His	work	over	the	last	16	years	has	enabled	hundreds	of	millions	to
engage	and	interact	during	billions	of	visits.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
AngularJS	is	a	JavaScript	development	framework	that	makes	building	web	applications
easier.	It	is	used	today	in	large-scale,	high-traffic	websites	that	struggle	with
underperformance	and	portability	issues,	as	well	as	SEO	unfriendliness	and	complexity	at
scale.	Angular	2	changes	these.

It	is	the	modern	framework	you	need	to	build	performant	and	robust	web	applications.
Switching	to	Angular	2	is	the	quickest	way	to	get	to	grips	with	Angular	2,	and	it	will	help
you	transition	into	the	brave	new	world	of	Angular	2.

By	the	end	of	the	book,	you’ll	be	ready	to	start	building	quick	and	efficient	Angular	2
applications	that	take	advantage	of	all	the	new	features	on	offer.

What	this	book	covers
Chapter	1,	Getting	started	with	Angular	2,	kicks	off	our	journey	into	the	world	of	Angular
2.	It	describes	the	main	reasons	behind	the	design	decisions	of	the	framework.	We	will
look	into	the	two	main	drivers	behind	the	shape	of	the	framework—the	current	state	of	the
Web	and	the	evolution	of	frontend	development.

Chapter	2,	The	Building	Blocks	of	an	Angular	2	Application,	gives	an	overview	of	the	core
concepts	introduced	by	Angular	2.	We’ll	explore	how	the	foundational	building	blocks	for
the	development	of	applications	provided	by	AngularJS	1.x	differ	from	the	ones	in	the	last
major	version	of	the	framework.

Chapter	3,	TypeScript	Crash	Course,	explains	that	although	Angular	2	is	language
agnostic,	Google’s	recommendation	is	to	take	advantage	of	the	static	typing	of	TypeScript.
In	this	chapter,	you’ll	learn	all	the	essential	syntax	you	need	to	develop	Angular	2
applications	in	TypeScript!

Chapter	4,	Getting	Started	with	Angular	2	Components	and	Directives,	describes	the	core
building	blocks	for	developing	the	user	interface	of	our	applications—directives	and
components.	We	will	dive	into	concepts	such	as	view	encapsulation,	content	projection,
inputs	and	outputs,	change	detection	strategies,	and	more.	We’ll	discuss	advanced	topics
such	as	template	references	and	speeding	up	our	applications	using	immutable	data.

Chapter	5,	Dependency	Injection	in	Angular	2,	covers	one	of	the	most	powerful	features	in
the	framework,	which	was	initially	introduced	by	AngularJS	1.x:	its	dependency	injection
mechanism.	It	allows	us	to	write	more	maintainable,	testable,	and	understandable	code.	By
the	end	of	this	chapter,	we	will	know	how	to	define	the	business	logic	in	services	and	glue
them	together	with	the	UI	through	the	DI	mechanism.	We	will	also	look	into	some	more
advanced	concepts,	such	as	the	injectors	hierarchy,	configuring	providers,	and	more.

Chapter	6,	Working	with	the	Angular	2	Router	and	Forms,	explores	the	new	module	for
managing	forms	in	the	process	of	developing	a	real-life	application.	We	will	also
implement	a	page	that	shows	the	entered	through	the	form	data.	In	the	end,	we	will	glue
the	individual	pages	together	into	an	application	by	using	the	component-based	router.

Chapter	7,	Explaining	Pipes	and	Communicating	with	RESTful	services,	dives	into	the
router	and	the	forms	modules	in	detail.	Here,	we	will	explore	how	we	can	develop	model-
driven	forms	and	define	parameterized	and	child	routes.	We	will	also	explain	the	HTTP
module	and	see	how	we	can	develop	pure	and	impure	pipes.

Chapter	8,	SEO	and	Angular	2	in	the	Real	World,	explores	some	advanced	topics	in	the
Angular	2	application	development,	such	as	running	an	application	in	Web	Workers	and
server-side	rendering.	In	the	second	part	of	the	chapter,	we	will	explore	tools	that	can	ease
our	daily	life	as	developers,	such	as	angular-cli,	and	angular2-seed,	explain	the
concept	of	hot	reloading,	and	more.

What	you	need	for	this	book
All	you	need	to	work	through	most	of	the	examples	in	this	book	is	a	simple	text	editor	or
an	IDE,	Node.js,	TypeScript	installed,	Internet	access,	and	a	browser.

Each	chapter	introduces	the	software	requirements	for	running	the	provided	snippets.

Who	this	book	is	for
Do	you	want	to	jump	in	at	the	deep	end	of	Angular	2?	Or	perhaps	you’re	interested	in
assessing	the	changes	before	moving	over?	If	so,	then	Switching	to	Angular	2	is	the	book
for	you.

To	get	the	most	out	of	the	book,	you’ll	need	to	have	basic	understanding	of	AngularJS	1.x
and	have	a	good	understanding	of	JavaScript.	No	knowledge	of	the	changes	made	to
Angular	2	is	required	to	follow	along.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“You
should	see	the	same	result,	but	without	the	test.js	file	stored	on	the	disk.”

A	block	of	code	is	set	as	follows:

@Injectable()

class	Socket	{

		constructor(private	buffer:	Buffer)	{}

}

let	injector	=	Injector.resolveAndCreate([

		provide(BUFFER_SIZE,	{	useValue:	42	}),

		Buffer,

		Socket

]);

injector.get(Socket);

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

let	injector	=	Injector.resolveAndCreate([

		provide(BUFFER_SIZE,	{	useValue:	42	}),

		Buffer,

		Socket

]);

Each	code	snippet	which	is	in	the	repository	with	the	code	from	this	book	starts	with	a
comment	with	its	corresponding	file	location,	relative	to	the	app	directory:

//	ch5/ts/injector-basics/forward-ref.ts

@Injectable()

class	Socket	{

		constructor(private	buffer:	Buffer)	{…}

}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“When	the	markup	is
rendered	onto	the	screen,	all	that	the	user	will	see	is	the	label:	Loading….”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	GitHub	at
https://github.com/mgechev/switching-to-angular2.

You	can	download	the	code	files	by	following	these	steps:

1.	 Enter	the	URL	in	your	browser’s	address	bar.
2.	 Click	on	the	“Download	ZIP”	button	located	in	the	mid-right	part	of	the	screen.

You	can	also	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	also	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux
Chapters	3	and	4	contain	further	information	for	the	installation	process.

https://github.com/mgechev/switching-to-angular2
http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	Angular	2
On	September	18,	2014,	the	first	public	commit	was	pushed	to	the	Angular	2	repository.	A
few	weeks	later,	at	ng-europe,	Igor	and	Tobias	from	the	core	team	gave	a	short	overview
of	what	Angular	2	was	expected	to	be.	The	vision	at	that	time	was	far	from	final;	however,
one	thing	was	certain—the	new	version	of	the	framework	would	be	entirely	different	from
AngularJS	1.x.

This	announcement	brought	a	lot	of	questions	and	controversy.	The	reasons	behind	the
drastic	changes	were	quite	clear—AngularJS	1.x	was	no	longer	able	to	take	full	advantage
of	the	evolved	Web	and	to	completely	satisfy	the	requirements	of	large-scale	JavaScript
applications.	A	new	framework	would	let	Angular	developers	capitalize	on	developments
in	web	technology	in	simpler	and	more	direct	ways.	Yet,	people	were	concerned.	One	of
the	biggest	nightmares	with	backward	incompatibility	for	developers	is	the	migration	of
their	current	codebases	to	the	new	version	of	the	third-party	software	they	use.	In
Angular’s	case,	after	that	first	announcement,	migration	looked	daunting,	even	impossible.
Later,	at	ng-conf	2015	and	ng-vegas,	different	migration	strategies	were	introduced.	The
Angular	community	came	together	and	shared	additional	ideas,	anticipating	the	benefits	of
Angular	2	while	preserving	the	things	learned	from	AngularJS	1.x.

This	book	is	a	part	of	that	project.	Making	the	upgrade	to	Angular	2	is	non-trivial,	but	it	is
worth	it.	The	main	drivers	behind	the	drastic	changes	in	Angular	2	and	its	lack	of
backward	compatibility	are	the	evolution	of	the	Web,	and	the	lessons	learned	from	the
usage	of	AngularJS	1.x	in	the	wild.	Switching	to	Angular	2	will	help	you	to	learn	the	new
framework	by	understanding	how	we	got	here	and	why	Angular’s	new	features	make
intuitive	sense	for	the	modern	Web	in	building	high-performance,	scalable,	single-page
applications.

The	evolution	of	the	Web	–	time	for	a	new
framework
In	the	last	couple	of	years,	the	Web	has	evolved	in	big	steps.	During	the	implementation	of
ECMAScript	5,	the	ECMAScript	6	standard	started	its	development	(now	known	as
ECMAScript	2015	or	ES2015).	ES2015	introduced	many	changes	in	the	language	such
as	adding	built-in	language	support	for	modules,	block	scope	variable	definition,	and	a	lot
of	syntactical	sugar,	such	as	classes	and	destructuring.

Meanwhile,	Web	Components	were	invented.	Web	Components	allow	us	to	define
custom	HTML	elements	and	attach	behavior	to	them.	Since	it	is	hard	to	extend	the
existing	HTML	elements	with	new	ones	(such	as	dialogs,	charts,	grids,	and	more)	mostly
because	of	the	time	required	for	consolidation	and	standardization	of	their	APIs,	a	better
solution	is	to	allow	developers	to	extend	the	existing	elements	the	way	they	want.	Web
Components	provide	us	with	a	number	of	benefits,	including	better	encapsulation,	better
semantics	of	the	markup	we	produce,	better	modularity,	and	easier	communication
between	developers	and	designers.

We	know	that	JavaScript	is	a	single-threaded	language.	Initially,	it	was	developed	for
simple	client-side	scripting,	but	over	time,	its	role	has	shifted	quite	a	bit.	Now	with
HTML5,	we	have	different	APIs	that	allow	audio	and	video	processing,	communication
with	external	services	through	a	two-directional	communication	channel,	transferring	and
processing	big	chunks	of	raw	data,	and	more.	All	these	heavy	computations	in	the	main
thread	may	create	a	poor	user	experience.	They	may	introduce	freezing	of	the	user
interface	when	time-consuming	computations	are	being	performed.	This	led	to	the
development	of	WebWorkers,	which	allow	the	execution	of	the	scripts	in	the	background
that	communicate	with	the	main	thread	through	message	passing.	This	way,	multi-
threaded	programming	has	been	brought	to	the	browser.

Some	of	these	APIs	were	introduced	after	the	development	of	AngularJS	1.x	had	begun;
that’s	why	the	framework	wasn’t	build	with	most	of	them	in	mind.	However,	exploiting
the	APIs	gives	developers	many	benefits,	such	as:

Significant	performance	improvements.
Development	of	software	with	better	quality	characteristics.

Now	let’s	briefly	discuss	how	each	of	these	technologies	has	been	made	part	of	the	new
Angular	core	and	why.

The	evolution	of	ECMAScript
Nowadays,	browser	vendors	are	releasing	new	features	in	short	iterations,	and	users
receive	updates	quite	often.	This	helps	move	the	Web	forward	by	allowing	developers	to
take	advantage	of	the	bleeding-edge	technologies,	aiming	to	improve	the	Web.	ES2015	is
already	standardized.	The	implementation	of	the	latest	version	of	the	language	has	already
started	in	the	major	browsers.	Learning	the	new	syntax	and	taking	advantage	of	it	will	not
only	increase	our	productivity	as	developers,	but	also	prepare	us	for	the	near	future	when
all	the	browsers	will	have	full	support	for	it.	This	makes	it	essential	to	start	using	the	latest
syntax	now.

Some	projects’	requirements	may	enforce	us	to	support	older	browsers,	which	does	not
support	any	ES2015	features.	In	this	case,	we	can	directly	write	ECMAScript	5,	which	has
different	syntax	but	equivalent	semantics	to	ES2015.	However,	we	can	take	advantage	of
the	process	of	transpilation.	Using	a	transpiler	in	our	build	process	allows	us	to	take
advantage	of	the	new	syntax	by	writing	ES2015	and	translating	it	to	a	target	language	that
is	supported	by	the	browsers.

AngularJS	has	been	around	since	2009.	Back	then,	the	frontend	of	most	websites	was
powered	by	ECMAScript	3,	the	last	main	release	of	ECMAScript	prior	to	ECMAScript	5.
This	automatically	meant	that	the	language	used	for	the	framework’s	implementation	was
ECMAScript	3.	Taking	advantage	of	the	new	version	of	the	language	requires	porting	of
the	entirety	of	AngularJS	1.x	to	ES2015.

From	the	beginning,	Angular	2	took	into	account	the	current	state	of	the	Web	by	bringing
the	latest	syntax	in	the	framework.	Although	Angular	2	is	written	with	a	superset	of
ES2016	(TypeScript,	which	we’re	going	to	take	a	look	at	in	a	moment),	it	allows
developers	to	use	language	of	their	own	preference.	We	can	use	ES2015	or,	if	we	prefer
not	to	have	any	intermediate	preprocessing	of	our	code	and	simplify	the	build	process,
even	ECMAScript	5.

Web	Components
The	first	public	draft	of	Web	Components	was	published	on	May	22,	2012,	about	three
years	after	the	release	of	AngularJS	1.x.	As	mentioned,	the	Web	Components	standard
allows	us	to	create	custom	elements	and	attach	behavior	to	them.	It	sounds	familiar;	we’ve
already	used	similar	concept	in	the	development	of	the	user	interface	in	AngularJS	1.x
applications.	Web	Components	sound	like	an	alternative	to	Angular	directives;	however,
they	have	more	intuitive	API,	richer	functionality,	and	built-in	browser	support.	They
introduced	a	few	other	benefits	such	as	better	encapsulation,	which	is	very	important,	for
example,	in	handling	CSS-style	collisions.

A	possible	strategy	for	adding	Web	Components	support	in	AngularJS	1.x	is	to	change	the
directives	implementation	and	introduce	primitives	of	the	new	standard	in	the	DOM
compiler.	As	Angular	developers,	we	know	how	powerful	but	also	complex	the	directives
API	is.	It	includes	a	lot	of	properties	such	as	postLink,	preLink,	compile,	restrict,
scope,	controller,	and	many	more,	and	of	course,	our	favorite	transclude.	Approved	as
standard,	Web	Components	will	be	implemented	on	a	much	lower	level	in	the	browsers,
which	introduces	plenty	of	benefits	such	as	better	performance	and	native	API.

During	the	implementation	of	Web	Components,	a	lot	of	web	specialists	met	the	same
problems	the	Angular	team	did	when	developing	the	directives	API	and	came	up	with
similar	ideas.	Good	design	decisions	behind	Web	Components	include	the	content
element,	which	deals	with	the	infamous	transclusion	problem	in	AngularJS	1.x.	Since	both
the	directives	API	and	Web	Components	solve	similar	problems	in	different	ways,	keeping
the	directives	API	on	top	of	Web	Components	would	have	been	redundant	and	added
unnecessary	complexity.	That’s	why	the	Angular	core	team	decided	to	start	from	the
beginning	by	building	on	top	of	Web	Components	and	taking	full	advantage	of	the	new
standard.	Web	Components	involves	new	features,	some	of	them	not	yet	implemented	by
all	browsers.	In	case	our	application	is	run	in	a	browser,	which	does	not	support	any	of
these	features	natively,	Angular	2	emulates	them.	An	example	for	this	is	the	content
element	polyfilled	with	the	directive,	ng-content.

WebWorkers
JavaScript	is	known	for	its	event	loop.	Usually	JavaScript	programs	are	executed	in	a
single	thread	and	different	events	are	scheduled	by	being	pushed	in	a	queue	and	processed
sequentially,	in	the	order	of	their	arrival.	However,	this	computational	strategy	is	not
effective	when	one	of	the	scheduled	events	requires	a	lot	of	computational	time.	In	such
cases	the	event’s	handling	is	going	to	block	the	main	thread	and	all	other	events	are	not
going	to	be	handled	until	the	time	consuming	computation	is	complete	and	passes	the
execution	to	the	next	one	in	the	queue.	A	simple	example	of	this	is	a	mouse	click	that
triggers	an	event,	in	which	callback	we	do	some	audio	processing	using	the	HTML5	audio
API.	If	the	processed	audio	track	is	big	and	the	algorithm	running	over	it	is	heavy,	this	will
affect	the	user’s	experience	by	freezing	the	UI	until	the	execution	is	complete.

The	WebWorker	API	was	introduced	in	order	to	prevent	such	pitfalls.	It	allows	execution
of	heavy	computations	inside	the	context	of	different	thread,	which	leaves	the	main	thread
of	execution	free,	capable	of	handling	user	input	and	rendering	the	user	interface.

How	can	we	take	advantage	of	this	in	Angular?	In	order	to	answer	this	question,	let’s	think
about	how	things	work	in	AngularJS	1.x.	What	if	we	have	an	enterprise	application,	which
processes	a	huge	amount	of	data	that	needs	to	be	rendered	on	the	screen	using	data
binding?	For	each	binding,	a	new	watcher	will	be	added.	Once	the	digest	loop	is	run,	it
will	loop	over	all	the	watchers,	execute	the	expressions	associated	with	them,	and	compare
the	returned	results	with	the	results	gained	from	the	previous	iteration.	We	have	a	few
slowdowns	here:

The	iteration	over	large	number	of	watchers.
Evaluation	of	expression	in	given	context.
Copy	of	the	returned	result.
Comparison	between	the	current	result	of	the	expression’s	evaluation	and	the
previous	one.

All	these	steps	could	be	quite	slow	depending	on	the	size	of	the	input.	If	the	digest	loop
involves	heavy	computations,	why	not	move	it	to	a	WebWorker?	Why	not	run	the	digest
loop	inside	WebWorker,	get	the	changed	bindings,	and	apply	them	to	the	DOM?

There	were	experiments	by	the	community,	which	aimed	for	this	result.	However,	their
integration	into	the	framework	wasn’t	trivial.	One	of	the	main	reasons	behind	the	lack	of
satisfying	results	was	the	coupling	of	the	framework	with	the	DOM.	Often,	inside	the
watchers’	callbacks,	Angular	directly	manipulates	the	DOM,	which	makes	it	impossible	to
move	the	watchers	inside	WebWorkers	since	the	WebWorkers	are	invoked	in	an	isolated
context,	without	access	to	the	DOM.	In	AngularJS	1.x,	we	may	have	implicit	or	explicit
dependencies	between	the	different	watchers,	which	require	multiple	iterations	of	the
digest	loop	in	order	to	get	stable	results.	Combining	the	last	two	points,	it	is	quite	hard	to
achieve	practical	results	in	calculating	the	changes	in	threads	other	than	the	main	thread	of
execution.

Fixing	this	in	AngularJS	1.x	introduces	a	great	deal	of	complexity	in	the	internal
implementation.	The	framework	simply	was	not	built	with	this	in	mind.	Since

WebWorkers	were	introduced	before	the	Angular	2	design	process	started,	the	core	team
took	them	in	mind	from	the	beginning.

Lessons	learned	from	AngularJS	1.x	in	the
wild
Although	the	previous	section	introduced	a	lot	of	arguments	for	the	required
reimplementation	of	the	framework	responding	to	the	latest	trends,	it’s	important	to
remember	that	we’re	not	starting	completely	from	scratch.	We’re	taking	what	we’ve
learned	from	AngularJS	1.x	with	us.	In	the	period	since	2009,	the	Web	is	not	the	only
thing	that	evolved.	We	also	started	building	more	and	more	complex	applications.	Today,
single-page	applications	are	not	something	exotic,	but	more	like	a	strict	requirement	for	all
the	web	applications	solving	business	problems,	which	are	aiming	for	high	performance
and	good	user	experience.

AngularJS	1.x	helped	us	to	build	highly-efficient	and	large-scale	single-page	applications.
However,	by	applying	it	in	various	use	cases,	we’ve	also	discovered	some	of	its	pitfalls.
Learning	from	the	community’s	experience,	Angular’s	core	team	worked	on	new	ideas
aiming	to	answer	the	new	requirements.	As	we	look	at	the	new	features	of	Angular	2,	let’s
consider	them	in	the	light	of	the	current	implementation	of	AngularJS	1.x	and	think	about
the	things	with	which	we,	as	Angular	developers,	have	struggled	and	which	we	have
modified	over	the	last	few	years.

Controllers
AngularJS	1.x	follows	the	Model	View	Controller	(MVC)	micro-architectural	pattern.
Some	may	argue	that	it	looks	more	like	Model	View	ViewModel	(MVVM)	because	of
the	view	model	attached	as	properties	to	the	scope	or	the	current	context	in	case	of
controller	as	syntax.	It	could	be	approached	differently	again	if	we	use	the	Model	View
Presenter	pattern	(MVP).	Because	of	all	the	different	variations	of	how	we	can	structure
the	logic	in	our	applications	the	core	team	called	AngularJS	1.x	a	Model	View	Whatever
(MVW)	framework.

The	view	in	any	AngularJS	application	is	supposed	to	be	a	composition	of	directives.	The
directives	collaborate	together	in	order	to	deliver	fully	functional	user	interfaces.	Services
are	responsible	for	encapsulating	the	business	logic	of	the	applications.	That’s	the	place
where	we	should	put	the	communication	with	RESTful	services	through	HTTP,	real-time
communication	with	WebSockets	and	even	WebRTC.	Services	are	the	building	block
where	we	should	implement	the	domain	models	and	business	rules	of	our	applications.
There’s	one	more	component,	which	is	mostly	responsible	for	handling	user	input	and
delegating	the	execution	to	the	services—the	controller.

Although	the	services	and	directives	have	well-defined	roles,	we	can	often	see	the	anti-
pattern	of	the	Massive	View	Controller,	which	is	common	in	iOS	applications.
Occasionally,	developers	are	tempted	to	access	or	even	manipulate	the	DOM	directly	from
their	controllers.	Initially,	this	happens	for	achieving	something	simple,	such	as	changing
the	size	of	an	element,	or	quick	and	dirty	changing	elements’	styles.	Another	noticeable
anti-pattern	is	duplication	of	business	logic	across	controllers.	Often	developers	tend	to
copy	and	paste	logic,	which	should	be	encapsulated	inside	services.

The	best	practices	for	building	AngularJS	applications	state	is	that	the	controllers	should
not	manipulate	the	DOM	at	all,	instead	all	DOM	access	and	manipulations	should	be
isolated	in	directives.	If	we	have	some	repetitive	logic	between	controllers,	most	likely	we
want	to	encapsulate	it	into	a	service	and	inject	this	service	with	the	dependency	injection
mechanism	of	AngularJS	in	all	the	controllers	that	need	that	functionality.

This	is	where	we’re	coming	from	in	AngularJS	1.x.	All	this	said,	it	seems	that	the
functionality	of	controllers	could	be	moved	into	the	directive’s	controllers.	Since
directives	support	the	dependency	injection	API,	after	receiving	the	user’s	input,	we	can
directly	delegate	the	execution	to	a	specific	service,	already	injected.	This	is	the	main
reason	Angular	2	uses	a	different	approach	by	removing	the	ability	to	put	controllers
everywhere	by	using	the	ng-controller	directive.	We’ll	take	a	look	at	how	AngularJS	1.x
controllers’	responsibilities	could	be	taken	from	Angular	2	components	and	directives	in
Chapter	4,	Getting	Started	with	Angular	2	Components	and	Directives.

Scope
The	data-binding	in	AngularJS	is	achieved	using	the	scope	object.	We	can	attach
properties	to	it	and	explicitly	declare	in	the	template	that	we	want	to	bind	to	these
properties	(one	or	two-way).	Although	the	idea	of	the	scope	seems	clear,	the	scope	has
two	more	responsibilities,	including	event	dispatching	and	the	change	detection-related
behavior.	Angular	beginners	have	a	hard	time	understanding	what	scope	really	is	and	how
it	should	be	used.	AngularJS	1.2	introduced	something	called	controller	as	syntax.	It
allows	us	to	add	properties	to	the	current	context	inside	the	given	controller	(this),
instead	of	explicitly	injecting	the	scope	object	and	later	adding	properties	to	it.	This
simplified	syntax	can	be	demonstrated	from	the	following	snippet:

<div	ng-controller="MainCtrl	as	main">

		<button	ng-click="main.clicked()">Click</button>

</div>

function	MainCtrl()	{

		this.name	=	'Foobar';

}

MainCtrl.prototype.clicked	=	function	()	{

		alert('You	clicked	me!');

};

Angular	2	took	this	even	further	by	removing	the	scope	object.	All	the	expressions	are
evaluated	in	the	context	of	given	UI	component.	Removing	the	entire	scope	API
introduces	higher	simplicity;	we	don’t	need	to	explicitly	inject	it	anymore	and	we	add
properties	to	the	UI	components	to	which	we	can	later	bind.	This	API	feels	much	simpler
and	more	natural.

We’re	going	to	take	more	detailed	look	at	the	components	and	the	change	detection
mechanism	of	Angular	2	in	Chapter	4,	Getting	Started	with	Angular	2	Components	and
Directives.

Dependency	Injection
Maybe	the	first	framework	on	the	market	that	included	inversion	of	control	(IoC)
through	dependency	injection	(DI)	in	the	JavaScript	world	was	AngularJS	1.x.	DI
provides	a	number	of	benefits,	such	as	easier	testability,	better	code	organization	and
modularization,	and	simplicity.	Although	the	DI	in	1.x	does	an	amazing	job,	Angular	2
takes	this	even	further.	Since	Angular	2	is	on	top	of	the	latest	web	standards,	it	uses	the
ECMAScript	2016	decorators’	syntax	for	annotating	the	code	for	using	DI.	Decorators	are
quite	similar	to	the	decorators	in	Python	or	annotations	in	Java.	They	allow	us	to	decorate
the	behavior	of	a	given	object	by	using	reflection.	Since	decorators	are	not	yet
standardized	and	supported	by	major	browsers,	their	usage	requires	an	intermediate
transpilation	step;	however,	if	you	don’t	want	to	take	it,	you	can	directly	write	a	little	bit
more	verbose	code	with	ECMAScript	5	syntax	and	achieve	the	same	semantics.

The	new	DI	is	much	more	flexible	and	feature-rich.	It	also	fixes	some	of	the	pitfalls	of
AngularJS	1.x	such	as	the	different	APIs;	in	1.x,	some	objects	are	injected	by	position
(such	as	the	scope,	element,	attributes,	and	controller	in	the	directives’	link	function)	and
others,	by	name	(using	parameters	names	in	controllers,	directives,	services,	and	filters).

We	will	take	a	further	look	at	the	Angular	2’s	dependency	injection	API	in	Chapter	5,
Dependency	Injection	in	Angular	2.

Server-side	rendering
The	bigger	the	requirements	of	the	Web	are,	the	more	complex	the	web	applications
become.	Building	a	real-life,	single-page	application	requires	writing	a	huge	amount	of
JavaScript,	and	including	all	the	required	external	libraries	may	increase	the	size	of	the
scripts	on	our	page	to	a	few	megabytes.	The	initialization	of	the	application	may	take	up	to
several	seconds	or	even	tens	of	seconds	on	mobile	until	all	the	resources	get	fetched	from
the	server,	the	JavaScript	is	parsed	and	executed,	the	page	gets	rendered,	and	all	the	styles
are	applied.	On	low-end	mobile	devices	that	use	a	mobile	Internet	connection,	this	process
may	make	the	users	give	up	on	visiting	our	application.	Although	there	are	a	few	practices
that	speed	up	this	process,	in	complex	applications,	there’s	no	silver	bullet.

In	the	process	of	trying	to	improve	the	user	experience,	developers	discovered	something
called	server-side	rendering.	It	allows	us	to	render	the	requested	view	of	a	single-page
application	on	the	server	and	directly	provide	the	HTML	for	the	page	to	the	user.	Later,
once	all	the	resources	are	processed,	the	event	listeners	and	bindings	can	be	added	by	the
script	files.	This	sounds	like	a	good	way	to	boost	the	performance	of	our	application.	One
of	the	pioneers	in	this	was	ReactJS,	which	allowed	pre-rendering	of	the	user	interface	on
the	server	side	using	Node.js	DOM	implementations.	Unfortunately,	the	architecture	of
AngularJS	1.x	does	not	allow	this.	The	showstopper	is	the	strong	coupling	between	the
framework	and	the	browser	APIs,	the	same	issue	we	had	in	running	the	change	detection
in	WebWorkers.

Another	typical	use	case	for	the	server-side	rendering	is	for	building	Search	Engine
Optimization	(SEO)-friendly	applications.	There	were	a	couple	of	hacks	used	in	the	past
for	making	the	AngularJS	1.x	applications	indexable	by	the	search	engines.	One	such
practice,	for	instance,	is	traversal	of	the	application	with	a	headless	browser,	which
executes	the	scripts	on	each	page	and	caches	the	rendered	output	into	HTML	files,	making
it	accessible	by	the	search	engines.

Although	this	workaround	for	building	SEO-friendly	applications	works,	server-side
rendering	solves	both	of	the	mentioned	issues,	improving	the	user	experience	and	allowing
us	to	build	SEO-friendly	applications	much	more	easily	and	far	more	elegantly.

The	decoupling	of	Angular	2	with	the	DOM	allows	us	to	run	our	Angular	2	applications
outside	the	context	of	the	browser.	The	community	took	advantage	of	this	by	building	a
tool,	allowing	us	to	prerender	the	views	of	our	single-page	application	on	the	server	side
and	forward	them	to	the	browser.	At	the	time	of	writing	the	following	content,	the	tool	is
still	in	the	early	phases	of	its	development	and	is	outside	the	framework’s	core.	We’re
going	to	take	a	further	look	at	it	in	Chapter	8,	Development	Experience	and	Server-Side
Rendering.

Applications	that	scale
MVW	has	been	the	default	choice	for	building	single-page	applications	since	Backbone.js
appeared.	It	allows	separation	of	concerns	by	isolating	the	business	logic	from	the	view,
allowing	us	to	build	well-designed	applications.	Exploiting	the	observer	pattern,	MVW
allows	listening	for	model	changes	in	the	view	and	updating	it	when	changes	are	detected.
However,	there	are	some	explicit	and	implicit	dependencies	between	these	event	handlers,
which	make	the	dataflow	in	our	applications	not	obvious	and	hard	to	reason	about.	In
AngularJS	1.x,	we	are	allowed	to	have	dependencies	between	the	different	watchers,
which	requires	the	digest	loop	to	iterate	over	all	of	them	a	couple	of	times	until	the
expressions’	results	get	stable.	Angular	2	makes	the	data-flow	one-directional,	which	has	a
number	of	benefits,	including:

More	explicit	data-flow.
No	dependencies	between	bindings,	so	no	time	to	live	(TTL)	of	the	digest.
Better	performance:

The	digest	loop	is	run	only	once.
We	can	create	apps,	which	are	friendly	to	immutable/observable	models,	that
allows	us	to	make	further	optimizations.

The	change	in	the	data-flow	introduces	one	more	fundamental	change	in	AngularJS	1.x
architecture.

We	may	take	another	perspective	on	this	problem	when	we	need	to	maintain	a	large
codebase	written	in	JavaScript.	Although	JavaScript’s	duck	typing	makes	the	language
quite	flexible,	it	also	makes	its	analysis	and	support	by	IDEs	and	text	editors	harder.
Refactoring	of	large	projects	gets	very	hard	and	error-prone	because	in	most	cases,	the
static	analysis	and	type	inference	are	impossible.	The	lack	of	compiler	makes	typos	all	too
easy,	which	are	hard	to	notice	until	we	run	our	test	suite	or	run	the	application.

The	Angular	core	team	decided	to	use	TypeScript	because	of	the	better	tooling	possible
with	it	and	the	compile-time	type	checking,	which	help	us	be	more	productive	and	less
error-prone.	As	the	preceding	figure	shows,	TypeScript	is	a	superset	of	ECMAScript;	it
introduces	explicit	type	annotations	and	a	compiler.	The	TypeScript	language	is	compiled
to	plain	JavaScript,	supported	by	today’s	browsers.	Since	version	1.6,	TypeScript
implements	the	ECMAScript	2016	decorators,	which	makes	it	the	perfect	choice	for
Angular	2.

The	usage	of	TypeScript	allows	much	better	IDE	and	text	editors	support	with	static	code
analysis	and	type	checking.	All	this	increases	our	productivity	dramatically	by	reducing
the	mistakes	we	make	and	simplifying	the	refactoring	process.	Another	important	benefit
of	TypeScript	is	the	performance	improvement	we	implicitly	get	by	the	static	typing,
which	allows	run-time	optimizations	by	the	JavaScript	virtual	machine.

We’ll	be	talking	about	TypeScript	in	detail	in	Chapter	3,	TypeScript	Crash	Course.

Templates
Templates	are	one	of	the	key	features	in	AngularJS	1.x.	They	are	simple	HTML	and	do
not	require	any	intermediate	processing	and	compilation,	unlike	most	template	engines
such	as	mustache.	Templates	in	AngularJS	combine	simplicity	with	power	by	allowing	us
to	extend	HTML	by	creating	an	internal	Domain	Specific	Language	(DSL)	inside	it,	with
custom	elements	and	attributes.

However,	this	is	one	of	the	main	purposes	behind	web	components	as	well.	We	already
mentioned	how	and	why	Angular	2	takes	advantage	of	this	new	technology.	Although
AngularJS	1.x	templates	are	great,	they	can	still	get	better!	Angular	2	templates	took	the
best	parts	of	the	ones	in	the	previous	release	of	the	framework	and	enhanced	them	by
fixing	some	of	their	confusing	parts.

For	example,	let’s	say	we	built	a	directive	and	we	want	to	allow	the	user	to	pass	a	property
to	it	by	using	an	attribute.	In	AngularJS	1.x,	we	can	approach	this	in	three	different	ways:

<user	name="literal"></user>

<user	name="expression"></user>

<user	name="{{interpolate}}"></user>

If	we	have	a	directive	user	and	we	want	to	pass	the	name	property,	we	can	approach	in
three	different	ways.	We	can	either	pass	a	literal	(in	this	case,	the	string	"literal"),	a
string,	which	will	be	evaluated	as	an	expression	(in	our	case	"expression"),	or	an
expression	inside	{{	}}.	Which	syntax	should	be	used	completely	depends	on	the
directive’s	implementation,	which	makes	its	API-tangled	and	hard	to	remember.

It	is	a	frustrating	task	to	deal	with	large	amount	of	components	with	different	design
decisions	on	a	daily	basis.	By	introducing	a	common	convention,	we	can	deal	with	such
problems.	However,	in	order	to	have	good	results	and	consistent	APIs,	the	entire
community	needs	to	agree	with	it.

Angular	2	deals	with	this	problem	as	well	by	providing	special	syntax	for	attributes,
whose	values	need	to	be	evaluated	in	the	context	of	the	current	component,	and	a	different
syntax	for	passing	literals.

Another	thing	we’re	used	to,	based	on	our	AngularJS	1.x	experience,	is	the	microsyntax
used	in	template	directives	such	as	ng-if,	ng-for.	For	instance,	if	we	want	to	iterate	over
a	list	of	users	and	display	their	names	in	AngularJS	1.x,	we	can	use:

<div	ng-for="user	in	users">{{user.name}}</div>

Although	this	syntax	looks	intuitive	to	us,	it	allows	limited	tooling	support.	However,
Angular	2	approached	this	differently	by	bringing	a	little	bit	more	explicit	syntax	with
richer	semantics:

<template	ngFor	var-user	[ngForOf]="users">

		{{user.name}}

</template>

The	preceding	snippet	explicitly	defines	the	property,	which	has	to	be	created	in	the

context	of	the	current	iteration	(user),	the	one	we	iterate	over	(users).

However,	this	syntax	is	too	verbose	for	typing.	Developers	can	use	the	following	syntax,
which	later	gets	translated	to	the	more	verbose	one:

<li	*ngFor="#user	of	users">

		{{user.name}}

The	improvements	in	the	new	templates	will	also	allow	better	tooling	for	advanced
support	by	text	editors	and	IDEs.	We’re	going	to	discuss	Angular	2’s	templates	in	Chapter
4,	Getting	Started	with	Angular	2	Components	and	Directives.

Change	detection
In	the	WebWorkers	section,	we	already	mentioned	the	opportunity	to	run	the	digest	loop	in
the	context	of	a	different	thread,	instantiated	as	WebWorker.	However,	the	implementation
of	the	digest	loop	in	AngularJS	1.x	is	not	quite	memory-efficient	and	prevents	the
JavaScript	virtual	machine	from	doing	further	code	optimizations,	which	allows
significant	performance	improvements.	One	such	optimization	is	the	inline	caching
(http://mrale.ph/blog/2012/06/03/explaining-js-vms-in-js-inline-caches.html).	The	Angular
team	did	a	lot	of	research	discovering	different	ways	the	performance	and	the	efficiency	of
the	digest	loop	could	be	improved.	This	led	to	the	development	of	a	brand	new	change
detection	mechanism.

In	order	to	allow	further	flexibility,	the	Angular	team	abstracted	the	change	detection	and
decoupled	its	implementation	from	the	framework’s	core.	This	allowed	the	development
of	different	change	detection	strategies,	empowering	different	features	in	different
environments.

As	a	result,	Angular	2	has	two	built-in	change	detection	mechanisms:

Dynamic	change	detection:	This	is	similar	to	the	change	detection	mechanism	used
by	AngularJS	1.x.	It	is	used	in	systems	with	disallowed	eval(),	such	as	CSP	and
Chrome	extensions.
JIT	change	detection:	This	generates	the	code	that	performs	the	change	detection
run-time,	allowing	the	JavaScript	virtual	machine	to	perform	further	code
optimizations.

We’re	going	to	take	a	look	at	the	new	change	detection	mechanisms	and	how	we	can
configure	them	in	Chapter	4,	Getting	Started	with	Angular	2	Components	and	Directives.

http://mrale.ph/blog/2012/06/03/explaining-js-vms-in-js-inline-caches.html

Summary
In	this	chapter,	we	considered	the	main	reasons	behind	the	decisions	taken	by	the	Angular
core	team	and	the	lack	of	backward	compatibility	between	the	last	two	major	versions	of
the	framework.	We	saw	that	these	decisions	were	fueled	by	two	things—the	evolution	of
the	Web	and	the	evolution	of	the	frontend	development,	with	the	lessons	learned	from	the
development	of	AngularJS	1.x	applications.

In	the	first	section,	we	learned	why	we	need	to	use	the	latest	version	of	the	JavaScript
language,	why	we	want	to	take	advantage	of	Web	Components	and	WebWorkers,	and	why
it’s	not	worth	it	to	integrate	all	these	powerful	tools	in	version	1.x.

We	observed	the	current	direction	of	frontend	development	and	the	lessons	learned	in	the
last	few	years.	We	described	why	the	controller	and	scope	were	removed	from	Angular	2,
and	why	AngularJS	1.x’s	architecture	was	changed	in	order	to	allow	server-side	rendering
for	SEO-friendly,	high-performance,	single-page	applications.	Another	fundamental	topic
we	took	a	look	at	was	building	large-scale	applications,	and	how	that	motivated	single-
way	data-flow	in	the	framework	and	the	choice	of	the	statically-typed	language
TypeScript.

In	the	next	chapter,	we’re	going	to	look	at	the	main	building	blocks	of	an	Angular	2
application—how	they	can	be	used	and	how	they	relate	to	each	other.	Angular	2	reuses
some	of	the	naming	of	the	components	introduced	by	AngularJS	1.x,	but	generally
changes	the	building	blocks	of	our	single-page	applications	completely.	We’re	going	to
peek	at	the	new	components,	and	compare	them	with	the	ones	in	the	previous	version	of
the	framework.	We’ll	make	a	quick	introduction	to	directives,	components,	routers,	pipes,
and	services,	and	describe	how	they	could	be	combined	for	building	classy,	single-page
applications.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
Click	on	Code	Downloads	&	Errata.
Enter	the	name	of	the	book	in	the	Search	box.
Select	the	book	for	which	you’re	looking	to	download	the	code	files.
Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

http://www.packtpub.com
http://www.packtpub.com/support

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

Chapter	2.	The	Building	Blocks	of	an
Angular	2	Application
In	the	previous	chapter,	we	looked	at	the	drivers	for	the	design	decisions	behind	Angular
2.	We	described	the	main	reasons	that	led	to	the	development	of	a	brand	new	framework;
Angular	2	takes	advantage	of	web	standards	while	keeping	the	past	lessons	in	mind.
Although	we	are	familiar	with	the	main	drivers,	we	still	haven’t	described	the	core
Angular	2	concepts.	The	last	major	release	of	the	framework	took	a	different	path	from
AngularJS	1.x	and	introduced	a	lot	of	changes	in	the	fundamental	building	blocks	used	for
the	development	of	single-page	applications.

In	this	chapter,	we’ll	look	at	the	framework’s	core	and	make	a	brief	introduction	to	the
main	components	of	Angular	2.	Another	important	purpose	of	this	chapter	is	to	take	an
overview	of	how	these	concepts	can	be	put	together	to	help	us	build	professional	user
interfaces	for	our	web	applications.	The	following	sections	will	give	us	an	overview	of
everything	that	we	are	going	to	take	a	look	at	in	more	detail	later	in	the	book.

In	this	chapter,	we’re	going	to	look	at:

A	conceptual	overview	of	the	framework,	showing	how	different	concepts	relate	to
each	other.
How	we	can	build	a	user	interface	as	a	composition	of	components.
What	path	the	directives	took	in	Angular	2,	and	how	their	interface	changed
compared	to	the	previous	major	version	of	the	framework.
The	reasons	for	the	enforced	separation	of	concerns,	which	led	to	the	decomposition
of	the	directives	into	two	different	components.	In	order	to	get	better	sense	of	these
two	concepts,	we’re	going	to	demonstrate	basic	syntax	for	their	definition.
An	overview	of	the	improved	change	detection,	and	how	it	involves	the	context	that
directives	provide.
What	zones	are,	and	why	they	can	make	our	daily	development	process	easier.
What	pipes	are,	and	how	are	they	related	to	the	AngularJS	1.x	filters.
The	brand-new	dependency	injection	(DI)	mechanism	in	Angular	2	and	how	it	is
related	to	the	service	component.

A	conceptual	overview	of	Angular	2
Before	we	dive	into	different	parts	of	Angular	2,	let’s	get	a	conceptual	overview	of	how
everything	fits	together.	Let’s	have	a	look	at	the	following	diagram:

Fig.	1

Fig.	1	to	Fig.	4	shows	the	main	Angular	2	concepts	and	the	connections	between	them.
The	main	purpose	of	these	diagrams	is	to	illustrate	the	core	blocks	for	building	single-
page	applications	with	Angular	2,	and	their	relations.

The	Component	is	the	main	building	block	we’re	going	to	use	to	create	the	user	interface
of	our	applications	with	Angular	2.	The	Component	is	a	direct	successor	of	the	Directive,
which	is	the	primitive	for	attaching	behavior	to	the	DOM.	Components	extend	Directives
by	providing	further	features,	such	as	a	view	with	an	attached	template,	which	can	be	used
for	rendering	composition	of	directives.	Inside	the	template	of	the	view	can	reside
different	expressions.

Fig.	2

The	preceding	diagram	illustrates	conceptually	the	Change	Detection	mechanism	of
Angular	2.	It	runs	the	digest	loop,	which	evaluates	the	registered	expressions	in	the
context	of	specific	UI	components.	Since	the	concept	of	scope	has	been	removed	from
Angular	2,	the	execution	context	of	the	expressions	are	the	controllers	of	the	components
associated	with	them.

The	Change	Detection	mechanism	can	be	enhanced	using	Differs;	that’s	why	there’s	a
direct	relation	between	these	two	elements	on	the	diagram.

Pipes	are	another	component	of	Angular	2.	We	can	think	of	the	Pipes	as	the	filters	from
AngularJS	1.x.	Pipes	can	be	used	together	with	components.	We	can	include	them	in	the
expressions,	which	are	defined	in	the	context	of	any	component:

Fig.	3

Now	let’s	take	a	look	at	the	preceding	diagram.	Directives	and	Components	delegate	the
business	logic	to	Services.	This	enforces	better	separation	of	concerns,	maintainability,
and	reusability	of	code.	Directives	receive	references	to	instances	of	specific	services
declared	as	dependencies	using	the	DI	mechanism	of	the	framework,	and	delegate	the
execution	of	the	business	related	logic	to	them.	Both	Directives	and	Components	may
use	the	DI	mechanism,	not	only	to	inject	services,	but	also	to	inject	DOM	elements	and/or
other	Components	or	Directives.

Fig.	4

Lastly,	the	component-based	router	is	used	for	defining	the	routes	in	our	application.	Since
Directives	do	not	own	a	template,	only	the	Components	can	be	rendered	by	the	router,
representing	the	different	views	in	our	application.	The	router	also	uses	the	predefined
directives,	which	allow	us	to	define	hyperlinks	between	the	different	views	and	the
container	where	they	should	be	rendered.

Now	we’re	going	to	look	more	closely	at	these	concepts,	see	how	they	work	together	to
make	Angular	2	applications,	and	how	they’ve	changed	from	their	AngularJS	1.x
predecessors.

Changing	directives
AngularJS	1.x	introduced	the	concept	of	directives	in	the	development	of	single-page
applications.	The	purpose	of	directives	is	to	encapsulate	the	DOM-related	logic,	and	allow
us	to	build	user	interfaces	as	compositions	of	such	components	by	extending	the	syntax
and	the	semantics	of	HTML.	Initially,	like	most	innovative	concepts,	directives	were
viewed	controversially	because	they	predispose	us	to	write	invalid	HTML	when	using
custom	elements	or	attributes	without	the	data-	prefix.	However,	over	time,	this	concept
has	gradually	been	accepted,	and	has	proved	that	it	is	here	to	stay.

Another	drawback	of	the	implementation	of	directives	in	AngularJS	1.x	are	the	different
ways	we	can	use	them.	This	requires	understanding	of	the	attribute	values,	which	can	be
literals,	expressions,	callbacks,	or	microsyntax.	This	makes	tooling	essentially	impossible.

Angular	2	keeps	the	concept	of	directives,	but	takes	the	best	parts	from	AngularJS	1.x	and
adds	some	new	ideas	and	syntax.	The	main	purpose	of	Angular	2’s	directives	is	to	attach
behavior	to	the	DOM	by	extending	it	with	custom	logic	defined	in	an	ES2015	class.	We
can	think	of	these	classes	as	controllers	associated	to	the	directives,	and	think	of	their
constructors	as	similar	to	the	linking	function	of	the	directives	from	AngularJS	1.x.
However,	the	new	directives	have	limited	configurability.	They	do	not	allow	for	the
definition	of	a	template,	which	makes	most	of	the	already	known	properties	for	defining
directives	unnecessary.	The	simplicity	of	the	directives	API	does	not	limit	their	behavior,
but	only	enforces	stronger	separation	of	concerns.	To	complement	this	more	simple
directive	API,	Angular	2	has	introduced	a	richer	interface	for	the	definition	of	UI
elements,	called	components.	Components	extend	the	functionality	of	directives	by
allowing	them	to	own	a	template,	through	the	Component	metadata.	We’re	going	to	take	a
further	look	at	components	later.

The	syntax	used	for	Angular	2	directives	involves	ES2016	decorators.	However,	we	can
also	use	TypeScript,	ES2015,	or	even	ECMAScript	5	(ES5)	in	order	to	achieve	the	same
result	with	a	little	bit	more	typing.	The	following	code	defines	a	simple	directive,	written
in	TypeScript:

@Directive({

		selector:	'[tooltip]'

})

export	class	Tooltip	{

		private	overlay:	Overlay;

		@Input()

		private	tooltip:	string;

		constructor(private	el:	ElementRef,	manager:	OverlayManager)	{

				this.overlay	=	manager.get();

		}

		@HostListener('mouseenter')

		onMouseEnter()	{

				this.overlay.open(this.el.nativeElement,	this.tooltip);

		}

		@HostListener('mouseleave')

		onMouseLeave()	{

				this.overlay.close();

		}

}

The	directive	can	be	used	with	the	following	markup	in	our	template:

<div	tooltip="42">Tell	me	the	answer!</div>

Once	the	user	points	over	the	the	label,	Tell	me	the	answer!,	Angular	will	invoke	the
method,	defined	under	the	@HostListener	decorator	in	the	directive’s	definition.	In	the
end,	the	open	method	of	the	overlay	manager	will	be	executed.	Since	we	can	have
multiple	directives	on	a	single	element,	the	best	practices	state	that	we	should	use	an
attribute	as	a	selector.

An	alternative	ECMAScript	5	syntax	for	the	definition	of	this	directive	is:

var	Tooltip	=	ng.core.Directive({

		selector:	'[tooltip]',

		inputs:	['tooltip'],

		host:	{

				'(mouseenter)':	'onMouseEnter()',

				'(mouseleave)':	'onMouseLeave()'

		}

})

.Class({

		constructor:	[ng.core.ElementRef,	Overlay,	function	(tooltip,	el,	

manager)	{

				this.el	=	el;

				this.overlay	=	manager.get();

		}],

		onMouseEnter()	{

				this.overlay.open(this.el.nativeElement,	this.tooltip);

		},

		onMouseLeave()	{

				this.overlay.close();

		}

});

The	preceding	ES5	syntax	demonstrates	the	internal	JavaScript	Domain	Specific
Language	(DSL)	that	Angular	2	provides	in	order	to	allow	us	to	write	our	code	without
the	syntax,	which	is	not	yet	supported	by	modern	browsers.

We	can	summarize	that	Angular	2	has	kept	the	concept	of	directives	by	maintaining	the
idea	of	attaching	behavior	to	the	DOM.	The	core	differences	between	1.x	and	2	are	the
new	syntax,	and	the	further	separation	of	concerns	introduced	by	bringing	the
components.	In	Chapter	4,	Getting	Started	with	Angular	2	Components	and	Directives,	we
will	take	a	further	look	at	directives’	API.	We’ll	also	compare	the	directives’	definition
syntax	using	ES2016	and	ES5.	Now	let’s	have	a	look	at	the	big	change	to	Angular	2
components.

Getting	to	know	Angular	2	components
Model	View	Controller	(MVC)	is	a	micro-architectural	pattern	initially	introduced	for
the	implementation	of	user	interfaces.	As	AngularJS	developers,	we	use	different
variations	of	this	pattern	on	a	daily	basis,	most	often	Model	View	ViewModel	(MVVM).
In	MVC,	we	have	the	model,	which	encapsulates	the	business	logic	of	our	application,	and
the	view,	which	is	responsible	for	rendering	the	user	interface,	accepting	user	input,	as
well	as	delegating	the	user	interaction	logic	to	the	controller.	The	view	is	represented	as
the	composition	of	components,	which	is	formally	known	as	the	composite	design
pattern.

Let’s	take	a	look	at	the	following	structural	diagram,	which	shows	the	composite	design
pattern:

Fig.	5

Here	we	have	three	classes:

An	abstract	class	called	Component.
Two	concrete	classes	called	Leaf	and	Composite.	The	Leaf	class	is	a	simple	terminal
component	in	the	component	tree	that	we’re	going	to	build	soon.

The	Component	class	defines	an	abstract	operation	called	operation.	Both	Leaf	and
Composite	inherit	from	the	Component	class.	However,	the	Composite	class	also	owns
references	to	it.	We	can	take	this	even	further	and	allow	Composite	to	own	a	list	of
references	to	Component	instances,	as	shown	in	the	diagram.	The	components	list	inside
Composite	can	hold	references	to	different	Composite	or	Leaf	instances,	or	instances	of
other	classes,	which	extend	the	Component	class	or	any	of	its	successors.	In	the
implementation	of	the	method,	operation,	inside	Composite,	the	invoked	operation	of	the
different	instances	inside	the	loop	can	behave	differently.	This	is	because	of	the	late
binding	mechanism	used	for	the	implementation	of	the	polymorphism	in	object-oriented
programming	languages.

Components	in	action
Enough	of	theory!	Let’s	build	a	component	tree	based	on	the	class	hierarchy	illustrated	in
the	diagram.	This	way,	we’re	going	to	demonstrate	how	we	can	take	advantage	of	the
composite	pattern	for	building,	user	interface	by	using	simplified	syntax.	We’re	going	to
take	a	look	at	a	similar	example	in	the	context	of	Angular	2	in	Chapter	4,	Getting	Started
with	Angular	2	Components	and	Directives:

Composite	c1	=	new	Composite();

Composite	c2	=	new	Composite();

Composite	c3	=	new	Composite();

c1.components.push(c2);

c1.components.push(c3);

Leaf	l1	=	new	Leaf();

Leaf	l2	=	new	Leaf();

Leaf	l3	=	new	Leaf();

c2.components.push(l1);

c2.components.push(l2);

c3.components.push(l3);

The	preceding	pseudo-code	creates	three	instances	of	the	Composite	class	and	three
instances	of	the	Leaf	class.	The	instance,	c1,	holds	references	to	c2	and	c3	inside	the
components	list.	The	instance,	c2,	holds	references	to	l1	and	l2,	and	c3	holds	reference	to
l3:

Fig.	6

The	preceding	diagram	is	a	graphical	representation	of	the	component	tree	we	built	in	the
snippet.	This	is	a	quite	simplified	version	of	what	the	view	in	the	modern	JavaScript
frameworks	looks	similar	to.	However,	it	illustrates	the	very	basics	of	how	we	can
compose	directives	and	components.	For	instance,	in	the	context	of	Angular	2	we	can
think	of	directives	as	instances	of	the	preceding	Leaf	class	(since	they	don’t	own	view	and
thus	cannot	compose	other	directives	and	components),	and	components	as	instances	of
the	Composite	class.

If	we	think	more	abstractly	for	the	user	interface	in	AngularJS	1.x,	we	can	notice	that	we
use	quite	a	similar	approach.	The	templates	of	our	views	are	composing	different
directives	together	in	order	to	deliver	fully	a	functional	user	interface	to	the	end	user	of
our	application.

