

Modern JavaScript Applications

An example-driven guide that explores the world of
modern web development with JavaScript

Narayan Prusty

BIRMINGHAM - MUMBAI

Modern JavaScript Applications

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1140716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-144-2

www.packtpub.com

www.packtpub.com

Credits

Author
Narayan Prusty

Reviewer
Olivier Pons

Commissioning Editor
Wilson D'souza

Acquisition Editor
Dharmesh Parmar

Content Development Editor
Arshiya Ayaz Umer

Technical Editor
Mohit Hassija

Copy Editor
Madhusudan Uchil

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=c32a25fc-7757-621f-6ac5-5539fc0d84db
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=684079df-b41b-6aec-3e9e-555af3f338b1
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=31ff1a68-1a12-a53a-8196-5547167a64dc
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=59570ba2-2d60-64d0-1b7e-565823f43dc2
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=5cd20b25-282e-3bcd-2592-538330ecdc84
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=eb93d849-9a0d-9ba4-993a-57518348d1ad
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=a156f537-9916-4318-2e9f-5608d78c15de
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=cb37d09d-a01e-ab8a-3b61-53db8b6f50c1
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=cb37d09d-a01e-ab8a-3b61-53db8b6f50c1

About the Author

Narayan Prusty is a full-stack developer. He works as a consultant for
various startups around the world. He has worked on various technologies and
programming languages but is very passionate about JavaScript, WordPress,
Ethereum, Solr, React, Cordova, MongoDB, and AWS.

Apart from consulting for various startups, he also runs a blog titled QNimate
(http://qnimate.com) and a video-tutorial site titled QScutter (http://qscutter.
com), where he shares information about a lot of the technologies he works on.
Previously, he wrote a book titled Learning ECMAScript 6, which was published
by Packt Publishing.

You can reach Narayan on LinkedIn (https://in.linkedin.com/in/
narayanprusty).

http://qnimate.com
(http://qscutter.com
(http://qscutter.com
https://in.linkedin.com/in/narayanprusty
https://in.linkedin.com/in/narayanprusty

About the Reviewer

Olivier Pons is a senior developer who's been building websites for many years.
He's a teacher at the University of Sciences (IUT) of Aix-en-Provence, France,
ISEN (Institut Supérieur de l'Électronique et du Numérique), G4 Marseille, and
École d'Ingénieurs des Mines de Gardanne, where he teaches state-of-the-art
web techniques: Node.js, big data/NoSQL, MVC fundamentals, Django/Python,
Symfony basics, Wordpress, PHP, HTML, CSS, jQuery/jQuery mobile, AngularJS,
Apache, Linux basics, and advanced VIM techniques. He has already done some
technical reviews, including the Packt books Learning ExtJS, ExtJS 4 First Look,
jQuery hotshots, jQuery Mobile Web Development Essentials, Wordpress 4 Complete, and
jQuery 2.0 for Designers Beginner's Guide. In 2011, he left a full-time job as a Delphi
developer and PHP expert to concentrate on his own company, HQF Development
(http://hqf.fr). He currently runs a number of websites, including http://
krystallopolis.fr, http://artsgaleries.com, http://www.battlesoop.fr,
http://www.cogofly.com, http://www.papdevis.fr, and http://olivierpons.
fr, his own web development blog. He's currently polishing http://cogofly.
com and making a keyboard for geek here http://ergofip.com. He works as a
consultant, teacher, and project manager and sometimes helps big companies as a
senior/highly skilled developer.

http://hqf.fr
http://krystallopolis.fr
http://krystallopolis.fr
http://artsgaleries.com
http://www.battlesoop.fr
http://www.cogofly.com
http://www.papdevis.fr
http://olivierpons.fr
http://olivierpons.fr
http://cogofly.com
http://cogofly.com
http://ergofip.com

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface ix
Chapter 1: Breaking into Microservices Architecture 1

What is monolithic architecture? 2
Demerits of monolithic architecture 2

Scaling monolithic architecture 2
Writing monolithic server-side applications 4
Other issues of monolithic architecture 5

Microservices architecture to the rescue 5
Merits of microservices architecture 7
Scaling services 7
Demerits of microservices architecture 9
When to use microservices architecture 9
Data management 10

Implementing microservices using Seneca 11
Creating your first Seneca application 13

Creating actions 14
Creating plugins 15
Creating services 17
Storing data 18
Integrating Express and Seneca 21

Summary 24
Chapter 2: Building a Coupon Site 25

Getting started 26
Architecture of our site 26
Creating the services 29

Database service 29
URL config service 31
Upload service 32

Table of Contents

[ii]

Creating the image upload server 36
Creating the monolithic core 38
Website walkthrough 49
Further improvements to the site 52
Summary 53

Chapter 3: Communication between Browsers in Real Time 55
Terminologies 56

Stream 56
Peer-to-peer network model 56
Real-time data 57

Introduction to WebRTC 58
MediaStream API 58
navigator.getUserMedia 60
RTCPeerConnection API 63

Establishing peer-to-peer connection 64
Transferring MediaStream 65

RTCDataChannel API 66
WebRTC applications using PeerJS 67

PeerServer 67
PeerJS API 68

Miscellaneous 76
Summary 77

Chapter 4: Building a Chatroulette 79
Creating your own PeerServer 80

Run PeerServer from shell 80
Using PeerServer library 81

Creating custom PeerServer 81
Integrating PeerServer with the Express server 82

Creating a chatroulette 83
Building the backend 84
Building the frontend 88

Testing the website 98
Summary 98

Chapter 5: Bidirectional Communication in Real Time 99
Introducing WebSocket 100

The relationship between WebSocket and HTTP 100
Sending and receiving data on a WebSocket connection 101
WebSocket schemes 101
The interaction of WebSocket with proxy servers,
load balancers, and firewalls 102
The same-origin policy for WebSocket 103

Table of Contents

[iii]

Introduction to Socket.IO 103
Setting up your project 103
Diving into the Socket.IO API 105

Restricting connections based on origin 109
Namespaces in Socket.IO 110
Rooms in Socket.IO 113
Broadcasting messages and custom events to namespaces and rooms 114
Middleware in Socket.IO 115
Disconnecting manually 116

Summary 116
Chapter 6: Building a Live Score Site 117

Building the backend 117
Integrating socket.io server with the Express server 118
Serving static files and HTML to the users 119
Serving HTML to the administrator and protecting the admin panel 119
Socket.IO cookie authentication and broadcasting messages
to a namespace 121

Building the frontend 123
Testing the website 125
Summary 126

Chapter 7: Functional Reactive Programming 127
Introduction to reactive programming 128

Problems with writing reactive code 128
Functional programming in a nutshell 130

The advantages of immutable data 131
Functional data structures 131
The advantages of pure functions 132
Functional programming with JavaScript 132
Functional programming helper functions 133

Getting started with FRP 134
EventStreams 134
Properties 135

FRP using Bacon.js 136
Setting up the project 136
Bacon.js APIs 138

Creating EventStreams 138
Creating properties 139
Merging, filtering, and transforming EventStreams and properties 141

Summary 146

Table of Contents

[iv]

Chapter 8: Building an Advanced Profile Search Widget 147
Errors in Bacon.js 147

Subscribing to errors 148
Mapping errors 148
Retrying a function call 149
Ending an EventStream or property on error 150

Handling exceptions 150
Constant properties 151
An overview of buses 152
Subscribing to the end of EventStreams and properties 152
Unplugging subscribers 153
Combining and zipping 153
Lazy evaluation 155

Type 1 155
Type 2 155

Building the profile search widget 157
Understanding project directories and files 158
Converting Express.js routes to a functional reactive pattern 158
Making the user experience better 159
The company suggestions route 160
The search result route 162
Building the frontend 164
Testing the widget 171

Summary 172
Chapter 9: New Features of Bootstrap 4 173

Downloading Bootstrap 4 173
Browser and device support 174
Understanding the rem and em CSS units 174
The grid system 175
Global margin reset 179
Spacing utility classes 179
Display headings 181
Inverse tables 182
The card component 183

Card groups, decks, and columns 189
Outline buttons 193
Moving from Less to Sass 193
Text alignment and float utility classes 194
Reboot 194
Flexbox support 194

Table of Contents

[v]

JavaScript improvements 195
Adding Tether 195
The 21:9 aspect ratio class 195
Customizing Bootstrap 4 195
Glyphicons dropped 196
Summary 196

Chapter 10: Building User Interfaces Using React 197
Introducing React 198

Setting up a basic React project 199
Virtual DOM 200
Components 203
One-way data binding 204
Isomorphic UI development 207

Getting started with JSX 209
Compiling JSX 209
JSX syntax 210

Digging into components 213
Component composition 213
Component ownership 215

Reconciliation 215
Default component property values 218
Component life cycle methods 218

componentWillMount() 219
componentDidMount() 219
componentWillReceiveProps(nextProps) 219
shouldComponentUpdate(nextProps, nextState) 221
componentWillUpdate(nextProps, nextState) 221
componentDidUpdate(prevProps, prevState) 221
componentWillUnmount() 221

Mixins 222
Using Refs 223
ReactDOMServer.renderToStaticMarkup 224
Summary 224

Chapter 11: Building an RSS Reader Using React and Flux 225
Understanding Flux 225
Using Flux.js 227
Using MicroEvent.js 228
Introduction to React Router 228
Creating the RSS feed reader 229

Setting up the project directories and files 230

Table of Contents

[vi]

Building the backend 230
Building the frontend 231

Defining routes 232
Creating dispatcher, actions, and stores 233

Testing the application 240
Summary 241

Chapter 12: New Features of Angular 2 243
The Angular 2 architecture 243
Introducing web components 245

Templates 246
Custom elements 247
Shadow DOM 249

Setting up an Angular 2 project 250
Angular 2 fundamentals 251
Styling components and shadow DOM 257
Angular 2 change detection 259
Understanding view children and content children 261

Getting the reference of components of content children and
view children 263
Local template variables 264

Component lifecycle methods 265
Writing templates 266

Rendering a value 267
Pipes 267

Handling events 268
Binding state to element attributes 269
Two-way data binding 271
Directives 272

Attribute directives 272
Structural directives 273

Outputs 275
Two-way data binding with inputs and outputs 276

Understanding providers 278
The difference between providers and the viewProviders property 280
Summary 282

Table of Contents

[vii]

Chapter 13: Building a Search Engine Template
Using AngularJS 2 283

Setting up the project 283
Configuring routes and bootstrapping the app 285
Generating random search results 287
Creating route components 288
Testing the template 292
Routing life cycle methods 293
Production mode versus development mode 295
Summary 295

Chapter 14: Securing and Scaling Node.js Applications 297
Common vulnerabilities in applications 297

Helmet 298
Cross-site request forgery 299
Cross-site scripting 299
Session fixation 299

Non-vulnerability based attacks 300
Denial-of-service attacks 300
Brute force attacks 300

Using secure packages 300
Scaling Node.js servers 301
Summary 302

Index 303

[ix]

Preface
"JavaScript is the only language that I'm aware of that people feel they don't need to
learn before they start using it."

– Douglas Crockford

The book begins by covering an enterprise-level application with the microservices
architecture, using Node.js to build web services. As we move forward, the book
shows you how to build a browser-browser application using WebRTC. We then
focus on building a real-time web application with WebSockets.

When you've gained a solid grip on the different architectures, you'll see how to
write better reactive code using functional reactive programming (FRP). Then, we'll
move onto what's new in Bootstrap 4 and how it makes it easier then ever to build
responsive sites. As we near the end of this book, you'll see how to build a modern
single-page application that builds on the innovative component-based architecture
using React and Angular 2.

After reading this book, you will have a solid knowledge of the latest JavaScript
techniques, tools, and architecture required to build modern web apps.

What this book covers
Chapter 1, Breaking into Microservices Architecture, teaches what the microservices
architecture is and why enterprise-level applications are built using it. We will
then explore Seneca.js, which is a microservices toolkit for Node.js.

Chapter 2, Building a Coupon Site, shows you how to build a basic coupon site to
demonstrate Seneca.js and the microservices architecture.

Preface

[x]

Chapter 3, Communication between Browsers in Real Time, teaches you what WebRTC
is and how to use it to implement features such as audio/video chat or some other
features in websites that need real-time browser-to-browser data transfer or to
retrieve audio/video streams from microphones, webcams, or any other device.
We will learn to write WebRTC-based applications using PeerJS, which simplifies
WebRTC-based application development.

Chapter 4, Building a Chatroulette, shows you how to build a chatroulette to
demonstrate WebRTC and PeerJS.

Chapter 5, Bidirectional Communication in Real Time, teaches what WebSockets are
and how to achieve bidirectional communication in real-time using WebSockets.
We will then explore Socket.IO, which utilizes WebSockets to enable bidirectional
communication in real time.

Chapter 6, Building a Live Score Site, shows you how to build a simple live-score site
using Socket.IO.

Chapter 7, Functional Reactive Programming, teaches you reactive code and how to
write better reactive code using functional reactive programming. We will then
explore Bacon.js, which is a functional reactive programming library for JavaScript.

Chapter 8, Building an Advanced Profile Search Widget, helps you build an advanced
profile-search widget using Bacon.js.

Chapter 9, New Features of Bootstrap 4, teaches you what's new in Bootstrap 4 and how
it makes it easier then ever to create responsive sites.

Chapter 10, Building User Interfaces Using React, teaches you what React.js is and
how it makes writing of code for reactive UI easier and takes care of rendering
performance and reusability.

Chapter 11, Building an RSS Reader Using React and Flux, shows you how to build a
simple RSS reader using React and the Flux architecture.

Chapter 12, New Features of Angular 2, teaches you how to use Angular 2 to build the
client side of websites. We will also learn about web components in this chapter.

Chapter 13, Building a Search Engine Template Using AngularJS 2, shows you how to
build a search engine template using Angular 2. We will also learn how to build an
SPA using Angular 2.

Chapter 14, Securing and Scaling Node.js Applications, teaches you how to make Node.js
applications more secure and what the common technologies used for scaling Node.
js applications are.

Preface

[xi]

What you need for this book
You can use any operating system that supports Node.js and MongoDB. You will
need a browser, but I would recommended you to use the latest version of Chrome
as it's way ahead with supporting the new technologies that are covered in this book.
You will also need a webcam and microphone. And finally, you will need a working
Internet connection.

Who this book is for
This book is for existing JavaScript developers who want to explore some modern
JavaScript features, techniques, and architectures in order to develop cutting-edge
web applications.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Here we are first calling the make method of the senena object. It's used to get
reference of an entity's store. For example, in case of MySQL, the make method gets
reference to a table."

A block of code is set as follows:

var script_start_time = Bacon.constant(Date.now()).map(function(value)
{
 var date = new Date(value);
 return (date).getHours() + ":" + (date).getMinutes() + ":" + (date).
getSeconds();
});

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Now click
on the Admin button to visit the admin panel and accept the coupon. Here is how
the admin panel will look."

Preface

[xii]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Modern-JavaScript-Applications. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/ModernJavaScriptApplications_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Modern-JavaScript-Applications
https://github.com/PacktPublishing/Modern-JavaScript-Applications
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ModernJavaScriptApplications_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ModernJavaScriptApplications_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ModernJavaScriptApplications_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Breaking into Microservices
Architecture

The architecture of server-side application development for complex and large
applications (applications with huge number of users and large volume of data)
shouldn't just involve faster response and providing web services for wide variety
of platforms. It should be easy to scale, upgrade, update, test, and deploy. It should
also be highly available, allowing the developers write components of the server-
side application in different programming languages and use different databases.
Therefore, this leads the developers who build large and complex applications
to switch from the common monolithic architecture to microservices architecture
that allows us to do all this easily. As microservices architecture is being widely
used in enterprises that build large and complex applications, it's really important
to learn how to design and create server-side applications using this architecture.
In this chapter, we will discuss how to create applications based on microservices
architecture with Node.js using the Seneca toolkit.

In this chapter, we'll cover the following topics:

• Understanding monolithic architecture
• Scaling, upgrading, deploying, and writing applications based on

monolithic architecture
• Discussing microservices architecture in depth
• Scaling, upgrading, deploying, and writing applications based on

microservices architecture
• Getting started with Seneca
• Creating and calling services using Seneca

Breaking into Microservices Architecture

[2]

What is monolithic architecture?
To understand microservices architecture, it's important to first understand
monolithic architecture, which is its opposite.

In monolithic architecture, different functional components of the server-side
application, such as payment processing, account management, push notifications,
and other components, all blend together in a single unit.

For example, applications are usually divided into three parts. The parts are HTML
pages or native UI that run on the user's machine, server-side application that runs
on the server, and database that also runs on the server. The server-side application
is responsible for handling HTTP requests, retrieving and storing data in a database,
executing algorithms, and so on. If the server-side application is a single executable
(that is, running is a single process) that does all these tasks, then we say that the
server-side application is monolithic.

This is a common way of building server-side applications. Almost every
major CMS, web servers, server-side frameworks, and so on are built using
monolithic architecture.

This architecture may seem successful, but problems are likely to arise when your
application is large and complex.

Demerits of monolithic architecture
The following are some of the issues caused by server-side applications built using
the monolithic architecture.

Scaling monolithic architecture
As traffic to your server-side application increases, you will need to scale your
server-side application to handle the traffic.

In case of monolithic architecture, you can scale the server-side application by
running the same executable on multiple servers and place the servers behind a load
balancer or you can use round robin DNS to distribute the traffic among the servers:

Chapter 1

[3]

In the preceding diagram, all the servers will be running the same
server-side application.

Although scaling is easy, scaling monolithic server-side application ends up with
scaling all the components rather than the components that require greater resource.
Thus, causing unbalanced utilization of resources sometimes, depending on the
quantity and types of resources the components need.

Breaking into Microservices Architecture

[4]

Let's consider some examples to understand the issues caused while scaling
monolithic server-side applications:

• Suppose there is a component of server-side application that requires a more
powerful or special kind of hardware, we cannot simply scale this particular
component as all the components are packed together, therefore everything
needs to be scaled together. So, to make sure that the component gets
enough resources, you need to run the server-side application on some more
servers with powerful or special hardware, leading to consumption of more
resources than actually required.

• Suppose we have a component that requires to be executed on a specific
server operating system that is not free of charge, we cannot simply run this
particular component in a non-free operating system as all the components
are packed together and therefore, just to execute this specific component,
we need to install the non-free operating system on all servers, increasing the
cost greatly.

These are just some examples. There are many more issues that you are likely to
come across while scaling a monolithic server-side application.

So, when we scale monolithic server-side applications, the components that don't
need more powerful or special kind of resource starts receiving them, therefore
deceasing resources for the component that needs them. We can say that scaling
monolithic server-side application involves scaling all components that are forcing to
duplicate everything in the new servers.

Writing monolithic server-side applications
Monolithic server-side applications are written in a particular programming
language using a particular framework. Enterprises usually have developers who
are experts in different programming languages and frameworks to build server-
side applications; therefore, if they are asked to build a monolithic server-side
application, then it will be difficult for them to work together.

The components of a monolithic server-side application can be reused only in the
same framework using, which it's built. So, you cannot reuse them for some other
kind of project that's built using different technologies.

Chapter 1

[5]

Other issues of monolithic architecture
Here are some other issues that developers might face, depending on the technology
that is used to build the monolithic server-side application:

• It may need to be completely rebuild and redeployed for every small change
made to it. This is a time-consuming task and makes your application
inaccessible for a long time.

• It may completely fail if any one of the components fails. It's difficult to
build a monolithic application to handle failure of specific components
and degrade application features accordingly.

• It may be difficult to find how much resources are each
components consuming.

• It may be difficult to test and debug individual components separately.

Microservices architecture to the rescue
We saw the problems caused by monolithic architecture. These problems lead
developers to switch from monolithic architecture to microservices architecture.

In microservices architecture, the server-side application is divided into services.
A service (or microservice) is a small and independent process that constitutes a
particular functionality of the complete server-side application. For example, you can
have a service for payment processing, another service for account management, and
so on; the services need to communicate with each other via a network.

What do you mean by "small" service?
You must be wondering how small a service needs to be and how to
tell whether a service is small or not. Well, it actually depends on many
factors such as the type of application, team management, availability
of resources, size of application, and how small you think is small.
However, a small service doesn't have to be the one that is written is
fewer lines of code or provides a very basic functionality. A small service
can be the one on which a team of developers can work independently,
which can be scaled independently to other services, scaling it doesn't
cause unbalanced utilization of recourses, and overall they are highly
decoupled (independent and unaware) of other services.

Breaking into Microservices Architecture

[6]

You don't have to run each service in a different server, that is, you can run multiple
services in a single computer. The ratio of server to services depends on different
factors. A common factor is the amount and type of resources and technologies
required. For example, if a service needs a lot of RAM and CPU time, then it would
be better to run it individually on a server. If there are some services that don't need
much resources, then you can run them all in a single server together.

The following diagram shows an example of the microservices architecture:

Chapter 1

[7]

Here, you can think of Service 1 as the web server with which a browser
communicates and other services providing APIs for various functionalities.
The web services communicate with other services to get data.

Merits of microservices architecture
Due to the fact that services are small and independent and communicate via
network, microservices architecture solves many problems that monolithic
architecture had. Here are some of the benefits of microservices architecture:

• As the services communicate via a network, they can be written in different
programming languages using different frameworks

• Making a change to a service only requires that particular service to be
redeployed instead of all the services, which is a faster procedure

• It becomes easier to measure how much resources are consumed by each
service as each service runs in a different process

• It becomes easier to test and debug, as you can analyze each
service separately

• Services can be reused by other applications as they interact via network calls

Scaling services
Apart from the preceding benefits, one of the major benefits of microservices
architecture is that you can scale individual services that require scaling instead
of all the services, therefore preventing duplication of resources and unbalanced
utilization of resources.

Breaking into Microservices Architecture

[8]

Suppose we want to scale Service 1 in the preceding diagram. Here is a diagram that
shows how it can be scaled:

Here, we are running two instances of Service 1 on two different servers kept behind
a load balancer, which distributes the traffic between them. All other services run
the same way, as scaling them wasn't required. If you wanted to scale Service 3,
then you can run multiple instances of Service 3 on multiple servers and place them
behind a load balancer.

Chapter 1

[9]

Demerits of microservices architecture
Although there are a lot of merits of using microservices architecture compared
to monolithic architecture, there are some demerits of microservices architecture
as well:

• As the server-side application is divided into services, deploying, and
optionally, configuring each service separately is a cumbersome and
time-consuming task.

Note that developers often use some sort automation technology
(such as AWS, Docker, and so on) to make deployment
somewhat easier; however, to use it, you still need a good level
of experience and expertise with that technology.

• Communication between services is likely to lag as it's done via a network.
• This sort of server-side applications more prone to network security

vulnerabilities as services communicate via a network.
• Writing code for communicating with other services can be harder, that is,

you need to make network calls and then parse the data to read it. This also
requires more processing. Note that although there are frameworks to build
server-side applications using microservices that make fetching and parsing
data easier, it still doesn't deduct the processing and network wait time.

• You will surely need some sort of monitoring tool to monitor services as they
may go down due to network, hardware, or software failure. Although you
may use the monitoring tool only when your application suddenly stops,
to build the monitoring software or use some sort of service, monitoring
software needs some level of extra experience and expertise.

• Microservices-based server-side applications are slower than monolithic-
based server-side applications as communication via networks is slower
compared to memory.

When to use microservices architecture
It may seem like its difficult to choose between monolithic and microservices
architecture, but it's actually not so hard to decide between them.

If you are building a server-side application using monolithic architecture and you
feel that you are unlikely to face any monolithic issues that we discussed earlier,
then you can stick to monolithic architecture. In future, if you are facing issues
that can be solved using microservices architecture, then you should switch to
microservices architecture.

Breaking into Microservices Architecture

[10]

If you are switching from a monolithic architecture to microservices architecture,
then you don't have to rewrite the complete application, instead you can only
convert the components that are causing issues to services by doing some code
refactoring. This sort of server-side applications where the main application logic
is monolithic but some specific functionality is exposed via services is called
microservices architecture with monolithic core. As issues increase further,
you can start converting more components of the monolithic core to services.

If you are building a server-side application using monolithic architecture and you
feel that you are likely to face any of the monolithic issues that we discussed earlier,
then you should immediately switch to microservices architecture or microservices
architecture with monolithic core, depending on what suits you the best.

Data management
In microservices architecture, each service can have its own database to store data
and can also use a centralized database.

Chapter 1

[11]

Some developers don't use a centralized database at all, instead all services have
their own database to store the data. To synchronize the data between the services,
the services omit events when their data is changed and other services subscribe to
the event and update the data. The problem with this mechanism is that if a service is
down, then it may miss some events. There is also going to be a lot of duplicate data,
and finally, it is difficult to code this kind of system.

Therefore, it's a good idea to have a centralized database and also let each service to
maintain their own database if they want to store something that they don't want to
share with others. Services should not connect to the centralized database directly,
instead there should be another service called database service that provides APIs
to work with the centralized database. This extra layer has many advantages, such
as the underlying schema can be changed without updating and redeploying all
the services that are dependent on the schema, we can add a caching layer without
making changes to the services, you can change the type of database without making
any changes to the services and there are many other benefits. We can also have
multiple database services if there are multiple schemas, or if there are different
types of database, or due to some other reason that benefits the overall architecture
and decouples the services.

Implementing microservices using
Seneca
Seneca is a Node.js framework for creating server-side applications using
microservices architecture with monolithic core.

Earlier, we discussed that in microservices architecture, we create a separate
service for every component, so you must be wondering what's the point of using
a framework for creating services that can be done by simply writing some code
to listen to a port and reply to requests. Well, writing code to make requests, send
responses, and parse data requires a lot of time and work, but a framework like
Seneca makes all this easy. Also, converting the components of a monolithic core
to services is also a cumbersome task as it requires a lot of code refactoring, but
Seneca makes it easy by introducing the concepts of actions and plugins. Finally,
services written in any other programming language or framework will be able to
communicate with Seneca services.

In Seneca, an action represents a particular operation. An action is a function that's
identified by an object literal or JSON string called the action pattern.

Breaking into Microservices Architecture

[12]

In Seneca, these operations of a component of monolithic core are written using
actions, which we may later want to move from monolithic core to a service and
expose it to other services and monolithic cores via a network.

Why actions?
You might be wondering what is the benefit of using actions
instead of functions to write operations and how actions make
it easy to convert components of monolithic core to services?
Suppose you want to move an operation of monolithic core that
is written using a function to a separate service and expose the
function via a network, then you cannot simply copy and paste
the function to the new service, instead you need to define a
route (if you are using Express). To call the function inside the
monolithic core, you will need to write code to make an HTTP
request to the service. To call this operation inside the service,
you can simply call a function so that there are two different
code snippets depending from where you are executing the
operation. Therefore, moving operations requires a lot of code
refactoring. However, if you would have written the preceding
operation using the Seneca action, then it would have been
really easy to move the operation to a separate service.
In case the operation is written using action, and you want
to move the operation to a separate service and expose the
operation via a network, then you can simply copy and paste
the action to the new service. That's it. Obviously, we also need
to tell the service to expose the action via the network and tell
the monolithic core where to find the action, but all these require
just couple of lines of code.

A Seneca service exposes actions to other services and monolithic cores. While
making requests to a service, we need to provide a pattern matching an action's
pattern to be called in the service.

Why patterns?
Patterns make it easy to map a URL to an action. Patterns can
overwrite other patterns for specific conditions, therefore it
prevents editing the existing code, as editing the existing code in
a production site is not safe and has many other disadvantages.

Seneca also has a concept of plugins. A seneca plugin is actually a set of actions that
can be easily distributed and plugged in to a service or monolithic core.

Chapter 1

[13]

As our monolithic core becomes larger and complex, we can convert components to
services. That is, move actions of certain components to services.

Creating your first Seneca application
Let's create a basic application using Seneca to demonstrate how to use it. We will
create an application that allows users to log in and register. This will be a demo
application just to demonstrate how actions, plugins, and services can be created,
and not how login and registration functionality works.

Before you proceed further, create a directory named seneca-example and place a
file named package.json in it. Inside the seneca-example directory, we will place
our services and monolithic core. Inside the package.json file, place the following
code so that npm will be able to download the dependencies for our application:

{
 "name": "seneca-example",
 "dependencies": {
 "seneca": "0.6.5",
 "express" : "latest"
 }
}

Here we are using Seneca version 0.6.5. Make sure that you are also using the same
version to avoid code incompatibility.

Now run the npm install command inside the seneca-example directory to install
Seneca and other packages locally.

Now create a file named main.js that will be the monolithic core of our server
side application.

The monolithic core and services are all seneca instances programmatically.
Place this code in the main.js file to create a seneca instance:

var seneca = require("seneca")();

Now using this seneca object, we are going to add actions, call actions, add plugins,
and everything.

Breaking into Microservices Architecture

[14]

Creating actions
Let's create actions for login and registration functionality and place them in the
main.js file. To create actions, we need to use the add method of the seneca object.
The first argument of the add method takes a JSON string or object that is the action
identifier (called pattern to identify the action). The second argument is a callback
that will be executed when the action is invoked.

Place this code in the main.js file that creates two actions for login and registration,
as follows:

seneca.add({role: "accountManagement", cmd: "login"}, function(args,
respond){
});

seneca.add({role: "accountManagement", cmd: "register"},
function(args, respond){
});

We will see the code for the body of the actions later in this chapter.

There is nothing special about role and cmd properties. You can use any property
names you wish too.

The second argument is a callback, which will be invoked when the action is called.

If there are multiple actions with the same pattern, then the later overrides
the others.

We need to use the act method of the seneca object to invoke an action that's
local to the instance or resides on some other service. The first argument of the act
method is a pattern to match an action, and the second argument is a callback that
will be executed once the action has been invoked.

Here is an example code that shows how to call the preceding two actions:

seneca.act({role: "accountManagement", cmd: "register", username:
"narayan", password: "mypassword"}, function(error, response){
});

seneca.act({role: "accountManagement", cmd: "login", username:
"narayan", password: "mypassword"}, function(error, response){
});

The callback passed to the act method is executed asynchronously once the result of
the action arrives.

Chapter 1

[15]

Here, the object we passed to the act method has two extra properties than the
action's pattern it is supposed to match. However, the action is still matched and
invoked because in case the pattern passed to the act method has more properties
than the action's pattern it is supposed to match, Seneca finds all the action's patterns
whose properties are in the pattern passed to the act method and invokes the one
that has the highest number of matching properties.

If Seneca finds multiple action patterns with equal number of matching properties,
then they are matched in ascending alphabetical order.

You can learn more about Seneca pattern matching at http://
senecajs.org/getting-started.html#patterns-
unique-override.

Creating plugins
A Seneca plugin is just a set of related actions packed together. Programmatically,
a seneca plugin can be created using a function or module.

A plugin makes it easy to distribute a set of actions among applications. You will
also find seneca plugins in online public package registry maintained by npm. For
example, there is a seneca plugin that provides actions to work with the MongoDB
database. This plugin can be inserted into monolithic cores or services with just a
single line of code.

By default, Seneca installs four built-in plugins when we create a seneca instance.
These plugins are basic, transport, web, and mem-store.

Let's first create a plugin using a function. The function name is the plugin name,
and a plugin can also have an initialization action, which will be invoked as soon as
the plugin is attached to the seneca instance.

So, let's create a plugin named account and place the login and register actions
in that, as later on, we will be creating a service and moving the actions there.
Remove the actions we defined earlier in the main.js file and place the
following code instead:

function account(options)
{
 this.add({init: "account"}, function(pluginInfo, respond){
 console.log(options.message);
 respond();
 })

Breaking into Microservices Architecture

[16]

 this.add({role: "accountManagement", cmd: "login"}, function(args,
respond){
 });

 this.add({role: "accountManagement", cmd: "register"},
function(args, respond){
 });
}

seneca.use(account, {message: "Plugin Added"});

Here we defined a function named account and attached it using the use method
of the seneca object. To attach multiple plugins, we can call the use method
multiple times.

The init:account action is the initialization action invoked by Seneca once
the plugin is added. This can be used to do things such as establishing database
connection or other things that the actions of the plugin depend on.

The this keyword inside the plugin refers to the seneca instance.

Let's create the same plugin using a module so that it's easily distributable and can
be put up in the npm registry. Create a file named account.js and place it in the
seneca-example directory. account.js is the plugin module. Place this code inside
the account.js file:

module.exports = function(options)
{
 this.add({init: "account"}, function(pluginInfo, respond){

 console.log(options.message);

 respond();
 })

 this.add({role: "accountManagement", cmd: "login"}, function(args,
respond){
 });

 this.add({role: "accountManagement", cmd: "register"},
function(args, respond){
 });

 return "account";
}

Chapter 1

[17]

Here is the plugin name in the string returned by the anonymous function.

Remove the plugin code that we previously defined in the main.js file and place the
following code instead:

seneca.use("./account.js", {message: "Plugin Added"});

Here, to attach the plugin, we are providing the module path.