Components	in	Angular	2
Angular	2	took	this	approach	by	introducing	new	building	blocks	called	components.
Components	extend	the	directive	concept	we	described	in	the	previous	section,	and
provide	broader	functionality.	Here	is	the	definition	of	a	basic	hello-world	component:

@Component({

		selector:	'hello-world',

		template:	'<h1>Hello,	{{this.target}}!</h1>'

})

class	HelloWorld	{

		target:	string;

		constructor()	{

				this.target	=	'world';

		}

}

We	can	use	it	by	inserting	the	following	markup	in	our	view:

<hello-world></hello-world>

According	to	the	best	practices,	we	should	use	an	element	as	a	selector	for	our
components	since	we	may	have	only	a	single	component	per	DOM	element.

The	alternative	ES5	syntax	using	the	DSL	Angular	provides	is:

var	HelloWorld	=	ng.core.

		Component({

				selector:	'hello-world',

				template:	'<h1>Hello,	{{target}}!</h1>'

		})

		.Class({

				constructor:	function	()	{

						this.target	=	'world';

				}

		});

We	will	take	a	look	at	the	preceding	syntax	in	more	detail	later	in	the	book.	However,	let’s
briefly	describe	the	functionality,	which	this	component	provides.	Once	the	Angular	2
application	has	been	bootstrapped,	it	will	look	at	all	the	elements	of	our	DOM	tree	and
process	them.	Once	it	finds	the	element	called	hello-world,	it	will	invoke	the	logic
associated	with	its	definition,	which	means	that	the	template	of	the	component	will	be
rendered	and	the	expression	between	the	curly	brackets	will	be	evaluated.	This	will	result
to	the	markup,	<h1>Hello,	world!</h1>.

So	to	summarize,	the	Angular	core	team	separated	out	the	directives	from	AngularJS	1.x
into	two	different	parts—Components	and	Directives.	Directives	provide	an	easy	way	to
attach	behavior	to	DOM	elements	without	defining	a	view.	Components	in	Angular	2
provide	a	powerful,	and	yet	simple-to-learn	API,	which	makes	it	easier	to	define	the	user
interface	of	our	applications.	Angular	2	Components	allow	us	to	do	the	same	amazing
things	as	AngularJS	1.x	directives,	but	with	less	typing	and	fewer	things	to	learn.
Components	extend	the	Angular	2	directive	concept	by	adding	a	view	to	it.	We	can	think

of	the	relation	between	Angular	2	components	and	directives	the	same	way	as	the	relation
between	Composite	and	Leaf	from	the	diagram	we	saw	in	Fig.	5.

If	we	start	illustrating	the	conceptual	model	of	the	building	blocks	Angular	2	provides,	we
can	present	the	relation	between	Directive	and	Component	as	inheritance.	Chapter	4,
Getting	Started	with	Angular	2	Components	and	Directives	describes	these	two	concepts
in	further	details.

Pipes
In	business	applications,	we	often	need	to	have	different	visual	representations	of	the	same
piece	of	data.	For	example,	if	we	have	the	number	100,000	and	we	want	to	format	it	as
currency,	most	likely	we	won’t	want	to	display	it	as	plain	data;	more	likely,	we’ll	want
something	like	$100,000.

The	responsibility	for	formatting	data	in	AngularJS	1.x	was	assigned	to	filters.	Another
example	for	a	data	formatting	requirement	is	when	we	use	collections	of	items.	For
instance,	if	we	have	a	list	of	items,	we	may	want	to	filter	it	based	on	a	predicate	(a	boolean
function);	in	a	list	of	numbers,	we	may	want	to	display	only	prime	numbers.	AngularJS
1.x	has	a	filter	called	filter,	which	allows	us	to	do	this.	However,	the	duplication	of	the
names	often	leads	to	confusion.	That’s	another	reason	the	core	team	renamed	the	filter
component	to	pipe.

The	motivation	behind	the	new	name	is	the	syntax	used	for	pipes	and	filters:

{{expression	|	decimal	|	currency}}

In	the	preceding	example,	we	apply	the	pipes,	decimal	and	currency,	to	the	value
returned	by	expression.	The	entire	expression	between	the	curly	braces	looks	like	Unix
pipe	syntax.

Defining	pipes
The	syntax	for	defining	pipes	is	similar	to	the	one	used	for	the	definition	of	directives	and
components.	In	order	to	create	a	new	pipe,	we	can	use	the	ES2015	decorator,	@Pipe.	It
allows	us	to	add	metadata	to	a	class,	declaring	it	as	a	pipe.	All	we	need	to	do	is	to	provide
a	name	for	the	pipe	and	define	the	data	formatting	logic.	There’s	also	an	alternative	ES5
syntax,	which	can	be	used	if	we	want	to	skip	the	process	of	transpilation.

During	runtime,	once	the	Angular	2	expression	interpreter	finds	out	that	a	given
expression	includes	a	call	of	a	pipe,	it	will	retrieve	it	out	of	the	pipes	collection	allocated
within	the	component	and	invoke	it	with	the	appropriate	arguments.

The	following	example	illustrates	how	we	can	define	a	simple	pipe	called	lowercase1,
which	transforms	the	given	string,	passed	as	argument	to	its	lowercase	representation:

@Pipe({	name:	'lowercase1'	})

class	LowerCasePipe1	implements	PipeTransform	{

		transform(value:	string):	string	{

				if	(!value)	return	value;

				if	(typeof	value	!==	'string')	{

						throw	new	Error('Invalid	pipe	value',	value);

				}

				return	value.toLowerCase();

		}

}

In	order	to	be	consistent,	let’s	show	the	ECMAScript	5	syntax	for	defining	pipes:

var	LowercasePipe1	=	ng.core.

		Pipe({

				name:	'lowercase'

		})

		.Class({

				constructor:	function	()	{},

				transform:	function	(value)	{

						if	(!value)	return	value;

						if	(typeof	value	===	'string')	{

								throw	new	Error('Invalid	pipe	value',	value);

						}

						return	value.toLowerCase();

				}

		});

In	the	TypeScript	syntax,	we	implement	the	PipeTransform	interface	and	define	the
transform	method	declared	inside	it.	However,	in	ECMAScript	5,	we	do	not	have	support
for	interfaces,	but	we	still	need	to	implement	the	transform	method	in	order	to	define	a
valid	Angular	2	pipe.	We	are	going	to	explain	the	TypeScript	interfaces	in	the	next
chapter.

Now	let’s	demonstrate	how	we	can	use	the	lowercase1	pipe	inside	a	component:

@Component({

		selector:	'app',

		pipes:	[LowercasePipe1],

		template:	'<h1>{{"SAMPLE"	|	lowercase1}}</h1>'

})

class	App	{}

And,	the	alternative	ECMAScript	5	syntax	for	this	is:

var	App	=	ng.core.Component({

		selector:	'app',

		pipes:	[LowercasePipe1],

		template:	'<h1>{{"SAMPLE"	|	lowercase1}}</h1>'

})

.Class({

		constructor:	function	()	{}

});

We	can	use	the	App	component	with	the	following	markup:

			<app></app>

The	result	we	are	going	to	see	on	the	screen	is	the	text	sample	within	an	h1	element.

By	keeping	the	data	formatting	logic	as	a	separate	component,	Angular	2	keeps	the	strong
separation	of	concerns	that	can	be	seen	throughout.	We	will	take	a	look	at	how	we	can
define	stateful	and	stateless	pipes	for	our	application	in	Chapter	7,	Building	a	real-life
application	while	exploring	pipes	and	http.

Change	detection
As	we	saw	earlier,	the	view	in	MVC	updates	itself,	based	on	change	events	it	receives
from	the	model.	A	number	of	Model	View	Whatever	(MVW)	frameworks	took	this
approach,	and	embedded	the	observer	pattern	in	the	core	of	their	change	detection
mechanism.

Classical	change	detection
Let’s	take	a	look	at	a	simple	example,	which	doesn’t	use	any	framework.	Suppose	we	have
a	model	called	User,	which	has	a	property	called	name:

class	User	extends	EventEmitter	{

		private	name:	string;

		setName(name:	string)	{

				this.name	=	name;

				this.emit('change');

	 }

		getName():	string	{

				return	this.name;}

}

The	preceding	snippet	uses	TypeScript.	Do	not	worry	if	the	syntax	does	not	look	familiar
to	you,	we’re	going	to	make	an	introduction	to	the	language	in	the	next	chapter.

The	user	class	extends	the	class,	EventEmitter.	This	provides	primitives	for	emitting	and
subscribing	to	events.

Now	let’s	define	a	view,	which	displays	the	name	of	an	instance	of	the	User	class,	passed
as	an	argument	to	its	constructor:

class	View	{

		constructor(user:	User,	el:	Element	/*	a	DOM	element	*/)	{

				el.innerHTML	=	user.getName();

	 }

}

We	can	initialize	the	view	element	by:

let	user	=	new	User();

user.setName('foo');

let	view	=	new	View(user,	document.getElementById('label'));

As	the	end	result,	the	user	will	see	a	label	with	the	content,	foo.	However,	changes	in	user
will	not	be	reflected	by	the	view.	In	order	to	update	the	view	when	the	name	of	the	user
changes,	we	need	to	subscribe	to	the	change	event	and	then	update	the	content	of	the
DOM	element.	We	need	to	update	the	View	definition	in	the	following	way:

class	View	{

		constructor(user:User,	el:any	/*	a	DOM	element	*/)	{

				el.innerHTML	=	user.getName();

				user.on('change',	()	=>	{

						el.innerHTML	=	user.getName();

	 		});

		}

}

This	is	how	most	frameworks	used	to	implement	their	change	detection	before	the	era	of
AngularJS	1.x.

AngularJS	1.x	change	detection
Most	beginners	are	fascinated	by	the	data-binding	mechanism	in	AngularJS	1.x.	The	basic
Hello	World	example	looks	similar	to	this:

function	MainCtrl($scope)	{

		$scope.label	=	'Hello	world!';

}

<body	ng-app	ng-controller="MainCtrl">

		{{label}}

</body>

If	you	run	this,	Hello	world!	magically	appears	onto	the	screen.	However,	that	is	not
even	the	most	impressive	thing!	If	we	add	a	text	input	and	we	bind	it	to	the	label	property
of	the	scope,	each	change	will	reflect	the	content	displayed	by	the	interpolation	directive:

<body	ng-controller="MainCtrl">

		<input	ng-model="label">

		{{label}}

</body>

How	awesome	is	that!	This	is	one	of	the	main	selling	points	of	AngularJS	1.x—the
extreme	ease	of	achieving	data-binding.	We	add	two	(four	if	we	count	ng-controller	and
ng-app)	attributes	in	our	markup,	add	property	to	a	mystical	object	called	$scope,	which	is
magically	passed	to	a	custom	function	we	define,	and	everything	simply	works!

However,	the	more	experienced	Angular	developer	has	a	better	understanding	of	what	is
actually	going	on	behind	the	scene.	In	the	preceding	example,	inside	the	directives,	ng-
model	and	ng-bind	(in	our	case,	the	interpolation	directive,	{{}}),	Angular	adds	watchers
with	different	behavior	associated	to	the	same	expression—label.	These	watchers	are
quite	similar	to	the	observers	in	the	classical	MVC	pattern.	On	some	specific	events	(in
our	case,	change	of	the	content	of	the	text	input),	AngularJS	will	loop	over	all	such
watchers,	evaluate	the	expressions	associated	to	them	in	the	context	of	a	given	scope,	and
store	their	results.	This	loop	is	known	as	the	digest	loop.

In	the	preceding	examples,	the	evaluation	of	the	expression,	label,	in	the	context	of	the
scope	will	return	the	text,	Hello	world!.	On	each	iteration,	AngularJS	will	compare	the
current	result	of	the	evaluation	with	the	previous	result,	and	will	invoke	the	associated
callback	in	case	the	values	differ.	For	instance,	the	callback	added	by	the	interpolation
directive	will	set	the	content	of	the	element	to	be	the	new	result	of	the	expression’s
evaluation.	This	is	an	example	of	the	dependency	between	the	callbacks	of	the	watchers	of
two	directives.	The	callback	of	the	watcher	added	by	ng-model	modifies	the	result	of	the
expression	associated	to	the	watcher	added	by	the	interpolation	directive.

However,	this	approach	has	its	own	drawbacks.	We	said	that	the	digest	loop	will	be
invoked	on	some	specific	events,	but	what	if	these	events	happen	outside	the	framework,
for	example?	What	if	we	use	setTimeout	and	inside	the	callback,	passed	as	the	first
argument,	we	change	properties	attached	to	the	scope	that	we’re	watching?	AngularJS	will
be	unaware	of	the	change	and	won’t	invoke	the	digest	loop,	so	we	need	to	do	that

explicitly	using	$scope.$apply.	But	what	if	the	framework	knew	about	all	the
asynchronous	events	happening	in	the	browser,	such	as	user	events,	XMLHttpRequest
events,	WebSockets	related	events,	and	others?	In	such	a	case,	AngularJS	would	be	able	to
intercept	the	event’s	handling	and	could	invoke	the	digest	loop	without	forcing	us	to	do
so!

In	the	zone.js
That’s	exactly	the	case	in	Angular	2.	This	functionality	is	implemented	with	zones	using
zone.js.

At	ng-conf	in	2014,	Brian	Ford	gave	a	talk	about	zones.	Brian	presented	zones	as	meta-
monkey	patching	of	browser	APIs.	Recently	Miško	Hevery	proposed	to	TC39	more
mature	zones	API	for	standardization.	Zone.js	is	a	library	developed	by	the	Angular
team,	which	implements	zones	in	JavaScript.	They	represent	an	execution	context,	which
allow	us	to	intercept	asynchronous	browser	calls.	Basically,	by	using	zones,	we	are	able	to
invoke	a	piece	of	logic	just	after	the	given	XMLHttpRequest	completes	or	when	we	receive
a	new	WebSocket	event.	Angular	2	took	advantage	of	zone.js	by	intercepting
asynchronous	browser	events	and	invoking	the	digest	loop	just	at	the	right	time.	This
totally	eliminates	the	need	of	explicit	calls	of	the	digest	loop	by	the	developer	using
Angular.

Simplified	data	flow
The	cross-watcher	dependencies	may	create	a	tangled	data	flow	in	our	application,	which
is	hard	to	follow.	This	may	lead	to	unpredictable	behavior	and	bugs,	which	are	hard	to
find.	Although	Angular	2	kept	the	dirty	checking	as	a	way	for	achieving	change	detection,
it	enforced	unidirectional	data	flow.	This	happened	by	disallowing	dependencies	between
the	different	watchers,	which	allows	the	digest	loop	to	be	run	only	once.	This	strategy
increases	the	performance	of	our	applications	dramatically,	and	reduces	the	complexity	of
the	data	flow.	Angular	2	also	made	improvements	to	memory	efficiency	and	the
performance	of	the	digest	loop.	Further	details	on	Angular	2’s	change	detection	and	the
different	strategies	used	for	its	implementation	can	be	found	in	Chapter	4,	Getting	Started
with	Angular	2	Components	and	Directives.

Enhancing	AngularJS	1.x’s	change	detection
Now	let’s	take	a	step	back	and	again	think	about	the	change	detection	mechanism	of	the
framework.

We	said	that	inside	the	digest	loop,	Angular	evaluates	registered	expressions	and
compares	the	evaluated	values	with	the	values	associated	with	the	same	expressions	in	the
previous	iteration	of	the	loop.

The	most	optimal	algorithm	used	for	the	comparison	may	differ	depending	on	the	type	of
the	value	returned	from	the	expression’s	evaluation.	For	instance,	if	we	get	a	mutable	list
of	items,	we	need	to	loop	over	the	entire	collection	and	compare	the	items	in	the
collections	one	by	one	in	order	to	verify	that	there	is	a	change	or	not.	However,	if	we	have
an	immutable	list,	we	can	perform	a	check	with	a	constant	complexity,	only	by	comparing
references.	This	is	the	case	because	the	instances	of	immutable	data	structures	cannot
change.	Instead	of	applying	an	operation,	which	intends	to	modify	such	instances,	we’ll
get	a	new	reference	with	the	modification	applied.

In	AngularJS	1.x,	we	can	add	watchers	using	a	few	methods.	Two	of	them	are
$watch(exp,	fn,	deep)	or	$watchCollection(exp,	fn).	These	methods	give	us	some
level	of	control	over	the	way	the	change	detection	will	perform	the	equality	check.	For
example,	adding	a	watcher	by	using	$watch	and	passing	a	false	value	as	a	third	argument
will	make	AngularJS	perform	a	reference	check	(that	is	compare	the	current	value	with	the
previous	one	using	===).	However,	if	we	pass	a	truthy	(any	true	value),	the	check	will	be
deep	(that	is	using	angular.equals).	This	way,	depending	on	the	expected	type	of	the
returned	by	the	expression	value,	we	can	add	listeners	in	the	most	appropriate	way	in
order	to	allow	the	framework	to	perform	equality	checks	with	the	most	optimal	algorithm
available.	This	API	has	two	limitations:

It	does	not	allow	you	to	choose	the	most	appropriate	equality	check	algorithm	at
runtime.
It	does	not	allow	you	to	extend	the	change	detection	to	third-parties	for	their	specific
data	structures.

The	Angular	core	team	assigned	this	responsibility	to	differs,	allowing	them	to	extend	the
change	detection	mechanism	and	optimize	it,	based	on	the	data	we	use	in	our	applications.
Angular	2	defines	two	base	classes,	which	we	can	extend	in	order	to	define	custom
algorithms:

KeyValueDiffer:	This	allows	us	to	perform	advanced	diffing	over	key-value-based
data	structures.
IterableDiffer:	This	allows	us	to	perform	advanced	diffing	over	list-like	data
structures.

Angular	2	allows	us	to	take	full	control	over	the	change	detection	mechanism	by
extending	it	with	custom	algorithms,	which	wasn’t	possible	in	the	previous	version	of	the
framework.	We’ll	take	a	further	look	into	the	change	detection	and	how	we	can	configure
it	in	Chapter	4,	Getting	Started	with	Angular	2	Components	and	Directives.

Understanding	services
Services	are	the	building	blocks	that	Angular	provides	for	the	definition	of	the	business
logic	of	our	applications.	In	AngularJS	1.x,	we	had	three	different	ways	for	defining
services:

//	The	Factory	method

module.factory('ServiceName',	function	(dep1,	dep2,	…)	{

		return	{

				//	public	API

		};

});

//	The	Service	method

module.service('ServiceName',	function	(dep1,	dep2,	…)	{

		//	public	API

		this.publicProp	=	val;

});

//	The	Provider	method

module.provider('ServiceName',	function	()	{

		return	{

				$get:	function	(dep1,	dep2,	…)	{

						return	{

								//	public	API

						};

				}

		};

});

Although	the	first	two	syntactical	variations	provide	similar	functionality,	they	differ	in
the	way	the	registered	directive	will	be	instantiated.	The	third	syntax	allows	further
configuration	of	the	registered	provider	during	configuration	time.

Having	three	different	methods	for	defining	services	is	quite	confusing	for	the	AngularJS
1.x	beginners.	Let’s	think	for	a	second	what	necessitated	the	introduction	of	these	methods
for	registering	services.	Why	can’t	we	simply	use	JavaScript	constructor	functions,	object
literals,	or	ES2015	classes	instead,	which	Angular	will	not	be	aware	of?	We	could
encapsulate	our	business	logic	inside	a	custom	JavaScript	constructor	function	like	this:

function	UserTransactions(id)	{

		this.userId	=	id;

}

UserTransactions.prototype.makeTransaction	=	function	(amount)	{

		//	method	logic

};

module.controller('MainCtrl',	function	()	{

		this.submitClick	=	function	()	{

				new	UserTransactions(this.userId).makeTransaction(this.amount);

		};

});

This	code	is	completely	valid.	However,	it	doesn’t	take	advantage	of	one	of	the	key
features	that	AngularJS	1.x	provides—the	DI	mechanism.	The	MainCtrl	function	uses	the
constructor	function,	UserTransaction,	which	is	visible	in	its	body.	The	preceding	code
has	two	main	pitfalls:

We’re	coupled	with	the	logic	used	for	the	service’s	instantiation.
The	code	is	not	testable.	In	order	to	mock	UserTransactions,	we	need	to	monkey
patch	it.

How	does	AngularJS	deal	with	these	two	things?	When	a	given	service	is	required,
through	the	DI	mechanism	of	the	framework,	AngularJS	resolves	all	of	its	dependencies
and	instantiates	it	by	passing	them	to	the	factory	function,	which	encapsulates	the	logic
for	its	creation.	The	factory	function	is	passed	as	the	second	argument	to	the	factory	and
service	methods.	The	provider	method	allows	definition	of	a	service	on	lower	level;	the
factory	method	there	is	the	one	under	the	$get	property	of	the	provider.

Just	like	AngularJS	1.x,	Angular	2	tolerates	this	separation	of	concerns	as	well,	so	the	core
team	kept	the	services.	In	contrast	to	AngularJS	1.x,	the	last	major	version	of	the
framework	provides	a	much	simpler	interface	for	the	definition	of	services	by	allowing	us
to	use	plain	ES2015	classes	or	ES5	constructor	functions.	We	cannot	escape	from	the	fact
that	we	need	to	explicitly	state	which	services	should	be	available	for	injection	and
somehow	specify	instructions	for	their	instantiation.	However,	Angular	2	uses	the	ES2016
decorator’s	syntax	for	this	purpose	instead	of	the	methods	familiar	to	us	from	AngularJS
1.x.	This	allows	us	to	define	the	services	in	our	applications	as	simple	as	ES2015	classes,
with	decorators	for	configuration	of	the	DI:

import	{Inject,	Injectable}	from	'angular2/core';

@Injectable()

class	HttpService	{

		constructor()	{	/*	…	*/	}

}

@Injectable()

class	User	{

		constructor(private	service:	HttpService)	{}

		save()	{

				return	this.service.post('/users')

						.then(res	=>	{

								this.id	=	res.id;

								return	this;

						});

		}

}

The	alternative	ECMAScript	5	syntax	is:

var	HttpService	=	ng.core.Class({

		constructor:	function	()	{}

});

var	User	=	ng.core.Class({

		constructor:	[HttpService,	function	(service)	{

				this.service	=	service;

		}],

		save:	function	()	{

				return	this.service.post('/users')

						.then(function	(res)	{

								this.id	=	res.id;

								return	this;

						});

		}

});

Services	are	related	to	the	components	and	the	directives	described	in	the	previous
sections.	For	developing	highly	coherent	and	reusable	UI	components,	we	need	to	move
all	the	business-related	logic	to	inside	our	services.	And,	in	order	to	develop	testable
components,	we	need	to	take	advantage	of	the	DI	mechanism	for	resolving	all	their
dependencies.

A	core	difference	between	the	services	in	Angular	2	and	AngularJS	1.x	is	the	way	their
dependencies	are	being	resolved	and	represented	internally.	AngularJS	1.x	is	using	strings
for	identifying	the	different	services	and	the	associated	factories	used	for	their
instantiation.	However,	Angular	2	uses	keys	instead.	Usually	the	keys	are	the	types	of	the
distinct	services.	Another	core	difference	in	the	instantiation	is	the	hierarchical	structure	of
injectors,	which	encapsulate	different	dependency	providers	with	different	visibility.

Another	distinction	between	the	services	in	the	last	two	major	versions	of	the	framework
is	the	simplified	syntax.	Although	Angular	2	uses	ES2015	classes	for	the	definition	of	our
business	logic,	you	can	use	ECMAScript	5	constructor	functions	as	well	or	use	the	DSL
provided	by	the	framework.	The	DI	in	Angular	2	has	a	completely	different	syntax	and	has
improved	behavior	by	providing	a	consistent	way	of	injecting	dependencies.	The	syntax
used	in	the	preceding	example	uses	ES2016	decorators,	and	in	Chapter	5,	Dependency
Injection	in	Angular	2,	we’ll	take	a	look	at	alternative	syntax,	which	uses	ECMAScript	5.
You	can	also	find	more	detailed	explanation	of	Angular	2	services	and	DI	in	Chapter	5,
Dependency	Injection	in	Angular	2.

Understanding	the	new	component-based
router
In	traditional	web	applications,	all	the	page	changes	are	associated	with	a	full-page	reload,
which	fetches	all	of	the	referenced	resources	and	data	and	renders	the	entire	page	onto	the
screen.	However,	requirements	for	web	applications	have	evolved	over	time.

Single-page	applications	(SPAs)	that	we	build	with	Angular	simulate	desktop	user
experiences.	This	often	involve	incremental	loading	of	the	resources	and	data	required	by
the	application,	and	no	full-page	reloads	after	the	initial	page	load.	Often	the	different
pages	or	views	in	SPAs	are	represented	by	different	templates,	which	are	loaded
asynchronously	and	rendered	on	a	specific	position	on	the	screen.	Later,	when	the
template	with	all	the	required	resources	is	loaded	and	the	route	is	changed,	the	logic
attached	to	the	selected	page	is	invoked	and	populates	the	template	with	data.	If	the	user
presses	the	refresh	button	after	the	given	page	in	our	SPA	is	loaded,	the	same	page	needs
to	be	re-rendered	after	the	refresh	of	the	view	completes.	This	involves	similar	behavior—
finding	the	requested	view,	fetching	the	required	template	with	all	referenced	resources,
and	invoking	the	logic	associated	with	that	view.

What	template	needs	to	be	fetched,	and	the	logic	which	should	be	invoked	after	the	page
reloads	successfully,	depends	on	the	selected	view	before	the	user	pressed	the	refresh
button.	The	framework	determines	this	by	parsing	the	page	URL,	which	contains	the
identifier	of	the	currently	selected	page,	represented	in	the	hierarchical	structure.

All	the	responsibilities	related	to	the	navigation,	changing	the	URL,	loading	the
appropriate	template,	and	invoking	specific	logic	when	the	view	is	loaded	are	assigned	to
the	router	component.	These	are	some	quite	challenging	tasks,	and	support	for	different
navigation	APIs	required	for	cross-browser	compatibility	makes	the	implementation	of
routing	in	modern	SPAs	a	non-trivial	problem.

AngularJS	1.x	introduced	the	router	in	its	core,	which	was	later	externalized	into	the
ngRoute	component.	It	allows	a	declarative	way	for	defining	the	different	views	in	our
SPA,	by	providing	a	template	for	each	page	and	a	piece	of	logic	that	needs	to	be	invoked
when	a	page	is	selected.	However,	the	functionality	of	the	router	is	limited.	It	does	not
support	essential	features	such	as	nested	view	routing.	That’s	one	of	the	reasons	most
developers	preferred	to	use	ui-router,	developed	by	the	community.	Both	AngularJS
1.x’s	router,	and	ui-router,	route-definitions	include	a	route	configuration	object,	which
defines	a	template	and	a	controller	associated	with	the	page.

As	described	in	the	previous	sections,	Angular	2	changed	the	building	blocks	it	provides
for	the	development	of	SPAs.	Angular	2	removes	the	floating	controllers,	and	instead
represents	views	as	a	composition	of	components.	This	necessitates	the	development	of	a
brand	new	router,	which	empowers	these	new	concepts.

The	core	differences	between	the	AngularJS	1.x	router	and	the	Angular	2	router	are:

The	Angular	2	router	is	component	based,	ngRoute	is	not.

There	is	now	support	for	nested	views.
Different	syntax	empowered	by	ES2016	decorators.

Angular	2	route	definition	syntax
Let’s	take	a	brief	look	at	the	new	syntax	used	by	the	Angular	2	router	to	define	routes	in
our	applications:

import	{Component}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

import	{RouteConfig,	ROUTER_DIRECTIVES,	ROUTER_BINDINGS}	from	

'angular2/router';

import	{Home}	from	'./components/home/home';

import	{About}	from	'./components/about/about';

@Component({

		selector:	'app',

		templateUrl:	'./app.html',

		directives:	[ROUTER_DIRECTIVES]

})

@RouteConfig([

		{	path:	'/',	component:	Home,	name:	'home'	},

		{	path:	'/about',	component:	About,	name:	'about'	}

])

class	App	{}

bootstrap(App,	[ROUTER_PROVIDERS]);

We	won’t	go	into	too	much	detail	here	since	Chapter	6,	Angular	2	forms	and	the	new
component-based	router	and	Chapter	7,	Building	a	real-life	application	while	exploring
pipes	and	http,	are	dedicated	to	the	new	router,	but	let’s	mention	the	main	points	in	the
preceding	code	snippet.

The	router	lives	in	the	module,	angular2/router.	There,	we	can	find	the	directives	it
defines,	the	decorator	used	for	the	configuration	of	the	routes	and	ROUTER_PROVIDERS.

Note
We’ll	take	a	further	look	at	ROUTER_PROVIDERS	in	Chapter	7,	Building	a	real-life
application	while	exploring	pipes	and	http.

The	parameter	passed	to	the	@RouteConfig	decorator	shows	how	we	define	the	routes	in
our	application.	We	use	an	array	with	objects,	which	defines	the	mappings	between	routes
and	the	components	associated	with	them.	Inside	the	Component	decorator,	we	explicitly
state	that	we	want	to	use	the	directives	contained	within	ROUTER_DIRECTIVES,	which	are
related	to	the	router’s	usage	inside	the	templates.

Summary
In	this	chapter,	we	took	a	quick	overview	of	the	main	building	blocks	for	developing	SPAs
provided	by	Angular	2.	We	pointed	out	the	core	differences	between	these	components	in
AngularJS	1.x	and	Angular	2.

Although	we	can	use	ES2015,	or	even	ES5,	for	building	Angular	2	applications,	the
recommendation	from	Google	is	to	take	advantage	of	the	language	used	for	the
development	of	the	framework—TypeScript.

In	the	next	chapter,	we’ll	take	a	look	at	TypeScript	and	how	we	can	start	using	it	in	your
next	application.	We	will	also	explain	how	we	can	take	advantage	of	the	static	typing	in
the	JavaScript	libraries	and	frameworks	written	in	vanilla	JavaScript,	with	ambient	type
annotations.

Chapter	3.	TypeScript	Crash	Course
In	this	chapter,	we	are	going	to	start	working	with	TypeScript,	the	language	Angular	2
recommends	for	scripting.	All	the	features	ECMAScript	2015	and	respectively
ECMAScript	2016	provides,	such	as	functions,	classes,	modules,	and	decorators,	are
already	implemented	in	or	added	to	the	roadmap	of	TypeScript.	Because	of	the	extra	type
annotations,	there	are	some	syntactical	additions	compared	to	JavaScript.

For	smoother	transition	from	the	language	we	already	know	-	ES5,	we	will	start	with	some
common	features	between	ES2016	and	TypeScript.	Where	there	are	differences	between
the	ES	syntax	and	TypeScript,	we’ll	explicitly	mention	it.	In	the	second	half	of	the	chapter,
we’ll	add	the	type	annotations	to	everything	we’ve	learned	until	this	point.

Later	in	the	chapter,	we	will	explain	the	extra	features	TypeScript	provides,	such	as	static
typing	and	extended	syntax.	We	will	discuss	the	different	consequences	based	on	these
features,	which	will	help	us	be	more	productive	and	less	error-prone.	Let’s	get	going!

Introduction	to	TypeScript
TypeScript	is	an	open	source	programming	language	that	is	developed	and	maintained	by
Microsoft.	Its	initial	public	release	was	in	October	2012.	TypeScript	is	a	superset	of
ECMAScript,	supporting	all	of	the	syntax	and	semantics	of	JavaScript	with	some	extra
features	on	top,	such	as	static	typing	and	richer	syntax.

Fig.	1	shows	the	relationship	between	ES5,	ES2015,	ES2016,	and	TypeScript.

Fig.	1

Because	TypeScript	is	statically	typed,	it	can	provide	a	number	of	benefits	to	us	as
JavaScript	developers.	Let’s	have	a	quick	look	at	those	benefits	now.

Compile-time	type	checking
Some	of	the	most	common	mistakes	we	make	while	writing	JavaScript	code	is	to	misspell
a	property	or	a	method	name.	We’ll	find	out	about	the	mistake	when	we	get	a	runtime
error.	This	can	happen	during	development	as	well	as	in	production.	Hoping	we	will	know
about	the	error	before	we	deploy	our	code	to	production	environment	isn’t	a	comfortable
feeling!	However,	this	is	not	a	problem	specific	to	JavaScript;	it	is	something	common	to
all	the	dynamic	languages.	Even	with	lots	of	unit	tests,	these	errors	can	slip	by.

TypeScript	provides	a	compiler,	which	takes	care	of	such	mistakes	for	us	by	using	static
code	analysis.	If	we	take	advantage	of	static	typing,	TypeScript	will	be	aware	of	the
existing	properties	a	given	object	has,	and	if	we	misspell	any	of	them,	the	compiler	will
warn	us	with	a	compile-time	error.

Another	great	benefit	of	TypeScript	is	that	it	allows	large	teams	to	collaborate,	since	it
provides	formal,	verifiable	naming.	This	way,	it	allows	us	to	write	easy-to-understand
code.

Better	support	by	text	editors	and	IDEs
There	are	a	number	of	tools,	such	as	Tern	or	Google	Closure	Compiler,	that	are	trying	to
bring	better	autocompletion	support	for	JavaScript	in	text	editors	and	IDEs.	However,	as
JavaScript	is	a	dynamic	language,	it	is	impossible	for	the	IDEs	and	text	editors	to	make
sophisticated	suggestions	without	any	metadata.

Annotating	the	code	with	such	metadata	is	a	built-in	feature	of	TypeScript	known	as	type
annotations.	Based	on	them,	text	editors	and	IDEs	can	perform	better	static	analysis	over
our	code.	This	provides	better	refactoring	tools	and	autocompletion,	which	increases	our
productivity	and	allows	us	to	make	fewer	mistakes	while	writing	the	source	code	for	our
applications.

There’s	even	more	to	TypeScript
TypeScript	by	itself	has	a	number	of	other	benefits:

It	is	a	superset	of	JavaScript:	All	JavaScript	(ES5	and	ES2015)	programs	are
already	valid	TypeScript	ones.	In	essence,	you	have	already	been	writing	TypeScript
code.	Since	it	is	based	on	the	latest	version	of	the	ECMAScript	standard,	it	allows	us
to	take	advantage	of	the	latest	bleeding	edge	syntax	provided	by	the	language.
Supports	optional	type	checking:	If,	for	any	reason,	we	decide	that	we	don’t	want
to	explicitly	define	the	type	of	a	variable	or	a	method,	we	can	just	skip	the	type
definition.	However,	we	should	be	aware	that	this	means	we	are	no	longer	taking
advantage	of	the	static	typing,	so	we	are	giving	up	on	all	the	benefits	mentioned
earlier.
Developed	and	maintained	by	Microsoft:	The	quality	of	the	implementation	of	the
language	is	very	high	and	it	is	unlikely	that	support	will	be	dropped	unexpectedly.
TypeScript	is	based	on	the	work	of	some	of	the	world’s	best	experts	in	programming
language	development.
It	is	open	source:	This	allows	the	community	to	freely	contribute	to	the	language	and
suggest	features,	which	are	discussed	in	an	open	manner.	The	fact	that	TypeScript	is
open	source	allows	for	the	easier	development	of	third-party	extensions	and	tools,
which	extends	further	the	scope	of	its	usage.

Since	modern	browsers	do	not	support	TypeScript	natively,	there	is	a	compiler	that
translates	the	TypeScript	code	we	write	into	readable	JavaScript	in	a	predefined	target
version	of	ECMAScript.	Once	the	code	is	compiled,	all	the	type	annotations	are	removed.

Using	TypeScript
Let’s	start	writing	some	TypeScript!

In	the	following	sections,	we	are	going	to	take	a	look	at	different	snippets	showing	some
of	the	features	of	TypeScript.	In	order	to	be	able	to	run	the	snippets	and	play	with	them
yourself,	you’ll	need	to	install	the	TypeScript	compiler	on	your	computer.	Let’s	take	a	look
at	how	to	do	this.

TypeScript	is	best	installed	using	Node	Package	Manager	(npm).	I’d	recommend	you	to
use	npm	Version	3.0.0	or	newer.	If	you	don’t	have	node.js	and	npm	installed	already,	you
can	visit	https://nodejs.org	and	follow	the	instructions	there.

https://nodejs.org

Installing	TypeScript	with	npm
Once	you	have	npm	installed	and	running,	verify	that	you	have	the	latest	version	by
opening	your	terminal	window	and	running	the	following	command:

$	npm	–v

In	order	to	install	TypeScript	1.8,	use:

$	npm	install	-g	typescript@1.8

The	preceding	command	will	install	the	TypeScript	compiler	and	add	its	executable	(tsc)
as	global	to	your	path.

In	order	to	verify	that	everything	works	properly,	you	can	use:

$	tsc	–v

Version	1.8.0

The	output	should	be	similar	to	the	preceding	one,	though	possibly	with	a	different
version.

Running	our	first	TypeScript	program
Note
You	can	find	the	code	for	this	book	on	the	following	URL:
https://github.com/mgechev/switching-to-angular2.	As	a	comment	in	most	code	snippets
you’ll	find	a	relative	to	the	app	directory	file	path	where	you	can	find	them.

Now,	let’s	compile	our	first	TypeScript	program!	Create	a	file	called	hello.ts	and	enter
the	following	content:

//	ch3/hello-world/hello-world.ts

console.log('Hello	world!');

Since	you’ve	already	installed	the	TypeScript	compiler,	you	should	have	a	global
executable	command	called	tsc.	You	can	use	it	in	order	to	compile	the	file:

$	tsc	hello.ts

Now,	you	should	see	the	file	hello.js	in	the	same	directory	where	hello.ts	is.	hello.js
is	the	output	of	the	TypeScript	compiler;	it	contains	the	JavaScript	equivalent	to	the
TypeScript	you	wrote.	You	can	run	this	file	using	the	following	command:

$	node	hello.js

Now,	you’ll	see	the	string	Hello	world!	printed	on	the	screen.	In	order	to	combine	the
process	of	compiling	and	running	the	program,	you	can	use	the	package	ts-node:

$	npm	install	-t	ts-node

Now	you	can	run:

$	ts-node	hello.ts

You	should	see	the	same	result,	but	without	the	ts-node	file	stored	on	the	disk.

https://github.com/mgechev/switching-to-angular2

TypeScript	syntax	and	features	introduced
by	ES2015	and	ES2016
As	TypeScript	is	a	superset	of	JavaScript,	before	we	start	learning	about	its	syntax,	it’s	a
little	easier	to	start	by	introducing	some	of	the	bigger	changes	in	ES2015	and	ES2016;	to
understand	TypeScript,	we	first	must	understand	ES2015	and	ES2016.	We’re	going	to
have	a	whistle-stop	tour	through	these	changes	before	diving	in	to	TypeScript	proper	later.

A	detailed	explanation	of	ES2015	and	ES2016	is	outside	the	scope	of	this	book.	In	order
to	get	familiar	with	all	the	new	features	and	syntaxes,	I	strongly	recommend	you	to	take	a
look	at	Exploring	ES6:	upgrade	to	the	next	version	of	JavaScript	by	Dr.	Axel
Rauschmayer.

The	next	couple	of	pages	will	introduce	new	standards	and	allow	you	to	take	advantage	of
most	of	the	features	you’re	going	to	need	in	the	development	of	Angular	2	applications.

ES2015	arrow	functions
JavaScript	has	first	class	functions,	which	means	that	they	can	be	passed	around	like	any
other	value:

//	ch3/arrow-functions/simple-reduce.ts

var	result	=	[1,	2,	3].reduce(function	(total,	current)	{

		return	total	+	current;

},	0);	//	6

This	syntax	is	great;	however,	it	is	a	bit	too	verbose.	ES2015	introduced	a	new	syntax	to
define	anonymous	functions	called	the	arrow	function	syntax.	Using	it,	we	can	create
anonymous	functions,	as	seen	in	the	following	examples:

//	ch3/arrow-functions/arrow-functions.ts

//	example	1

var	result	=	[1,	2,	3]

		.reduce((total,	current)	=>	total	+	current,	0);

console.log(result);

//	example	2

var	even	=	[3,	1,	56,	7].filter(el	=>	!(el	%	2));

console.log(even);

//	example	3

var	sorted	=	data.sort((a,	b)	=>	{

		var	diff	=	a.price	-	b.price;

		if	(diff	!==	0)	{

				return	diff;

		}

		return	a.total	-	b.total;

});

In	the	first	example,	we	got	the	total	sum	of	the	elements	in	the	array	[1,	2,	3].	In	the
second	example,	we	got	all	the	even	numbers	inside	the	array	[3,	1,	56,	7].	In	the	third
example,	we	sorted	an	array	by	the	properties’	price	and	total	in	the	ascending	order.

Arrow	functions	have	a	few	more	features	that	we	need	to	look	at.	The	most	important	one
of	them	is	that	they	keep	the	context	(this)	from	the	surrounding	code:

//	ch3/arrow-functions/context-demo.ts

function	MyComponent()	{

		this.age	=	42;

		setTimeout(()	=>	{

				this.age	+=	1;

				console.log(this.age);

		},	100);

}

new	MyComponent();	//	43	in	100ms.

For	example,	when	we	invoke	the	function	MyComponent	with	the	operator	new,	this	will
point	to	the	new	object	instantiated	by	the	call.	The	arrow	function	will	keep	the	context
(this),	in	the	callback	of	setTimeout,	and	print	43	on	the	screen.

This	is	extremely	useful	in	Angular	2,	since	the	binding	context	for	a	given	component	is
its	instance	(that	is,	its	this).	If	we	define	MyComponent	as	an	Angular	2	component	and
we	have	a	binding	to	the	age	property,	the	preceding	code	will	be	valid	and	all	the
bindings	will	work	(notice	that	we	don’t	have	scope,	neither	do	we	have	explicit	calls	to
the	$digest	loop	although	we	have	called	setTimeout	directly).

Using	the	ES2015	and	ES2016	classes
When	developers	new	to	JavaScript	hear	that	the	language	empowers	the	object-oriented
(OO)	paradigm,	they’re	normally	confused	when	they	discover	that	there’s	no	syntax	for
the	definition	of	classes.	This	perception	was	born	by	the	fact	that	some	of	the	most
popular	programming	languages,	such	as	Java,	C#,	and	C++,	have	the	concept	of	classes
used	for	the	construction	of	objects.	However,	JavaScript	implements	the	OO	paradigm
differently.	JavaScript	has	a	prototype-based,	object-oriented	programming	model,	where
we	can	instantiate	objects	using	the	object	literal	syntax	or	functions	(also	known	as	the
constructor	functions)	and	we	can	take	advantage	of	the	inheritance	using	the	so-called
prototype	chain.

Though	this	is	a	valid	way	to	implement	the	OO	paradigm	and	the	semantics	are	similar	to
the	one	in	the	classical	object-oriented	model,	it	is	confusing	for	inexperienced	JavaScript
developers	who	are	not	sure	how	to	process	this	properly.	This	is	one	of	the	reasons	TC39
decided	to	provide	an	alternative	syntax	to	exploit	the	object-oriented	paradigm	in	the
language.	Behind	the	scenes,	the	new	syntax	has	the	same	semantics	as	the	one	we’re	used
to,	like	using	the	constructor	functions	and	the	prototype-based	inheritance.	However,	it
provides	a	more	convenient	syntax	to	empower	the	OO	paradigm’s	features	with	less
boilerplate.

ES2016	adds	some	extra	syntax	to	the	ES2015	classes,	such	as	static	and	instance	property
declaration.

Here	is	an	example	that	demonstrates	the	syntax	used	to	define	the	classes	in	ES2016:

//	ch3/es6-classes/sample-classes.ts

class	Human	{

		static	totalPeople	=	0;

		_name;	//	ES2016	property	declaration	syntax

		constructor(name)	{

				this._name	=	name;

				Human.totalPeople	+=	1;

		}

		get	name()	{

				return	this._name;

		}

		set	name(val)	{

				this._name	=	val;

		}

		talk()	{

				return	`Hi,	I'm	${this.name}!`;

		}

}

class	Developer	extends	Human	{

		_languages;	//	ES2016	property	declaration	syntax

		constructor(name,	languages)	{

				super(name);

				this._languages	=	languages;

		}

		get	languages()	{

				return	this._languages;

		}

		talk()	{

				return	`${super.talk()}	And	I	know

${this.languages.join(',')}.`;

		}

}

In	ES2015,	the	explicit	declaration	of	the	_name	property	is	not	required;	however,	since
the	TypeScript	compiler	should	be	aware	during	compile-time	of	the	existing	properties	of
the	instances	of	a	given	class,	we	would	need	to	add	the	declaration	of	the	property	to	the
class	declaration	itself.

The	preceding	snippet	is	both	a	valid	TypeScript	and	JavaScript	code.	In	it,	we	defined	a
class	called	Human,	which	adds	a	single	property	to	the	objects	instantiated	by	it.	It	does
this	by	setting	its	value	to	the	parameter	name	passed	to	its	constructor.

Now,	open	the	ch3/es6-classes/sample-classes.ts	file	and	play	around	with	it!	You
can	create	different	instances	of	the	classes	the	same	way	you	create	objects	using
constructor	functions:

var	human	=	new	Human("foobar");

var	dev	=	new	Developer("bar",	["JavaScript"]);

console.log(dev.talk());

In	order	to	execute	the	code,	run	the	following	command:

$	ts-node	sample-classes.ts

Classes	are	commonly	used	in	Angular	2.	You	can	use	them	to	define	your	components,
directives,	services,	and	pipes.	However,	you	can	also	use	the	alternative	ES5	syntax,
which	takes	advantage	of	the	constructor	functions.	Under	the	hood,	once	the	TypeScript
code	is	compiled,	there	would	be	no	such	significant	difference	between	both	the	syntaxes,
because	the	ES2015	classes	are	being	transpiled	to	constructor	functions	anyway.

Defining	variables	with	block	scope
Another	confusing	point	of	JavaScript	for	developers	with	a	different	background	is	the
variable	scope	in	the	language.	In	Java	and	C++,	for	example,	we’re	used	to	the	block
lexical	scope.	This	means	that	a	given	variable	defined	inside	a	specific	block	will	be
visible	only	inside	that	block	and	all	of	the	nested	blocks	inside	of	it.

However,	in	JavaScript,	things	are	a	little	bit	different.	ECMAScript	defines	a	functional
lexical	scope	that	has	similar	semantics	to	the	block	lexical	scope,	but	it	uses	functions
instead	of	blocks.	This	means	that	we	have	the	following:

//	ch3/let/var.ts

var	fns	=	[];

for	(var	i	=	0;	i	<	5;	i	+=	1)	{

		fns.push(function()	{

				console.log(i);

		})

}

fns.forEach(fn	=>	fn());

This	has	some	weird	implications.	Once	the	code	has	been	executed,	it	will	log	five	times
the	number	5.

ES2015	added	a	new	syntax	to	define	the	variables	with	block-scope	visibility.	The	syntax
is	similar	to	the	current	one.	However,	instead	of	var,	it	uses	the	keyword	let:

//	ch3/let/let.ts

var	fns	=	[];

for	(let	i	=	0;	i	<	5;	i	+=	1)	{

		fns.push(function()	{

				console.log(i);

		})

}

fns.forEach(fn	=>	fn());

Meta-programming	with	ES2016
decorators
JavaScript	is	a	dynamic	language	that	allows	us	to	easily	modify	and/or	alter	the	behavior
to	suit	the	programs	we	write.	Decorators	are	a	proposal	to	ES2016,	which	according	to
the	design	document	https://github.com/wycats/javascript-decorators:

“…make	it	possible	to	annotate	and	modify	classes	and	properties	at	design	time.”

Their	syntaxes	are	quite	similar	to	the	annotations	in	Java,	and	they	are	even	closer	to	the
decorators	in	Python.	ES2016	decorators	are	used	commonly	in	Angular	2	to	define
components,	directives,	and	pipes,	and	to	take	advantage	of	the	dependency	injection
mechanism	of	the	framework.	Essentially,	most	use	cases	of	decorators	involve	altering
the	behavior	to	predefined	logic	or	adding	some	metadata	to	different	constructs.

ES2016	decorators	allow	us	to	do	a	lot	of	fancy	things	by	changing	the	behavior	of	our
programs.	Typical	use	cases	could	be	to	annotate	the	given	methods	or	properties	as
deprecated	or	read-only.	A	set	of	predefined	decorators	that	can	improve	the	readability	of
the	code	we	produce	can	be	found	in	a	project	by	Jay	Phelps	called	core-decorators.js.
Another	use	case	is	taking	advantage	of	the	proxy-based	aspect-oriented	programming
using	a	declarative	syntax.	The	library	providing	this	functionality	is	aspect.js.

In	general,	ES2016	decorators	are	just	another	syntax	sugar,	which	translates	to	the	code
we’re	already	familiar	with	from	the	previous	versions	of	JavaScript.	Let’s	take	a	look	at	a
simple	example	from	the	proposal’s	draft:

//	ch3/decorators/nonenumerable.ts

class	Person	{

		@nonenumerable

		get	kidCount()	{

				return	42;

		}

}

function	nonenumerable(target,	name,	descriptor)	{

		descriptor.enumerable	=	false;

		return	descriptor;

}

var	person	=	new	Person();

for	(let	prop	in	person)	{

		console.log(prop);

}

In	this	case,	we	have	an	ES2015	class	called	Person	with	a	single	getter	called	kidCount.
Over	the	kidCount	getter,	we	have	applied	the	nonenumerable	decorator.	The	decorator	is
a	function	that	accepts	a	target	(the	Person	class),	the	name	of	the	target	property	we

https://github.com/wycats/javascript-decorators

intend	to	decorate	(kidCount),	and	the	descriptor	of	the	target	property.	After	we	change
the	descriptor,	we	need	to	return	it	in	order	to	apply	the	modification.	Basically,	the
decorator’s	application	could	be	translated	into	ECMAScript	5	in	the	following	way:

descriptor	=	nonenumerable	(Person.prototype,	'kidCount',	descriptor)	||	

descriptor;

Object.defineProperty(Person.prototype,	'kidCount',	descriptor);

Using	configurable	decorators
Here	is	an	example	on	using	the	decorators	defined	by	Angular	2:

@Component({

		selector:	'app',

		providers:	[NamesList],

		templateUrl:	'./app.html',

		directives:	[RouterOutlet,	RouterLink]

})

@RouteConfig([

		{	path:	'/',	component:	Home,	name:	'home'	},

		{	path:	'/about',	component:	About,	name:	'about'	}

])

export	class	App	{}

When	decorators	accept	arguments	(just	like	Component,	RouteConfig,	and	View	in	the
preceding	example),	they	need	to	be	defined	as	functions	that	accept	arguments	and	return
the	actual	decorator:

function	Component(config)	{

		//	validate	properties

		return	(componentCtrl)	=>	{

				//	apply	decorator

		};

}

In	this	example,	we	defined	a	configurable	decorator	called	Component	that	accepts	a
single	argument	called	config	and	returns	a	decorator.

Writing	modular	code	with	ES2015
Another	problem	that	JavaScript	professionals	have	experienced	along	the	years	is	the
lack	of	a	module	system	in	the	language.	Initially,	the	community	developed	different
patterns,	aiming	to	enforce	the	modularity	and	the	encapsulation	of	the	software	we
produce.	Such	patterns	included	the	module	pattern,	which	takes	advantage	of	the
functional	lexical	scope	and	closures.	Another	example	is	the	namespace	pattern,	which
represents	the	different	namespaces	as	nested	objects.	AngularJS	1.x	introduced	its	own
module	system	that	unfortunately	doesn’t	provide	features	like	lazy	module	loading.
However,	these	patterns	were	more	like	workarounds	rather	than	real	solutions.

CommonJS	(used	in	node.js)	and	AMD	(Asynchronous	Module	Definition)	were	later
invented.	They	are	still	in	wide	use	today	and	provide	features,	such	as	handling	of
circular	dependencies,	asynchronous	module	loading	(in	AMD),	and	so	on.

TC39	took	the	best	of	the	existing	module	systems	and	introduced	this	concept	on	a
language	level.	ES2015	provides	two	APIs	to	define	and	consume	modules.	They	are	as
follows:

Declarative	API.
Imperative	API	using	the	module	loader.

Angular	2	takes	full	advantage	of	the	ES2015	module	system,	so	let’s	dive	into	it!	In	this
section,	we	are	going	to	take	a	look	at	the	syntax	used	for	the	declarative	definition	and
consumption	of	modules.	We	are	also	going	to	peek	at	the	module	loader’s	API	in	order	to
see	how	we	can	programmatically	load	modules	in	an	explicit	asynchronous	manner.

Using	the	ES2015	module	syntax
Let’s	take	a	look	at	an	example:

//	ch3/modules/math.ts

export	function	square(x)	{

		return	Math.pow(x,	2);

};

export	function	log10(x)	{

		return	Math.log10(x);

};

export	const	PI	=	Math.PI;

In	the	preceding	snippet,	we	defined	a	simple	ES2015	module	in	the	file	math.ts.	We	can
think	of	it	as	a	sample	math	Angular	2	utility	module.	Inside	it,	we	defined	and	exported
the	functions	square	and	log10,	and	the	constant	PI.	The	const	keyword	is	another
keyword	brought	by	ES2015	that	is	used	to	define	constants.	As	you	can	see,	what	we	do
is	nothing	more	than	prefixing	the	function’s	definitions	with	the	keyword	export.	If	we
want	to	export	the	entire	functionality	in	the	end	and	skip	the	duplicate	explicit	usage	of
export,	we	can:

//	ch3/modules/math2.ts

function	square(x)	{

		return	Math.pow(x,	2);

};

function	log10(x)	{

		return	Math.log10(x);

};

const	PI	=	Math.PI;

export	{	square,	log10,	PI	};

The	syntax	on	the	last	line	is	nothing	more	than	an	enhanced	object	literal	syntax,
introduced	by	ES2015.	Now,	let’s	take	a	look	at	how	we	can	consume	this	module:

//	ch3/modules/app.ts

import	{square,	log10}	from	'./math';

console.log(square(2));	//	4

console.log(log10(10));	//	1

As	an	identifier	of	the	module,	we	used	its	relative	path	to	the	current	file.	By	using
destructuring,	we	imported	the	required	functions—in	this	case,	square	and	log10.

Taking	advantage	of	the	implicit	asynchronous
behavior
It	is	important	to	note	that	the	ES2015	module	syntax	has	implicit	asynchronous	behavior.