You can learn more about creating Seneca plugins at http://
senecajs.org/write-a-plugin.html, and you can find all the
Seneca plugins at http://senecajs.org/plugins.html.

Creating services
A service is a seneca instance that exposes some actions via network. Let's create a
service that exposes the login and register actions.

Create an account-service.js file in the seneca-example directory that will act
as the service. Then place the following code in it to create a service that exposes the
login and register actions:

var seneca = require("seneca")();

seneca.use("./account.js", {message: "Plugin Added"});

seneca.listen({port: "9090", pin: {role: "accountManagement"}});

Here, we first created a seneca instance. Then we added actions via a plugin. You
can also manually add actions using the add method of the seneca object. Finally,
we exposed the actions via an HTTP protocol. Seneca also supports other protocols,
but we will stick to HTTP, as it's the most commonly used one.

seneca.listen creates an HTTP server to listen to requests. We also provided the
port number and pin, which are optional. The default port is 10101, and by default,
there is no pin if not provided.

You must be wondering what is a pin and what is it used for? Well, you may not
always want to expose all the actions of the service via a network. In that case, you
can provide a pattern to the pin property and the server will handle these requests
that match the pin pattern.

Now, for other services or monolithic cores to be able to call the actions of this
service, they need to register this service.

http://senecajs.org/write-a-plugin.html
http://senecajs.org/write-a-plugin.html
http://senecajs.org/plugins.html

Breaking into Microservices Architecture

[18]

Remove the previous plugin attachment code from the main.js file and add the
following code to register the service:

seneca.client({port: "9090", pin: {role: "accountManagement"}});

Here we are registering the service by providing the port number and pin. Both of
them are optional. In case if we don't use any port number, then it defaults to 10101.
In case the service is on different server, then you should use the host property to
provide the IP address.

The pin attached to the client method is used to tell the seneca instance about
what actions are exposed by the service. It's completely optional. Seneca won't
send requests to a service that doesn't match the pin pattern.

You can add as many services as you want by calling the client method
multiple times.

When you call the act method to invoke an action, the seneca instance first looks for
the action locally before requesting services. If it's not found locally, then it checks
for the services that have a pin to see if it matches any. If a pin matches, then it sends
request to this particular service. Finally, if any of the pin doesn't match, it sends
the requests one by one to all other services that don't have a pin till it gets a valid
response from one of them.

You can also manually call an action of a service by sending the GET request to these
types of URL:

http://localhost:9090/act?role=accountManagement&cmd=login&usernam
e=narayan&password=mypassword

You can also call a service by using the POST request. Here is how to do it
using CURL:

curl -d
'{"role":"accountManagement","cmd":"login","username":"narayan","passw
ord":"mypassword"}' -v http://localhost:9090/act

Storing data
Seneca provides a built-in mechanism to store data. Seneca provides some built-in
actions that allow us to store data. The built-in actions use mem-store to store data
by default. mem-store is an asynchronous in-memory storage system.

You can create your application using the default storing mechanism. In case you
want to change the underlying store system, you just need to install plugin for this
particular storage system that will overwrite the built-in storage actions, therefore
you will not have to refactor any code.

http://localhost:9090/act?role=accountManagement&cmd=login&usernam e=narayan&password=mypassword
http://localhost:9090/act?role=accountManagement&cmd=login&usernam e=narayan&password=mypassword

Chapter 1

[19]

The built-in actions to do the CRUD operations are as follows:

• role:entity,cmd:load,name:<entity-name>: This is used to retrieve an
entity using its ID. An entity can be thought of as a row in MySQL. Every
entity gets a unique ID.

• role:entity,cmd:save,name:<entity-name>: This is used to update (if
you provide entity ID) or add an entity if it does not exist. Entities are stored
and retrieved in form of objects.

• role:entity,cmd:list,name:<entity-name>: This is used to list all the
entities that are matching a query.

• role:entity,cmd:remove,name:<entity-name>: This is used to remove an
entity using its ID.

Seneca also provides some wrapper functions that extract these actions and make it
easy to call these actions. These functions are load$, save$, list$, and remove$.

Let's implement the login and register actions to allow us to log in and also register
new accounts.

Here is the implementation of the account action. Update this code in the account.
js file:

this.add({role: "accountManagement", cmd: "login"}, function(args,
respond){
 var accounts = this.make("accounts");

 accounts.list$({username: args.username, password: args.password},
function(error, entity){
 if(error) return respond(error);

 if(entity.length == 0)
 {
 respond(null, {value: false});
 }
 else
 {
 respond(null, {value: true});
 }
 });
});

The first argument of the callback passed to the add method holds reference to the
object that matched against the pattern of the action.

Breaking into Microservices Architecture

[20]

Here we are first calling the make method of the seneca object. It's used to get
reference of an entity's store. For example, in case of MySQL, the make method
gets reference to a table.

Then, we will find whether there are any entities with the username and password
passed by the act method. As entities are added as objects, to query for entities,
we need to pass an object. Now list$ looks for all entities with the same username
and password.

We are passing a callback to the $list method that will be invoked asynchronously
once the data is retrieved. This callback takes two parameters, that is, the first
parameter is an error object if there is an error, otherwise null. Similarly,
the second parameter is an array of entities found matching the given object.

For the action to respond back, it needs to call the second parameter of the action
callback by passing it an object as the second argument. In case an error has
occurred, we need to pass the error in the first argument.

Similarly, now let's write the code for the register action, as follows:

this.add({role: "accountManagement", cmd: "register"}, function(args,
respond){
 var accounts = this.make("accounts");

 accounts.list$({username: args.username}, function(error, entity){
 if(error) return respond(error);

 if(entity.length == 0)
 {
 var data = accounts.data$({username: args.username, password:
args.password})

 data.save$(function(error, entity){
 if(error) return respond(error);

 respond(null, {value: true});
 });
 }
 else
 {
 respond(null, {value: false});
 }
 });
});

Chapter 1

[21]

Here, most of the code is understandable as it works the same way as the previous
action. To store data, we are creating a new entity store reference using the data$
method by passing the entity we want to store. Then we are calling the save$
method to save the entity.

To learn more about storing data in Seneca, visit http://senecajs.
org/data-entities.html.

Integrating Express and Seneca
We have completed creating our login and register actions. Now, as our backend will
be used by an app or it may represent as a website, we need to provide URLs to the
clients who will use them to talk to the server.

Monolithic core is the part of our server-side application that the client interacts with
for most of the functionality. Clients can also interact with services directly for some
specific functionality if required.

So, we need to use some sort of website development framework in the monolithic
core and services of our server-side application. We will be using Express, as it's the
most popular one.

Seneca also provides a built-in way to map the URLs to actions, that is, requests
made to an HTTP server can be automatically mapped to a particular action to
invoke them. This is done using a definition object whose properties define a route
mapping from URLs to action patterns. This built-in method defines route mapping
independent of the framework being used. Once we have defined the definition
objects, we need a plugin specific to the web server framework that will capture and
resolve the URLs to action patterns using the definition objects. Definition object
allows you to attach callbacks that will get the response of the action via a parameter,
and then the callbacks can return the data to the user in whatever format they want.
This can be useful in case you are creating a plugin for distribution that exposes a
few actions that need to be called for specific URL requests, then you will have to
use the built-in method, as it defines route mapping independent of the framework
being used.

You can learn more about how to use the built-in way to integrate Seneca
and Express at https://github.com/rjrodger/seneca-web.

http://senecajs.org/data-entities.html
http://senecajs.org/data-entities.html
https://github.com/rjrodger/seneca-web

Breaking into Microservices Architecture

[22]

Add the following code to the main.js file to start the Express server in it:

var app = require("express")();
app.use(seneca.export("web"))
app.listen(3000);

On the second line, we are exporting a middleware function provided by the
seneca-web plugin. seneca-web is the plugin to integrate Seneca and Express
directly, that is, to translate URLs into action patterns using the definition object
for Express framework. This is only required if we use the definition object to
define route mapping. We won't be using definition objects, but we should still use
seneca-web, as some third-party plugins may use definition objects if we are using
these plugins. For example, if you are using the seneca-auth plugin, then you will
have to include second line.

We want the user to be able to log in using the /account/login path and register
using the /account/register path. The user will provide a username and password
via query string. Here is the code to define routes to handle HTTP requests for login
and registration:

app.get('/account/register', function(httpRequest, httpResponse, next)
{
 httpRequest.seneca.act({role: "accountManagement", cmd: "register",
username: httpRequest.query.username, password: httpRequest.query.
password}, function(error, response){
 if(error) return httpResponse.send(error);

 if(response.value == true)
 {
 httpResponse.send("Account has been created");
 }
 else
 {
 httpResponse.send("Seems like an account with same username
already exists");
 }
 });
});

app.get('/account/login', function(httpRequest, httpResponse, next){
 httpRequest.seneca.act({role: "accountManagement", cmd: "login",
username: httpRequest.query.username, password: httpRequest.query.
password}, function(error, response){
 if(error) return httpResponse.send(error);

Chapter 1

[23]

 if(response.value == true)
 {
 httpResponse.send("Logged in!!!");
 }
 else
 {
 httpResponse.send("Please check username and password");
 }
 });
});

Here we are calling the appropriate actions depending on the path of the
URL request.

Here, instead of using seneca.act, we are using httpRequest.seneca.act as the
middleware function that we exported earlier adds a new seneca property to request
the object of every HTTP requests. This property inherits the actual seneca instance.
Actions in the third-party plugins add information in form of properties to the
seneca property in order to share information related to a particular HTTP request
with other route handers. The preceding code will behave in the same way even if
we use seneca.act, but it's a good practice to use httpRequest.seneca.act as we
may use such types of plugins. Your own route handlers can also use httpRequest.
seneca.act to pass information related to seneca to each other.

Now, to run the application, first run the account-service.js file and then the
main.js file. You can then log in and register using the following URLs:

• http://localhost:8080/account/login?username=narayan&password=m
ypassword

• http://localhost:8080/account/register?username=x&password=myp
assword

Here, we saw how to create a web interface, which can be used by an app or to serve
HTML pages in case it's a website.

We can also move the routes of Express to a service if we want a different service to
handle certain requests.

http://localhost:8080/account/login?username=narayan&password=mypassword
http://localhost:8080/account/login?username=narayan&password=mypassword
http://localhost:8080/account/register?username=x&password=mypassword
http://localhost:8080/account/register?username=x&password=mypassword

Breaking into Microservices Architecture

[24]

Summary
In this chapter, we saw the difference between monolithic and microservices
architecture. Then we discussed what microservices architecture with monolithic
core means and its benefits. Finally, we jumped into the Seneca framework for
implementing microservices architecture with monolithic core and discussed how to
create a basic login and registration functionality to demonstrate various features of
the Seneca framework and how to use it.

In the next chapter, we will create a fully functional e-commerce website using
Seneca and Express frameworks.

[25]

Building a Coupon Site
The best way to understand Seneca and microservices architecture is by building
a server-side application that would benefit from the microservices architecture.
In previous chapter, we saw how large and complex server-side application
benefits from the microservices architecture and why enterprises use microservices
architecture. In this chapter, we will build a coupon website to practically
demonstrate the benefits of using microservices architecture and Seneca to create a
server-side application. While building this coupon site, you will also learn how to
design a server-side application using the microservices architecture from scratch,
how to split the functionality of the application into services, how a client can
directly communicate with the services, and many other things.

Some of the things that we will cover in this chapter, apart from things related to
Seneca and microservices architecture, are as follows:

• Using the seneca-mongo-store plugin to store data in MongoDB
• Creating a basic image storage server
• Discussing HTTP basic authentication using the basic-auth npm package
• Using the connect-multiparty npm package to parse HTTP POST requests

with the multipart/form-data content type
• Moving, deleting, and renaming files in Node.js using the fs npm package
• Implementing pagination with MongoDB and Express

Building a Coupon Site

[26]

Getting started
The coupon site that we will build will allow users to submit coupons. For the
coupon to be publicly visible, the administrator of the site should accept the coupon.
Every coupon will have an image attached to it that will be stored and served by an
image storage server.

We will be using MongoDB to store the coupons. Before you continue further, make
sure that you have MongoDB installed and running. I am assuming that you have
basic knowledge of MongoDB.

The exercise files contain two directories: Initial and Final. Inside the Final
directory, you will find the complete coupon site source code. In the Initial
directory, you will find the HTML code and directories for the monolithic core,
services, image storage server, and so on. You will put code related to them in their
respective directories. The Initial directory will help you quickly get started with
building the coupon site.

We won't get into designing the frontend of our coupon site. We will only be
concentrating on building the architecture and functionalities of the site.
Therefore, the HTML code is already included in the Initial directory.

Architecture of our site
Our server-side application will be composed of a monolithic core, three services,
MongoDB server, and image storage server.

The monolithic core will serve pages to the site visitors and administrators.

The three services are database service, URL configuration service, and upload
service. The following is what each of these services do:

• Database service: Adding, retrieving, updating, and deleting coupons in
MongoDB is done through database service. The monolithic core retrieves
coupons from MongoDB through database service, and upload service stores
coupons through database service.

Chapter 2

[27]

• Upload service: When a user submits a coupon, the HTML form is submitted
to the upload service. The upload service then sends the image to the image
storage server and adds metadata about the coupon to the database using the
database service. We moved these operations to a different service, because
if we are resizing and converting the uploaded image, then it will consume
more memory and CPU time and keep the port open for more time, which
will flood the server and break the monolithic core in case there are a large
number of submissions at a time, so moving these operations to a different
service makes sure that if there is a rise in submissions, it doesn't affect the
site visitors who are looking for the coupons. We won't be resizing and
converting images, but if you want to add this functionality, you can add
this by simply updating the upload service. While the upload service is being
updated, the form submissions will not work, but everything else will work.
Therefore, we can say that this functionality can be independently updated
without affecting other functionalities.

• URL config service: The client communicates with the monolithic core,
image storage server, and upload service. In a production site, these three
servers will remain in three different physical computers with three different
IP addresses. So, for the client to be able to communicate with them, these
three need to be exposed via different domain names (that is the monolithic
core can be pointed using the main domain and the other two using sub
domains) or we can use a load balancer or reverse proxy that supports URL
rerouting so that we can have a single domain name and route the requests
to the respective server based on the path of the URL. The URL config service
will serve the base URL to communicate with these three servers. To follow
this chapter, you can simply run these servers in the same physical computer
using different ports, and when you are ready to make the site live, you
can change the base URLs in the URL config service, depending on what
technique you used to make the client able to communicate with the servers.
You don't have to modify the source code of the servers directly, which is a
cumbersome and risky task.

We will be creating our own image storage server. However, in a production site, I
would recommend that you use Amazon S3 or something similar to store images, as
it makes it easy to serve images via CDN. You don't have to worry about scaling and
reliability, and it's low cost. The image storage server that we will be creating will be
a basic one to just demonstrate how to store images in a separate server and serve
from there.

Building a Coupon Site

[28]

The following is the diagram that shows all the architecture's looks and how the
servers in the architecture communicate with each other:

Chapter 2

[29]

Creating the services
Let's first build the services before building the image storage server and
monolithic core.

We will build the database service first, as it only depends on the MongoDB server,
which is already running. The upload service and monolithic core depend on it,
therefore it needs to be built before these.

Database service
The database service will provide actions to add coupons, list verified coupons, list
unverified coupons, verify a coupon, and delete a coupon. These actions will be used
by the upload service and monolithic core.

Open the Initial/database-service directory. Inside the directory, you will find
a package.json file and an app.js file. The app.js file is where you will write the
code, and package.json lists the dependencies for the database service. The
database service is dependent on the seneca and seneca-mongo-store plugins.
Run the npm install command inside Initial/database-service to install the
dependencies locally.

Here is the code to import the seneca module, create the seneca instance, attach the
seneca-mongo-store plugin, and initialize the plugin to connect to MongoDB:

var seneca = require("seneca")();

seneca.use("mongo-store", {
 name: "gocoupons",
 host: "127.0.0.1",
 port: 27017
});

Here we are using gocoupons as the database name. I am assuming that the
MongoDB server is running locally on the default port 27017.

The following is the code to create an action that allows you to add a coupon:

seneca.add({role: "coupons-store", cmd: "add"}, function(args,
respond){
 var coupons = seneca.make$("coupons");
 var data = coupons.data$({title: args.title, desc: args.desc, email:
args.email, url: args.url, price: args.price, discount: args.discount,
thumbnail_id: args.thumbnail_id, verified: false});
 data.save$(function(err, entity){

Building a Coupon Site

[30]

 if(err) return respond(err);

 respond(null, {value: true});
 });
});

We will store the coupons in a collection named coupons. Here we are setting the
verified property of the document to false, that is, whenever a new coupon is
submitted by a user, we will make it unverified so that the administrator can
retrieve this newly submitted coupon and verify it manually.

The thumbnail_id property doesn't hold the complete URL of the coupon
thumbnail, instead it's just the filename.

Here is the code to create an action to retrieve the verified coupons:

seneca.add({role: "coupons-store", cmd: "list"}, function(args,
respond){
 var coupons = seneca.make$("coupons");
 coupons.list$({verified: true, limit$:21, skip$: args.skip},
function (err, entity){
 if(err) return respond(err);

 respond(null, entity);
 })
});

This action retrieves maximum 21 coupons and it takes a skip argument that is
used to skip some documents, making it possible to implement pagination using
this action.

The following is the code to create an action to retrieve the unverified coupons:

seneca.add({role: "coupons-store", cmd: "admin_list"}, function(args,
respond){
 var coupons = seneca.make$("coupons");
 coupons.list$({verified: false}, function (err, entity){
 if(err) return respond(err);

 respond(null, entity);
 })
});

This action will be used to retrieve coupons to display on the admin panel for the
administrator to accept or reject a coupon.

Chapter 2

[31]

Here is the code to create an action to verify a coupon, that is, change the verified
property from false to true:

seneca.add({role: "coupons-store", cmd: "verified"}, function(args,
respond){
 var coupons = seneca.make$("coupons");
 var data = coupons.data$({id: args.id, verified: true});
 data.save$(function(err, entity){
 if(err) return respond(error);

 respond(null, {value: true});
 });
});

This action will be invoked when the admin accepts a coupon to be
displayed publicly.

Here is the code to create an action to delete a coupon:

seneca.add({role: "coupons-store", cmd: "delete"}, function(args,
respond){
 var coupons = seneca.make$("coupons");
 coupons.remove$({id: args.id});
 respond(null, {value: true});
});

This action will be invoked when the admin rejects a coupon.

Now that we have created all the actions for our database service, let's expose
these actions via the network so that the other servers can call them. Here is the
code to do this:

seneca.listen({port: "5010", pin: {role: "coupons-store"}});

Now go ahead and run the database service using the node app.js command.

URL config service
The upload services use the URL config service to find the base URL of the
monolithic core so that it can redirect the user there once the coupon is submitted
successfully. Also, the monolithic core uses this service to find the base URL
of the image storage server and upload service so that it can include them in
the HTML code.

Building a Coupon Site

[32]

Open the Initial/config-service directory. Inside the directory, you will find
a package.json file and an app.js file. The app.js file is where you will write
the code and package.json lists the dependencies for the config service. URL
config service is only dependent on seneca. Run the npm install command inside
Initial/config-service to install the dependencies locally.

The following is the code to import the seneca module and create actions to return
the base URLs of the upload service, monolithic core, and image storage server:

var seneca = require("seneca")();

seneca.add({role: "url-config", cmd: "upload-service"}, function(args,
respond){
 respond(null, {value: "http://localhost:9090"});
});

seneca.add({role: "url-config", cmd: "monolithic-core"},
function(args, respond){
 respond(null, {value: "http://localhost:8080"});
});

seneca.add({role: "url-config", cmd: "image-storage-service"},
function(args, respond){
 respond(null, {value: "http://localhost:7070"});
});

seneca.listen({port: "5020", pin: {role: "url-config"}});

Now go ahead and run the URL config service using the node app.js command.

Upload service
The upload service handles the new coupon form submission. The form consists of
a coupon title, URL, description, price, discount price, and a thumbnail. The content
type of form submission is multipart/form-data, as it is uploading an image file.

Open the Initial/upload-service directory. Inside the directory, you will find
a package.json file and an app.js file. The app.js file is where you will write
the code and package.json lists the dependencies for the upload service. The
upload service is dependent on seneca, express, connect-multiparty, path, fs
and request packages. Run the npm install command inside Initial/upload-
service to install the dependencies locally.

Chapter 2

[33]

The following is the code to import the modules:

var seneca = require("seneca")();
var app = require("express")();
var multipart = require("connect-multiparty")();
var path = require("path");
var fs = require("fs");
var request = require("request");

There are chances that the users may upload images with the same name. We don't
want images with the same name to overwrite each other. Therefore, we need
rename every image with a unique name. The following is the code for defining a
function to generate a unique number, which will be used as an image name:

function uniqueNumber() {
 var date = Date.now();

 if (date <= uniqueNumber.previous) {
 date = ++uniqueNumber.previous;
 } else {
 uniqueNumber.previous = date;
 }

 return date;
}

uniqueNumber.previous = 0;

function ID(){
 return uniqueNumber();
};

Now, for the upload service to be able to communicate with the database and
URL config services, we need to add them to the upload service seneca instance.
The following is the code to do this:

seneca.client({port: "5020", pin: {role: "url-config"}});
seneca.client({port: "5010", pin: {role: "coupons-store"}});

Building a Coupon Site

[34]

Now we need to define an express route to handle POST requests submitted to the
/submit path. Inside the route handler, we will rename the image, upload the image
to image storage server, add the metadata of the coupon to MongoDB using the
database service, and redirect to the monolithic core with the status stating that
the form was submitted successfully. Here is the code to define the route:

//declare route and add callbacks
app.post('/submit', multipart, function(httpRequest, httpResponse,
next){

 var tmp_path = httpRequest.files.thumbnail.path;
 var thumbnail_extension = path.extname(tmp_path);
 var thumbnail_directory = path.dirname(tmp_path);
 var thumbnail_id = ID();
 var renamed_path = thumbnail_directory + '/' + ID() + thumbnail_
extension;

 //rename file
 fs.rename(tmp_path, renamed_path, function(err) {
 if(err) return httpResponse.status(500).send("An error occured");

 //upload file to image storage server
 seneca.act({role: "url-config", cmd: "image-storage-service"},
function(err, storage_server_url){
 var req = request.post(storage_server_url.value + "/store",
function (err, resp, body){
 fs.unlink(renamed_path);

 if(err) return httpResponse.status(500).send("An error
occured");

 if(body == "Done")
 {
 //store the coupon
 seneca.act({role: "coupons-store", cmd: "add", title:
httpRequest.body.title, email: httpRequest.body.email, url:
httpRequest.body.url, desc: httpRequest.body.desc, price: httpRequest.
body.price, discount: httpRequest.body.price, thumbnail_id: thumbnail_
id + thumbnail_extension}, function(err, response){
 if(err)
 {
 //delete the stored image
 request.get(storage_server_url + "/delete/" + thumbnail_
id + thumbnail_extension);
 httpResponse.status(500).send("An error occured");

Chapter 2

[35]

 return;
 }
 seneca.act({role: "url-config", cmd: "monolithic-core"},
function(err, response){
 if(err) return httpResponse.status(500).send("An error
occured");

 //redirect to monolithic core
 httpResponse.redirect(response.value +
"/?status=submitted");
 });
 });
 }
 });

 var form = req.form();
 form.append("thumbnail", fs.createReadStream(renamed_path));
 form.append("name", thumbnail_id + thumbnail_extension);
 });
 });
});

Here is how the preceding code works:

• First we added a callback provided by the connect-multiparty module,
which parses the multipart/form-data body and moves the files to a
temporary location.

• In the second callback, we performed our custom operations. In the second
callback, we first renamed the file so that every image file gets a unique
name. Renaming is done using the rename method of the filesystem module.

• Then we uploaded the image file to the image storage server using the post
method of the request module.

• After this, we deleted the local version of the image file using the unlink
method of the filesystem module.

• If uploading the image to the image storage server failed for some reason,
then we will return an HTTP internal server error to the client.

• If the image got uploaded to the image storage server successfully, then we
will add the coupon metadata to MongoDB via the database service.

• If, for some reason, the metadata did not get added, we will delete the
previously stored image in the image storage server and then return an
HTTP internal server error to the client.

Building a Coupon Site

[36]

• If the coupon metadata got added successfully, we will retrieve the base
URL of monolithic core from the URL config service and redirect there with
a /?status=submitted query string, which indicates that the form was
submitted successfully. When the monolithic core sees this query string, it
displays a message saying that the coupon was submitted successfully.

• In case the URL config service didn't respond for some reason, we will return
an HTTP internal server error to the client.

So what you need to keep in mind while coding such services is that you need to
handle all sorts of failures and also roll back changes if a failure occurs. Now, this
also makes it easy to update and redeploy the database service, URL config service,
and image storage server as the upload service handles the failure of these services
and provides a feedback to the user.

Now we have defined our routes. Finally, we need to start the Express server.
The following is the code to do so:

app.listen(9090);

Now go ahead and run the upload service using the node app.js command.

Creating the image upload server
We have finished building the services. Now let's build the image storage server.
The image storage server defines the routes using which an image can be stored,
deleted, or retrieved.

Open the Initial/image-storage directory. Inside the directory, you will find a
package.json file and an app.js file. The app.js file is where you will write the
code, and package.json lists the dependencies for the image storage server. The
upload service is dependent on express, connect-multiparty, path, and fs.
Run the npm install command inside Initial/image-storage to install the
dependencies locally.

The following is the code to import the modules:

var express = require("express");
var app = express();
var fs = require("fs");
var multipart = require("connect-multiparty")();

Chapter 2

[37]

Now let's define the route using which the upload service can store images in the
image storage server. The upload service makes the POST request to the /store URL
path to store the image. Here is the code to define the route:

app.post("/store", multipart, function(httpRequest, httpResponse,
next){
 var tmp_path = httpRequest.files.thumbnail.path;
 var target_path = "public/images/" + httpRequest.body.name;
 fs.rename(tmp_path, target_path, function(err) {
 if(err) return httpResponse.status(500).send("An error occured");

 httpResponse.send("Done");
 });
});

Here, at first, we are adding the callback provided by the connect-multiparty
module, which parses the multipart/form-data content type body and also
moves the files to a temporary location.

Then, we are moving the file from temporary directory to another directory. The
directory we are moving the file to is public/images/. We are moving the file
using the rename method of the filesystem module. Finally, we are sending a
Done string as the body of HTTP response to tell the upload service that the file
is stored successfully.

Now let's define the route using which the upload service can delete an image
stored in the image storage server. The upload service makes the GET request to
the /delete/:id URL path, where the id parameter indicates the image name.
The following is the code to define the route:

app.get("/delete/:id", function(httpRequest, httpResponse, next){
 fs.unlink("public/images/" + httpRequest.params.id,
 function(err) {
 if(err) return httpResponse.status(500).send("An error
 occured");

 httpResponse.send("Done");
 });
});

Here we are deleting the image file using the unlink method of the fs module.

Building a Coupon Site

[38]

Finally, we need to serve images to the browser. Looking for static file in the public/
images/ directory can do this. The following is the code to do this:

app.use(express.static(__dirname + "/public/images"));

Here we are using the static middleware that looks for static files in the directory
provided by arguments and serves directly to the browser.

Now we have defined our routes. Finally, we need to start the Express server. Here is
the code to do so:

app.listen(9090);

Now go ahead and run the image storage server using the node app.js command.

Creating the monolithic core
We have finished creating the services and image storage server. The users
interact with the monolithic core to view coupons and the admin interacts with the
monolithic core to view unverified coupons, and then it either rejects or accepts a
coupon. Other than new coupon submission by the user, everything else by the user
and admin is done in the monolithic core.

Open the Initial/monolithic directory. Inside the directory, you will find a
package.json file and an app.js file. The app.js file is where you will write
the code, and package.json lists the dependencies for the monolithic core. The
monolithic core is dependent on express, seneca, request and basic-auth npm
packages. Run the npm install command inside Initial/monolithic to install the
dependencies locally.

We will use the ejs template engine with Express. Inside the views directory, you
will find ejs files for home, new coupon submit forms, and admin pages. The files
already contain the templates and HTML code. The site is designed using Bootstrap.

The following is the code to import the modules:

var seneca = require("seneca")();
var express = require("express");
var app = express();
var basicAuth = require("basic-auth");
var request = require("request");

Chapter 2

[39]

Now, for the monolithic core to be able to communicate with the database and
url- config services, we need to add them to the monolithic core seneca instance.
The following is the code to do this:

seneca.client({port: "5020", pin: {role: "url-config"}});
seneca.client({port: "5010", pin: {role: "coupons-store"}});

Now we need to set ejs as the view engine. Here is the code to set ejs as the
view engine:

app.set("view engine", "ejs");

All the static files such as CSS, JS, and fonts are kept on the public directory.
We need to serve them to the client. Here is the code to serve the static files:

app.use(express.static(__dirname + "/public"));

Here we are serving the static files in the same way as we served the static files
(that is, images) in the image upload server.

Now we need to add a route to the server of the home page of our website that
displays the first 20 coupons. It also displays the Next and Previous buttons to
navigate between the next or previous 20 buttons.

The home page is accessed via the root URL. The following is the code to add a route
to the server of the home page:

app.get("/", function(httpRequest, httpResponse, next){
 if(httpRequest.query.status == "submitted") {
 seneca.act({role: "coupons-store", cmd: "list", skip: 0},
 function(err, coupons){
 if(err) return httpResponse.status(500).send("An error
 occured");

 seneca.act({role: "url-config", cmd: "image-storage-
 service"}, function(err, image_url){
 if(err) return httpResponse.status(500).send("An error
 occured");

 if(coupons.length > 20)
 {
 var next = true;
 }
 else
 {

Building a Coupon Site

[40]

 var next = false;
 }

 var prev = false;

 httpResponse.render("index", {prev: prev, next: next,
 current: 0, coupons: coupons, image_url: image_url.value,
 submitted: true});
 })
 })

 return;
 };

 if(parseInt(httpRequest.query.current) !== undefined &&
 httpRequest.query.next == "true")
 {
 seneca.act({role: "coupons-store", cmd: "list", skip:
 parseInt(httpRequest.query.current) + 20}, function(err,
 coupons){
 if(err) return httpResponse.status(500).send("An error
 occured");

 seneca.act({role: "url-config", cmd: "image-storage-
 service"}, function(err, image_url){
 if(err) return httpResponse.status(500).send("An error
 occured");

 if(coupons.length > 20)
 {
 var next = true;
 }
 else
 {
 var next = false;
 }

 var prev = true;

 httpResponse.render("index", {prev: prev, next: next,
 current: parseInt(httpRequest.query.current) + 20,
 coupons: coupons, image_url: image_url.value});
 })
 })
 }

Chapter 2

[41]

 else if(parseInt(httpRequest.query.current) != undefined &&
 httpRequest.query.prev == "true")
 {
 seneca.act({role: "coupons-store", cmd: "list", skip:
 parseInt(httpRequest.query.current) - 20}, function(err,
 coupons){
 if(err) return httpResponse.status(500).send("An error
 occured");

 seneca.act({role: "url-config", cmd: "image-storage-
 service"}, function(err, image_url){
 if(err) return httpResponse.status(500).send("An error
 occured");

 if(coupons.length > 20)
 {
 var next = true;
 }
 else
 {
 var next = false;
 }

 if(parseInt(httpRequest.query.current) <= 20)
 {
 var prev = false;
 }
 else
 {
 prev = true;
 }

 httpResponse.render("index", {prev: prev, next: next,
 current: parseInt(httpRequest.query.current) - 20,
 coupons: coupons, image_url: image_url.value});
 })
 })
 }
 else
 {
 seneca.act({role: "coupons-store", cmd: "list", skip: 0},
 function(err, coupons){
 if(err) return httpResponse.status(500).send("An error
 occured");

Building a Coupon Site

[42]

 seneca.act({role: "url-config", cmd: "image-storage-
 service"}, function(err, image_url){
 if(err) return httpResponse.status(500).send("An error
 occured");

 if(coupons.length > 20)
 {
 var next = true;
 }
 else
 {
 var next = false;
 }

 var prev = false;

 httpResponse.render("index", {prev: prev, next: next,
 current: 0, coupons: coupons, image_url:
 image_url.value});
 })
 })
 }
});

The index.ejs file is the view of the home page of our site. The preceding code
renders this view to generate the final HTML code for the home page.

The preceding code implements pagination by checking whether prev or next keys
are present in the query string. If these keys are undefined, then it displays the first
20 coupons, otherwise it calculates the skip value argument by adding 20 to the
value of the current key in the query string.

Then, the code checks whether the total number of coupons retrieved is 21 or
less. If they are less than 21, then it doesn't display the Next button by assigning
the next variable to false, otherwise it displays the next button by assigning the
next variable to true. However, the total number of coupons it displays is 20. We
retrieved an extra coupon to just check whether we should display the next button
or not. To find out whether we should display the previous button or not is fairly
easy, that is, if the next key is true in the query string, then we must display the
previous button.

Chapter 2

[43]

The preceding code also checks for the status=submitted query string that
indicates the user was redirected back from the upload service. If it's present, then it
assigns the submitted local variable for the view to true. This is the ejs template
present in the view that checks whether the submitted local variable is true or
undefined and displays a successful form submission message:

<% if(typeof submitted !== "undefined"){ %>
 <% if(submitted == true){ %>
 <div class="alert alert-success" role="alert">Coupon has been
 submitted. Our administrator will review and the coupon
 shortly.</div>
 <% } %>
<% } %>

Here is the ejs template present in the view that displays the coupons and the next
and previous buttons:

<% if(coupons.length < 21){ %>
 <% var cut = 0; %>
<% } %>
<% if(coupons.length == 21){ %>
 <% var cut = 1; %>
<% } %>
<% for(var i = 0; i < coupons.length - cut; i++) {%>
 <div class="col-sm-3 col-lg-3 col-md-3">
 <div class="thumbnail">
 <img src="<%= image_url + '/' + coupons[i].thumbnail_id %>"
 alt="">
 <div class="caption">
 <h4 class="pull-right"><%= coupons[i].price %>
 <%= coupons[i].discount %></h4>
 <h4><a href="<%= coupons[i].url %>"><%= coupons[i].title
 %>
 </h4>
 <p><%= coupons[i].desc %></p>
 </div>
 </div>
 </div>
<% } %>
</div>

Building a Coupon Site

[44]

<ul class="pager">
<% if(prev == true){ %>
 <li class="previous"><a href="/?prev=true¤t=<%= current
%>">Previous
<% } %>
<% if(next == true){ %>
 <li class="next"><a href="/?next=true¤t=<%= current %>">Next</
a>
<% } %>

We are done creating our home page. Now we need to create a route with the /add
URL path that will display a form to submit a new coupon. The view for this coupon
submission page is add.ejs. Here is the code to create the route:

app.get("/add", function(httpRequest, httpResponse, next){
 seneca.act({role: "url-config", cmd: "upload-service"},
 function(err, response){
 if(err) return httpResponse.status(500).send("An error
 occured");

 httpResponse.render("add", {upload_service_url:
 response.value});
 })
});

Here we are retrieving the base URL of the upload service from the URL config
service and assigning it to the upload_service_url local variable so that the form
knows where to submit the POST request.

The following is the template in the add.ejs view that displays the coupon
submission form:

<form role="form" method="post" action="<%= upload_service_url %>/
submit" enctype="multipart/form-data">
 <div class="form-group">
 <label for="email">Your Email address:</label>
 <input type="email" class="form-control" id="email"
 name="email">
 </div>
 <div class="form-group">
 <label for="title">Product Title:</label>
 <input type="text" class="form-control" id="title"
 name="title">
 </div>
 <div class="form-group">
 <label for="desc">Product Description:</label>

Chapter 2

[45]

 <textarea class="form-control" id="desc"
 name="desc"></textarea>
 </div>
 <div class="form-group">
 <label for="url">Product URL: </label>
 <input type="text" class="form-control" id="url" name="url">
 </div>
 <div class="form-group">
 <label for="price">Original Price:</label>
 <input type="text" class="form-control" id="price"
 name="price">
 </div>
 <div class="form-group">
 <label for="discount">Discount Price:</label>
 <input type="text" class="form-control" id="discount"
 name="discount">
 </div>
 <div class="form-group">
 <label for="thumbnail">Product Image: <i>(320 x
 150)</i></label>
 <input type="file" class="form-control" id="thumbnail"
 name="thumbnail">
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
</form>

Now we need to provide a path for the site admin to access the admin panel.
The path to access admin panel is going to be /admin. The admin panel will be
protected using HTTP basic authentication.

We will create two more routes that will be used by the admin to accept or reject a
coupon. The routes are /admin/accept and /admin/reject.

The following is the code to protect the admin panel using the HTTP
basic authentication:

var auth = function (req, res, next){
 var user = basicAuth(req);

 if (!user || !user.name || !user.pass)
 {
 res.set("WWW-Authenticate", "Basic realm=Authorization
 Required");
 res.sendStatus(401);
 }

Building a Coupon Site

[46]

 //check username and password
 if (user.name === "narayan" && user.pass === "mypassword")
 {
 next();
 }
 else
 {
 res.set("WWW-Authenticate", "Basic realm=Authorization
 Required");
 res.sendStatus(401);
 }
}

app.all("/admin/*", auth);
app.all("/admin", auth);

Here we are executing the auth callback for all the admin panel paths. The callback
checks whether the user is logged in or not. If user is not logged in, we will ask the
user to log in. If the user tries to log in, then we will check whether the username
and password is correct. If the username and password are wrong, we will ask the
user to log in again. We will parse the HTTP basic authentication based the headers
using the basic-auth module, that is, we will pass the req object to the basicAuth
function to parse it. Here we are hardcoding the username and password.

Now we need to define the routes to access the admin panel. The admin.ejs file is
the view for the admin panel. The following is the code to add the routes:

app.get("/admin", function(httpRequest, httpResponse, next){
 seneca.act({role: "coupons-store", cmd: "admin_list", skip: 0},
 function(err, coupons){
 if(err) return httpResponse.status(500).send("An error
 occured");

 seneca.act({role: "url-config", cmd: "image-storage-service"},
 function(err, image_url){
 httpResponse.render("admin", {coupons: coupons, image_url:
 image_url.value});
 });
 });
});

app.get("/admin/accept", function(httpRequest, httpResponse,
next){
 seneca.act({role: "coupons-store", cmd: "verified", id:
 httpRequest.query.id}, function(err, verified){

Chapter 2

[47]

 if(err) return httpResponse.status(500).send("An error
 occured");

 if(verified.value == true)
 {
 httpResponse.redirect("/admin");
 }
 else
 {
 httpResponse.status(500).send("An error occured");
 }
 });
});

app.get("/admin/reject", function(httpRequest, httpResponse,
next){
 seneca.act({role: "url-config", cmd: "image-storage-service"},
 function(err, storage_server_url){
 if(err) return httpResponse.status(500).send("An error
 occured");

 request.get(storage_server_url.value + "/delete/" +
 httpRequest.query.thumbnail_id, function(err, resp, body){
 if(err) return httpResponse.status(500).send("An error
 occured");

 seneca.act({role: "coupons-store", cmd: "delete", id:
 httpRequest.query.id}, function(err, deleted){
 if(err) return httpResponse.status(500).send("An error
 occured");

 if(deleted.value == true)
 {
 httpResponse.redirect("/admin");
 }
 else
 {
 httpResponse.status(500).send("An error occured");
 }
 });
 });
 })
});

Building a Coupon Site

[48]

When the admin visits /admin, unverified coupons are displayed along with
buttons to accept or reject a coupon. When the admin clicks on the Accept button,
then a request is made to the /admin/accept path to mark the coupon as verified,
and when the admin clicks on the Reject button, a request is made to the /admin/
reject path to delete the coupon. After accepting or deleting a coupon, the admin is
redirected to the /admin path.

The following is the template that displays the coupons and verification buttons to
the admin:

<% for(var i = 0; i < coupons.length; i++) {%>
 <tr>
 <td><%= coupons[i].title %></td>
 <td><%= coupons[i].desc %></td>
 <td><%= coupons[i].url %></td>
 <td><img style="width: 300px !important" src="<%= image_url +
 '/' + coupons[i].thumbnail_id %>" alt=""></td>
 <td><%= coupons[i].price %></td>
 <td><%= coupons[i].discount %></td>
 <td>
 <form role="form" method="get" action="/admin/accept">
 <div class="form-group">
 <input type="hidden" value="<%= coupons[i].id %>"
 name="id">
 <input type="hidden" value="<%= coupons[i].thumbnail_id
 %>" name="thumbnail_id">
 <input type="submit" value="Accept" class="btn btn-
 default">
 </div>
 </form>
 </td>
 <td>
 <form role="form" method="get" action="/admin/reject">
 <div class="form-group">
 <input type="hidden" value="<%= coupons[i].id %>"
 name="id">
 <input type="hidden" value="<%= coupons[i].thumbnail_id
 %>" name="thumbnail_id">

Chapter 2

[49]

 <input type="submit" value="Reject" class="btn btn-
 default">
 </div>
 </form>
 </td>
 </tr>
<% } %>

We have defined our routes. Finally, we need to start the Express server. Here is the
code to do so:

app.listen(9090);

Now go ahead and run the monolithic core server using the node app.js command.

Website walkthrough
We have completed creating our website. Now, let's walkthrough our site to see how
it works overall. Before that, make sure that everything is running.

You can visit the home page of the website using the http://localhost:8080/
URL. The following is how the web page will look when you will visit it for the
first time:

Building a Coupon Site

[50]

Now to add a coupon, click on the Submit Coupon button. Now you will see a form.
Fill in the form. Here is how it looks:

Chapter 2

[51]

Now submit the form. After submitting the form, you will be redirected to the home
page. The following is how the home page will look after redirect:

Now click on the Admin button to visit the admin panel and accept the coupon.
Here is how the admin panel will look:

Building a Coupon Site

[52]

Click on the Accept button to accept it. Now go back to the home page. This is how
the home page will look now:

In the preceding image, you can see that the product is listed.

Further improvements to the site
Here is a list of things we can do now to make the site architecture even better and
add some extra features. You will also get some practice writing code involving the
microservices architecture by performing the following actions:

• Create a separate service for the admin panel. The benefit of this is that you
can update the admin panel without affecting the visitors, that is, while the
admin panel is being updated, the users will still be able to visit and browse
coupons. For this, you need to move the route of the admin panel to a
new service.

Chapter 2

[53]

• Fetch the username and password from the database. For this, you need to
add some actions to the database service.

• Resize or crop images to thumbnail size, as that's the size of an image being
displayed on the frontend. This will save the disk space. This needs to be
done with the help of the upload service.

• You can create a mobile app for the website. For this, you need to create
a service that provides APIs for the mobile app. New coupons can be
submitted to the upload service by adding a query string, indicating that
the request has arrived from the mobile app so that it won't redirect,
instead send a response once coupon is submitted successfully.

These are just some ideas to make the site even better.

Summary
In this chapter, we saw how to build a website using Seneca and microservices
architecture from scratch. The website we built was simple in terms of features, but
involved a lot of important techniques that are used while building sites using the
microservices architecture. Now you are ready to choose the architecture that suits
your site best. I also mentioned the things you can do to make the site even better.

In the next chapter, we will discuss real-time communication among browsers
using WebRTC.

[55]

Communication between
Browsers in Real Time

To implement features such as audio/video chat or some other features in websites
that require real-time peer-to-peer (browser-to-browser) data transfer, or need to
retrieve audio/video stream from a microphone, webcam, or any other device,
we had to use browser plugins such as Java and Flash. There are various issues
with making websites depend on browser plugins, such as mobile browsers not
supporting plugins and plugins requiring to be kept up to date. Therefore, WebRTC
was introduced to solve these problems, that is, browsers that support WebRTC
provide APIs to exchange data in real time directly between browsers and also
retrieve stream from physical media sources without the use of plugins. In this
chapter, we will discuss WebRTC and also the PeerJS library that wraps the
WebRTC APIs to provide an easy to use API to work with WebRTC.

In this chapter, we'll cover the following topics:

• Discussing various APIs provided by WebRTC
• Retrieving stream from physical media input devices
• Displaying a media stream
• Discussing protocols used by WebRTC
• Exchanging media stream and arbitrary data between peers using PeerJS
• Discussing topics related to the fundamentals of WebRTC and PeerJS

Communication between Browsers in Real Time

[56]

Terminologies
Before we get into WebRTC and PeerJS, you need to know the meaning of some
terms that we are going to use. These terms are discussed in the following sections.

Stream
A stream is a sequence of any kind of data that is made available over time. A stream
object represents a stream. Usually, an event handler or callback is attached to the
stream object, which is invoked whenever new data is available.

A media stream is a stream whose data is either audio or video. Similarly, a media
source is a physical device, file, or something that provides data that is audio or
video. A media consumer is also a physical device, API, or something that uses
media stream.

WebRTC allows us to retrieve a media stream of physical media sources,
such as microphones, webcams, screens, and so on. We will discuss more
about it later in this chapter.

Peer-to-peer network model
Peer-to-peer model is the opposite of the client-server model. In the client-server
model, the server provides resources to the clients, whereas in peer-to-peer model,
every node in the network acts as a server and client, that is, every node provides
and consumes resources. Peers in the peer-to-peer model communicate with each
other directly.

To establish a peer-to-peer connection, we need a signaling server, which is used
for signaling. Signaling refers to the exchange of data by peers that is required to
establish a peer-to-peer connection. Data such as session control messages, network
configuration, and so on is required to establish a peer-to-peer connection.
A signaling server implements a signaling protocol such as SIP, Jingle,
or some other protocol.

A model is selected depending on the requirements and resource availability for the
application. Let's consider some examples:

Chapter 3

[57]

• To build a video chat app, we should use the peer-to-peer model instead
of the client-server model. As each node, in this case, is going to produce a
lot data (or frames), and send the data to other node in real time, the server
requires a lot of networks and other resources, increasing the server running
cost. So, the peer-to-peer model is the best option for a video chat app. For
example, Skype video chat is based on the peer-to-peer model.

• To build a text chat app that stores messages in a centralized database,
we should use the client-server model as the amount of data that a client
produces is not very high and you would also want to store the messages in
a centralized database. For example, the Facebook messenger is based on the
client-server model.

To establish a peer-to-peer connection using WebRTC, you will need
a signaling server, STUN server, and optional TURN server. We will
discuss more about it later in this chapter.

Real-time data
Real-time data is the data that needs to be processed and transferred without much
delay. For example, video chatting, live analytics, live stock price, live streaming, text
chat, live score, online multiplayer game data, and so on are all real-time data.

Real-time data transfer is a difficult task to achieve. The techniques and technologies
used for real-time data transfer depend on the amount of data and whether the loss
of data during data transfer is tolerable or not. If the real-time data is large, and
the loss of data is intolerable, then it requires a lot of resources to achieve real-time
data transfer, making it practically impossible to achieve real-time data transfer. For
example, while video chatting, every user generates a lot of frames. If some frames
are lost, then it is tolerable, therefore in this case, we can use the UDP protocol as
a transport layer protocol that is unreliable and also has less overhead than TCP,
making UDP very suitable for video chat application.

WebRTC allows us to transfer real-time media stream produced by it
using the SRTP protocol. To transfer arbitrary data, it uses the SCTP
protocol. We will discuss more about what these protocols are later in this
chapter.

Communication between Browsers in Real Time

[58]

Introduction to WebRTC
Web Real-Time Communications (WebRTC) is a browser technology that enables
retrieval of media stream of physical media sources and exchange media stream or
any other data in real time. It comprises of three APIs: the MediaStream constructor,
RTCPeerConnection constructor, and RTCDataChannel interface.

In short, MediaStream is used to retrieve the stream of physical media source,
RTCPeerConnection is used to exchange MediaStream among peers in real time,
and finally, RTCDataChannel is used to exchange arbitrary data among peers.

Let's see how these APIs work.

MediaStream API
Two main components of MediaStream API are the MediaStream constructor and
MediaStreamTrack interface.

A track represents the stream of a media source. A track implements the
MediaStreamTrack interface. A track can either be an audio track or be a video track.
That is, a track attached to an audio source is an audio track, and a track attached to
a video source is a video track. There can be multiple tracks attached to a particular
media source. We can also attach constraints to a track. For example, a track attached
to a webcam can have constraints such as the minimum video resolution and FPS.
Each track has its own constraints.

You can change the constraints of a track after it's created using the
applyConstraints() method of the MediaStreamTrack interface. You can retrieve
the constraints applied to a track anytime using the getSettings() method of the
MediaStreamTrack interface. To detach a track from a media source, that is, to stop
the track permanently, we can use the stop() method of the MediaStreamTrack
interface. To pause a track, that is, to stop the track temporarily, we can assign false
to the enabled property of the MediaStreamTrack interface.

Find out more about the MediaStreamTrack interface at
https://developer.mozilla.org/en-US/docs/Web/API/
MediaStreamTrack.

A track can either be a local or remote track. A local track represents the stream of a
local media source; whereas, a remote track represents the stream of a remote media
source. You cannot apply constraints to the remote track. To find whether a track is
local or remote, we can use the remote property of the MediaStreamTrack interface.

https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack

Chapter 3

[59]

We will come across the remote track while exchanging tracks between
peers. When we send a local track to a peer, the other peer receives the
remote version of the track.

A MediaStream holds multiple tracks together. Technically, it doesn't do anything.
It just represents a group of tracks that should be played, stored, or transferred
together in a synchronized manner.

Find out more about the MediaStream constructor at https://
developer.mozilla.org/en/docs/Web/API/MediaStream.

The getSources() method of the MediaStreamTrack object allows us to retrieve
the ID of all the media devices, such as speakers, microphones, webcams, and so on.
We can use the ID to create a track if the ID represents a media input device. The
following is an example that demonstrates this:

MediaStreamTrack.getSources(function(sources){
 for(var count = 0; count < sources.length; count++)
 {
 console.log("Source " + (count + 1) + " info:");
 console.log("ID is: " + sources[count].id);

 if(sources[count].label == "")
 {
 console.log("Name of the source is: unknown");
 }
 else
 {
 console.log("Name of the source is: " +
 sources[count].label);
 }

 console.log("Kind of source: " + sources[count].kind);

 if(sources[count].facing == "")
 {
 console.log("Source facing: unknown");
 }
 else
 {
 console.log("Source facing: " + sources[count].facing);
 }
 }
})

https://developer.mozilla.org/en/docs/Web/API/MediaStream
https://developer.mozilla.org/en/docs/Web/API/MediaStream

Communication between Browsers in Real Time

[60]

The output will vary for everyone. Here is the output I got:

Source 1 info:
ID is:
0c1cb4e9e97088d405bd65ea5a44a20dab2e9da0d298438f82bab57ff9787675
Name of the source is: unknown
Kind of source: audio
Source facing: unknown
Source 2 info:
ID is:
68fb69033c86a4baa4a03f60cac9ad1c29a70f208e392d3d445f3c2d6731f478
Name of the source is: unknown
Kind of source: audio
Source facing: unknown
Source 3 info:
ID is:
c83fc025afe6c7841a1cbe9526a6a4cb61cdc7d211dd4c3f10405857af0776c5
Name of the source is: unknown
Kind of source: video
Source facing: unknown

navigator.getUserMedia
There are various APIs that return MediaStream with tracks in it. One such method
is navigator.getUserMedia(). Using navigator.getUserMedia(), we can retrieve
a stream from media input sources, such as microphones, webcams, and so on.
The following is an example to demonstrate:

navigator.getUserMedia = navigator.getUserMedia || navigator.
webkitGetUserMedia || navigator.mozGetUserMedia;

var constraints = {
 audio: true,
 video: {
 mandatory: {
 minWidth: 640,
 minHeight: 360
 },
 optional: [{
 minWidth: 1280
 }, {
 minHeight: 720
 }]

Chapter 3

[61]

 }
}

var av_stream = null;

navigator.getUserMedia(constraints, function(mediastream){
 av_stream = mediastream; //this is the MediaStream
}, function(err){
 console.log("Failed to get MediaStream", err);
});

When you run the preceding code, the browser will display a popup seeking
permission from the user. The user has to give the permission to the code to
access the media input devices.

By default, the media input devices to which the tracks are attached while using
getUserMedia() depends on the browser. Some browsers let the user choose the
audio and video device that they want to use, while other browsers use the default
audio and video devices listed in the operating system configuration.

We can also provide the sourceId property assigned to the ID of the media input
device in the constraint object's audio or video property's mandatory property
to make getUserMedia() attach tracks to these devices. So, if there are multiple
webcams and microphones, then you can use MediaStreamTrack.getSources() to
let the user choose a media input device and provide this media input device ID to
getUserMedia() instead of relying on the browser, which doesn't guarantee whether
it will let the user choose a media input device.

The first parameter that it takes is a constraint object with audio and video track
constraints. Mandatory constraints are those constraints that must be applied.
Optional indicates that they are not very important, so they can be omitted if
it's not possible to apply them.

Some important constraints of an audio track are volume, sampleRate, sampleSize,
and echoCancellation. Some important constraints of a video track are
aspectRatio, facingMode, frameRate, height, and width. If a constraint
is not provided, then its default value is used.

You can simply set the audio or video property to false if you don't want to create
the audio or video tracks respectively.

Communication between Browsers in Real Time

[62]

We can retrieve the tracks of MediaStream using the getTracks() method of
MediaStream. Similarly, we can add or remove a track using the addTrack() and
removeTrack() methods, respectively. Whenever a track is added, the onaddtrack
event is triggered. Similarly, whenever a track is removed, the onendtrack
is triggered.

If we already have some tracks, then we can directly use the MediaStream
constructor to create MediaStream with the tracks. The MediaStream constructor
takes an array of tracks and returns MediaStream with the reference of the tracks
added to it.

An API that reads data from tracks of MediaStream is called a MediaStream
consumer. Some of the MediaStream consumers are the <audio> tag, <video> tag,
RTCPeerConnection, Media Recorder API, Image Capture API, Web Audio API,
and so on.

Here is an example that demonstrates how to display data of tracks of MediaStream
in the video tag:

<!doctype html>
<html>
 <body>

 <video id="myVideo"></video>

 <input value="Pause" onclick="pause()" type="button" />

 <script type="text/javascript">

 navigator.getUserMedia = navigator.getUserMedia ||
 navigator.webkitGetUserMedia || navigator.mozGetUserMedia;

 var constraints = {
 audio: true,
 video: true
 }

 var av_stream = null;

 navigator.getUserMedia(constraints, function(mediastream){

 av_stream = mediastream;

 document.getElementById("myVideo").setAttribute("src",
 URL.createObjectURL(mediastream));

Chapter 3

[63]

 document.getElementById("myVideo").play();
 }, function(err){
 console.log("Failed to get MediaStream", err);
 });

 function pause()
 {
 av_stream.getTracks()[0].enabled =
 !av_stream.getTracks()[0].enabled;
 av_stream.getTracks()[1].enabled =
 !av_stream.getTracks()[1].enabled;
 }

 </script>
 </body>
</html>

Here we have a <video> tag and a button to pause it. A video tag takes a URL and
displays the resource.

Before HTML5, HTML tags and CSS attributes could only read data
from http:// and file:// URLs. However, in HTML5, they can read
blob://, data://, mediastream://, and other such URLs.

To display the output of MediaStream in the <video> tag, we need to use the URL.
createObjectURL() method, which takes a blob, file object, or MediaStream and
provides a URL to read its data. URL.createObjectURL() takes extra memory and
CPU time to provide access to the value passed on to it via a URL, therefore, it is
wise to release the URL using URL.revokeObjectURL() when we don't need the
URL anymore.

If there are multiple audio and video tracks in MediaStream, then <video> reads the
first audio and video tracks.

RTCPeerConnection API
RTCPeerConnection allows two browsers to exchange MediaStream in real time.
RTCPeerConnection is an instance of the RTCPeerConnection constructor.

Communication between Browsers in Real Time

[64]

Establishing peer-to-peer connection
For a peer-to-peer connection to be established, a signaling server is needed.
Through the signaling server, the peers exchange data required to establish a
peer-to-peer connection. Actual data transfer takes place directly between
peer-to-peer. The signaling server is just used to exchange pre-requirements to
establish a peer-to-peer connection. Both the peers can disconnect from the signaling
server once the peer-to-peer connection has been established. The signaling server
doesn't need to be a highly configured server as the actual data is not transferred
through it. Data transfer for a single peer-to-peer connection will be in some KB,
so a decent server can be used for signaling.

A signaling server usually uses a signaling protocol, but it is also okay if it's an HTTP
server as long as it can pass messages between two peers. WebRTC doesn't force us
to use any particular signaling protocol.

For example, say that there are two users, Alice and Bob, on two different browsers.
If Alice wants to establish a peer-to-peer connection with Bob for chatting, then this
is how a peer-to-peer connection would be established between them:

1. They both will connect to a signaling server.
2. Alice will then send a request to Bob via the signaling server,

requesting to chat.
3. The signaling server can optionally check whether Alice is allowed to chat

with Bob, and also if Alice and Bob are logged in. If yes, then the signaling
server passes the message to Bob.

4. Bob receives the request and sends a message to Alice via the signaling
server, confirming to establish a peer-to-peer connection.

5. Now both of them need to exchange messages related to session control,
network configuration, and media capabilities. All these messages are
exchanged between them by the RTCPeerConnection. So, they both need
to create an RTCPeerConnection, initiate it, and attach an event handler to
RTCPeerConnection that will be triggered by RTCPeerConnection when
it wants to send a message via the signaling server. RTCPeerConnection
passes the message to the event handler in the Session Description Protocol
(SDP) format, and the messages for the RTCPeerConnection received from
the signaling server must be fed to RTCPeerConnection in the SDP format,
that is, RTCPeerConnection only understands the SDP format. You need to
use your own programming logic to split custom messages and messages for
RTCPeerConnection.

Chapter 3

[65]

The preceding steps seem to have no problem; however, there are some major
problems. The peers may be behind a NAT device or firewall, so finding their public
IP address is a challenging task, sometimes it is practically impossible to find their
IP address. So, how does RTCPeerConnection find an IP address of the peers when
they may be behind a NAT device or firewall?

RTCPeerConnection uses a technique called Interactive Connectivity Establishment
(ICE) to resolve all these issues.

ICE involves Session Traversal Utilities for NAT (STUN) and Traversal Using
Relays around NAT (TURN) server to solve the problems. A STUN server is used to
find the public IP address of a peer. In case the IP address of a peer cannot be found,
or due to some other reason a peer-to-peer cannot be established, then a TURN
server is used to redirect the traffic, that is, both the peers communicate via the
TURN server.

We just need to provide the addresses of the STUN and TURN servers and
RTCPeerConnection handles the rest. Google provides a public STUN server,
which is used by everyone. Building a TURN server requires a lot of resources as
the actual data flows throw it. Therefore, WebRTC makes it optional to use a TURN
server. If RTCPeerConnection fails to establish a direct communication between
two peers and a TURN server is not provided, there is no other way for the peers to
communicate and a peer-to-peer connection establishment fails.

WebRTC doesn't provide any way to make signaling secure. It's your job
to make the signaling secure.

Transferring MediaStream
We saw how RTCPeerConnection establishes a peer-to-peer connection. Now,
to transfer MediaStream, we just need to pass the reference of MediaStream to
RTCPeerConnection and it will transfer MediaStream to the connected peer.

When we say that MediaStream is transferred, we mean the stream of
individual tracks is transferred.

The following are some of the things you need to know regarding the transfer of
MediaStream:

• RTCPeerConnection uses SRTP as an application layer protocol and UDP
as a transport layer protocol to transfer MediaStream. SRTP is designed for
media stream transfer in real time.

Communication between Browsers in Real Time

[66]

• UDP doesn't guarantee the order of packets, but SRTP takes care of the order
of the frames.

• The Datagram Transport Layer Security (DTLS) protocol is used to secure
the MediaStream transfer. So, you don't have to worry about the security
while transferring MediaStream.

• Constraints of the tracks that the remote peer receives may be different
from the constraints of the local tracks, as RTCPeerConnection modifies
the stream automatically, depending on the bandwidth and other network
factors to speed up the transfer, achieving real-time data transfer. For
example, RTCPeerConnection may decrease the resolution and frame
rate of video stream while transferring.

• If you add or remove a track from MediaStream that is already being
sent, then RTCPeerConnection updates MediaStream of the other peer
by communicating to the other peer via the signaling server.

• If you pause a track that is being sent, then RTCPeerConnection pauses
transfer of the track.

• If you stop a track that is being sent, RTCPeerConnection stops the transfer
of the track.

You can send and receive multiple MediaStream instances via single
RTCPeerConnection, that is, you don't have to create multiple
RTCPeerConnection instances to send and receive multiple
MediaStream instances to and from a peer. Whenever you add or
remove a new MediaStream to or from RTCPeerConnection, the peers
exchange information related to this via the signaling server.

RTCDataChannel API
RTCDataChannel is used to transfer data other than MediaStream between peers
to transfer arbitrary data. The mechanism to establish a peer–to-peer connection to
transfer arbitrary data is similar to the mechanism explained in the earlier section.

RTCDataChannel is an object that implements the RTCDataChannel interface.

The following are some of the things you need to know regarding RTCDataChannel:

• RTCDataChannel uses SCTP over UDP as a transport layer protocol to
transfer data. It doesn't use unlayered SCTP protocol as the SCPT protocol is
not supported by many operating systems.

• SCTP can be configured for reliability and delivery order, unlike UDP, which
is unreliable and unordered.

Chapter 3

[67]

• RTCDataChannel also uses DTLS to secure data transfer. So, you don't
have to worry about the security at all while transferring data via
RTCDataChannel.

We can have multiple peer-to-peer connections open between browsers.
For example, we can have three peer-to-peer connections, that is, first one
for webcam stream transfer, second one for text message transfer, and
third one for file transfer.

WebRTC applications using PeerJS
PeerJS is a client-side JavaScript library that provides an easy-to-use API to work
with WebRTC. It only provides an API to exchange MediaStream and arbitrary data
between peers. It doesn't provide an API to work with MediaStream.

PeerServer
PeerServer is an open source signaling server used by PeerJS to establish a
peer-to-peer connection. PeerServer is written in Node.js. If you don't want to
run your own PeerServer instance, then you can use PeerServer cloud, which
hosts PeerServer for public use. PeerServer cloud allows you to establish a
maximum of 50 concurrent connections for free.

A unique ID identifies every peer connected to PeerServer. PeerServer itself can
generate the ID, or else the peers can provide their own ID. For a peer to establish a
peer-to-peer connection with another peer, it just needs to know the other peer's ID.

You might want to run your own PeerServer instance when you want to add
more functionality to PeerServer or you want to support more than 50 concurrent
connections. For example, if you want to check whether the user is logged in to
PeerServer, then you need to add this feature and host your own customized
PeerServer.

In this chapter, we will use PeerServer cloud, but in the next chapter, we will
create our own instance of PeerServer. Therefore, to continue further with this
chapter, create an account on the PeerServer cloud and retrieve the API key. Every
application gets an API key to access the PeerServer cloud. If you are hosting your
own PeerServer, then you won't need an API key. The API key is used by PeerServer
cloud to track the total connections established by an application. To create an
account and retrieve an API key, visit http://peerjs.com/peerserver.

http://peerjs.com/peerserver

Communication between Browsers in Real Time

[68]

PeerJS API
Let's discuss the PeerJS API by creating a simple app that allows the users to
exchange video and text messages with any user whose ID they have.

Create a peerjs-demo directory in your web server and place a file named
index.html in it.

In the index.html file, we need to first enqueue the PeerJS library. Download
PeerJS from http://peerjs.com/. At the time of writing, the latest version of
PeerJS was 0.3.14. I would recommend that you stick to this version for the
following examples. Place this starting code in the index.html file:

<!doctype html>
<html>
 <head>
 <title>PeerJS Demo</title>
 </head>
 <body>

 <!-- Place HTML code here -->

 <script src="peer.min.js"></script>
 <script>
 //place JavaScript code here
 </script>
 </body>
</html>

Here, I enqueued the minified version of PeerJS.

PeerJS API comprises of three main constructors, as follows:

• Peer: An instance of Peer represents a peer in the network. A peer is
connected to the signaling server and STUN, and optionally, to a TURN.

• DataConnection: DataConnection (that is, the instance of DataConnection)
represents a peer-to-peer connection, which is used to exchange the arbitrary
data. Technically, it wraps RTCDataChannel.

• MediaConnection: MediaConnection (that is, the instance of
MediaConnection) represents a peer-to-peer connection that is used to
exchange MediaStream. Technically, it wraps RTCPeerConnection.

http://peerjs.com/

Chapter 3

[69]

If a peer wants to establish DataConnection or MediaConnection with another peer,
then it simply needs to know the other peer's ID. PeerJS doesn't give the other peer
an option to accept or reject DataConnection. Also, in the case of MediaConnection,
PeerJS doesn't give the other peer an option to accept or reject MediaConnection,
but MediaConnection will be inactive until it is activated programmatically by the
other peer so that MediaStream can be transferred, otherwise MediaStream will
not be transferred. So, we can write our own logic to let the other user accept or
reject DataConnection or MediaConnecton, that is, as soon as DataConnection
or MediaConnection is established, we can cancel it by asking the user for
their opinion.

At present, one MediaConnection can transfer only one MediaStream.
In future releases of PeerJS, a single MediaConnection will support the
transfer of multiple MediaStreams.