Let’s	say	we	have	modules	A,	B,	and	C.	Module	A	uses	modules	B	and	C,	so	it	depends	on
them.	Once	the	user	requires	module	A,	the	JavaScript	module	loader	would	need	to	load
modules	B	and	C	before	being	able	to	invoke	any	of	the	logic	that	resides	in	module	A
because	of	the	dependencies	we	have.	However,	modules	B	and	C	will	be	loaded
asynchronously.	Once	they	are	loaded	completely,	the	JavaScript	virtual	machine	will	be
able	to	execute	module	A.

Using	aliases
Another	typical	situation	is	when	we	want	to	use	an	alias	for	a	given	export.	For	example,
if	we	use	a	third-party	library,	we	may	want	to	rename	any	of	its	exports	in	order	to	escape
name	collisions	or	just	to	have	a	more	convenient	naming:

import	{bootstrap	as	initialize}	from	'angular2/platform/browser';

Importing	all	the	module	exports
We	can	import	the	entire	math	module	using:

//	ch3/modules/app2.ts

import	*	as	math	from	'./math';

console.log(math.square(2));	//	4

console.log(math.log10(10));	//	1

console.log(math.PI);	//	3.141592653589793

The	semantics	behind	this	syntax	is	quite	similar	to	CommonJS,	although	in	the	browser,
we	have	implicit	asynchronous	behavior.

Default	exports
If	a	given	module	defines	an	export,	which	would	quite	likely	be	used	by	any	of	its
consumer	modules,	we	can	take	advantage	of	the	default	export	syntax:

//	ch3/modules/math3.ts

export	default	function	cube(x)	{

		return	Math.pow(x,	3);

};

export	function	square(x)	{

		return	Math.pow(x,	2);

};

In	order	to	consume	this	module,	we	can	use	the	following	app.ts	file:

//	ch3/modules/app3.ts

import	cube	from	'./math3';

console.log(cube(3));	//	27

Or,	if	we	want	to	import	the	default	export	as	well	as	some	other	exports,	we	can	use:

//	ch3/modules/app4.ts

import	cube,	{	square	}	from	'./math3';

console.log(square(2));	//	4

console.log(cube(3));	//	27

In	general,	the	default	export	is	nothing	more	than	a	named	export	named	with	the
reserved	word	default:

//	ch3/modules/app5.ts

import	{	default	as	cube	}	from	'./math3';

console.log(cube(3));	//	27

ES2015	module	loader
The	new	version	of	the	standard	defines	a	programmatic	API	to	work	with	modules.	This
is	the	so-called	module	loader	API.	It	allows	us	to	define	and	import	modules,	or
configure	the	module	loading.

Let’s	suppose	we	have	the	following	module	definition	in	the	file	app.js:

import	{	square	}	from	'./math';

export	function	main()	{

		console.log(square(2));	//	4

}

From	the	file	init.js,	we	can	programmatically	load	the	app	module	and	invoke	its	main
function	using:

System.import('./app')

		.then(app	=>	{

				app.main();

		})

		.catch(error	=>	{

				console.log('Terrible	error	happened',	error);

		});

The	global	object	System	has	a	method	called	import	that	allows	us	to	import	modules
using	their	identifier.	In	the	preceding	snippet,	we	imported	the	module	app	defined	in
app.js.	System.import	returns	a	promise	that	could	be	resolved	on	success	or	rejected	in
case	of	an	error.	Once	the	promise	is	resolved	as	the	first	parameter	of	the	callback	passed
to	then,	we	will	get	the	module	itself.	The	first	parameter	of	the	callback	registered	in	case
of	rejection	is	the	error	that	happened.

The	code	from	the	last	snippet	does	not	exist	in	the	GitHub	repository,	since	it	requires
some	additional	configuration.	We	are	going	to	apply	the	module	loader	more	explicitly	in
the	Angular	2	examples	in	the	next	chapters	of	the	book.

ES2015	and	ES2016	recap
Congratulations!	We’re	more	than	halfway	toward	learning	TypeScript.	All	the	features
we’ve	just	seen	are	a	part	of	TypeScript,	since	it	implements	a	superset	of	JavaScript	and
since	all	these	features	are	an	upgrade	on	top	of	the	current	syntax,	they	are	easy	to	grasp
by	experienced	JavaScript	developers.

In	the	next	sections,	we	will	describe	all	the	amazing	features	of	TypeScript	that	are
outside	the	intersection	with	ECMAScript.

Taking	advantage	of	static	typing
Static	typing	is	what	can	provide	better	tooling	for	our	development	process.	While
writing	JavaScript,	the	most	that	IDEs	and	text	editors	can	do	is	syntax	highlighting	and
providing	some	basic	autocompletion	suggestions	based	on	the	sophisticated	static
analysis	of	our	code.	This	means	that	we	can	only	verify	that	we	haven’t	made	any	typos
by	running	the	code.

In	the	previous	sections,	we	described	only	the	new	features	provided	by	ECMAScript
expected	to	be	implemented	by	browsers	in	the	near	future.	In	this	section,	we	will	take	a
look	at	what	TypeScript	provides	in	order	to	help	us	be	less	error-prone	and	more
productive.	At	the	time	of	this	writing,	there’re	no	plans	to	implement	built-in	support	for
static	typing	in	the	browsers.

The	TypeScript	code	goes	through	intermediate	preprocessing	that	performs	the	type
checking	and	drops	all	the	type	annotations	in	order	to	provide	valid	JavaScript	supported
by	modern	browsers.

Using	explicit	type	definitions
Just	like	Java	and	C++,	TypeScript	allows	us	to	explicitly	declare	the	type	of	the	given
variable:

let	foo:	number	=	42;

The	preceding	line	defines	the	variable	foo	in	the	current	block	using	the	let	syntax.	We
explicitly	declare	that	we	want	foo	to	be	of	the	type	number	and	we	set	the	value	of	foo	to
42.

Now	let’s	try	to	change	the	value	of	foo:

let	foo:	number	=	42;

foo	=	'42';

Here,	after	the	declaration	of	foo,	we	will	set	its	value	to	the	string	'42'.	This	is	a
perfectly	valid	JavaScript	code;	however,	if	we	compile	it	using	the	TypeScript’s	compiler,
we	will	get:

$	tsc	basic.ts

basic.ts(2,1):	error	TS2322:	Type	'string'	is	not	assignable	to	type	

'number'.

Once	foo	has	been	associated	with	the	given	type,	we	cannot	assign	it	values	belonging	to
different	types.	This	is	one	of	the	reasons	we	can	skip	the	explicit	type	definition	in	case
we	assign	a	value	to	the	given	variable:

let	foo	=	42;

foo	=	'42';

The	semantics	behind	this	code	will	be	the	same	as	the	one	with	the	explicit	type
definition	because	of	the	type	inference	of	TypeScript.	We’ll	further	take	a	look	at	it	at	the
end	of	this	chapter.

The	type	any
All	the	types	in	TypeScript	are	subtypes	of	a	type	called	any.	We	can	declare	variables
belonging	to	the	any	type	by	using	the	any	keyword.	Such	variables	can	hold	the	value	of
any	type:

let	foo:	any;

foo	=	{};

foo	=	'bar	';

foo	+=	42;

console.log(foo);	//	"bar	42"

The	preceding	code	is	a	valid	TypeScript,	and	it	will	not	throw	any	error	during
compilation	or	runtime.	If	we	use	the	type	any	for	all	of	our	variables,	we	will	be	basically
writing	the	code	with	dynamic	typing,	which	drops	all	the	benefits	of	the	TypeScript’s
compiler.	That’s	why	we	have	to	be	careful	with	any	and	use	it	only	when	it	is	necessary.

All	the	other	types	in	TypeScript	belong	to	one	of	the	following	categories:

Primitive	types:	This	includes	Number,	String,	Boolean,	Void,	Null,	Undefined,	and
Enum	types.
Union	types:	Union	types	are	out	of	the	scope	of	this	book.	You	can	take	a	look	at
them	in	the	specification	of	TypeScript.
Object	types:	This	includes	Function	types,	classes	and	interface	type	references,
array	types,	tuple	types,	function	types,	and	constructor	types.
Type	parameters:	This	includes	Generics	that	are	going	to	be	described	in	the
Writing	generic	code	by	using	type	parameters	section.

Understanding	the	Primitive	types
Most	of	the	primitive	types	in	TypeScript	are	the	ones	we	are	already	familiar	with	in
JavaScript:	Number,	String,	Boolean,	Null,	and	Undefined.	So,	we	are	going	to	skip	their
formal	explanation	here.	Another	set	of	types	that	is	handy	while	developing	Angular	2
applications	is	the	Enum	types	defined	by	users.

The	Enum	types
The	Enum	types	are	primitive	user-defined	types	that,	according	to	the	specification,	are
subclasses	of	Number.	The	concept	of	enums	exists	in	the	Java,	C++,	and	C#	languages,
and	it	has	the	same	semantics	in	TypeScript—user-defined	types	consisting	of	sets	of
named	values	called	elements.	In	TypeScript,	we	can	define	enum	using	the	following
syntax:

enum	STATES	{

		CONNECTING,

		CONNECTED,

		DISCONNECTING,

		WAITING,

		DISCONNECTED	

};

This	is	going	to	be	translated	to	the	following	JavaScript:

var	STATES;

(function	(STATES)	{

				STATES[STATES["CONNECTING"]	=	0]	=	"CONNECTING";

				STATES[STATES["CONNECTED"]	=	1]	=	"CONNECTED";

				STATES[STATES["DISCONNECTING"]	=	2]	=	"DISCONNECTING";

				STATES[STATES["WAITING"]	=	3]	=	"WAITING";

				STATES[STATES["DISCONNECTED"]	=	4]	=	"DISCONNECTED";

})(STATES	||	(STATES	=	{}));

We	can	use	the	enum	type	as	follows:

if	(this.state	===	STATES.CONNECTING)	{

		console.log('The	system	is	connecting');

}

Understanding	the	Object	types
In	this	section,	we’re	going	to	take	a	look	at	the	Array	types	and	Function	types,	which
belong	to	the	more	generic	class	of	Object	types.	We	will	also	explore	how	we	can	define
classes	and	interfaces.	Tuple	types	were	introduced	by	TypeScript	1.3,	and	their	main
purpose	is	to	allow	the	language	to	begin	typing	the	new	features	introduced	by	ES2015,
such	as	destructuring.	We	will	not	describe	them	in	this	book.	For	further	reading	you	can
take	a	look	at	the	language’s	specification	at	http://www.typescriptlang.org.

The	Array	types
In	TypeScript,	arrays	are	JavaScript	arrays	with	a	common	element	type.	This	means	that
we	cannot	have	elements	from	different	types	in	a	given	array.	We	have	different	array
types	for	all	the	built-in	types	in	TypeScript,	plus	all	the	custom	types	that	we	define.

We	can	define	an	array	of	numbers	as	follows:

let	primes:	number[]	=	[];

primes.push(2);

primes.push(3);

If	we	want	to	have	an	array,	which	seems	heterogeneous,	similar	to	the	arrays	in
JavaScript,	we	can	use	the	type	reference	to	any:

let	randomItems:	any[]	=	[];

randomItems.push(1);

randomItems.push("foo");

randomItems.push([]);

randomItems.push({});

This	is	possible,	since	the	types	of	all	the	values	we’re	pushing	to	the	array	are	subtypes	of
the	any	type	and	the	array	we’ve	declared	contains	values	of	the	type	any.

We	can	use	the	array	methods	we’re	familiar	with	in	JavaScript	with	all	the	TypeScript
Array	types:

let	randomItems:	any[]	=	[];

randomItems.push("foo");

randomItems.push("bar");

randomItems.join('');	//	foobar

randomItems.splice(1,	0,	"baz");

randomItems.join('');	//	foobazbar

We	also	have	the	square-brackets	operator	that	gives	us	random	access	to	the	array’s
elements:

let	randomItems:	any[]	=	[];

randomItems.push("foo");

randomItems.push("bar");

randomItems[0]	===	"foo"

randomItems[1]	===	"bar"

The	Function	types

http://www.typescriptlang.org

The	function	types	are	a	set	of	all	the	functions	with	different	signatures,	including	the
different	number	of	arguments,	different	arguments’	types,	or	different	types	of	the	return
result.

We’re	already	familiar	with	how	to	create	a	new	function	in	JavaScript.	We	can	use
function	expression	or	function	declaration: 

//	function	expression

var	isPrime	=	function	(n)	{

		//	body

};

//	function	declaration

function	isPrime(n)	{

		//	body

};

Or,	we	can	use	the	new	arrow	function	syntax:

var	isPrime	=	n	=>	{

		//	body

};

The	only	thing	TypeScript	alters	is	the	feature	to	define	the	types	of	the	function’s
arguments	and	the	type	of	its	return	result.	After	the	compiler	of	the	language	performs	its
type	checking	and	transpilation,	all	the	type	annotations	will	be	removed.	If	we	use
function	expression	and	we	assign	a	function	to	a	variable,	we	will	be	able	to	define	the
variable	type	in	the	following	way:

let	variable:	(arg1:	type1,	arg2:	type2,	…,	argn:	typen)	=>	returnType

For	example:

let	isPrime:	(n:	number)	=>	boolean	=	n	=>	{

		//	body

};

In	case	of	function	declaration,	we’ll	have:

function	isPrime(n:	number):	boolean	{

		//	body

}

If	we	want	to	define	a	method	in	a	object	literal,	we	can	process	it	in	the	following	way:

let	math	=	{

		squareRoot(n:	number):	number	{

				//	…

		},

};

In	the	preceding	example,	we	defined	an	object	literal	using	the	ES2015	syntax	that
defines	the	method	squareRoot.

In	case	we	want	to	define	a	function	that	produces	some	side	effects	instead	of	returning	a
result,	we	can	define	it	as	a	void	function:

let	person	=	{

		_name:	null,

		setName(name:	string):	void	{

				this._name	=	name;

		}

};

Defining	classes
TypeScript	classes	are	similar	to	what	ES2015	offers.	However,	it	alters	the	type
declarations	and	creates	more	syntax	sugar.	For	example,	let’s	take	the	Human	class	we
defined	earlier	and	make	it	a	valid	TypeScript	class:

class	Human	{

		static	totalPeople	=	0;

		_name:	string;

		constructor(name)	{

				this._name	=	name;

				Human.totalPeople	+=	1;

		}

		get	name()	{

				return	this._name;

		}

		set	name(val)	{

				this._name	=	val;

		}

		talk()	{

				return	`Hi,	I'm	${this.name}!`;

		}

}

There	is	no	difference	between	the	current	TypeScript	definition	with	the	one	we	already
introduced,	however,	in	this	case	the	declaration	of	the	_name	property	is	mandatory.	Here
is	how	we	can	use	the	class:

let	human	=	new	Human('foo');

console.log(human._name);

Using	access	modifiers
Similarly,	for	most	conventional	object-oriented	languages	that	support	classes,
TypeScript	allows	definition	of	access	modifiers.	In	order	to	deny	direct	access	to	the
_name	property	outside	the	class	it	is	defined	in,	we	can	declare	it	as	private:

class	Human	{

		static	totalPeople	=	0;

		private	_name:	string;

		//	…

}

The	supported	access	modifiers	by	TypeScript	are:

Public:	All	the	properties	and	methods	declared	as	public	could	be	accessed
anywhere.
Private:	All	the	properties	and	methods	declared	as	private	can	be	accessed	only
from	inside	the	class’	definition	itself.
Protected:	All	the	properties	and	methods	declared	as	protected	can	be	accessed
from	inside	the	class’	definition	or	the	definition	of	any	other	class	extending	the	one
that	owns	the	property	or	the	method.

Access	modifiers	are	a	great	way	to	implement	Angular	2	services	with	good
encapsulation	and	a	well-defined	interface.	In	order	to	understand	it	better,	let’s	take	a
look	at	an	example	using	the	class’	hierarchy	defined	earlier,	which	is	ported	to
TypeScript:

class	Human	{

		static	totalPeople	=	0;

		constructor(protected	name:	string,	private	age:	number)	{

				Human.totalPeople	+=	1;

		}

		talk()	{

				return	`Hi,	I'm	${this.name}!`;

		}

}

class	Developer	extends	Human	{

		constructor(name:	string,	private	languages:	string[],	age:	number)	{

				super(name,	age);

		}

		talk()	{

				return	`${super.talk()}	And	I	know	${this.languages.join(',	')}.`;

		}

}

Just	like	ES2015,	TypeScript	supports	the	extends	keyword	and	desugars	it	to	the
prototypal	JavaScript	inheritance.

In	the	preceding	example,	we	set	the	access	modifiers	of	the	name	and	age	properties
directly	inside	the	constructor	function.	The	semantics	behind	this	syntax	differs	from	the
one	used	in	the	previous	example.	It	has	the	following	meaning:	define	a	protected

property	called	name	of	the	type	string	and	assign	the	first	value	passed	to	the	constructor
call	to	it.	It	is	the	same	for	the	private	age	property.	This	saves	us	from	explicitly	setting
the	value	in	the	constructor	itself.	If	we	take	a	look	at	the	constructor	of	the	Developer
class,	we	can	see	that	we	can	use	the	mixture	between	these	syntaxes.	We	can	explicitly
define	the	property	in	the	constructor’s	signature	or	we	can	only	define	that	the	constructor
accepts	the	parameters	of	the	given	types.

Now,	let’s	create	a	new	instance	of	the	Developer	class:

let	dev	=	new	Developer("foo",	["JavaScript",	"Go"],	42);

dev.languages	=	["Java"];

During	compilation,	TypeScript	will	throw	an	error	telling	us	that	Property	languages	is
private	and	only	accessible	inside	class	“Developer”.	Now,	let’s	see	what’s	going	to
happen	if	we	create	a	new	Human	class	and	try	to	access	its	properties	from	outside	its
definition:

let	human	=	new	Human("foo",	42);

human.age	=	42;

human.name	=	"bar";

In	this	case,	we’ll	get	the	following	two	errors:

Property	age	is	private	and	is	only	accessible	inside	class	“Human”	and	the	Property
name	is	a	protected	and	only	accessible	inside	class	“Human”	and	its	subclasses.

However,	if	we	try	to	access	the	_name	property	from	inside	the	definition	of	Developer,
the	compiler	won’t	throw	any	errors.

In	order	to	get	a	better	sense	of	what	the	TypeScript	compiler	will	produce	out	of	a	type
annotated	class,	let’s	take	a	look	at	the	JavaScript	produced	by	the	following	definition:

class	Human	{

		constructor(private	name:	string)	{}

}

The	resulting	ECMAScript	5	will	be:

var	Human	=	(function	()	{

				function	Human(name)	{

								this.name	=	name;

				}

				return	Human;

})();

The	defined	property	is	added	directly	to	the	objects	instantiated	by	calling	the	constructor
function	with	the	operator	new.	This	means	that	once	the	code	is	compiled,	we	can	directly
access	the	private	members	of	the	created	objects.	In	order	to	wrap	this	up,	access
modifiers	are	added	in	the	language	in	order	to	help	us	enforce	better	encapsulation	and
get	compile-time	errors	in	case	we	violate	it.

Defining	interfaces
Subtyping	in	programming	languages	allows	us	to	treat	objects	in	the	same	way	based	on
the	observation	that	they	are	specialized	versions	of	a	generic	object.	This	doesn’t	mean
that	they	have	to	be	instances	of	the	same	class	of	objects,	or	that	they	have	complete
intersection	between	their	interfaces.	The	objects	might	have	only	a	few	common
properties	and	still	be	treated	the	same	way	in	a	specific	context.	In	JavaScript,	we	usually
use	duck	typing.	We	may	invoke	specific	methods	for	all	the	objects	passed	to	a	function
based	on	the	assumption	that	these	methods	exist.	However,	all	of	us	have	experienced	the
undefined	is	not	a	function	error	thrown	by	the	JavaScript	interpreter.

Object-oriented	programming	and	TypeScript	come	with	a	solution.	They	allow	us	to
make	sure	our	objects	have	similar	behavior	if	they	implement	interfaces	that	declare	the
subset	of	the	properties	they	own.

For	example,	we	can	define	our	interface	Accountable:

interface	Accountable	{

		getIncome():	number;

}

Now,	we	can	make	sure	both	Individual	and	Firm	implement	this	interface	by	doing	as
follows:

class	Firm	implements	Accountable	{

		getIncome():	number	{

				//	…

		}

}

class	Individual	implements	Accountable	{

		getIncome():	number	{

				//	…

		}

}

In	case	we	implement	a	given	interface,	we	need	to	provide	implementation	for	all	the
methods	defined	inside	it,	otherwise	the	TypeScript	compiler	will	throw	an	error.	The
methods	we	implement	must	have	the	same	signature	as	the	ones	declared	in	the	interface
definition.

TypeScript	interfaces	also	support	properties.	In	the	Accountable	interface,	we	can
include	a	field	called	accountNumber	with	a	type	of	string:

interface	Accountable	{

		accountNumber:	string;

		getIncome():	number;

}

We	can	define	it	in	our	class	as	a	field	or	a	getter.

Interface	inheritance
Interfaces	may	also	extend	each	other.	For	example,	we	may	turn	our	Individual	class

into	an	interface	that	has	a	social	security	number:

interface	Accountable	{

		accountNumber:	string;

		getIncome():	number;

}

interface	Individual	extends	Accountable	{

		ssn:	string;

}

Since	interfaces	support	multiple	inheritances,	Individual	may	also	extend	the	interface
Human	that	has	the	name	and	age	properties:

interface	Accountable	{

		accountNumber:	string;

		getIncome():	number;

}

interface	Human	{

		age:	number;

		name:	number;

}

interface	Individual	extends	Accountable,	Human	{

		ssn:	string;

}

Implementing	multiple	interfaces
In	case	the	class’s	behavior	is	a	union	of	the	properties	defined	in	a	couple	of	interfaces,	it
may	implement	all	of	them:

class	Person	implements	Human,	Accountable	{

		age:	number;

		name:	string;

		accountNumber:	string;

		getIncome():	number	{

				//	...

		}

}

In	this	case,	we	need	to	provide	the	implementation	of	all	the	methods	declared	inside	the
interfaces	our	class	implements,	otherwise	the	compiler	will	throw	a	compile-time	error.

Further	expressiveness	with	TypeScript
decorators
In	ES2015,	we	are	able	to	decorate	only	classes,	properties,	methods,	getters,	and	setters.
TypeScript	takes	this	further	by	allowing	us	to	decorate	functions	or	method	parameters:

class	Http	{

		//	…

}

class	GitHubApi	{

		constructor(@Inject(Http)	http)	{

				//	…

		}

}

However,	the	parameter	decorators	should	not	alter	any	additional	behavior.	Instead,	they
are	used	to	generate	metadata.	The	most	typical	use	case	of	these	decorators	is	the
dependency	injection	mechanism	of	Angular	2.

Writing	generic	code	by	using	type
parameters
In	the	beginning	of	the	section	on	using	static	typing,	we	mentioned	the	type	parameters.
In	order	to	get	a	better	understanding	of	them,	let’s	begin	with	an	example.	Let’s	suppose
we	want	to	implement	the	classical	data-structure	BinarySearchTree.	Let’s	define	its
interface	using	a	class	without	applying	any	method	implementations:

class	Node	{

		value:	any;

		left:	Node;

		right:	Node;

}

class	BinarySearchTree	{

		private	root:	Node;

		insert(any:	value):	void	{	/*	…	*/	}

		remove(any:	value):	void	{	/*	…	*/	}

		exists(any:	value):	boolean	{	/*	…	*/	}

		inorder(callback:	{(value:	any):	void}):	void	{	/*	…	*/	}

}

In	the	preceding	snippet,	we	defined	a	class	called	Node.	The	instances	of	this	class
represent	the	individual	nodes	in	our	tree.	Each	node	has	a	left	and	a	right	child	node	and	a
value	of	the	type	any;	we	use	any	in	order	to	be	able	to	store	data	of	any	type	inside	our
nodes	and	respectively	inside	BinarySearchTree.

Although	the	earlier	implementation	looks	reasonable,	we’re	giving	up	on	using	the	most
important	feature	that	TypeScript	provides—static	typing.	By	using	any	as	a	type	of	the
value	field	inside	the	Node	class,	we	can’t	take	complete	advantage	of	the	compile-time
type	checking.	This	also	limits	the	features	that	IDEs	and	text	editors	provide	when	we
access	the	value	property	of	the	instances	of	the	Node	class.

TypeScript	comes	with	an	elegant	solution	that	is	already	widely	popular	in	the	world	of
static	typing—type	parameters.	Using	generics,	we	can	parameterize	the	classes	we	create
with	the	type	parameters.	For	example,	we	can	turn	our	Node	class	into	the	following:

class	Node<T>	{

		value:	T;

		left:	Node<T>;

		right:	Node<T>;

}

Node<T>	indicates	that	this	class	has	a	single	type	parameter	called	T	that	is	used
somewhere	inside	the	class’s	definition.	We	can	use	Node	by	doing	as	follows:

let	numberNode	=	new	Node<number>();

let	stringNode	=	new	Node<string>();

numberNode.right	=	new	Node<number>();

numberNode.value	=	42;

numberNode.value	=	"42";	//	Type	"string"	is	not	assignable	to	type	

"number"

numberNode.left	=	stringNode;	//	Type	Node<string>	is	not	assignable	to	

type	Node<number>

In	the	preceding	snippet,	we	created	three	nodes:	numberNode,	stringNode,	and	another
node	of	the	type	Node<number>,	assigning	its	value	to	the	right	child	of	numberNode.
Notice	that	since	numberNode	is	of	the	type	Node<number>,	we	can	set	its	value	to	42,	but
we	can’t	use	the	string	"42".	The	same	is	applicable	to	its	left	child.	In	the	definition,
we’ve	explicitly	declared	that	we	want	the	left	and	right	children	to	be	of	the	type
Node<number>.	This	means	that	we	cannot	assign	values	of	the	type	Node<string>	to
them;	that’s	why	we	get	the	second	compile-time	error.

Using	generic	functions
Another	typical	use	of	generics	is	for	defining	functions	that	operate	over	a	set	of	types.
For	example,	we	may	define	an	identity	function	that	accepts	an	argument	of	type	T	and
returns	it:

function	identity<T>(arg:	T)	{

		return	arg;

}

However,	in	some	cases,	we	may	want	to	use	only	the	instances	of	the	types	that	have
some	specific	properties.	For	achieving	this,	we	can	use	an	extended	syntax	that	allows	us
to	declare	subtypes	of	the	types	that	should	be	the	type	parameters:

interface	Comparable	{

		compare(a:	Comparable):	number;

}

function	sort<T	extends	Comparable>(arr:	Comparable[]):	Comparable[]	{

		//	…

}

For	example,	here,	we	defined	an	interface	called	Comparable.	It	has	a	single	operation
called	compare.	The	classes	that	implement	the	interface	Comparable	need	to	implement
the	operation	compare.	When	compare	is	called	with	a	given	argument,	it	returns	1	if	the
target	object	is	bigger	than	the	passed	argument,	0	if	they	are	equal,	and	-1	if	the	target
object	is	smaller	than	the	passed	argument.

Having	multiple	type	parameters
TypeScript	allows	us	to	use	multiple	type	parameters:

class	Pair<K,	V>	{

		key:	K;

		value:	V;

}

In	this	case,	we	can	create	an	instance	of	the	class	Pair<K,	V>	using	the	following	syntax:

let	pair	=	new	Pair<string,	number>();

pair.key	=	"foo";

pair.value	=	42;

Writing	less	verbose	code	with
TypeScript’s	type	inference
Static	typing	has	a	number	of	benefits;	however,	it	makes	us	write	a	more	verbose	code	by
adding	all	the	required	type	annotations.

In	some	cases,	the	TypeScript’s	compiler	is	able	to	guess	the	types	of	expressions	inside
our	code,	for	instance:

let	answer	=	42;

answer	=	"42";	//	Type	"string"	is	not	assignable	to	type	"number"

In	the	preceding	example,	we	defined	a	variable	answer	and	we	assigned	the	value	42	to	it.
Since	TypeScript	is	statically	typed	and	the	type	of	a	variable	cannot	change	once
declared,	the	compiler	is	smart	enough	to	guess	that	the	type	of	answer	is	number.

If	we	don’t	assign	a	value	to	a	variable	within	its	definition,	the	compiler	will	set	its	type
to	any:

let	answer;

answer	=	42;

answer	=	"42";

The	preceding	snippet	will	compile	without	any	compile-time	errors.

Best	common	type
Sometimes,	the	type	inference	could	be	a	result	of	several	expressions.	Such	is	the	case
when	we	assign	a	heterogeneous	array	to	a	variable:

let	x	=	["42",	42];

In	this	case,	the	type	of	x	will	be	any[].	However,	suppose	we	have	the	following:

let	x	=	[42,	null,	32];

The	type	of	x	will	then	be	number[],	since	the	type	Number	is	a	subtype	of	Null.

Contextual	type	inference
Contextual	typing	occurs	when	the	type	of	an	expression	is	implied	from	its	location,	for
example:

document.body.addEventListener("mousedown",	e	=>	{

		e.foo();	//	Property	"foo"	does	not	exists	on	a	type	"MouseEvent"

},	false);

In	this	case,	the	type	of	the	argument	of	the	callback	e	is	guessed	by	the	compiler	based	on
the	context	in	which	it	is	used.	The	compiler	understands	what	the	type	of	e	is	based	on
the	call	of	addEventListener	and	the	arguments	passed	to	the	method.	In	case	we	were
using	a	keyboard	event	(keydown,	for	example),	TypeScript	would	have	been	aware	that	e
is	of	the	type	KeyboardEvent.

Type	inference	is	a	mechanism	that	allows	us	to	write	less	verbose	code	by	taking
advantage	of	the	static	analysis	performed	by	TypeScript.	Based	on	the	context,
TypeScript’s	compiler	is	able	to	guess	the	type	of	a	given	expression	without	explicit
definition.

Using	ambient	type	definitions
Although	static	typing	is	amazing,	most	of	the	frontend	libraries	we	use	are	built	with
JavaScript,	which	is	dynamically	typed.	Since	we’d	want	to	use	TypeScript	in	Angular	2,
not	having	compile-typing	in	the	code	that	uses	external	libraries	is	a	big	issue;	it	prevents
us	from	taking	advantage	of	the	compile-time	type-checking.

TypeScript	was	built	keeping	these	points	in	mind.	In	order	to	allow	the	TypeScript
compiler	to	take	care	of	what	it	does	best,	we	can	use	the	so-called	ambient	type
definitions.	They	allow	us	to	provide	external	type	definitions	of	the	existing	JavaScript
libraries.	This	way,	they	provide	hints	to	the	compiler.

Using	predefined	ambient	type	definitions
Fortunately,	we	don’t	have	to	create	ambient	type	definitions	for	all	JavaScript	libraries
and	frameworks	we	use.	The	community	and/or	the	authors	of	these	libraries	have	already
published	such	definitions	online;	the	biggest	repository	resides	at:
https://github.com/DefinitelyTyped/DefinitelyTyped.	There’s	also	a	tool	for	managing
them	called	typings.	We	can	install	it	using	npm	by	the	following	command:

npm	install	–g	typings

The	configuration	of	typings	is	defined	in	a	file	called	typings.json	and	all	installed
ambient	typings,	by	default,	will	be	in	the	directory./typings.

In	order	to	create	typings.json	file	with	basic	configuration	use:

typings	init

We	can	install	new	type	definition	using:

typings	install	angularjs	--ambient

The	preceding	command	will	download	the	type	definitions	for	AngularJS	1.x	and	save
them	in	both	browser/ambient/angular/angular.d.ts	and
main/ambient/angular/angular.d.ts	under	the	typings	directory.

Note
Having	both	main/ambient	and	browser/ambient	directories	is	due	to	preventing	type
collisions.	For	instance,	if	we	use	TypeScript	in	both	the	backend/build	of	our	project,
and	its	frontend	there	could	be	introduced	duplications	of	type	definitions	which	will	lead
to	compile-time	errors.	By	having	two	directories	for	the	ambient	typings	of	the	individual
parts	of	the	project,	we	can	include	only	one	of	them	using	respectively	main.d.ts	and
browser.d.ts.	For	further	information	on	typings	you	can	visit	the	official	repository	of
the	project	on	GitHub	https://github.com/typings/typings.

In	order	to	download	a	type	definition	and	add	entry	for	it	inside	typings.json	you	can
use:

typings	install	angular	--ambient	--save

After	running	the	preceding	command	your	typings.json	file	should	look	similar	to:

{

		"dependencies":	{},

		"devDependencies":	{},

		"ambientDependencies":	{

				"angular":	

"github:DefinitelyTyped/DefinitelyTyped/angularjs/angular.d.ts#1c4a34873c9e

70cce86edd0e61c559e43dfa5f75"

		}

}

Now	in	order	to	use	AngularJS	1.x	with	TypeScript	create	app.ts	and	enter	the	following
content:

https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/typings/typings

///	<reference	path="./typings/browser.d.ts"/>

var	module	=	angular.module("module",	[]);

module.controller("MainCtrl",

		function	MainCtrl($scope:	angular.IScope)	{

				

		});

To	compile	app.ts	use:

tsc	app.ts

The	TypeScript	compile	will	output	the	compiled	content	into	app.js.	In	order	to	add
extra	automation	and	invoke	the	TypeScript	compiler	each	time	you	change	any	of	the
files	in	your	project,	you	can	use	a	task	runner	like	gulp	or	grunt,	or	pass	the	-w	option	to
tsc.

Note
Since	using	the	reference	element	for	including	type	definitions	is	considered	bad	practice
we	can	use	a	tsconfig.json	file	instead.	There	we	can	configure	which	directories	need
to	be	included	in	the	compilation	process	by	tsc.	For	more	information	visit
https://github.com/Microsoft/TypeScript/wiki/tsconfig.json.

https://github.com/Microsoft/TypeScript/wiki/tsconfig.json

Custom	ambient	type	definitions
To	understand	how	everything	works	together,	let’s	take	a	look	at	an	example.	Suppose	we
have	the	following	interface	of	a	JavaScript	library:

var	DOM	=	{

		//	Returns	a	set	of	elements	which	match	the	passed	selector

		selectElements:	function	(selector)	{

				//	…

		},

		hide:	function	(element)	{

				//	…

		},

		show:	function	(element)	{

				//	…

		}

};

We	have	an	object	literal	assigned	to	a	variable	called	DOM.	The	object	has	the	following
methods:

selectElements:	Accepts	a	single	argument	with	type	string	and	returns	a	set	of
DOM	elements.
hide:	Accepts	a	DOM	node	as	an	argument	and	returns	nothing.
show:	Accepts	a	DOM	node	as	an	argument	and	returns	nothing.

In	TypeScript,	the	preceding	definition	would	look	as	follows:

var	DOM	=	{

		//	Returns	a	set	of	elements	which	match	the	passed	selector

		selectElements:	function	(selector:	string):	HTMLElement[]	{

				return	[];

		},

		hide:	function	(element:	HTMLElement):	void	{

				element.hidden	=	true;

		},

		show:	function	(element:	HTMLElement):	void	{

				element.hidden	=	false;

		}

};

This	means	that	we	can	define	our	library’s	interface	as	follows:

interface	LibraryInterface	{

		selectElements(selector:	string):	HTMLElement[]

		hide(element:	HTMLElement):	void

		show(element:	HTMLElement):	void

}

Defining	ts.d	files
After	we	have	the	interface	of	our	library,	it	will	be	easy	to	create	the	ambient	type
definition;	we	just	have	to	create	a	file	with	an	extension	ts.d	called	dom	and	enter	the
following	content:

//	inside	"dom.d.ts"

interface	DOMLibraryInterface	{

		selectElements(selector:	string):	HTMLElement[]

		hide(element:	HTMLElement):	void

		show(element:	HTMLElement):	void

}

declare	var	DOM:	DOMLibraryInterface;

In	the	preceding	snippet,	we	defined	the	interface	called	DOMLibraryInterface	and
declared	the	variable	DOM	of	the	type	DOMLibraryInterface.

The	only	thing	left	before	being	able	to	exploit	static	typing	with	our	JavaScript	library	is
including	the	external	type	definition	in	the	script	files	we	want	to	use	our	library	in.	We
can	do	it	as	follows:

///	<reference	path="dom.d.ts"/>

The	preceding	snippet	hints	the	compiler	on	where	to	find	the	ambient	type	definitions.

Summary
In	this	chapter,	we	peeked	at	the	TypeScript	language	that	is	used	for	the	implementation
of	Angular	2.	Although	we	can	develop	our	Angular	2	applications	using	ECMAScript	5,
Google’s	recommendation	is	to	use	TypeScript	in	order	to	take	advantage	of	the	static
typing	it	provides.

While	exploring	the	language,	we	looked	at	some	of	the	core	features	of	ES2015	and
ES2016.	We	explained	the	ES2015	and	ES2016	classes,	arrow	functions,	block	scope
variable	definitions,	destructuring,	and	modules.	Since	Angular	2	takes	advantage	of	the
ES2016	decorators	and	more	accurately	their	extension	in	TypeScript,	a	section	was
dedicated	to	them.

After	this,	we	took	a	look	at	how	we	can	take	advantage	of	static	typing	by	using	explicit
type	definitions.	We	described	some	of	the	built-in	types	in	TypeScript	and	how	we	can
define	classes	in	the	language	by	specifying	access	modifiers	for	their	members.	Our	next
stop	was	the	interfaces.	We	ended	our	adventures	in	TypeScript	by	explaining	the	type
parameters	and	the	ambient	type	definitions.

In	the	next	chapter,	we	are	going	to	start	exploring	Angular	2	in	depth	by	using	the
framework’s	components	and	directives.

Chapter	4.	Getting	Started	with	Angular	2
Components	and	Directives
By	this	point,	you’re	already	familiar	with	the	core	building	blocks	that	Angular	2
provides	for	the	development	of	single-page	applications	and	the	relations	between	them.
However,	we’ve	touched	only	the	surface	by	introducing	the	general	idea	behind
Angular’s	concepts	and	the	basic	syntax	used	for	their	definition.	In	this	chapter,	we’ll
take	a	deep	dive	into	Angular	2’s	components	and	directives.

In	the	following	sections,	we	will	cover	these	topics:

Enforced	separation	of	concerns	of	the	building	blocks	that	Angular	2	provides	for
developing	applications.
The	appropriate	use	of	directives	or	components	when	interacting	with	the	DOM.
Built-in	directives	and	developing	custom	ones.
An	in-depth	look	at	components	and	their	templates.
Content	projection.
View	children	versus	content	children.
The	component’s	life	cycle.
Using	template	references.
Configuring	Angular’s	change	detection.

The	Hello	world!	application	in	Angular	2
Now,	let’s	build	our	first	“Hello	world!”	app	in	Angular	2!	In	order	to	get	everything	up
and	running	as	easy	and	quickly	as	possible,	for	our	first	application,	we	will	use	the
ECMAScript	5	syntax	with	the	transpiled	bundle	of	Angular	2.	First,	create	the
index.html	file	with	the	following	content:

<!--	ch4/es5/hello-world/index.html	-->

<!DOCTYPE	html>

<html	lang="en">

<head>

		<meta	charset="UTF-8">

		<title></title>

</head>

<body>

		<script	src="https://code.angularjs.org/2.0.0-beta.9/angular2-

polyfills.min.js"></script>

		<script	src="https://code.angularjs.org/2.0.0-beta.9/Rx.umd.min.js">

</script>

		<script	src="https://code.angularjs.org/2.0.0-beta.9/angular2-

all.umd.min.js"></script>

		<script	src="./app.js"></script>

</body>

</html>

The	preceding	HTML	file	defines	the	basic	structure	of	our	page.	Just	before	closing	the
body	tag,	we	have	references	to	four	script	files:	the	polyfills	required	by	the	framework
(including	ES2015	shim,	zone.js,	and	others),	RxJS,	the	ES5	bundle	of	Angular	2,	and	the
file	that	contains	the	application	we’re	going	to	build.

Note
RxJS	is	used	by	Angular’s	core	in	order	to	allow	us	to	empower	the	reactive	programming
paradigm	in	our	applications.	In	the	following	content,	we	will	take	only	a	shallow	look	at
how	we	can	take	advantage	of	observables.	For	further	information,	you	can	visit	the	RxJS
GitHub	repository	at	https://github.com/Reactive-Extensions/RxJS.

In	the	same	directory	where	your	index.html	resides,	create	a	file	called	app.js	and	enter
the	following	content	inside	it:

//	ch4/es5/hello-world/app.js

var	App	=	ng.core.Component({

		selector:	'app',

		template:	'<h1>Hello	{{target}}!</h1>'

})

.Class({

		constructor:	function	()	{

				this.target	=	'world';

		}

});

https://github.com/Reactive-Extensions/RxJS

ng.platform.browser.bootstrap(App);

In	the	preceding	snippet,	we	define	a	component	called	App	with	an	app	selector.	This
selector	will	match	all	the	app	elements	inside	our	templates	that	are	in	the	scope	of	the
application.	The	component	has	the	following	template:

'<h1>Hello	{{target}}!</h1>'

This	syntax	should	already	be	familiar	to	you	from	AngularJS	1.x.	When	compiled	in	the
context	of	the	given	component,	the	preceding	snippet	will	interpolate	the	template	with
the	result	of	the	expression	inside	the	curly	brackets.	In	our	case,	the	expression	is	simply
the	target	variable.

To	Class,	we	pass	an	object	literal,	which	has	a	single	method	called	constructor.	This
DSL	provides	an	alternative	way	to	define	classes	in	ECMAScript	5.	In	the	body	of	the
constructor	function,	we	add	a	property	called	target	with	a	value	of	the	"world"
string.	In	the	last	line	of	the	snippet,	we	invoke	the	bootstrap	method	in	order	to	initialize
our	application	with	App	as	a	root	component.

Note	that	bootstrap	is	located	under	ng.platform.browser.	This	is	due	to	the	fact	that
the	framework	is	built	for	different	platforms	in	mind,	such	as	a	browser,	NativeScript,
and	so	on.	By	placing	the	bootstrap	methods	used	by	the	different	platforms	under	a
separate	namespace,	Angular	2	can	implement	different	logic	to	initialize	the	application
and	also	include	different	sets	of	providers	and	directives	that	are	platform	specific.

Now,	if	you	open	index.html	with	your	browser,	you	should	see	some	errors,	as	shown	in
the	following	screenshot:

This	happened	because	we	missed	something	quite	important.	We	didn’t	use	the	root
component	anywhere	inside	index.html.	In	order	to	finish	the	application,	add	the
following	HTML	element	after	the	open	tag	of	the	body	element:

<app></app>

Now,	you	can	refresh	your	browser	to	see	the	following	result:

Note
Using	TypeScript

Although	we	already	have	an	Angular	2	application	running,	we	can	do	much	better!	We
didn’t	use	any	package	manager	or	module	loader.	We	spent	all	of	Chapter	3,	TypeScript
Crash	Course,	talking	about	TypeScript;	however,	we	didn’t	write	a	single	line	of	it	in	the
preceding	application.	Although	it	is	not	required	that	you	use	TypeScript	with	Angular	2,
it’s	much	convenient	to	take	advantage	of	all	the	bonuses	that	static	typing	provides.

Setting	up	our	environment
The	core	team	of	Angular	developed	a	brand	new	CLI	tool	for	Angular	2,	which	allows	us
to	bootstrap	our	applications	with	a	few	commands.	Although	we	are	going	to	introduce
it	in	the	last	chapter,	by	then,	in	order	to	boost	our	learning	experience,	we	are	going	to
use	the	code	located	at	https://github.com/mgechev/switching-to-angular2.	It	includes	all
the	examples	in	this	book	and	allows	us	to	quickly	bootstrap	our	Angular	2	application
(you	can	know	more	on	how	to	quickly	start	developing	web	applications	with	Angular	2
in	Chapter	5,	Dependency	Injection	in	Angular	2.).	It	has	all	the	required	dependencies
declared	in	package.json,	the	definition	of	basic	gulp	tasks,	such	as	the	development
server,	the	transpilation	of	your	TypeScript	code	to	ECMAScript	5,	live-reload,	and	so	on.
Our	upcoming	examples	are	going	to	be	based	on	it.

In	order	to	set	up	the	switching-to-angular2	project,	you’ll	need	Git,	Node.js	v5.x.x,
and	npm	up	and	running	on	your	computer.	If	you	have	a	different	version	of	the	Node.js
installed,	I	recommend	that	you	take	a	look	at	nvm	(the	Node.js	version	manager,	which	is
available	at	https://www.npmjs.com/package/nvm)	or	n
(https://www.npmjs.com/package/n).	Using	these	tools,	you’ll	be	able	to	have	multiple
versions	of	Node.js	on	your	machine	and	switch	between	them	with	a	single	command	via
the	command	line.

https://github.com/mgechev/switching-to-angular2
https://www.npmjs.com/package/nvm
https://www.npmjs.com/package/n

Installing	our	project	repository
Let’s	start	by	setting	up	the	switching-to-angular2	project.	Open	your	terminal	and
enter	the	following	commands:

#	Will	clone	the	repository	and	save	it	to	directory	called

#	switching-to-angular2

git	clone	https://github.com/mgechev/switching-to-angular2.git

cd	switching-to-angular2

npm	install

The	first	line	will	clone	the	switching-to-angular2	project	into	a	directory	called
switching-to-angular2.

The	last	step	before	being	able	to	run	the	seed	project	is	to	install	all	the	required
dependencies	using	npm.	This	step	may	take	a	while	depending	on	your	Internet
connection,	so	be	patient	and	do	not	interrupt	it.	If	you	encounter	any	problems,	do	not
hesitate	to	raise	the	issues	at	https://github.com/mgechev/switching-to-angular2/issues.

The	last	step	left	is	to	start	the	development	server:

npm	start	

When	the	process	of	the	transpilation	is	completed,	your	browser	will	automatically	open
with	this	URL:	http://localhost:5555/dist/dev.	You	should	now	see	a	view	similar	to
what	is	shown	in	the	following	screenshot:

https://github.com/mgechev/switching-to-angular2/issues

Playing	with	Angular	2	and	TypeScript
Now,	let’s	play	around	with	the	files	we	already	have!	Navigate	to	the	app/ch4/ts/hello-
world	directory	inside	switching-to-angular2.	Then,	open	app.ts	and	replace	its
content	with	the	following	snippet:

//	ch4/ts/hello-world/app.ts

import	{Component}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

@Component({

		selector:	'app',

		templateUrl:	'./app.html'

})

class	App	{

		target:	string;

		constructor()	{

				this.target	=	'world';

	 }

}

bootstrap(App);

Let’s	take	a	look	at	the	code	line	by	line:

import	{Component}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

Initially,	we	import	the	@Component	decorator	from	the	angular2/core	module	and	the
bootstrap	function	from	angular2/platform/browser.	Later,	we	use	@Component	to
decorate	the	App	class.	To	the	@Component	decorator,	we	pass	almost	the	same	object
literal	that	we	used	in	the	ECMAScript	5	version	of	the	application,	and	this	way,	we
define	the	CSS	selector	for	the	component.

As	a	next	step,	we	define	the	view	of	the	component.	However,	note	that	in	this	case,	we
use	templateUrl	instead	of	simply	inlining	the	component’s	template.

Open	app.html	and	replace	the	file’s	content	with	<h1>Hello	{{target}}!</h1>.	The
content	of	app.html	should	be	the	same	as	the	inlined	template	we	used	previously.	Since
we	can	use	a	template	by	both	inlining	it	(with	template)	and	setting	its	URL
(templateUrl),	the	component’s	API	is	quite	similar	to	the	AngularJS	1.x	directives	API.

In	the	last	line	of	the	snippet,	we	bootstrap	the	application	by	providing	the	root
component.

Digging	into	the	index
Now,	let’s	take	a	look	at	index.html	in	order	to	get	a	sense	of	what	goes	on	when	we	start
the	application:

<!--	ch4/ts/hello-world/index.html	-->

<!DOCTYPE	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

		<title><%=	TITLE	%></title>

		<meta	name="description"	content="">

		<meta	name="viewport"	content="width=device-width,	initial-scale=1">

		<!--	inject:css	-->

		<!--	endinject	-->

</head>

<body>

		<app>Loading…</app>

		<!--	inject:js	-->

		<!--	endinject	-->

		<%=	INIT	%>

</body>

</html>

Note	that	inside	the	body	of	the	page,	we	use	the	app	element	with	the	content	of	the	text
node,	"Loading…",	inside.	The	"Loading…"	label	will	be	visible	until	the	application	gets
bootstrapped	and	the	main	component	gets	rendered.

Note
There	are	template	placeholders	<%=	INIT	%>	and	<--	inject:js…	that	inject	content
that	is	specific	to	individual	demos.	They	are	not	Angular	specific	but	instead	aim	to
prevent	code	duplications	in	the	code	samples	attached	to	the	book	because	of	the	shared
structure	between	them.	In	order	to	see	how	this	specific	HTML	file	has	been	transformed,
open	/dist/dev/ch4/ts/hello-world/index.html.

Using	Angular	2	directives
We	already	built	our	simple	“Hello	world!”	app.	Now,	let’s	start	building	something	that	is
closer	to	a	real-life	application.	By	the	end	of	this	section,	we’ll	have	a	simple	application
that	lists	a	number	of	items	we	need	to	do	and	greets	us	at	the	header	of	the	page.

Let’s	start	by	developing	our	app	component.	The	two	modifications	from	the	previous
example	that	we	need	to	make	are	to	rename	the	target	property	to	name	and	add	a	list	of
todos	to	the	component’s	controller	definition:

//	ch4/ts/ng-for/detailed-syntax/app.ts

import	{Component}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

@Component({

		selector:	'app',

		templateUrl:	'./app.html',

})

class	App	{

		todos:	string[];

		name:	string;

		constructor()	{

				this.name	=	'John';

				this.todos	=	['Buy	milk',	'Save	the	world'];

		}

}

bootstrap(App);

The	only	thing	left	is	to	change	the	template	in	order	to	consume	the	provided	data.	We’re
already	familiar	with	the	ng-repeat	directive	from	AngularJS	1.x.	It	allows	us	to	loop	a
list	of	items	using	a	microsyntax,	which	is	later	interpreted	by	AngularJS	1.x.	However,
the	directive	doesn’t	carry	enough	semantics,	so	it	is	hard	to	build	tools	that	perform	static
code	analysis	and	help	us	improve	our	development	experience.	Since	the	ng-repeat
directive	is	quite	useful,	Angular	2	took	the	idea	and	improved	it	further	in	order	to	allow
more	sophisticated	tooling	by	introducing	further	semantics	on	top	of	it.	It	allows	better
static	code	analysis	to	be	performed	by	IDEs	and	text	editors.	Such	support	will	prevent	us
from	making	typos	in	the	code	we	write	and	allow	us	to	have	smoother	development
experience.

In	app.html,	add	the	following	content:

<!--	ch4/ts/ng-for/detailed-syntax/app.html	-->

<h1>Hello	{{name}}!</h1>

<p>

		Here's	a	list	of	the	things	you	need	to	do:

</p>

		<template	ngFor	var-todo	[ngForOf]="todos">

				{{todo}}

		</template>

Note
The	template	element	is	a	place	where	we	can	hold	markup	and	make	sure	that	it	won’t
be	rendered	by	the	browser.	This	is	quite	useful	if	we	need	to	embed	the	templates	of	our
application	directly	into	the	markup	of	the	page	and	let	the	template	engine	we’re	using	to
process	them	later.	In	the	current	example,	this	means	that	if	the	Angular	2	DOM	compiler
doesn’t	process	the	DOM	tree,	all	we’re	going	to	see	on	the	screen	are	the	h1,	p	elements
and	the	ul	element	without	any	list	items.

Now,	after	you	refresh	your	browser,	you	should	see	the	following	result:

So	far,	so	good!	The	only	new	things	left	in	the	preceding	snippets	are	the	attributes	of	the
template	element	that	we’re	not	familiar	with,	such	as	ngFor,	var-todo,	and	[ngForOf].
Let’s	take	a	look	at	them.

The	ngFor	directive
The	ngFor	directive	is	a	directive	that	allows	us	to	loop	over	a	collection	of	items	and	does
exactly	what	ng-repeat	does	in	AngularJS	1.x,	but	it	brings	some	extra	semantics.	Note
that	the	ngForOf	attribute	is	surrounded	by	brackets.	At	first,	these	brackets	might	seem
like	invalid	HTML.	However,	according	to	the	HTML	specification,	their	use	is	permitted
in	attribute	names.	The	only	thing	the	W3C	validator	is	going	to	complain	about	is	the	fact
that	the	template	element	doesn’t	own	such	attributes;	however,	browsers	won’t	have
problems	processing	the	markup.

The	semantics	behind	these	brackets	is	that	the	value	of	the	attribute	surrounded	by	them
is	an	expression,	which	needs	to	be	evaluated.

Improved	semantics	of	the	directives
syntax
In	Chapter	1,	Getting	Started	with	Angular	2,	we	mentioned	the	opportunity	for	improved
tooling	in	Angular	2.	A	big	issue	in	AngularJS	1.x	is	the	different	ways	in	which	we	can
use	directives.	This	requires	an	understanding	of	the	attribute	values,	which	can	be	literals,
expressions,	callbacks,	or	a	microsyntax.	Angular	2	eliminates	this	problem	by
introducing	a	few	simple	conventions	that	are	built	into	the	framework:

propertyName="value"

[propertyName]="expression"

(eventName)="handler()"

In	the	first	line,	the	propertyName	attribute	accepts	a	string	literal	as	a	value.	Angular	will
not	process	the	attribute’s	value	any	further;	it	will	use	it	the	way	it	is	set	in	the	template.

The	second	syntax,	[propertyName]="expression",	gives	a	hint	to	Angular	2	that	the
value	of	the	attributes	should	be	handled	as	an	expression.	When	Angular	2	finds	an
attribute	surrounded	by	brackets,	it	will	interpret	the	expression	in	the	context	of	the
component	associated	to	the	template.	In	short,	if	we	want	to	set	a	non-string	value	or
result	of	an	expression	as	value	of	given	property	we	need	to	use	this	syntax.

The	last	example	shows	how	we	can	bind	to	events.	The	semantics	behind
(eventName)="handler()"	is	that	we	want	to	handle	all	events	called	eventName	that	are
triggered	by	the	given	component	with	the	handler()	expression.

We’re	going	to	discuss	more	examples	later	in	this	chapter.