Now, we need to create a <video> tag where the video will be displayed, a button
to connect to a peer, and also a text box to send message. Here is the HTML code to
display all these:

<video id="remoteVideo"></video>

<button onclick="connect()">Connect</button>

<input type="text" id="message">
<button onclick="send_message()">Send Message</button>

Now as soon as the page loads, we need to connect to PeerServer and ICE servers
so that other peers can talk to us, and also when a user clicks on the connect button,
we can establish DataConnection and MediaConnection. The following is the code
for this:

var peer = null;

window.addEventListener("load", function(){
 var id = prompt("Please enter an unique name");

 peer = new Peer(id, {key: "io3esxy6y43zyqfr"});

 peer.on("open", function(id){
 alert("Connected to PeerServer successfully with ID: " + id);
 });

 peer.on("error", function(err){
 alert("An error occured. Error type: " + err.type);

Communication between Browsers in Real Time

[70]

 })

 peer.on("disconnected", function(){
 alert("Disconnected from signaling server. You ID is taken
 away. Peer-to-peer connections is still intact");
 })

 peer.on("close", function(){
 alert("Connection to signaling server and peer-to-peer
 connections have been killed. You ID is taken away. You have
 been destroyed");
 })

 peer.on("connection", function(dataConnection){
 setTimeout(function(){
 if(confirm(dataConnection.peer + " wants to send data to
 you. Do you want to accept?"))
 {
 acceptDataConnection(dataConnection);
 }
 else
 {
 dataConnection.close();
 }
 }, 100)
 })

 peer.on("call", function(mediaConnection){
 setTimeout(function(){
 if(confirm("Got a call from " + mediaConnection.peer + ". Do
 you want to pick the call?"))
 {
 acceptMediaConnection(mediaConnection);
 }
 else
 {
 mediaConnection.close();
 }
 }, 100);
 })
});

Chapter 3

[71]

Here is how the code works:

• First we displayed a prompt box to take the ID as an input so that every peer
can decide their own ID.

• Then we created an instance of Peer with ID and PeerServer cloud key. Here
we didn't provide signaling and ICE server's URLs, therefore, PeerJS will use
PeerServer cloud as the signaling server and Google's public STUN server.
It will not use any TURN server. As soon as a Peer instance is created, the
instance connects to the signaling server and registers the given ID.

• Then we attached five event handlers to the peer object.
• The open event is triggered when the connection to PeerServer was

successful.
• The error event is triggered for errors on the peer object.
• The disconnected event is triggered when the connection with the

signaling server is disconnected. The connection with the signaling server
may get disconnected due to network problem or if you manually call the
peer.disconnect() method. Once you are disconnected, your ID can be
taken by someone else. You can try to reconnect with the same ID using the
peer.reconnect() method. You can check whether peer is connected to the
signaling server using the peer.disconnect Boolean property.

• The close event is triggered when peer is destroyed, that is, it cannot be
used anymore, all MediaConnections and DataConnections are killed,
connection with the signaling server is killed, the ID is taken away, and
so on. You may want to manually destroy peer when you don't need it
anymore. You can destroy a peer using the peer.destroy() method.

• The connection event is triggered when some other peer establishes
DataConnection with you. As I said earlier, DataConnection is established
without further permission, but you can close it as soon as it's established
if you want. Here we let the user decide if they want to continue or close
DataConnection established by another peer. The event handler attached
to the event receives an instance of DataConnection via the parameter that
represents the currently established DataConnection.

• The call event is triggered when some other peer establishes
MediaConnection with you. Here, we also let the user decide if they want to
continue or close MediaConnection established by another peer. The event
handler attached to the event receives an instance of MediaConnection via
the parameter that represents the currently established MediaConnection.

Communication between Browsers in Real Time

[72]

• Here, in the call and connection event handlers, we asynchronously
displayed the confirm popup boxes to prevent blocking the execution of the
event handler that causes issues in some browsers, that is, blocking it fails to
establish DataConnection and MediaConnection.

Now, let's implement the acceptDataConnection() and
acceptMediaConnection() functions so that we can display the text messages
and remote MediaStream when other peer establishes DataConnection or
MediaConnection with us. Here's the code:

navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia || navigator.mozGetUserMedia;

var myDataConnection = null;
var myMediaConnection = null;

function acceptDataConnection(dataConnection)
{
 myDataConnection = dataConnection;

 dataConnection.on("data", function(data){
 alert("Message from " + dataConnection.peer + ".\n" + data)
 })

 dataConnection.on("close", function(data){
 alert("DataConnecion closed");
 })

 dataConnection.on("error", function(err){
 alert("Error occured on DataConnection. Error: " + err);
 })
}

function acceptMediaConnection(mediaConnection)
{
 myMediaConnection = mediaConnection;

 mediaConnection.on("stream", function(remoteStream){

 document.getElementById("remoteVideo").setAttribute("src",
 URL.createObjectURL(remoteStream));
 document.getElementById("remoteVideo").play();
 })

 mediaConnection.on("close", function(data){

Chapter 3

[73]

 alert("MediaConnecion closed");
 })

 mediaConnection.on("error", function(err){
 alert("Error occured on MediaConnection. Error: " + err);
 })

 navigator.getUserMedia({video: true, audio: true},
 function(mediaStream) {
 mediaConnection.answer(mediaStream);
 }, function(e){ alert("Error with MediaStream: " + e); });
}

This is how the preceding code works:

• In the acceptDataConnection() function, we attached three event
handlers to DataConnection. The data event is triggered when the other
peer sends us data. The close event is triggered when DataConnection
is closed. Finally, the error event is triggered when an error occurs on
DataConnection. We can manually close DataConnection using the
dataConnection.close() method.

• In the acceptMediaConnection() function, we attached three event
handlers and transferred our MediaStream to the other peer. The stream
event is triggered when other peer sends us MediaStream. The close
event is triggered when MediaConnection is closed. Finally, we activated
MediaConnection using the mediaConnection.answer() method by
passing our MediaStream. After MediaConnection is activated, the stream
event will be triggered.

We finished writing the code to handle MediaConnection or DataConnection
established by another peer with us. Now we need to write a code to create
MediaConnection and DataConnection that a user clicks on the connect button.
Here is the code:

function connect()
{
 var id = prompt("Please enter other peer ID");
 establishDataConnection(id);
 establishMediaConnection(id);
}

function establishDataConnection(id)

Communication between Browsers in Real Time

[74]

{
 var dataConnection = peer.connect(id, {reliable: true, ordered:
 true});

 myDataConnection = dataConnection;

 dataConnection.on("open", function(){
 alert("DataConnecion Established");
 });

 dataConnection.on("data", function(data){
 alert("Message from " + dataConnection.peer + ".\n" + data)
 })

 dataConnection.on("close", function(data){
 alert("DataConnecion closed");
 })

 dataConnection.on("error", function(err){
 alert("Error occured on DataConnection. Error: " + err);
 })
}

function establishMediaConnection(id)
{
 var mediaConnection = null;

 navigator.getUserMedia({video: true, audio: true},
 function(mediaStream) {
 mediaConnection = peer.call(id, mediaStream);

 myMediaConnection = mediaConnection;

 mediaConnection.on("stream", function(remoteStream){
 document.getElementById("remoteVideo").setAttribute("src",
 URL.createObjectURL(remoteStream));
 document.getElementById("remoteVideo").play();
 })

 mediaConnection.on("error", function(err){
 alert("Error occured on MediaConnection. Error: " + err);
 })

 mediaConnection.on("close", function(data){

Chapter 3

[75]

 alert("MediaConnecion closed");
 })
 }, function(e){ alert("Error with MediaStream: " + e); });
}

Here is how the code works:

• First we asked the user to input another user's ID.
• Then we established DataConnection. To establish a DataConnection with

another user, we need to invoke the connect() method of the Peer instance
with other peer's ID. We also made DataConnection reliable and ordered.
Then, we attached the event handlers. We also saw how data, close, and
error events work. The open event is triggered when DataConnection
is established.

• After establishing the DataConnection, we established MediaConnection.
To establish MediaConnection, we need to call the call() method of the
Peer instance. We need to pass MediaStream to the call() method. Finally,
we attached the event handlers. The stream event will be triggered when the
other user calls the answer() method of the MediaConnection instance, that
is, when the MediaConnection is activated.

Now the last thing we need to do is write the code to send the message when a user
clicks on the send message button. Here is the code for this:

function send_message()
{
 var text = document.getElementById("message").value;

 myDataConnection.send(text);
}

To send data via MediaConnection, we need to call the send() method of the
MediaConnection instance. Here, we are sending a string, but you can pass
any type of data including blobs and objects.

Now, to test the application, open the index.html page URL in two different
browsers, devices, or tabs. I am assuming that you have opened the URL in two
different devices. In each device, provide a different ID to identify the user. Then
click on the connect button in any one device and enter the other peer's ID. Now
accept the request on the other device. Once this is done, both the devices will be
able to display each other's webcam video and microphone audio. You can also
send messages between them.

Communication between Browsers in Real Time

[76]

You can find the official documentation of PeerJS API at http://
peerjs.com/docs/#api.

Miscellaneous
At the time of writing this book, the WebRTC specifications were still not finalized.
The overall idea of what WebRTC does and how WebRTC works has been finalized.
It's just that the APIs are still under development.

For example, WebRTC has introduced an alternative to the navigator.
getUserMedia() method, that is, the navigator.mediaDevices.getUserMedia()
method. At the time of writing this book, navigator.mediaDevices.
getUserMedia() is not supported in any browsers. The difference between them
is that the navigator.mediaDevices.getUserMedia() method is based on the
promise pattern, whereas navigator.getUserMedia() is based on the callback
pattern. At present, there is no plan to get rid of navigator.getUserMedia() due
to the backward compatibility reason, but in future, navigator.getUserMedia()
may be removed as WebRTC wants to implement all APIs using the promise
pattern, therefore, it's difficult to maintain multiple APIs that do the same thing.
Similarly, navigator.mediaDevices.enumerateDevice() is an alternative
to MediaStreamTrack.getSources(), that is, navigator.mediaDevices.
enumerateDevice() is based on the promise pattern.

You can find the official specification of WebRTC at http://www.
w3.org/TR/#tr_Web_Real_Time_Communication.

Due to the fact that there are multiple APIs for the same feature, each with a different
browser support, WebRTC provides a script called adapter.js, which is a shim to
insulate websites from specification changes and prefix differences. You can find the
shim at https://github.com/webrtc/adapter.

WebRTC has a GitHub repository where it puts a lot of example projects showing
some of the things that can be built using WebRTC. You can find the repository at
https://github.com/webrtc/samples. Just by looking at the examples and their
source code, you can learn a lot more about WebRTC.

http://peerjs.com/docs/#api
http://peerjs.com/docs/#api
http://www.w3.org/TR/#tr_Web_Real_Time_Communication
http://www.w3.org/TR/#tr_Web_Real_Time_Communication
https://github.com/webrtc/adapter
https://github.com/webrtc/samples

Chapter 3

[77]

Summary
In this chapter, we discussed the fundamentals of WebRTC and PeerJS by creating a
simple app. We discussed the various protocols, techniques, and other technologies
that WebRTC uses to enable real-time peer-to-peer communication and read streams
of physical media sources. We also saw an overview of PeerServer. Now you must
be comfortable with building any type of WebRTC app using PeerServer cloud.

In the next chapter, we will build an advanced WebRTC app using a
custom PeerServer.

[79]

Building a Chatroulette
The best way to master MediaStream and PeerJS is by building real-world
applications, which is what we will do in this chapter. A chatroulette is a website
that pairs random site visitors together for webcam and text-based conversation.
Discussing how to build a chatroulette will help us to study PeerJS and PeerServer
in depth, as it requires us to integrate PeerServer with Express. We will also add
media controls to our site in order to pause/resume local MediaStream and allow
the user to choose their desired microphone/webcam, which will help us to study
MediaStream even more in depth. We will be actually creating a chatroulette that
only allows the users of a particular country to chat, which would require an extra
step of verification before connecting to the PeerServer; therefore, taking us even
deeper into the integration of PeerServer into Express.

In this chapter, we will cover the following topics:

• Running your own instance of PeerServer
• Creating a custom PeerServer
• Integrating PeerServer with Express
• Verify users for connecting to PeerServer
• Finding the IP address and country of a user connected to the server
• Allowing the user to use a microphone and webcam directly on the webpage
• Discussing the requirements for building a completely working chatroulette

Building a Chatroulette

[80]

Creating your own PeerServer
Before we start building a chatroulette, let's see how to run our own instance
of PeerServer.

PeerServer is available as an npm package on npm cloud. Let's create a
custom PeerServer and use it with the PeerJS application that we built in
our previous chapter.

First create a directory named Custom-PeerServer and place app.js and package.
json files in it.

In the package.json file, place the following code and run the npm install
command to download the PeerServer package:

{
 "name": "Custom-PeerServer",
 "dependencies": {
 "peer": "0.2.8",
 "express": "4.13.3"
 }
}

At the time of writing, the latest version of PeerServer is 0.2.8. Here, we will also
download the express package, as we will need to demonstrate how to integrate
PeerServer with Express.

PeerServer package provides a library to create a custom PeerServer or integrate
PeerServer with Express and also an executable file to directly create our own
instance of PeerServer without any customization.

Run PeerServer from shell
If you want to directly run your own instance of PeerServer from shell without any
customization, then run the following command in the Custom-PeerServer/node_
modules/peer/bin directory:

./peerjs –port 8080

It should now print the following command:

Started PeerServer on ::, port: 8080, path: / (v. 0.2.8)

Chapter 4

[81]

This confirms that PeerServer is running. To test whether the PeerServer instance
is working or not, go to the index.html file of the application that we created in our
previous chapter and replace the following code:

peer = new Peer(id, {key: ""});

The preceding code will be replaced with the following code:

peer = new Peer(id, {host: "localhost", port: 8080});

Now run the application and it should work as usual.

Using PeerServer library
PeerServer library is used to create a custom PeerServer. The PeerServer library also
allows us to integrate PeerServer with the Express server.

Creating custom PeerServer
Here is an example code that demonstrates how to create your own custom
PeerServer. Place the following code in the app.js file and run the node app.js
command to start the server:

var PeerServer = require("peer").PeerServer;
var server = PeerServer({port: 8080});

server.on("connection", function(id) {
 console.log(id + " has connected to the PeerServer");
});

server.on("disconnect", function(id) {
 console.log(id + " has disconnected from the PeerServer");
});

Here, the first two lines of the code create the custom PeerServer. We then attached
event handlers that will be triggered when a user connects or disconnects from
PeerServer. A custom PeerServer doesn't provide an API to check whether a peer is
allowed to connect to PeerServer or not. It just allows us to do something after the
peer is connected or when the peer disconnects.

To test whether the custom PeerServer is working or not, go to the index.html
file of the application that we created in the previous chapter and replace the
following code:

peer = new Peer(id, {key: ""});

Building a Chatroulette

[82]

The preceding code will be replaced with the following code:

peer = new Peer(id, {host: "localhost", port: 8080});

Now run the application and it should work as usual.

Integrating PeerServer with the Express server
We can also integrate PeerServer with the Express server, that is, a particular path
of the Express server will provide the signaling service. The main advantage of
integrating PeerServer with the Express server is that we can check whether a peer is
allowed to connect to PeerServer or not, and if it is not allowed, then we can stop the
peer from using it.

Here is an example code that demonstrates how to integrate PeerServer with the
Express server. Place the following code in the app.js file and run the node app.js
command to start the server:

var express = require("express");
var app = express();

var server = app.listen(8080);

app.use("/signaling", function(httpRequest, httpResponse, next){
 //check whether peer is allowed to connect or not.

 next();
});

var ExpressPeerServer = require("peer").ExpressPeerServer(server,
{debug: true});

app.use("/signaling", ExpressPeerServer);

ExpressPeerServer.on("connection", function(id){

});

ExpressPeerServer.on("disconnect", function(id){

});

Chapter 4

[83]

Here we are using a middleware provided by the PeerServer library to integrate
PeerServer with Express. Here, PeerServer is made available on the /signaling
path. You can use any path you want to.

The PeerServer library doesn't provide any way to check whether the peer is
allowed to connect to PeerServer or not, so we are using our own technique,
that is, we are attaching another middleware on top of the ExpressPeerServer
middleware, which performs this check. Although this technique may seem fine, if
our custom middleware stops the request from proceeding further, then PeerServer
fires the connection and disconnect events and destroys the Peer instance
on the frontend.

You can learn more about PeerServer at https://www.npmjs.
com/package/peer.

Creating a chatroulette
The chatroulette that we will build is only for people residing in India, that is, a peer
cannot connect to the PeerServer if the IP address of the peer doesn't resolve to India.
We added this filter to make the website a little more complex to code so that you
can learn how to check whether a user is allowed to connect to PeerServer or not.

We will use a single server that will serve webpages and also act as a PeerServer,
that is, we will integrate PeerServer with the Express server.

We won't get into designing the frontend of our chatroulette. We will only be
concentrating on building the architecture and functionalities.

The exercise files for this chapter contain two directories: Chatroulette and
Custom-PeerServer. In the Chatroulette directory, there are two directories:
Initial and Final. In the Final directory, you will find the complete chatroulette
source code. In the Initial directory, you will only find the HTML code for our
chatroulette. The Initial directory is to help you quickly get started with building
the chatroulette.

You will place the code related to the frontend functionality of the site in the
Initial/public/js/main.js file and you will place the code related to the
server side functionality in the Initial/app.js file.

https://www.npmjs.com/package/peer
https://www.npmjs.com/package/peer

Building a Chatroulette

[84]

Building the backend
Our site will basically contain three URL end points: a root path for serving the
home page, the /find path to find the ID of a free user for chatting, and finally the
/signaling path that serves as the end point for PeerServer.

Every user will have a unique ID that is generated by PeerServer. For a user to
retrieve the ID of another free user using the /find URL, they must be first be
connected to PeerServer.

The server will maintain two different arrays, that is, the first array contains IDs of
the users connected to PeerServer and the second array contains IDs of the users that
need a partner to chat.

Let's get started with building our backend. Place the following code in the app.js
file to create our web server and serve the home page of our site:

var express = require("express");
var app = express();

app.use(express.static(__dirname + "/public"));

app.get("/", function(httpRequest, httpResponse, next){
 httpResponse.sendFile(__dirname + "/public/html/index.html");
})

var server = app.listen(8080);

Here we are serving the index.html file as our home page. Run the node app.js
command to start the server. I am assuming that you are running node.js on the
localhost, so open the http://localhost:8080/ URL on the browser to see the
home page. The home page should look similar to the following image:

Chapter 4

[85]

The following are the different elements of the home page:

• At the top of the home page, we will display the status of the PeerServer
connection, DataConnection, and MediaConnection.

• Then we will display a video element and message box. MediaStream of the
remote peer will be rendered on the video element.

• Then we have drop-down boxes for the user to select a microphone and
webcam that they want to use if they have multiple microphones or webcams
connected to their computer.

• Then we have checkboxes that allow the users to pause or resume their audio
and video.

• Finally, we have a button that allows the user to disconnect from the current
user and chat with another user.

Every interactive element in the HTML page has an ID associated with it. While
coding the frontend of the website, we will be using their IDs to get their reference.

Now let's create our signaling server. Here is the code for this. Place it in the app.
js file:

var requestIp = require("request-ip");
var geoip = require("geoip-lite");

app.use("/signaling", function(httpRequest, httpResponse, next){

 var clientIp = requestIp.getClientIp(httpRequest);
 var geo = geoip.lookup(clientIp);

 if(geo != null)
 {
 if(geo.country == "IN")
 {
 next();
 }
 else
 {
 httpResponse.end();
 }
 }
 else
 {
 next();
 }

Building a Chatroulette

[86]

});

var ExpressPeerServer = require("peer").ExpressPeerServer(server);

app.use("/signaling", ExpressPeerServer);

var connected_users = [];

ExpressPeerServer.on("connection", function(id){
 var idx = connected_users.indexOf(id);
 if(idx === -1) //only add id if it's not in the array yet
 {
 connected_users.push(id);
 }
});

ExpressPeerServer.on("disconnect", function(id){
 var idx = connected_users.indexOf(id);
 if(idx !== -1)
 {
 connected_users.splice(idx, 1);
 }

 idx = waiting_peers.indexOf(id);
 if(idx !== -1)
 {
 waiting_peers.splice(idx, 1);
 }
});

The following is how the code works:

• Before the user can connect to PeerServer, we will find the country to which
the IP address of the user belongs. We will find the IP address using the
request-ip module and resolve the IP address to the country using the
geoip-lite module. If the country is IN or the country name couldn't be
resolved, then we will allow the user to connect to PeerServer by triggering
the next middleware, otherwise we will stop them by sending an
empty response.

• When a user connects to PeerServer, we will add the ID of the user in
the connected_users array that maintains a list IDs if the users that are
connected to PeerServer. Similarly, when the user disconnects from the
PeerServer, we will remove the ID of the user from the
connected_users array.

Chapter 4

[87]

Now let's define route for the /find path using which a user can find another user
who is free to chat. The following is the code for this. Place this code in the app.
js file:

var waiting_peers = [];

app.get("/find", function(httpRequest, httpResponse, next){

 var id = httpRequest.query.id;

 if(connected_users.indexOf(id) !== -1)
 {

 var idx = waiting_peers.indexOf(id);
 if(idx === -1)
 {
 waiting_peers.push(id);
 }

 if(waiting_peers.length > 1)
 {
 waiting_peers.splice(idx, 1);
 var user_found = waiting_peers[0];
 waiting_peers.splice(0, 1);
 httpResponse.send(user_found);
 }
 else
 {
 httpResponse.status(404).send("Not found");
 }
 }
 else
 {
 httpResponse.status(404).send("Not found");
 }
})

Here is how the code works:

• The waiting_users array holds the IDs of the users who are free and
looking for a partner to chat to.

• When a user makes a request to the /find path, the route handler first checks
whether the user is connected to PeerServer or not by checking whether the
user ID is present in the connected_users array.

Building a Chatroulette

[88]

• If the user is not connected to PeerServer, then it sends an HTTP 404 error.
If the user is connected to PeerServer, then it checks whether the user's ID is
present in the waiting_list array. If not, it adds in the array and proceeds.

• Now it checks whether any other user ID is also present in the waiting_list
array, and if yes, then it sends the first user ID in the list and then removes all
user IDs from the waiting_list array. If it doesn't find any other user ID in
the waiting_list array, then it simply sends 404 error.

Now we are done building the backend of our website. Before we get into building
the frontend of our site, make sure that you restart the server with the latest code.

Building the frontend
First of all, as soon as the home page loads, we need to find the microphones and
webcams connected to the user computer and list them so that the user can choose
the desired device. The following is the code to do this. Place this code in the main.
js file:

window.addEventListener("load", function(){
 MediaStreamTrack.getSources(function(devices){
 var audioCount = 1;
 var videoCount = 1;

 for(var count = 0; count < devices.length; count++)
 {
 if(devices[count].kind == "audio")
 {
 var name = "";

 if(devices[count].label == "")
 {
 name = "Microphone " + audioCount;
 audioCount++;
 }
 else
 {
 name = devices[count].label;
 }

 document.getElementById("audioInput").innerHTML =
 document.getElementById("audioInput").innerHTML + "<option
 value='" + devices[count].id + "'>" + name + "</option>";
 }
 else if(devices[count].kind == "video")

Chapter 4

[89]

 {
 var name = "";

 if(devices[count].label == "")
 {
 name = "Webcam " + videoCount;
 videoCount++;
 }
 else
 {
 name = devices[count].label;
 }

 document.getElementById("videoInput").innerHTML =
 document.getElementById("videoInput").innerHTML + "<option
 value='" + devices[count].id + "'>" + name + "</option>";
 }
 }
 });
});

Here we are retrieving the audio and video input devices using MediaStream.
getSources and populating the <select> tags so that the user can choose an option.

As soon as the home page loads, we also need to create a Peer instance. Here is the
code to do this. Place this code in the main.js file:

var peer = null;
var dc = null;
var mc = null;
var ms = null;
var rms = null;

window.addEventListener("load", function(){
 peer = new Peer({host: "localhost", port: 8080, path:
 "/signaling", debug: true});

 peer.on("disconnected", function(){

 var interval = setInterval(function(){
 if(peer.open == true || peer.destroyed == true)
 {
 clearInterval(interval);
 }
 else

Building a Chatroulette

[90]

 {
 peer.reconnect();
 }
 }, 4000)
 })

 peer.on("connection", function(dataConnection){
 if(dc == null || dc.open == false)
 {
 dc = dataConnection;

 dc.on("data", function(data){
 document.getElementById("messages").innerHTML =
 document.getElementById("messages").innerHTML + "<span
 class='right'>" + data + "<div
 class='clear'></div> ";
 document.getElementById("messages-container").scrollTop =
 document.getElementById("messages-
 container").scrollHeight;
 })

 dc.on("close", function(){
 document.getElementById("messages").innerHTML = "";
 })
 }
 else
 {
 dataConnection.close();
 }
 })

 peer.on("call", function(mediaConnection){
 if(mc == null || mc.open == false)
 {
 mc = mediaConnection;
 navigator.getUserMedia = navigator.getUserMedia ||
 navigator.webkitGetUserMedia || navigator.mozGetUserMedia;
 navigator.getUserMedia({video: true, audio: true},
 function(mediaStream) {
 ms = mediaStream;
 mc.answer(mediaStream);
 mc.on("stream", function(remoteStream){
 rms = remoteStream;
 document.getElementById("peerVideo").setAttribute("src",
 URL.createObjectURL(remoteStream));

Chapter 4

[91]

 document.getElementById("peerVideo").play();
 })

 }, function(e){ alert("An error occured while retrieving
 webcam and microphone stream"); })
 }
 else
 {
 mediaConnection.close();
 }
 })
});

Here is how the code works:

• First we declared five global variables. peer will hold reference for the Peer
instance, dc will hold reference for DataConnection, mc will hold reference
for MediaConnection, ms will hold reference for the local MediaStream, and
rms will hold reference for the remote MediaStream.

• Then, as soon as the page finished loading, we connected to PeerServer,
creating a Peer instance and attaching event handlers for the disconnected,
connection, and call event handlers.

• Then we made sure that in case a peer gets disconnected from PeerServer
due to some reason, then it automatically tries to connect to PeerServer.

• If another peer tries to establish DataConnection with us, then we will only
accept it if there is no other DataConnection currently established, otherwise
we will reject it. After accepting DataConnection, we attached the event
handlers for the data and close events to print the incoming messages in the
chat box, and clear all messages in the chat box if DataConnection is closed.

• Similarly, if another peer tries to establish MediaConnection with us, we will
only accept it if there is no other MediaConnection currently established,
otherwise we will reject it. After accepting the MediaConnection, we
will attach the event handler for the stream event so that when remote
MediaStream arrives, we can display it.

In the preceding code, we are waiting for another peer to establish DataConnection
and MediaConnection with us.

Building a Chatroulette

[92]

Now let's write a code to find a free peer and establish DataConnection and
MediaConnection with it. The following is the code for this. Place this code in
the main.js file:

function ajaxRequestObject()
{
 var request;
 if(window.XMLHttpRequest)
 {
 request = new XMLHttpRequest();
 }
 else if(window.ActiveXObject)
 {
 try
 {
 request = new ActiveXObject('Msxml2.XMLHTTP');
 }
 catch (e)
 {
 request = new ActiveXObject('Microsoft.XMLHTTP');
 }
 }

 return request;
}

function connectToNextPeer()
{
 var request = ajaxRequestObject();

 var url = "/find?id=" + peer.id;

 request.open("GET", url);

 request.addEventListener("load", function(){
 if(request.readyState === 4)
 {
 if(request.status === 200)
 {
 dc = peer.connect(request.responseText, {reliable: true,
 ordered: true});

 dc.on("data", function(data){
 document.getElementById("messages").innerHTML =
 document.getElementById("messages").innerHTML +

Chapter 4

[93]

 "" + data + "<div
 class='clear'></div>";
 document.getElementById("messages-container").scrollTop
 = document.getElementById("messages-
 container").scrollHeight;
 })

 dc.on("close", function(){
 document.getElementById("messages").innerHTML = "";
 })

 navigator.getUserMedia = navigator.getUserMedia ||
 navigator.webkitGetUserMedia || navigator.mozGetUserMedia;

 var audioInputID = document.getElementById("audioInput")
 .options[document.
 getElementById("audioInput").selectedIndex].value;
 var videoInputID =
 document.getElementById("videoInput").options[document.
 getElementById("videoInput").selectedIndex].value;

 navigator.getUserMedia({video: {mandatory: {sourceId:
 videoInputID}}, audio: {mandatory: {sourceId:
 audioInputID}}}, function(mediaStream) {
 ms = mediaStream;

 if(document.getElementById("audioToggle").checked)
 {
 var tracks = ms.getAudioTracks();
 if(document.getElementById("audioToggle").checked)
 {
 tracks[0].enabled = true;
 }
 else
 {
 tracks[0].enabled = false;
 }
 }

 if(document.getElementById("videoToggle").checked)
 {
 var tracks = ms.getVideoTracks();
 if(document.getElementById("videoToggle").checked)
 {
 tracks[0].enabled = true;

Building a Chatroulette

[94]

 }
 else
 {
 tracks[0].enabled = false;
 }
 }

 mc = peer.call(request.responseText, ms);

 mc.on("stream", function(remoteStream){
 rms = remoteStream;
 document.getElementById("peerVideo").
 setAttribute("src",
 URL.createObjectURL(remoteStream));
 document.getElementById("peerVideo").play();
 })

 }, function(e){ alert("An error occured while retrieving
 webcam and microphone stream"); });

 }
 }
 }, false);

 request.send(null);
}

function communication()
{
 if(peer != null && peer.disconnected == false && peer.destroyed
 == false)
 {
 if(dc == null || mc == null || dc.open == false || mc.open ==
 false)
 {
 connectToNextPeer();
 }
 }
}

setInterval(communication, 4000);

Chapter 4

[95]

This code is long but easy to understand. Here is how the code works:

• First we defined a ajaxRequestObject() function that just returns an AJAX
object and hides browser differences by creating an AJAX object.

• Then we defined the connectToNextPeer() method that makes requests for
a free ID from the /next path, and if found, it establishes DataConnection
and MediaConnection with this peer. It also attaches the necessary event
handlers that are same as the previous code.

• While retrieving MediaStream, it uses the device selected by the user in
the dropdown.

• Before calling the other peer, it sets the enabled property to true or false,
depending on whether the checkbox is checked or not respectively.

• Finally, we set a timer that calls the connectToNext() peer once in every
four second if the peer is connected to PeerServer, and MediaConnection or
DataConnection is currently not established with another peer.

Now we need to write code to send the message to a connected peer when the user
presses the Enter key on the text input fields of the message box. Here is the code to
do this. Place this code in the main.js file:

document.getElementById("message-input-
box").addEventListener("keypress", function(){
 if(dc != null && dc.open == true)
 {
 var key = window.event.keyCode;
 if (key == 13)
 {
 var message = document.getElementById("message-input-
 box").value;
 document.getElementById("message-input-box").value = "";
 dc.send(message);
 document.getElementById("messages").innerHTML =
 document.getElementById("messages").innerHTML + "<span
 class='left'>" + message + "<div
 class='clear'></div> ";
 document.getElementById("messages-container").scrollTop =
 document.getElementById("messages-container").scrollHeight;
 }
 else
 {
 return;
 }
 }
})

Building a Chatroulette

[96]

Here, at first, we are checking whether DataConnection is established or not.
If DataConnection is currently established, then we will send a message to the
connected peer and also display the message in the message box.

Now we need to write the code to pause or resume audio and video when the user
toggles the checkboxes. The following is the code to do this. Place this code in the
main.js file:

document.getElementById("videoToggle").addEventListener("click",
function(){
 if(ms !== null)
 {
 var tracks = ms.getVideoTracks();

 if(document.getElementById("videoToggle").checked)
 {
 tracks[0].enabled = true;
 }
 else
 {
 tracks[0].enabled = false;
 }
 }
});

document.getElementById("audioToggle").addEventListener("click",
function(){
 if(ms !== null)
 {
 var tracks = ms.getAudioTracks();

 if(document.getElementById("audioToggle").checked)
 {
 tracks[0].enabled = true;
 }
 else
 {
 tracks[0].enabled = false;
 }
 }
});

Here we are achieving this functionality by assigning true or false to the enabled
property of the tracks.

Chapter 4

[97]

We need to close MediaConnection and DataConnection and find another user for
chatting when the user clicks on the Next User button. The following is the code to
do this. Place this code in the main.js file:

document.getElementById("next").addEventListener("click",
function(){
 if(mc != null)
 {
 mc.close();
 }

 if(dc != null)
 {
 dc.close();
 }

 connectToNextPeer();
})

If there is any MediaConnection or DataConnection currently established, then
we are closing it. Then we will call the connectToNextPeer() method to establish
MediaConnection and DataConnection.

Now we finally need to display the status of the peer-to-peer connection and
PeerServer connection. Here is the code to do this. Place this code in the main.js file:

setInterval(function(){
 if(dc == null || mc == null || dc.open == false || mc.open ==
 false)
 {
 document.getElementById("peerStatus").innerHTML = "Waiting for
 a free peer";
 }
 else
 {
 document.getElementById("peerStatus").innerHTML = "Connected
 to a peer";
 }

 if(peer != null && peer.disconnected == false && peer.destroyed
 == false)
 {
 document.getElementById("peerServerStatus").innerHTML =
 "Connected to PeerServer";
 }
 else

Building a Chatroulette

[98]

 {
 document.getElementById("peerServerStatus").innerHTML = "Not
 connected to PeerServer";
 }
}, 4000);

Here we are checking and updating the status every 4 seconds.