Note
Angular	provides	alternative	canonical	syntax,	which	allows	us	to	define	the	bindings	of
the	elements	without	using	brackets.	For	instance,	the	property	binding	can	be	expressed
using	the	following	code:

<input	[value]="foo">

It	can	also	be	expressed	using	this:

<input	bind-value="foo">

Similarly,	we	can	express	the	event	bindings	with	the	following	code:

<button	(click)="handle()">Click	me</button>

They	can	also	be	expressed	using	this:

<button	on-click="handle()">Click	me</button>

Declaring	variables	inside	a	template
The	last	thing	left	from	the	preceding	template	is	the	var-todo	attribute.	What	we	are
telling	Angular	using	this	syntax	is	that	we	want	to	declare	a	new	variable	called	todo	and
bind	it	to	the	individual	items	from	the	collection	we	get	from	the	evaluation	of	the
expression	set	as	a	value	of	[ngForOf].

Using	syntax	sugar	in	templates
Although	the	template	syntax	is	awesome	and	provides	much	more	meaning	of	the	code	to
the	IDEs	or	text	editors	we	use,	it	is	quite	verbose.	Angular	2	provides	an	alternative
syntax,	which	will	be	desugared	to	the	one	shown	in	the	preceding.	Instead	of	using	var-
todo,	for	example,	we	can	use	#todo,	which	has	the	same	semantics.

There	are	a	few	Angular	2	directives	that	require	the	usage	of	a	template	element,	for
example,	ngForOf,	ngIf,	and	ngSwitch.	Since	such	directives	are	used	often,	there’s	an
alternative	syntax	for	them.	Instead	of	typing	down	the	entire	template	element	explicitly,
we	can	simply	prefix	the	directive	with	*.	This	will	allow	us	to	turn	our	ngForOf	directive
syntax	usage	into	the	following:

<!--	ch4/ts/ng-for/syntax-sugar/app.html	-->

		<li	*ngFor="#todo	of	todos">{{todo}}

Later,	this	template	will	be	desugared	by	Angular	2	to	the	more	verbose	syntax	described
earlier.	Since	the	less	verbose	syntax	is	easier	to	read	and	write,	its	use	is	considered	as
best	practice.

Note
The	*	character	allows	you	to	remove	the	template	element	and	put	the	directive	directly
on	the	root	of	the	template	element	(in	the	preceding	example,	the	list	item,	li).

Defining	Angular	2	directives
Now	that	we’ve	built	a	simple	Angular	2	component,	let’s	continue	our	journey	by
understanding	the	Angular	2	directives.

Using	Angular	2	directives,	we	can	apply	different	behavioral	or	structural	changes	over
the	DOM.	In	this	example,	we’re	going	to	build	a	simple	tooltip	directive.

In	contrast	to	components,	directives	do	not	have	views	and	templates,	respectively.
Another	core	difference	between	these	two	concepts	is	that	the	given	HTML	element	may
have	only	a	single	component	but	multiple	directives	on	it.	In	other	words,	directives
augment	the	elements	compared	to	components	that	are	the	actual	elements	in	our	views.

Angular’s	core	team’s	recommendation	is	to	use	directives	as	attributes,	prefixed	with	a
namespace.	Keeping	this	in	mind,	we	will	use	the	tooltip	directive	in	the	following	way:

<div	saTooltip="Hello	world!"></div>

In	the	preceding	snippet,	we	use	the	tooltip	directive	over	the	div	element.	As	a
namespace,	its	selector	uses	the	sa	string.

Note
For	simplicity,	in	the	rest	of	the	book	we	may	not	prefix	all	the	selectors	of	our
components	and	directives.	However,	for	production	applications	following	best	practices
is	essential.	You	can	find	an	Angular	2	style	guide	which	points	out	such	practices	at
https://github.com/mgechev/angular2-style-guide.

Before	implementing	our	tooltip,	we	need	to	import	a	couple	of	things	from
angular2/core.	Open	a	new	TypeScript	file	called	app.ts	and	enter	the	following
content;	we’ll	fill	the	placeholders	later:

import	{Directive,	ElementRef,	HostListener…}	from	'angular2/core';

In	the	preceding	line,	we	import	the	following	definitions:

ElementRef:	This	allows	us	to	inject	the	element	reference	(we’re	not	limited	to	the
DOM	only)	to	the	host	element.	In	the	sample	usage	of	the	preceding	tooltip,	we	get
an	Angular	wrapper	of	the	div	element,	which	holds	the	tooltip	attribute.
Directive:	This	decorator	allows	us	to	add	the	metadata	required	for	the	new
directives	we	define.
HostListener(eventname):	This	is	a	method	decorator	that	accepts	an	event	name	as
an	argument.	During	initialization	of	the	directive,	Angular	2	will	add	the	decorated
method	as	an	event	handler	for	the	eventname	event	of	the	host	element.

Let’s	look	at	our	implementation;	this	is	what	the	directive’s	definition	looks	like:

//	ch4/ts/tooltip/app.ts

@Directive({

		selector:	'[saTooltip]'

})

https://github.com/mgechev/angular2-style-guide

export	class	Tooltip	{

		@Input()

		saTooltip:	string;

		constructor(private	el:	ElementRef,	private	overlay:	Overlay)	{

				this.overlay.attach(el.nativeElement);

		}

		@HostListener('mouseenter')

		onMouseEnter()	{

				this.overlay.open(this.el,	this.saTooltip);

		}

		@HostListener('mouseleave')

		onMouseLeave()	{

				this.overlay.close();

		}

}

Setting	the	directive’s	inputs
In	the	preceding	example,	we	declare	a	directive	with	the	saTooltip	selector.	Note	that
Angular’s	HTML	compiler	is	case	sensitive,	which	means	that	it	will	distinguish	the
[satooltip]	and	[saTooltip]	selectors.	Later,	we	will	declare	the	input	of	the	directive
using	the	@Input	decorator	over	the	saTooltip	property.	The	semantics	behind	this	code
is:	declare	a	property	called	saTooltip	and	bind	it	to	the	value	of	the	result	that	we	got
from	the	evaluation	of	the	expression	passed	to	the	saTooltip	attribute.

The	@Input	decorator	accepts	a	single	argument—the	name	of	the	attribute	we	want	to
bind	to.	In	case	we	don’t	pass	an	argument,	Angular	will	create	a	binding	between	the
attribute	with	the	same	name	as	the	property	itself.	We	will	explain	the	concept	of	input
and	output	in	detail	later	in	this	chapter.

Understanding	the	directive’s	constructor
The	constructor	declares	two	private	properties:	el	of	the	ElementRef	type	and	overlay	of
the	Overlay	type.	The	Overlay	class	implements	logic	to	manage	the	tooltips’	overlays
and	is	going	to	be	injected	using	the	DI	mechanism	of	Angular.	In	order	to	declare	it	as
available	for	injection,	we	need	to	declare	the	top-level	component	in	the	following	way:

@Component({

		selector:	'app',

		templateUrl:	'./app.html',

		providers:	[Overlay],

		//	...

})

class	App	{}

Note
We’re	going	to	take	a	look	at	the	dependency	injection	mechanism	of	Angular	2	in	the
next	chapter,	where	we	will	explain	the	way	in	which	we	can	declare	the	dependencies	of
our	services,	directives,	and	components.

The	implementation	of	the	Overlay	class	is	not	important	for	the	purpose	of	this	chapter.
However,	if	you’re	interested	in	it,	you	can	find	the	implementation	in:
ch4/ts/tooltip/app.ts.

Better	encapsulation	of	directives
In	order	to	make	the	tooltip	directive	available	to	the	Angular’s	compiler,	we	need	to
explicitly	declare	where	we	intend	to	use	it.	For	instance,	take	a	look	at	the	App	class	at
ch4/ts/tooltip/app.ts;	there,	you	can	notice	the	following:

@Component({

		selector:	'app',

		templateUrl:	'./app.html',

		providers:	[Overlay],

		directives:	[Tooltip]

})

class	App	{}

To	the	@Component	decorator,	we	pass	an	object	literal	that	has	the	directives	property.
This	property	contains	a	list	of	all	the	directives	that	should	be	available	in	the	entire
component	subtree	with	the	root	of	the	given	component.

At	first,	it	might	seem	annoying	that	you	should	explicitly	declare	all	the	directives	that
your	component	uses;	however,	this	enforces	better	encapsulation.	In	AngularJS	1.x,	all
directives	are	in	a	global	namespace.	This	means	that	all	the	directives	defined	in	the
application	are	accessible	in	all	the	templates.	This	brings	in	some	problems,	for	example,
name	collision.	In	order	to	deal	with	this	issue,	we’ve	introduced	naming	conventions,	for
instance,	the	“ng-”	prefix	of	all	the	directives	defined	by	AngularJS	1.x	and	“ui-”	for	all
directives	coming	with	the	Angular	UI.

This	way,	by	explicitly	declaring	all	the	directives,	the	given	component	uses	in	Angular
2,	we	create	a	namespace	specific	to	the	individual	components’	subtrees	(that	is,	the
directives	will	be	visible	to	the	given	root	component	and	all	of	its	successor	components).
Preventing	name	collisions	is	not	the	only	benefit	we	get;	it	also	helps	us	with	better
semantics	of	the	code	that	we	produce,	since	we’re	always	aware	of	the	directives
accessible	by	the	given	component.	We	can	find	all	the	accessible	directives	of	the	given
component	by	following	the	path	from	the	component	to	the	top	of	the	component	tree	and
taking	the	union	of	all	the	values	of	directives	arrays	set	in	the	@Component	decorators.
Given	that	components	are	extended	from	directives,	we	need	to	explicitly	declare	all	the
used	components	as	well.

Since	Angular	2	defines	a	set	of	built-in	directives,	the	bootstrap	method	passes	them	in
a	similar	way	in	order	to	make	them	available	in	the	entire	application	in	order	to	prevent
us	from	code	duplications.	This	list	of	predefined	directives	includes	NgClass,	NgFor,
NgIf,	NgStyle,	NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault.	Their	names	are	quite
self-explanatory;	we’ll	take	a	look	at	how	we	can	use	some	of	them	later	in	this	chapter.

Using	Angular	2’s	built-in	directives
Now,	let’s	build	a	simple	to-do	application	in	order	to	demonstrate	the	syntax	to	define
components	further!

Our	to-do	items	will	have	the	following	format:

interface	Todo	{

		completed:	boolean;

		label:	string;

}

Let’s	start	by	importing	everything	we	are	going	to	need:

import	{Component,	ViewEncapsulation}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

Now,	let’s	declare	the	component	and	the	metadata	associated	with	it:

@Component({

		selector:	'todo-app',

		templateUrl:	'./app.html',

		styles:	[

				`ul	li	{

						list-style:	none;

				}

				.completed	{

						text-decoration:	line-through;

				}`

],

		encapsulation:	ViewEncapsulation.Emulated

})

Here,	we	specify	that	the	selector	of	the	Todo	component	will	be	the	todo-app	element.
Later,	we	add	the	template	URL,	which	points	to	the	app.html	file.	After	that,	we	use	the
styles	property;	this	is	the	first	time	we	encounter	it.	As	we	can	guess	from	its	name,	it	is
used	to	set	the	styles	of	the	component.

Introducing	the	component’s	view
encapsulation
As	we	know,	Angular	2	is	inspired	from	Web	Components,	whose	core	feature	is	the
shadow	DOM.	The	shadow	DOM	allows	us	to	encapsulate	the	styles	of	our	Web
Components	without	allowing	them	to	leak	outside	the	component’s	scope.	Angular	2
provides	this	feature.	If	we	want	Angular’s	renderer	to	use	the	shadow	DOM,	we	can	use
ViewEncapsulation.Native.	However,	the	shadow	DOM	is	not	supported	by	all
browsers;	if	we	want	to	have	the	same	level	of	encapsulation	without	using	the	shadow
DOM,	we	can	use	ViewEncapsulation.Emulated.	If	we	don’t	want	to	have	any
encapsulation	at	all,	we	can	use	ViewEncapsulation.None.	By	default,	the	renderer	uses
encapsulation	of	the	type	Emulated.

Implementing	the	component’s	controllers
Now,	let’s	continue	with	the	implementation	of	the	application:

//	ch4/ts/todo-app/app.ts

class	TodoCtrl	{

		todos:	Todo[]	=	[{

				label:	'Buy	milk',

				completed:	false

		},	{

				label:	'Save	the	world',

				completed:	false

		}];

		name:	string	=	'John';

		addTodo(label)	{	…	}

		removeTodo(idx)	{	…	}

		toggleCompletion(idx)	{	…	}

}

Here	is	part	of	the	implementation	of	the	controller	associated	with	the	template	of	the
Todo	application.

Inside	the	class	declaration,	we	initialized	the	todos	property	to	an	array	with	two	todo
items:

{

		label:	'Buy	milk',

		completed:	false

},	{

		label:	'Save	the	world',

		completed:	false

}

Now,	let’s	update	the	template	and	render	these	items!	Here’s	how	this	is	done:

		<li	*ngFor="#todo	of	todos;	var	index	=	index"	

[class.completed]="todo.completed">

				<input	type="checkbox"	[checked]="todo.completed"

						(change)="toggleCompletion(index)">

				{{todo.label}}

		

In	the	preceding	template,	we	looped	all	the	todo	items	inside	the	todos	property	of	the
controller.	For	each	todo	item,	we	created	a	checkbox	that	can	toggle	the	item’s
completion	status;	we	also	rendered	the	todo	item’s	label	with	the	interpolation	directive.
Here,	we	can	notice	the	syntax	that	was	explained	earlier:

We	bind	to	the	change	event	of	the	checkbox	using	(change)="statement".
We	bind	to	the	property	of	the	todo	item	using	[checked]="expr".

In	order	to	have	a	line	across	the	completed	todo	items,	we	bind	to	the	class.completed
property	of	the	element.	Since	we	want	to	apply	the	completed	class	to	all	the	completed

to-do	items,	we	use	[class.completed]="todo.completed".	This	way,	we	declare	that
we	want	to	apply	the	completed	class	depending	on	the	value	of	the	todo.completed
expression.	Here	is	how	our	application	looks	now:

Note
Similar	to	the	class	binding	syntax,	Angular	allows	us	to	bind	to	the	element’s	styles	and
attributes.	For	instance,	we	can	bind	to	the	td	element’s	colspan	attribute	using	the
following	line	of	code:

<td	[attr.colspan]="colspanCount"></td>

In	the	same	way,	we	can	bind	to	any	style	property	using	this	line	of	code:

<div	[style.backgroundImage]="expression"></td>

Handling	user	actions
So	far,	so	good!	Now,	let’s	implement	the	toggleCompletion	method.	This	method
accepts	the	index	of	the	to-do	item	as	a	single	argument:

		toggleCompletion(idx)	{

				let	todo	=	this.todos[idx];

				todo.completed	=	!todo.completed;

		}

In	toggleCompletion,	we	simply	toggle	the	completed	Boolean	value	associated	with	the
current	to-do	item,	which	is	specified	by	the	index	passed	as	an	argument	to	the	method.

Now,	let’s	add	a	text	input	to	add	the	new	to-do	items:

<p>

		Add	a	new	todo:

		<input	#newtodo	type="text">

		<button	(click)="addTodo(newtodo.value);	newtodo.value	=	''">

				Add

		</button>

</p>

The	input	here	defines	a	new	identifier	called	newtodo.	We	can	reference	the	input	using
the	newtodo	identifier	inside	the	template.	Once	the	user	clicks	on	the	button,	the	addTodo
method	defined	in	the	controller	will	be	invoked	with	the	value	of	the	newtodo	input	as	an
argument.	Inside	the	statement	that	is	passed	to	the	(click)	attribute,	we	also	reset	the
value	of	the	newtodo	input	by	setting	it	to	the	empty	string.

Note
Note	that	directly	manipulating	DOM	elements	is	not	considered	as	best	practice	since	it
will	prevent	our	component	from	running	properly	outside	the	browser	environment.	We
will	explain	how	we	can	migrate	this	application	to	Web	Workers	in	Chapter	8,
Development	Experience	and	Server-Side	Rendering.

Now,	let’s	define	the	addTodo	method:

		addTodo(label)	{

				this.todos.push({

						label,

						completed:	false

				});

		}

Inside	it,	we	create	a	new	to-do	item	using	the	object	literal	syntax.

The	only	thing	left	out	of	our	application	is	to	implement	removal	of	existing	to-do	items.
Since	it	is	quite	similar	to	the	functionality	used	to	toggle	the	completion	of	the	to-do
items,	I’ll	leave	its	implementation	as	a	simple	exercise	for	the	reader.

Using	a	directives’	inputs	and	outputs
By	refactoring	our	todo	application,	we	are	going	to	demonstrate	how	we	can	take
advantage	of	the	directives’	inputs	and	outputs:

We	can	think	of	the	inputs	as	properties	(or	even	arguments)	that	the	given	directive
accepts.	The	outputs	could	be	considered	as	events	that	it	triggers.	When	we	use	a
directive	provided	by	a	third-party	library,	mostly	we	care	about	is	its	inputs	and	outputs
because	they	define	its	API.

Inputs	refers	to	values	that	parameterize	the	directive’s	behavior	and/or	view.	On	the	other
hand,	outputs	refers	to	events	that	the	directive	fires	when	something	special	happens.

Finding	out	directives’	inputs	and	outputs
Now,	let’s	divide	our	monolithic	to-do	application	into	separate	components	that
communicate	with	each	other.	In	the	following	screenshot,	you	can	see	the	individual
components	that	when	composed	together	implement	the	functionality	of	the	application:

The	outer	rectangle	represents	the	entire	Todo	application.	The	first	nested	rectangle
contains	the	component	that	is	responsible	for	entering	labels	of	the	new	to-do	items,	and
the	one	below	it	lists	the	individual	items	that	are	stored	in	the	root	component.

Having	said	this,	we	can	define	these	three	components	as	follows:

TodoApp:	Responsible	for	maintaining	the	list	of	to-do	items	(adding	new	items	and
toggling	the	completion	status).
InputBox:	Responsible	for	entering	the	label	of	the	new	to-do	item.	It	has	the
following	inputs	and	outputs:

Input:	A	placeholder	for	the	textbox	and	a	label	for	the	submit	button.
Output:	It	should	emit	the	content	of	the	input	once	the	submit	button	is	clicked.

TodoList:	This	is	responsible	for	rendering	the	individual	to-do	items.	It	has	the
following	inputs	and	outputs:

Input:	The	list	of	to-do	items.
Output:	Once	the	completion	status	of	any	of	the	to-do	items	changes,	the
component	should	emit	the	change.

Now,	let’s	begin	with	the	implementation!

Defining	the	component’s	inputs	and	outputs
Let’s	use	a	bottom-up	approach	and	start	with	the	InputBox	component.	Before	that,	we
need	a	couple	of	imports	from	Angular’s	angular2/core	package:

import	{

		Component,

		Input,

		Output,

		EventEmitter

}	from	'angular2/core';

In	the	preceding	code,	we	imported	the	@Component,	@Input,	and	@Output	decorators	and
the	EventEmitter	class.	As	their	names	state,	@Input	and	@Output	are	used	for	declaring
the	directive’s	inputs	and	outputs.	EventEmitter	is	a	generic	class	(that	is,	accepting	type
parameter)	which	combined	with	the	@Output	decorator	helps	us	emit	outputs.

As	the	next	step,	let’s	take	a	look	at	the	InputBox	component’s	declaration:

//	ch4/ts/inputs-outputs/app.ts

@Component({

		selector:	'text-input',

		template:	`

				<input	#todoInput	[placeholder]="inputPlaceholder">

				<button	(click)="emitText(todoInput.value);

																					todoInput.value	=	'';">

						{{buttonLabel}}

				</button>

		`

})

class	InputBox	{...}

Note	that	in	the	template,	we	declare	a	text	input	called	todoInput	and	set	its	placeholder
property	to	the	value	that	we	got	from	the	evaluation	of	the	inputPlaceholder	expression.
The	value	of	the	expression	is	the	value	of	the	inputPlaceholder	property	defined	in	the
component’s	controller.	This	is	the	first	input	that	we	need	to	define:

class	InputBox	{

		@Input()	inputPlaceholder:	string;

		...

}

Similarly,	we	declare	the	other	input	of	the	buttonLabel	component,	which	we	use	as	a
value	of	the	label	of	the	button:

class	InputBox	{

		@Input()	inputPlaceholder:	string;

		@Input()	buttonLabel:	string;

		...

}

In	the	preceding	template,	we	bind	the	click	event	of	the	button	to	this	expression:
emitText(todoInput.value);	todoInput.value	=	'';.	The	emitText	method	is

supposed	to	be	defined	in	the	component’s	controller;	once	it	is	invoked,	it	should	emit	the
value	of	the	text	input.	Here	is	how	we	can	implement	this	behavior:

class	InputBox	{

		...

		@Output()	inputText	=	new	EventEmitter<string>();

		emitText(text:	string)	{

				this.inputText.emit(text);

		}

}

Initially,	we	declare	an	output	called	inputText.	As	its	value,	we	set	a	new	instance	of	the
type	EventEmitter<string>	that	we	create.

Note
Note	that	all	the	outputs	of	all	the	components	need	to	be	instances	of	EventEmitter.

Inside	the	emitText	method,	we	invoke	the	emit	method	of	the	inputText	instance	with
the	argument	of	the	value	of	the	text	input.

Now,	let’s	define	the	TodoList	component	in	the	same	fashion:

@Component(...)

class	TodoList	{

		@Input()	todos:	Todo[];

		@Output()	toggle	=	new	EventEmitter<Todo>();

		toggleCompletion(index:	number)	{

				let	todo	=	this.todos[index];

				this.toggle.emit(todo);

		}

}

Since	the	value	of	the	object	literal	passed	to	the	@Component	decorator	is	not	essential	for
the	purpose	of	this	section,	we’ve	omitted	it.	The	complete	implementation	of	this
example	could	be	found	at	ch4/ts/inputs-outputs/app.ts.	Let’s	take	a	look	at	the	body
of	the	TodoList	class.	Similarly,	for	the	InputBox	component,	we	define	the	todos	input.
We	also	define	the	toggle	output	by	declaring	the	toggle	property,	setting	its	value	to	a
new	instance	of	the	type	EventEmitter<Todo>	and	decorating	it	with	the	@Output
decorator.

Passing	inputs	and	consuming	the	outputs
Now,	let’s	combine	the	components	we	defined	in	the	preceding	section	and	implement
our	complete	application!

The	last	component	we	need	to	take	a	look	at	is	TodoApp:

@Component({

		selector:	'todo-app',

		directives:	[TodoList,	InputBox],

		template:	`

				<h1>Hello	{{name}}!</h1>

				<p>

						Add	a	new	todo:

						<input-box	inputPlaceholder="New	todo…"

								buttonLabel="Add"

								(inputText)="addTodo($event)">

						</input-box>

				</p>

				<p>Here's	the	list	of	pending	todo	items:</p>

				<todo-list	[todos]="todos"	(toggle)="toggleCompletion($event)"></todo-

list>

		`

})

class	TodoApp	{...}

Initially,	we	define	the	TodoApp	class	and	decorate	it	with	the	@Component	decorator.	Note
that	in	the	list	of	the	directives	used	by	the	component,	we	include	InputBox	and
TodoList.	The	magic	of	how	these	components	collaborate	together	happens	in	the
template:

<input-box	inputPlaceholder="New	todo…"

		buttonLabel="Add"

		(inputText)="addTodo($event)">

</input-box>

First,	we	use	the	InputBox	component	and	pass	values	to	the	inputs:	inputPlaceholder
and	buttonLabel.	Note	that	just	like	we	saw	earlier,	if	we	want	to	pass	an	expression	as	a
value	to	any	of	these	inputs,	we	need	to	surround	them	with	brackets	(that	is,
[inputPlaceholder]="expression").	In	this	case,	the	expression	will	be	evaluated	in	the
context	of	the	component	that	owns	the	template,	and	it	will	be	passed	as	an	input	to	the
component	that	owns	the	given	property.

Right	after	we	pass	the	value	for	the	buttonLabel	input,	we	consume	the	inputText
output	by	setting	the	value	of	the	(inputText)	attribute	to	the	addTodo($event)
expression.	The	value	of	$event	will	equal	the	value	we	passed	to	the	emit	method	of	the
inputText	object	inside	the	emitText	method	of	InputBox	(in	case	we	bind	to	a	native
event,	the	value	of	the	event	object	will	be	the	native	event	object	itself).

In	the	same	way,	we	pass	the	input	of	the	TodoList	component	and	handle	its	toggle
output.	Now,	let’s	define	the	logic	behind	the	TodoApp	component:

class	TodoApp	{

		todos:	Todo[]	=	[];

		name:	string	=	'John';

		addTodo(label:	string)	{

				this.todos.push({

						label,

						completed:	false

				});

		}

		toggleCompletion(todo:	Todo)	{

				todo.completed	=	!todo.completed;

		}

}

In	the	addTodo	method,	we	simply	push	a	new	to-do	item	to	the	todos	array.	The
implementation	of	toggleCompletion	is	even	simpler—we	toggle	the	value	of	the
completed	flag	that	is	passed	as	an	argument	to	the	to-do	item.	Now,	we	are	familiar	with
the	basics	of	the	components’	inputs	and	outputs!

Event	bubbling
In	Angular,	we	have	the	same	bubbling	behavior	we	have	in	the	DOM.	For	instance,	if	we
have	the	following	template:

<input-box	inputPlaceholder="New	todo…"

		buttonLabel="Add"

		(click)="handleClick($event)"

		(inputText)="addTodo($event)">

</input-box>

The	declaration	of	input-box	looks	like	this:

<input	#todoInput	[placeholder]="inputPlaceholder">

<button	(click)="emitText(todoInput.value);

																	todoInput.value	=	'';">

		{{buttonLabel}}

</button>

Once	the	user	clicks	on	the	button	defined	within	the	template	of	the	input-box
component,	the	handleClick($event)	expression	will	be	evaluated.

Further,	the	target	property	of	the	first	argument	of	handleClick	will	be	the	button	itself,
but	the	currentTarget	property	will	be	the	input-box	element.

Note
Note	that	unlike	native	events,	ones	triggered	by	EventEmitter	will	not	bubble.

Renaming	the	inputs	and	outputs	of	a	directive
Now,	we	will	explore	how	we	can	rename	the	directives’	inputs	and	outputs!	Let’s	suppose
that	we	have	the	following	definition	of	the	TodoList	component:

class	TodoList	{

		...

		@Output()	toggle	=	new	EventEmitter<Todo>();

		toggle(index:	number)	{

				...

		}

}

The	output	of	the	component	is	called	toggle;	the	method	that	handles	changes	in	the
checkboxes	responsible	for	toggling	completion	of	the	individual	to-do	items	is	called
toggle	as	well.	This	code	will	not	be	compiled	as	in	the	TodoList	controller,	we	have	two
identifiers	named	in	the	same	way.	We	have	two	options	here:	we	can	either	rename	the
method	or	the	property.	If	we	rename	the	property,	this	will	change	the	name	of	the
component’s	output	as	well.	So,	the	following	line	of	code	will	no	longer	work:

<todo-list	[toggle]="foobar($event)"...></todo-list>

What	we	can	do	instead	is	rename	the	toggle	property	and	explicitly	set	the	name	of	the
output	using	the	@Output	decorator:

class	TodoList	{

		...

		@Output('toggle')	toggleEvent	=	new	EventEmitter<Todo>();

		toggle(index:	number)	{

				...

		}

}

This	way,	we	will	be	able	to	trigger	the	toggle	output	using	the	toggleEvent	property.

Note
Note	that	such	renames	could	be	confusing	and	are	not	considered	as	best	practices.	For	a
complete	set	of	best	practices	visit	https://github.com/mgechev/angular2-style-guide.

Similarly,	we	can	rename	component’s	inputs	using	the	following	code	snippet:

class	TodoList	{

		@Input('todos')	todoList:	Todo[];

		@Output('toggle')	toggleEvent	=	new	EventEmitter<Todo>();

		toggle(index:	number)	{

				...

		}

}

Now,	no	matter	that	we	renamed	the	input	and	output	properties	of	TodoList,	it	still	has
the	same	public	interface:

<todo-list	[todos]="todos"

		(toggle)="toggleCompletion($event)">

https://github.com/mgechev/angular2-style-guide

</todo-list>

An	alternative	syntax	to	define	inputs	and	outputs
The	@Input	and	@Output	decorators	are	syntax	sugar	for	easier	declaration	of	the
directive’s	inputs	and	outputs.	The	original	syntax	for	this	purpose	is	as	follows:

@Directive({

		outputs:	['outputName:	outputAlias'],

		inputs:	['inputName:	inputAlias']

})

class	Dir	{

		outputName	=	new	EventEmitter();

}

Using	@Input	and	@Output,	the	preceding	syntax	is	equivalent	to	this:

@Directive(...)

class	Dir	{

		@Output('outputAlias')	outputName	=	new	EventEmitter();

		@Input('inputAlias')	inputName;

}

Although	both	have	the	same	semantics,	according	to	the	best	practices,	we	should	use	the
latter	one	because	it	is	easier	to	read	and	understand.

Explaining	Angular	2’s	content	projection
Content	projection	is	an	important	concept	when	developing	user	interfaces.	It	allows	us
to	project	pieces	of	content	into	different	places	of	the	user	interface	of	our	application.
Web	Components	solve	this	problem	with	the	content	element.	In	AngularJS	1.x,	it	is
implemented	with	the	infamous	transclusion.

Angular	2	is	inspired	by	modern	web	standards,	especially	Web	Components,	which	led	to
the	adoption	of	some	of	the	methods	of	content	projection	used	there.	In	this	section,	we’ll
look	at	them	in	the	context	of	Angular	2	using	the	ng-content	directive.

Basic	content	projection	in	Angular	2
Let’s	suppose	we’re	building	a	component	called	fancy-button.	This	component	will	use
the	standard	HTML	button	element	and	add	some	extra	behavior	to	it.	Here	is	the
definition	of	the	fancy-button	component:

@Component({

		selector:	'fancy-button',

		template:	'<button>Click	me</button>'

})

class	FancyButton	{	…	}

Inside	of	the	@Component	decorator,	we	set	the	inline	template	of	the	component	together
with	its	selector.	Now,	we	can	use	the	component	with	the	following	markup:

<fancy-button></fancy-button>

On	the	screen,	we	are	going	to	see	a	standard	HTML	button	that	has	a	label	with	the
content	Click	me.	This	is	not	a	very	flexible	way	to	define	reusable	UI	components.	Most
likely,	the	users	of	the	fancy	button	will	need	to	change	the	content	of	the	label	to
something,	depending	on	their	application.

In	AngularJS	1.x,	we	were	able	to	achieve	this	result	with	ng-transclude:

//	AngularJS	1.x	example

app.directive('fancyButton',	function	()	{

		return	{

				restrict:	'E',

				transclude:	true,

				template:	'<button><ng-transclude></ng-transclude></button>'

		};

});

In	Angular	2,	we	have	the	ng-content	element:

//	ch4/ts/ng-content/app.ts

@Component({

		selector:	'fancy-button',

		template:	'<button><ng-content></ng-content></button>'

})

class	FancyButton	{	/*	Extra	behavior	*/	}

Now,	we	can	pass	custom	content	to	the	fancy	button	by	executing	this:

<fancy-button>Click	<i>me</i>	now!</fancy-button>

As	a	result,	the	content	between	the	opening	and	the	closing	fancy-button	tags	will	be
placed	where	the	ng-content	directive	resides.

Projecting	multiple	content	chunks
Another	typical	use	case	of	content	projection	is	when	we	pass	content	to	a	custom
Angular	2	component	or	AngularJS	1.x	directive	and	we	want	different	parts	of	this
content	to	be	projected	to	different	locations	in	the	template.

For	instance,	let’s	suppose	we	have	a	panel	component	that	has	a	title	and	a	body:

<panel>

		<panel-title>Sample	title</panel-title>

		<panel-content>Content</panel-content>

</panel>

And	we	have	the	following	template	of	our	component:

<div	class="panel">

		<div	class="panel-title">

				<!--	Project	the	content	of	panel-title	here	-->

		</div>

		<div	class="panel-content">

				<!--	Project	the	content	of	panel-content	here	-->

		</div>

</div>`

In	AngularJS	1.5,	we	are	able	to	do	this	using	multi-slot	transclusion,	which	was
implemented	in	order	to	allow	us	to	have	a	smoother	transition	to	Angular	2.	Let’s	take	a
look	at	how	we	can	proceed	in	Angular	2	in	order	to	define	such	a	panel	component:

//	ch4/ts/ng-content/app.ts

@Component({

		selector:	'panel',

		styles:	[…],

		template:	`

				<div	class="panel">

						<div	class="panel-title">

								<ng-content	select="panel-title"></ng-content>

						</div>

						<div	class="panel-content">

								<ng-content	select="panel-content"></ng-content>

						</div>

				</div>`

})

class	Panel	{	}

We	have	already	described	the	selector	and	styles	properties,	so	let’s	take	a	look	at	the
component’s	template.	We	have	a	div	element	with	the	panel	class,	which	wraps	the	two
nested	div	elements,	respectively:	one	for	the	title	of	panel	and	one	for	the	content	of
panel.	In	order	to	grab	the	content	from	the	panel-title	element	and	project	it	where	the
title	of	the	panel	is	supposed	to	be	in	the	rendered	panel,	we	need	to	use	the	ng-content
element	with	the	selector	attribute,	which	has	the	panel-title	value.	The	value	of	the
selector	attribute	is	a	CSS	selector,	which	in	this	case	is	going	to	match	all	the	panel-
title	elements	that	reside	inside	the	target	panel	element.	After	this,	ng-content	will
grab	their	content	and	set	them	as	its	own	content.

Nesting	components
We’ve	already	built	a	few	simple	applications	as	a	composition	of	components	and
directives.	We	saw	that	components	are	basically	directives	with	views,	so	we	can
implement	them	by	nesting/composing	other	directives	and	components.	The	following
figure	illustrates	this	with	a	structural	diagram:

The	composition	could	be	achieved	by	nesting	directives	and	components	within	the
components’	templates,	taking	advantage	of	the	nested	nature	of	the	used	markup.	For
instance,	let’s	say	we	have	a	component	with	the	sample-component	selector,	which	has
the	following	definition:

@Component({

		selector:	'sample-component',

		template:	'<view-child></view-child>'

})

class	Sample	{}

The	template	of	the	sample-component	selector	has	a	single	child	element	with	the	tag
name	view-child.

On	the	other	hand,	we	can	use	the	sample-component	selector	inside	the	template	of
another	component,	and	since	it	can	be	used	as	an	element,	we	can	nest	other	components
or	directives	inside	it:

<sample-component>

		<content-child1></content-child1>

		<content-child2></content-child2>

</sample-component>

This	way,	the	sample-component	component	has	two	different	types	of	successors:

The	successor	defined	within	its	template.
The	successor	that	is	passed	as	nested	elements	between	its	opening	and	closing	tags.

In	the	context	of	Angular	2,	the	direct	children	elements	defined	within	the	component’s
template	are	called	view	children	and	the	ones	nested	between	its	opening	and	closing
tags	are	called	content	children.

Using	ViewChildren	and	ContentChildren
Let’s	take	a	look	at	the	implementation	of	the	Tabs	component,	which	uses	the	following
structure:

				<tabs	(changed)="tabChanged($event)">

						<tab-title>Tab	1</tab-title>

						<tab-content>Content	1</tab-content>

						<tab-title>Tab	2</tab-title>

						<tab-content>Content	2</tab-content>

				</tabs>

The	preceding	structure	is	composed	of	three	components:

The	Tab	component.
The	TabTitle	component.
The	TabContent	component.

Let’s	look	at	the	implementation	of	the	TabTitle	component:

@Component({

		selector:	'tab-title',

		styles:	[…],

		template:	`

				<div	class="tab-title"	(click)="handleClick()">

						<ng-content></ng-content>

				</div>

		`

})

class	TabTitle	{

		tabSelected:	EventEmitter<TabTitle>	=

				new	EventEmitter<TabTitle>();

		handleClick()	{

				this.tabSelected.emit(this);

		}

}

There’s	nothing	new	in	this	implementation.	We	define	a	TabTitle	component,	which	has
a	single	property	called	tabSelected.	It	is	of	the	type	EventEmitter	and	will	be	triggered
once	the	user	clicks	on	the	tab	title.

Now,	let’s	take	a	look	at	the	TabContent	component:

@Component({

		selector:	'tab-content',

		styles:	[…],

		template:	`

				<div	class="tab-content"	[hidden]="!isActive">

						<ng-content></ng-content>

				</div>

		`

})

class	TabContent	{

		isActive:	boolean	=	false;

}

This	has	an	even	simpler	implementation—all	we	do	is	project	the	DOM	passed	to	the
tab-content	element	inside	ng-content	and	hide	it	once	the	value	of	the	isActive
property	becomes	false.

The	interesting	part	of	the	implementation	is	the	Tabs	component	itself:

//	ch4/ts/basic-tab-content-children/app.ts

@Component({

		selector:	'tabs',

		styles:	[…],

		template:	`

				<div	class="tab">

						<div	class="tab-nav">

								<ng-content	select="tab-title"></ng-content>

						</div>

						<ng-content	select="tab-content"></ng-content>

				</div>

		`

})

class	Tabs	{

		@Output('changed')

		tabChanged:	EventEmitter<number>	=	new	EventEmitter<number>();

		@ContentChildren(TabTitle)

		tabTitles:	QueryList<TabTitle>;

		@ContentChildren(TabContent)

		tabContents:	QueryList<TabContent>;

		active:	number;

		select(index:	number)	{…}

		ngAfterViewInit()	{…}

}

In	this	implementation,	we	have	a	decorator	that	we	haven’t	used	yet—the
@ContentChildren	decorator.	The	@ContentChildren	property	decorator	fetches	the
content	children	of	the	given	component.	This	means	that	we	can	get	references	to	all
TabTitle	and	TabContent	instances	from	within	the	instance	of	the	Tabs	component	and
get	them	in	the	order	in	which	they	are	declared	in	the	markup.	There’s	an	alternative
decorator	called	@ViewChildren,	which	fetches	all	the	view	children	of	the	given	element.
Let’s	take	a	look	at	the	difference	between	them	before	we	explain	the	implementation
further.

ViewChild	versus	ContentChild
Although	both	concepts	sound	similar,	they	have	quite	different	semantics.	In	order	to
understand	them	better,	let’s	take	a	look	at	the	following	example:

//	ch4/ts/view-child-content-child/app.ts

@Component({

		selector:	'user-badge',

		template:	'…'

})

class	UserBadge	{}

@Component({

		selector:	'user-rating',

		template:	'…'

})

class	UserRating	{}

Here,	we’ve	defined	two	components:	UserBadge	and	UserRating.	Let’s	define	a	parent
component,	which	comprises	both	the	components:

@Component({

		selector:	'user-panel',

		template:	'<user-badge></user-badge>',

		directives:	[UserBadge]

})

class	UserPanel	{…}

Note	that	the	template	of	the	view	of	UserPanel	contains	only	the	UserBadge	component’s
selector.	Now,	let’s	use	the	UserPanel	component	in	our	application:

@Component({

		selector:	'app',

		template:	`<user-panel>

				<user-rating></user-rating>

		</user-panel>`,

		directives:	[CORE_DIRECTIVES,	UserPanel,	UserRating]

})

class	App	{

		constructor()	{}

}

The	template	of	our	main	App	component	uses	the	UserPanel	component	and	nests	the
UserRating	component	inside	it.	Now,	let’s	suppose	we	want	to	get	a	reference	to	the
instance	of	the	UserRating	component	that	is	used	inside	the	user-panel	element	in	the
App	component	and	a	reference	to	the	UserBadge	component,	which	is	used	inside	the
UserPanel	template.	In	order	to	do	this,	we	can	add	two	more	properties	to	the	UserPanel
controller	and	add	the	@ContentChild	and	@ViewChild	decorators	to	them	with	the
appropriate	arguments:

class	UserPanel	{

		@ViewChild(UserBadge)

		badge:	UserBadge;

		@ContentChild(UserRating)

		rating:	UserRating;

		constructor()	{

				//

		}

}

The	semantics	of	the	badge	property	declaration	is	this:	“get	the	instance	of	the	first	child
component	of	the	type	UserBadge,	which	is	used	inside	the	UserPanel	template”.
Accordingly,	the	semantics	of	the	rating	property’s	declaration	is	this:	“get	the	instance
of	the	first	child	component	of	the	type	UserRating,	which	is	nested	inside	the	UserPanel
host	element”.

Now,	if	you	run	this	code,	you’ll	note	that	the	values	of	the	badge	and	rating	properties
are	still	equal	to	the	undefined	value	inside	the	controller’s	constructor.	This	is	because
they	are	still	not	initialized	in	this	phase	of	the	component’s	life	cycle.	The	life	cycle
hooks	that	we	can	use	in	order	to	get	a	reference	to	these	child	components	are
ngAfterViewInit	and	ngAfterContentInit.	We	can	use	these	hooks	simply	by	adding
definitions	of	the	ngAfterViewInit	and	ngAfterContentInit	methods	to	the	component’s
controller.	We	will	make	a	complete	overview	of	the	life	cycle	hooks	that	Angular	2
provides	shortly.

To	recap,	we	can	say	that	the	content	children	of	the	given	components	are	the	child
elements	that	are	nested	within	the	component’s	host	element.	In	contrast,	the	view
children	directives	of	the	given	component	are	the	elements	used	within	its	template.

Note
In	order	to	get	platform	independent	reference	to	a	DOM	element,	again,	we	can	use
@ContentChildren	and	@ViewChildren.	For	instance,	if	we	have	the	following	template:
<input	#todo>	we	can	get	a	reference	to	the	input	by	using:	@ViewChild('todo').

Since	we	are	already	familiar	with	the	core	differences	between	view	children	and	content
children	now,	we	can	continue	with	our	tabs	implementation.

In	the	tabs	component,	instead	of	using	the	@ContentChild	decorator,	we	use
@ContentChildren.	We	do	this	because	we	have	multiple	content	children	and	we	want	to
get	them	all:

@ContentChildren(TabTitle)

tabTitles:	QueryList<TabTitle>;

@ContentChildren(TabContent)

tabContents:	QueryList<TabContent>;

Another	main	difference	we	can	notice	is	that	the	types	of	the	tabTitles	and
tabContents	properties	are	QueryList	with	the	respective	type	parameter	and	not	the
component’s	type	itself.	We	can	think	of	the	QueryList	data	structure	as	a	JavaScript
array—we	can	apply	the	same	high-order	functions	(map,	filter,	reduce,	and	so	on)	over
it	and	loop	over	its	elements;	however,	QueryList	is	also	observable,	that	is,	we	can
observe	it	for	changes.

As	the	final	step	of	our	Tabs	definition,	let’s	take	a	peek	at	the	implementation	of	the
ngAfterContentInit	and	select	methods:

ngAfterContentInit()	{

		this.tabTitles

				.map(t	=>	t.tabSelected)

				.forEach((t,	i)	=>	{

						t.subscribe(_	=>	{

								this.select(i)

						});

				});

		this.active	=	0;

		this.select(0);

}

In	the	first	line	of	the	method’s	implementation,	we	loop	all	tabTitles	and	take	the
observable’s	references.	These	objects	have	a	method	called	subscribe,	which	accepts	a
callback	as	an	argument.	Once	the	.emit()	method	of	the	EventEmitter	instance	(that	is,
the	tabSelected	property	of	any	tab)	is	called,	the	callback	passed	to	the	subscribe
method	will	be	invoked.

Now,	let’s	take	a	look	at	the	select	method’s	implementation:

select(index:	number)	{

		let	contents:	TabContent[]	=	this.tabContents.toArray();

		contents[this.active].isActive	=	false;

		this.active	=	index;

		contents[this.active].isActive	=	true;

		this.tabChanged.emit(index);

}

In	the	first	line,	we	get	an	array	representation	of	tabContents,	which	is	of	the	type
QueryList<TabContent>.	After	that,	we	set	the	isActive	flag	of	the	current	active	tab	to
false	and	select	the	next	active	one.	In	the	last	line	in	the	select	method’s
implementation,	we	trigger	the	selected	event	of	the	Tabs	component	by	invoking
this.tabChanged.emit	with	the	index	of	the	currently	selected	tab.

Hooking	into	the	component’s	life	cycle
Components	in	Angular	2	have	a	well-defined	life	cycle,	which	allows	us	to	hook	into
different	phases	of	it	and	have	further	control	over	our	application.	We	can	do	this	by
implementing	specific	methods	in	the	component’s	controller.	In	order	to	be	more	explicit,
thanks	to	the	expressiveness	of	TypeScript,	we	can	implement	different	interfaces
associated	with	the	life	cycle’s	phases.	Each	of	these	interfaces	has	a	single	method,	which
is	associated	with	the	phase	itself.

Although	code	written	with	explicit	interface	implementation	will	have	better	semantics,
since	Angular	2	supports	ES5	as	well	within	the	component,	we	can	simply	define
methods	with	the	same	names	as	the	life	cycle	hooks	(but	this	time,	prefixed	with	ng)	and
take	advantage	of	duck	typing.

The	following	diagram	shows	all	the	phases	we	can	hook	into:

Let’s	take	a	look	at	the	different	life	cycle	hooks:

OnChanges:	This	hook	will	be	invoked	once	a	change	in	the	input	properties	of	a
given	component	has	been	detected.	For	instance,	let’s	take	a	look	at	the	following
component:

@Component({

		selector:	'panel',

		inputs:	['title']

})

class	Panel	{…}

We	can	use	it	like	this:

<panel	[title]="expression"></panel>

Once	the	value	of	the	expression	associated	with	the	[title]	attribute	has	been
changed,	the	ngOnChanges	hook	will	be	invoked.	We	can	implement	it	using	this	code
snippet:

@Component(…)

class	Panel	{

		ngOnChanges(changes)	{

				Object.keys(changes).forEach(prop	=>	{

						console.log(prop,	'changed.	Previous	value',	

changes[prop].previousValue);

				});

		}

}

The	preceding	snippet	will	display	all	the	changed	bindings	and	their	old	values.	In
order	to	be	more	explicit	in	the	implementation	of	the	hook,	we	can	use	interfaces:

import	{Component,	OnChanges}	from	'angular2/core';

@Component(…)

class	Panel	implements	OnChanges	{

		ngOnChanges(changes)	{…}

}

All	the	interfaces	representing	the	individual	life	cycle	hooks	define	a	single	method
with	the	name	of	the	interface	itself	prefixed	with	ng.	In	the	upcoming	list,	we’ll	use
the	term	life	cycle	hook,	both	for	interface	and/or	the	method,	except	if	we	won’t
imply	anything	specifically	for	only	one	of	them.

OnInit:	This	hook	will	be	invoked	once	the	given	component	has	been	initialized.
We	can	implement	it	using	the	OnInit	interface	with	its	ngOnInit	method.
DoCheck:	This	will	be	invoked	when	the	change	detector	of	the	given	component	is
invoked.	It	allows	us	to	implement	our	own	change	detection	algorithm	for	the	given
component.	Note	that	DoCheck	and	OnChanges	should	not	be	implemented	together
on	the	same	directive.
OnDestroy:	If	we	implement	the	OnDestroy	interface	with	its	single	ngOnDestroy
method,	we	can	hook	into	the	destroy	life	cycle	phase	of	a	component.	This	method
will	be	invoked	once	the	component	is	detached	from	the	component	tree.

Now,	let’s	take	a	look	at	the	life	cycle	hooks	associated	with	the	component’s	content	and
view	children:

AfterContentInit:	If	we	implement	the	ngAfterContentInit	life	cycle	hook,	we
will	be	notified	when	the	component’s	content	has	been	fully	initialized.	This	is	the
phase	when	the	properties	decorated	with	ContentChild	or	ContentChildren	will	be
initialized.
AfterContentChecked:	By	implementing	this	hook,	we’ll	get	notified	each	time	the
content	of	the	given	component	has	been	checked	by	the	change	detection
mechanism	of	Angular	2.
AfterViewInit:	If	we	implement	the	ngAfterViewInit	life	cycle	hook,	we	will	be
notified	when	the	component’s	view	has	been	fully	initialized.	This	is	the	phase	when
the	properties	decorated	with	ViewChild	or	ViewChildren	will	be	initialized.
AfterViewChecked:	This	is	similar	to	AfterContentChecked.	The	AfterViewChecked
hook	will	be	invoked	once	the	view	of	your	component	has	been	checked.

The	order	of	execution
In	order	to	trace	the	order	of	execution	of	the	callbacks	associated	with	each	hook,	let’s
take	a	peek	at	the	ch4/ts/life-cycle/app.ts	example:

@Component({

		selector:	'panel',

		inputs:	['title',	'caption'],

		template:	'<ng-content></ng-content>'

})

class	Panel	{

		ngOnChanges(changes)	{…}

		ngOnInit()	{…}

		ngDoCheck()	{…}

		ngOnDestroy()	{…}

		ngAfterContentInit()	{…}

		ngAfterContentChecked()	{…}

		ngAfterViewInit()	{…}

		ngAfterViewChecked()	{…}

}

The	Panel	component	implements	all	the	hooks	without	explicitly	implementing	the
interfaces	associated	with	them.

We	can	use	the	component	in	the	following	template:

<button	(click)="toggle()">Toggle</button>

<div	*ngIf="counter	%	2	==	0">

		<panel	caption="Sample	caption"	title="Sample">Hello	world!</panel>

</div>

In	the	preceding	example,	we	have	a	panel	and	a	button.	Upon	each	click	on	the	button,
the	panel	will	be	either	removed	or	appended	to	the	view	by	the	ngIf	directive.

During	the	application	initialization,	if	the	result	of	the	"counter	%	2	==	0"	expression	is
evaluated	to	true,	the	ngOnChanges	method	will	be	invoked.	This	happens	because	the
values	of	the	title	and	caption	properties	are	going	to	be	set	for	the	first	time.

Right	after	this,	the	ngOnInit	method	will	be	called,	since	the	component	has	been
initialized.	Once	the	component’s	initialization	is	completed,	the	change	detection	will	be
triggered,	which	will	lead	to	the	invocation	of	the	ngDoCheck	method	that	allows	us	to
hook	custom	logic	for	detecting	changes	in	the	state.

Note
Note	that	you	are	not	supposed	to	implement	both	ngDoCheck	and	ngOnChanges	methods
for	the	same	component,	since	they	are	mutually	exclusive.	The	example	here	does	this	for
learning	purposes	only.

After	the	ngDoCheck	method,	the	component’s	content	will	be	followed	by	performing	a
check	on	it	(ngAfterContentInit	and	ngAfterContentChecked	will	be	invoked	in	this
order).	Right	after	this,	the	same	will	happen	for	the	component’s	view	(ngAfterViewInit
followed	by	ngAfterViewChecked).

Once	the	expression	of	the	ngIf	directive	is	evaluated	to	false,	the	entire	component	will
be	detached	from	the	view,	which	will	lead	to	the	invocation	of	the	ngOnDestroy	hook.

On	the	next	button	click,	if	the	value	of	the	expression	of	ngIf	is	equal	to	true,	the	same
sequence	of	calls	of	the	life	cycle	hooks	as	the	one	during	the	initialization	phase	will	be
executed.

Defining	generic	views	with	TemplateRef
We	are	already	familiar	with	the	concepts	of	inputs,	content,	and	view	children,	and	we
also	know	when	we	can	get	a	reference	to	them	in	the	component’s	life	cycle.	Now,	we
will	combine	them	and	introduce	a	new	concept:	TemplateRef.

Let’s	take	a	step	back	and	take	a	look	at	the	last	to-do	application	we	developed	earlier	in
this	chapter.	In	the	following	screenshot,	you	can	see	what	its	UI	looks	like:

If	we	take	a	look	at	its	implementation	in	ch4/ts/inputs-outputs/app.ts,	we’ll	see	that
the	template	used	to	render	the	individual	to-do	items	is	defined	inside	the	template	of	the
entire	to-do	application.

What	if	we	want	to	use	a	different	layout	to	render	the	to-do	items?	We	can	do	this	by
creating	another	component	called	Todo,	which	encapsulates	the	responsibility	of
rendering	them.	Then,	we	can	define	separate	Todo	components	for	the	different	layouts
we	want	to	support.	This	way,	we	need	to	have	n	different	components	for	n	different
layouts,	even	though	we	use	only	their	templates.

Angular	2	comes	with	a	more	elegant	solution.	Earlier	in	this	chapter,	we	already
discussed	the	template	element.	We	said	that	it	allows	us	to	define	a	chunk	of	HTML	that
will	not	be	processed	by	the	browser.	Angular	2	allows	us	to	reference	such	template
elements	and	use	them	by	passing	them	as	content	children!

Here	is	how	we	can	pass	the	custom	layout	to	our	refactored	todo-app	component:

//	ch4/ts/template-ref/app.ts

<todo-app>

		<template	var-todo>

				<input	type="checkbox"	[checked]="todo.completed"

						(change)="todo.completed	=	!todo.completed;">

				

						{{todo.label}}

				

		</template>

</todo-app>

In	the	template,	we	declare	a	variable	called	todo.	Later	in	the	template,	we	can	use	it	to
specify	the	way	in	which	we	want	to	visualize	the	content.

Now,	let’s	see	how	we	can	get	a	reference	to	this	template	in	the	controller	of	the	TodoApp
component:

//	ch4/ts/template-ref/app.ts

class	TodoApp	{

		@ContentChild(TemplateRef)

		private	itemsTemplate:	TemplateRef;

		//	…

}

All	we	do	here	is	define	a	property	called	itemsTemplate	and	decorate	it	with	the
@ContentChild	decorator.	During	the	component’s	life	cycle	(more	accurately,	in
ngAfterContentInit),	the	value	of	itemsTemplate	will	be	set	as	a	reference	of	the
template	that	we	passed	as	the	content	of	the	todo-app	element.

There	is	one	more	problem	though—we	need	the	template	in	the	TodoList	component,
since	that’s	the	place	where	we	render	the	individual	to-do	items.	What	we	can	do	is
define	another	input	of	the	TodoList	component	and	pass	the	template	directly	from
TodoApp:

//	ch4/ts/template-ref/app.ts

class	TodoList	{

		@Input()	todos:	Todo[];

		@Input()	itemsTemplate:	TemplateRef;

		@Output()	toggle	=	new	EventEmitter<Todo>();

}

We	need	to	pass	it	as	an	input	from	the	template	of	TodoApp:

...

<todo-list	[todos]="todos"

		[itemsTemplate]="itemsTemplate">

</todo-list>

The	only	thing	left	is	to	use	this	template	reference	in	the	template	of	the	TodoList
application:

<!--	…	-->

<template	*ngFor="var	todo	of	todos;	template:	itemsTemplate"></template>

We	explained	the	extended	syntax	of	the	ngForOf	directive	in	the	previous	sections	of	this
chapter.	This	snippet	shows	one	more	property	of	this	directive	that	we	can	set:	the
ngForTemplate	property.	By	default,	the	template	of	the	ngForOf	directive	is	the	element
it	is	used	on.	By	specifying	a	template	reference	to	the	ngForTemplate	property,	we	can
use	the	passed	TemplateRef	instead.

Understanding	and	enhancing	the	change
detection
We	already	briefly	described	the	change	detection	mechanism	of	the	framework.	We	said
that	compared	to	AngularJS	1.x,	where	it	runs	in	the	context	of	the	scope,	in	Angular	2,	it
runs	in	the	context	of	the	individual	components.	Another	concept	we	mentioned	is	the
zones,	which	basically	intercept	all	the	asynchronous	calls	that	we	can	make	using	the
browser	APIs	and	provide	execution	context	for	the	change	detection	mechanism	of	the
framework.	Zones	fix	the	annoying	problem	we	have	in	AngularJS	1.x,	where	when	we
use	APIs	outside	of	Angular,	we	need	to	explicitly	invoke	the	digest	loop.

In	Chapters	1,	Getting	Started	with	Angular	2	and	Chapter	2,	The	Building	Blocks	of	an
Angular	2	Application,	we	discussed	that	there	are	two	main	implementations	of	the
change	detector:	DynamicChangeDetector	and	JitChangeDetector.	The	first	one	works
great	for	environments	with	strict	CSP	(Content-Security-Policy)	because	of	the	disabled
dynamic	evaluation	of	JavaScript.	The	second	one	takes	great	benefits	from	the	inline-
caching	mechanism	of	the	JavaScript	virtual	machine	and	therefore	brings	great
performance!

In	this	section,	we’ll	explore	another	property	of	the	@Component	decorator’s	configuration
object,	which	provides	us	further	control	over	the	change	detection	mechanism	of	the
framework	by	changing	its	strategy.	By	explicitly	setting	the	strategy,	we	are	able	to
prevent	the	change	detection	mechanism	from	running	over	a	component’s	subtrees,
which	in	some	cases	can	bring	great	performance	benefits.

The	order	of	execution	of	the	change	detectors
Now,	let’s	briefly	describe	the	order	in	which	the	change	detectors	are	invoked	in	a	given
component	tree.

For	this	purpose,	we	will	use	the	last	implementation	of	the	to-do	application	we	have,	but
this	time,	we’ll	extract	the	logic	to	render	the	individual	to-do	items	into	a	separate
component	called	TodoItem.	In	the	following	figure,	we	can	see	the	application’s
structure:

At	the	top	level	is	the	TodoApp	component,	which	has	two	children:	InputBox	and
TodoList.	The	TodoList	component	renders	the	individual	to-do	items	in	TodoItem
components.	The	implementation	details	are	not	important	for	our	purpose,	so	we	are
going	to	ignore	them.

Now,	we	need	to	realize	that	there	is	an	implicit	dependency	between	the	state	of	the
parent	component	and	its	children.	For	instance,	the	state	of	the	TodoList	component
depends	completely	on	the	to-do	items	that	are	located	at	its	parent:	the	TodoApp
component.	There’s	a	similar	dependency	between	TodoItem	and	TodoList,	since	the
TodoList	component	passes	the	individual	to-do	items	to	a	separate	instance	of	the
TodoItem	component.

Because	of	our	last	observation,	the	order	of	execution	of	the	change	detectors	attached	to
the	individual	components	is	like	the	one	shown	on	the	preceding	figure.	Once	the	change
detection	mechanism	run,	initially	it	will	perform	a	check	over	the	TodoApp	component.
Right	after	this,	the	InputBox	component	will	be	checked	for	changes,	followed	by	the
TodoList	component.	In	the	end,	Angular	will	invoke	the	change	detector	of	the	TodoItem
component.

You	can	trace	the	order	of	execution	in	the
ch4/ts/change_detection_strategy_order/app.ts	example,	where	each	individual
component	logs	a	message	once	its	ngDoCheck	method	is	invoked.

Note
Note	that	only	the	components	have	an	instance	of	a	change	detector	attached	to	them;
directives	use	the	change	detector	of	their	parent	component.

Change	detection	strategies
The	change	detection	strategies	that	Angular	2	provides	are:	CheckOnce,	Checked,
CheckAlways,	Detached,	Default,	and	OnPush.	We	will	describe	how	we	can	take
advantage	of	OnPush	in	detail,	since	it	is	very	powerful	when	working	with	immutable
data.	Before	taking	a	deep	dive	into	OnPush,	let’s	briefly	describe	the	other	strategies.

Now,	let’s	import	the	TypeScript	enum,	which	can	be	used	to	configure	the	strategy	used
for	the	individual	components:

//	ch4/ts/change_detection_strategy_broken/app.ts

import	{ChangeDetectionStrategy}	from	'angular2/core';

Now,	we	can	configure	the	TodoList	component	to	use	the	Checked	strategy:

@Component({

		selector:	'todo-list',

		changeDetection:	ChangeDetectionStrategy.Checked,

		template:	`...`,

		styles:	[…]

})

class	TodoList	{	…	}

This	way,	the	change	detection	will	be	skipped	until	its	mode	(strategy)	changes	to
CheckOnce.	But	what	does	it	mean	to	prevent	the	change	detection	from	running?	You	can
go	to	http://localhost:5555/dist/dev/ch4/ts/change_detection_strategy_broken/
and	see	the	inconsistent	behavior	of	the	TodoList	component.	When	you	add	a	new	to-do
item	in	the	input	and	you	click	on	the	button,	it	won’t	immediately	appear	in	the	list.

Now,	let’s	try	CheckOnce!	Inside	ch4/ts/change_detection_strategy_broken/app.ts,
change	the	change	detection	strategy	of	the	TodoList	component	to
ChangeDetectionStrategy.CheckOnce.	After	refreshing	the	browser,	try	to	add	a	new	to-
do	item.	The	change	should	not	be	immediately	reflected	because	CheckOnce	will	instruct
the	change	detector	to	perform	the	check	only	once	(in	this	case,	during	initialization),	and
after	that,	nothing	will	happen.

By	default,	it	is	used	in	the	CheckAlways	mode,	which	as	its	name	states,	doesn’t	prevent
the	change	detector	from	running.

If	we	declare	the	strategy	of	a	given	component	to	Detached,	the	change	detector	subtree
will	not	be	considered	as	a	part	of	the	main	tree	and	will	be	skipped.

Performance	boosting	with	immutable	data	and
OnPush
The	last	change	detection	strategy	that	we	are	going	to	describe	is	OnPush.	It	is	extremely
useful	when	the	result	that	the	given	component	produces	depends	only	on	its	inputs.	In
such	cases,	we	can	pass	immutable	data	to	the	inputs	in	order	to	make	sure	that	it	will	not
be	mutated	by	any	other	component.	This	way,	by	having	a	component	that	depends	only
on	its	immutable	inputs,	we	can	make	sure	that	it	produces	different	user	interfaces	only
once	it	receives	different	inputs	(that	is,	different	reference).

In	this	section,	we	are	going	to	apply	the	OnPush	strategy	on	the	TodoList	component.
Since	it	depends	only	on	its	inputs	(the	todos	input),	we	want	to	make	sure	that	its	change
detection	will	be	performed	only	once	it	receives	a	new	reference	of	the	todos	collection.

The	essence	of	immutable	data	is	that	it	cannot	change.	This	means	that	once	we	add	a
new	to-do	item	to	the	todos	collection,	we	cannot	change	it;	instead,	the	add	(or	in	our
case,	push)	method	will	return	a	new	collection—a	copy	of	the	initial	collection	with	the
new	item	included.

This	may	seem	like	a	huge	overhead—to	copy	the	entire	collection	on	each	change.	In	big
applications,	this	may	have	a	big	performance	impact.	However,	we	don’t	need	to	copy	the
entire	collection.	There	are	libraries	that	implement	immutable	data	structure	using
smarter	algorithms:	persistent	data	structures.	Persistent	data	structures	are	out	of	the
scope	of	the	current	content.	Further	information	about	them	can	be	found	in	most
computer	science	textbooks	for	advanced	data	structures.	The	good	thing	is	that	we	don’t
have	to	understand	their	implementation	in	depth	in	order	to	use	them!	There	is	a	library
called	Immutable.js	that	implements	a	few	commonly	used	immutable	data	structures.	In
our	case,	we	are	going	to	use	the	immutable	list.	Generally,	the	immutable	list	behaves	just
like	a	normal	list,	but	on	each	operation	that	is	supposed	to	mutate	it,	it	returns	a	new	list.

This	means	that	if	we	have	a	list	called	foo,	which	is	immutable,	and	we	append	a	new
item	to	the	list,	we	are	going	to	get	a	new	reference:

let	foo	=	List.of(1,	2,	3);

let	changed	=	foo.push(4);

foo	===	changed	//	false

console.log(foo.toJS());	//	[1,	2,	3]

console.log(changed.toJS());	//	[1,	2,	3,	4]

In	order	to	take	advantage	of	immutability,	we	need	to	install	Immutable.js	using	npm.

We’ve	already	done	this	in	ch4/ts/change_detection_strategy/app.ts.	Immutable.js
is	already	part	of	package.json,	which	is	located	at	the	root	directory	of	the	project.

Now,	it’s	time	to	refactor	our	to-do	application	and	make	it	use	immutable	data!

Using	immutable	data	structures	in	Angular
Let’s	take	a	look	at	how	we	currently	keep	the	to-do	items	in	the	TodoApp	component:

class	TodoApp	{

		todos:	Todo[]	=	[...];

		...

}

We	use	an	array	of	Todo	items.	The	JavaScript	array	is	mutable,	which	means	that	if	we
pass	it	to	a	component	that	uses	the	OnPush	strategy,	it	is	not	safe	to	skip	the	change
detection	in	case	we	get	the	same	input	reference.	For	instance,	we	may	have	two
components	that	use	the	same	list	of	to-do	items.	Both	components	can	modify	the	list
since	it	is	mutable.	This	will	lead	to	an	inconsistent	state	to	any	of	the	components	in	case
their	change	detection	is	not	performed.	That’s	why	we	need	to	make	sure	that	the	list	that
holds	the	items	is	immutable.	All	we	need	to	do	in	the	TodoApp	component	in	order	to
make	sure	that	it	holds	its	data	in	an	immutable	data	structure	is	this:

//	ch4/ts/change_detection_strategy/app.ts

class	TodoApp	{

		todos:	ImmutableList<Todo>	=	ImmutableList.of({

				label:	'Buy	milk',

				completed:	false

		},	{

				label:	'Save	the	world',

				completed:	false

		});

		...

}

In	this	way,	we	construct	the	todos	property	as	an	immutable	list.	Since	the	mutation
operations	of	the	immutable	list	return	a	new	list,	we	need	to	make	a	slight	modification	in
addTodo	and	toggleTodoCompletion:

...

addTodo(label:	string)	{

		this.todos	=	this.todos.push({

				label,

				completed:	false

		});

}

toggleCompletion(index:	number)	{

		this.todos	=	this.todos.update(index,	todo	=>	{

				let	newTodo	=	{

						label:	todo.label,

						completed:	!todo.completed

				};

				return	newTodo;

		});

}

…

The	addTodo	function	looks	exactly	the	same	as	before	except	that	we	set	the	result	of	the
push	method	as	a	value	to	the	todos	property.

In	toggleTodoCompletion,	we	use	the	update	method	of	the	immutable	list.	As	the	first
argument,	we	pass	the	index	of	the	to-do	item	we	want	to	modify,	and	the	second
argument	is	a	callback	that	does	the	actual	modification.	Note	that	since	we	are	using
immutable	data	in	this	case,	we	copy	the	modified	to-do	item.	This	is	required	because	it
tells	the	update	method	that	the	item	with	the	given	index	has	been	changed	(since	it	is
immutable,	it	is	considered	as	changed	only	when	it	has	a	new	reference),	which	means
that	the	entire	list	has	been	changed.

That	was	the	complex	part!	Now	let’s	take	a	look	at	the	TodoList	component’s	definition:

@Component({

		selector:	'todo-list',

		changeDetection:	ChangeDetectionStrategy.OnPush,

		template:	`...`,

		styles:	[...]

})

class	TodoList	{

		@Input()	todos:	ImmutableList<Todo>;

		@Output()	toggle	=	new	EventEmitter<number>();

		toggleCompletion(index:	number)	{

				this.toggle.emit(index);

		}

}

Inside	the	@Component	decorator,	we	set	the	changeDetection	property	to	the	value	of	the
OnPush	strategy.	This	means	that	the	component	will	run	its	change	detector	only	when
any	of	its	inputs	gets	a	new	reference.	The	template	of	the	component	stays	exactly	the
same	since	ngForOf	internally	uses	ES2015	iterators	to	loop	the	items	in	the	provided
collection.	They	are	supported	by	Immutable.js,	so	the	changes	in	the	template	are	not
required.

Since	we	need	the	index	of	the	changed	item	(the	one	we	use	in	the	update	method	of	the
todos	collection	in	TodoApp),	we	change	the	type	of	the	output	of	the	component	to
EventEmitter<number>.	In	toggleCompletion,	we	emit	the	index	of	the	changed	to-do
item.

This	is	how	we	optimized	our	simple	to-do	application	by	preventing	the	change	detection
mechanism	from	running	in	the	entire	right	subtree	in	case	the	parent	component	hasn’t
pushed	an	input	with	a	new	reference.

Summary
In	this	chapter,	we	went	through	the	core	building	blocks	of	an	Angular	2	application:
directives	and	components.	We	built	a	couple	of	sample	components,	which	show	us	the
syntax	to	be	used	for	the	definition	of	these	fundamental	concepts.	We	also	described	the
life	cycle	of	each	directive	and	the	core	set	of	features	the	given	directive	and	component
have.	As	the	next	step,	we	saw	how	we	can	enhance	the	performance	of	our	application	by
using	the	OnPush	change	detection	strategy	with	immutable	data.

The	next	chapter	is	completely	dedicated	to	the	Angular	2	services	and	the	dependency
injection	mechanism	of	the	framework.	We	are	going	to	look	at	how	we	can	define	and
instantiate	custom	injectors	and	how	we	can	take	advantage	of	the	dependency	injection
mechanism	in	our	directives	and	components.

Chapter	5.	Dependency	Injection	in
Angular	2
In	this	chapter,	we’ll	explain	how	to	take	advantage	of	the	dependency	injection	(DI)
mechanism	of	the	framework	with	all	its	various	features.

We	will	explore	the	following	topics:

Configuring	and	creating	injectors.
Instantiating	objects	using	injectors.
Injecting	dependencies	into	our	directives	and	components.	This	way,	we	will	be	able
to	reuse	the	business	logic	defined	within	the	services	and	wire	it	up	with	the	UI
logic.
Annotating	the	ES5	code	we	will	write	in	order	to	get	the	exact	same	result	we	get
when	we	are	using	the	TypeScript	syntax.

Why	do	I	need	Dependency	Injection?
Let’s	suppose	that	we	have	a	Car	class	that	depends	on	the	Engine	and	Transmission
classes.	How	can	we	implement	this	system?	Let’s	take	a	look:

class	Engine	{…}

class	Transmission	{…}

class	Car	{

		engine;

		transmission;

		constructor()	{

				this.engine	=	new	Engine();

				this.transmission	=	new	Transmission();

		}

}

In	this	example,	we	created	the	dependencies	of	the	Car	class	inside	of	its	constructor.
Although	it	looks	simple,	it	is	far	from	being	flexible.	Each	time	we	create	an	instance	of
the	Car	class,	instances	of	the	same	Engine	and	Transmission	classes	will	be	created.
This	may	be	problematic	because	of	the	following	reasons:

The	Car	class	gets	less	testable	because	we	can’t	test	it	independently	from	its	engine
and	transmission	dependencies.
We	couple	the	Car	class	with	the	logic	used	for	the	instantiation	of	its	dependencies.

Dependency	Injection	in	Angular	2
Another	way	we	can	approach	this	is	by	taking	advantage	of	the	DI	pattern.	We’re	already
familiar	with	it	from	AngularJS	1.x.	Let’s	demonstrate	how	we	can	refactor	the	preceding
code	using	DI	in	the	context	of	Angular	2:

class	Engine	{…}

class	Transmission	{…}

@Injectable()

class	Car	{

		engine;

		transmission;

		constructor(engine:	Engine,	transmission:	Transmission)	{

				this.engine	=	engine;

				this.transmission	=	transmission;

		}

}

All	we	did	in	the	preceding	snippet	was	add	the	@Injectable	class	decorator	on	top	of	the
definition	of	the	Car	class	and	provide	type	annotations	for	the	parameters	of	its
constructor.

Benefits	of	DI	in	Angular	2
There	is	one	more	step	left,	which	we’ll	take	a	look	at	in	the	next	section.	But	let’s	see
what	the	benefits	of	the	mentioned	approach	are:

We	can	easily	pass	different	versions	of	the	dependencies	of	the	Car	class	for	a
testing	environment.
We’re	not	coupled	with	the	logic	around	the	dependencies’	instantiation.

The	Car	class	is	only	responsible	for	implementing	its	own	domain-specific	logic	instead
of	being	coupled	with	additional	functionalities,	such	as	the	management	of	its
dependencies.	Our	code	also	got	more	declarative	and	easier	to	read.

Now,	after	we’ve	realized	some	of	the	benefits	of	the	DI,	let’s	take	a	look	at	the	missing
pieces	in	order	to	make	this	code	work!

Configuring	an	injector
The	primitive	used	for	the	instantiation	of	the	individual	dependencies	in	our	Angular	2
applications	via	the	DI	mechanism	of	the	framework	is	called	the	injector.	The	injector
contains	a	set	of	providers	that	encapsulate	the	logic	for	the	instantiation	of	registered
dependencies	associated	with	tokens.	We	can	think	of	tokens	as	identifiers	of	the	different
providers	registered	within	the	injector.

Let’s	take	a	look	at	the	following	snippet,	which	is	located	at	ch5/ts/injector-
basics/injector.ts:

import	'reflect-metadata';

import	{

		Injector,	Inject,	Injectable,

		OpaqueToken,	provide

}	from	'angular2/core';

const	BUFFER_SIZE	=	new	OpaqueToken('buffer-size');

class	Buffer	{

		constructor(@Inject(BUFFER_SIZE)	private	size:	Number)	{

				console.log(this.size);

		}

}

@Injectable()

class	Socket	{

		constructor(private	buffer:	Buffer)	{}

}

let	injector	=	Injector.resolveAndCreate([

		provide(BUFFER_SIZE,	{	useValue:	42	}),

		Buffer,

		Socket

]);

injector.get(Socket);

You	can	run	the	file	using	the	following	command:

cd	app

ts-node	ch5/ts/injector-basics/injector.ts

If	you	haven’t	installed	ts-node	yet,	take	a	look	at	Chapter	3,	TypeScript	Crash	Course,
which	explains	how	you	can	proceed	in	order	to	have	it	up	and	running	on	your	computer.

We	import	Injector,	Injectable,	Inject,	OpaqueToken,	and	provide.

Injector	represents	the	container	used	for	the	instantiation	of	the	different	dependencies.
Using	the	rules	declared	with	the	provide	function	and	the	metadata	generated	by	the
TypeScript	compiler,	it	knows	how	to	create	them.

In	the	preceding	snippet,	we	initially	defined	the	BUFFER_SIZE	constant	and	set	it	to	the
new	OpaqueToken('buffer-size')	value.	We	can	think	of	the	value	of	BUFFER_SIZE	as	a

unique	value	that	cannot	be	duplicated	in	the	application	(OpaqueToken	is	an	alternative	of
the	Symbol	class	from	ES2015,	since	at	the	time	of	writing	this,	it	is	not	supported	by
TypeScript).

We	defined	two	classes:	Buffer	and	Socket.	The	Buffer	class	has	a	constructor	that
accepts	only	a	single	dependency	called	size,	which	is	of	the	type	Number.	In	order	to	add
additional	metadata	for	the	process	of	dependency	resolution,	we	use	the	@Inject
parameter	decorator.	This	decorator	accepts	an	identifier	(also	known	as	token)	of	the
dependency	we	want	to	inject.	Usually,	it	is	the	type	of	the	dependency	(that	is,	a	reference
of	a	class),	but	in	some	cases,	it	can	be	a	different	type	of	a	value.	For	example,	in	our
case,	we	used	the	instance	of	the	OpaqueToken	class.

Dependency	resolution	with	generated	metadata
Now	let’s	take	a	look	at	the	Socket	class.	We	decorate	it	with	the	@Injectable	decorator.
This	decorator	is	supposed	to	be	used	by	any	class	that	accepts	dependencies	that	should
be	injected	via	the	dependency	injection	mechanism	of	Angular	2.

The	@Injectable	decorator	forces	the	TypeScript	compiler	to	generate	additional
metadata	for	the	types	of	dependencies	that	a	given	class	accepts.	This	means	that	if	we
omit	the	@Injectable	decorator,	Angular’s	DI	mechanism	will	not	be	aware	of	the	tokens
associated	with	the	dependencies	it	needs	to	resolve.

TypeScript	doesn’t	generate	any	metadata	if	no	decorator	is	used	on	top	of	a	class	mostly
for	performance	concerns.	Imagine	if	such	metadata	was	generated	for	each	individual
class	that	accepts	dependencies—in	this	case,	the	output	would	be	bloated	with	additional
type	metadata	that	would	be	unused.

An	alternative	to	using	@Injectable	is	to	explicitly	declare	the	types	of	dependencies
using	the	@Inject	decorator.	Take	a	look	at	the	following:

class	Socket	{

		constructor(@Inject(Buffer)	private	buffer:	Buffer)	{}

}

This	means	that	the	preceding	code	has	equivalent	semantics	to	the	code	that	uses
@Injectable,	as	mentioned	earlier.	The	only	difference	is	that	Angular	2	will	get	the	type
of	dependency	(that	is,	the	token	associated	with	it)	explicitly	(directly	from	the	metadata
added	by	the	@Injector	decorator)	compared	to	the	case	where	@Injectable	is	used,
when	it	will	look	at	the	metadata	generated	by	the	compiler.

Instantiating	an	injector
Now,	let’s	create	an	instance	of	an	injector	in	order	to	use	it	for	the	instantiation	of
registered	tokens:

let	injector	=	Injector.resolveAndCreate([

		provide(BUFFER_SIZE,	{	useValue:	42	}),

		Buffer,

		Socket

]);

We	create	an	instance	of	the	Injector	using	its	static	method	called	resolveAndCreate.
This	is	a	factory	method	that	accepts	an	array	of	providers	as	argument	and	returns	a	new
Injector.

resolve	means	that	the	providers	will	go	through	a	resolution	process,	which	includes
some	internal	processing	(flattening	multiple	nested	arrays	and	converting	individual
providers	into	an	array).	Later,	the	injector	can	instantiate	any	of	the	dependencies	for
which	we	have	registered	providers	based	on	the	rules	the	providers	encapsulate.

In	our	case,	we	used	the	provide	method	in	order	to	explicitly	tell	the	Angular	2	DI
mechanism	to	use	the	value	42	when	the	BUFFER_SIZE	token	is	required.	The	other	two
providers	are	implicit.	Angular	2	will	instantiate	them	by	invoking	the	provided	class	with
the	new	operator	once	all	of	their	dependencies	are	resolved.

We	request	the	BUFFER_SIZE	value	in	the	constructor	of	the	Buffer	class:

class	Buffer	{

		constructor(@Inject(BUFFER_SIZE)	private	size:	Number)	{

				console.log(this.size);

		}

}

In	the	preceding	example,	we	used	the	@Inject	parameter	decorator.	It	hints	the	DI
mechanism	that	the	first	argument	of	the	constructor	of	the	Buffer	class	should	be
instantiated	with	the	provider	associated	with	the	BUFFER_SIZE	token	passed	to	the
injector.

Introducing	forward	references
Angular	2	introduced	the	concept	of	forward	references.	It	is	required	due	to	the
following	reasons:

ES2015	classes	are	not	hoisted.
Allow	resolution	of	the	dependencies	that	are	declared	after	the	declaration	of	the
dependent	providers.

In	this	section,	we’re	going	to	explain	the	problem	that	forward	references	solve	and	the
way	we	can	take	advantage	of	them.

Now,	let’s	suppose	that	we	have	defined	the	Buffer	and	Socket	classes	in	the	opposite
order:

//	ch5/ts/injector-basics/forward-ref.ts

@Injectable()

class	Socket	{

		constructor(private	buffer:	Buffer)	{…}

}

//	undefined

console.log(Buffer);

class	Buffer	{

		constructor(@Inject(BUFFER_SIZE)	private	size:	Number)	{…}

}

//	[Function:	Buffer]

console.log(Buffer);

Here,	we	have	the	exact	same	dependencies	as	in	the	ones	in	the	previous	example,	but	in
this	case,	the	Socket	class	definition	precedes	the	definition	of	the	Buffer	class.	Note	that
the	value	of	the	Buffer	identifier	will	equal	undefined	until	the	JavaScript	virtual
machine	evaluates	the	declaration	of	the	Buffer	class.	However,	the	metadata	for	the	types
of	dependencies	that	Socket	accepts	will	be	generated	and	placed	right	after	the	Socket
class	definition.	This	means	that	along	with	the	interpretation	of	the	generated	JavaScript,
the	value	of	the	Buffer	token	will	equal	undefined—that	is,	as	a	type	of	dependency	(or
in	the	context	of	the	DI	mechanism	of	Angular	2,	its	token),	the	framework	will	get	an
invalid	value.

Running	the	preceding	snippet	will	result	in	a	runtime	error	of	the	following	form:

Error:	Cannot	resolve	all	parameters	for	Socket(undefined).	Make	sure	they	

all	have	valid	type	or	annotations.

The	best	way	to	resolve	this	issue	is	by	swapping	the	definitions	with	their	proper	order.
Another	way	we	can	proceed	is	to	take	advantage	of	a	solution	that	Angular	2	provides:	a
forward	reference:

…

import	{forwardRef}	from	'angular2/core';

…

@Injectable()

class	Socket	{

		constructor(@Inject(forwardRef(()	=>	Buffer))

				private	buffer:	Buffer)	{}

}

class	Buffer	{…}

The	preceding	snippet	demonstrates	how	we	can	take	advantage	of	forward	references.	All
we	need	to	do	is	use	the	@Inject	parameter	decorator	and	pass	the	result	of	the	invocation
of	the	forwardRef	function	to	it.	The	forwardRef	function	is	a	higher-order	function	that
accepts	a	single	argument—another	function	that	is	responsible	for	returning	the	token
associated	with	the	dependency	(or	more	precisely	associated	with	its	provider)	that	needs
to	be	injected.	This	way,	the	framework	provides	a	way	to	defer	the	process	of	resolving
the	types	(tokens)	of	dependencies.

The	token	of	the	dependency	will	be	resolved	the	first	time	Socket	needs	to	be
instantiated,	unlike	the	default	behavior	in	which	the	token	is	required	at	the	time	of	the
declaration	of	the	given	class.

Configuring	providers
Now,	let’s	take	a	look	at	an	example	similar	to	the	one	used	earlier	but	with	a	different
configuration	of	the	injector:

let	injector	=	Injector.resolveAndCreate([

		provide(BUFFER_SIZE,	{	useValue:	42	}),

		provide(Buffer,	{	useClass:	Buffer	}),

		provide(Socket,	{	useClass:	Socket	})

]);

In	this	case,	inside	of	the	provider,	we	explicitly	declared	that	we	want	the	Buffer	class	to
be	used	for	the	construction	of	the	dependency	with	a	token	equal	to	the	reference	of	the
Buffer	class.	We	do	the	exact	same	thing	for	the	dependency	associated	with	the	Socket
token;	but	this	time,	we	provide	the	Socket	class	instead.	This	is	how	Angular	2	will
proceed	when	we	omit	the	call	of	the	provide	function	and	pass	only	a	reference	to	a	class
instead.

Explicitly	declaring	the	class	used	for	the	instantiation	of	the	same	class	may	seem	quite
worthless,	and	given	the	examples	we	looked	at	so	far,	this’ll	be	completely	correct.	In
some	cases,	however,	we	might	want	to	provide	a	different	class	for	the	instantiation	of	a
dependency	associated	with	given	class	token.

For	instance,	let’s	suppose	we	have	the	Http	service	that	is	used	in	a	service	called
UserService:

class	Http	{…}

@Injectable()

class	UserService	{

		constructor(private	http:	Http)	{}

}

let	injector	=	Injector.resolveAndCreate([

		UserService,

		Http

]);

The	UserService	service	uses	Http	for	communication	with	a	RESTful	service.	We	can
instantiate	UserService	using	injector.get(UserService).	This	way,	the	constructor	of
UserService	invoked	by	the	injector’s	get	method	will	accept	an	instance	of	the	Http
service	as	an	argument.	However,	if	we	want	to	test	UserService,	we	don’t	really	need	to
make	HTTP	calls	to	the	RESTful	service.	In	case	of	unit	testing,	we	can	provide	a	dummy
implementation	that	will	only	fake	these	HTTP	calls.	In	order	to	inject	an	instance	of	a
different	class	to	the	UserService	service,	we	can	change	the	configuration	of	the	injector
to	the	following:

class	DummyHttp	{…}

//	...

let	injector	=	Injector.resolveAndCreate([

		UserService,

		provide(Http,	{	useClass:	DummyHttp	})

]);

Now,	when	we	instantiate	UserService,	it’s	constructor	will	receive	a	reference	to	an
instance	of	the	DummyHttp	service.	This	code	is	available	at	ch5/ts/configuring-
providers/dummy-http.ts.

Using	existing	providers
Another	way	to	proceed	is	using	the	useExisting	property	of	the	provider’s	configuration
object:

//	ch5/ts/configuring-providers/existing.ts

let	injector	=	Injector.resolveAndCreate([

		DummyService,

		provide(Http,	{	useExisting:	DummyService	}),

		UserService

]);

In	the	preceding	snippet,	we	registered	three	tokens:	DummyService,	UserService,	and
Http.	We	declared	that	we	want	to	bind	the	Http	token	to	the	existing	token,
DummyService.	This	means	that	when	the	Http	service	is	requested,	the	injector	will	find
the	provider	for	the	token	used	as	the	value	of	the	useExisting	property	and	instantiate	it
or	get	the	value	associated	with	it.	We	can	think	of	useExisting	as	creating	an	alias	of	the
given	token:

let	dummyHttp	=	{

		get()	{},

		post()	{}

};

let	injector	=	Injector.resolveAndCreate([

		provide(DummyService,	{	useValue:	dummyHttp	}),

		provide(Http,	{	useExisting:	DummyService	}),

		UserService

]);

console.assert(injector.get(UserService).http	===	dummyHttp);

The	preceding	snippet	will	create	an	alias	of	the	Http	token	to	the	DummyHttp	token.	This
means	that	once	the	Http	token	is	requested,	the	call	will	be	forwarded	to	the	provider
associated	with	the	DummyHttp	token,	which	will	be	resolved	to	the	value	dummyHttp.

Defining	factories	for	instantiating
services
Now,	let’s	suppose	we	want	to	create	a	complex	object,	for	example,	one	that	represents	a
Transport	Layer	Security	(TLS)	connection.	A	few	of	the	properties	of	such	an	object
are	a	socket,	a	set	of	crypto	protocols,	and	a	certificate.	In	the	context	of	this	problem,	the
features	of	the	DI	mechanism	of	Angular	2	we	have	so	far	looked	at	might	seem	a	bit
limited.

For	example,	we	might	need	to	configure	some	of	the	properties	of	the	TLSConnection
class	without	coupling	the	process	of	its	instantiation	with	all	the	configuration	details
(choose	appropriate	crypto	algorithms,	open	the	TCP	socket	over	which	we	will	establish
the	secure	connection,	and	so	on).

In	this	case,	we	can	take	advantage	of	the	useFactory	property	of	the	provider’s
configuration	object:

let	injector	=	Injector.resolveAndCreate([

		provide(TLSConnection,	{

				useFactory:	(socket:	Socket,	certificate:	Certificate,	crypto:	Crypto)	

=>		{

						let	connection	=	new	TLSConnection();

						connection.certificate	=	certificate;

						connection.socket	=	socket;

						connection.crypto	=	crypto;

						socket.open();

						return	connection;

				},

				deps:	[Socket,	Certificate,	Crypto]

		}),

		provide(BUFFER_SIZE,	{	useValue:	42	}),

		Buffer,

		Socket,

		Certificate,

		Crypto

]);

The	preceding	code	seems	a	bit	complex	at	first,	but	let’s	take	a	look	at	it	step	by	step.	We
can	start	with	the	parts	we’re	already	familiar	with:

let	injector	=	Injector.resolveAndCreate([

		...

		provide(BUFFER_SIZE,	{	useValue:	42	}),

		Buffer,

		Socket,

		Certificate,

		Crypto

]);

Initially,	we	registered	a	number	of	providers:	Buffer,	Socket,	Certificate,	and	Crypto.
Just	like	in	the	preceding	example,	we	also	registered	the	BUFFER_SIZE	token	and

associated	it	with	the	value	42.	This	means	that	we	can	already	create	objects	of	the
Buffer,	Socket,	Certificate,	and	Crypto	types:

//	buffer	with	size	42

console.log(injector.get(Buffer));

//	socket	with	buffer	with	size	42

console.log(injector.get(Socket));

We	can	create	and	configure	an	instance	of	the	TLSConnection	object	in	the	following
way:

let	connection	=	new	TLSConnection();

connection.certificate	=	certificate;

connection.socket	=	socket;

connection.crypto	=	crypto;

socket.open();

return	connection;

Now,	if	we	register	a	provider	that	has	the	TLSConnection	token	as	a	dependency,	we	will
prevent	the	dependency	injection	mechanism	of	Angular	from	taking	care	of	the
dependency	resolution	process.	In	order	to	handle	this	problem,	we	can	use	the
useFactory	property	of	the	provider’s	configuration	object.	This	way,	we	can	specify	a
function	in	which	we	can	manually	create	the	instance	of	the	object	associated	with	the
provider’s	token.	We	can	use	the	useFactory	property	together	with	the	deps	property	in
order	to	specify	the	dependencies	to	be	passed	to	the	factory:

provide(TLSConnection,	{

		useFactory:	(socket:	Socket,	certificate:	Certificate,	crypto:	Crypto)	=>		

{

				//	...

		},

		deps:	[Socket,	Certificate,	Crypto]

})

In	the	preceding	snippet,	we	defined	the	factory	function	used	for	the	instantiation	of
TLSConnection.	As	dependencies,	we	declared	Socket,	Certificate,	and	Crypto.	These
dependencies	are	resolved	by	the	DI	mechanism	of	Angular	2	and	injected	to	the	factory
function.	You	can	take	a	look	at	the	entire	implementation	and	play	with	it	at
ch5/ts/configuring-providers/factory.ts.

Child	injectors	and	visibility
In	this	section,	we’re	going	to	take	a	look	at	how	we	can	build	a	hierarchy	of	injectors.
This	is	a	completely	new	concept	introduced	by	Angular	2.	Each	injector	can	have	zero	or
one	parent	injectors	and	each	parent	injector	can	have	zero	or	more	children,	respectively.
In	contrast	to	AngularJS	1.x,	where	all	the	registered	providers	are	stored	in	a	flat	structure
in	Angular	2,	they	are	stored	in	a	tree.	The	flat	structure	is	more	limited;	for	instance,	it
doesn’t	support	the	namespacing	of	tokens;	that	is,	we	cannot	declare	different	providers
for	the	same	token,	which	might	be	required	in	some	cases.	So	far,	we	looked	at	an
example	of	injector	that	doesn’t	have	any	children	or	a	parent.	Now	let’s	build	a	hierarchy
of	injectors!

In	order	to	gain	a	better	understanding	of	this	hierarchical	structure	of	injectors,	let’s	take
a	look	at	the	following	figure:

Here,	we	see	a	tree	where	each	node	is	an	injector	and	each	of	these	injectors	keeps	a
reference	to	its	parent.	Injector	House	has	three	child	injectors:	Bathroom,	Kitchen,	and
Garage.

Garage	has	two	children:	Car	and	Storage.	We	can	think	of	these	injectors	as	containers
with	registered	providers	inside	of	them.

Let’s	suppose	we	want	to	get	the	value	of	the	provider	associated	with	the	token	Tire.	If
we	use	the	injector	Car,	this	means	that	Angular	2’s	DI	mechanism	will	try	to	find	the
provider	associated	with	this	token	in	Car	and	all	of	its	parents,	Garage	and	House,	until
it	finds	it.

Building	a	hierarchy	of	injectors
In	order	to	gain	a	better	understanding	of	the	previous	paragraph,	let’s	take	a	look	at	this
simple	example:

//	ch5/ts/parent-child/simple-example.ts

class	Http	{}

@Injectable()

class	UserService	{

		constructor(public	http:	Http)	{}

}

let	parentInjector	=	Injector.resolveAndCreate([

		Http

]);

let	childInjector	=	parentInjector.resolveAndCreateChild([

		UserService

]);

//	UserService	{	http:	Http	{}	}

console.log(childInjector.get(UserService));

//	true

console.log(childInjector.get(Http)	===	parentInjector.get(Http));

The	imports	are	omitted,	since	they	are	not	essential	to	explain	the	preceding	snippet.	We
have	two	services,	Http	and	UserService,	where	UserService	depends	on	the	Http
service.

Initially,	we	created	an	injector	using	the	resolveAndCreate	static	method	of	the
Injector	class.	We	passed	an	implicit	provider	to	this	injector,	which	will	later	be
resolved	to	a	provider	with	an	Http	token.	Using	resolveAndCreateChild,	we	resolved
the	passed	providers	and	instantiated	an	injector,	which	points	to	parentInjector	(so	we
get	the	same	relation	as	the	one	between	Garage	and	House	on	the	diagram	above).

Now,	using	childInjector.get(UserService),	we	are	able	to	get	the	value	associated
with	the	UserService	token.	Similarly,	using	childInjector.get(Http)	and
parentInjector.get(Http),	we	get	the	same	value	associated	with	the	Http	token.	This
means	that	childInjector	asks	its	parent	for	the	value	associated	with	the	requested
token.

However,	if	we	try	to	use	parentInjector.get(UserService),	we	won’t	be	able	to	get
the	value	associated	with	the	token,	since	in	this	injector,	we	don’t	have	a	registered
provider	with	this	token.

Configuring	dependencies
Now	that	we’re	familiar	with	the	injectors’	hierarchy,	let’s	see	how	we	can	get	the
dependencies	from	the	appropriate	injectors	in	it.

Using	the	@Self	decorator
Now	let’s	suppose	we	have	the	following	configuration:

abstract	class	Channel	{}

class	Http	extends	Channel	{}

class	WebSocket	extends	Channel	{}

@Injectable()

class	UserService	{

		constructor(public	channel:	Channel)	{}

}

let	parentInjector	=	Injector.resolveAndCreate([

		provide(Channel,	{	useClass:	Http	})

]);

let	childInjector	=	parentInjector.resolveAndCreateChild([

		provide(Channel,	{	useClass:	WebSocket	}),

		UserService

]);

We	can	instantiate	the	UserService	token	using:

childInjector.get(UserService);

In	UserService,	we	can	declare	that	we	want	to	get	the	Channel	dependency	from	the
current	injector	(that	is,	childInjector)	using	the	@Self	decorator:

@Injectable()

class	UserService	{

		constructor(@Self()	public	channel:	Channel)	{}

}

Although	this	is	going	to	be	the	default	behavior	during	the	instantiation	of	the
UserService,	using	@Self,	we	can	be	more	explicit.	Let’s	suppose	we	change	the
configuration	of	childInjector	to	the	following:

let	parentInjector	=	Injector.resolveAndCreate([

		provide(Channel,	{	useClass:	Http	})

]);

let	childInjector	=	parentInjector.resolveAndCreateChild([

		UserService

]);

If	we	keep	the	@Self	decorator	in	the	UserService	constructor	and	try	to	instantiate
UserService	using	childInjector,	we	will	get	a	runtime	error	because	of	the	missing
provider	for	Channel.

Skipping	the	self	injector

In	some	cases,	especially	while	injecting	the	dependencies	of	UI	components,	we	may
want	to	use	the	provider	registered	in	the	parent	injector	instead	of	the	one	registered	in
the	current	injector.	We	can	achieve	this	behavior	by	taking	advantage	of	the	@SkipSelf
decorator.	For	instance,	let’s	suppose	we	have	the	following	definition	of	the	class
Context:

class	Context	{

		constructor(public	parentContext:	Context)	{}

}

Each	instance	of	the	Context	class	has	a	parent.	Now	let’s	build	a	hierarchy	of	two
injectors,	which	will	allow	us	to	create	a	context	with	a	parent	context:

let	parentInjector	=	Injector.resolveAndCreate([

		provide(Context,	{	useValue:	new	Context(null)	})

]);

let	childInjector	=	parentInjector.resolveAndCreateChild([

		Context

]);

Since	the	root	context	doesn’t	have	a	parent,	we	will	set	the	value	of	its	provider	to	be	new
Context(null).

If	we	want	to	instantiate	the	child	context,	we	can	use:

childInjector.get(Context);

For	the	instantiation	of	the	child,	Context	will	be	used	by	the	provider	registered	within
the	childInjector.	However,	as	a	dependency	it	accepts	an	object	which	is	an	instance	of
the	Context	class.	Such	classes	exist	in	the	same	injector,	which	means	that	Angular	will
try	to	instantiate	it,	but	it	has	a	dependency	of	the	Context	type.	This	process	will	lead	to
an	infinite	loop	that	will	cause	a	runtime	error.

In	order	to	prevent	it	from	happening,	we	can	change	the	definition	of	Context	in	the
following	way:

class	Context	{

		constructor(@SkipSelf()	public	parentContext:	Context)	{}

}

The	only	change	that	we	introduced	is	the	addition	of	the	parameter	decorator	@SkipSelf.

Having	optional	dependencies
Angular	2	introduces	the	@Optional	decorator,	which	allows	us	to	deal	with	dependencies
that	don’t	have	a	registered	provider	associated	with	them.	Suppose	a	dependency	of	a
provider	is	not	available	in	any	of	the	target	injectors	responsible	for	its	instantiation.	If	we
use	the	@Optional	decorator,	during	the	instantiation	of	the	dependent	provider	for	value
of	the	missing	dependency	will	be	passed	null.

Now	let’s	take	a	look	at	the	following	example:

abstract	class	SortingAlgorithm	{

		abstract	sort(collection:	BaseCollection):	BaseCollection;

}

@Injectable()

class	Collection	extends	BaseCollection	{

		private	sort:	SortingAlgorithm;

		constructor(sort:	SortingAlgorithm)	{

				super();

				this.sort	=	sort	||	this.getDefaultSort();

		}

}

let	injector	=	Injector.resolveAndCreate([

		Collection

]);

In	this	case,	we	defined	an	abstract	class	called	SortingAlgorithm	and	a	class	called
Collection,	which	accepts	an	instance	of	a	concrete	class	as	a	dependency	that	extends
SortingAlgorithm.	Inside	of	the	Collection	constructor,	we	set	the	sort	instance
property	to	the	passed	dependency	of	the	SortingAlgorithm	type	or	a	default	sorting
algorithm	implementation.

We	didn’t	define	any	providers	for	the	SortingAlgorithm	token	in	the	injector	we
configured.	So,	if	we	want	to	get	an	instance	of	the	Collection	class	using
injector.get(Collection),	we’ll	get	a	runtime	error.	This	means	that	if	we	want	to	get
an	instance	of	the	Collection	class	using	the	DI	mechanism	of	the	framework,	we	must
register	a	provider	for	the	SortingAlgorithm	token,	although	we	can	fall	back	to	the
default	sorting	algorithm’s	implementation.

Angular	2	provides	a	solution	to	this	problem	with	the	@Optional	decorator.

This	is	how	we	can	approach	the	problem	using	the	@Optional	decorator	provided	by	the
framework:

//	ch5/ts/decorators/optional.ts

@Injectable()

class	Collection	extends	BaseCollection	{

		private	sort:	SortingAlgorithm;

		constructor(@Optional()	sort:	SortingAlgorithm)	{

				super();

				this.sort	=	sort	||	this.getDefaultSort();

		}

}

In	the	preceding	snippet,	we	declared	the	sort	dependency	as	optional,	which	means	that
if	Angular	2	doesn’t	find	any	provider	for	its	token,	it	will	pass	the	null	value.

Using	multiproviders
Multiproviders	are	another	new	concept	brought	to	the	Angular	2	DI	mechanism.	They
allow	us	to	associate	multiple	providers	with	the	same	token.	This	can	be	quite	useful	if
we’re	developing	a	third-party	library	that	comes	with	some	default	implementations	of
different	services,	but	you	want	to	allow	the	users	to	extend	it	with	custom	ones.	They	are
also	exclusively	used	to	declare	multiple	validations	over	a	single	control	in	the	Angular	2

form	module.	We	will	explain	this	module	in	Chapter	6,	Working	with	the	Angular	2
Router	and	Forms,	and	Chapter	7,	Explaining	Pipes	and	Communicating	with	RESTful
Services.

Another	sample	of	an	applicable	use	case	of	multiproviders	is	what	Angular	2	uses	for
event	management	in	their	WebWorkers	implementation.	They	create	multiproviders	for
event	management	plugins.	Each	of	the	providers	returns	a	different	strategy,	which
supports	a	different	set	of	events	(touch	events,	keyboard	events,	and	so	on).	Once	a	given
event	occurs,	they	can	choose	the	appropriate	plugin	that	handles	it.

Let’s	take	a	look	at	an	example	that	illustrates	the	typical	usage	of	multiproviders:

//	ch5/ts/configuring-providers/multi-providers.ts

const	VALIDATOR	=	new	OpaqueToken('validator');

interface	EmployeeValidator	{

		(person:	Employee):	boolean;

}

class	Employee	{...}

let	injector	=	Injector.resolveAndCreate([

		provide(VALIDATOR,	{	multi:	true,

				useValue:	(person:	Employee)	=>	{

						if	(!person.name)	{

								return	'The	name	is	required';

						}

				}

		}),

		provide(VALIDATOR,	{	multi:	true,

				useValue:	(person:	Employee)	=>	{

						if	(!person.name	||	person.name.length	<	1)	{

								return	'The	name	should	be	more	than	1	symbol	long';

						}

				}

		}),

		Employee

]);

In	the	preceding	snippet,	we	declared	a	constant	called	VALIDATOR	with	a	new	instance	of
OpaqueToken.	We	also	created	an	injector	where	we	registered	three	providers—two	of
them	are	used	as	value	functions	that,	based	on	different	criteria,	validate	instances	of	the
class	Employee.	These	functions	are	of	the	type	EmployeeValidator.

In	order	to	declare	that	we	want	the	injector	to	pass	all	the	registered	validators	to	the
constructor	of	the	class	Employee,	we	need	to	use	the	following	constructor	definition:

class	Employee	{

		name:	string;

		constructor(@Inject(VALIDATOR)	private	validators:	EmployeeValidator[])	

{}

		validate()	{

				return	this.validators

						.map(v	=>	v(this))

						.filter(value	=>	!!value);

		}

}

In	the	preceding	example,	we	declared	a	class	Employee	that	accepts	a	single	dependency
—an	array	of	EmployeeValidators.	In	the	method	validate,	we	applied	the	individual
validators	over	the	current	class	instance	and	filtered	the	results	in	order	to	get	only	the
ones	that	have	returned	an	error	message.

Notice	that	the	constructor	argument	validators	is	of	the	EmployeeValidator[]	type.
Since	we	can’t	use	the	type	“array	of	objects”	as	a	token	for	a	provider,	because	it	is	not	a
valid	type	reference,	we	need	to	use	the	@Inject	parameter	decorator.

Using	DI	with	components	and	directives
In	Chapter	4,	Getting	Started	with	Angular	2	Components	and	Directives,	when	we
developed	our	first	Angular	2	directive,	we	saw	how	we	can	take	advantage	of	the	DI
mechanism	to	inject	services	into	our	UI-related	components	(that	is,	directives	and
components).

Let’s	take	a	quick	look	at	what	we	did	earlier,	but	from	a	DI	perspective:

//	ch4/ts/tooltip/app.ts

//	...

@Directive(...)

export	class	Tooltip	{

		@Input()

		saTooltip:string;

		constructor(private	el:	ElementRef,	private	overlay:	Overlay)	{

				this.overlay.attach(el.nativeElement);

		}

		//	...

}

@Component({

		//	...

		providers:	[Overlay],

		directives:	[Tooltip]

})

class	App	{}

Most	of	the	code	from	the	earlier	implementation	is	omitted	because	it	is	not	directly
related	to	our	current	focus.

Note	that	the	constructor	of	Tooltip	accepts	two	dependencies:

An	instance	of	the	ElementRef	class.
An	instance	of	the	Overlay	class.

The	types	of	dependencies	are	the	tokens	associated	with	their	providers,	and	the
corresponding	values	from	the	providers	are	going	to	be	injected	with	the	DI	mechanism
of	Angular	2.

Although	the	declaration	of	the	dependencies	of	the	Tooltip	class	looks	exactly	the	same
as	what	we	did	in	the	previous	sections,	there’s	neither	any	explicit	configuration	nor	any
instantiation	of	an	injector.

Introducing	the	element	injectors
Under	the	hood,	Angular	will	create	injectors	for	all	the	directives	and	components,	and
add	a	default	set	of	providers	to	it.	This	is	the	so-called	element	injector	and	is	something
the	framework	takes	care	of	itself.	The	injectors	associated	with	the	components	are	called
host	injectors.	One	of	the	providers	in	each	directive	and	component	injector	is	associated
with	the	ElementRef	token;	it	will	return	a	reference	to	the	host	element	of	the	directive.
But	where	is	the	provider	for	the	Overlay	class	declared?	Let’s	take	a	look	at	the
implementation	of	the	top-level	component:

@Component({

		//	...

		providers:	[Overlay],

		directives:	[Tooltip] })

class	App	{}

We	configured	the	element	injector	for	the	App	component	by	declaring	the	providers
property	inside	of	the	@Component	decorator.	At	this	point,	the	registered	providers	are
going	to	be	visible	by	the	directive	or	the	component	associated	with	the	corresponding
element	injector	and	the	component’s	entire	component	subtree,	unless	it	is	overridden
somewhere	in	the	hierarchy.

Declaring	providers	for	the	element	injectors
Having	the	declaration	of	all	the	providers	in	the	same	place	might	be	quite	inconvenient.
For	example,	imagine	we’re	developing	a	large-scale	application	that	has	hundreds	of
components	depending	on	thousands	of	services.	In	this	case,	configuring	all	the	providers
in	the	root	component	is	not	a	practical	solution.	There	will	be	name	collisions	when	two
or	more	providers	are	associated	to	the	same	token.	The	configuration	will	be	huge	and	it
will	be	hard	to	trace	where	the	different	tokens	need	to	be	injected.

As	we	mentioned,	Angular	2’s	@Directive	(and	respectively	@Component)	decorator
allows	us	to	introduce	directive-specific	providers	using	the	providers	property.	Here	is
how	we	can	approach	this:

@Directive({

		selector:	'[saTooltip]',

		providers:	[OverlayMock]

})

export	class	Tooltip	{

		@Input()

		saTooltip:	string;

		constructor(private	el:	ElementRef,	private	overlay:	Overlay)	{

				this.overlay.attach(el.nativeElement);

		}

		//	...

}

//	...

bootstrap(App);

The	preceding	example	overrides	the	provider	for	the	Overlay	token	in	the	Tooltip
directive’s	declaration.	This	way,	Angular	will	inject	an	instance	of	OverlayMock	instead
of	Overlay	during	the	instantiation	of	the	tooltip.

A	better	way	to	override	the	provider	is	using	the	bootstrap	function.	We	can	do	the
following:

bootstrap(AppMock,	[provide(Overlay,	{

		useClass:	OverlayMock

})]);

In	the	preceding	bootstrap	call,	we	provided	a	different	top-level	component	and
provider	for	the	Overlay	service	that	will	return	an	instance	of	the	OverlayMock	class.
This	way,	we	can	test	the	Tooltip	directive	ignoring	the	implementation	of	Overlay.

Exploring	DI	with	components
Since	components	are	generally	directives	with	views,	everything	we’ve	seen	so	far
regarding	how	the	DI	mechanism	works	with	directives	is	valid	for	components	as	well.
However,	because	of	the	extra	features	that	the	components	provide,	we’re	allowed	to
have	further	control	over	their	providers.

As	we	said,	the	injector	associated	with	each	component	will	be	marked	as	a	host	injector.
There’s	a	parameter	decorator	called	@Host,	which	allows	us	to	retrieve	a	given
dependency	from	any	injector	until	it	reaches	the	closest	host	injector.	This	means	that	by
using	the	@Host	decorator	in	a	directive,	we	can	declare	that	we	want	to	retrieve	the	given
dependency	from	the	current	injector	or	any	parent	injector	until	we	reach	the	injector	of
the	closest	parent	component.

The	viewProviders	property	added	to	the	@Component	decorator	is	in	charge	of	achieving
even	more	control.

viewProviders	versus	providers
Let’s	take	a	look	at	an	example	of	a	component	called	MarkdownPanel.	This	component
will	be	used	in	the	following	way:

<markdown-panel>

		<panel-title>#	Title</pane-title>

		<panel-content>

#	Content	of	the	panel

*	First	point

*	Second	point

		</panel-content>

</markdown-panel>

The	content	of	each	section	of	the	panel	will	be	translated	from	the	markdown	to	the
HTML.	We	can	delegate	this	functionality	to	a	service	called	Markdown:

import	*	as	markdown	from	'markdown';

class	Markdown	{

		toHTML(md)	{

				return	markdown.toHTML(md);

		}

}

The	Markdown	service	wraps	the	markdown	module	in	order	to	make	it	injectable	through
the	DI	mechanism.