Testing the website
To test the chatroulette website we just created, first make sure that the server is
running and then open the http://localhost:8080/ URL in two different tabs,
browsers, or devices.

Now you will see that both of them automatically get connected and are able to chat
with each other.

Summary
In this chapter, we saw how to build a chatroulette using our own instance of
PeerServer that is integrated with Express. The website we build had almost all the
features that a chatroulette should have. You can now add features such as screen
sharing, connecting users of particular a gender with each other, connecting users
of a particular age, integrating captcha to prevent spam, and other features of
your choice.

At the time of writing, the WebRTC team is working on an API that allows you
to retrieve a stream from a screen for screen sharing. As this API is still under
development, you can use browser plugins to retrieve a stream from a screen.
You can find more about retrieving a stream from a screen using the plugins at
https://www.webrtc-experiment.com/Pluginfree-Screen-Sharing/.

In the next chapter, we will discuss bidirectional communication between the client
and the server in real time using WebSockets.

https://www.webrtc-experiment.com/Pluginfree-Screen-Sharing/

[99]

Bidirectional Communication
in Real Time

We have been using COMET techniques to implement bidirectional communication
between a web browser and web server. Long polling is the most popular technique
of achieving bidirectional communication between a web browser and web server
because it works without compromising user experience and without any extra server
configuration, and it works on all web browsers that support AJAX. Long polling
can easily be implemented in any existing HTTP server. But the problem with long
polling and other comet techniques is that none of them are suitable for building real-
time apps because of HTTP overhead. This means that every time an HTTP request is
made, a bunch of headers and cookie data is transferred to the server, which in turn
increases the latency, therefore making it unsuitable for creating applications such as
multiplayer games, chat apps, social networks, and live score websites, which require
bidirectional communication in real time. Therefore, a new protocol called WebSocket
was introduced, which was designed to enable bidirectional communication in real
time between a web browser and WebSocket server.

In this chapter, we'll cover the following:

• An overview of WebSocket
• The relationship between WebSocket and HTTP
• The interaction of WebSocket with proxy servers and firewalls
• Implementing WebSocket using Socket.IO
• The Socket.IO API in depth
• Many other important things related to WebSocket and Socket.IO

Bidirectional Communication in Real Time

[100]

Introducing WebSocket
WebSocket is an application-layer protocol designed to facilitate bidirectional
(either the client or server can send a message to the other party whenever a message
is available) and full-duplex communication (both the client and server can send
messages to each other simultaneously) between a web browser and WebSocket
server in real time.

WebSocket is a binary protocol; therefore, it is faster than the HTTP protocol,
which is a text-based protocol.

WebSocket has gained popularity and is already being used by many websites due to
its real-time and full-duplex features. Due to overhead caused by comet techniques,
it was not suitable for real-time bidirectional message transfer, and it was also not
possible to establish a full-duplex communication system between a web browser
and web server using comet. That is, comet techniques let us achieve only half-
duplex communication system (only the client or server can send messages to the
other party at a given time).

WebSocket is designed to facilitate bidirectional communication between a web
browser and WebSocket server, but it can be used by any client. In this chapter,
we will only concentrate on how it's implemented in a web browser.

What is the WebSocket API?
Web browsers provide an API for creating and managing a WebSocket
connection to a WebSocket server as well as for sending and receiving
data on the connection. We won't use this API for implementing
WebSocket; instead, we will use the Socket.IO library.

The relationship between WebSocket and
HTTP
The only relationship between WebSocket and HTTP is that a WebSocket handshake
between a web browser and WebSocket server is done using HTTP. Therefore, a
WebSocket server is also an HTTP server. Once the handshake is successful, the
same TCP connection is used for WebSocket communication, that is, communication
switches to the bidirectional binary protocol, which does not conform to the HTTP
protocol. The default port number for WebSocket is 80, same as for HTTP.

Chapter 5

[101]

Why is the default WebSocket port 80?
The main reason for integrating HTTP and WebSocket so tightly and
making WebSocket share the HTTP port is to prevent firewalls from
blocking non-web content.

Although you can implement your own WebSocket handshake mechanism if you
are using WebSocket outside a web browser environment, the official WebSocket
documentation only states the HTTP handshake mechanism because WebSocket
is designed to enable bidirectional communication between web browsers and
WebSocket servers.

You can integrate a WebSocket server into your main web server that serves your
HTML pages, or you can use a separate web server for WebSocket communication.

Sending and receiving data on a WebSocket
connection
Data is transferred through a WebSocket connection as messages, each of which
consists of one or more frames containing the data you are sending (called the
payload). In order to ensure that the message can be properly reconstructed when
it reaches the other party, each frame is prefixed with 4-12 bytes of data about the
payload. Using this frame-based messaging system helps reduce the amount of
non-payload data that is transferred, leading to significant reductions in latency,
therefore making it possible to build real-time components.

We won't get into the exact data format and other details of the WebSocket
handshake, data framing, and sending and receiving data as this is only required
if you are planning to create your own WebSocket server. We will use Socket.IO
JavaScript library to implement WebSocket in our application, which takes care
of all the internal details of WebSocket and provides an easy-to-use API.

WebSocket schemes
WebSocket protocol specifications have introduced two new URL schemes, called ws
and wss.

ws represents an unencrypted connection whereas wss represents an encrypted
connection. Encrypted connections use TLS to encrypt messages.

So, when making a WebSocket handshake request using HTTP, we need to use ws or
wss instead of http or https, respectively.

Bidirectional Communication in Real Time

[102]

Why ws and wss instead of http and https?
You must be wondering what the point of introducing a new scheme
instead of just using http. Well, the reason behind this is that WebSocket
can also be used outside a web browser environment, and a handshake
can be negotiated via a non-HTTP server. Therefore, a different scheme is
required when not using HTTP for the handshake.

The interaction of WebSocket with proxy
servers, load balancers, and firewalls
The WebSocket protocol is unaware of proxy servers by itself. When a WebSocket
connection is established behind a proxy server, the WebSocket connection can fail or
work properly, depending on whether the proxy server is transparent or explicit and
also whether we have established a secure or unsecure connection.

If the browser is configured to use an explicit proxy server, then it will first issue
an HTTP CONNECT method to that proxy server when establishing the WebSocket
connection. The CONNECT method is used to tell a proxy to make a connection to
another host and simply reply with the content, without attempting to parse or cache
it. A browser issues the HTTP CONNECT method regardless of whether the connection
is encrypted or unencrypted.

If we are using a transparent proxy server (that is, a proxy server that the web
browser is unaware of) and the connection is encrypted, then the browser doesn't
issue an HTTP CONNECT method because it's unaware of the proxy server. But as the
connection is encrypted, the proxy server will most probably let all the encrypted
data through, therefore causing no problems to the WebSocket connection.

If we are using a transparent proxy server and the connection is unencrypted, then
the browser doesn't issue an HTTP CONNECT method because it's unaware of the
proxy server. But as the connection is unencrypted, the proxy server is likely to
try to cache, parse, or block the data, therefore causing issues for the WebSocket
connection. In this case, the proxy server should be upgraded or explicitly
configured to support WebSocket connections.

The WebSocket protocol is unaware of load balancers by itself. If you are using a
TCP load balancer, it is unlikely to cause any problems for a WebSocket connection.
But if you are using an HTTP load balancer, it's likely to cause problems; therefore,
it needs to be upgraded or explicitly configured to handle WebSocket connections.

The WebSocket protocol is unaware of firewalls by itself. Firewalls are unlikely to
cause any problems for a WebSocket connection.

Chapter 5

[103]

The same-origin policy for WebSocket
Browsers as well as WebSocket instances can perform cross-domain communication,
that is, they are not restricted by any same-origin policy.

While making an HTTP request for a handshake, the browser sends an Origin
header assigned to the webpage origin.

If a WebSocket server wants to restrict communication to a particular domain, it can
read the Origin HTTP header of the handshake HTTP request and block or allow the
handshake accordingly.

Introduction to Socket.IO
Socket.IO is a combination of the client-side JavaScript library and Node.js
library used to integrate bidirectional communication between a browser
and Node.js backend.

The Socket.IO client-side library is used to create a Socket.IO client whereas the
Socket.IO Node.js library is used to create a Socket.IO server. The Socker.IO client
and server can communicate with each other bidirectionally. Socket.IO primarily
uses WebSocket to achieve bidirectional communication.

The main reason for using the Socket.IO client-side library instead of using the
WebSocket API is that WebSocket is a relatively new protocol at the time of writing
and not all browsers support the API. If Socket.IO sees that the browser doesn't
support WebSocket, then it jumps to one of the other mechanisms, such as Flash
sockets, long polling, multipart streaming, iframes, or JSONP polling, to implement
bidirectional communication between browsers and servers. Therefore, we can say
that Socket.IO is guaranteed to work on every browser. The Socket.IO backend
library provides APIs to create namespaces and rooms, broadcast messages, and
so on, which are very useful in some cases. Therefore, Socket.IO is the best way to
implement bidirectional communication between a browser and Node.js server.

Setting up your project
Before we start learning about the Socket.IO API, let's first set up our project
directory and files. Create a directory named SocketIO-Example. Inside the
directory, create files called package.json, app.js, and socket.js, and a directory
called public. Inside the public directory, create two directories, html and
js. Inside the html directory, create a file called index.html. Finally, in the js
directory, download and place the Socket.IO library from https://cdn.socket.io/
socket.io-1.3.7.js. At the time of writing, the latest version of Socket.IO is 1.3.7;
therefore, we will be using that version.

https://cdn.socket.io/socket.io-1.3.7.js
https://cdn.socket.io/socket.io-1.3.7.js

Bidirectional Communication in Real Time

[104]

Inside the app.js file, we will write code for the web server, and inside the socket.
js file, we will write code for the Socket.IO server. For now, we will run two
different servers, that is, a separate web server serving the website, and another
server for bidirectional communication. In the next chapter, we will learn how to
integrate the Socket.IO server with the Express server.

Inside the package.json file, place this code:

{
 "name": "SocketIO-Example",
 "dependencies": {
 "express": "4.13.3",
 "socket.io": "1.3.7"
 }
}

Now, run the npm install command inside the SocketIO-Example directory in
order to download and install Express and the Socket.IO Node.js library.

Now, inside the index.html file, place this HTML code:

<!doctype html>
<html>
 <head>
 <title>SocketIO-Example</title>
 </head>
 <body>
 <script src="js/socket.io-1.3.7.js"></script>
 <script>
 //place JavaScript code here
 </script>
 </body>
</html>

Inside the second <script> tag, you will be placing the Socket.IO client-side code.

Now, place this code in the app.js file to serve the index.html file:

var express = require("express");
var app = express();

app.use(express.static(__dirname + "/public"));

app.get("/", function(httpRequest, httpResponse, next){
 httpResponse.sendFile(__dirname + "/public/html/index.html");

Chapter 5

[105]

})

app.listen(8080);

Here, we are listening on port 8080. Run the app.js file and visit the
http://localhost:8080/ URL to load the index.html page.

We are done with setting up the files and directories. Now, let's learn about the
Socket.IO client-side and server-side APIs.

Diving into the Socket.IO API
Let's first look at an overview of the Socket.IO API. After that, we will get into the
advanced features one by one.

Let's first build a Socket.IO server. The following is the code to create a Socket.IO
server instance and listen to new Socket.IO client handshake requests. Place it in the
socket.js file:

var Server = require("socket.io");
var io = new Server({path: "/websocket"});
io.listen(3000);

Here is how the code works:

1. First, we import the Socket.IO Node.js library.
2. Then, we create a new instance of the Socket.IO server using the

Server constructor.
3. Then, while creating a new instance, we pass the HTTP path to which the

Socket.IO client will make a handshake request. If we don't pass the path,
it defaults to /socket.io

4. Finally, we listen on port 3000.

I created a single Socket.IO server in the code, but we have the freedom to create
multiple servers listening on different ports.

Now, Socket.IO clients can send a handshake request, and the Socket.IO server
can establish a Socket.IO connection with its clients. Let's write some code to do
something on a Socket.IO server after a Socket.IO connection has been established.
Place this code in the socket.js file:

io.on("connection", function(socket){

 socket.send("Hi, from server");

http://localhost:8080/
http://localhost:8080/

Bidirectional Communication in Real Time

[106]

 socket.on("message", function(message){
 console.log(message);
 });

 socket.on("disconnect", function(){
 console.log("User Disconnected");
 });

 socket.emit("custom-event", "parameter1", "parameter2");

 socket.on("custom-event", function (parameter1, parameter2) {
 console.log(parameter1, parameter2);
 });
});

Let's see how this code works and what the send(), on(), and emit() methods do:

• The on() method of the io object is used to attach event handlers to events
triggered on the Socket.IO server by itself.

• We first attach an event handler for the connection event. As soon as a
Socket.IO connection has been established, the connection event is fired.
The event handler has a single parameter, which is an object representing
the Socket.IO client. Here, we've named the parameter socket.

• The on() method of the socket object is used to attach event handlers to the
events emitted by the Socket.IO client to the server.

• The send() method of the socket object is used to send a message to the
Socket.IO client. We are sending a string here, but you can also send an
instance of ArrayBuffer, Blob Node.js Buffer, and even File. You can
also send a simple JavaScript object.

• Then, we attached an event handler for the message event, which is triggered
when the Socket.IO client sends a message to the Socket.IO server.

• After that, we attached an event handler to the disconnect event, which is
triggered when the Socket.IO client disconnects from the Socket.IO server.

• The emit method of the socket object is used to send custom events to
the Socket.IO client. It can take an infinite number of arguments. The first
argument it takes is the event name, and the rest of the arguments are the
parameters of the event handler, which is triggered on the Socket.IO client.

• Finally, we use the on() method of the socket object to register an event
handler for a custom event named custom-event.

Chapter 5

[107]

So now, we have finished creating a very simple Socket.IO server that lets
Socket.IO clients establish a connection with it. It is also listening to message
and custom-event events. It also sends a message and emits a custom event
to the Socket.IO clients as soon as they are connected.

As every Socket.IO client gets a separate socket object on the Socket.IO
server, if we want a socket object to be able to access the socket object
of another Socket.IO client, then we can keep a reference to the socket
objects of every Socket.IO client in a global array. This can be useful if we
are creating a chat app in which a socket object needs to access another
socket object to send messages to it.

You can now run the Socket.IO server using the node socket.js command.

Now, let's build the Socket.IO client. The following is the code to create a Socket.IO
client instance and establish a Socket.IO connection with the Socker.IO server. Place
this code in the <script> tag of the index.html file:

var socket = io("http://localhost:3000", {path: "/websocket"});

Here, we are first creating a Socket.IO client instance and establishing a connection
with the Socket.IO server using the io constructor. The first argument is the base
URL of the Socket.IO server. The second argument is an optional object to which we
have passed the URL path that the handshake request should be made to. If we don't
pass the path, then the default path will be /socket.io.

We created a single Socket.IO client instance here, but we have the freedom to
create multiple Socket.IO client instances if we want to connect to multiple Socket.
IO servers.

We are using the http scheme instead of the ws scheme here because Socket.IO
can use any technique or protocol other than WebSocket to achieve bidirectional
communication. If Socket.IO chooses to use WebSocket, then it will automatically
replace http with ws.

Let's write some code to do something on a Socket.IO client after a Socket.IO
connection has been established.
Place this code in the <script> tag of index.html file:

socket.on("connect", function () {

 socket.send("Hi, from client");

 socket.on("message", function (msg) {
 console.log(msg)

Bidirectional Communication in Real Time

[108]

 });

 socket.on("disconnect", function(){
 console.log("I am disconnected");
 });

 socket.on("custom-event", function (parameter1, parameter2) {
 console.log(parameter1, parameter2);
 });

 socket.emit("custom-event", "parameter1", "parameter2");
});

Let's understand how this code works and what the send(), on(), and emit()
methods do:

• The on() method of the socket object is used to attach event handlers to the
events triggered on the Socket.IO client by itself.

• We first attach an event handler to the connect event. As soon as a Socket.IO
connection has been established, the connect event is fired.

• The send() method's socket object is used to send a message to the
Socket.IO server. We are sending a string here, but you can also send
an instance of ArrayBuffer, Blob, or even File. You can also send
a simple JavaScript object.

• Then, we attached an event handler to the message event, which is triggered
when the Socket.IO server sends a message to the Socket.IO client.

• We then attached an event handler to the disconnect event, which is
triggered when the Socket.IO client disconnects from the Socket.IO server.
As soon as a Socket.IO connection breaks, the Socket.IO client keeps trying to
connect again automatically.

• After that, we use the on() method of the socket object to register an event
handler for a custom event named custom-event.

• The emit method of the socket object is used to send custom events to
the Socket.IO server. It can take an infinite number of arguments. The first
argument it takes is the event name, and the rest of the arguments are the
parameters of the event handler, which is triggered in the Socket.IO client.

Now, open the URL http://localhost:8080/ in your browser, and you should see
the following console output:

Hi, from server

parameter1 parameter2

http://localhost:8080/
http://localhost:8080/

Chapter 5

[109]

And you will see the following output in the shell running the Socket.IO server:

Hi, from client

parameter1 parameter2

Restricting connections based on origin
By default, a Socket.IO server lets Socket.IO clients from any origin establish a
Socket.IO connection with it. Socket.IO provides a way to restrict connections to a
particular origin.

To restrict connections to a particular origin or set of origins, we can use the origins
method of the Server instance.

Place this code in the socket.js file to only allow Socket.IO clients running on the
localhost domain and port number 8080 to connect to the Socket.IO server:

io.origins("localhost:8080");

We cannot simply pass any origin to the origins method. Here are examples of
some valid origins:

• testsite.com:80

• http://testsite.com:80

• http://*:8080 (* is a wildcard)
• *:8080

• testsite.com:* http://someotherdomain.com:8080 (multiple origins
separated by spaces)

• testsite.com:*/somepath (Socket.IO will ignore /somepath)
• *:*

In the previous list, every origin has a port number associated with it because it is
compulsory to provide a port number or * in place of the port number, indicating
any port.

Here are some examples of invalid origins:

• testsite.com

• http://testsite.com

• http://testsite.com/somepath

Bidirectional Communication in Real Time

[110]

These are invalid because they don't have port numbers associated with them.

Also note that if you specify sub.testsite.com as the origins value,
testsite.com will be a valid origin.

Namespaces in Socket.IO
A Socket.IO server is actually divided into child servers called namespaces. A
Socket.IO client always connects to a namespace. Every namespace has a name,
which looks like an HTTP path.

In the previous code, when we created a Socket.IO server, a default namespace
was created. The default namespace is identified by the / path. If we don't mention
a namespace when creating a Socket.IO client, then it connects to the default
namespace. So, the connection event is specific to a particular namespace, that is,
for every namespace, we have to register a different connection event handler.

What is the benefit of namespaces?
You must be wondering what the point of introducing namespaces is.
Well, namespaces make writing complex code easier. Let's look at an
example to understand this.
Suppose you have a web page that has multiple components that update
in real time. You would then either create multiple Socket.IO servers
for a component or use a single Socket.IO server and rely on the data
format of a message or custom event to find which data belongs to which
component. Both of these techniques have demerits, that is, creating
multiple Socket.IO servers occupies multiple ports, so it's not suitable
for a large number of components, and relying on the data formats
of messages and custom events make it difficult to move frontend
components to a separate application, as the new application will get a
lot of unnecessary messages and events, causing bandwidth issues on
both sides. Therefore, namespaces were introduced, which combine the
benefits of both techniques while omitting their demerits.

Here is how to create a custom namespace. Place this code in the socket.js file:

var nsp = io.of("/custom-namespace");

nsp.on("connection", function(socket){
 socket.send("Hi, from custom-namespace");

 socket.on("message", function(message){
 console.log(message);
 });

Chapter 5

[111]

 socket.on("disconnect", function(){
 console.log("User Disconnected");
 });

 socket.on("custom-event", function (parameter1, parameter2) {
 console.log(parameter1, parameter2);
 });

 socket.emit("custom-event", "parameter1", "parameter2");
});

On adding this code to the socket.js file, we will have two namespaces, that is,
the default one, which we created earlier, and this one, called /custom-namespace.
Here, you can see that we registered a new connection event handler for
this namespace.

Now, let's create another Socket.IO client, one which connects to the /custom-
namespace namespace. Place this code in the <script> tag of index.html file:

var socket1 = io("http://localhost:3000/custom-namespace", {path:
"/websocket"});

socket1.on("connect", function () {

 socket1.send("Hi, from client");

 socket1.on("message", function (msg) {
 console.log(msg)
 });

 socket1.on("disconnect", function(){
 console.log("I am disconnected");
 });

 socket1.on("custom-event", function (parameter1, parameter2) {
 console.log(parameter1, parameter2);
 });

 socket1.emit("custom-event", "parameter1", "parameter2");
});

Here, we are creating another Socket.IO client; this one connects to the
/custom-namespace namespace.

Bidirectional Communication in Real Time

[112]

Now, rerun the socket.js file and visit http://localhost:8080/. This will be the
browser console output:

Hi, from server

parameter1 parameter2

Hi, from custom-namespace

parameter1 parameter2

And this will be the new shell output:

Hi, from client

parameter1 parameter2

Hi, from client

parameter1 parameter2

When we restrict access based on origin using the origins() method, it
is applied to all namespaces.

Referring to all connected Socket.IO clients
The Socket.IO server API also provides us with a way of sending a message or
custom event to everyone in a namespace.

Let's look at an example of how to do this. Place the following code in the socket.
js file:

setInterval(function(){
 //sending message and custom-event-2 to all clients of default
 namespace
 io.emit("custom-event-2");
 io.send("Hello Everyone. What's up!!!");

 //sending message and custom-event-2 to all clients of /custom-
 namespace namespace
 nsp.emit("custom-event-2");
 nsp.send("Hello Everyone. What's up!!!");
}, 5000)

Here, to send a message or custom event to all the Socket.IO clients connected to the
default namespace, we use the io object. And to send to Socker.IO clients connected
to a custom namespace, we use the object returned by the of() method.

http://localhost:8080/

Chapter 5

[113]

Here, we are simply sending a message and custom event to everyone in both the
namespaces every 5 seconds.

Rooms in Socket.IO
A room simply represents a group of Socket.IO clients connected to a particular
namespace. A room belongs to a particular namespace.

A namespace cannot have two rooms with the same name, but two different
namespaces can have rooms with the same name. Rooms with the same name
on different namespaces are different rooms entirely.

Every Socket.IO client connected to a namespace must belong to one or more
groups. By default, when a Socket.IO client is connected, a new group is created
and the client is added to it. Therefore, every Socket.IO client belongs to a unique
group by default.

Here is the code that prints the unique group name of a Socket.IO client after it
has connected. Place it inside the default and /custom-namespace namespaces'
connection event handlers:

console.log(socket.id);

The id property of the socket object holds the unique room name.

Joining and leaving a room
To add a Socket.IO client to a custom room, we need to use the socket.use()
method. To remove a Socket.IO client from a custom room, we need to use the
socket.leave() method.

The following code adds every Socket.IO client connected to the default and
/custom-namespace servers to a room called my-custom-room. Place it inside
the default and /custom-namespace namespaces' connection event handlers:

socket.join("my-custom-room");

Similarly, to remove a user from my-custom-room, you can use this code:

socket.leave("my-custom-room");

Referring to all connected Socket.IO clients in a room
The Socket.IO server API also provides us with a way to send a message or custom
event to everyone in a room.

Bidirectional Communication in Real Time

[114]

Let's look at an example of how to do this. Place the following code in the
socket.js file:

setInterval(function(){
 //sending message and custom-event-3 to all clients in my-
 custom-room room of default namespace
 io.to("my-custom-room").send("Hello to everyone in this group");
 io.to("my-custom-room").emit("custom-event-3");

 //sending message and custom-event-3 to all clients in my-
 custom-room room of /custom-namespace namespace
 nsp.to("my-custom-room").send("Hello to everyone in this
 group");
 nsp.to("my-custom-room").emit("custom-event-3");
}, 5000)

Here, to send a message or custom event to all the Socket.IO clients in the my-
custom-room room of the default namespace, we need to use the io.to().send()
method. And to send a message or custom event to all the Socket.IO clients in the
my-custom-room room of the /custom-namespace namespace, we need to use the
nsp.to().send() method.

Broadcasting messages and custom events to
namespaces and rooms
Broadcasting is a feature of the Socket.IO server API that lets a socket object send a
message or custom event to everyone in the namespace or room except itself.

Broadcasting to a namespace
To broadcast a message to all Socket.IO clients in a namespace, we need to use the
socket.broadcast.send() method, and to broadcast a custom event, we need to
use the socket.broadcast.emit() method.

Let's look at an example. Place the following code in the connection event handler
of the default namespace to broadcast a message every time a new Socket.IO
client joins:

socket.broadcast.send("A new user have joined");

Now, open http://localhost:8080/ in two different tabs. In the first tab's console,
you will see this output:

Hi, from server

parameter1 parameter2

http://localhost:8080/

Chapter 5

[115]

Hi, from custom-namespace

parameter1 parameter2

A new user have joined

In the second tab's console, you will see this output:

Hi, from server

parameter1 parameter2

Hi, from custom-namespace

parameter1 parameter2

Broadcasting to a room
To broadcast a message to all Socket.IO clients in a room, we need to use the
socket.broadcast.to().send() method, and to broadcast a custom event,
we need to use the socket.broadcast.to.emit() method.

Place this code inside the default and /custom-namespace namespaces' connection
event handlers:

socket.broadcast.to("my-custom-room").send("Hi everyone. I just
joined this group");

Here, as soon as a Socket.IO client is connected, it sends a message to everyone else
in the room.

Remember that a Socket.IO client doesn't have to be a member of a room
to broadcast a message to its Socket.IO clients.

Middleware in Socket.IO
Middleware in Socket.IO server is a callback that's executed when a Socket.IO client
makes a handshake request, before the Socket.IO server replies to it. Middleware
allows us to allow or reject handshakes.

The middleware concept of Socket.IO is similar to that of Express, but the difference
is that the middleware doesn't get access to the HTTP response object; also, the
parameter signature is different. Therefore, Express middleware cannot be used in
Socket.IO.

Bidirectional Communication in Real Time

[116]

An instance of middleware is attached to a specific namespace. Here is a basic
example that demonstrates how to register a middleware instance with all
namespaces. Place this code in the Socket.IO file:

io.use(function(socket, next) {
 //request object
 //socket.request

 //to reject
 //next(new Error("Reason for reject"));

 //to continue
 next();
});

Here, we can see that we need to use the io.use() method to register a middleware
instance with all namespaces. To attach middleware to the /custom-namespace
namespace, we can use the nsp.use() method.

Disconnecting manually
You can also manually disconnect a Socket.IO connection. To disconnect from
the client side, you need to use the disconnect() method of the io instance. To
disconnect from the server side, you need to use the socket.disconnect() method.

Summary
In this chapter, we learned the fundamentals of the WebSocket protocol. We learned
about its relationship with HTTP and how it behaves with proxies, load balancers,
and firewalls. Then, we jumped into the Socket.IO library, which primarily uses
WebSocket to achieve bidirectional full-duplex communication in real time. You
should be comfortable with implementing bidirectional communication between a
browser and a Node.js server.

In the next chapter, we will build a real-world application using Socket.IO. You will
learn more advanced things, such as integrating a Socket.IO server with an Express
server and checking authentication before connecting to a WebSocket server.

[117]

Building a Live Score Site
The best way to master socket.io is by building a real-world application, which is
what we will be doing in this chapter. A live score website shows score changes in
real time to the user as soon as the administrator updates the scores. We will create
a football live score website. Discussing how to build a live score website will help
us study socket.io in depth, as it requires socket.io authentication, and optionally,
integrating socket.io with Express. Our live score website will provide an admin
panel for the administrators to update the score.

In this chapter, we will cover the following topics:

• Accessing cookies in the socket.io middleware
• Discussing HTTP basic authentication
• Integrating socket.io with Express
• Discussing socket.io authentication

Building the backend
Before we start building the backend of our live score site, let's first set up our
directory and files.

We will only write code for the backend and frontend architecture and functionality,
not any HTML and CSS design code.

The exercise files of this chapter contain two directories: Initial and Final. In both
the directories, you will find a directory named Live-Score. In the Final/Live-
Score directory, you will get the complete live score website source code. In the
Initial/Live-Score directory, you will only find HTML and CSS files for our live
score site. The Initial/Live-Score directory is to help you quickly get started with
building the live score site.

Building a Live Score Site

[118]

In the Initial/LiveScore directory, you will find the public directory, app.js
file, and package.json file. Inside the public directory, you will find css, html, and
js directories. In the css and html directories, you will find HTML files and CSS
files for our user and administrator pages. In the js directory, you will find admin.
js and index.js files, inside which you will place the socket.io client code for the
administrator and users, respectively. Similarly, in the html directory, you
will find index.html and admin.html files that will be served to the users
and administrator respectively.

Inside the package.json file, place the following code:

{
 "name": "Live-Score",
 "dependencies": {
 "express": "4.13.3",
 "socket.io": "1.3.7",
 "basic-auth": "1.0.3",
 "socket.io-cookie": "0.0.1"
 }
}

Now run the npm install command inside the Initial/Live-Score directory
to download express, socket.io, basic-auth, and socket.io-cookie
npm packages.

Integrating socket.io server with the Express
server
We can integrate the socket.io server with the Express server with just a few lines of
code. Here is the code to integrate the socket.io server with the Express server.

Create an app.js file and place the following code in it:

var express = require("express");
var app = express();
var server = require("http").createServer(app);
var io = require("socket.io")(server, {path: "/socket-io"});

server.listen(8080);

The fourth line is where the main integration happens. Here we are using the
/socket-io path for socket.io handshaking.

Finally, we are listening on port number 8080. That is, both Express server and
socket.io server will listen on port number 8080.

Chapter 6

[119]

Serving static files and HTML to the users
Now we need to write the code to server HTML, CSS, and JavaScript files to the site
users. The following is the code to do this. Place this code in the app.js file right
after the previous snippet:

app.use(express.static(__dirname + "/public"));

app.get("/", function(httpRequest, httpResponse, next){
 httpResponse.sendFile(__dirname + "/public/html/index.html");
})

Here, the first line of the code is serving static files. The rest of the code is serving
index.html to the site users when they visit the root path.

Serving HTML to the administrator and
protecting the admin panel
We only want the administrators to access the admin panel to update the scores. So,
for visitors to access the admin panel, they must enter the username and password.
We will use the HTTP basic authentication to protect the admin panel.

The following is the code to authenticate and serve HTML to the administrator:

var basicAuth = require("basic-auth");

function uniqueNumber() {
 var date = Date.now();

 if (date <= uniqueNumber.previous) {
 date = ++uniqueNumber.previous;
 } else {
 uniqueNumber.previous = date;
 }

 return date;
}

uniqueNumber.previous = 0;

var authenticated_users = {};

Building a Live Score Site

[120]

var auth = function (req, res, next){
 var user = basicAuth(req);

 if(!user || user.name !== "admin" || user.pass !== "admin")
 {
 res.statusCode = 401;
 res.setHeader("WWW-Authenticate", "Basic realm='Authorization
 Required'");
 res.end("Access denied");
 }
 else
 {
 var id = uniqueNumber();
 authenticated_users[id] = id;
 res.cookie("authentication_id", id);
 next();
 }
}

app.get("/admin", auth, function(httpRequest, httpResponse, next){
 httpResponse.sendFile(__dirname + "/public/html/admin.html");
})

Here is how the code works:

• First, we imported the basic-auth library, which is used to implement basic
authentication in Express.

• Then, we wrote a custom function to generate a unique number whenever
it's called.

• We also created a function with the name auth, which will be used to check
whether the visitor is authenticated. If not, then we will send an HTTP status
code 404, asking the visitor to provide the username and password. If the
visitor is authenticated, then we will generate a unique number and store it
as a cookie in the administrator's browser. Later on, this cookie will be used
by the socket.io server to check whether the administrator is authenticated.

• Finally, we created a route with the /admin path, which has two route
handlers attached to it. The first one is the auth function to check for
authentication and the second serves the admin.html file.

Chapter 6

[121]

Socket.IO cookie authentication and
broadcasting messages to a namespace
We will have two namespaces in our socket.io server: the default namespace where
users will connect and the /admin namespace where the administrator will connect.

A socket.io client will not require authentication to connect to the default
namespace. However, to connect to the /admin namespace, the socket.io will
need authentication.

Updates made by the administrator will be broadcasted to all the users in the
default namespace.

Here is the code for creating the /admin namespace, broadcasting messages to the
default namespace, and implementing authentication for the /admin namespace.
Place this code in the app.js file:

var cookieParser = require("socket.io-cookie");

var admin = io.of("/admin");

admin.use(cookieParser);

admin.use(function(socket, next) {
 if(socket.request.headers.cookie.authentication_id in
 authenticated_users)
 {
 next();
 }
 else
 {
 next(new Error("Authentication required"));
 }
});

admin.on("connection", function(socket){
 socket.on("message", function(message){
 io.send(message);
 });
})

Building a Live Score Site

[122]

Here is how the code works:

• First, we imported the socket.io-cookie middleware, which is used to parse
the HTTP Cookie header

• Then, we created the /admin namespace
• We also parsed the cookie using the socket.io-cookie middleware
• Then, we wrote our own middleware to check whether authentication_id

exists, and if yes, then whether it was valid
• Finally, we listened to the message event and broadcasted the message to the

users in the default namespace

Now we are done with our backend. Run the node app.js command inside the
initial directory. Then visit http://localhost:8080 and http://localhost:8080/
admin in any browser. Here, I am assuming that you are running the Express
server locally.

When you visit http://localhost:8080, you will see the following screen:

There is nothing inside the box yet as the user hasn't received any messages.

When you visit http://localhost:8080/admin, you will see the following screen:

http://localhost:8080
http://localhost:8080/admin
http://localhost:8080
http://localhost:8080
http://localhost:8080/admin
http://localhost:8080/admin

Chapter 6

[123]

Now enter admin as User Name and Password and click on Log In. You will see the
following screen:

Building the frontend
Let's write the frontend code for the users and administrators. socket.io client
instances of users will listen to incoming messages from the server and display them.
Whereas, socket.io client instances of administrator will send messages to the server
so that the messages can be broadcasted to the users.

The following is the socket.io client code for the users. Place this code inside the
index.js file:

var socket = io("http://localhost:8080", {path: "/socket-io"});

socket.on("connect", function () {
 socket.on("message", function (msg) {
 document.getElementById("messages").innerHTML =
 "<div><h4>" + msg.team1_name + "(" + msg.team1_goals + ")
 : " + msg.team2_name + "(" + msg.team2_goals + ")" +
 "</h4><p>" + msg.desc + "</p></div>" +
 document.getElementById("messages").innerHTML;
 });
});

This code is self-explanatory.

Building a Live Score Site

[124]

Here is the socket.io client code for the administrators. Place this code inside the
admin.js file:

var socket = io("http://localhost:8080/admin", {path: "/socket-io"});

document.getElementById("submit-button").addEventListener("click",
function(){
 var team1_name = document.getElementById("team1-name").value;
 var team2_name = document.getElementById("team2-name").value;
 var team1_goals = document.getElementById("team1-goals").value;
 var team2_goals = document.getElementById("team2-goals").value;
 var desc = document.getElementById("desc").value;

 if(team1_goals == "" || team2_goals == "" || team1_name == "" ||
 team2_name == "")
 {
 alert("Please enter all details");
 }

 socket.send({
 team1_name: team1_name,
 team2_name: team2_name,
 team1_goals: team1_goals,
 team2_goals: team2_goals,
 desc: desc
 });
}, false)

This is how the preceding code works:

• In the first line, we connected to the socket.io /admin namespace. If the
cookie is invalid in any case, then the connection will fail.

• We also made sure that the team names and their scores are filled, otherwise
we will display an alert message asking them to enter all the details.

• Then, we sent the message to the socket.io server.

Chapter 6

[125]

Testing the website
Now we are done building our live score website. To test the site, refresh the
http://localhost:8080/ and http://localhost:8080/admin pages.

Now, in the admin panel, fill the form with some sample data, and click on the
Send button:

On the user page, you should see something similar to the following image:

http://localhost:8080/
http://localhost:8080/admin

Building a Live Score Site

[126]

Summary
In this chapter, we saw how to build a live score website using socket.io and Express.
You should now be comfortable with building any kind of application that requires
bidirectional communication in real time. You should now try building a chat
application, multiplayer game, or something else where socket.io would be
very useful.

So, overall you learned socket.io in depth, WebSockets, and
bidirectional communication.

[127]

Functional Reactive
Programming

If you are a frontend or backend JavaScript developer who works on large and
complex JavaScript applications and deals with a lot of code that responds to
asynchronous data updates, user activities, and system activities, then it's
perhaps the best time to explore functional reactive programming (FRP), as
it's a time-saving, bug-preventing, easy-to-read, and modularized style of writing
code. You don't need to know any functional programming language or be a
hardcore functional language programmer; rather, you just need to know the basics
of functional programming. In this chapter, we will learn how to use FRP using
Bacon.js, which is an FRP library for both frontend and backend JavaScript.

We'll cover the following:

• Reactive programming in a nutshell
• Problems with writing reactive code in JavaScript
• Introduction to functional programming
• What FRP is
• The building blocks of FRP
• The advantages of FRP
• All the APIs provided by Bacon.js

Functional Reactive Programming

[128]

Introduction to reactive programming
Before we get into FRP, we need to understand what it is. I will be explaining
reactive programming with respect to JavaScript. The concept of reactive
programming is the same in every programming language.

Reactive programming is writing code to look for asynchronous data updates, user
activities, and system activities and propagate changes onto the dependent parts of
the application. Reactive programming is not something new; believe it or not, you
have already been doing reactive programming without realizing it. For example,
the code you write to handle a button's click event is reactive code. There are various
approaches to reactive programming, such as event-driven, callback, promise
patterns and FRP.

Not every snippet of asynchronous code we write is reactive code. For example,
uploading analytics data to a server asynchronously after a page load is not reactive
code. But uploading a file to a server asynchronously and displaying a message to
the user after the upload is complete is reactive code because we are reacting to the
completion of the file upload.

A more complex example of reactive programming is in the MVC architecture,
where reactive programming is what reacts to a change in the model and updates
the view accordingly, and vice versa.

Problems with writing reactive code
There are basically three patterns natively supported by JavaScript for writing
reactive code: event-driven, callback, and promise.

Anyone who knows a bit of JavaScript is familiar with event-driven and callback
patterns. Although these two patterns are the most popular way of writing reactive
code, they make it difficult to catch exceptions and result in nested function calls,
which makes the code harder to read and debug.

Due to the problems caused by event-driven and callback patterns, ES6 (https://
www.packtpub.com/web-development/learning-ecmascript-6) introduced the
promise pattern. The promise pattern makes the code look more like synchronous
code, therefore making it easy to read and debug. The pattern also makes exception
handling easier. A promise represents an asynchronous operation.

https://www.packtpub.com/web-development/learning-ecmascript-6
https://www.packtpub.com/web-development/learning-ecmascript-6

Chapter 7

[129]

But the promise pattern has a problem, that is, a promise can be resolved only
once. The promise pattern can only respond to a single activity or data update of an
asynchronous operation. For example, if we make an AJAX request using a promise
pattern, then we can handle only request success and failure activities and not the
states of the request and response cycle, such as weather server connections that
have been established and response headers received. Similarly, if we handle a user
click activity using a promise pattern, then we can handle only the first click, not the
ones occurring after it, because the promise gets resolved in the first click.

You may or may not be familiar with the promise pattern, so let's look at some
sample code of what a promise pattern looks like:

$http("http://example.com/data.json").then(function(){
 //do something
}).then(function(){
 //do something more here
}).then(function(){
 //do something more here
}).catch(function(){
 //handle error
})

Here, the $http() method makes an HTTP request asynchronously and returns a
promise. The promise is resolved if the request is successful, and the callback passed
to the first then() method is invoked, that is, the promise is resolved. If the request
fails, then the callback is passed to the catch() method, which is invoked, and the
promise is rejected. The then() method always returns a promise, making it possible
to run multiple asynchronous operations one after another. In the code, you can see
how asynchronous operations are chained. What's important here is that the then()
methods are invoked only once, that is, the promise returned by the $http() method
can be resolved only once, and multiple attempts to resolve a promise will be
ignored. Therefore, we cannot use promise patterns to write reactive code when we
have to deal with multiple activities or data updates of an asynchronous operation.

Some developers create a new promise for every activity and data update.
This technique may seem fine since you are able to write reactive code
involving multiple activities and data updates using promise patterns,
but it's an anti-pattern.

Due to the problems with the event-driven, callback, and promise patterns, there was
a need for another pattern, and functional reactive programming came to the rescue.

Functional Reactive Programming

[130]

FRP is simply reactive programming using functional programming style. We
will learn more about functional programming in the next section. Actually, the
drawbacks of the event-driven, callback, and promise patterns weren't the real
reason for the invention of FRP; rather, FRP was actually invented because there
were demands for a functional pattern for reactive programming, as functional code
is easy to write, test, debug, reuse, update, and read. But as FRP solves the problems
caused by the event-driven, callback, and promise patterns, we can say that FRP is an
alternative to the other patterns.

In this chapter, we will learn about FRP, which is considered the modern way of
writing reactive code.

Functional programming in a nutshell
Before we get into FRP, it's necessary to have basic knowledge about
functional programming.

In a nutshell, functional programming is a style of writing code in which we use only
pure function calls (including recursion) instead of loops and conditionals, and data
is immutable.

Functional programming falls under the criterion of declarative
programming. Declarative programming is a style of writing code where
we write code to tell the system what we would like to happen instead of
how to do it. Some other examples of declarative programming are SQL
and regular expressions.

So what is a pure function? A pure function is a function that depends only on its
input arguments and that always provides the same output for a particular input. If
it reads anything else outside of its scope, including global variables, then it's not a
pure function.

Obviously, it's not always possible to make all the functions pure. For example, a
function that fetches a web page or reads from the filesystem cannot guarantee the
same return value. We should try to make as many as functions as pure as possible.
So, we can say that 100% purity is impossible to achieve, but 85% purity is still
very productive.

Functions without side effects, stateless functions, and pure functions are
terms used interchangeably.

Chapter 7

[131]

As data is immutable in functional programming, you must be wondering how it is
possible to write code without modifying data. Well, in practice, we simply create
new data structures instead of modifying existing ones. For example, if we have an
array with four values and we want to remove the last one, then we simply create a
new array, which doesn't have the last value.

The advantages of immutable data
There are several advantages of immutable data. Here are a few of them:

• They are thread-safe, that is, multiple threads operating on them
cannot modify/corrupt their state. Learn more about thread safety
at https://en.wikipedia.org/wiki/Thread_safety.

• They object copying can be shared easily. One doesn't have to employ a
strategy such as defensive copying, like in mutable data structures. Learn
more about object copying at https://en.wikipedia.org/wiki/Object_
copying.

• They help avoid temporal coupling. More about temporal coupling can
be found at https://en.wikipedia.org/wiki/Coupling_(computer_
programming)#Object-oriented_programming.

Functional data structures
As data is immutable, there are several problems you are likely to face.
Here are a few:

• If an immutable array has millions of values, then creating a new array and
copying all the values from the previous array is CPU and memory intensive

• If two threads need to write to the same variable, coordinating the final value
of the variable will be difficult

There are many other issues. These issues led to the idea of functional data
structures. Functional data structures are a different type of data structure that aim
to solve these kinds of issue. But you don't need to know about functional data
structures to follow this chapter or write functional reactive code in JavaScript.

https://en.wikipedia.org/wiki/Thread_safety
https://en.wikipedia.org/wiki/Object_copying
https://en.wikipedia.org/wiki/Object_copying
https://en.wikipedia.org/wiki/Coupling_(computer_programming)#Object-oriented_programming
https://en.wikipedia.org/wiki/Coupling_(computer_programming)#Object-oriented_programming

Functional Reactive Programming

[132]

The advantages of pure functions
Here are a few advantages of pure functions:

• They increase reusability and maintainability, as each function is
independent

• Easier testing and debugging is possible, as each function can be tested and
debugged separately

• Functional programs are easy to understand as they are written in a
declarative manner, that is, the code says what is to be done instead of how
it's done.

The style of writing code using loops, conditionals, and function calls is
called imperative programming. Imperative programming and functional
programming are considered opposites of each other. JavaScript, C++,
Java, Python, Ruby, are examples of imperative programming languages.

Functional programming with JavaScript
You don't have to use a functional programming language such as Erlang, Haskell,
and so on to write functional code. Most imperative programming languages allow
us to write functional code.

Due to the fact that functions in JavaScript are first-class (we will learn more about
first-class functions later), it is possible to write functional code in JavaScript.

"First-class" and "high-order" are terms used interchangeably.

A function is said to be first-class when it can be passed as an argument to another
function, can return another function, and be assigned to a variable.

In JavaScript, functions are first-class because they are objects. Because an object can
be passed as an argument to another function, a function can return an object, and an
object can be assigned to a variable, functions can be first-class.

Chapter 7

[133]

What is the difference between a closure and a first-class function?
Closures are the most misunderstood topic in JavaScript. In a nutshell, a
closure is a function returned by another function, and when the function
is invoked, it has access to the lexical scope in which it was defined. A
function returned by a first-class function may or may not be a closure.
Here is an example to demonstrate closures:

function a()
{
 var b = 12;
 function c()
 {
 console.log(b);
 }

 return c;
}

var d = a();

d(); //Output "12"

Here, the function named c is a closure as it's returned by a, and when
invoked, it has access to the variables declared inside a.

Functional programming helper functions
Functional programming languages provide a lot of in-built functions called
helper functions to make it easy to write functional code. For example, as we
cannot use loops for iteration in functional code, we need some sort of function
to take a collection and map each value of the collection to a function. Functional
programming languages provide the map helper function for this purpose. Similarly,
there are a lot of other helper functions for different purposes.

As JavaScript is not a functional programming language, it doesn't come with
functional helper functions. However, ES6 introduced some helper functions, such as
Array.from(), Array.prototype.from(), and Array.prototype.find(). Still, this
list is not enough to write functional code. Therefore, developers use libraries such as
Underscore.js to write functional code.

Functional Reactive Programming

[134]

Getting started with FRP
FRP is simply reactive programming using functional programming style.

EventStreams and properties (don't get these confused with object properties) are the
building blocks of FRP. Let's look at an overview of what both these terms mean.

EventStreams
An EventStream represents a stream of events. Events in an EventStream may
happen at any time and need not occur synchronously.

Let's understand EventStreams by comparing them to events in an event-driven
pattern. Just like we subscribe to events in an event-driven pattern, we subscribe
to EventStreams in FRP. Unlike events in event-driven programming, the power of
EventStreams is that they can be merged, concatenated, combined, zipped, filtered,
or transformed in any number of ways before you handle and act on the events.

In functional programming, data is immutable, so merging, concatenating,
combining, zipping, filtering, or transforming an EventStream creates a new
EventStream instead of modifying the existing one.

Here is a diagram that shows how an EventStream representing the click event of a
UI element would look:

This EventStream can be merged with any other stream. Here is a diagram that
shows how it looks when two EventStreams are merged:

Chapter 7

[135]

Merging can be useful when we want to apply the same action when an event occurs
to two different EventStreams. Instead of subscribing and attaching a callback to two
different EventStreams, we can now subscribe to a single EventStream, eliminating
duplicate code and making it easy to update code. Merging can be useful in various
other cases as well.

Properties
A property represents a value that changes over time. Properties can be used as an
alternative to JavaScript variables whose values change in response to asynchronous
activities and data updates. For example, you can use properties to represent the
total number of times a button was clicked, the total number of logged-in users,
and so on.

Properties are also called signals or behaviors.

Functional Reactive Programming

[136]

The advantage of using properties instead of JavaScript variables is that you can
subscribe to properties, that is, whenever the value of a property changes, a callback
is fired to update the parts of the system that depend on it. This prevents code
duplication and has many other benefits.

You can create a property from another property as well as merge,
combine, zip, sample, filter, or transform properties.

We've just looked at the basics of FRP. Creating EventStreams and properties, their
methods, and other things to work with them differ depending on the library we use
to write functional reactive code. Now, let's explore how to write functional reactive
code using the Bacon.js library.

FRP using Bacon.js
Bacon.js is a JavaScript library that helps us write functional reactive code in
JavaScript. It can be used for both frontend and backend JavaScript. The official
website of Bacon.js library is https://baconjs.github.io/.

Let's create a basic website project to demonstrate FRP with Bacon.js.

Setting up the project
Let's learn how to download and install Bacon.js for use with frontend and backend
JavaScript. On the frontend, Bacon.js depends on jQuery.

Create a directory named baconjs-example. Inside it, create files called package.
json and app.js and a directory called public. Inside the public directory, create
directories called html and js. Inside the html directory, create a file called index.
html. Finally, inside the js directory, create a file called index.js.

Download the frontend Bacon.js library from http://cdnjs.cloudflare.com/
ajax/libs/bacon.js/0.7.73/Bacon.js and jQuery from https://code.jquery.
com/jquery-2.2.0.min.js, and place them in the js directory.

At the time of writing this book, 0.7.73 was the latest version of the frontend Bacon.js
library, and 2.2.0 was the latest version of jQuery.

https://baconjs.github.io/
http://cdnjs.cloudflare.com/ajax/libs/bacon.js/0.7.73/Bacon.js
http://cdnjs.cloudflare.com/ajax/libs/bacon.js/0.7.73/Bacon.js
https://code.jquery.com/jquery-2.2.0.min.js
https://code.jquery.com/jquery-2.2.0.min.js

Chapter 7

[137]

In the index.html file, place this code to enqueue jQuery and the frontend Bacon.
js library:

<!doctype html>
<html>
 <head>
 <title>Bacon.js Example</title>
 </head>
 <body>
 <script type="text/javascript" src="js/jquery-2.2.0.min.js"></
script>
 <script type="text/javascript" src="js/Bacon.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 </body>
</html>

In the package.json file, place this code:

{
 "name": "Baconjs-Example",
 "dependencies": {
 "express": "4.13.3",
 "baconjs": "0.7.83"
 }
}

Now, run npm install inside the baconjs-example directory to download the
npm packages.

At the time of writing this book, 0.7.83 was the latest version of backend
Bacon.js library.

In the app.js file, place the following code to import the backend Bacon.js and
Express modules. It also starts our webserver in order to serve the web page and
static files:

var Bacon = require("baconjs").Bacon;
var express = require("express");
var app = express();

app.use(express.static(__dirname + "/public"));

app.get("/", function(httpRequest, httpResponse, next){
 httpResponse.sendFile(__dirname + "/public/html/index.html");
})

app.listen(8080);

Functional Reactive Programming

[138]

We have now set up a basic Bacon.js project. Run node app.js to start the web
server. Now, let's explore Bacon.js APIs.

Bacon.js APIs
Bacon.js provides APIs to do almost anything that's possible using EventStreams
and properties. The method of importing and downloading Bacon.js for the backend
and frontend is different, but the APIs are the same for both. Let's look at the most
important APIs provided by Bacon.js.

Creating EventStreams
There are various ways of creating EventStreams, depending on how an
asynchronous API is designed, that is, which pattern an asynchronous API follows.
An asynchronous API follows the event-driven, promise, or callback pattern.
We need to wrap these patterns with Bacon-provided APIs to connect their data
updates or activity updates to event streams, that is, convert them to functional
reactive patterns.

If we want to create an EventStream for a UI element on a web page, we can use the
$.asEventStream() method. Let's look at an example of how it works. Place the
following code in the <body> tag of the index.html file to create a button:

<button id="myButton">Click me!!!</button>

In an event-driven pattern, to print something whenever a button is clicked,
we would write something like this:

document.getElementById("myButton").addEventListener("click",
function(){
 console.log("Button Clicked");
}, false)

But in Bacon.js, we will write it this way. Place this code in the index.js file:

var myButton_click_stream = $("#myButton").asEventStream("click");
myButton_click_stream.onValue(function(e){
 console.log("Button Clicked");
})

Here, we use a jQuery selector to point to the button, and we then use the
$.asEventStream method to connect its click events to an EventStream. The
$.asEventStream method takes the name of the event as its first parameter.

Chapter 7

[139]

The onValue method is used to add subscribers to an EventStream. The onValue
method of an EventStream takes a callback, which is executed every time a new
event is added to the EventStream. The callback has a single parameter, which
represents the current event that has been added to the EventStream. In this case,
it's of the event interface. We can call the onValue method multiple times to add
multiple callbacks.

A subscriber can be used to update the UI, perform logging, and so on. But the logic
code for handling the event should be written using the helper functions and not be
inside the subscriber. This is how functional reactive code is supposed to be written.

The subscriber callback will not be invoked for events that occurred before the
subscriber was registered.

Similarly, there are lots of other APIs provided by Bacon.js to create EventStreams.
Here are a few of them:

• Bacon.fromPromise: This is used to create an EventStream from a
promise object.

• Bacon.fromEvent: This is used to create an EventStream from events of an
EventTarget or Node.js EventEmitter object.

• Bacon.fromCallback: This is used to create an EventStream from a function
that accepts a callback.

• Bacon.fromNodeCallback: This is the same as Bacon.fromCallback, but it
requires the callback to be called in Node.js convention.

• Bacon.fromBinder: If none of the previous APIs are fitting well, then you
can use this one.

Creating properties
A property is created from an EventStream, that is, a stream whose events the
value of the property depends on. Whenever an event occurs in the EventStream,
a callback is executed to update the property value.

You can create a property for an EventStream using either the toProperty or scan
methods. The scan method is used instead of toProperty when we want to give an
initial value as well as an accumulator function to the property. You may or may not
provide an initial value when creating a property using toProperty().

Calling scan or toProperty multiple times create multiple properties.

Functional Reactive Programming

[140]

Let's create a property to hold the total number of times a button is clicked. Here is
the code to do this; place it in the index.js file:

var button_click_counter = myButton_click_stream.scan(0,
function(value, e){
 return ++value;
})

button_click_counter.onValue(function(value){
 console.log("Button is clicked " + value + " number of times");
})

Here, we created a property using the scan method and initialized it to 0. The second
argument is a callback, which is invoked to update the property value whenever an
event happens in the EventStream to which the property is attached. This callback
should return the new property value. The callback has two parameters, that is, the
current value of the property and the event.

The onValue method of a property takes a callback that is executed every time the
property value changes. We can call the onValue method multiple times to register
multiple callbacks.

When we register a subscriber for a property, the subscriber is executed with the
current value as soon as it's registered, but not for the values that occurred before it
had been registered. If the property has not yet been assigned to anything, then the
callback is not executed.

Here, whenever the property value changes, we log a statement informing us about
the total number of times the button was clicked.

A property can also be created from another property. This is useful when a
property's value depends on another property. Let's create a property from the
previous property, which holds the time at which the property was last clicked
and the button click count at that time. Here is the code to do this; place it in the
index.js file:

var button_click_time = button_click_counter.scan({}, function(value,
count){
 return {time: Date.now(), clicks: count};
})

button_click_time.onValue(function(value){
 console.log(value);
})

Chapter 7

[141]

Everything here is self-explanatory. The only thing you need to know is that the
second parameter of the second argument passed to the scan method represents
the value of the property we used to create this property.

A property holds a stream that has all of its previous and current values internally;
therefore, we can also merge, combine, zip, sample, filter, and transform properties.
Merging, combining, zipping, sampling, filtering, or transforming properties gives us
new properties. This feature is useful for writing code for the more complex situation
of a property's value depending on another property. For example, if we want to
ignore some values of a property while calculating the value of another property
based on it, then we can use filter feature.

Bacon.js also allows us to create EventStreams based on properties, that is, the events
of an EventStream represent the values of a property. Events in these EventStreams
occur when their respective property value is changed. This feature has many
benefits, one of which is that it can prevent code duplication when we have to
trigger the same action in response to several properties changing their values.

To create EventStreams based on properties, we can use the toEventStream method
of a property.

Retrieving the latest value of a property
There is no method to obtain the latest value of a property, and there will
be. You obtain the value by subscribing to the property and handling the
values in your callback. If you need the value of more than one source,
use one of the combine methods. This is how functional reactive code
using Bacon.js is supposed to be written.

Merging, filtering, and transforming EventStreams
and properties
Bacon.js provides various helper functions to work with EventStreams and
properties. Let's look at some of the most useful helper functions.

Functional Reactive Programming

[142]

Merging
Merging streams or properties gives us a new stream or property that delivers
all the events or values of all the streams or properties. To merge EventStreams
or properties, we can use their Bacon.mergeAll method instances. Here is some
example code to demonstrate this. Place it in the index.js file:

var merged_property = Bacon.mergeAll([button_click_counter, button_
click_time]);

merged_property.onValue(function(e){
 console.log(e);
})

Here, we merge two properties. Bacon.mergeAll takes an array of either
EventStreams or properties. Whenever the value of either of the two properties
changes, the value is made the current value of the resultant property.

There are various other helper functions available for merging properties and
EventStreams.

Filtering
Filtering is removing specific events or values from EventStreams or properties,
respectively, that we don't need.

Bacon.js provides a lot of helper functions to filter EventStreams and properties,
depending on what you want to filter. Let's look at the filter method for
EventStreams and properties that lets us filter based on a predicate function; that is,
if the function returns true, then the value is accepted; otherwise, it is rejected.

Let's look at example code to demonstrate this. In the index.js file, find this code:

var myButton_click_stream = $("#myButton").asEventStream("click");
myButton_click_stream.onValue(function(e){
 console.log(e);
 console.log("Button Clicked");
})

Replace that with this code:

var myButton_click_stream = $("#myButton").asEventStream("click").
filter(function(e){
 return e.shiftKey === true;
});

Chapter 7

[143]

myButton_click_stream.onValue(function(e){
 console.log(e);
 console.log("Button Clicked");
})

Here, we are filtering all those click events in which we didn't press the Shift key.
So, for the click event to be accepted, we need to press the Shift key while clicking
on the button.

You can think of filtering as an alternative to using the if…else conditional.

Transforming
Transforming is creating an EventStream or property from another EventStream or
property, respectively, whose events are transformed to something else. For example,
a property whose value represents a URL can be transformed to another property,
whose value represents the response of the URL. Transforming EventStreams and
properties actually creates new EventStreams and properties, respectively.

You can think of transforming as an alternative to loops, that is, to using for loops.

There are several helper functions provided by Bacon.js for transformation
depending on how and what you want to transform.

One popular transformation function is map(), which maps events or values of
EventStreams or properties to a function. Let's look at a code sample to demonstrate
this. Find this code in the index.js file:

var button_click_time = button_click_counter.scan({},
function(value, count){
 return {time: Date.now(), clicks: count};
})

Replace it with this code:

var button_click_time = button_click_counter.scan({},
function(value, count){
 return {time: Date.now(), clicks: count};
}).map(function(value){
 var date = new Date(value.time);
 return (date).getHours() + ":" + (date).getMinutes();
})

Functional Reactive Programming

[144]

Here, we are using map() to transform the Unix timestamp to the HH:MM format,
which is easy to understand.

There is another, vital transformation helper function provided by Bacon.js called
flatMap. There are basically two differences between flatMap and map:

• The flatMap function always returns an EventStream regardless of whether
it was called on a EventStream or property.

• If the callback passed to flatMap returns an EventStream or property, then
the events of the EventStream returned by the flatMap function are events
and values of the streams and properties returned by the callback passed to
flatMap. Whenever an event or value is added to the streams and properties
returned by the callback passed to flatMap, the event and value will
automatically be added to the EventStream returned by the
flatMap function.

You need to use flatMap instead of map when retrieving the return value of a
callback passed to a network, disk drive, or somewhere else asynchronous. For
example, in the previous example, where I talked about transforming a URL to a
URL response, we need to use flatMap instead of map as instead of a callback, we
need to make an AJAX request, and its response will be captured as a stream, and
the stream will be returned. When the AJAX request completes, the event will be put
inside the stream returned by the flatMap function.

Let's look at an implementation of this example. First, create an input text field and
place it in the index.html file, as follows:

<input id="url" type="url">

Now, let's write code using Bacon.js to log the output of the URL entered in the
field when a user hits the Enter key. Here is the code to do this. Place it in the
index.js file:

var enter_key_click_stream = $("#url").asEventStream("keyup").
filter(function(e){
 return e.keyCode == 13;
})

var url = enter_key_click_stream.scan("", function(value, e){
 return e.currentTarget.value;
})

Chapter 7

[145]

var response = url.flatMap(function(value){
 return Bacon.fromPromise($.ajax({url:value}));
}).toProperty();

response.onValue(function(value){
 console.log(value);
})

This is how the code works:

• First, we create an EventStream for the keyup event.
• Then, we filter only Enter-key events because we will take action only if the

Enter key is pressed.
• Then, we create a variable to hold the value of the text field.
• Then, we use flatMap to fetch the response of the URL using jQuery AJAX.

We are using Bacon.fromPromise to create an EventStream from a promise.
• When the AJAX request finishes, it adds the response to the EventStream

returned by the callback passed to flatMap. Then, flatMap adds the same
response to the EventStream returned by the flatMap function itself. As soon
as it's added, we log the response using onValue.

Here, if we had used map instead of flatMap, then we would have ended up
logging EventStream objects instead of the events of the EventStream returned
by the map function.

Although we can have both url and response properties directly created from the
enter_key_click_stream, it is likely to cause code repetition and make the code
difficult to understand.

When you call a method to transform, filter, or do something else with
EventStreams, then the events that occurred before the method call are
not taken into account. However, in the case of a property, the current
value is taken into account, but not the values that occurred before
the method call. If the property has not yet been assigned to anything,
nothing is taken into account.

Functional Reactive Programming

[146]

Summary
We looked at reactive programming, functional programming, FRP, and finally an
overview of Bacon.js. You should now be comfortable with writing basic functional
reactive code and have a clear idea of its benefits.

We will learn about more of the APIs provided by Bacon.js and build a real-world
project using Bacon.js in the next chapter.

[147]

Building an Advanced Profile
Search Widget

The best way to master FRP using Bacon.js is by building a real world application,
which is what we will do in this chapter. We will build an advanced profile search
widget, just like the ones you would usually find on social networking or dating
sites. To keep the chapter short and to the point, we will work with some sample
data instead of building registration functionality. We will also learn some more
advanced concepts of functional programming and Bacon.js.

In this chapter, we will cover the following:

• Error events in Bacon.js
• Handling exceptions in FRP
• Lazy evaluation
• Buses in Bacon.js
• Join patterns
• Finally, we will build an advanced profile search widget

Errors in Bacon.js
Bacon provides the Bacon.Error constructor to explicitly mark events or values of
EventStreams or properties respectively as errors so that Bacon can identify them
and open up a wide variety of other APIs to work with those errors specifically.

Building an Advanced Profile Search Widget

[148]

Depending on how we create a stream, Bacon.js can sometimes identify whether an
event is a success or error event, and if it's an error event, then it can convert it to
Bacon.Error. For example, if we use Bacon.fromPromise to create an EventStream,
then Bacon can identify an error easily, since when an error occurs in a promise
pattern, the second callback of the then() method or the callback passed to the
catch() method is executed.

In case Bacon cannot identify whether an event is an error or success event while
creating a stream, then we need to explicitly create instances of Bacon.Error and
replace the error events with them. For example, when using Bacon.fromCallback,
there is no way for Bacon.js to know whether an event is a success or error event, so
we need to explicitly convert error events to instances of Bacon.Error.

Subscribing to errors
A callback passed to onValue is not invoked for Bacon.Error events or values;
instead, we need to use onError.

To see it in action, open the index.js file that we created in our previous chapter,
and add this code:

response.onError(function(error){
 console.log("An error occured while fetching the page",
error);
})

Now, if you enter an URL that cannot be fetched, a custom error message is
displayed on the console.

Mapping errors
The map() function doesn't map Bacon.Error instances; therefore, Bacon provides
us with mapError (), which works the same way as map but maps only Bacon.
Error instances.

Similarly, flapMap() doesn't map Bacon.Error instances. Therefore, Bacon provides
us with flatMapError(), which works the same way as flatMap
but maps only Bacon.Error instances.

Aside from flatMap and map, Bacon.Error instances can pass through everything.

Chapter 8

[149]

Retrying a function call
Sometimes, we might want to retry an operation if it fails. For example, if we fail to
retrieve a web page using AJAX due to a server timeout error, then we might want to
try retrieving it again after some time.

Bacon provides the Bacon.retry function, using which we can make a function call
again and again as long as we want to.

Bacon.retry returns an EventStream, and it takes an object with four properties,
as follows:

• source: This is a function that is to be reinvoked. This function must return a
property or EventStream.

• retries: This is a number representing the total number of times to retry the
source function for in addition to the initial attempt. When a Bacon.Error
instance is pushed to the property or stream returned by the source function,
then an attempt to retry is made.

• isRetryable: This is an optional property. It needs to be assigned to a
function. The function should return either true or false. When something
is pushed into the property or EventStream returned by the source function,
then isRetryable is invoked to find our whether an attempt to retry should
be made.

• delay: This is an optional property. It's assigned to a function that returns
the time in milliseconds to wait for before retrying. The default value is 0.

The EventStream returned by Bacon.retry has the event or value that was present
in the last EventStream or property returned by the last call to the source function.