Now	let’s	implement	MarkdownPanel.

In	the	following	snippet,	we	can	find	all	the	important	details	from	the	component’s
implementation:

//	ch5/ts/directives/app.ts

@Component({

		selector:	'markdown-panel',

		viewProviders:	[Markdown],

		styles:	[...],

		template:	`

				<div	class="panel">

						<div	class="panel-title">

								<ng-content	select="panel-title"></ng-content>

						</div>

						<div	class="panel-content">

								<ng-content	select="panel-content"></ng-content>

						</div>

				</div>`

})

class	MarkdownPanel	{

		constructor(private	el:	ElementRef,	private	md:	Markdown)	{}

		ngAfterContentInit()	{

				let	el	=	this.el.nativeElement;

				let	title	=	el.querySelector('panel-title');

				let	content	=	el.querySelector('panel-content');

				title.innerHTML	=	this.md.toHTML(title.innerHTML);

				content.innerHTML	=	this.md.toHTML(content.innerHTML);

		}

}

We	used	the	markdown-panel	selector	and	set	the	viewProviders	property.	In	this	case,
there’s	only	a	single	view	provider:	the	one	for	the	Markdown	service.	By	setting	this
property,	we	declared	that	all	the	providers	declared	in	it	will	be	accessible	from	the
component	itself	and	all	of	its	view	children.

Now,	let’s	suppose	we	have	a	component	called	MarkdownButton	and	we	want	to	add	it	to
our	template	in	the	following	way:

				<markdown-panel>

						<panel-title>###	Small	title</panel-title>

						<panel-content>

						Some	code

						</panel-content>

						<markdown-button>*Click	to	toggle*</markdown-button>

			</markdown-panel>

The	Markdown	service	will	not	be	accessible	by	the	MarkdownButton	used	below	the
panel-content	element;	however,	it’ll	be	accessible	if	we	use	the	button	in	the

component’s	template:

@Component({

		selector:	'markdown-panel',

		viewProviders:	[Markdown],

		directives:	[MarkdownButton],

		styles:	[…],

		template:	`

				<div	class="panel">

						<markdown-button>*Click	to	toggle*</markdown-button>

						<div	class="panel-title">

								<ng-content	select="panel-title"></ng-content>

						</div>

						<div	class="panel-content">

								<ng-content	select="panel-content"></ng-content>

						</div>

				</div>`

})

If	we	need	the	provider	to	be	visible	in	all	the	content	and	view	children,	all	we	should	do
is	change	the	property	name	of	the	viewProviders	property	to	providers.

You	can	find	this	example	in	the	file	in	the	examples	directory	at
ch5/ts/directives/app.ts.

Using	Angular’s	DI	with	ES5
We	are	already	proficient	in	using	the	dependency	injection	of	Angular	2	with	TypeScript!
As	we	know,	we	are	not	limited	to	TypeScript	for	the	development	of	Angular	2
applications;	we	can	also	use	ES5,	ES2015,	and	ES2016	(as	well	as	Dart,	but	that	is	out	of
the	scope	of	this	book).

So	far,	we	declared	the	dependencies	of	the	different	classes	in	their	constructor	using
standard	TypeScript	type	annotations.	All	such	classes	are	supposed	to	be	decorated	with
the	@Injectable	decorator.	Unfortunately,	some	of	the	other	languages	supported	by
Angular	2	miss	a	few	of	these	features.	In	the	following	table,	we	can	see	that	ES5	doesn’t
support	type	annotations,	classes,	and	decorators:

	 ES5 ES2015 ES2016

Classes No Yes Yes

Decorators No No Yes	(no	parameter	decorators)

Type	annotations No No No

In	this	case,	how	we	can	take	advantage	of	the	DI	mechanism	in	these	languages?	Angular
2	provides	an	internal	JavaScript	Domain	Specific	Language	(DSL),	which	allows	us	to
take	advantage	of	the	entire	functionality	of	the	framework	using	ES5.

Now,	let’s	translate	the	MarkdownPanel	example	we	took	a	look	at	in	the	previous	section
from	TypeScript	to	ES5.	First,	let’s	start	with	the	Markdown	service:

//	ch5/es5/simple-example/app.js

var	Markdown	=	ng.core.Class({

		constructor:	function	()	{},

		toHTML:	function	(md)	{

				return	markdown.toHTML(md);

		}

});

We	defined	a	variable	called	Markdown	and	set	its	value	to	the	returned	result	from	the
invocation	of	ng.core.Class.	This	construct	allows	us	to	emulate	ES2015	classes	using
ES5.	The	argument	of	the	ng.core.Class	method	is	an	object	literal,	which	must	have	the
definition	of	a	constructor	function.	As	a	result,	ng.core.Class	will	return	a	JavaScript
constructor	function	with	the	body	of	constructor	from	the	object	literal.	All	the	other
methods	defined	within	the	boundaries	of	the	passed	parameter	will	be	added	to	the
function’s	prototype.

One	problem	is	solved:	we	can	now	emulate	classes	in	ES5;	there	are	two	more	problems
left!

Now,	let’s	take	a	look	at	how	we	can	define	the	MarkdownPanel	component:

//	ch5/es5/simple-example/app.js

var	MarkdownPanel	=	ng.core.Component({

		selector:	'markdown-panel',

		viewProviders:	[Markdown],

		styles:	[...],

		template:	'...'

})

.Class({

		constructor:	[Markdown,	ng.core.ElementRef,	function	(md,	el)	{

				this.md	=	md;

				this.el	=	el;

		}],

		ngAfterContentInit:	function	()	{

				…

		}

});

From	Chapter	4,	Getting	Started	with	Angular	2	Components	and	Directives,	we	are
already	familiar	with	the	ES5	syntax	used	to	define	components.	Now,	let’s	take	a	look	at
the	constructor	function	of	MarkdownPanel	in	order	to	make	sure	how	we	can	declare	the
dependencies	of	our	components	and	even	classes	in	general.

From	the	preceding	snippet,	we	can	note	that	the	value	of	the	constructor	is	not	a	function
this	time,	but	an	array	instead.	This	might	seem	familiar	to	you	from	AngularJS	1.x,	where
we	are	able	to	declare	the	dependencies	of	the	given	service	by	listing	their	names:

Module.service('UserMapper',

		['User',	'$http',	function	(User,	$http)	{

				//	…

		}]);

Although	the	syntax	in	Angular	2	is	similar,	it	brings	a	lot	of	improvements.	For	instance,
we’re	no	longer	limited	to	using	strings	for	the	dependencies’	tokens.

Now,	let’s	suppose	we	want	to	make	the	Markdown	service	an	optional	dependency.	In	this
case,	we	can	approach	this	by	passing	an	array	of	decorators:

…

.Class({

		constructor:	[[ng.core.Optional(),	Markdown],

				ng.core.ElementRef,	function	(md,	el)	{

						this.md	=	md;

						this.el	=	el;

				}],

		ngAfterContentInit:	function	()	{

				…

		}

});

…

This	way,	by	nesting	arrays,	we	can	apply	a	sequence	of	decorators:
[[ng.core.Optional(),	ng.core.Self(),	Markdown],	...].	In	this	example,	the
@Optional	and	@Self	decorators	will	add	the	associated	metadata	to	the	class	in	the
specified	order.

Although	using	ES5	makes	our	build	simpler	and	allows	us	to	skip	the	intermediate	step	of

transpilation,	which	can	be	tempting,	Google’s	recommendation	is	to	take	advantage	of
static	typing	using	TypeScript.	This	way,	we	have	a	much	clearer	syntax,	which	carries
better	semantics	with	less	typing	and	provides	us	with	great	tooling.

Summary
In	this	chapter,	we	covered	the	DI	mechanism	of	Angular	2.	We	briefly	discussed	the
positives	of	using	dependency	injection	in	our	projects	by	introducing	it	in	the	context	of
the	framework.	The	second	step	in	our	journey	was	how	to	instantiate	and	configure
injectors;	we	also	explained	the	injectors’	hierarchy	and	the	visibility	of	the	registered
providers.	In	order	to	enforce	a	better	separation	of	concerns,	we	mentioned	how	we	can
inject	services	carrying	the	business	logic	of	our	application	in	our	directives	and
components.	The	last	point	we	took	a	look	at	was	how	we	can	use	the	DI	mechanism	with
the	ES5	syntax.

In	the	next	chapter,	we’ll	introduce	the	new	routing	mechanism	of	the	framework.	We’ll
explain	how	we	can	configure	the	component-based	router	and	add	multiple	views	to	our
application.	Another	important	topic	we	are	going	to	cover	is	the	new	form	module.	By
building	a	simple	application,	we	will	demonstrate	how	we	can	create	and	manage	forms.

Chapter	6.	Working	with	the	Angular	2
Router	and	Forms
By	now,	we’re	already	familiar	with	the	core	of	the	framework.	We	know	how	to	define
components	and	directives	in	order	to	develop	the	view	of	our	applications.	We	also	know
how	to	encapsulate	business-related	logic	into	services	and	wire	everything	together	with
the	dependency	injection	mechanism	of	Angular	2.

In	this	chapter,	we’ll	explain	a	few	more	concepts	that	will	help	us	build	real-life	Angular
2	applications.	They	are	as	follows:

The	component-based	router	of	the	framework.
Using	Angular	2	forms.
Developing	template-driven	forms.
Developing	custom	form	validators.

Let’s	begin!

Developing	the	“Coders	repository”
application
In	the	process	of	explaining	the	concepts	mentioned	earlier,	we’ll	develop	a	sample
application	that	contains	a	repository	of	developers.	Before	we	start	coding,	let’s	explain
the	structure	of	the	application.

The	“Coders	repository”	will	allow	its	users	to	add	developers	either	by	filling	a	form	with
details	about	them	or	by	providing	the	GitHub	handle	for	the	developer	and	importing	his
or	her	profile	from	GitHub.

Note
For	the	purpose	of	this	chapter,	we	will	store	information	on	the	developers	in	memory,
which	means	that	after	the	page	is	refreshed,	we’ll	lose	all	the	stored	during	the	session
data.

The	application	will	have	the	following	views:

A	list	of	all	the	developers.
A	view	that	adds	or	imports	new	developers.
A	view	that	shows	the	given	developer’s	details.	This	view	has	two	subviews:

Basic	details:	Shows	the	name	of	the	developer	and	her	or	his	GitHub	avatar	if
available.
Advanced	profile:	Shows	all	the	details	known	for	the	developer.

The	end	result	of	the	home	page	of	the	application	will	look	as	follows:

Fig.	1

Note
In	this	chapter,	we	will	build	only	a	few	of	the	listed	views.	The	rest	of	the	application	will

be	explained	in	Chapter	7,	Explaining	Pipes	and	Communicating	with	RESTful	Services.

Each	developer	will	be	an	instance	of	the	following	class:

//	ch6/ts/multi-page-template-driven/developer.ts

export	class	Developer	{

		public	id:	number;

		public	githubHandle:	string;

		public	avatarUrl:	string;

		public	realName:	string;

		public	email:	string;

		public	technology:	string;

		public	popular:	boolean;

}

All	the	developers	will	reside	within	the	DeveloperCollection	class:

//	ch6/ts/multi-page-template-driven/developer_collection.ts

class	DeveloperCollection	{

		private	developers:	Developer[]	=	[];

		getUserByGitHubHandle(username:	string)	{

				return	this.developers

												.filter(u	=>	u.githubHandle	===	username)

												.pop();

		}

		getUserById(id:	number)	{

				return	this.developers

													.filter(u	=>	u.id	===	id)

													.pop();

		}

		addDeveloper(dev:	Developer)	{

				this.developers.push(dev);

		}

		getAll()	{

				return	this.developers;

		}

}

The	classes	mentioned	here	encapsulate	quite	a	simple	logic	and	don’t	have	anything
Angular	2-specific,	so	we	won’t	get	into	any	details.

Now,	let’s	continue	with	the	implementation	by	exploring	the	new	router.

Exploring	the	Angular	2	router
As	we	already	know,	in	order	to	bootstrap	any	Angular	2	application,	we	need	to	develop
a	root	component.	The	“Coders	repository”	application	is	not	any	different;	the	only
addition	in	this	specific	case	is	that	we	will	have	multiple	pages	that	need	to	be	connected
together	with	the	Angular	2	router.

Let’s	start	with	the	imports	required	for	the	router’s	configuration	and	define	the	root
component	right	after	this:

//	ch6/ts/step-0/app.ts

import	{

		ROUTER_DIRECTIVES,

		ROUTER_PROVIDERS,

		Route,

		Redirect,

		RouteConfig,

		LocationStrategy,

		HashLocationStrategy

}	from	'angular2/router';

In	the	preceding	snippet,	we	imported	a	couple	of	things	directly	from	the	Angular	2
router	module,	which	is	externalized	outside	the	framework’s	core.

With	ROUTER_DIRECTIVES,	the	router	provides	a	set	of	commonly	used	directives	that	we
can	add	to	the	list	of	used	ones	by	the	root	component.	This	way,	we	will	be	able	to	use
them	in	the	templates	later.

The	import	ROUTE_PROVIDERS	contains	a	set	of	router-related	providers,	such	as	one	for
injecting	the	RouteParams	token	into	the	components’	constructors.

The	RouteParams	token	provides	an	access	to	parameters	from	the	route’s	URL	in	order	to
parametrize	the	logic	associated	with	a	given	page.	We’ll	demonstrate	a	typical	use	case	of
this	provider	later.

The	import	LocationStrategy	class	is	an	abstract	class	that	defines	the	common	logic
between	HashLocationStrategy	(used	for	hash-based	routing)	and
PathLocationStrategy	(used	for	HTML5-based	routing	by	taking	advantage	of	the
history	API).

Note
HashLocationStrategy	does	not	support	server-side	rendering.	This	is	due	to	the	fact	that
the	hash	of	the	page	does	not	get	sent	to	the	server,	so	it	cannot	find	out	the	component
associated	with	the	given	page.	All	modern	browsers	except	IE9	support	the	HTML5
history	API.	You	can	find	more	about	server-side	rendering	in	the	last	chapter	of	the	book.

The	last	imports	we	didn’t	take	a	look	at	are	RouteConfig,	which	is	a	decorator	that	allows
us	to	define	the	routes	associated	with	a	given	component;	and	Route	and	Redirect,
which	respectively	allow	us	to	define	the	individual	routes	and	redirects.	With
RouteConfig,	we	can	define	a	hierarchy	of	routes,	which	means	that	the	router	of	Angular

2	supports	nested	routing	out	of	the	box	unlike	its	predecessor	in	AngularJS	1.x.

Defining	the	root	component	and	bootstrapping	the
application
Now,	let’s	define	a	root	component	and	configure	the	application’s	initial	bootstrap:

//	ch6/ts/step-0/app.ts

@Component({

		selector:	'app',

		template:	`…`,

		providers:	[DeveloperCollection],

		directives:	[ROUTER_DIRECTIVES]

})

@RouteConfig([…])

class	App	{}

bootstrap(…);

In	the	preceding	snippet,	you	can	notice	a	syntax	we’re	already	familiar	with	from	Chapter
4,	Getting	Started	with	Angular	2	Components	and	Directives	and	Chapter	5,	Dependency
Injection	in	Angular	2.	We	defined	a	component	with	an	app	selector,	template	that	we’re
going	to	take	a	look	at	later,	and	sets	of	providers	and	directives.

The	App	component	uses	a	single	provider	called	DeveloperCollection.	This	is	the	class
that	contains	all	the	developers	stored	by	the	application.	You	can	notice	that	we	added
ROUTER_DIRECTIVES;	it	contains	an	array	of	all	the	directives	defined	within	the	Angular’s
router.	Some	of	the	directives	within	this	array	allow	us	to	link	to	the	other	routes	defined
within	the	@RouteConfig	decorator	(the	routerLink	directive)	and	declare	the	place	where
the	components	associated	with	the	different	routes	should	be	rendered	(router-outlet).
We’ll	explain	how	we	can	use	them	later	in	this	section.

Now	let’s	take	a	look	at	the	call	of	the	bootstrap	function:

bootstrap(App,	[

		ROUTER_PROVIDERS,

		provide(LocationStrategy,	{	useClass:	HashLocationStrategy	})

)]);

As	the	first	argument	of	bootstrap,	we	pass	the	root	component	of	the	application	as
usual.	The	second	argument	is	a	list	of	providers	that	will	be	accessible	by	the	entire
application.	To	the	set	of	providers,	we	add	ROUTER_PROVIDERS	and	we	also	configure	the
provider	for	the	LocationStrategy	token.	The	default	LocationStrategy	token,	which
Angular	2	uses,	is	PathLocationStrategy	(that	is,	the	HTML5-based	one).	However,	in
this	case,	we	are	going	to	use	the	hash-based	one.

The	two	biggest	advantages	of	the	default	location	strategy	are	that	it	is	supported	by	the
server-rendering	module	of	Angular	2,	and	the	application’s	URL	looks	more	natural	to
the	end	user	(there’s	no	#	used).	On	the	other	hand,	in	case	we	use
PathLocationStrategy,	we	may	need	to	configure	our	application	server,	in	order	to
handle	the	routes	properly.

Using	PathLocationStrategy
If	we	want	to	use	PathLocationStrategy,	we	may	need	to	provide	APP_BASE_HREF.	For
instance,	in	our	case,	the	bootstrap	configuration	should	look	as	follows:

import	{APP_BASE_HREF}	from	'angular2/router';

//...

bootstrap(App,	[

		ROUTER_PROVIDERS,

		//	The	following	line	is	optional,	since	it's

		//	the	default	value	for	the	LocationStrategy	token

		provide(LocationStrategy,	{	useClass:	PathLocationStrategy	}),

		provide(APP_BASE_HREF,	{

				useValue:	'/dist/dev/ch6/ts/multi-page-template-driven/'

		}

)]);

By	default,	the	value	associated	with	the	APP_BASE_HREF	token	is	/;	it	represents	the	base
path	name	inside	of	the	application.	For	instance,	in	our	case,	the	“Coders	repository”	will
be	located	under	the	/ch6/ts/multi-page-template-driven/	directory	(that	is,
http://localhost:5555/dist/dev/ch6/ts/multi-page-template-driven/).

Configuring	routes	with	@RouteConfig
As	the	next	step,	let’s	take	a	look	at	the	route’s	declaration	placed	in	the	@RouteConfig
decorator:

//	ch6/ts/step-0/app.ts

@Component(…)

@RouteConfig([

		new	Route({	component:	Home,	name:	'Home',	path:	'/'	}),

		new	Route({

				component:	AddDeveloper,

				name:	'AddDeveloper',

				path:	'/dev-add'

		}),

		//…

		new	Redirect({

				path:	'/add-dev',

				redirectTo:	['/dev-add']

		})

])	

class	App	{}

As	the	preceding	snippet	shows,	the	@RouteConfig	decorator	accepts	an	array	of	routes	as
an	argument.	In	the	example,	we	defined	two	types	of	routes:	using	the	classes	Route	and
Redirect.	They	are	used	respectively	to	define	the	routes	and	redirects	in	the	application.

Each	route	must	define	the	following	properties:

component:	The	component	associated	with	the	given	route.
name:	The	name	of	the	route	used	for	referencing	it	in	the	templates.
path:	The	path	to	be	used	for	the	route.	It	will	be	visible	in	the	browser’s	location
bar.

Note
The	Route	class	also	supports	a	data	property	whose	value	can	be	injected	in	the
constructor	of	its	associated	component	by	using	the	RouteData	token.	A	sample	use	case
of	the	data	property	could	be	if	we	want	to	inject	different	configuration	objects	based	on
the	type	of	the	parent	component	that	contains	the	@RouteConfig	declaration.

On	the	other	hand,	the	redirect	contains	only	two	properties:

path:	The	path	to	be	used	for	the	redirection.
redirectTo:	The	path	the	user	is	redirected	to.

In	the	previous	example,	we	declared	that	we	want	the	page	opened	by	the	user	with	the
path	/add-dev	to	be	redirected	to	['/dev-add'].

Now,	in	order	to	make	everything	work,	we	need	to	define	the	AddDeveloper	and	Home
components,	which	are	referenced	in	@RouteConfig.	Initially,	we’re	going	to	provide	a
basic	implementation	that	we’ll	incrementally	extend	over	time	along	the	chapter.	In
ch6/ts/step-0,	create	a	file	called	home.ts	and	enter	the	following	content:

import	{Component}	from	'angular2/core';

@Component({

		selector:	'home',

		template:	`Home`

})

export	class	Home	{}

Do	not	forget	to	import	the	Home	component	in	app.ts.	Now,	open	the	file	called
add_developer.ts	and	enter	the	following	content	in	it:

import	{Component}	from	'angular2/core';

@Component({

		selector:	'dev-add',

		template:	`Add	developer`

})

export	class	AddDeveloper	{}

Using	routerLink	and	router-outlet
We	have	the	route’s	declaration	and	all	the	components	associated	with	the	individual
routes.	The	only	thing	left	is	to	define	the	template	of	the	root	App	component	in	order	to
link	everything	together.

Add	the	following	content	to	the	template	property	inside	the	@Component	decorator	in
ch6/ts/step-0/app.ts:

@Component({

		//…

		template:	`

				<nav	class="navbar	navbar-default">

						<ul	class="nav	navbar-nav">

								<a	[routerLink]="['/Home']">Home

								<a	[routerLink]="['/AddDeveloper']">Add	developer

						

				</nav>

				<router-outlet></router-outlet>

		`,

		//…

})

In	the	template	above	there	are	two	Angular	2-specific	directives:

routerLink:	This	allows	us	to	add	a	link	to	a	specific	route.
router-outlet:	This	defines	the	container	where	the	components	associated	with	the
currently	selected	route	need	to	be	rendered.

Let’s	take	a	look	at	the	routerLink	directive.	As	value	it	accepts	an	array	of	route	names
and	parameters.	In	our	case	we	provide	only	a	single	route	name	prefixed	with	slash	(since
this	route	is	on	root	level).	Notice	that	the	route	name	used	by	routerLink	is	declared	by
the	name	property	of	the	route	declaration	inside	@RouteConfig.	Later	in	this	chapter	we’ll
see	how	we	can	link	to	nested	routes	and	pass	route	parameters.

This	directive	allows	us	to	declare	links	independently	from	LocationStrategy	that	we
have	configured.	For	instance,	imagine	we	are	using	HashLocationStrategy;	this	means
that	we	need	to	prefix	all	the	routes	in	our	templates	with	#.	In	case	we	switch	to
PathLocationStrategy,	we’ll	need	to	remove	all	the	hash	prefixes.	Another	huge	benefit
of	routerLink	is	that	it	uses	the	HTML5	history	push	API	transparently	to	us,	which
saves	us	from	a	lot	of	boilerplates.

The	next	directive	from	the	previous	template	that	is	new	to	us	is	router-outlet.	It	has
similar	responsibility	to	the	ng-view	directive	in	AngularJS	1.x.	Basically,	they	both	have
the	same	role:	to	point	out	where	the	target	component	should	be	rendered.	This	means
that	according	to	the	definition,	when	the	user	navigates	to	/,	the	Home	component	will	be
rendered	at	the	position	pointed	out	by	router-outlet,	same	for	the	AddDeveloper
component	once	the	user	navigates	to	/dev-add.

Now	we	have	these	two	routes	up	and	running!	Open
http://localhost:5555/dist/dev/ch6/ts/step-0/	and	you	should	see	the	following

screenshot:

Fig.	2

If	you	don’t,	just	take	a	look	at	ch6/ts/step-1	that	contains	the	end	result.

Lazy-loading	with	AsyncRoute
AngularJS	1.x	modules	allow	us	to	group	together	logically	related	units	in	the
application.	However,	by	default,	they	need	to	be	available	during	the	initial	application’s
bootstrap	and	do	not	allow	deferred	loading.	This	requires	downloading	the	entire
codebase	of	the	application	during	the	initial	page	load	that,	in	case	of	large	single-page
apps,	can	be	an	unacceptable	performance	hit.

In	a	perfect	scenario,	we	would	want	to	load	only	the	code	associated	with	the	page	the
user	is	currently	viewing,	or	to	prefetch	bundled	modules	based	on	heuristics	related	to	the
user’s	behavior,	which	is	out	of	the	scope	of	this	book.	For	instance,	open	the	application
from	the	first	step	of	our	example:	http://localhost:5555/dist/dev/ch6/ts/step-1/.
Once	the	user	is	at	/,	we	only	need	the	Home	component	to	be	available,	and	once	he	or	she
navigates	to	/dev-add,	we	want	to	load	the	AddDeveloper	component.

Let’s	inspect	what	is	actually	going	on	in	Chrome	DevTools:

Fig.	3

We	can	notice	that	during	the	initial	page	load,	we	downloaded	the	components	associated
with	all	the	routes,	even	AddDeveloper	that	is	not	required.	This	happens	because	in
app.ts,	we	explicitly	require	both	the	Home	and	the	AddDeveloper	components	and	use
them	in	the	@RouteConfig	declaration.

In	this	specific	case,	loading	both	the	components	may	not	seem	like	a	big	problem,
because	at	this	step,	they	are	pretty	simple	and	do	not	have	any	dependencies.	However,	in
real-life	applications,	they	will	have	imports	of	other	directives,	components,	pipes,
services,	or	even	third-party	libraries.	Once	any	of	the	components	is	required,	its	entire

dependency	graph	will	be	downloaded,	even	if	the	component	is	not	needed	at	that	point.

The	router	of	Angular	2	comes	with	a	solution	to	this	problem.	All	we	need	to	do	is	import
the	AsyncRoute	class	from	the	angular2/router	module	and	use	it	inside	@RouteConfig
instead	of	using	Route:

//	ch6/ts/step-1-async/app.ts

import	{AsyncRoute}	from	'angular2/router';

@Component(…)

@RouteConfig([

		new	AsyncRoute({

				loader:	()	=>

						System.import('./home')

								.then(m	=>	m.Home),

						name:	'Home',

						path:	'/'

				}),

		new	AsyncRoute({

				loader:	()	=>

						System.import('./add_developer')

								.then(m	=>	m.AddDeveloper),

						name:	'AddDeveloper',

						path:	'/dev-add'

				}),

				new	Redirect({	path:	'/add-dev',	redirectTo:	['/dev-add']	})

])

class	App	{}

The	constructor	of	the	AsyncRoute	class	accepts	as	an	argument	an	object	with	the
following	properties:

loader:	A	function	that	returns	a	promise	that	needs	to	be	resolved	with	the
component	associated	with	the	given	route.
name:	The	name	of	the	route	that	can	be	used	to	refer	to	it	in	the	templates	(usually,
inside	of	the	routerLink	directive).
path:	The	path	of	the	route.

Once	the	user	navigates	to	a	route	that	matches	any	of	the	async	routes’	definitions	in	the
@RouteConfig	decorator,	its	associated	loader	will	be	invoked.	When	the	promise	returned
by	the	loader	is	resolved	with	a	value	of	the	target	component,	the	component	will	be
cached	and	rendered.	Next	time	the	user	navigates	to	the	same	route,	the	cached
component	will	be	used,	so	the	routing	module	won’t	download	the	same	component
twice.

Note
Notice	that	the	preceding	example	uses	System,	however,	Angular’s	AsyncRoute
implementation	is	not	coupled	to	any	particular	module	loader.	The	same	result	could	be
achieved,	for	instance,	with	require.js.

Using	Angular	2	forms
Now	let’s	continue	with	the	implementation	of	the	application.	For	the	next	step,	we’ll
work	on	the	AddDeveloper	and	Home	components.	You	can	continue	your	implementation
by	extending	what	you	currently	have	in	ch6/ts/step-0,	or	if	you	haven’t	reached	step	1
yet,	you	can	keep	working	on	the	files	in	ch6/ts/step-1.

Angular	2	offers	two	ways	to	develop	forms	with	validation:

A	template-driven	approach:	Provides	a	declarative	API	where	we	declare	the
validations	into	the	template	of	the	component.
A	model-driven	approach:	Provides	an	imperative	API	with	FormBuilder.

In	the	next	chapter,	we’ll	explore	both.	Let’s	start	with	the	template-driven	approach.

Developing	template-driven	forms
Forms	are	essential	for	each	CRUD	(Create	Retrieve	Update	and	Delete)	application.	In
our	case,	we	want	to	build	a	form	for	entering	the	details	of	the	developers	we	want	to
store.

By	the	end	of	this	section,	we’ll	have	a	form	that	allows	us	to	enter	the	real	name	of	a
given	developer,	to	add	his	or	her	preferred	technology,	enter	an	e-mail,	and	declare
whether	she	or	he	is	popular	in	the	community	or	not	yet.	The	end	result	will	look	as
follows:

Fig.	4

Add	the	following	imports	to	add_developer.ts:

import	{

		FORM_DIRECTIVES,

		FORM_PROVIDERS

}	from	'angular2/common;

The	next	thing	we	need	to	do	is	add	FORM_DIRECTIVES	to	the	list	of	directives	used	by	the
AddDeveloper	component.	The	FORM_DIRECTIVES	directives	contains	a	set	of	predefined
directives	for	managing	Angular	2	forms,	such	as	the	form	and	ngModel	directives.

The	FORM_PROVIDERS	is	an	array	with	a	predefined	set	of	providers	that	we	can	use	for
injecting	the	values	associated	with	their	tokens	in	the	classes	of	our	application.

Now	update	the	AddDeveloper	implementation	to	the	following:

@Component({

		selector:	'dev-add',

		templateUrl:	'./add_developer.html',

		styles:	[…],

		directives:	[FORM_DIRECTIVES],

		providers:	[FORM_PROVIDERS]

})

export	class	AddDeveloper	{

		developer	=	new	Developer();

		errorMessage:	string;

		successMessage:	string;

		submitted	=	false;

		technologies:	string[]	=	[

				'JavaScript',

				'C',

				'C#',

				'Clojure'

];

		constructor(private	developers:	DeveloperCollection)	{}

		addDeveloper()	{}

}

The	developer	property	contains	the	information	associated	with	the	current	developer
that	we’re	adding	with	the	form.	The	last	two	properties,	errorMessage	and
successMessage,	are	going	to	be	used	respectively	for	displaying	the	current	form’s	error
or	success	messages	once	the	developer	has	been	successfully	added	to	the	developers
collection,	or	an	error	has	occurred.

Digging	into	the	template-driven	form’s	markup
As	the	next	step,	let’s	create	the	template	of	the	AddDeveloper	component	(step-
1/add_developer.html).	Add	the	following	content	to	the	file:

<span	*ngIf="errorMessage"

							class="alert	alert-danger">{{errorMessage}}

<span	*ngIf="successMessage"

							class="alert	alert-success">{{successMessage}}

These	two	elements	are	intended	to	display	the	error	and	success	messages	when	adding	a
new	developer.	They	are	going	to	be	visible	when	errorMessage	and	successMessage
respectively	have	non-falsy	values	(that	is,	something	different	from	the	empty	string,
false,	undefined,	0,	NaN,	or	null).

Now	let’s	develop	the	actual	form:

<form	#f="ngForm"	(ngSubmit)="addDeveloper()"

						class="form	col-md-4"	[hidden]="submitted">

		<div	class="form-group">

				<label	class="control-label"

											for="realNameInput">Real	name</label>

				<div>

						<input	id="realNameInput"	class="form-control"

													type="text"	ngControl="realName"	required

													[(ngModel)]="developer.realName">

				</div>

		</div>

		<button	class="btn	btn-default"

										type="submit"	[disabled]="!f.form.valid">Add</button>

		<!--	MORE	CODE	TO	BE	ADDED	-->

</form>	

We	declare	a	new	form	using	the	HTML	form	tag.	Once	Angular	2	finds	such	tags	in	a
template	with	an	included	form	directive	in	the	parent	component,	it	will	automatically
enhance	its	functionality	in	order	to	be	used	as	an	Angular	form.	Once	the	form	is
processed	by	Angular,	we	can	apply	form	validation	and	data-bindings.	After	this,	using
#f="ngForm",	we	will	define	a	local	variable	for	the	template	called	f,	which	allows	us	to
reference	to	the	current	form.	The	last	thing	left	from	the	form	element	is	the	submit	event
handler.	We	use	a	syntax	that	we’re	already	familiar	with	(ngSubmit)="expr",	where	in
this	case,	the	value	of	the	expression	is	the	call	of	the	addDeveloper	method	attached	to
the	component’s	controller.

Now,	let’s	take	a	look	at	the	div	element	with	class	name	control-group.

Note
Note	that	this	is	not	an	Angular-specific	class;	it	is	a	CSS	class	defined	by	Bootstrap	that
we	use	in	order	to	provide	a	better	look	and	feel	to	the	form.

Inside	of	it,	we	can	find	a	label	element	that	doesn’t	have	any	Angular-specific	markup
and	an	input	element	that	allows	us	to	set	the	real	name	of	the	current	developer.	We	set
the	control	to	be	of	a	type	text	and	declare	its	identifier	to	equal	realNameInput.	The

required	attribute	is	defined	by	the	HTML5	specification	and	is	used	for	validation.	By
using	it	on	the	element,	we	declare	that	it	is	required	for	this	element	to	have	a	value.
Although	this	attribute	is	not	Angular-specific	using	the	ngControl	attribute,	Angular	will
extend	the	semantics	of	the	required	attribute	by	including	validation	behavior.	This
behavior	includes	setting	specific	CSS	classes	on	the	control	when	its	status	changes	and
managing	its	state	that	the	framework	keeps	internally.

The	ngControl	directive	is	a	selector	of	the	NgControlName	directive.	It	enhances	the
behavior	of	the	form	controls	by	running	validation	over	them	for	the	change	of	their
values,	and	applying	specific	classes	during	the	controls’	life	cycle.	You	might	be	familiar
with	this	from	AngularJS	1.x	where	the	form	controls	are	decorated	with	the	ng-pristine,
ng-invalid,	and	ng-valid	classes,	and	so	on,	in	specific	phases	of	their	lifecycle.

The	following	table	summarizes	the	CSS	classes	that	the	framework	adds	to	the	form
controls	during	their	lifecycle:

Classes Description

ng-untouched The	control	hasn’t	been	visited

ng-touched The	control	has	been	visited

ng-pristine The	control’s	value	hasn’t	been	changed

ng-dirty The	control’s	value	has	been	changed

ng-valid All	the	validators	attached	to	the	control	have	returned	true

ng-invalid Any	of	the	validators	attached	to	the	control	has	a	false	value

According	to	this	table,	we	can	define	that	we	want	all	the	input	controls	with	invalid
value	to	have	a	red	border	in	the	following	way:

input.ng-dirty.ng-invalid	{

		border:	1px	solid	red;

}

The	exact	semantics	behind	the	preceding	CSS	in	the	context	of	Angular	2	is	to	use	a	red
border	for	all	the	input	elements	whose	values	have	been	changed	and	are	invalid
according	to	the	validators	attached	to	them.

Now,	let’s	explore	how	we	can	attach	different	validation	behavior	to	our	controls.

Using	the	built-in	form	validators
We	already	saw	that	we	can	alter	validation	behavior	to	any	control	by	using	the	required
attribute.	Angular	2	provides	two	more	built-in	validators,	as	follows:

minlength:	Allows	us	to	specify	the	minimum	length	of	the	value	that	a	given
control	should	have.
maxlength:	Allows	us	to	specify	the	maximum	length	of	the	value	that	a	given
control	should	have.

These	validators	are	defined	with	Angular	2	directives	and	can	be	used	in	the	following
way:

<input	id="realNameInput"	class="form-control"

							type="text"	ngControl="realName"

							minlength="2"

							maxlength="30">

This	way,	we	specify	that	we	want	the	value	of	the	input	to	be	between	2	and	30
characters.

Defining	custom	control	validators
Another	data	property	defined	in	the	Developer	class	is	the	email	field.	Let’s	add	an	input
field	for	this	property.	Above	the	button	in	the	preceding	form,	add	the	following	markup:

<div	class="form-group">

		<label	class="control-label"	for="emailInput">Email</label>

		<div>

				<input	id="emailInput"

											class="form-control"

											type="text"	ngControl="email"

					[(ngModel)]="developer.email"/>

		</div>

</div>

We	can	think	of	the	[(ngModel)]	attribute	as	an	alternative	to	the	ng-model	directive	from
AngularJS	1.x.	We	will	explain	it	in	detail	in	the	Two-way	data	binding	with	Angular	2
section.

Although	Angular	2	provides	a	set	of	predefined	validators,	they	are	not	enough	for	all	the
various	formats	our	data	can	live	in.	Sometimes,	we’ll	need	custom	validation	logic	for
our	application-specific	data.	For	instance,	in	this	case,	we	want	to	define	an	e-mail
validator.	A	typical	regular	expression,	which	works	in	general	cases	(but	does	not	cover
the	entire	specification	that	defines	the	format	of	the	e-mail	addresses),	looks	as	follows:
/^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$/.

In	ch6/ts/step-1/add_developer.ts,	define	a	function	that	accepts	an	instance	of
Angular	2	control	as	an	argument	and	returns	null	if	the	control’s	value	is	empty	or
matches	the	regular	expression	mentioned	earlier,	and	{	'invalidEmail':	true	}
otherwise:

function	validateEmail(emailControl)	{

		if	(!emailControl.value	||

				/^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-

9-.]+$/.test(emailControl.value))	{

				return	null;

		}	else	{

				return	{	'invalidEmail':	true	};

		}

}

Now,	from	the	modules	angular2/common	and	angular2/core	import	NG_VALIDATORS	and
Directive,	and	wrap	this	validation	function	within	the	following	directive:

@Directive({

		selector:	'[email-input]',

		providers:	[provide(NG_VALIDATORS,	{

				useValue:	validateEmail,	multi:	true

		})]

})

class	EmailValidator	{}

In	the	preceding	code,	we	defined	a	single	multiprovider	for	the	token	NG_VALIDATORS.

Once	we	inject	the	value	associated	with	this	token,	we’ll	get	an	array	with	all	the
validators	attached	to	the	given	control	(for	reference,	take	a	look	at	the	section	for
multiproviders	in	Chapter	5,	Dependency	Injection	in	Angular	2).

The	only	two	steps	left	in	order	to	make	our	custom	validation	work	are	to	first	add	the
email-input	attribute	to	the	e-mail	control:

<input	id="emailInput"

			class="form-control"

			email-input

			type="text"	ngControl="email"

			[(ngModel)]="developer.email"/>

Next,	to	add	the	directive	to	the	list	used	by	the	component	AddDeveloper	directives:

@Component({

		selector:	'dev-add',

		templateUrl:	'./add_developer.html',

		styles:	[`

				input.ng-touched.ng-invalid	{

						border:	1px	solid	red;

				}

		`],

		directives:	[FORM_DIRECTIVES,	EmailValidator],

		providers:	[FORM_PROVIDERS]

})

class	AddDeveloper	{…}

Note
We’re	using	an	external	template	for	the	AddDeveloper	control.	There’s	no	ultimate
answer	to	whether	a	given	template	should	be	externalized	or	inlined	within	the
component	with	templateUrl	or	template,	respectively.	The	best	practice	states	that	we
should	inline	the	short	templates	and	externalize	the	longer	ones,	but	there’s	no	specific
definition	as	to	which	templates	are	considered	short	and	which	are	long.	The	decision	on
whether	the	template	should	be	used	inline	or	put	into	an	external	file	depends	on	the
developer’s	personal	preferences	or	common	conventions	within	the	organization.

Using	select	inputs	with	Angular
As	the	next	step,	we	should	allow	the	user	of	the	application	to	enter	the	technology	into
which	the	input	developer	has	the	most	proficiency.	We	can	define	a	list	of	technologies
and	show	them	in	the	form	as	a	select	input.

In	the	AddDeveloper	class,	add	the	technologies	property:

class	AddDeveloper	{

		…

		technologies:	string[]	=	[

				'JavaScript',

				'C',

				'C#',

				'Clojure'

];

		…

}

Now	in	the	template,	just	above	the	submit	button,	add	the	following	markup:

<div	class="form-group">

		<label	class="control-label"

									for="technologyInput">Technology</label>

		<div>

				<select	class="form-control"

												ngControl="technology"	required

												[(ngModel)]="developer.technology">

								<option	*ngFor="#t	of	technologies"

																[value]="t">{{t}}</option>

				</select>

		</div>

</div>

Just	like	for	the	input	elements	we	declared	earlier,	Angular	2	will	add	the	same	classes
depending	on	the	state	of	the	select	input.	In	order	to	show	red	border	around	the	select
element	when	its	value	is	invalid,	we	need	to	alter	the	CSS	rules:

@Component({

		…

		styles:	[

				`input.ng-touched.ng-invalid,

					select.ng-touched.ng-invalid	{

						border:	1px	solid	red;

				}`

],

		…

})

class	AddDeveloper	{…}

Note
Notice	that	inlining	all	the	styles	in	our	components’	declaration	could	be	a	bad	practice,
because	this	way,	they	won’t	be	reusable.	What	we	can	do	is	extract	all	the	common	styles
across	our	components	into	separate	files.	The	@Component	decorator	has	a	property	called

styleUrls	of	type	array	where	we	can	add	a	reference	to	the	extracted	styles	used	by	the
given	component.	This	way,	we	can	inline	only	the	component-specific	styles	if	required.

Right	after	this,	we	will	declare	the	name	of	the	control	to	be	equal	to	“technology”	using
ngControl="technology".	By	using	the	required	attribute,	we	will	declare	that	the	user
of	the	application	must	specify	the	technology	into	which	the	current	developer	is
proficient.	Let’s	skip	the	[(ngModel)]	attribute	for	the	last	time	and	see	how	we	can
define	the	select	element’s	options.

Inside	the	select	element,	we	will	define	the	different	options	using:

<option	*ngFor="#t	of	technologies"

								[value]="t">{{t}}</option>

This	is	a	syntax	we’re	already	familiar	with.	We	will	simply	iterate	over	all	the
technologies	defined	within	the	AddDeveloper	class,	and	for	each	technology,	we	will
show	an	option	element	with	a	value	of	the	technology	name.

Using	the	NgForm	directive
We	already	mentioned	that	the	form	directive	enhances	the	HTML5	form’s	behavior	by
adding	some	additional	Angular	2-specific	logic.	Now,	let’s	take	a	step	back	and	take	a
look	at	the	form	that	surrounds	the	input	elements:

<form	#f="ngForm"	(ngSubmit)="addDeveloper()"

						class="form	col-md-4"	[hidden]="submitted">

		…

</form>

In	the	preceding	snippet,	we	defined	a	new	identifier	called	f,	which	references	to	the
form.	We	can	think	of	the	form	as	a	composition	of	controls;	we	can	access	the	individual
controls	through	the	form’s	controls	property.	On	top	of	this,	the	form	has	the	touched,
untouched,	pristine,	dirty,	invalid,	and	valid	properties,	which	depend	on	the	individual
controls	defined	within	the	form.	For	example,	if	none	of	the	controls	within	the	form	has
been	touched,	then	the	form	itself	is	going	to	be	with	the	status	untouched.	However,	if
any	of	the	controls	in	the	form	has	been	touched	at	least	once,	the	form	will	be	with	the
status	touched	as	well.	Similarly	the	form	will	be	valid	only	if	all	its	controls	are	valid.

In	order	to	illustrate	the	usage	of	the	form	element,	let’s	define	a	component	with	the
selector	control-errors,	which	shows	the	current	errors	for	a	given	control.	We	can	use
it	in	the	following	way:

<label	class="control-label"	for="realNameInput">Real	name</label>

<div>

		<input	id="realNameInput"	class="form-control"	type="text"

					ngControl="realName"	[(ngModel)]="developer.realName"

									required	maxlength="50">

		<control-errors	control="realName"

				[errors]="{

						'required':	'Real	name	is	required',

						'maxlength':	'The	maximum	length	of	the	real	name	is	50	characters'

						}"

			/>

</div>

Notice	that	we’ve	also	added	the	maxlength	validator	to	the	realName	control.

The	control-errors	element	has	the	following	properties:

control:	Declares	the	name	of	the	control	we	want	to	show	errors	for.
errors:	Creates	a	mapping	between	control	error	and	an	error	message.

Now	add	the	following	imports	in	add_developer.ts:

import	{NgControl,	NgForm}	from	'angular2/common';

import	{Host}	from	'angular2/core';

In	these	imports,	the	NgControl	class	is	the	abstract	class	that	represents	the	individual
form	components,	NgForm	represents	the	Angular	forms,	and	Host	is	a	parameter	decorator
related	to	the	dependency	injection	mechanism,	which	we	already	covered	in	Chapter	5,
Dependency	Injection	in	Angular	2.

Here	is	a	part	of	the	component’s	definition:

@Component({

		template:	'<div>{{currentError}}</div>',

		selector:	'control-errors',

		inputs:	['control',	'errors']

})

class	ControlErrors	{

		errors:	Object;

		control:	string;

		constructor(@Host()	private	formDir:	NgForm)	{}

		get	currentError()	{…}

}

The	ControlErrors	component	defines	two	inputs:	control—the	name	of	the	control
declared	with	the	ngControl	directive	(the	value	of	the	ngControl	attribute)—and	errors
—the	mapping	between	an	error	and	an	error	message.	They	can	be	specified	respectively
by	the	control	and	the	errors	attributes	of	the	control-errors	element.

For	instance,	if	we	have	control:

<input	type="text"	ngControl="foobar"	required	/>

We	can	declare	its	associated	control-errors	component	by	using	the	following:

<control-errors	control="foobar"

						[errors]="{

							'required':	'The	value	of	foobar	is	required'

						}"></control-errors>

Inside	of	the	currentError	getter,	in	the	preceding	snippet,	we	need	to	do	the	following
two	things:

Find	a	reference	to	the	component	declared	with	the	control	attribute.
Return	the	error	message	associated	with	any	of	the	errors	that	make	the	current
control	invalid.

Here	is	a	snippet	that	implements	this	behavior:

@Component(…)

class	ControlErrors	{

		…

		get	currentError()	{

				let	control	=	this.formDir.controls[this.control];

				let	errorsMessages	=	[];

				if	(control	&&	control.touched)	{

						errorsMessages	=	Object.keys(this.errors)

								.map(k	=>	control.hasError(k)	?	this.errors[k]	:	null)

								.filter(error	=>	!!error);

				}

				return	errorsMessages.pop();

		}

}

In	the	first	line	of	the	implementation	of	currentError,	we	get	the	target	control	by	using
the	controls	property	of	the	injected	form.	It	is	of	the	type	{[key:	string]:

AbstractControl},	where	the	key	is	the	name	of	the	control	we’ve	declared	with	the
ngControl	directive.	Once	we	have	a	reference	to	the	instance	of	the	target	control,	we
can	check	whether	its	status	is	touched	(that	is,	whether	it	has	been	focused),	and	if	it	is,
we	can	loop	over	all	the	errors	within	the	errors	property	of	the	instance	of
ControlError.	The	map	function	will	return	an	array	with	either	an	error	message	or	a
null	value.	The	only	thing	left	is	to	filter	all	the	null	values	and	get	only	the	error
messages.	Once	we	get	the	error	messages	for	each	error,	we	will	return	the	last	one	by
popping	it	from	the	errorMessages	array.

The	end	result	should	look	as	follows:

Fig.	5

If	you	experience	any	problems	during	the	implementation	of	the	ControlErrors
component,	you	can	take	a	look	at	its	implementation	at	ch6/ts/multi-page-template-
driven/add_developer.ts.

The	hasError	method	of	every	control	accepts	as	an	argument	an	error	message	identifier,
which	is	defined	by	the	validator.	For	instance,	in	the	preceding	example	where	we
defined	the	custom	e-mail	validator,	we	will	return	the	following	object	literal	when	the
input	control	has	an	invalid	value:	{	'invalidEmail':	true	}.	If	we	apply	the
ControlErrors	component	to	the	e-mail	control,	its	declaration	should	look	as	follows:

		<control-errors	control="email"

				[errors]="{	'invalidEmail':	'Invalid	email	address'	}"/>

Two-way	data-binding	with	Angular	2
One	of	the	most	famous	rumors	about	Angular	2	was	that	the	two-way	data-binding
functionality	was	removed	because	of	the	enforced	unidirectional	dataflow.	This	is	not
exactly	true;	the	Angular	2’s	form	module	implements	a	directive	with	the	selector
[(ngModel)],	which	allows	us	to	easily	achieve	data-binding	in	two	directions—from	the
view	to	the	model	and	from	the	model	to	the	view.

Let’s	take	a	look	at	the	following	simple	component:

//	ch6/ts/simple-two-way-data-binding/app.ts

import	{Component}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

import	{NgModel}	from	'angular2/common';

@Component({

		selector:	'app',

		directives:	[NgModel],

		template:	`

				<input	type="text"	[(ngModel)]="name"/>

				<div>{{name}}</div>

		`,

})

class	App	{

		name:	string;

}

bootstrap(App,	[]);

In	the	preceding	example,	we	imported	the	directive	NgModel	from	the	angular2/common
package.	Later,	in	the	template,	we	set	the	attribute	[(ngModel)]	to	the	value	name.

At	first,	the	syntax	[(ngModel)]	might	seem	a	little	bit	unusual.	From	Chapter	4,	Getting
Started	with	Angular	2	Components	and	Directives,	we	know	that	the	syntax	(eventName)
is	used	for	binding	to	events	(or	outputs)	triggered	by	a	given	component.	On	the	other
hand,	we	use	the	syntax	[propertyName]="foobar"	to	achieve	one-way	data-binding	by
setting	the	value	of	the	property	(or	in	the	terminology	of	the	Angular	2	components,	the
input)	with	the	name	propertyName	to	the	result	of	the	evaluation	of	the	expression
foobar.	The	syntax	NgModel	just	combines	both	in	order	to	achieve	data-binding	in	two
directions.	That’s	why	we	can	think	of	it	more	like	a	syntax	sugar,	rather	than	a	new
concept.	One	of	the	main	advantages	of	this	syntax	compared	to	AngularJS	1.x	is	that	we
can	tell	which	bindings	are	one-way	and	which	are	two-way	only	by	looking	at	the
template.

Note
Just	like	(click)	has	its	canonical	syntax	on-click	and	[propertyName]	has	bind-
propertyName,	the	alternative	syntax	of	[(ngModel)]	is	bindon-ngModel.

If	you	open	http://localhost:5555/dist/dev/ch6/ts/simple-two-way-data-

binding/,	you	will	see	the	following	result:

Fig.	6

Once	you	change	the	value	of	the	input	box,	it	will	automatically	update	the	following
label.

We	already	used	the	NgModel	directive	in	the	preceding	templates.	For	example,	we	bound
to	the	developer’s	e-mail	using:

<input	id="emailInput"

							class="form-control"	type="text"

							ngControl="email"	[(ngModel)]="developer.email"

							email-input/>

This	way,	the	value	of	the	e-mail	property	of	the	developer	object	attached	to	the
AddDeveloper	component’s	instance	is	going	to	be	updated	once	we	change	the	value	of
the	text	input.

Storing	the	form	data
Let’s	peek	at	the	interface	of	the	AddDeveloper	component’s	controller	again:

export	class	AddDeveloper	{

		submitted:	false;

		successMessage:	string;

		developer	=	new	Developer();

		//…

		constructor(private	developers:	DeveloperCollection)	{}

		addDeveloper(form)	{…}

}

It	has	a	field	of	the	type	Developer,	and	we	bind	the	form	controls	to	its	properties	using
the	NgModel	directive.	The	class	also	has	a	method	called	addDeveloper,	which	is	being
invoked	on	the	submission	of	the	form.	We	declare	this	by	binding	to	the	submit	event
using:

<!--	ch6/ts/multi-page-template-driven/add_developer.html	-->

<form	#f="form"	(ngSubmit)="addDeveloper()"

						class="form	col-md-4"	[hidden]="submitted">

		…

		<button	class="btn	btn-default"

						type="submit"	[disabled]="!f.form.valid">Add</button>

</form>

In	the	preceding	snippet,	we	can	notice	two	more	things.	We	got	a	reference	to	the	form
using	#f="ngForm"	and	we	bound	the	disabled	property	of	the	button	to	the	expression:
!f.form.valid.	We	already	described	the	NgForm	control	in	the	previous	section;	its	valid
property	will	have	a	value	true	once	all	the	controls	within	the	form	have	valid	values.

Now,	let’s	suppose	we’ve	entered	valid	values	for	all	the	input	controls	in	the	form.	This
means	that	its	submit	button	will	be	enabled.	Once	we	press	Enter	or	we	click	on	the	Add
button,	the	addDeveloper	method	will	be	invoked.	The	following	is	a	sample
implementation	of	this	method:

class	AddDeveloper	{

		//…

addDeveloper()	{

				this.developer.id	=	this.developers.getAll().length	+	1;

				this.developers.addDeveloper(this.developer);

				this.successMessage	=	`Developer	${this.developer.realName}	was	

successfully	added`;

				this.submitted	=	true;

		}

Initially,	we	set	the	id	property	of	the	current	developer	to	equal	the	total	number	of
developers	in	DeveloperCollection,	plus	one.	Later,	we	added	the	developer	to	the
collection	and	set	the	value	of	the	successMessage	property.	Right	after	this,	we	set	the
property	submitted	to	equal	to	true,	which	will	result	in	hiding	the	form.

Listing	all	the	stored	developers
Now	that	we	can	add	a	new	entry	to	the	developers’	collection,	let’s	show	a	list	of	all	the
developers	on	the	front	page	of	the	“Coders	repository”.

Open	the	file	ch6/ts/step-1/home.ts	and	enter	the	following	content:

import	{Component}	from	'angular2/core';

import	{DeveloperCollection}	from	'./developer_collection';

@Component({

		selector:	'home',

		templateUrl:	'./home.html'

})

export	class	Home	{

		constructor(private	developers:	DeveloperCollection)	{}

		getDevelopers()	{

				return	this.developers.getAll();

		}

}

There	is	nothing	new	to	us	here.	We	extend	the	functionality	of	the	Home	component	by
providing	an	external	template	and	implementing	the	getDevelopers	method,	which
delegates	its	call	to	the	instance	of	DeveloperCollection	that	is	injected	in	the
constructor.

The	template	itself	is	something	that	we’re	already	familiar	with	as	well:

<table	class="table"	*ngIf="getDevelopers().length	>	0">

		<thead>

				<th>Email</th>

				<th>Real	name</th>

				<th>Technology</th>

				<th>Popular</th>

		</thead>

		<tr	*ngFor="#dev	of	getDevelopers()">

				<td>{{dev.email}}</td>

				<td>{{dev.realName}}</td>

				<td>{{dev.technology}}</td>

				<td	[ngSwitch]="dev.popular">

						Yes

						Not	yet

				</td>

		</tr>

</table>

<div	*ngIf="getDevelopers().length	==	0">

		There	are	no	any	developers	yet

</div>

We	list	all	the	developers	as	rows	within	an	HTML	table.	For	each	developer,	we	check
the	status	of	its	popular	flag.	If	its	value	is	true,	then	for	the	Popular	column,	we	show	a
span	with	the	text	Yes,	otherwise	we	set	the	text	to	No.

When	you	enter	a	few	developers	in	the	Add	Developer	page	and	you	navigate	to	the

home	page	after	that,	you	should	see	a	result	similar	to	the	following	screenshot:

Fig.	7

Note
You	can	find	the	complete	functionality	of	the	application	at	ch6/ts/multi-page-
template-driven.

Summary
So	far,	we	have	explained	the	basics	of	routing	in	Angular	2.	We	took	a	look	at	how	we
can	define	different	routes	and	implement	the	components	associated	with	them	that	are
displayed	on	route	change.	In	order	to	link	to	the	different	routes,	we	explained
routerLink,	and	we	also	used	the	router-outlet	directives	for	pointing	out	where	the
components	associated	with	the	individual	routes	should	be	rendered.

Another	thing	we	took	a	look	at	was	the	Angular	2	forms	functionality	with	built-in	and
custom	validation.	After	this,	we	explained	the	NgModel	directive,	which	provides	to	us
two-way	data-binding.

In	the	next	chapter,	we	will	cover	how	we	can	develop	model-driven	forms	and	child	and
parametrized	routes,	use	the	Http	module	for	making	RESTful	calls,	and	transform	data
with	custom	pipes.

Chapter	7.	Explaining	Pipes	and
Communicating	with	RESTful	Services
In	the	last	chapter,	we	covered	some	very	powerful	features	of	the	framework.	However,
we	can	go	even	deeper	into	the	functionality	of	Angular’s	forms	module	and	router.	In	the
next	sections,	we’ll	explain	how	we	can:

Develop	model-driven	forms.
Define	parameterized	routes.
Define	child	routes.
Use	the	Http	module	for	communication	with	RESTful	APIs.
Transform	data	with	custom	pipes.

We	will	explore	all	these	concepts	in	the	process	of	extending	the	functionality	of	the
“Coders	repository”	application.	At	the	beginning	of	the	previous	chapter,	we	mentioned
that	we’re	going	to	allow	import	of	developers	from	GitHub.	But	before	we	implement
this	feature,	let’s	extend	the	functionality	of	the	form.

Developing	model-driven	forms	in
Angular	2
These	are	going	to	be	the	last	steps	in	finishing	the	“Coders	repository”.	You	can	build	on
top	of	the	code	at	ch6/ts/step-1/	(or	ch6/ts/step-2	depending	on	your	previous	work)
in	order	to	extend	the	application’s	functionality	with	the	new	concepts	we’re	going	to
cover.	The	complete	example	is	located	at	ch7/ts/multi-page-model-driven.

This	is	the	result	that	we	are	going	to	achieve	by	the	end	of	this	section:

In	the	preceding	screenshot,	there	are	the	following	two	forms:

A	form	for	importing	existing	users	from	GitHub	that	contains:

The	input	for	the	GitHub	handle.
A	checkbox	that	points	out	whether	we	want	to	import	the	developer	from
GitHub	or	enter	it	manually.

A	form	for	entering	new	users	manually.

The	second	form	looks	exactly	the	way	we	finished	it	in	the	last	section.	However,	this

time,	its	definition	looks	a	little	bit	different:

<form	class="form	col-md-4"

						[ngFormModel]="addDevForm"	[hidden]="submitted">

		<!--	TODO	-->

</form>

Notice	that	this	time,	we	don’t	have	the	submit	handler	or	the	#f="ngForm"	attribute.
Instead,	we	use	the	[ngFormModel]	attribute	in	order	to	bind	to	a	property	defined	inside
the	component’s	controller.	By	using	this	attribute,	we	can	bind	to	something	called
ControlGroup.	As	its	name	states,	the	ControlGroup	class	consists	of	a	list	of	controls
grouped	together	with	the	sets	of	validation	rules	associated	with	them.

We	need	to	use	a	similar	declaration	to	import	a	developer	form.	However,	this	time,	we
will	provide	a	different	value	of	the	[ngFormModel]	attribute,	since	we	are	going	to	define
a	different	control	group	in	the	component’s	controller.	Place	the	following	snippet	above
the	form	we	introduced	earlier:

<form	class="form	col-md-4"

			[ngFormModel]="importDevForm"	[hidden]="submitted">

<!--	TODO	-->

</form>

Now,	let’s	declare	the	importDevForm	and	addDevForm	properties	in	the	component’s
controller:

import	{ControlGroup}	from	'angular2/common';

@Component(…)

export	class	AddDeveloper	{

		importDevForm:	ControlGroup;

		addDevForm:	ControlGroup;

		…

		constructor(private	developers:	DeveloperCollection,

				fb:	FormBuilder)	{…}

		addDeveloper()	{…}

}

Initially,	we	imported	the	ControlGroup	class	from	the	angular2	module	and,	later,
declared	the	required	properties	in	the	controller.	Let’s	also	notice	that	we	have	one
additional	parameter	of	the	constructor	of	AddDeveloper	called	fb	of	the	type
FormBuilder.

FormBuilder	provides	a	programmable	API	for	the	definition	of	ControlGroups	where	we
can	attach	validation	behavior	to	each	control	in	the	group.	Let’s	use	the	FormBulder
instance	for	the	initialization	of	the	importDevForm	and	addDevForm	properties:

…

constructor(private	developers:	DeveloperCollection,

		fb:	FormBuilder)	{

		this.importDevForm	=	fb.group({

				githubHandle:	['',	Validators.required],

				fetchFromGitHub:	[false]

		});

		this.addDevForm	=	fb.group({

				realName:	['',	Validators.required],

				email:	['',	validateEmail],

				technology:	['',	Validators.required],

				popular:	[false]

		});

}

…

The	FormBuilder	instance	has	a	method	called	group	that	allows	us	to	define	properties,
such	as	the	default	values	and	the	validators	for	the	individual	controls	in	a	given	form.

According	to	the	preceding	snippet,	importDevForm	has	two	fields	that	we	introduced
earlier:	githubHandle	and	fetchFromGitHub.	We	declared	that	the	value	of	the
githubHandle	control	is	required	and	set	the	default	value	of	the	control
fetchFromGitHub	to	false.

In	the	second	form,	addDevForm,	we	declare	four	controls.	For	the	realName	control	as	the
default	value,	we	set	the	empty	string	and	use	Validators.requred	in	order	to	introduce
validation	behavior	(which	is	exactly	what	we	did	for	the	githubHandle	control).	As	a
validator	for	the	e-mail	input,	we	will	use	the	validateEmail	function	and	set	its	initial
value	to	an	empty	string.	The	validateEmail	function	used	for	validation	is	the	one	we
defined	in	the	previous	chapter:

function	validateEmail(emailControl)	{

		if	(!emailControl.value	||

					/^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-

9-.]+$/.test(emailControl.value))	{

				return	null;

		}	else	{

				return	{	'invalidEmail':	true	};

		}

}

The	last	two	controls	we	define	here	are	the	technology	control,	which	value	is	required
and	has	an	empty	string	as	its	initial	value,	and	the	popular	control	with	its	initial	value
set	to	false.

Using	composition	of	control	validators
We	took	a	look	at	how	we	can	apply	a	single	validator	to	form	controls.	However,	in	some
applications,	the	domain	may	require	more	complex	validation	logic.	For	example,	if	we
want	to	apply	both	the	required	and	the	validateEmail	validators	to	the	e-mail	control,
we	should	do	the	following:

this.addDevForm	=	fb.group({

		…

		email:	['',	Validators.compose([

				Validators.required,

				validateEmail]

)],

		…

});

The	compose	method	of	the	Validators	object	accepts	as	an	argument	an	array	of
validators	and	returns	a	new	validator.	The	new	validator’s	behavior	is	going	to	be	a
composition	of	the	logic	defined	in	the	individual	validators	passed	as	an	argument,	and
they	are	going	to	be	applied	in	the	same	order	as	they	were	introduced	in	the	array.

The	property	names	in	the	object	literal	passed	to	the	group	method	should	match	with	the
values	that	we	set	to	the	ngControl	attributes	of	the	inputs	in	the	template.

This	is	the	complete	template	of	importDevForm:

<form	class="form	col-md-4"

			[ngFormModel]="importDevForm"	[hidden]="submitted"	>

		<div	class="form-group">

				<label	class="control-label"

											for="githubHandleInput">GitHub	handle</label>

				<div>

						<input	id="githubHandleInput"

													class="form-control"	type="text"

													[disabled]="!fetchFromGitHub"	

													ngControl="githubHandle">

						<control-errors	control="githubHandle"

								[errors]="{

										'required':	'The	GitHub	handle	is	required'

								}"></control-errors>

				</div>

		</div>

		<div	class="form-group">

				<label	class="control-label"

											for="fetchFromGitHubCheckbox">

							Fetch	from	GitHub

				</label>

				<input	class="checkbox-inline"	id="fetchFromGitHubCheckbox"

											type="checkbox"	ngControl="fetchFromGitHub"

											[(ngModel)]="fetchFromGitHub">

		</div>

</form>

In	the	preceding	template,	you	can	notice	that	once	the	flag	submitted	has	the	value	true,

so	the	form	will	be	hidden	from	the	user.	Next	to	the	first	input	element,	we	set	the	value
of	the	ngControl	attribute	to	githubHandle.

Note
Note	that	the	value	of	the	ngControl	attribute	of	the	given	input	element	must	match	the
name	we	used	for	its	corresponding	control	declaration	in	the	definition	of	ControlGroup
within	the	component’s	controller.

With	regard	to	the	githubHandle	control,	we	also	set	the	disabled	attribute	to	equal	the
result	of	the	evaluation	of	the	expression:	!fetchFromGitHub.	This	way,	when	the
fetchFromGitHub	checkbox	is	unchecked,	the	githubHandle	control	will	be	disabled.
Similarly,	in	case	of	the	example	in	the	previous	sections,	we	used	the	ControlErrors
component	we	defined	previously.	This	time,	we	set	a	single	error	with	the	message	The
GitHub	handle	is	required.

The	markup	for	the	form	addDevForm	looks	quite	similar,	so	we	won’t	describe	it	in	detail
here.	If	you’re	not	completely	sure	of	how	to	approach	developing	it,	you	can	take	a	look
at	the	complete	implementation	at	ch7/ts/multi-page-model-
driven/add_developer.html.

The	last	part	of	the	template	we’re	going	to	take	a	look	at	is	the	Submit	button:

<button	class="btn	btn-default"

								(click)="addDeveloper()"

								[disabled]="(fetchFromGitHub	&&	!importDevForm.valid)	||

																				(!fetchFromGitHub	&&	!addDevForm.valid)">

		Add

</button>

Clicking	on	the	button	will	invoke	the	addDeveloper	method	defined	in	the	component’s
controller.	In	the	expression	set	as	value	of	the	[disabled]	attribute,	we	initially	check
which	form	is	selected	by	using	the	value	of	the	property	bound	to	the	checkbox,	that	is,
we	verify	whether	the	user	wants	to	add	a	new	developer	or	import	an	existing	one	from
GitHub.	If	the	first	option	is	selected	(that	is,	if	the	checkbox	is	not	checked),	we	verify
whether	the	ControlGroup	for	adding	a	new	developer	is	valid.	If	it	is	valid,	then	the
button	will	be	enabled,	otherwise	it	will	be	disabled.	We	will	do	the	same	in	cases	when
the	user	has	checked	the	checkbox	for	importing	a	developer	from	GitHub.

Exploring	the	HTTP	module	of	Angular
Now,	after	we	develop	the	forms	for	both	importing	existing	and	adding	new	developers,
it	is	the	time	to	implement	the	logic	behind	it	in	the	controller	of	the	component.

For	this	purpose,	we	need	to	communicate	with	the	GitHub	API.	Although	we	can	do	this
directly	from	the	component’s	controller,	by	doing	it	this	way,	we	can	couple	it	with	the
RESTful	API	of	GitHub.	In	order	to	enforce	further	separation	of	concerns,	we	can	extract
the	logic	for	communication	with	GitHub	into	a	separate	service	called	GitHubGateway.
Open	a	file	called	github_gateway.ts	and	enter	the	following	content:

import	{Injectable}	from	'angular2/core';

import	{Http}	from	'angular2/http';

@Injectable()

export	class	GitHubGateway	{

		constructor(private	http:	Http)	{}

		getUser(username:	string)	{

				return	this.http

												.get(`https://api.github.com/users/${username}`);

		}

}

Initially,	we	imported	the	Http	class	from	the	angular2/http	module.	All	the	HTTP-
related	functionality	is	externalized	and	is	outside	the	Angular’s	core.	Since
GitHubGateway	accepts	a	dependency,	which	needs	to	be	injected	through	the	DI
mechanism	of	the	framework,	we	will	decorate	it	with	the	@Injectable	decorator.

The	only	functionality	from	the	GitHub’s	API	we’re	going	to	use	is	the	one	for	fetching
users,	so	we	will	define	a	single	method	called	getUser.	As	an	argument,	it	accepts	the
GitHub	handle	of	the	developer.

Note
Note	that	if	you	make	more	than	60	requests	per	day	to	the	GitHub’s	API,	you	might	get
the	error	GitHub	API	Rate	limit	exceeded.	This	is	due	to	the	rate	limits	for	requests
without	a	GitHub	API	token.	For	further	information,	visit	https://github.com/blog/1509-
personal-api-tokens.

Inside	the	getUser	method,	we	use	the	instance	of	the	Http	service	that	we’ve	received	in
the	constructor	function.	The	Http	service’s	API	stays	as	close	to	the	HTML5	fetch	API
as	possible.	However,	there	are	a	couple	of	differences.	The	most	significant	one	of	them
is	that	at	the	moment	of	writing	this	content,	all	the	methods	of	the	Http	instances	return
Observables	instead	of	Promises.

The	Http	service	instances	have	the	following	API:

request(url:	string	|	Request,	options:	RequestOptionsArgs):	Makes	a
request	to	the	specified	URL.	The	request	can	be	configured	using
RequestOptionsArgs:

https://github.com/blog/1509-personal-api-tokens

http.request('http://example.com/',	{

		method:	'get',

		search:	'foo=bar',

		headers:	new	Headers({

				'X-Custom-Header':	'Hello'

	 })

});

get(url:	string,	options?:	RequestOptionsArgs):	Makes	a	get	request	to	the
specified	URL.	The	request	headers	and	other	options	can	be	configured	using	the
second	argument.
post(url:	string,	options?:	RequestOptionsArgs):	Makes	a	post	request	to	the
specified	URL.	The	request	body,	headers,	and	other	options	can	be	configured	using
the	second	argument.
put(url:	string,	options?:	RequestOptionsArgs):	Makes	a	put	request	to	the
specified	URL.	The	request	headers	and	other	options	can	be	configured	using	the
second	argument.
patch(url:	string,	options?:	RequestOptionsArgs):	Makes	a	patch	request	to
the	specified	URL.	The	request	headers	and	other	options	can	be	configured	using	the
second	argument.
delete(url:	string,	options?:	RequestOptionsArgs):	Makes	a	delete	request	to
the	specified	URL.	The	request	headers	and	other	options	can	be	configured	using	the
second	argument.
head(url:	string,	options?:	RequestOptionsArgs):	Makes	a	head	request	to	the
specified	URL.	The	request	headers	and	other	options	can	be	configured	using	the
second	argument.

Using	Angular’s	HTTP	module
Now,	let’s	implement	the	logic	for	importing	existing	users	from	GitHub!	Open	the	file
ch6/ts/step-2/add_developer.ts	and	enter	the	following	imports:

import	{Response,	HTTP_PROVIDERS}	from	'angular2/http';

import	{GitHubGateway}	from	'./github_gateway';

Add	HTTP_PROVIDERS	and	GitHubGateway	to	the	list	of	providers	of	the	AddDeveloper
component:

@Component({

		…

		providers:	[GitHubGateway,	FORM_PROVIDERS,	HTTP_PROVIDERS]

})

class	AddDeveloper	{…}

As	the	next	step,	we	have	to	include	the	following	parameters	in	the	constructor	of	the
class:

constructor(private	githubAPI:	GitHubGateway,

		private	developers:	DeveloperCollection,

		fb:	FormBuilder)	{

		//…

}

This	way,	the	AddDeveloper	class’	instances	will	have	a	private	property	called
githubAPI.

The	only	thing	left	is	to	implement	the	addDeveloper	method	and	allow	the	user	to	import
existing	developers	by	using	the	GitHubGateway	instance.

Once	the	user	presses	the	Add	button,	we	need	to	check	whether	we	need	to	import	an
existing	GitHub	user	or	add	a	new	developer.	For	this	purpose,	we	can	use	the	value	of	the
fetchFromGitHub	control:

if	(this.importDevForm.controls['fetchFromGitHub'].value)	{

		//	Import	developer

}	else	{

		//	Add	new	developer

}

If	it	has	a	truthy	value,	then	we	can	invoke	the	getUser	method	of	the	githubAPI	property
and	pass	the	value	of	the	githubHandle	control	as	an	argument:

this.githubAPI.getUser(model.githubHandle)

In	the	getUser	method,	we	delegate	the	call	to	the	Http	service’s	get	method,	which
returns	an	observable.	In	order	to	get	the	result	that	the	observable	is	going	to	push,	we
need	to	pass	a	callback	to	its	subscribe	method:

this.githubAPI.getUser(model.githubHandle)

		.map((r:	Response)	=>	r.json())

		.subscribe((res:	any)	=>	{

				//	"res"	contains	the	response	of	the	GitHub's	API	

		});

In	the	preceding	snippet,	we	first	establish	the	HTTP	get	request.	After	this,	we’ll	get	the
observable	that,	in	general	cases,	will	emit	a	series	of	values	(in	this	case,	only	a	single
one—the	response	of	the	request)	and	map	them	to	the	JSON	representation	of	their
bodies.	If	the	response	fails	or	its	body	is	not	a	valid	JSON	string,	then	we	will	get	an
error.

Note
Note	that	in	order	to	reduce	the	size	of	RxJS,	Angular’s	core	team	has	included	only	its
core.	In	order	to	use	the	methods	map	and	catch,	you	need	to	add	the	following	imports	at
add_developer.ts:

import	'rxjs/add/operator/map';

import	'rxjs/add/operator/catch';

Now	let’s	implement	the	body	of	the	subscribe	callback:

let	dev	=	new	Developer();

dev.githubHandle	=	res.login;

dev.email	=	res.email;

dev.popular	=	res.followers	>=	1000;

dev.realName	=	res.name;

dev.id	=	res.id;

dev.avatarUrl	=	res.avatar_url;

this.developers.addDeveloper(dev);

this.successMessage	=	`Developer	${dev.githubHandle}	successfully	imported	

from	GitHub`;

In	the	preceding	example,	we	set	the	properties	of	a	new	Developer	instance.	Here,	we
established	the	mapping	between	the	object	returned	from	GitHub’s	API	and	the
developer’s	representation	in	our	application.	We	also	considered	a	developer	as	popular	if
she	or	he	has	above	1,000	followers.

The	entire	implementation	of	the	addDeveloper	method	can	be	found	at	ch7/ts/multi-
page-model-driven/add_developer.ts.

Note
In	order	to	handle	failed	requests,	we	can	use	the	catch	method	of	the	observable
instances:

		this.githubAPI.getUser(model.githubHandle)

		.catch((error,	source,	caught)	=>	{

				console.log(error)

				return	error;

		})

Defining	parameterized	views
As	the	next	step,	let’s	dedicate	a	special	page	for	each	developer.	Inside	of	it,	we’ll	be	able
to	take	a	detailed	look	at	his	or	her	profile.	Once	the	user	clicks	on	the	name	of	any	of	the
developers	on	the	home	page	of	the	application,	he	or	she	should	be	redirected	to	a	page
with	a	detailed	profile	of	the	selected	developer.	The	end	result	will	look	as	follows:

In	order	to	do	this,	we	need	to	pass	an	identifier	of	the	developer	to	the	component	that
shows	developer’s	detailed	profile.	Open	app.ts	and	add	the	following	import:

import	{DeveloperDetails}	from	'./developer_details';

We	haven’t	developed	the	DeveloperDetails	component	yet,	so	if	you	run	the
application,	you	will	get	an	error.	We	will	define	the	component	in	the	next	paragraph,	but
before	this,	let’s	alter	the	@RouteConfig	definition	of	the	App	component:

@RouteConfig([

		//…

		new	Route({

				component:	DeveloperDetails,

				name:	'DeveloperDetails',

				path:	'/dev-details/:id/...'

		}),

		//…

])

class	App	{}

We	added	a	single	route	with	the	DeveloperDetails	component	associated	with	it,	and	as
an	alias,	we	used	the	string	"DeveloperDetails".

The	value	of	the	component	property	is	a	reference	to	the	constructor	of	the	component,
which	should	handle	the	given	route.	Once	the	source	code	of	the	application	gets	minified
for	production,	the	component	name	may	differ	from	the	one	we’ve	entered.	This	will
create	problems	when	referencing	the	route	within	the	templates	using	the	routerLink
directive.	In	order	to	prevent	this	from	happening,	the	core	team	introduced	the	name
property	that,	in	this	case,	equals	to	the	name	of	the	controller.

Note
Although	in	all	the	examples	so	far,	we	set	the	alias	of	the	route	to	be	the	same	as	the
name	of	the	component’s	controller,	this	is	not	required.	This	convention	is	used	for
simplicity,	since	it	could	be	confusing	to	introduce	two	names:	one	for	pointing	to	the
route	and	another	one	for	the	controller	associated	with	the	given	route.

In	the	path	property,	we	declare	that	the	route	has	a	single	parameter	called	id,	and	with
"...",	we	hint	the	framework	that	this	route	will	have	nested	routes	inside	of	it.

Now,	let’s	pass	the	id	of	the	current	developer	as	a	parameter	to	the	routerLink	directive.
Open	home.html	in	your	working	directory	and	replace	the	table	cell	where	we	display	the
developer’s	realName	property	with	the	following	content:

<td>

		<a	[routerLink]="['/DeveloperDetails',

						{	'id':	dev.id	},	'DeveloperBasicInfo']">

				{{dev.realName}}

		

</td>

The	value	of	the	routerLink	directive	is	an	array	with	the	following	three	elements:

'/DeveloperDetails':	A	string	that	shows	the	root	route
{	'id':	dev.id	}:	An	object	literal	that	declares	the	route	parameters
'DeveloperBasicInfo':	The	name	of	a	route	that	shows	which	component	within	the
nested	route	in	the	component	with	the	alias	DeveloperDetails	should	be	rendered

Defining	nested	routes
Now	let’s	jump	to	the	DeveloperDetails	definition.	In	your	working	directory,	create	a
file	called	developer_details.ts	and	enter	the	following	content:

import	{Component}	from	'angular2/core';

import	{

		ROUTER_DIRECTIVES,

		RouteConfig,

		RouteParams

}	from	'angular2/router';

import	{Developer}	from	'./developer';

import	{DeveloperCollection}	from	'./developer_collection';

@Component({

		selector:	'dev-details',

		template:	`…`,

})

@RouteConfig(…)

export	class	DeveloperDetails	{

		public	dev:	Developer;

		constructor(routeParams:	RouteParams,

				developers:	DeveloperCollection)	{

				this.dev	=	developers.getUserById(

						parseInt(routeParams.params['id'])

);

		}

}

In	the	preceding	snippet,	we	defined	a	component	with	controller	called
DeveloperDetails.	You	can	notice	that	within	the	controller’s	constructor,	through	the	DI
mechanism	of	Angular	2,	we	injected	a	parameter	associated	with	the	RouteParams	token.
The	injected	parameter	provides	us	access	to	the	parameters	visible	by	the	current	route.
We	can	access	them	using	the	params	property	of	the	injected	object	and	access	the	target
parameter	using	its	name	as	a	key.

Since	the	parameter	we	got	from	routeParams.params['id']	is	a	string,	we	need	to	parse
it	to	a	number	in	order	to	get	the	developer	associated	with	the	given	route.	Now	let’s
define	the	routes	associated	with	DeveloperDetails:

@Component(…)

@RouteConfig([{

				component:	DeveloperBasicInfo,

				name:	'DeveloperBasicInfo',

				path:	'/'

		},

		{

				component:	DeveloperAdvancedInfo,

				name:	'DeveloperAdvancedInfo',

				path:	'/dev-details-advanced'

		}])

export	class	DeveloperDetails	{…}

In	the	preceding	snippet,	there	is	nothing	new	for	us.	The	route	definition	follows	the
exact	same	rules	we’re	already	familiar	with.

Now,	to	the	template	of	the	component,	let’s	add	links	associated	with	the	individual
nested	routes:

@Component({

		selector:	'dev-details',

		directives:	[ROUTER_DIRECTIVES],

		template:	`

				<section	class="col-md-4">

						<ul	class="nav	nav-tabs">

								

										<a	[routerLink]="['./DeveloperBasicInfo']">

												Basic	profile

										

								

								

										<a	[routerLink]="['./DeveloperAdvancedInfo']">

												Advanced	details

										

								

						

						<router-outlet/>

				</section>

		`,

})

@RouteConfig(…)

export	class	DeveloperDetails	{…}

Within	the	template,	we	declare	two	relative	to	the	current	path	links.	The	first	one	points
to	DeveloperBaiscInfo,	which	is	the	name	of	the	first	route	defined	within	@RouteConfig
of	the	DeveloperDetails	component,	and	respectively,	the	second	one	points	to
DeveloperAdvancedInfo.

Since	the	implementations	of	both	the	components	are	quite	similar,	let’s	take	a	look	only
at	DeveloperBasicInfo.	As	an	exercise,	you	can	develop	the	second	one	or	take	a	look	at
its	implementation	at	ch7/ts/multi-page-model-driven/developer_advanced_info.ts:

import	{

		Component,

		Inject,

		forwardRef,

		Host

}	from	'angular2/core';

import	{DeveloperDetails}	from	'./developer_details';

import	{Developer}	from	'./developer';

@Component({

		selector:	'dev-details-basic',

		styles:	[…],

		template:	`

				<h2>{{dev.realName}}</h2>

				<img	*ngIf="dev.avatarUrl	==	null"

						class="avatar"	src="./gravatar-60-grey.jpg"	width="150">

				<img	*ngIf="dev.avatarUrl	!=	null"

						class="avatar"	[src]="dev.avatarUrl"	width="150">

		`

})

export	class	DeveloperBasicInfo	{

		dev:	Developer;

		constructor(@Inject(forwardRef(()	=>	DeveloperDetails))

				@Host()	parent:	DeveloperDetails)	{

				this.dev	=	parent.dev;

		}

}

In	the	preceding	snippet,	we	injected	the	parent	component	combining	the	@Inject
parameter	decorator	with	@Host.	Inside	of	@Inject,	we	use	forwardRef,	since	we	have	a
circular	dependency	between	the	packages	developer_basic_info	and
developer_details	(inside	developer_basic_info,	we	import	developer_details,	and
within	developer_details,	we	import	developer_basic_info).

We	need	a	reference	to	the	instance	of	the	parent	component	in	order	to	get	the	instance	of
the	current	developer	corresponding	to	the	selected	route.

Transforming	data	with	pipes
It	is	time	for	the	last	building	block	that	Angular	2	provides	for	the	development	of
applications	that	we	haven’t	covered	in	detail	yet—the	pipes.

Just	like	the	filters	in	AngularJS	1.x,	pipes	are	intended	to	encapsulate	all	the	data-
transformation	logic.	Let’s	take	a	look	at	the	template	of	the	home	page	of	the	application
we	just	developed:

…

<td	[ngSwitch]="dev.popular">

		Yes

		Not	yet

</td>

…

In	the	preceding	snippet,	depending	on	the	value	of	the	popular	property,	we	showed
different	data	using	the	NgSwitch	and	NgSwitchThen	directives.	Although	this	works,	it	is
redundant.

Developing	stateless	pipes
Let’s	develop	a	pipe	that	transforms	the	value	of	the	popular	property	and	uses	it	in	the
place	of	NgSwitch	and	NgSwitchThen.	The	pipe	will	accept	three	arguments:	a	value	that
should	be	transformed,	a	string	that	should	be	displayed	when	the	value	is	truthy,	and
another	string	that	should	be	displayed	in	case	of	a	falsy	value.

With	the	use	of	an	Angular	2	custom	pipe,	we	will	be	able	to	simplify	the	template	to:

<td>{{dev.popular	|	boolean:	'Yes':	'No'}}</td>

We	could	even	use	emojis:

<td>{{dev.popular	|	boolean:	'':	''}}</td>

We	apply	the	pipe	to	the	value	the	same	way	we	do	in	AngularJS	1.x.	The	arguments	we
pass	to	the	pipe	should	be	separated	by	the	colon	(:)	symbol.

In	order	to	develop	an	Angular	2	pipe,	we	need	the	following	imports:

import	{Pipe,	PipeTransform}	from	'angular2/core';

The	Pipe	decorator	can	be	used	for	adding	metadata	to	the	class	that	implements	the	data
transformation	logic.	The	PipeTransform	is	an	interface	with	a	single	method	called
transform:

import	{Pipe,	PipeTransform}	from	'angular2/core';

@Pipe({

		name:	'boolean'

})

export	class	BooleanPipe	implements	PipeTransform	{

		constructor()	{}

		transform(flag:	boolean,	args:	string[]):	string	{

				return	flag	?	args[0]	:	args[1];

		}

}

The	preceding	snippet	is	the	entire	implementation	of	BooleanPipe.	The	name	of	the	pipe
determines	the	way	it	should	be	used	in	templates.

The	last	thing	we	need	to	do	before	being	able	to	use	the	pipe	is	to	add	the	BooleanPipe
class	to	the	list	of	pipes	used	by	the	Home	component	(BooleanPipe	already	holds	the
metadata	attached	to	it	by	the	@Pipe	decorator,	so	its	name	is	attached	to	it):

@Component({

		…

		pipes:	[BooleanPipe],

})

export	class	Home	{

		constructor(private	developers:	DeveloperCollection)	{}

		getDevelopers()	{…}

}

Using	Angular’s	built-in	pipes
Angular	2	provides	the	following	set	of	built-in	pipes:

CurrencyPipe:	This	pipe	is	used	for	formatting	currency	data.	As	an	argument,	it
accepts	the	abbreviation	of	the	currency	type	(that	is,	"EUR",	"USD",	and	so	on).	It	can
be	used	in	the	following	way:

{{	currencyValue	|	currency:	'USD'	}}	<!--	USD42	-->

DatePipe:	This	pipe	is	used	for	the	transformation	of	dates.	It	can	be	used	in	the
following	way:

{{	dateValue	|	date:	'shortTime'		}}	<!--	12:00	AM	-->

DecimalPipe:	This	pipe	is	used	for	transformation	of	decimal	numbers.	The
argument	it	accepts	is	of	the	following	form:	"{minIntegerDigits}.
{minFractionDigits}-{maxFractionDigits}".	It	can	be	used	in	the	following	way:

{{	42.1618	|	number:	'3.1-2'	}}	<!--	042.16	-->

JsonPipe:	This	transforms	a	JavaScript	object	into	a	JSON	string.	It	can	be	used	in
the	following	way:

{{	{	foo:	42	}	|	json	}}	<!--	{	"foo":	42	}	-->

LowerCasePipe:	This	transforms	a	string	to	lowercase.	It	can	be	used	in	the	following
way:

{{	FOO	|	lowercase	}}	<!--	foo	-->

UpperCasePipe:	This	transforms	a	string	to	uppercase.	It	can	be	used	in	the	following
way:

{{	'foo'	|	uppercase	}}	<!--	FOO	-->

PercentPipe:	This	transforms	a	number	into	a	percentage.	It	can	be	used	in	the
following	way:

{{	42	|	percent:	'2.1-2'	}}		<!--	4,200.0%	-->

SlicePipe:	This	returns	a	slice	of	an	array.	The	pipe	accepts	the	start	and	the	end
indexes	of	the	slice.	It	can	be	used	in	the	following	way:

{{	[1,	2,	3]	|	slice:	1:	2	}}	<!--	2	-->

AsyncPipe:	This	is	a	stateful	pipe	that	accepts	an	observable	or	a	promise.	We’re
going	to	take	a	look	at	it	at	the	end	of	the	chapter.

Developing	stateful	pipes
There	was	one	common	thing	between	all	the	pipes	mentioned	earlier—all	of	them	return
exactly	the	same	result	each	time	we	apply	them	to	the	same	value	and	pass	them	the	same
set	of	arguments.	Such	pipes	that	hold	the	referentially	transparency	property	are	called
pure	pipes.

The	@Pipe	decorator	accepts	an	object	literal	of	the	following	type:	{	name:	string,
pure?:	boolean	},	where	the	default	value	for	the	pure	property	is	true.	This	means	that
when	we	decorate	a	given	class	using	the	@Pipe	decorator,	we	can	declare	whether	we
want	the	pipe	it	implements	the	logic	for	to	be	either	stateful	or	stateless.	The	pure
property	is	important,	because	in	case	the	pipe	is	stateless	(that	is,	it	returns	the	same
result	in	case	it	is	applied	over	the	same	value	with	the	same	set	of	arguments),	the	change
detection	can	be	optimized.

Now	let’s	build	a	stateful	pipe!	Our	pipe	will	make	an	HTTP	get	request	to	a	JSON	API.
For	this	purpose,	we	will	use	the	angular2/http	module.

Note
Note	that	having	business	logic	in	a	pipe	is	not	considered	as	a	best	practice.	This	type	of
logic	should	be	extracted	into	a	service.	The	example	here	is	for	learning	purposes	only.

In	this	case,	the	pipe	needs	to	hold	a	different	state	depending	on	the	status	of	the	request
(that	is,	whether	it	is	pending	or	completed).	We	will	use	the	pipe	in	the	following	way:

{{	"http://example.com/user.json"	|	fetchJson	|	json	}}

This	way,	we	apply	the	fetchJson	pipe	over	the	URL,	and	once	we	have	response	from
the	remote	service	and	the	promise	for	the	request	has	been	resolved,	we	can	apply	the
json	pipe	over	the	object	we	got	from	the	response.	The	example	also	shows	how	we	can
chain	pipes	with	Angular	2.

Similarly,	in	case	of	the	previous	example,	for	the	development	of	a	stateless	pipe,	we
have	to	import	Pipe	and	PipeTransform.	However,	this	time,	because	of	the	HTTP	request
functionality,	we	also	need	to	import	the	Http	and	Response	classes	from	the
'angular2/http'	module:

import	{Pipe,	PipeTransform}	from	'angular2/core';

import	{Http,	Response}	from	'angular2/http';

import	'rxjs/add/operator/toPromise';

Each	time	it	happens	to	apply	the	fetchJson	pipe	to	a	different	argument	compared	to	the
one	we	got	in	the	previous	invocation,	we	need	to	make	a	new	HTTP	get	request.	This
means	that	as	the	state	of	the	pipe,	we	need	to	keep	at	least	the	values	of	the	response	of
the	remote	service	and	the	last	URL:

@Pipe({

		name:	'fetchJson',

		pure:	false

})

export	class	FetchJsonPipe	implements	PipeTransform	{

		private	data:	any;

		private	prevUrl:	string;

		constructor(private	http:	Http)	{}

		transform(url:	string):	any	{…}

}

The	only	piece	of	logic	left	is	the	transform	method:

…

transform(url:	string):	any	{

		if	(this.prevUrl	!==	url)	{

				this.http.get(url).toPromise(Promise)

						.then((data:	Response)	=>	data.json())

						.then(result	=>	this.data	=	result);

				this.prevUrl	=	url;

		}

		return	this.data	||	{};

}

…

Inside	of	it,	we	initially	compared	the	URL	passed	as	an	argument	with	the	one	we
currently	keep	a	reference	to.	If	they	are	different,	we	initiate	a	new	HTTP	get	request
using	the	local	instance	of	the	Http	class,	which	was	passed	to	the	constructor	function.
Once	the	request	is	completed,	we	parse	the	response	to	JSON	and	set	the	data	property	to
the	result.

Now,	let’s	suppose	the	pipe	has	started	an	Http	get	request,	and	before	it	is	completed,
the	change	detection	mechanism	invokes	the	pipe	again.	In	this	case,	we	will	compare	the
prevUrl	property	with	the	url	parameter.	In	case	they	are	the	same,	we	won’t	perform	a
new	http	request,	and	we	will	immediately	return	the	value	of	the	data	property.	In	case
prevUrl	has	a	different	value	from	url,	we	will	start	a	new	request.

Using	stateful	pipes
Now	let’s	use	the	pipe	that	we	developed!	The	application	that	we	are	going	to	implement
provides	to	the	user	a	text	input	and	a	button.	Once	the	user	enters	a	value	in	the	text	input
and	presses	the	button,	below	the	text	input	will	appear	the	avatar	corresponding	to	the
GitHub	user,	as	shown	in	the	following	screenshot:

Now,	let’s	develop	a	sample	component,	which	will	allow	us	to	enter	the	GitHub	user’s
handle:

//	ch7/ts/statful_pipe/app.ts

@Component({

		selector:	'app',

		providers:	[HTTP_PROVIDERS],

		pipes:	[FetchJsonPipe,	ObjectGetPipe],

		template:	`

				<input	type="text"	#input>

				<button	(click)="	setUsername(input.value)">Get	Avatar</button>

`

})

class	App	{

		username:	string;

		setUsername(user:	string)	{

				this.username	=	user;

		}

}

In	the	preceding	example,	we	added	FetchJsonPipe	used	by	the	App	component.	The	only
thing	left	is	to	show	the	GitHub	avatar	of	the	user.	We	can	easily	achieve	this	by	altering
the	template	of	the	preceding	component	with	the	following	img	declaration:

<img	width="160"	[src]="(('https://api.github.com/users/'	+	username)	|	

fetchJson).avatar_url">

Initially,	we	appended	the	GitHub	handle	to	the	base	URL	used	for	fetching	users	from	the
API.	Later,	we	applied	the	fetchJson	filter	over	it,	and	from	the	returned	result,	we	got
the	avatar_url	property.

Note
Although	the	previous	example	works,	it	is	unnatural	to	have	business	logic	in	your	pipes.
It	will	be	far	better	to	implement	the	logic	for	communication	with	the	GitHub’s	API	into
a	service	or,	at	least,	invoke	the	get	method	of	the	instance	of	the	Http	class	in	a
component.

Using	Angular’s	AsyncPipe
Angular’s	AsyncPipe	transform	method	accepts	as	an	argument	an	observable	or	a
promise.	Once	the	argument	pushes	a	value	(that	is,	the	promise	has	been	resolved	or	the
subscribe	callback	of	the	observable	is	invoked	with	a	value),	AsyncPipe	will	return	it	as
a	result.	Let’s	take	a	look	at	the	following	example:

//	ch7/ts/async-pipe/app.ts

@Component({

		selector:	'greeting',

		template:	'Hello	{{	greetingPromise	|	async	}}'

})

class	Greeting	{

		greetingPromise	=	new	Promise<string>(resolve	=>	this.resolve	=	resolve);

		resolve:	Function;

		constructor()	{

				setTimeout(_	=>	{

						this.resolve('Foobar!');

				},	3000);

		}

}

Here,	we	defined	an	Angular	2	component,	which	has	two	properties:	greetingPromise	of
the	type	Promise<string>	and	resolve	of	the	type	Function.	We	initialized	the
greetingPromise	property	with	a	new	Promise<string>	instance,	and	as	value	of	the
resolve	property,	we	set	the	resolve	callback	of	the	promise.

In	the	constructor	of	the	class,	we	start	a	timeout	with	the	duration	of	3,000	ms,	and	inside
of	its	callback,	we	resolve	the	promise.	Once	the	promise	is	resolved,	the	value	of	the
expression	{{	greetingPromise	|	async	}}	will	be	evaluated	to	the	string	Foobar!.	The
end	result	that	the	user	will	see	on	the	screen	is	the	text	Hello	Foobar!.

The	async	pipe	is	extremely	powerful	when	we	combine	it	with	an	Http	request	or
together	with	an	observable,	which	pushes	a	sequence	of	values.

Using	AsyncPipe	with	observables
We’re	already	familiar	with	the	concept	of	observables	from	the	previous	chapters.	We	can
say	that	an	observable	object	allows	us	to	subscribe	to	the	emission	of	a	sequence	of
values,	for	instance:

let	observer	=	new	Observable<number>(observer	=>	{

		setInterval(()	=>	{

				observer.next(new	Date().getTime());

		},	1000);

});

observer.subscribe(date	=>	console.log(date));

Once	we	subscribe	to	the	observable,	it	will	start	emitting	values	each	second,	which	are
going	to	be	printed	in	the	console.	Let’s	combine	this	snippet	with	the	component’s
definition	and	implement	a	simple	timer:

//	ch7/ts/async-pipe/app.ts

@Component({

		selector:	'timer'

})

class	Timer	{

		username:	string;

		timer:	Observable<number>;

		constructor()	{

				let	counter	=	0;

				this.timer	=	new	Observable<number>(observer	=>	{

						setInterval(()	=>	{

								observer.next(new	Date().getTime());

						},	1000);

				});

		}

}

The	only	thing	left	in	order	to	be	able	to	use	the	timer	component	is	to	add	its	template.
We	can	subscribe	to	the	observable	directly	in	our	template	by	using	the	async	pipe:

{{	timer	|	async	|	date:	"medium"	}}

This	way,	each	second	we	will	get	the	new	value	emitted	by	the	observable,	and	the	date
pipe	will	transform	it	into	a	readable	form.

Summary
In	this	chapter,	we	took	a	deep	dive	into	the	Angular	2	forms	by	developing	a	model-
driven	one	and	combining	it	with	the	http	module	in	order	to	be	able	to	add	developers	to
our	repository.	We	took	a	look	at	some	advanced	features	of	the	new	component-based
router	and	saw	how	we	can	use	and	develop	our	customized	stateful	and	stateless	pipes.

The	next	chapter	will	be	dedicated	to	how	we	can	make	our	Angular	2	applications	SEO-
friendly	by	taking	advantage	of	the	server-side	rendering	that	the	module	universal
provides.	We	will	also	take	a	look	at	angular-cli	and	the	other	tools	that	make	our
experience	as	developers	better.

Chapter	8.	Development	Experience	and
Server-Side	Rendering
We	are	already	familiar	with	all	the	core	concepts	of	Angular	2.	We	know	how	to	develop
a	component-based	user	interface,	taking	advantage	of	all	the	building	blocks	that	the
framework	provides—directives,	components,	dependency	injections,	pipes,	forms,	and
the	brand	new	component-based	router.

For	the	next	step,	we’ll	look	at	where	to	begin	when	we	want	to	build	a	single-page
application	(SPA)	from	scratch.	This	chapter	describes	how	to	do	the	following:

Use	Web	Workers	for	performance-sensitive	applications.
Build	SEO-friendly	applications	with	server-side	rendering.
Bootstrap	a	project	as	quickly	as	possible.
Enhance	our	experience	as	developers.

So,	let’s	begin!

Running	applications	in	Web	Workers
When	talking	about	performance	in	the	context	of	frontend	web	development,	we	can
either	mean	network,	computational,	or	rendering	performance.	In	this	section,	we’ll
concentrate	on	rendering	and	computational	performance.

First,	let’s	make	a	parallel	between	a	web	application	and	a	video,	and	between	a	browser
and	a	video	player.	The	biggest	difference	between	the	web	application	running	in	the
browser	and	the	video	file	playing	in	the	video	player	is	that	the	web	page	needs	to	be
generated	dynamically,	in	contrast	to	the	video	which	has	been	recorded,	encoded,	and
distributed.	However,	in	both	the	cases,	the	user	of	the	application	sees	a	sequence	of
frames;	the	core	difference	is	how	these	frames	are	being	generated.	In	the	world	of	video
processing,	when	we	play	a	video,	we	have	it	already	recorded;	it	is	the	responsibility	of
the	video	decoder	to	extract	the	individual	frames	based	on	the	compression	algorithm.	In
contrast	to	this,	on	the	Web,	JavaScript,	and	CSS	are	in	charge	of	producing	frames,
rendered	by	the	browser’s	rendering	engine.

In	the	context	of	the	browser,	we	can	think	of	each	frame	as	a	snapshot	of	the	web	page	at
a	given	moment.	The	different	frames	are	rendered	fast	one	after	another,	so	in	theory,	the
end	user	of	the	application	should	see	them	smoothly	incorporated	together,	just	like	a
video	played	in	a	video	player.

On	the	Web,	we	are	trying	to	reach	60	fps	(frames	per	second),	which	means	that	each
frame	has	about	16	ms	to	be	computed	and	rendered	on	the	screen.	This	duration	includes
the	time	required	by	the	browser	to	make	all	the	necessary	calculations	for	the	layout	and
the	rendering	of	the	page,	and	also	the	time	that	our	JavaScript	needs	to	execute.

In	the	end,	we	have	less	than	16	ms	(because	of	the	browser	rendering	functionality	that
takes	time	depending	on	the	calculations	it	needs	to	perform)	for	our	JavaScript	to	finish
execution.	If	it	doesn’t	fit	in	this	duration,	the	frame	rate	will	drop	by	half.	Since
JavaScript	is	a	single-threaded	language,	all	the	calculations	need	to	happen	in	the	main
UI	thread	that,	in	the	case	of	computationally-intensive	applications	(such	as	image	or
video	processing,	marshaling	and	unmarshaling	big	JSON	strings,	and	so	on),	can	lead	to
very	poor	user	experience	because	of	the	frames	being	dropped.

HTML5	introduced	an	API	called	Web	Workers,	which	allows	the	execution	of	client-
side	code	in	the	browser	environment	into	multiple	threads.	For	simplicity,	the	standard
doesn’t	allow	shared	memory	between	individual	threads,	but	instead	allows
communication	with	message	passing.	The	messages	exchanged	between	Web	Workers
and	the	main	UI	thread	must	be	strings,	which	often	requires	the	serialization	and
deserialization	of	JSON	strings.

The	lack	of	shared	memory	between	the	individual	workers,	and	the	workers	and	the	main
UI	thread	brings	a	couple	of	limitations,	such	as:

Disabled	access	to	the	DOM	by	the	worker	threads.
Global	variables	cannot	be	shared	among	the	individual	computational	units	(that	is,
worker	threads	and	main	UI	threads	and	vice	versa).

Web	Workers	and	Angular	2
Because	of	the	platform	agnostic	design	of	Angular	2,	the	core	team	decided	to	take
advantage	of	this	API,	and	during	the	summer	of	2015,	Google	embedded	Web	Workers
support	into	the	framework.	This	feature	allows	most	of	the	Angular	2	applications	to	be
run	on	a	separate	thread,	making	the	main	UI	thread	responsible	only	for	rendering.	This
helps	us	achieve	the	goal	of	60	fps	much	easily	than	running	the	entire	application	in	a
single	thread.

The	Web	Workers	support	is	not	enabled	by	default.	When	enabling	it,	we	need	to	keep
something	in	mind—in	a	Web	Workers-ready	application,	the	components	are	not	going	to
be	run	in	the	main	UI	thread,	which	does	not	allow	us	to	directly	manipulate	the	DOM.	In
this	case,	we	need	to	use	bindings,	such	as	inputs,	outputs,	and	a	combination	of	both	with
NgModel.

Bootstrapping	an	application	running	in	Web
Worker
Let’s	make	the	to-do	application	that	we	developed	in	Chapter	4,	Getting	Started	with
Angular	2	Components	and	Directives	work	in	Web	Workers.	You	can	find	the	example
that	we’ll	explore	at	ch8/ts/todo_webworkers/.

First	of	all,	let’s	discuss	the	changes	that	we	need	to	make.	Take	a	look	at	ch4/ts/inputs-
outputs/app.ts.	Notice	that	inside	of	app.ts,	we	included	the	bootstrap	function	from
the	angular2/platform/browser	module.	This	is	the	first	thing	we	need	to	modify!	The
bootstrap	process	of	an	application	running	in	a	background	process	is	different.

Before	refactoring	our	code,	let’s	take	a	look	at	a	diagram	that	illustrates	the	bootstrap
process	of	a	typical	Angular	2	application	running	in	Web	Workers:

Jason	Teplitz,	who	implemented	the	Web	Worker	support	in	Angular	2,	presented	this
diagram	during	his	talk	on	AngularConnect	2015.

The	diagram	has	two	parts:	UI	and	Web	Worker.	UI	shows	the	actions	performed	during
initialization	in	the	main	UI	thread;	the	Web	Worker	part	of	the	diagram	shows	how	the
application	gets	bootstrapped	in	the	background	thread.	Now,	let’s	explain	the	bootstrap
process	step	by	step.

First,	the	user	opens	the	index.html	page,	which	triggers	the	download	of	the	following
two	files:

The	UI	bundle	of	Angular	2	used	for	applications	running	in	Web	Worker.
The	system.js	bundle	(we	talked	about	the	global	object	System	in	Chapter	3,
TypeScript	Crash	Course.	We	can	think	of	the	system.js	bundle	as	a	polyfill	for	the
module	loader).

Using	system.js,	we	download	the	script	used	for	the	initialization	of	the	part	of	the
application	running	in	the	main	UI	thread.	This	script	starts	loader.js	in	Web	Worker.
This	is	the	first	script	that	is	running	in	a	background	thread.	Once	the	worker	is	started,
loader.js	will	download	system.js	and	the	bundle	of	Angular	2,	which	is	meant	to	be
run	in	the	background	thread.	The	first	request	will	usually	hit	the	cache	because
system.js	is	already	requested	by	the	main	thread.	Using	the	module	loader,	we
download	the	script	that	is	responsible	for	bootstrapping	the	background	app
background_bootstrap.js,	which	will	finally	start	the	functionality	of	our	application	in
the	background.

From	now	on,	the	entire	application	that	we	built	will	be	run	in	Web	Worker	and	will
exchange	messages	with	the	main	UI	thread	for	responding	to	user	events	and	rendering
instructions.

Now	that	we	are	aware	of	the	basic	flow	of	events	during	initialization	when	using
workers,	let’s	refactor	our	to-do	application	to	take	advantage	of	them.

Migrating	an	application	to	Web	Worker
Inside	of	index.html,	we	need	to	add	the	following	scripts:

		<!--	ch8/ts/todo_webworkers/index.html	-->

		…

		<script	src="/node_modules/systemjs/dist/system.src.js">

		</script>

		<script	src="/node_modules/angular2/bundles/angular2-polyfills.js">

</script>

		<script	src="/node_modules/angular2/bundles/web_worker/ui.dev.js">

		</script>

		<script>

		System.config({

				baseURL:	'/dist/dev/ch8/ts/todo_webworkers/'

		});

		System.import('./bootstrap.js')

				.catch(function	()	{

						console.log('Report	this	error	to	

https://github.com/mgechev/switching-to-angular2/issues',	e);

				});

		</script>

		…

In	the	preceding	snippet,	we’ve	included	references	to	system.js,	angular2-polyfills
that	includes	zone.js	and	the	others	used	by	Angular	libraries,	and	ui.dev.js	which	is
the	bundle	that	needs	to	be	run	in	the	main	UI	thread.

Right	after	this,	we	will	configure	system.js	by	setting	the	baseURL	property	of	the
module	loader.	For	the	next	step,	we	will	explicitly	import	the	bootstrap.js	file,	which
contains	the	logic	used	for	starting	the	loader.js	script	in	Web	Worker.

Let’s	explore	bootstrap.js,	which	is	the	original	of	the	transpiled	bootstrap.js:

//	ch8/ts/todo_webworkers/bootstrap.ts

import	{platform,	Provider}	from	'angular2/core';

import	{

		WORKER_RENDER_APPLICATION,

		WORKER_RENDER_PLATFORM,

		WORKER_SCRIPT

}	from	'angular2/platform/worker_render';

platform([WORKER_RENDER_PLATFORM])

		.application([WORKER_RENDER_APPLICATION,

					new	Provider(WORKER_SCRIPT,	{useValue:	'loader.js'})]);

In	this	file,	we	set	the	platform	to	the	type	WORKER_RENDER_PLATFORM	and	the	application
type	to	WORKER_RENDER_APPLICATION.	We	configured	the	provider	used	for	injecting	the
WORKER_SCRIPT	token	to	use	the	value	'loader.js'.	As	we	said,	loader.js	is	going	to
run	in	a	background	thread.	The	script	is	located	in	the	application’s	root.

Now,	we	can	move	to	the	right	of	the	diagram	given	in	the	Bootstrapping	an	application
running	in	a	Web	Worker	section.	The	logic	in	loader.js	is	quite	simple:

//	ch8/ts/todo_webworkers/loader.ts

importScripts("/node_modules/systemjs/dist/system.src.js",

						"/node_modules/angular2/bundles/web_worker/worker.dev.js",

			"/node_modules/angular2/bundles/angular2-polyfills.js");

System.config({

		baseURL:	'/dist/dev/ch8/ts/todo_webworkers/',

});

System.import('./background_app.js')

.then(()	=>	console.log('The	application	has	started	successfully'),

		error	=>	console.error('Error	loading	background',	error));

As	the	first	step,	we	import	system.js,	the	Web	Workers	bundle	of	Angular	2
(worker.dev.js),	and	all	the	required	polyfills.	Then,	we	configure	the	background
instance	of	the	module	loader	and	import	the	background_app	file,	which	contains	the
logic	of	our	application	as	well	as	the	Web	Workers	bootstrap	call.