Let's see the Bacon.retry function in action. Find this code in the index.js file:

var response = url.flatMap(function(value){
 return Bacon.fromPromise($.ajax({url:value}));
}).toProperty();

Replace it with this code:

var response = url.flatMap(function(value){
 return Bacon.retry({
 source: function(){ return
 Bacon.fromPromise($.ajax({url:value})); },
 retries: 5,
 isRetryable: function (error) { return error.status !== 404;
 },
 delay: function(context) { return 2000; }
 })
}).toProperty();

Building an Advanced Profile Search Widget

[150]

Here, we are retrying the AJAX request 5 times after every 2 seconds for any error
other than 404.

Ending an EventStream or property on error
An EventStream or property is said to have ended when you cannot push
anything to it.

If you want to end an EventStream or property when a Bacon.Error instance
is pushed, then you need to call the endOnError method of the EventStream or
property. The endOnError method returns a new EventStream or property,
which is ended when a Bacon.Error instance is pushed.

Handling exceptions
If an exception is encountered inside a callback passed to a Bacon helper function,
then it's not caught automatically; rather, we have to use a try…catch statement to
handle it. A common practice is to return a Bacon.Error instance after catching an
exception so that we can handle it just like an error.

Here is an example of how to handle exceptions. In the index.js file, find the
following code:

var response = url.flatMap(function(value){
 return Bacon.retry({
 source: function(){ return
 Bacon.fromPromise($.ajax({url:value})); },
 retries: 5,
 isRetryable: function (error) { return error.status !== 404;
 },
 delay: function(context) { return 2000; }
 })
}).toProperty();

Replace it with this:

var response = url.flatMap(function(value){
 try
 {
 return Bacon.retry({
 source: function(){ return
 Bacon.fromPromise($.ajax({url:value})); },

Chapter 8

[151]

 retries: 5,
 isRetryable: function (error) { return error.status !== 404;
 },
 delay: function(context) { return 2000; }
 })
 }
 catch(e)
 {
 return new Bacon.Error(e);
 }

}).toProperty();

Here, we are catching exceptions and creating a new Bacon.Error instance with
the exception as the details of the error, that is, we are passing the exception as an
argument to the constructor.

Constant properties
Bacon also provides us ways to create constant properties. Constant properties are
initialized at the time of creation and cannot be reinitialized, that is, new values
cannot be pushed.

A constant property is created using the Bacon.constant() constructer. We need to
pass the value of the property to the constructor. A constant property can be merged,
concatenated, combined, zipped, sampled, filtered, and transformed.

Here is an example of how to create a constant property. Place this code in the
index.js file:

var script_start_time =
Bacon.constant(Date.now()).map(function(value){
 var date = new Date(value);
 return (date).getHours() + ":" + (date).getMinutes() + ":" +
 (date).getSeconds();
});

script_start_time.onValue(function(value){
 console.log("This script started running at : " + value);
})

Here, the constant property stores the time at which the script was started and
prints the time.

Building an Advanced Profile Search Widget

[152]

An overview of buses
A bus is just like an EventStream, but it lets us push values into the stream manually
instead of attaching it to a source, and it also allows plugging other EventStreams
and properties into the bus on the fly.

Here is an example that demonstrates how to create a bus and various methods
provided by a Bacon.Bus instance. Place this code in the index.js file:

var bus1 = new Bacon.Bus();

bus1.onValue(function(event){
 console.log(event);
})

bus1.push(1);
bus1.push(2);
var bus2 = new Bacon.Bus();
bus1.plug(bus2);
bus2.push(3);
bus1.error("Unknown Error"); //pushed an Bacon.Error
bus1.end();
bus2.push(4); //this will not be pushed as bus has ended

The code is self explanatory. The output of the above code is as follows:

1
2
3

Subscribing to the end of EventStreams
and properties
Bacon provides the onEnd method to subscribe to callbacks that will be executed
when an EventStream or property ends.

Here is some example code, which shows you how to use the onEnd callback. Place it
in the index.js file:

script_start_time.onEnd(function(){
 console.log("Script start time has been successfully calculated
 and logged");
})

Chapter 8

[153]

Here, we are attaching an onEnd callback to the constant property, which we created
previously. After initialization, the property is ended; therefore, the onEnd callback is
invoked. We can register multiple subscribers as well.

Actually, to end an EventStream or property, Bacon internally pushes an instance of
the Bacon.End constructor. So, we can also use the Bacon.End constructor to end an
EventStream or property.

Let's look at an example of how to use Bacon.End. Place this code in the
index.js file:

var custom_stream = Bacon.fromBinder(function(sink) {
 sink(10);
 sink(20);
 sink(new Bacon.End()); //event stream ends here
 sink(30); //this will not be pushed
});

custom_stream.onValue(function(event){
 console.log(event);
});

The output of the code is this:

10
20

A Bacon.End instance doesn't pass through helper functions.

Unplugging subscribers
We saw how to subscribe to an EventStream and property using onValue, onError,
and onEnd. We can also unsubscribe the subscribers if we don't need them anymore.

These functions return a function for unsubscribing. To unsubscribe, we need to call
the function returned by the subscriber function.

Combining and zipping
Bacon provides certain methods to combine and zip properties and EventStreams.
There is a significant difference between combining and zipping.

Building an Advanced Profile Search Widget

[154]

When we combine properties, we always get a property, which will have an array of
all source properties as its value. If we try to combine EventStreams, then they are
first converted to properties before combining takes place. When there is a push in
any one of the source properties, a new value is pushed into the resultant property.
Combining starts after each of the source properties has a value pushed.

Here is an example to demonstrate combining. Place this code in the index.js file.

var x1 = new Bacon.Bus();
var x2 = new Bacon.Bus();
var x3 = new Bacon.Bus();

Bacon.combineAsArray(x1, x2, x3).onValue(function(value){
 console.log(value);
})

x1.push(0);
x1.push(1);
x2.push(2);
x3.push(3);
x3.push(4);
x1.push(5);

Here is the output of the code:

[1, 2, 3]
[1, 2, 4]
[5, 2, 4]

Zipping is different from combining. Zipping means that events from each source
are combined pairwise so that the first event from each source is published first, then
the second event, and so on. The results will be published as soon as there is a value
from each source. When we zip properties and EventStreams, we always get an
EventStream.

Here is an example to demonstrate zipping. Place this code in the index.js file:

var y1 = new Bacon.Bus();
var y2 = new Bacon.Bus();
var y3 = new Bacon.Bus();

Bacon.zipAsArray(y1, y2, y3).onValue(function(value){
 console.log(value);
})

y1.push(0);

Chapter 8

[155]

y1.push(1);
y2.push(2);
y3.push(3);
y3.push(4);
x1.push(5);

Here is the output of the code:

[0, 2, 3]

Lazy evaluation
In programming, lazy evaluation is a strategy that delays the evaluation of values
until they're needed. There are two means by which lazy evaluation is implemented
by Bacon.js.

Type 1
A stream or property will not be attached to its data source until it has subscribers.
Let's look at an example to understand this. Place this code in the index.js file:

var myButton_click_stream1 =
$("#myButton").asEventStream("click").map(function(event){
 console.log(event);
 return event;
});

Here, when you click on the myButton button, nothing will be logged. Now, place
this code in the index.js file:

myButton_click_stream1.onValue(function(event){})

Now when you click on the button, the event will be logged.

The log method is also considered as a subscriber.

Type 2
Methods such as map and combine* use lazy evaluation to avoid evaluating events
and values that aren't actually needed. Lazy evaluation results in huge performance
benefits in some cases.

But how do map and combine* know whether an event or value is not needed?
Well, there are a few methods that give a hint about this to map and combine*,
for example, sampledBy.

Building an Advanced Profile Search Widget

[156]

What is the sampledBy method?
The sampledBy method is used for sampling a property based on
a property or EventStream. It returns a property or EventStream,
respectively, by sampling the property value at each event from the
given property or EventStream. The returned property or EventStream
will contain the property value at each push in the source property or
EventStream.

Let's look at an example of how map implements lazy evaluation. Place this code in
the index.js file:

var myBus_1 = Bacon.Bus();
var myBus_2 = Bacon.Bus();

var myProperty_1 = myBus_1.map(function(event){
 console.log(""Executing 1"");
 return event;
}).toProperty();

var myStream_1 = myProperty_1.sampledBy(myBus_2);

myStream_1.onValue(function(event){
 console.log(""Logged"", event);
})

myBus_1.push(1);

Here is what we are doing in the previous code:

1. We first create two buses.
2. Then, we map events in the first bus using the map method, and it is then

transformed into a property.
3. We then create an EventStream by sampling the property value at each event

in the second bus.
4. We then add a subscriber to the EventStream.
5. Finally, we push a value to the first bus.

The previous code looks like it should log the following output:

Executing 1
Logged 1

Chapter 8

[157]

Unfortunately, it doesn't log anything. That's because lazy evaluation is taking
place here. The sampledBy function takes the current value of the property, not the
ones that were generated from previous events. Therefore, map decides to generate
the property value when an event occurs in the second bus, therefore preventing
unnecessary calls to the callback passed to the map function. In short, here, map
simply prevents calculating property values until it's actually needed. Now,
add this code to the index.js file:

myBus_1.push(2);
myBus_2.push();

Now, when you run the code, you will get this output:

Executing 1
Logged 2

Here, you can see that map prevented calculating for the first event pushed inside
the first bus. It calculated the property value for second event because sampling was
done after that.

If you want to prevent lazy evaluation when using the map() method,
then use flatMap instead of map. The flatMap method doesn't use
lazy evaluation. There is no way to prevent lazy evaluation when
using combine* methods, but if you need it badly, then you can try to
rewrite the code using other methods, which may or may not be possible
depending on what you are trying to achieve.

Building the profile search widget
We've covered almost all the important APIs and concepts of Bacon.js. Now, it's time
to build the profile search widget. We will also learn some more APIs and concepts
in the process.

We will build the profile search widget to learn how to write reactive code using
Bacon for both the frontend and backend in real-world projects. Let's get started.

Building an Advanced Profile Search Widget

[158]

Understanding project directories and files
In the exercise files of this chapter, you will find a directory named
profile-search-widget. Inside that directory, you will find two other directories
named final and initial. The final directory contains the final code for the
profile search widget whereas the initial directory contains the files and code for
you to quickly get started with building the profile search widget. You will now
work with the initial directory.

You are supposed to put the server-side code inside the app.js file and the frontend
code inside the public/js/index.js file. Currently, the app.js file imports Bacon,
Express, and filesystem modules and also has basic code to run the web server and
serve static files.

Inside the public/html/index.html file, you will find HTML code. We will not be
writing any HTML or CSS.

Let's first build the backend and then the frontend.

Converting Express.js routes to a functional
reactive pattern
Express.js routes are written using a callback pattern. We need a wrapper to convert
the callback pattern to a functional reactive pattern.

Bacon doesn't provide any direct method for doing this—there are various other
custom methods. The easiest and shortest way to do this is by creating a bus for
every route, and whenever a request to a route is made, pushing an event into its
respective bus. Let's create a route this way for serving the index.html file for
requests to the root URL. Place this code in the app.js file:

function route_eventstream(path)
{
 var bus = new Bacon.Bus();

 app.get(path, function(req, res) {
 bus.push({
 req: req,
 res: res
 });
 });

Chapter 8

[159]

 return bus;
}

var root_stream = route_eventstream("/");

root_stream.onValue(function(event){
 event.res.sendFile(__dirname + ""/public/html/index.html"");
})

This is how the code works:

1. At first, we define a function named route_eventstream, which acts as
a wrapper to convert callback patterns to EventStream patterns. It takes a
path and returns a bus. Whenever a request is made to the route, an event
is pushed into the bus. The event is a connection object, that is, it holds the
request and response objects for that client request.

2. Then, we create an EventStream for root path requests.
3. Finally, we register a subscriber that returns the index.html file whenever

an event is pushed into the root EventStream.

Now, run the node app.js command and visit localhost:8080 in your browser.
This is the output you will see:

Making the user experience better
In the previous screenshot, you can see that there are eight fields based on which a
user can perform a search.

Building an Advanced Profile Search Widget

[160]

Instead of a user just filling some of the fields and clicking on the Search button to
get the result, we can add some more features to make the user experience better.
Here are the extra things we are going to add:

• Whenever a user uses the Enter key in any of the fields, we need fetch the
search result

• While a user types the company name, we will show a drop-down menu
with suggestions

• At least one of the fields except the gender field should have some value in
order for us to fetch a search result.

• If the entered e-mail is of invalid format, then we should display an
error message.

These features will make the frontend code more complex, which will give us a
chance to explore how to write complex logic using Bacon.

The company suggestions route
Let's create a route that responds with an array of company name suggestions based
on a given value. Later on, to populate the company name text field drop-down
menu, we will make a request to this route.

We will not build functionality to add profiles; instead, we will simply retrieve
profiles from a JSON file that has some random profiles. In the initial directory,
you will find a file named data.json, which has some profiles in it.

Let's first read the data from the data.json file. Here is the code for this. Place it in
the app.js file.

var data = Bacon.fromNodeCallback(fs.readFile, "data.json",
"utf8").map(function(event){
 return JSON.parse(event);
}).toProperty();

Here, we are reading the data in functional reactive style and then converting the
EventStream to a property, which represents the data.

Here is the code for the company suggestion route. Place it in the app.js file:

function findMatchingCompanyName(list, companyName)
{
 return list.filter(function(value){
 return companyName != "" &&
 value.company.toLowerCase().indexOf(companyName.toLowerCase()) ==
0;

Chapter 8

[161]

 })
}

var company_dropdown_list_stream =
route_eventstream(""/company/dropdown"");

var company_dropdown_list_data_stream = Bacon.combineAsArray([data,
company_dropdown_list_stream]).map(function(event){
 return findMatchingCompanyName(event[0],
 event[1].req.query.companyName);
}).toEventStream();

Bacon.zipAsArray(company_dropdown_list_stream, company_dropdown_list_
data_stream).onValues(function(event1, event2) {
 event1.res.send(event2);
});

Here is how the code works:

1. At first, we define a method that takes an array of profiles and a company
name. It checks for the profiles that have the same company and returns the
filtered list. We are using the ES6 filter method, as Bacon doesn't provide any
filter method for arrays. If the company name string is empty, then it returns
an empty array.

2. Then, we create an EventStream for /company/dropdown path requests.
3. Then, we combine company_dropdown_list_stream and the data property.

The resultant property is then mapped, and the filtered result is the
transformed value.

4. We cannot simply use a subscriber here for company_dropdown_list_
stream to respond to, as we have lost the reference to the connection
object. Therefore, we zip company_dropdown_list_stream and company_
dropdown_list_data_stream so that we get the reference to the connection
object as well as the final result. We then attach a subscriber to the zipped
EventStream, which sends the response.

5. One more thing to notice here is that we are using onValues instead of
onValue. The difference between them is that onValues splits the value
(assuming it's an array) as function arguments.

Building an Advanced Profile Search Widget

[162]

The search result route
Let's create a route that responds with an array of profiles based on a given
parameter. This will be used to find the search result. Later on, from the
frontend, we will make a request to this route.

Here is the code for this route. Place it in the app.js file:

function findMatchingProfilesForEmail(list, email)
{
 return list.filter(function(value){
 return value.email == email;
 })
}

function findMatchingProfiles(list, firstName, lastName, gender,
skill, company, dob, address)
{
 var firstName_matches = list.filter(function(value){
 return firstName == "" || value.first_name.toLowerCase() ==
 firstName.toLowerCase();
 })

 var lastName_matches = firstName_matches.filter(function(value){
 return lastName == "" || value.last_name.toLowerCase() ==
 lastName.toLowerCase();
 })

 var gender_matches = lastName_matches.filter(function(value){
 return gender == "" || value.gender.toLowerCase() ==
 gender.toLowerCase();
 })

 var skill_matches = gender_matches.filter(function(value){
 return skill == "" || value.skill.toLowerCase() ==
 skill.toLowerCase();
 })

 var company_matches = skill_matches.filter(function(value){
 return company == "" || value.company.toLowerCase() ==
 company.toLowerCase();
 })

Chapter 8

[163]

 var dob_matches = company_matches.filter(function(value){
 return dob == "" || value.dob == dob;
 })

 var address_matches = dob_matches.filter(function(value){
 return address == "" || value.address.toLowerCase() ==
 address.toLowerCase();
 })

 return address_matches;
}

var profile_search_stream = route_eventstream("/search");

var profile_search_data_stream_for_email =
Bacon.combineAsArray([data,
profile_search_stream.filter(function(event){
 return event.req.query.email != "";
})]).map(function(event){
 return findMatchingProfilesForEmail(event[0],
 event[1].req.query.email);
}).toEventStream();

var profile_search_data_stream_for_others =
Bacon.combineAsArray([data,
profile_search_stream.filter(function(event){
 return event.req.query.email == "";
})]).map(function(event){
 return findMatchingProfiles(event[0],
 event[1].req.query.firstName, event[1].req.query.lastName,
 event[1].req.query.gender, event[1].req.query.skill,
 event[1].req.query.company, event[1].req.query.dob,
 event[1].req.query.address);
}).toEventStream();

Bacon.zipAsArray(profile_search_stream,
Bacon.mergeAll([profile_search_data_stream_for_email,
profile_search_data_stream_for_others])).onValues(function(event1,
event2) {
 event1.res.send(event2);
});

Building an Advanced Profile Search Widget

[164]

This is how the code works:

1. At first, we define two methods, which take a list of profiles and search data
and filter based on the data. The first one only filters based on e-mail whereas
the second one filters based on other search data. We have done it this way
because e-mail is unique for every profile, and if a user provides an e-mail
ID, then we don't need to use other data and waste computation. When there
is a lot of data, you will get a big performance advantage this way.

2. Then, we create an EventStream for the /search path.
3. After that, we create two streams, namely, profile_search_data_stream_

form_email and profile_search_data_stream_form_others. The
profile_search_data_stream_form_email stream is the final result if an
e-mail is provided, and profile_search_data_stream_form_others is the
final result if an e-mail is not provided.

4. Finally, we merge profile_search_data_stream_form_email
and profile_search_data_stream_form_others, zip that with
profile_search_stream, and return the response.

Building the frontend
We are done building the backend part of our profile search widget. Now, we need
to write the frontend part.

Before we get into it, it's worth looking at the code in the index.html file:

<!doctype html>
<html>
 <head>
 <title>Advanced Profile Search Widget</title>

 <link rel="stylesheet" type="text/css" href="css/style.css">
 </head>
 <body>
 <div class="container">
 <div class="section-1">
 <h3>Provide search information</h3>
 <hr>
 <div class="form-style">
 <form action="" method="post">
 <label>First Name<input type="text"
 class="input-field" id="first-name" value=""
 /></label>
 <label>Last Name <input type="text"

Chapter 8

[165]

 class="input-field" id="last-name" value=""
 /></label>
 <label>
 Email
 <input type="email" class="input-field"
 id="email" value="" />

<small class="hide" id="email-error">Email
 address is invalid</small>
 </label>
 <label>
 Gender
 <select id="gender" class="select-field">
 <option value="male">Male</option>
 <option value="female">Female</option>
 </select>
 </label>
 <label>Company<input list="companies"
 type="text" class="input-field" value=""
 id="company" /></label>
 <label>Address<input type="address"
 class="input-field" value="" id="address"
 /></label>
 <label>Skill<input type="text"
 class="input-field" value="" id="skill" /></label>
 <label>DOB<input
 placeholder="mm/dd/yyyy" type="text" class="input-
 field" value="" id="dob" /></label>
 <label> <input type="button"
 value="Search" id="search" /></label>

 <datalist id="companies"></datalist>
 </form>
 </div>
 </div>
 <div class="section-2">
 <h3>Search Result</h3>
 <hr>
 <ul id="search-result">

 </div>
 <div class="clear"></div>
 </div>

 <script type="text/javascript" src="js/jquery-
 2.2.0.min.js"></script>
 <script type="text/javascript" src="js/Bacon.js"></script>

Building an Advanced Profile Search Widget

[166]

 <script type="text/javascript" src="js/index.js"></script>
 </body>
</html>

Most of the code is self-explanatory. Here are a few things you need to pay special
attention to:

• Here, every input element has an id value attached to it. We will use the id
value to create an EventStream.

• We have displayed an error message below the e-mail field. It has a class
hide, which hides it. Removing the class will unhide it.

• We also have a datalist element, which is the drop-down menu for the
company field. We just need to add option tags to the datalist element to
show the drop-down menu.

• Finally, we have a section to display the search result.

Now, let's create EventStreams for keyup events on the input fields and store the
current value of the fields in properties. Here is the code for this. Place it in the
index.js file:

var first_name_keypress_stream = $("#first-
name").asEventStream("keyup");

var first_name = first_name_keypress_stream.scan("",
function(value){
 return $("#first-name").val();
});

var last_name_keypress_stream = $("#last-
name").asEventStream("keyup");

var last_name = last_name_keypress_stream.scan("",
function(value){
 return $("#last-name").val();
});

var email_keypress_stream = $("#email").asEventStream("keyup");

var is_email_valid = email_keypress_stream.scan("",
function(value){
 return $("#email").val();
}).map(function(value){
 var re = /^(([^<>()[\]\\.,;:\s@"]+(\.[^<>()
[\]\\.,;:\s@"]+)*)|(".+"))@((\[[
0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}])|(([a-zA-Z\-0-
9]+\.)+[a-zA-Z]{2,}))$/;
 return re.test(value);

Chapter 8

[167]

});

var email = Bacon.mergeAll(is_email_valid.filter(function(value){
 return value == true;
}).map(function(value){
 $("#email-error").addClass("hide");
 return $("#email").val();
}), is_email_valid.filter(function(value){
 return value == false;
}).map(function(value){
 $("#email-error").removeClass("hide");
 return "";
}))

var gender_select_stream = $("#gender").asEventStream("change");

var gender = gender_select_stream.scan("male", function(value){
 return $("#gender option:selected").val()
})

var company_keypress_stream =
$("#company").asEventStream("keyup");

var company = company_keypress_stream.scan("", function(value){
 return $("#company").val();
});

var address_keypress_stream =
$("#address").asEventStream("keyup");

var address = address_keypress_stream.scan("", function(value){
 return $("#address").val();
});

var skill_keypress_stream = $("#skill").asEventStream("keyup");

var skill = skill_keypress_stream.scan("", function(value){
 return $("#skill").val();
});

var dob_keypress_stream = $("#dob").asEventStream("keyup");

var dob = dob_keypress_stream.scan("", function(value){
 return $("#dob").val();
});

Building an Advanced Profile Search Widget

[168]

Most of the above code is self-explanatory. The only thing that you need to
understand is that instead of directly assign the e-mail field value to the e-mail
property, we first validate whether the e-mail is valid. If the e-mail is invalid, then
we display the error message and don't assign anything to the e-mail property. If the
e-mail is valid, then we hide the error message and assign the current value of the
e-mail field to the e-mail property.

Now, let's write code to display the suggestions drop-down menu for the company
field. Here is the code for this. Place it in the index.js file:

company.flatMap(function(event){
 return Bacon.fromPromise($.ajax({url:"/company/
dropdown?companyName=" +
encodeURIComponent(event)}));
}).flatMap(function(event){
 $("#companies").empty();
 return Bacon.fromArray(event);
}).onValue(function(event){
 $("#companies").append("<option value=''" + event.company +
 "''>");
});

Here, whenever the value of company property changes, we make a request to
the /company/dropdown path, retrieve the suggestions, and append them to the
datalist.

Finally, we need to make a search request whenever a user clicks on the Search
button or hits Enter while in any of the input fields. Here is the code for this.
Place it in the index.js file:

var search_button_click_stream =
$("#search").asEventStream("click");

var search_result_request_stream =
Bacon.mergeAll(Bacon.mergeAll([first_name_keypress_stream,
last_name_keypress_stream, email_keypress_stream,
company_keypress_stream, address_keypress_stream,
skill_keypress_stream, search_button_click_stream,
dob_keypress_stream]).filter(function(event){
 return event.keyCode == 13;
}), search_button_click_stream);

Chapter 8

[169]

var search_result_request_data = Bacon.combineAsArray([first_name,
last_name, email, gender, company, skill, dob,
address]).sampledBy(search_result_request_stream).flatMap(function
(event){
 return event;
});
var search_result_request_cancel =
search_result_request_data.filter(function(event){
 return event[0] == "" && event[1] == "" && event[2] == "" &&
 event[4] == "" && event[5] == "" && event[6] == "" && event[7]
 ==
 "";
}).onValue(function(){
 $("#search-result").empty();
 alert("Enter enter some data");
});

var search_result_response =
search_result_request_data.filter(function(event){
 return event[0] != "" || event[1] != "" || event[2] != "" ||
 event[4] != "" || event[5] != "" || event[6] != "" || event[7]
 !=
 "";
}).flatMap(function(event){
 return Bacon.fromPromise($.ajax({url:"/search?firstName=" +
 encodeURIComponent(event[0]) + "&lastName=" +
 encodeURIComponent(event[1]) + "&email=" +
 encodeURIComponent(event[2]) + "&gender=" +
 encodeURIComponent(event[3]) + "&company=" +
 encodeURIComponent(event[4]) + "&address=" +
 encodeURIComponent(event[7]) + "&skill=" +
 encodeURIComponent(event[5]) + "&dob=" +
 encodeURIComponent(event[6]) }));
}).toProperty();

search_result_response.onError(function(){
 $("#search-result").empty();
 alert("An error occured");
})

search_result_response.flatMap(function(value){
 $("#search-result").empty();
 return Bacon.fromArray(value);
}).onValue(function(value){
 var html = "";

Building an Advanced Profile Search Widget

[170]

 html = html + "<p>Name: " + value.first_name + " "
 + value.last_name + "</p>";
 html = html + "<p>Email: " + value.email +
 "</p>";
 html = html + "<p>Gender: " + value.gender +
 "</p>";
 htmt = html + "<p>Company: " + value.company +
 "</p>";
 html = html + "<p>Address: " + value.address +
 "</p>";
 html = html + "<p>DOB: " + value.dob +
 "</p>";
 html = html + "<p>Skill: " + value.skill +
 "</p>";
 html = html + "";

 $("#search-result").append(html);
});

search_result_response.filter(function(value){
 return value.length == 0;
}).onValue(function(value){
 $("#search-result").empty();
 alert("Nothing found")
})

Here is how the code works:

• At first, we create a click stream for the Search button.
• Then, we create the search_result_request_stream stream, in which an

event is pushed whenever we click on the Search button or press the Enter
key inside any of the fields.

• Then, we make a request to the /search path if any of the fields along with
the gender field has a value; otherwise, we display an alert message asking
the user to enter some data.

• And then, if the we get an AJAX error, then we display an alert with the error
message; if the AJAX response isn't empty, then we display the result; and
finally, if the AJAX request is empty, we displaying an alert with a message
stating that nothing was found.

Chapter 8

[171]

Testing the widget
To test the widget, rerun the node app.js command. Now, refresh the
localhost:8080 URL.

To test whether the search widget is working, enter Robert in the First Name field
and press Enter. You will see this output:

Building an Advanced Profile Search Widget

[172]

To test the company suggestions drop-down menu, enter a in the Company field,
and you will see this output:

So now, we have finished building and testing our advanced profile search widget.

Summary
In this chapter, we explored the advanced APIs and concepts of Bacon.js and built a
real-world project using them. You should now be comfortable with writing reactive
code in a functional manner using Bacon.js and should try integrating Bacon.js into
your existing and future projects.

You can also learn more about Bacon.js APIs at https://baconjs.github.io/api.
html.

https://baconjs.github.io/api.html
https://baconjs.github.io/api.html

[173]

New Features of Bootstrap 4
Bootstrap 4 is the latest version of Bootstrap at the time of writing. This version
makes Bootstrap more powerful and easy to customize and use. In this chapter, you
will learn about the new features of Bootstrap 4 with examples. I will assume that
you already have some knowledge of Bootstrap and know how to create responsive
websites using it. If you are new to Bootstrap or responsive web design, you can
find good books to learn Bootstrap from scratch from the Packt catalog. We will use
Bootstrap 4 to design all the projects we will be building from this chapter onwards.

In this chapter, we'll cover the following topics:

• Various ways to download Bootstrap 4
• The compatibility of Bootstrap 4
• Support for Flexbox
• Customizing Bootstrap 4
• Responsive CSS units

Downloading Bootstrap 4
To download Bootstrap 4, first visit http://v4-alpha.getbootstrap.com/
getting-started/download/. Here, you will find various ways to download
Bootstrap 4, depending on the package manager you use. You can also directly
download the compiled version if the package manager you use is not listed or if
you don't use a package manager at all. This page also provides you with a link to
download the source files.

It also provides custom builds, which are just parts of Bootstrap 4 that can be used
when you just need a few features of Bootstrap 4 but not the whole library.

http://v4-alpha.getbootstrap.com/getting-started/download/
http://v4-alpha.getbootstrap.com/getting-started/download/

New Features of Bootstrap 4

[174]

All major CDN services also support Bootstrap 4, so in case you want to enqueue it
from a CDN, you can easily find CDN URLs.

For this chapter, directly download the compiled version and place it in a new
directory named bs4. In the same directory, create a file named index.html,
and place the following code in it:

<!DOCTYPE html>
<html lang="en">
 <head>
 <!-- Required meta tags always come first -->
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-
 scale=1, shrink-to-fit=no">
 <meta http-equiv="x-ua-compatible" content="ie=edge">

 <!-- Bootstrap CSS -->
 <link rel="stylesheet" href="bootstrap.min.css">
 </head>
 <body>

 <!-- jQuery first, then Bootstrap JS. -->
 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/2.1.4/jquery.min.js"></script>
 <script src="bootstrap.min.js"></script>
 </body>
</html>

Browser and device support
Bootstrap 4 supports the latest stable releases of all major browsers and platforms.

In terms of compatibility, the only change Bootstrap 4 has brought in is that it drops
support for Internet Explorer 8. Everything else remains the same as in Bootstrap 3.

Understanding the rem and em CSS units
Bootstrap 4 has switched from px to rem and em wherever possible. This is the
main reason why Bootstrap 4 is not supported in IE 8 as IE 8 doesn't support the em
and rem units. Bootstrap 4 switched to rem and em because they make responsive
typography and component sizing easier.

Chapter 9

[175]

If you are not familiar with the rem and em CSS units, then it's the right time to
learn it.

The em unit is relative to the font size of the parent element. 1em is equal to the
current font size of the parent element. 2em means two times the size of the current
font. For example, if an element is displayed with a font size of 10 px, then 2em is
20 px. We can achieve responsive typography and components by just changing the
parent element's font size using CSS media queries for different viewport or device
width sizes.

As em sizing is nested (it depends on parent element), if you have elements with
1.5em sizing and then nest some HTML with elements that also have an em
declaration, their sizing multiplies.

The rem unit is similar to em but is relative to the font size of the HTML tag
(root element). Therefore, it's not nested.

Bootstrap 4 uses a base font size of 16 pixels.

The grid system
The only change made in the Bootstrap 4 grid system is that a new extra-large
breakpoint has been added. The class prefix for this breakpoint is .col-xl-.
Here are the Bootstrap 4 grid breakpoints after this new addition:

The .col-xl- breakpoint targets screen sizes of 1200px or larger, which was targeted
by .col-lg- in Bootstrap 3. Therefore, this makes other breakpoints compress to
target smaller screen sizes than they used to in Bootstrap 3. Here, you can see that
.col-xs- now targets a screen width of less than 544px instead of the 768px it did in
Bootstrap 3, making it easier to target mobile devices and have different layouts for
tablets and mobile devices, which was lacking in Bootstrap 3.

New Features of Bootstrap 4

[176]

While Bootstrap uses em or rem for defining most sizes, px is used for grid
breakpoints and container widths. This is because viewport width is in pixels
and does not change with font size.

Here is an example of the new grid system. Place this code in the <body> tag of the
index.html file:

<div class="container">
 <div class="row">
 <div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 col-xl-2">
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Vivamus arcu nunc, lobortis et lacinia ut, pellentesque
 quis lacus. Aliquam non dapibus erat
 </p>
 </div>

 <div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 col-xl-2">
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Vivamus arcu nunc, lobortis et lacinia ut, pellentesque
 quis lacus. Aliquam non dapibus erat
 </p>
 </div>

 <div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 col-xl-2">
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Vivamus arcu nunc, lobortis et lacinia ut, pellentesque
 quis lacus. Aliquam non dapibus erat
 </p>
 </div>

 <div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 col-xl-2">
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Vivamus arcu nunc, lobortis et lacinia ut, pellentesque
 quis lacus. Aliquam non dapibus erat
 </p>
 </div>

 <div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 col-xl-2">
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Vivamus arcu nunc, lobortis et lacinia ut, pellentesque
 quis lacus. Aliquam non dapibus erat

Chapter 9

[177]

 </p>
 </div>

 <div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 col-xl-2">
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Vivamus arcu nunc, lobortis et lacinia ut, pellentesque
 quis lacus. Aliquam non dapibus erat
 </p>
 </div>
 </div>
</div>

A Bootstrap row can have 12 columns at the most. As here we have more than 12
columns in the row in some cases, the columns are wrapped, that is, columns are
wrapped to a new line.