Now,	let’s	explore	how	we	bootstrap	the	application	inside	Web	Worker:

import	{platform}	from	'angular2/core';

import	{

		WORKER_APP_PLATFORM,

		WORKER_APP_APPLICATION

}	from	'angular2/platform/worker_app';

//	Logic	for	the	application…

platform([WORKER_APP_PLATFORM])

		.application([WORKER_APP_APPLICATION])

		.bootstrap(TodoApp);

Just	like	in	the	bootstrap	in	the	main	UI	thread,	we	specify	the	type	of	the	platform	and	the
type	of	the	application	that	we	want	to	bootstrap.	In	the	final	step,	we	set	the	root
component	just	like	we	did	in	the	standard	bootstrap	process.	The	TodoApp	component	is
defined	between	the	imports	and	the	initialization	calls	in	the	background_app	file.

Making	an	application	compatible	with	Web
Workers
As	we	said,	the	code	that	runs	in	the	context	of	Web	Worker	does	not	have	access	to	the
DOM.	Let’s	see	what	changes	we	need	to	make	in	order	to	address	this	limitation.

This	is	the	original	implementation	of	the	InputBox	component:

//	ch4/ts/inputs-outputs/app.ts

@Component({

		selector:	'input-box',

		template:	`

				<input	#todoInput	[placeholder]="inputPlaceholder">

				<button	(click)="emitText(todoInput.value);

						todoInput.value	=	'';">

						{{buttonLabel}}

				</button>

		`

})

class	InputBox	{

		@Input()	inputPlaceholder:	string;

		@Input()	buttonLabel:	string;

		@Output()	inputText	=	new	EventEmitter<string>();

		emitText(text:	string)	{

				this.inputText.emit(text);

		}

}

Notice	that	inside	the	template,	we	named	the	input	element	todoInput	and	used	its
reference	within	the	expression	set	as	the	handler	of	the	click	event.	This	code	will	not	be
able	to	run	in	Web	Worker,	since	we	directly	access	a	DOM	element	inside	the	template.
In	order	to	take	care	of	this,	we	need	to	refactor	the	snippet,	so	it	uses	Angular	2	bindings
instead	of	directly	touching	any	elements.	We	can	either	use	inputs	when	a	single	direction
binding	makes	sense	or	NgModel	for	achieving	two-way	data-binding,	which	is	more
computationally-intensive.

Let’s	use	NgModel:

//	ch8/ts/todo_webworkers/background_app.ts

import	{NgModel}	from	'angular2/common';

@Component({

		selector:	'input-box',

		template:	`

				<input	[placeholder]="inputPlaceholder"	[(ngModel)]="input">

				<button	(click)="emitText()">

						{{buttonLabel}}

				</button>

		`

})

class	InputBox	{

		@Input()	inputPlaceholder:	string;

		@Input()	buttonLabel:	string;

		@Output()	inputText	=	new	EventEmitter<string>();

		input:	string;

		emitText()	{

				this.inputText.emit(this.input);

				this.input	=	'';

		}

}

In	this	version	of	the	InputBox	component,	we	will	create	a	two-way	data-binding
between	the	input	element	and	the	input	property	of	the	InputBox	component.	Once	the
user	clicks	on	the	button,	the	emitText	method	will	be	invoked,	which	will	trigger	a	new
event	emitted	by	inputText	EventEmitter.	In	order	to	reset	the	value	of	the	input
element,	we	take	advantage	of	the	two-way	data-binding	that	we	declared	and	set	the
value	of	the	input	property	to	the	empty	string.

Note
Moving	the	entire	logic	from	the	templates	of	the	components	to	their	controllers	brings	a
lot	of	benefits,	such	as	improved	testability,	maintainability,	code	reuse,	and	clarity.

The	preceding	code	is	compatible	with	the	Web	Workers	environment,	since	the	NgModel
directive	is	based	on	an	abstraction	that	does	not	manipulate	the	DOM	directly,	but
instead,	under	the	hood,	exchanges	messages	asynchronously	with	the	main	UI	thread.

To	recap,	we	can	say	that	while	running	applications	in	the	context	of	Web	Workers,	we
need	to	keep	the	following	two	things	in	mind:

We	need	to	use	a	different	bootstrap	process.
We	should	not	access	the	DOM	directly.

Typical	scenarios	that	violate	the	second	point	are	as	follows:

Changing	the	DOM	of	the	page	by	selecting	an	element	and	manipulating	it	directly
with	the	browser’s	native	APIs	or	a	third-party	library.
Accessing	native	elements	injected	by	using	ElementRef.
Creating	a	reference	to	an	element	in	the	template	and	passing	it	as	an	argument	to
methods.
Directly	manipulating	an	element	referenced	within	the	template.

In	all	these	scenarios,	we	need	to	use	the	APIs	provided	by	Angular.	If	we	build	our
applications	according	to	this	practice,	we	will	benefit	not	only	from	being	able	to	run
them	in	Web	Workers,	but	also	from	increasing	the	code	reuse	in	case	we	want	to	use	them
across	different	platforms.

Keeping	this	in	mind	will	allow	us	to	take	advantage	of	server-side	rendering.

Initial	load	of	a	single-page	application
In	this	section,	we	will	explore	what	server-side	rendering	is,	why	we	need	it	in	our
applications,	and	how	we	can	use	it	with	Angular	2.

For	our	purposes,	we’ll	explain	the	typical	flow	of	events	when	a	user	opens	a	SPA
implemented	in	Angular	2.	First,	we’ll	trace	the	events	with	the	server-side	rendering
disabled,	and	after	that,	we’ll	see	how	we	can	benefit	from	this	feature	by	enabling	it.	Our
example	will	be	illustrated	in	the	context	of	HTTP	1.1.

This	image	shows	the	first	request	by	the	browser	and	the	corresponding	server’s	response
when	loading	a	typical	SPA.	The	result	that	the	client	will	see	initially	is	the	initial	content
of	the	HTML	page	without	any	rendered	components.

Let’s	suppose	that	we	deploy	the	to-do	application	we	built	in	Chapter	4,	Getting	Started
with	Angular	2	Components	and	Directives	to	a	web	server	that	has	the
https://example.com	domain	associated	with	it.

Once	the	user	navigates	to	https://example.com/,	the	browser	will	open	a	new	HTTP
GET	request,	fetching	the	root	resource	(/).	When	the	server	receives	the	request,	it	will
respond	with	an	HTML	file	that,	in	our	case,	will	look	something	like	this:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>Switching	to	Angular	2</title>

		<link	rel="stylesheet"	href="bootstrap.min.css">

</head>

<body>

		<app>Loading…</app>

		<script	src="es6-shim.min.js"></script>

		<script	src="Reflect.js"></script>

		<script	src="system.src.js"></script>

		<script	src="angular2-polyfills.js"></script>

		<script	src="Rx.min.js"></script>

		<script	src="angular2.js"></script>

		<script	src="router.js"></script>

		<script	src="http.min.js"></script>

		<script>…</script>

</body>

</html>

The	browser	will	receive	this	content	as	the	body	of	the	response.	When	the	markup	is
rendered	onto	the	screen,	all	that	the	user	will	see	is	the	label:	Loading….

In	the	next	step,	the	browser	will	find	all	the	references	in	the	HTML	file’s	external
resources,	such	as	styles	and	scripts,	and	start	downloading	them.	In	our	case,	some	of
them	are	bootstrap.css,	es6-shim.min.js,	Reflect.js,	system.src.js,	and	angular2-
polyfills.js.

Once	all	the	referenced	resources	are	available,	there	still	won’t	be	any	significant	visual
progress	for	the	user	(except	if	the	styles	from	the	downloaded	CSS	file	are	applied	to	the
page).	This	won’t	change	until	the	JavaScript	virtual	machine	processes	all	the	referenced
scripts	related	to	the	application’s	implementation.	At	this	point,	Angular	will	know	which
component	needs	to	be	rendered	based	on	the	current	URL	and	bootstrap’s	configuration.

If	the	component	associated	with	the	page	is	defined	in	a	separate	file	outside	of	our	main
application	bundle,	the	framework	will	need	to	download	it	together	with	its	entire
dependency	graph.	In	case	the	template	and	the	styles	of	the	component	are	externalized,
Angular	will	need	to	download	them	as	well	before	it	is	able	to	render	the	requested	page.

Right	after	this,	the	framework	will	be	able	to	compile	the	template	associated	with	the
target	component	and	render	the	page.

In	the	previous	scenario,	there	are	the	following	two	main	pitfalls:

Search	engines	are	not	that	good	at	indexing	dynamic	content	generated	by
JavaScript.	This	means	that	the	SEO	(Search	Engine	Optimization)	of	our	SPA	will
suffer.
In	case	of	large	applications	and/or	poor	Internet	connection,	the	user	experience	will
be	poor.

In	the	past,	we	solved	the	SEO	issue	in	the	applications	built	with	AngularJS	1.x	with
different	workarounds,	such	as	using	headless	browser	for	rendering	the	requested	page,
caching	it	onto	the	disk,	and	later	providing	it	to	search	engines.	However,	there’s	a	more
elegant	solution.

Initial	load	of	a	SPA	with	server-side	rendering
A	couple	of	years	ago,	libraries	such	as	Rendr,	Derby,	Meteor,	and	the	others	introduced
the	concept	of	isomorphic	JavaScript	applications,	which	were	later	renamed	to	universal.
In	essence,	universal	applications	could	be	run	on	the	client	as	well	as	on	the	server.	Such
portability	is	only	possible	in	the	case	of	low	coupling	between	the	SPA	and	the	browser’s
APIs.	The	greatest	benefit	of	this	paradigm	is	that	the	application	can	be	rerendered	on	the
server	and	later	sent	to	the	client.

Universal	applications	are	not	framework-specific;	we	can	take	advantage	of	them	in	any
framework	that	can	be	run	outside	of	the	environment	of	the	browser.	Conceptually,	the
practice	of	server-side	rendering	is	very	similar	across	platforms	and	libraries;	only	its
implementation	details	may	differ.	For	instance,	the	Angular	2	Universal	module,	which
implements	server-side	rendering,	has	support	for	node.js	as	well	as	ASP.NET	that,	at	the
moment	of	this	writing,	is	still	work	in	progress.

The	preceding	image	shows	the	response	by	the	server	to	the	initial	browser	GET	request.
This	time,	in	contrast	to	the	typical	scenario	of	loading	a	SPA,	the	browser	will	get	the
rendered	content	of	the	HTML	page.

Let’s	trace	the	flow	of	the	events	in	the	same	application	with	the	server-side	rendering
feature	enabled.	In	this	case,	once	the	server	receives	the	HTTP	GET	request	by	the
browser,	it	will	run	the	SPA	on	the	server	in	the	node.js	environment.	All	the	DOM	calls
are	going	to	be	redirected	to	a	server-side	DOM	implementation	and	be	executed	in	the
context	of	the	used	platform.	Similarly,	all	the	AJAX	calls	with	the	http	module	will	be
handled	by	the	server-side	implementation	of	the	module.	This	way,	the	application	will
not	make	any	difference,	whether	it	is	running	in	the	context	of	the	browser	or	the	server.

Once	the	rendered	version	of	the	SPA	is	available,	it	can	be	serialized	to	HTML	and	sent
to	the	browser.	This	time,	during	the	application’s	initialization,	instead	of	the	Loading…
label,	the	user	will	see	the	page	they	requested	right	away.

Note	that	at	this	point,	the	client	will	have	the	rendered	version	of	the	application,	but	all

the	referenced	external	resources,	such	as	scripts	and	styles,	still	need	to	be	available.	This
means	that,	initially,	none	of	the	CSS	styles	declared	in	the	external	files	will	be	applied
and	the	application	will	not	be	responsive	to	any	user-related	interactions,	such	as	the
mouse	and	keyboard	events.

Note
Note	that	in	case	the	scripts	are	inlined	into	the	server-side	rendered	page,	the	application
will	be	responsive	to	user	events.	However,	inlining	big	chunks	of	JavaScript	is	generally
considered	as	a	bad	practice,	since	it	will	increase	the	page’s	size	dramatically	and	prevent
the	scripts	from	caching.	Both	will	influence	the	network	performance.

When	the	JavaScript	virtual	machine	processes	the	JavaScript	associated	with	the	page,
our	SPA	will	be	ready	to	use.

Server-side	rendering	with	Angular	2
In	the	first	half	of	2015,	Patrick	Stapleton	and	Jeff	Whelpley	announced	that	they	started
the	development	of	the	module,	Universal.	Universal	is	a	library	that	allows	us	to	build
universal	(also	called	isomorphic)	JavaScript	applications	with	Angular	2;	in	other	words,
it	provides	server-side	rendering	support.

Applications	built	with	Angular	2	and	Universal	will	not	be	responsive	until	all	the
JavaScript	belonging	to	the	requested	page	is	processed.	This	is	a	drawback	that	we
already	mentioned,	which	is	valid	for	all	the	server-side	rendered	applications.	However,
Patrick	and	Jeff	introduced	preboot.js,	which	is	a	lightweight	library	that	will	be	inlined
on	the	page	rendered	by	the	server	and	available	after	the	initial	client	request.

Preboot.js	has	several	strategies	for	the	management	of	the	received	client	events	before
the	application	has	been	completely	initialized.	They	are	as	follows:

Record	and	play	back	events.
Respond	immediately	to	events.
Maintain	focus	when	a	page	is	rerendered.
Buffer	client-side	re-rendering	for	smoother	transition.
Freeze	page	until	the	bootstrap	is	complete	if	a	user	clicks	on	a	button.

At	the	moment	of	this	writing,	the	Universal	module	is	still	being	actively	developed.
However,	you	can	give	it	a	try	using	the	Angular	2	universal	starter	at
https://github.com/angular/universal-starter.

https://github.com/angular/universal-starter

Enhancing	our	development	experience
Our	experience	as	developers	can	be	enhanced	in	terms	of	productivity	or	by	allowing	us
to	have	more	fun	while	working	on	our	projects.	This	can	be	achieved	with	all	the	tools,
IDEs,	text	editors,	and	more	that	we	use	on	a	daily	basis.	In	this	section,	we’ll	briefly	take
a	look	at	popular	IDEs	and	text	editors	that	we	can	use	for	taking	advantage	of	the	static
code	analysis	features	that	Angular	2	provides.

In	the	second	part	of	this	section,	we’ll	see	what	hot	reloading	is	and	how	we	can	take
advantage	of	it	during	the	development	of	Angular	2	applications.

Text	editors	and	IDEs
As	we	already	mentioned	at	the	beginning	of	the	book,	the	core	team	put	great	effort	into
enhancing	the	tooling	support	in	Angular	2.	First	of	all,	the	framework	is	built	with
TypeScript,	which	naturally	allows	us	to	use	static	typing	during	our	development	process.
Some	of	the	text	editors	and	IDEs	that	have	great	TypeScript	support	are	as	follows:

IntelliJ	Idea:	A	general-purpose	IDE	by	JetBrains.
WebStorm:	An	IDE	specialized	for	web	development	by	JetBrains.
VSCode:	A	cross-platform	text	editor	written	in	TypeScript	and	developed	by
Microsoft.
Sublime	Text:	A	cross-platform	text	editor.
Atom:	A	cross-platform	text	editor.

Recently,	JetBrains	announced	advanced	Angular	2	support	in	IntelliJ	Idea	and	WebStorm,
which	supports	autocompletion	for	components	and	bindings.

Although	not	all	the	mentioned	IDEs	and	text	editors	have	Angular	2-specific	support	at
the	moment	of	this	writing,	Angular	2	comes	with	a	great	design.	It	allows	us	to	perform
advanced	static	code	analysis	on	the	application’s	codebase	for	the	development	of
sophisticated	refactoring	and	productivity	tools	in	the	near	future.	Until	then,	Angular	2	at
least	provides	tooling	support	as	good	any	other	JavaScript	framework	in	the	market.

Hot	reloading
Hot	reloading	(or	hot	loading)	is	a	practice	that	got	popular	in	the	world	of	purely
functional	user	interfaces	in	libraries	such	as	Om	(used	with	ClojureScript)	and	React.

When	developing	a	SPA,	it	is	quite	annoying	to	refresh	your	browser	after	each	small
change	of	a	style,	view,	or	even	a	component.	That’s	why	a	couple	of	years	ago,	a	tool	was
developed	called	livereload.	Livereload	watches	the	files	of	our	application,	and	when	it
detects	a	change	in	any	of	them,	it	sends	a	message	to	the	browser	to	refresh	the	page.
Usually,	the	connection	established	between	the	livereload	server	and	the	client	is	through
WebSockets,	since	the	server	needs	to	send	push	notifications.	Although	this	tool	works
great	in	some	cases,	it	has	one	big	disadvantage:	once	the	page	is	refreshed,	all	of	the	state
collected	during	the	developer’s	interaction	will	be	lost.

For	instance,	imagine	a	scenario	where	you’re	working	on	an	application	with	a	complex
view.	You	navigate	through	a	few	pages,	fill	in	forms,	and	set	the	values	to	input	fields,
and	then,	unexpectedly,	you	find	an	issue.	You	go	to	your	text	editor	or	IDE	and	fix	the
issue;	the	livereload	server	detects	a	change	in	your	project’s	root	and	sends	a	notification
to	the	browser	in	order	to	refresh	the	page.	Now,	you’re	back	to	the	initial	state	of	the
application	and	you	need	to	go	through	all	these	steps	in	order	to	reach	the	same	point
before	the	refresh.

In	contrast	to	livereloading,	in	most	cases,	hot	reloading	can	eliminate	the	state	lost.	Let’s
take	a	brief	look	at	how	it	works.

A	typical	implementation	of	a	hot	reloader	has	two	main	modules:	a	client	and	a	server.	In
contrast	to	the	server	in	livereloading,	the	hot	reloader	server	not	only	watches	the	file
system	for	changes,	but	also	takes	the	content	of	the	changed	file	and	sends	it	to	the
browser.	Once	the	browser	receives	the	message	sent	by	the	server,	it	can	swap	the
previous	implementation	of	the	changed	unit	with	the	new	one.	After	this,	the	view
affected	by	the	change	can	be	rerendered	in	order	to	visually	reflect	the	change.	Since	the
application	doesn’t	lose	its	state,	we	can	continue	from	the	point	we’ve	reached	with	the
new	version	of	the	changed	code	unit.

Unfortunately,	it	is	not	always	possible	to	dynamically	swap	the	implementations	of	all
your	components	using	this	strategy.	If	you	update	a	piece	of	code	that	holds	that	holds
application	state,	you	may	need	to	refresh	the	page	manually.

Hot	reloading	in	Angular	2
At	the	time	of	writing,	there	is	a	working	prototype	of	Angular	2	hot	reloader	that	can	be
tested	with	the	angular2-seed	described	in	the	Angular	2	quick	starters	section.	The
project	is	in	active	development,	so	there	are	a	lot	of	improvements	on	the	roadmap.	But	it
already	provides	its	core	functionality,	which	can	ease	the	development	experience
significantly.

Bootstrapping	a	project	with	angular-cli
During	AngularConnect	2015,	Brad	Green	and	Igor	Minar,	part	of	the	Angular	team,
announced	angular-cli—a	CLI	(command-line	interface)	tool	to	ease	starting	and
managing	Angular	2	applications.	For	those	who	have	used	Ruby	on	Rails,	the	idea	behind
the	CLI	tool	might	be	familiar.	The	basic	purpose	of	the	tool	is	to	allow	the	quick
bootstrapping	of	new	projects	and	scaffolding	of	new	directives,	components,	pipes,	and
services.

At	the	time	of	writing,	the	tool	is	still	in	the	early	stage	of	development,	so	we’ll
demonstrate	only	its	basic	usage.

Using	angular-cli
In	order	to	install	the	CLI	tool,	run	the	following	command	in	your	terminal:

npm	install	-g	angular-cli

Right	after	this,	the	global	ng	command	will	appear	in	your	$PATH.	For	creating	a	new
Angular	2	project,	use	the	following:

#	May	take	a	while,	depending	on	your	Internet	connection

ng	new	angular-cli-project

cd	angular-cli	project

ng	serve

The	preceding	commands	will	do	the	following:

Create	a	new	Angular	2	project	and	install	all	of	its	node.js	dependencies.
Enter	your	project’s	directory.
Start	a	development	web	server	that	will	let	you	open	the	application	you	just	created
in	your	web	browser.

For	further	reading,	take	a	look	at	the	project’s	repository	located	at
https://github.com/angular/angular-cli.

https://github.com/angular/angular-cli

Angular	2	quick	starters
Although	Angular	2	CLI	is	going	to	be	amazing,	at	the	moment	of	this	writing,	it	is	still	at
a	very	early	stage	of	development.	It’s	build-tool	agnostic,	which	means	that	it	doesn’t
provide	any	build	system.	Luckily,	there	are	a	lot	of	starter	projects	developed	by	the
community	that	can	provide	a	great	starting	point	for	our	next	Angular	2	project.

Angular	2	seed
In	case	you	enjoy	Gulp	and	static	typing,	you	can	give	a	try	to	the	angular2-seed	project.	It
is	hosted	on	GitHub	at	the	following	URL:	https://github.com/mgechev/angular2-seed.

The	Angular	2	seed	provides	the	following	key	features:

Advanced,	ready-to-go,	easy-to-extend,	modular,	and	statically	typed	build	system
using	Gulp.
Production	and	development	builds.
Sample	unit	tests	with	Jasmine	and	Karma.
End-to-end	tests	with	Protractor.
A	development	server	with	Livereload.
Experimental	hot	reloading	support.
Following	the	best	practices	for	your	applications’	and	files’	organization.
Manager	for	the	TypeScript-related	type	definitions.

The	code	distributed	with	the	book	is	based	on	this	seed	project.

For	angular2-seed,	you	need	to	have	node.js,	npm,	and	Git	installed,	and	you	need	to	run
the	following	list	of	commands:

git	clone	--depth	1	https://github.com/mgechev/angular2-seed.git

cd	angular2-seed

npm	install

npm	start

After	you	run	these	commands,	your	browser	will	be	automatically	opened	with	the	home
page	of	the	seed.	On	the	change	of	any	of	the	TypeScript	files,	the	code	will	be
automatically	transpiled	to	JavaScript	and	your	browser	will	be	refreshed.

The	production	build	is	configurable,	but	by	default,	it	produces	a	single	bundle	that
contains	a	minified	version	of	the	application	and	all	the	referenced	libraries.

https://github.com/mgechev/angular2-seed

Angular	2	Webpack	starter
If	you	prefer	declarative	and	minimalistic	builds	with	Webpack,	you	can	use	angular2-
webpack-starter.	It	is	a	starter	project	developed	by	AngularClass	and	hosted	on	GitHub.
You	can	find	it	at	the	following	URL:	https://github.com/AngularClass/angular2-webpack-
starter.

This	starter	provides	the	following	features:

The	best	practices	in	file	and	application	organization	for	Angular	2.
Ready-to-go	build	system	using	Webpack	for	working	with	TypeScript.
Testing	Angular	2	code	with	Jasmine	and	Karma.
Coverage	with	Istanbul	and	Karma.
End-to-end	Angular	2	code	using	Protractor.
Type	manager	with	Typings.

In	order	to	give	it	a	try,	you	need	to	have	node.js,	npm,	and	git	installed,	and	you	need	to
run	the	following	commands:

git	clone	--depth	1	https://github.com/angularclass/angular2-webpack-

starter.git

cd	angular2-webpack-starter

npm	install

./node_modules/.bin/typings	install

npm	start

https://github.com/AngularClass/angular2-webpack-starter

Summary
We	started	this	book	by	introducing	the	reasons	behind	the	development	of	Angular	2,
which	was	followed	by	a	conceptual	overview	that	gave	us	a	general	idea	about	the
building	blocks	that	the	framework	provides	for	application	development.	In	the	next	step,
we	did	a	TypeScript	crash	course	that	prepared	us	for	Chapter	4,	Getting	Started	with
Angular	2	Components	and	Directives	where	we	went	deep	into	Angular’s	directives,
components,	and	change	detection.

In	Chapter	5,	Dependency	Injection	in	Angular	2	we	explained	the	dependency	injection
mechanism	and	saw	how	we	can	manage	the	relations	between	the	different	components
by	using	it.	The	next	chapters	explained	to	us	how	we	can	build	forms	and	pipes,	and	take
advantage	of	Angular	2’s	component-based	router.

By	completing	the	current	chapter,	we	finished	our	journey	into	the	framework.	At	the
moment	of	this	writing,	the	design	decisions	and	the	ideas	behind	Angular	2’s	core	are
solid	and	finalized.	Although	the	framework	is	still	brand	new,	in	the	past	couple	of
months	its	ecosystem	reached	a	level	that	we	can	develop	production-ready,	high-
performance,	SEO-friendly	applications,	and	on	top	of	this,	have	a	great	development
experience	exploiting	static	typing	and	hot	reloading.

Index
A

access	modifiers
public	/	Using	access	modifiers
private	/	Using	access	modifiers
protected	/	Using	access	modifiers

ambient	type	definitions
using	/	Using	ambient	type	definitions
predefined	ambient	type	definitions,	using	/	Using	ambient	type	definitions,
Custom	ambient	type	definitions
custom	/	Custom	ambient	type	definitions
ts.d	files,	defining	/	Defining	ts.d	files

AMD	(Asynchronous	Module	Definition)	/	Writing	modular	code	with	ES2015
angular-cli

used,	for	bootstrapping	project	/	Bootstrapping	a	project	with	angular-cli
using	/	Using	angular-cli
URL	/	Using	angular-cli

Angular	2
conceptual	overview	/	A	conceptual	overview	of	Angular	2
components	/	Components	in	Angular	2
route,	definition	syntax	/	Angular	2	route	definition	syntax
Hello	world!	application,	building	/	The	Hello	world!	application	in	Angular	2
playing	with	/	Playing	with	Angular	2	and	TypeScript
Dependency	Injection	(DI)	/	Dependency	Injection	in	Angular	2
model-driven	forms,	developing	/	Developing	model-driven	forms	in	Angular	2
HTTP	module,	exploring	/	Exploring	the	HTTP	module	of	Angular
HTTP	module,	using	/	Using	Angular’s	HTTP	module
built-in	pipes,	using	/	Using	Angular’s	built-in	pipes
AsyncPipe,	using	/	Using	Angular’s	AsyncPipe
and	Web	Workers	/	Web	Workers	and	Angular	2
hot	reloading	/	Hot	reloading	in	Angular	2
about	/	Angular	2	quick	starters
Gulp	seed	/	Angular	2	seed
Webpack	starter	/	Angular	2	Webpack	starter

Angular	2	and	TypeScript
index,	defining	/	Digging	into	the	index

Angular	2	directives
using	/	Using	Angular	2	directives
ngFor	directive	/	The	ngFor	directive
defining	/	Defining	Angular	2	directives
inputs,	setting	/	Setting	the	directive’s	inputs
constructor,	defining	/	Understanding	the	directive’s	constructor

encapsulation	/	Better	encapsulation	of	directives
Angular	2	forms

using	/	Using	Angular	2	forms
model-driven	approach	/	Using	Angular	2	forms
template-driven	forms,	developing	/	Developing	template-driven	forms
template-driven	form’s	markup,	exploring	/	Digging	into	the	template-driven
form’s	markup
built-in	form	validators,	using	/	Using	the	built-in	form	validators
custom	control	validators,	defining	/	Defining	custom	control	validators
select	inputs,	using	/	Using	select	inputs	with	Angular
NgForm	directive,	using	/	Using	the	NgForm	directive
used,	for	two-way	data-binding	/	Two-way	data-binding	with	Angular	2
data,	storing	/	Storing	the	form	data

Angular	2	router
exploring	/	Exploring	the	Angular	2	router
root	component,	defining	/	Defining	the	root	component	and	bootstrapping	the
application
application,	bootstrapping	/	Defining	the	root	component	and	bootstrapping	the
application
PathLocationStrategy,	using	/	Using	PathLocationStrategy
routes,	configuring	with	@RouteConfig	/	Configuring	routes	with
@RouteConfig
routerLink,	using	/	Using	routerLink	and	router-outlet
router-outlet,	using	/	Using	routerLink	and	router-outlet
lazy-loading,	with	AsyncRoute	/	Lazy-loading	with	AsyncRoute

angular2-seed	project
URL	/	Angular	2	seed

AngularJS	1.x
about	/	Lessons	learned	from	AngularJS	1.x	in	the	wild
controllers	/	Controllers
scope	object	/	Scope
dependency	injection	(DI)	/	Dependency	Injection
server-side	rendering	/	Server-side	rendering
single-page	applications	/	Applications	that	scale
templates	/	Templates
change	detection	/	Change	detection,	AngularJS	1.x	change	detection
change	detection,	enhancing	/	Enhancing	AngularJS	1.x’s	change	detection

application
running	in	Web	Workers,	bootstrapping	/	Bootstrapping	an	application	running
in	Web	Worker
migrating,	to	Web	Worker	/	Migrating	an	application	to	Web	Worker

AsyncPipe
using	/	Using	Angular’s	AsyncPipe
using,	with	observables	/	Using	AsyncPipe	with	observables

AsyncRoute
used,	for	lazy-loading	/	Lazy-loading	with	AsyncRoute

B
block	scope

used,	for	defining	variables	/	Defining	variables	with	block	scope
built-in	change	detection

dynamic	change	detection	/	Change	detection
JIT	change	detection	/	Change	detection

built-in	directives,	Angular	2
using	/	Using	Angular	2’s	built-in	directives

built-in	form	validators
using	/	Using	the	built-in	form	validators
minlength	/	Using	the	built-in	form	validators
maxlength	/	Using	the	built-in	form	validators

built-in	pipes
using	/	Using	Angular’s	built-in	pipes
CurrencyPipe	/	Using	Angular’s	built-in	pipes
DatePipe	/	Using	Angular’s	built-in	pipes
DecimalPipe	/	Using	Angular’s	built-in	pipes
JsonPipe	/	Using	Angular’s	built-in	pipes
LowerCasePipe	/	Using	Angular’s	built-in	pipes
UpperCasePipe	/	Using	Angular’s	built-in	pipes
PercentPipe	/	Using	Angular’s	built-in	pipes
SlicePipe	/	Using	Angular’s	built-in	pipes
AsyncPipe	/	Using	Angular’s	built-in	pipes

C
change	detection

about	/	Change	detection,	A	conceptual	overview	of	Angular	2,	Change
detection
example	/	Classical	change	detection
in	AngularJS	1.x	/	AngularJS	1.x	change	detection
in	zone.js	/	In	the	zone.js
simplified	data-flow	/	Simplified	data	flow
enhancing,	in	AngularJS	1.x	/	Enhancing	AngularJS	1.x’s	change	detection
defining	/	Understanding	and	enhancing	the	change	detection
enhancing	/	Understanding	and	enhancing	the	change	detection
order	of	execution	/	The	order	of	execution	of	the	change	detectors
strategies	/	Change	detection	strategies
performance	boosting,	with	immutable	data	and	OnPush	/	Performance	boosting
with	immutable	data	and	OnPush
immutable	data	structures,	using	in	Angular	/	Using	immutable	data	structures	in
Angular

child	injectors
about	/	Child	injectors	and	visibility
dependencies,	configuring	/	Configuring	dependencies
element	injectors	/	Introducing	the	element	injectors

Coders	repository	application
developing	/	Developing	the	“Coders	repository”	application
views	/	Developing	the	“Coders	repository”	application
bootstrapping	/	Defining	the	root	component	and	bootstrapping	the	application

CommonJS	/	Writing	modular	code	with	ES2015
component-based	router

about	/	Understanding	the	new	component-based	router
Angular	2	route,	definition	syntax	/	Angular	2	route	definition	syntax

Component	class
about	/	Getting	to	know	Angular	2	components

components
about	/	A	conceptual	overview	of	Angular	2,	Getting	to	know	Angular	2
components
composing	/	Components	in	action
in	Angular	2	/	Components	in	Angular	2
Dependency	Injection	(DI),	using	/	Using	DI	with	components	and	directives
Dependency	Injection	(DI),	exploring	with	/	Exploring	DI	with	components

Composite	class
about	/	Getting	to	know	Angular	2	components

container
about	/	Configuring	an	injector

content	children

about	/	Nesting	components
content	projection,	Angular	2

defining	/	Explaining	Angular	2’s	content	projection
about	/	Basic	content	projection	in	Angular	2
multiple	content	chunks,	projecting	/	Projecting	multiple	content	chunks
components,	nesting	/	Nesting	components
ViewChildren,	using	/	Using	ViewChildren	and	ContentChildren
ContentChildren,	using	/	Using	ViewChildren	and	ContentChildren
ViewChild,	versus	ContentChild	/	ViewChild	versus	ContentChild

controller	as	syntax
about	/	Scope

controllers
about	/	Controllers

controllers,	component
implementing	/	Implementing	the	component’s	controllers

control	validators
composition,	using	/	Using	composition	of	control	validators

Create	Retrieve	Update	and	Delete	(CRUD)	/	Developing	template-driven	forms
CSP	(Content-Security-Policy)

about	/	Understanding	and	enhancing	the	change	detection
CSS	classes

about	/	Digging	into	the	template-driven	form’s	markup
ng-untouched	/	Digging	into	the	template-driven	form’s	markup
ng-touched	/	Digging	into	the	template-driven	form’s	markup
ng-pristine	/	Digging	into	the	template-driven	form’s	markup
ng-dirty	/	Digging	into	the	template-driven	form’s	markup
ng-valid	/	Digging	into	the	template-driven	form’s	markup
ng-invalid	/	Digging	into	the	template-driven	form’s	markup

custom	control	validators
defining	/	Defining	custom	control	validators

D
data

transforming,	pipes	used	/	Transforming	data	with	pipes
decorators

URL	/	Meta-programming	with	ES2016	decorators
DefinitelyTyped

URL	/	Using	ambient	type	definitions
dependencies,	child	injectors

configuring	/	Configuring	dependencies
self	decorator,	using	/	Using	the	@Self	decorator
self	injector,	skipping	/	Skipping	the	self	injector
optional	dependencies,	using	/	Having	optional	dependencies
multiproviders,	using	/	Using	multiproviders

dependency	injection	(DI)
about	/	Dependency	Injection

Dependency	Injection	(DI)
need	for	/	Why	do	I	need	Dependency	Injection?
in	Angular	2	/	Dependency	Injection	in	Angular	2
benefits	/	Benefits	of	DI	in	Angular	2
using,	with	components	and	directives	/	Using	DI	with	components	and
directives
exploring,	with	components	/	Exploring	DI	with	components
using,	with	ES5	/	Using	Angular’s	DI	with	ES5

differs
about	/	A	conceptual	overview	of	Angular	2

DI	mechanism
about	/	A	conceptual	overview	of	Angular	2

directives
about	/	A	conceptual	overview	of	Angular	2
modifying	/	Changing	directives
Dependency	Injection	(DI),	using	/	Using	DI	with	components	and	directives

directives	syntax
semantics,	defining	/	Improved	semantics	of	the	directives	syntax
variables,	declaring	inside	template	/	Declaring	variables	inside	a	template
syntax	sugar	used,	in	templates	/	Using	syntax	sugar	in	templates

Domain-Specific	Language	(DSL)
about	/	Using	Angular’s	DI	with	ES5

Domain	Specific	Language	(DSL)
about	/	Templates,	Changing	directives

dynamic	change	detection
about	/	Change	detection

E
ECMAScript

evolution	/	The	evolution	of	ECMAScript
Web	Components	/	Web	Components
WebWorkers	/	WebWorkers

ECMAScript	5	(ES5)
about	/	Changing	directives

ECMAScript	2015	(ES2015)
about	/	The	evolution	of	the	Web	–	time	for	a	new	framework

element	injectors
about	/	Introducing	the	element	injectors
providers,	declaring	/	Declaring	providers	for	the	element	injectors
Dependency	Injection	(DI),	exploring	with	components	/	Exploring	DI	with
components
viewProviders,	versus	providers	/	viewProviders	versus	providers

enum	types
about	/	The	Enum	types

environment,	Angular	2
setting	up	/	Setting	up	our	environment
references	/	Setting	up	our	environment
project	repository,	installing	/	Installing	our	project	repository
URL,	for	issues	/	Installing	our	project	repository

ES5
Dependency	Injection	(DI),	using	with	/	Using	Angular’s	DI	with	ES5

ES2015
TypeScript	syntax	/	TypeScript	syntax	and	features	introduced	by	ES2015	and
ES2016
TypeScript	features	/	TypeScript	syntax	and	features	introduced	by	ES2015	and
ES2016
arrow	functions	/	ES2015	arrow	functions
and	ES2016	classes,	using	/	Using	the	ES2015	and	ES2016	classes
modular	code,	writing	with	/	Writing	modular	code	with	ES2015
module	syntax,	using	/	Using	the	ES2015	module	syntax
implicit	asynchronous	behavior	/	Taking	advantage	of	the	implicit	asynchronous
behavior
aliases,	using	/	Using	aliases
module	exports,	importing	/	Importing	all	the	module	exports
default	exports	/	Default	exports
module	loader	/	ES2015	module	loader
and	ES2016,	recap	/	ES2015	and	ES2016	recap

ES2016	decorators
meta-programming	with	/	Meta-programming	with	ES2016	decorators
configurable	decorators,	using	/	Using	configurable	decorators

F
factories

using	/	Using	existing	providers
defining,	for	instantiating	services	/	Defining	factories	for	instantiating	services

forward	references
about	/	Introducing	forward	references

G
generic	code

writing,	type	parameters	used	/	Writing	generic	code	by	using	type	parameters
generic	functions,	using	/	Using	generic	functions
multiple	type	parameters,	having	/	Having	multiple	type	parameters

generic	views
defining,	with	TemplateRef	/	Defining	generic	views	with	TemplateRef

GitHub	API	token
reference	link	/	Exploring	the	HTTP	module	of	Angular

Google	Closure	Compiler	/	Better	support	by	text	editors	and	IDEs

H
Hello	world!	application

defining,	in	Angular	2	/	The	Hello	world!	application	in	Angular	2
host	injectors

about	/	Introducing	the	element	injectors,	Exploring	DI	with	components
hot	reloading

about	/	Hot	reloading
in	Angular	2	/	Hot	reloading	in	Angular	2

HTTP	module
exploring	/	Exploring	the	HTTP	module	of	Angular
using	/	Using	Angular’s	HTTP	module

I
IDEs	/	Text	editors	and	IDEs
implicit	asynchronous	behavior,	ES2015	/	Taking	advantage	of	the	implicit
asynchronous	behavior
injector

about	/	Configuring	an	injector
configuring	/	Configuring	an	injector
dependency	resolution,	with	generated	metadata	/	Dependency	resolution	with
generated	metadata
instantiating	/	Instantiating	an	injector
forward	references	/	Introducing	forward	references
providers,	configuring	/	Configuring	providers
factories,	using	/	Using	existing	providers
factories,	defining	for	instantiating	services	/	Defining	factories	for	instantiating
services
child	injectors	/	Child	injectors	and	visibility
hierarchy,	building	/	Building	a	hierarchy	of	injectors

inline	caching
reference	link	/	Change	detection

interfaces
about	/	Defining	interfaces
inheritance	/	Interface	inheritance
multiple	interfaces,	implementing	/	Implementing	multiple	interfaces

inversion	of	control	(IoC)
about	/	Dependency	Injection

isomorphic	/	Server-side	rendering	with	Angular	2

J
JIT	change	detection

about	/	Change	detection

L
Leaf	class

about	/	Getting	to	know	Angular	2	components
less	verbose	code

writing,	with	TypeScripts	type	inference	/	Writing	less	verbose	code	with
TypeScript’s	type	inference
best	common	type	/	Best	common	type
contextual	type	inference	/	Contextual	type	inference

lifecycle,	component
hooking	into	/	Hooking	into	the	component’s	life	cycle

livereload	/	Hot	reloading

M
Massive	View	Controller	(MVC)

about	/	Controllers
model-driven	forms,	Angular	2

developing	/	Developing	model-driven	forms	in	Angular	2
control	validators	composition,	using	/	Using	composition	of	control	validators

Model-View-Controller	(MVC)
about	/	Getting	to	know	Angular	2	components

Model-View-ViewModel	(MVVM)
about	/	Getting	to	know	Angular	2	components

Model-View-Whatever	(MVW)
about	/	Change	detection

Model	View	Controller	(MVC)
about	/	Controllers

Model	View	Presenter	(MVP)
about	/	Controllers

Model	View	ViewModel	(MVVM)
about	/	Controllers

Model	View	Whatever	(MVW)
about	/	Controllers

multiproviders
using	/	Using	multiproviders

N
n

URL	/	Setting	up	our	environment
nested	routes

defining	/	Defining	nested	routes
NgForm	directive

using	/	Using	the	NgForm	directive
node.js

URL	/	Using	TypeScript
Node	Package	Manager	(npm)	/	Using	TypeScript

used,	for	installing	TypeScript	/	Installing	TypeScript	with	npm
nvm

URL	/	Setting	up	our	environment

O
object-oriented	(OO)	paradigm	/	Using	the	ES2015	and	ES2016	classes
Object	types

Array	types	/	The	Array	types
Function	types	/	The	Function	types

operation
about	/	Getting	to	know	Angular	2	components

order	of	execution
tracing	/	The	order	of	execution

P
parameterized	views

defining	/	Defining	parameterized	views
PathLocationStrategy

using	/	Using	PathLocationStrategy
pipes

about	/	A	conceptual	overview	of	Angular	2,	Pipes
defining	/	Defining	pipes
used,	for	data	transformations	/	Transforming	data	with	pipes
stateless	pipes,	developing	/	Developing	stateless	pipes
built-in	pipes,	using	/	Using	Angular’s	built-in	pipes
stateful	pipes,	developing	/	Developing	stateful	pipes

preboot.js	/	Server-side	rendering	with	Angular	2
primitive	types

about	/	Understanding	the	Primitive	types
providers

about	/	Configuring	an	injector
configuring	/	Configuring	providers
existing	providers,	using	/	Using	existing	providers
declaring,	for	element	injectors	/	Declaring	providers	for	the	element	injectors
versus	viewProviders	/	viewProviders	versus	providers

R
@RouteConfig

used,	for	route	configuration	/	Configuring	routes	with	@RouteConfig
root	component

defining	/	Defining	the	root	component	and	bootstrapping	the	application
route

definition	syntax	/	Angular	2	route	definition	syntax
router-outlet

using	/	Using	routerLink	and	router-outlet
routerLink

using	/	Using	routerLink	and	router-outlet
RxJS	GitHub	repository

about	/	The	Hello	world!	application	in	Angular	2
URL	/	The	Hello	world!	application	in	Angular	2

S
scope	object

about	/	Scope
Search	Engine	Optimization	(SEO)

about	/	Server-side	rendering
select	inputs

using,	with	Angular	2	forms	/	Using	select	inputs	with	Angular
self	decorator

using	/	Using	the	@Self	decorator
self	injector

skipping	/	Skipping	the	self	injector
SEO	(Search	Engine	Optimization)

and	UI	/	Initial	load	of	a	single-page	application
server-side	rendering

about	/	Server-side	rendering
services

about	/	A	conceptual	overview	of	Angular	2,	Understanding	services
instantiating,	with	factories	/	Defining	factories	for	instantiating	services

single-page	application
initial	load	/	Initial	load	of	a	single-page	application
initial	load,	with	enabled	server-side	rendering	/	Initial	load	of	a	SPA	with
server-side	rendering
server-side	rendering,	with	Angular	2	/	Server-side	rendering	with	Angular	2

single-page	applications
about	/	Applications	that	scale

single-page	applications	(SPA)
about	/	Understanding	the	new	component-based	router

stateful	pipes
developing	/	Developing	stateful	pipes
using	/	Using	stateful	pipes

stateless	pipes
developing	/	Developing	stateless	pipes

static	typing
about	/	Taking	advantage	of	static	typing
explicit	type	definitions,	using	/	Using	explicit	type	definitions
type	any	/	The	type	any
primitive	types	/	Understanding	the	Primitive	types
enum	types	/	The	Enum	types
Object	types	/	Understanding	the	Object	types
Array	types	/	The	Array	types
Function	types	/	The	Function	types
classes,	defining	/	Defining	classes
access	modifiers,	using	/	Using	access	modifiers

interfaces,	defining	/	Defining	interfaces
interface	inheritance	/	Interface	inheritance
multiple	interfaces,	implementing	/	Implementing	multiple	interfaces

stored	developers
listing	/	Listing	all	the	stored	developers

subtyping	/	Defining	interfaces

T
template-driven	forms

developing	/	Developing	template-driven	forms
markup,	exploring	/	Digging	into	the	template-driven	form’s	markup

TemplateRef
generic	views,	defining	with	/	Defining	generic	views	with	TemplateRef

templates
about	/	Templates

text	editors
and	IDEs	/	Text	editors	and	IDEs

time	to	live	(TTL)
about	/	Applications	that	scale

Todo	application
components	/	Finding	out	directives’	inputs	and	outputs

token
about	/	Configuring	an	injector

transpilation
about	/	The	evolution	of	ECMAScript

Transport	Layer	Security	(TLS)
about	/	Defining	factories	for	instantiating	services

two-way	data-binding
using,	with	Angular	2	/	Two-way	data-binding	with	Angular	2

type	inference
used,	for	writing	less	verbose	code	/	Writing	less	verbose	code	with	TypeScript’s
type	inference

type	parameters
used,	for	writing	generic	code	/	Writing	generic	code	by	using	type	parameters
generic	functions,	using	/	Using	generic	functions
multiple	type	parameters,	having	/	Having	multiple	type	parameters

types,	TypeScript
about	/	The	type	any
primitive	types	/	The	type	any
union	types	/	The	type	any
object	types	/	The	type	any
type	parameters	/	The	type	any

TypeScript
about	/	Introduction	to	TypeScript
compile-time	type	checking	/	Compile-time	type	checking
text	editors	and	IDEs,	support	/	Better	support	by	text	editors	and	IDEs
benefits	/	There’s	even	more	to	TypeScript
using	/	Using	TypeScript,	The	Hello	world!	application	in	Angular	2
installing,	npm	used	/	Installing	TypeScript	with	npm
program,	running	/	Running	our	first	TypeScript	program

syntax,	by	ES2015	and	ES2016	/	TypeScript	syntax	and	features	introduced	by
ES2015	and	ES2016
features,	by	ES2015	and	ES2016	/	TypeScript	syntax	and	features	introduced	by
ES2015	and	ES2016
ES2015	arrow	functions	/	ES2015	arrow	functions
ES2015	and	ES2016	classes,	using	/	Using	the	ES2015	and	ES2016	classes
variables,	defining	with	block	scope	/	Defining	variables	with	block	scope
decorators	/	Further	expressiveness	with	TypeScript	decorators
playing	with	/	Playing	with	Angular	2	and	TypeScript

U
Universal	/	Server-side	rendering	with	Angular	2
universal	starter

URL	/	Server-side	rendering	with	Angular	2
user	actions

handling	/	Handling	user	actions
directives’	input	and	output,	using	/	Using	a	directives’	inputs	and	outputs
directives’	input	and	output,	finding	out	/	Finding	out	directives’	inputs	and
outputs
component’s	input	and	output,	defining	/	Defining	the	component’s	inputs	and
outputs
input,	passing	/	Passing	inputs	and	consuming	the	outputs
output,	consuming	/	Passing	inputs	and	consuming	the	outputs
event	bubbling	/	Event	bubbling
input	and	output	of	directive,	renaming	/	Renaming	the	inputs	and	outputs	of	a
directive
alternative	syntax,	for	defining	input	and	output	/	An	alternative	syntax	to	define
inputs	and	outputs

V
view	children

about	/	Nesting	components
view	encapsulation,	component

defining	/	Introducing	the	component’s	view	encapsulation
viewProviders

versus	providers	/	viewProviders	versus	providers
views,	Coders	repository	application

basic	details	/	Developing	the	“Coders	repository”	application

W
Web

evolution	/	The	evolution	of	the	Web	–	time	for	a	new	framework
Web	Components

about	/	The	evolution	of	the	Web	–	time	for	a	new	framework
evolution	/	Web	Components

Webpack	starter
URL	/	Angular	2	Webpack	starter

Web	Workers
applications,	running	/	Running	applications	in	Web	Workers
about	/	Running	applications	in	Web	Workers
and	Angular	2	/	Web	Workers	and	Angular	2
application,	bootstrapping	/	Bootstrapping	an	application	running	in	Web
Worker
and	UI	/	Bootstrapping	an	application	running	in	Web	Worker
application,	migrating	to	/	Migrating	an	application	to	Web	Worker
compatible,	application	creating	/	Making	an	application	compatible	with	Web
Workers

WebWorkers
about	/	The	evolution	of	the	Web	–	time	for	a	new	framework,	WebWorkers

Z
zone.js

change	detection	/	In	the	zone.js

	Switching to Angular 2
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with Angular 2
	The evolution of the Web – time for a new framework
	The evolution of ECMAScript
	Web Components
	WebWorkers
	Lessons learned from AngularJS 1.x in the wild
	Controllers
	Scope
	Dependency Injection
	Server-side rendering
	Applications that scale
	Templates
	Change detection
	Summary
	2. The Building Blocks of an Angular 2 Application
	A conceptual overview of Angular 2
	Changing directives
	Getting to know Angular 2 components
	Components in action
	Components in Angular 2
	Pipes
	Defining pipes
	Change detection
	Classical change detection
	AngularJS 1.x change detection
	In the zone.js
	Simplified data flow
	Enhancing AngularJS 1.x's change detection
	Understanding services
	Understanding the new component-based router
	Angular 2 route definition syntax
	Summary
	3. TypeScript Crash Course
	Introduction to TypeScript
	Compile-time type checking
	Better support by text editors and IDEs
	There's even more to TypeScript
	Using TypeScript
	Installing TypeScript with npm
	Running our first TypeScript program
	TypeScript syntax and features introduced by ES2015 and ES2016
	ES2015 arrow functions
	Using the ES2015 and ES2016 classes
	Defining variables with block scope
	Meta-programming with ES2016 decorators
	Using configurable decorators
	Writing modular code with ES2015
	Using the ES2015 module syntax
	Taking advantage of the implicit asynchronous behavior
	Using aliases
	Importing all the module exports
	Default exports
	ES2015 module loader
	ES2015 and ES2016 recap
	Taking advantage of static typing
	Using explicit type definitions
	The type any
	Understanding the Primitive types
	The Enum types
	Understanding the Object types
	The Array types
	The Function types
	Defining classes
	Using access modifiers
	Defining interfaces
	Interface inheritance
	Implementing multiple interfaces
	Further expressiveness with TypeScript decorators
	Writing generic code by using type parameters
	Using generic functions
	Having multiple type parameters
	Writing less verbose code with TypeScript's type inference
	Best common type
	Contextual type inference
	Using ambient type definitions
	Using predefined ambient type definitions
	Custom ambient type definitions
	Defining ts.d files
	Summary
	4. Getting Started with Angular 2 Components and Directives
	The Hello world! application in Angular 2
	Setting up our environment
	Installing our project repository
	Playing with Angular 2 and TypeScript
	Digging into the index
	Using Angular 2 directives
	The ngFor directive
	Improved semantics of the directives syntax
	Declaring variables inside a template
	Using syntax sugar in templates
	Defining Angular 2 directives
	Setting the directive's inputs
	Understanding the directive's constructor
	Better encapsulation of directives
	Using Angular 2's built-in directives
	Introducing the component's view encapsulation
	Implementing the component's controllers
	Handling user actions
	Using a directives' inputs and outputs
	Finding out directives' inputs and outputs
	Defining the component's inputs and outputs
	Passing inputs and consuming the outputs
	Event bubbling
	Renaming the inputs and outputs of a directive
	An alternative syntax to define inputs and outputs
	Explaining Angular 2's content projection
	Basic content projection in Angular 2
	Projecting multiple content chunks
	Nesting components
	Using ViewChildren and ContentChildren
	ViewChild versus ContentChild
	Hooking into the component's life cycle
	The order of execution
	Defining generic views with TemplateRef
	Understanding and enhancing the change detection
	The order of execution of the change detectors
	Change detection strategies
	Performance boosting with immutable data and OnPush
	Using immutable data structures in Angular
	Summary
	5. Dependency Injection in Angular 2
	Why do I need Dependency Injection?
	Dependency Injection in Angular 2
	Benefits of DI in Angular 2
	Configuring an injector
	Dependency resolution with generated metadata
	Instantiating an injector
	Introducing forward references
	Configuring providers
	Using existing providers
	Defining factories for instantiating services
	Child injectors and visibility
	Building a hierarchy of injectors
	Configuring dependencies
	Using the @Self decorator
	Skipping the self injector
	Having optional dependencies
	Using multiproviders
	Using DI with components and directives
	Introducing the element injectors
	Declaring providers for the element injectors
	Exploring DI with components
	viewProviders versus providers
	Using Angular's DI with ES5
	Summary
	6. Working with the Angular 2 Router and Forms
	Developing the "Coders repository" application
	Exploring the Angular 2 router
	Defining the root component and bootstrapping the application
	Using PathLocationStrategy
	Configuring routes with @RouteConfig
	Using routerLink and router-outlet
	Lazy-loading with AsyncRoute
	Using Angular 2 forms
	Developing template-driven forms
	Digging into the template-driven form's markup
	Using the built-in form validators
	Defining custom control validators
	Using select inputs with Angular
	Using the NgForm directive
	Two-way data-binding with Angular 2
	Storing the form data
	Listing all the stored developers
	Summary
	7. Explaining Pipes and Communicating with RESTful Services
	Developing model-driven forms in Angular 2
	Using composition of control validators
	Exploring the HTTP module of Angular
	Using Angular's HTTP module
	Defining parameterized views
	Defining nested routes
	Transforming data with pipes
	Developing stateless pipes
	Using Angular's built-in pipes
	Developing stateful pipes
	Using stateful pipes
	Using Angular's AsyncPipe
	Using AsyncPipe with observables
	Summary
	8. Development Experience and Server-Side Rendering
	Running applications in Web Workers
	Web Workers and Angular 2
	Bootstrapping an application running in Web Worker
	Migrating an application to Web Worker
	Making an application compatible with Web Workers
	Initial load of a single-page application
	Initial load of a SPA with server-side rendering
	Server-side rendering with Angular 2
	Enhancing our development experience
	Text editors and IDEs
	Hot reloading
	Hot reloading in Angular 2
	Bootstrapping a project with angular-cli
	Using angular-cli
	Angular 2 quick starters
	Angular 2 seed
	Angular 2 Webpack starter
	Summary
	Index