On mobile screens, the previous code will look like this:

New Features of Bootstrap 4

[178]

On small tablets, it will look like this:

It will look like this on regular tablets:

Chapter 9

[179]

Laptops users will see this:

Finally, on desktop monitors, it will look like this:

So, in Bootstrap 4, we are able to precisely target all types of device.

Global margin reset
For all elements, Bootstrap 4 resets margin-top to 0 while keeping a consistent
margin-bottom value on all elements.

For example, headings have margin-bottom: .5rem added, and paragraphs have
margin-bottom: 1rem for easy spacing.

Spacing utility classes
Bootstrap 4 adds a new set of utility classes called spacing utility classes.
These classes allow you to quickly add spacing in any direction of an element
via margin or padding.

The format of these classes is [margin or padding]-[direction]-[size].

New Features of Bootstrap 4

[180]

For margin or padding, use the following:

• m for margin
• p for padding

For direction, you can use these:

• a for all
• t for top
• r for right
• l for left
• b for bottom
• x for left and right
• y for top and bottom

You can use these for sizes:

• 0 for zero
• 1 for 1rem
• 2 for 1.5rem
• 3 for 3rem

Here is an example to demonstrate the spacing utility classes. Place this code at the
end of the container element of index.html:

<hr>
<div class="row">
 <div class="col-xs-12 m-t-2">
 <p>
 Lorem ipsum dolor sit amet, at suscipit sodales eget ante
 ultricies mauris. Etiam dolor felis morbi nibh, mollit
 porttitor tempor, dignissim magna pellentesque dictumst
 bibendum dictum integer. Justo mattis dapibus in diam. Quis
 arcu mauris mattis, orci est magna arcu scelerisque, integer
 gravida sit volutpat tellus, nulla enim quis. In non, in et,
 nec mauris in eu nec, nostra pellentesque nulla sodales,
 tempor neque ultrices lorem.

 </p>
 </div>

 <div class="col-xs-12 m-b-2">
 <p>

Chapter 9

[181]

 Lorem ipsum dolor sit amet, at suscipit sodales eget ante
 ultricies mauris. Etiam dolor felis morbi nibh, mollit
 porttitor tempor, dignissim magna pellentesque dictumst
 bibendum dictum integer. Justo mattis dapibus in diam. Quis
 arcu mauris mattis, orci est magna arcu scelerisque, integer
 gravida sit volutpat tellus, nulla enim quis. In non, in et,
 nec mauris in eu nec, nostra pellentesque nulla sodales,
 tempor neque ultrices lorem.
 </p>
 </div>
</div>
<hr>

Here is how the page looks now:

Here, you can see the top and bottom margin space created by the spacing
utility classes.

Display headings
Traditional heading elements, namely h1, h2, and so on, are designed to work best
in the meat of your page content. When you need a heading to stand out, consider
using a display heading—a larger, slightly more opinionated heading style. Display
heading classes can be applied to any element of a page.

New Features of Bootstrap 4

[182]

Here is an example to demonstrate display heading. Place this code at the end of the
container element of index.html:

<h1 class="display-1">Display-1</h1>
<h1 class="display-2">Display-2</h1>
<h1 class="display-3">Display-3</h1>
<h1 class="display-4">Display-4</h1>
<hr>

display-1, display-2, display-3, and display-4 are the display heading classes.

Here is the output of the code:

Inverse tables
A new class for tables has been introduced, named table-inverse. This is just
another variation of table in terms of looks.

Here is how to create an inverse table. Place this code at the end of the container
element of index.html:

<table class="table table-inverse">
 <thead>
 <tr>
 <th>#</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Username</th>
 </tr>
 </thead>

Chapter 9

[183]

 <tbody>
 <tr>
 <th scope="row">1</th>
 <td>Ramesh</td>
 <td>Kumar</td>
 <td>@ramesh</td>
 </tr>

 <tr>
 <th scope="row">2</th>
 <td>Sudheep</td>
 <td>Sahoo</td>
 <td>@sudheep</td>
 </tr>

 <tr>
 <th scope="row">3</th>
 <td>Abhinash</td>
 <td>Singh</td>
 <td>@abhi</td>
 </tr>
 </tbody>
</table>
<hr>

Here is how the table looks:

The card component
Cards are a new component in Bootstrap 4 that replaces wells, panels, and
thumbnails. A card is a flexible and extensible content container. It includes options
for headers and footers, a wide variety of content, contextual background colors, and
powerful display options.

New Features of Bootstrap 4

[184]

Here is an example that demonstrates how to create a card and all of its subparts and
styles. Place this code at the end of the container element of index.html:

<div class="row">
 <div class="col-md-4">
 <div class="card">

 <div class="card-header">
 Featured
 </div>
 <div class="card-block">
 <h4 class="card-title">Card title</h4>
 <h6 class="card-subtitle">Support card subtitle</h6>
 </div>

 <img class="img-fluid" src="https://placehold.it/800x400"
 alt="Card image cap">

 <div class="card-block">
 <p class="card-text">
 Lorem ipsum dolor sit amet, at suscipit sodales eget
 ante ultricies mauris. Etiam dolor felis morbi nibh,
 mollit porttitor tempor, dignissim magna pellentesque
 dictumst bibendum dictum integer.
 </p>
 </div>

 <div class="card-block">
 Card link
 Another link
 </div>

 <div class="card-footer">
 2 days ago
 </div>
 </div>

 </div>
 <div class="col-md-4">
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">

 <div class="card-block">
 <blockquote class="card-blockquote">

Chapter 9

[185]

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Integer posuere erat a ante.</p>
 <footer>Someone famous in <cite title="Source
 Title">Source Title</cite></footer>
 </blockquote>
 </div>
 </div>
 </div>

 <div class="col-md-4">
 <div class="card">
 <div class="card-block">
 <p class="card-text">
 Lorem ipsum dolor sit amet, at suscipit sodales eget
 ante ultricies mauris. Etiam dolor felis morbi nibh,
 mollit porttitor tempor, dignissim magna pellentesque
 dictumst bibendum dictum integer.
 </p>
 </div>

 <img class="card-img-bottom img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 </div>

 <div class="col-md-4">
 <div class="card">
 <img class="card-img img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">

 <div class="card-img-overlay">
 <h4 class="card-title">Card title</h4>
 <p class="card-text">Lorem ipsum dolor sit amet, at
 suscipit.</p>
 </div>
 </div>
 </div>

 <div class="col-md-4">
 <div class="card card-inverse" style="background-color:
 black">
 <div class="card-block">
 <h3 class="card-title">Card Title</h3>
 <p class="card-text">Lorem ipsum dolor sit amet, at
 suscipit sodales eget ante ultricies mauris. </p>

New Features of Bootstrap 4

[186]

 </div>
 </div>
 </div>

 <div class="col-md-4">
 <div class="card card-inverse card-primary">
 <div class="card-block">
 <h3 class="card-title">Card Title</h3>
 <p class="card-text">Lorem ipsum dolor sit amet, at
 suscipit sodales eget ante ultricies mauris.</p>
 </div>
 </div>
 </div>

 <div class="col-md-4">
 <div class="card card-inverse card-success">
 <div class="card-block">
 <h3 class="card-title">Card Title</h3>
 <p class="card-text">Lorem ipsum dolor sit amet, at
 suscipit sodales eget ante ultricies mauris.</p>
 </div>
 </div>
 </div>

 <div class="col-md-4">
 <div class="card card-inverse card-info">
 <div class="card-block">
 <h3 class="card-title">Card Title</h3>
 <p class="card-text">Lorem ipsum dolor sit amet, at
 suscipit sodales eget ante ultricies mauris.</p>
 </div>
 </div>
 </div>

 <div class="col-md-4">
 <div class="card card-inverse card-warning">
 <div class="card-block">
 <h3 class="card-title">Card Title</h3>
 <p class="card-text">Lorem ipsum dolor sit amet, at
 suscipit sodales eget ante ultricies mauris.</p>
 </div>
 </div>
 </div>

Chapter 9

[187]

 <div class="col-md-4">
 <div class="card card-inverse card-danger">
 <div class="card-block">
 <h3 class="card-title">Card Title</h3>
 <p class="card-text">Lorem ipsum dolor sit amet, at
 suscipit sodales eget ante ultricies mauris.</p>
 </div>
 </div>
 </div>
</div>

Here is how the code looks:

Here, I've created multiple cards so that it is easier to demonstrate all of their
subparts and different styles.

New Features of Bootstrap 4

[188]

Here is how the previous code works:

• To create a card, we need to use the .card class.
• By default, card width is 100% of its parent container. Therefore, here we are

using a grid system to control width.
• In the first card, we have a header, which is created using the .card-header

class. Then, we have a card block, inside which we have a title and subtitle. A
card block is a part of a card that has padding. Whenever you need padding
in any part of the card, simply use the .card-block class. A card title is
created using .card-title, and a card subtitle is created using the .card-
subtitle class. The .card-title and .card-subtitle classes simply give
appropriate margins. Then, we simply have a responsive image. After that,
we have a paragraph using the .card-text class. The .card-text class
makes sure that the last child element doesn't have any bottom margin. Then,
we have two links with the .card-link class. .card-link applies a left
margin to all .card-link classes from the second one. And finally, we have
a card footer, which is created using .card-footer.

• In the second card, we have a responsive image and then a block quote.
We have added the .card-img-top class to the image, which adds a top-
right and top-left border radius to the image. We have also added .card-
blockquote to the block quote to remove the margin, padding, and left
border from the block quote.

• In the third card, we simply have some text and a responsive image. We have
added the .card-img-bottom class to the responsive image, which adds a
bottom-right and bottom-left border radius to the image.

• The fourth card we created is for demonstrating card overlays. First, we
added a responsive image with the .card-img class, which adds a border
radius to all the corners. And then, we created an overlay using the .card-
img-overlay class, which simply makes the position of the element absolute
with some padding and no top, right, left, and bottom, thus putting the
content on top of the card.

• By default, cards use dark text and assume a light background. Add .card-
inverse for white text and specify the background-color and border-
color values to go with it. The fifth card is a demonstration of .card-
inverse. Bootstrap 4 also provides a few classes that add a background
color and border color to cards. These classes are demonstrated in the last
five cards.

Chapter 9

[189]

Card groups, decks, and columns
Card groups let you render cards as a single, attached element with equal width and
height columns. Card groups only apply to screen sizes greater than 544px.

If you need a set of same-sized cards that aren't attached to one another, then use
card decks instead of card groups. Card decks only apply to screen sizes greater
than 544px.

Finally, card columns let you organize cards into Masonry-like columns.
Card columns only apply to screen sizes greater than 544px.

Here is a code example of card groups, decks, and columns. Place it at the end of the
container element of index.html:

<div class="card-group">
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 <div class="card-block">
 <p class="card-text">
 Lorem ipsum dolor sit amet, at suscipit sodales
 eget ante ultricies mauris. Etiam dolor felis
 morbi nibh, mollit porttitor tempor, dignissim
 magna pellentesque dictumst bibendum dictum
 integer.
 </p>
 </div>
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 <div class="card">

New Features of Bootstrap 4

[190]

 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
</div>

<div class="card-deck-wrapper">
 <div class="card-deck">

 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image
 cap">
 <div class="card-block">
 <p class="card-text">
 Lorem ipsum dolor sit amet, at suscipit
 sodales eget ante ultricies mauris. Etiam
 dolor felis morbi nibh, mollit porttitor
 tempor, dignissim magna pellentesque dictumst
 bibendum dictum integer.
 </p>
 </div>
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image
 cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image
 cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image
 cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image
 cap">
 </div>
 <div class="card">

Chapter 9

[191]

 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image
 cap">
 </div>
 </div>
</div>

<div class="card-columns">
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 <div class="card-block">
 <p class="card-text">
 Lorem ipsum dolor sit amet, at suscipit sodales
 eget ante ultricies mauris. Etiam dolor felis
 morbi nibh, mollit porttitor tempor, dignissim
 magna pellentesque dictumst bibendum dictum
 integer.
 </p>
 </div>
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
 <div class="card">
 <img class="card-img-top img-fluid"
 src="https://placehold.it/800x400" alt="Card image cap">
 </div>
</div>

New Features of Bootstrap 4

[192]

Here is the output of the code:

Chapter 9

[193]

As you can see, we have used the .card-group class to create a class group. We
have used .card-deck-wrapper and .card-deck to create a card deck and, finally,
.card-columns to organize cards into Masonry-like columns.

Outline buttons
Bootstrap 4 has added some new button styles with outline buttons. Outline buttons
appear hollow or are simply inverses of regular buttons.

Here is example code to demonstrate outline buttons. Place this code at the end of
the container element of index.html:

<hr>
<button type="button" class="btn btn-primary-
outline">Primary</button>
<button type="button" class="btn btn-secondary-
outline">Secondary</button>
<button type="button" class="btn btn-success-
outline">Success</button>
<button type="button" class="btn btn-warning-
outline">Warning</button>
<button type="button" class="btn btn-danger-
outline">Danger</button>
<hr>

Here is how the code looks:

Moving from Less to Sass
The Bootstrap 4 source is written in Sass instead of Less. Less was used until
Bootstrap 3. This is great because Sass tends to be more favorable by frontend
developers. It also compiles faster. Also, it doesn't seem as if there are currently any
plans for a Less version. You can find the source files at https://github.com/twbs/
bootstrap/tree/v4-dev.

https://github.com/twbs/bootstrap/tree/v4-dev
https://github.com/twbs/bootstrap/tree/v4-dev
https://github.com/twbs/bootstrap/tree/v4-dev

New Features of Bootstrap 4

[194]

Text alignment and float utility classes
Utility classes for floats and text alignment now have responsive ranges. Bootstrap 4
has dropped nonresponsive text alignment and float classes.

Responsive text alignment classes are of the text-[xs/sm/md/lg/xl]-[left/
right/center] format. For example, the text-lg-left class left aligns text on
viewports sized lg or wider.

Classes of the format pull-[xs/sm/md/lg/xl]-[left/right/none] float an
element to the left or right or disable floating based on the current viewport size.
For example, the pull-xs-left class floats the element left on all viewport sizes.

Reboot
Bootstrap 3 used Normalize.css as its CSS reset. In Bootstrap 4, the reset and
Bootstrap base styles are combined into a single file called reboot.scss.

Flexbox support
Flexbox support has finally come to Bootstrap in Bootstrap 4. To enable various
components and grid systems to use Flexbox, you can download the Flexbox version
of the Bootstrap CSS file, which is available on their download page: http://v4-
alpha.getbootstrap.com/getting-started/download/.

Remember that Flexbox has poor browser support, so think twice before deciding to
use it. Here is a diagram that shows the browser support of Flexbox:

You can also change the value of the $enable-flex to true Sass variable and
compile it to generate the Flexbox version of the Bootstrap CSS.

Learn more about Flexbox support in Bootstrap 4 at http://v4-
alpha.getbootstrap.com/getting-started/flexbox/.

http://v4- alpha.getbootstrap.com/getting-started/download/
http://v4- alpha.getbootstrap.com/getting-started/download/
http://v4- alpha.getbootstrap.com/getting-started/flexbox/
http://v4- alpha.getbootstrap.com/getting-started/flexbox/

Chapter 9

[195]

JavaScript improvements
In the source files, all the JavaScript plugins have been written using ES6, and for
distribution, it is compiled with Babel. They also now come with UMD support.

Now that IE 8 support has been dropped, it's safe to always use jQuery 2.0 with
Bootstrap. jQuery 2.0 is smaller and faster and has more features.

Adding Tether
Tether is a JavaScript library for efficiently making an absolutely positioned element
stay next to another element on the page. For example, you might want a tooltip or
dialog to open and remain next to the relevant item on the page.

In Bootstrap 4, Tether is integrated into tooltips and popovers for better auto-
placement and performance. So, to make tooltips and popovers work in Bootstrap 4,
you have to enqueue tether.js.

Add this line of code to the top of the bootstrap.min.js file to enqueue tether from
a CDN:

<script
src="https://cdnjs.cloudflare.com/ajax/libs/tether/1.2.0/js/tether
.min.js"></script>

The 21:9 aspect ratio class
A new aspect ratio class has been added to Bootstrap 4: the .embed-responsive-
21by9 class for a 21:9 ratio. Here is an example of it:

<div class="embed-responsive embed-responsive-21by9">
 <iframe class="embed-responsive-item"
 src="http://packtpub.com"></iframe>
 </div>

Customizing Bootstrap 4
In Bootstrap 4, all the customization variable options are consolidated to a single file
called _variables.scss, where you can compile your Sass on the fly and with little
effort. This used be previously all done in a separate stylesheet.

This file provides a lot more customization options than Bootstrap used to
provide earlier.

New Features of Bootstrap 4

[196]

Glyphicons dropped
Glyphicons have been removed from the build, that is, Boostrap 4 doesn't include an
icon pack. You need to manually enqueue a icon pack.

Summary
So, we have seen all the new features of Bootstrap 4. The grid system and cards are
the two major additions to Bootstrap 4. It's absolutely fine to switch to Bootstrap 4
now. Although Bootstrap 4 drops support for IE 8, it's still fine as users should also
move with the technology. From now on, Bootstrap 4 will be used in all the projects
we will create in this book.

[197]

Building User Interfaces
Using React

Writing code for reactive UI is a difficult task, as writing code to manipulate the
DOM using JavaScript whenever the application state changes is difficult and it
makes understanding the application difficult. Therefore, the MVC architecture was
introduced, where we define the UI and application state separately, and the UI is
updated automatically as the application state changes. MVC framework views have
been concentrating on making the writing of code for reactive UIs easier but not
increasing rendering performance, reusability, and ease of debugging. This is what
React aims to solve. It not only makes writing code for reactive UI easier but also
takes care of rendering performance, reusability, and ease of debugging.

In this chapter, we will cover the following topics:

• What React is
• Virtual DOM technology
• Component-based UI development using React
• One-way dataflow programming
• Using JSX to write React code
• Using React on the server side to build isomorphic apps
• Many other topics to help us get a good hold on React

Building User Interfaces Using React

[198]

Introducing React
React is a JavaScript library for building reactive UIs. We usually use jQuery or
pure JavaScript to manipulate a reactive UI whenever the application state changes,
which makes it difficult to reuse and understand the code. Instead, we can use
React, which lets us declare how the UI behaves based on the application state, and
it automatically updates the UI whenever the application state changes. There are
lots of libraries and technologies, such as web components and templating engines,
that aim to make the building of UIs easier, but React stands out from the crowd as it
makes it easy to build reusable and high-performance reactive UIs.

React is also used as a view library because it is exactly what a view library is
supposed to be. A view holds the UI of the application and defines how the UI
changes based on the application state, that is, how the application state is displayed.
As it's just a view library, it doesn't tell us how to manage, access, and mutate the
application state. It can be used as the view layer in any kind of architecture
and framework.

Remember that React is a library and not a framework such as Angular or Ember.
Thus, React can be used with Angular to make Angular views better in terms of
performance and reusability.

For example, there is an AngularJS module named ngReact that lets React be used as
a view in AngularJS.

Even the Flux architecture uses React as its view. We will learn more about Flux in
the next chapter.

React is always used with a framework as it only defines the UI but doesn't tell us
how to manage the application logic and state, just like a template library or web
component is always used with a framework.

Is React a templating engine?
React is not a templating engine. The views of most of the popular MVC
frameworks are of a template system. In a templating system, we write
HTML with a template language for the UI, and it is processed in order to
generate the final HTML. For example, an AngularJS view is a template
system that's composed of directives, expressions, and so on. React is not
a templating engine because we don't write HTML. Instead, we define the
structure of the DOM using JavaScript. React can also do much more than
what a templating engine can do. It can also capture user events in the UI.
This is how it differs from traditional views. It's just that React works in a
different way than a template system.

Chapter 10

[199]

When building user interfaces using React, we don't write any HTML to build the
UI like when using other frameworks and libraries; instead, we declare the DOM
structure using JavaScript only. This programming style is what makes React
able to implement various algorithms and technologies to achieve high rendering
performance and reusability.

Before we get further into learning React, let's first set up a project to use it.

Setting up a basic React project
At the time of writing, the latest version of React was 0.14.7. This is the version
this book uses. First, visit https://facebook.github.io/react/downloads.
html to download React. Here, you will find two types of React builds, namely,
production and development builds. The difference between these two build is that
the development build is uncompressed and includes extra warnings, whereas the
production build is compressed, includes extra performance optimizations, and
strips all errors.

You should use the development build when your application is in the development
phase. Once your application is ready for deployment, you should change to the
production build.

Again, you will find two types of production and development build: one
with add-ons and the other without. We will use the development version
without add-ons.

You will find CDN links as well as links to download and enqueue React manually.
React is composed of two files: react.js and react-dom.js. Download both of
them manually.

Create a folder named react-demo and place both the files in it. Then, create a file
called index.html and put this code in it:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>React Demo</title>

 <script src="react.js"></script>
 <script src="react-dom.js"></script>
 </head>
 <body>

https://facebook.github.io/react/downloads.html
https://facebook.github.io/react/downloads.html

Building User Interfaces Using React

[200]

 <script>
 //place React code here
 </script>
 </body>
</html>

Later on in this chapter, we will learn more about why React is composed of two files
and not one. For now, just ignore this.

Virtual DOM
A browser interprets HTML and creates a DOM. A DOM is a tree-like structure that
defines the structure of the page. The browser then renders the DOM on the page.
The DOM API is what we use to manipulate the DOM. When we manipulate it, the
browser re-renders the manipulated parts.

The problem is not with how the DOM works, but how we programmatically
alter it. Manipulating nodes of a DOM requires expertise; otherwise, we could
often end up re-rendering lots of nodes unnecessarily, which would result in
poor rendering performance.

For example, imagine we have a large list of products in an e-commerce website.
We also have a filter widget to filter the items. When we change the values in
the filter widget, the list items are reloaded and the complete list is re-rendered,
which requires a lot of manipulation to the DOM and can result in bad rendering
performance. To get better performance, we can actually manipulate only specific
parts of the list, such as product titles, image, and cost. But writing code for this is
going to be hard.

Let's take another example. If you are using ng-repeat to display a list, then adding
a new item to the list will cause the complete re-rending of the list. So, if Facebook or
Instagram had used ng-repeat, then whenever we scrolled down, the whole set of
posts would have been re-rendered. The solution to this problem is instead of using
ng-repeat, which re-renders the whole list, we can append a new post to the end of
the list using jQuery or pure JavaScript. But if you want to maintain the posts that
are being displayed, then you will end up writing some more complex code.

Due to these kinds of problem, virtual DOM was introduced. Virtual DOM makes
sure that anyone can write complex reactive UI code without worrying about
performance. Virtual DOM is the secret that React implements to achieve
rendering performance.

Chapter 10

[201]

A virtual DOM is an abstract version of the real DOM, that is, a description of the
real DOM. Virtual DOM elements are just JavaScript objects whereas real DOM
elements are real UI elements. Virtual DOM is much faster as it's just a JavaScript
data structure and manipulating it doesn't automatically re-render the UI. Earlier,
I said that in React, you don't write any HTML but instead declare the structure of
the DOM. Actually, you declare the structure of the virtual DOM, not the real DOM.
React keeps the real DOM in sync with virtual DOM. Whenever the application state
changes to update the UI, React uses complex algorithms to compare the real DOM
with the virtual DOM and finds as few mutations as possible for the real DOM to
sync with the virtual DOM. We will later see how these algorithms actually find the
difference and mutate the real DOM. For example, if we have a list in the virtual
DOM and we remove the list and add a new list with just an extra item, then, only
the new item is rendered when synced with the real DOM, not the whole list.

Let's look at some example code to print Hello World using React. Inside the index.
html body tag, place this code:

<div id="container1"></div>

We are going to display Hello World inside this div element. Place this code in the
script tag of the index.html file to display Hello World:

var helloBold = React.createElement("b", {}, "Hello");
var worldItalic = React.createElement("i", {}, " World");
var helloWorld = React.createElement("a", {href: "#"}, helloBold,
worldItalic);

ReactDOM.render(helloWorld, document.getElementById("container1"));

Here is how the code's output looks:

Let's understand how the code works.

Building User Interfaces Using React

[202]

React.createElement is used to create an object of a ReactElement interface.
A ReactElement object is a light, stateless, and virtual representation of a real
DOM element, but it's not a real DOM element. It's a virtual DOM, basically.
ReactElement and real DOM elements are of different interfaces. The first parameter
of React.createElement can be an HTML tag name or an object of a ReactClass
interface. We will learn more about ReactClass later on. The second argument is
an object containing attributes of the HTML tag or properties of the ReactClass
object. And then, we can pass an infinite number of arguments, which can be strings,
ReactElement objects, or ReactClass objects. All the arguments after the second
argument are treated as children of the ReactElement object that's going to be
created. If the children are dynamically decided, then you can provide an array as
the third argument.

Here, we created three ReactElement objects. helloWorld is an anchor tag with
helloBold and worldItalic as its children. We assigned the href attribute of the
anchor tag to #.

ReactDOM.render is used to render ReactElement objects in the real DOM.
ReactDOM.render takes a ReactElement object as first argument, and the second
argument is the reference to the container element in the real DOM inside which we
want to add to the ReactElement.

Here, we've rendered the anchor tag inside the container element.

As a ReactElement object is stateless, we cannot assign any UI
event handlers to the properties object. Also, directly mutating the
properties passed to the ReactElement object will not have any effect,
as React doesn't watch the properties directly.

In the beginning, it may feel as if ReactElement and real DOM elements are just
created in different ways and their interface is the same, but this is not true.
Here are a few differences:

• Instead of the class attribute, you need to use className
• Instead of the for attribute, you need to use the htmlFor attribute
• The style attribute cannot be a string; it has to be a object

There are many more. We will explore them as we go deeper.

Chapter 10

[203]

Components
You can use React using only ReactElement objects, but to take advantage of
React, you have to use React components. ReactElement objects are stateless and
immutable and therefore useless for building reactive UIs. Also, they don't provide a
structured mechanism for UI reusability.

A React component is a reusable custom tag that is mutable and encapsulated with
an embedded state, that is, changes to the state or properties will mutate the UI. For
example, we can have a component named clock that takes the current time as an
attribute and displays a clock with the passed time. Another exchange could be a
Bitcoin price component that displays Bitcoin prices in real time.

A component state is internal to the component. It's created and mutated inside
the component. However, the properties of a component cannot be mutated
inside the component; rather, they can be mutated by the code that created the
component instance.

You can break your complete UI into components—this is the style of coding that's
recommended when building a UI using react. You can use components inside
components as well. Before we get further into components, let's rewrite the
previous Hello World code using components.

Inside the index.html body tag, place this code:

<div id="container1"></div>

We are going to display Hello World inside this div element. Place this code in the
script tag of the index.html file to display Hello World:

var anchorWithBoldItalic = React.createClass({
 render: function() {
 return React.createElement(
 "a",
 {href: this.props.href},
 React.createElement("b", {}, this.props.boldText),
 React.createElement("i", {}, this.props.italicText)
);
 }
});

var HelloWorld = React.createElement(anchorWithBoldItalic, {href:
"#", boldText: "Hello", italicText: " World" });

ReactDOM.render(HelloWorld, document.getElementById("container2"));

Building User Interfaces Using React

[204]

Here is the output of the previous code:

Here is how the code works:

1. A component is created using the React.createClass function. This
function takes an object, and the object must have a render property
assigned to a function that returns a ReactElement object. The
ReactElement object returned by the render method is said to be the
content of the component, that is, it states how the tag is rendered.
Whenever we try to display the tag, the contents of the tag are
displayed in place.

2. React.createClass returns a component. To use the component, we need
to create instances of it. Like React.createElement is used to create a
ReactElement object for an HTML tag, it can also create a ReactElement
object for a component. So, React.createElement is used to create
instances of a component. this.props is used inside the component
to access its properties.

3. Here, we created a component called anchorWithBoldItalic, which is
an anchor element with some text displayed as bold and some displayed
as italic.

4. Then, we created a ReactElement object for our component and finally
rendered it using ReactDOM.render.

Remember that mutating properties after a component instance has been
created will re-render the component.

One-way data binding
In the previous subsection, I stated that a component has an enclosing nature.
Whenever we make changes to the state, the component is rendered. Components
also let you register UI event handlers, and you can mutate the state inside the event
handlers too.

Chapter 10

[205]

React lets you manage, access, and mutate UI state but not application state. The
difference between UI state and application state is that the UI state represents the
data that's used to manipulate the UI whereas the application state represents the
data that's displayed in the UI. For example, let's assume that you have a comment
box. The comments in the comment box are the application state, and the View more
comments button is the UI state, which may or may not be displayed, depending on
whether there are any more posts.

Data binding between a UI and its state is only one-way. This means that user actions
on the UI cannot alter the UI state directly, but the UI state can alter the UI.

It may seem as if this were a limitation as AngularJS and other popular frameworks
provide two-way data binding, but this is actually a feature. This feature makes it
easier to understand and debug applications.

Many developers tend to use UI state as application state, but for complex and large
apps, this will cause issues and make it difficult to build the application.

Let's look at an example of how to use component state by building a button that
hides/shows a box when clicked on.

Place this code in the <body> tag of the index.html file:

<div id="container3"></div>

We will display the component inside this container element.

Place this code inside the script tag:

var hideShowBoxButton = React.createClass({
 getInitialState: function(){
 return {
 display: "inline-block"
 }
 },
 handleClick: function(){
 if(this.state.display == "inline-block")
 {
 this.setState({display: "none"});
 }
 else
 {

Building User Interfaces Using React

[206]

 this.setState({display: "inline-block"});
 }
 },
 render: function(){
 return React.createElement(
 "div",
 {},
 React.createElement(
 "a",
 {href: "#", onClick: this.handleClick},
 "Click to Show/Hide"
),
 React.createElement(
 "span",
 {
 style: {
 display: this.state.display,
 height: 30,
 width: 30,
 backgroundColor: "red"
 }
 }
)
);
 }
});

ReactDOM.render(React.createElement(hideShowBoxButton),
document.getElementById("container3"));

This is the output of the previous code:

This is how the code works:

1. At first, we create a new component.
2. The getInitialState method returns the initial state of the component.

Chapter 10

[207]

3. Then, we create a click handler that toggles the display state. When mutating
the state, you must use this.setState and not directly mutate the state
using this.state.

4. Then, we create the render method, which displays a button and a small
red box. The render method sets the display style of the box to the display
state. So, whenever the state changes, React renders the component. Instead
of rendering the complete component, React re-renders it by comparing
the virtual DOM with the real DOM and mutating only the required DOM
elements. This is how it achieves rendering performance.

5. Finally, we create a component instance and add it to the container element.
6. Also note that we've only specified a number for height and width without

any unit. In such a case, the unit is pixels.

Isomorphic UI development
Isomorphic development is where we can use the same code in both the frontend
and backend.

Till now, we've seen how to use React in the frontend to build reactive UI, but
the same React code can also be used in the backend. When used in the backend,
React outputs HTML and doesn't provide any kind of UI performance advantage
or reactivity.

The isomorphic nature of React is one of the things that make it so popular and
powerful. It has made many things easier. For example, it makes it easier to prevent
FOUC by letting us pre-render the page in the backend, and then in the frontend: the
same components will just add event bindings.

React code not only executes in Node.js but can also be executed in PHP, Ruby,
.NET, and some other major backend languages.

Due to the fact that React can be used in both the frontend and backend, the React
developer team decided to split React into two files: React core and another part
that is specific to the executing environment. That's why when we included React
in our HTML file earlier, we included two files. The React core contains React.
createElement, React.createClass, and so on whereas the React DOM contains
ReactDOM.render and so on.

Let's look at an example of how to use React in Node.js by creating and displaying
the previous hello world component in Node.js. Create a directory named React-
Server-Demo. Inside it, create files named app.js and package.json.

Building User Interfaces Using React

[208]

Inside the package.json file, place this code:

{
 "name": "React-Server-Demo",
 "dependencies": {
 "express": "4.13.3",
 "react": "0.14.7",
 "react-dom": "0.14.7"
 }
}

Then, run npm install to download the Express and React modules. Now, in the
app.js file, place the following code and run the node app.js command:

var React = require("react");
var ReactDOMServer = require("react-dom/server");
var express = require("express");
var app = express();

var anchorWithBoldItalic = React.createClass({
 render: function() {
 return React.createElement(
 "a",
 {href: this.props.href},
 React.createElement("b", {}, this.props.boldText),
 React.createElement("i", {}, this.props.italicText)
);
 }
});

var HelloWorld = React.createElement(anchorWithBoldItalic, {href:
"#", boldText: "Hello", italicText: " World" });

app.get("/", function(httpRequest, httpResponse, next){
 var reactHtml = ReactDOMServer.renderToString(HelloWorld);
 httpResponse.send(reactHtml)
})

app.listen(8080);

Chapter 10

[209]

Now, open http://localhost:8080/ in your browser; you'll see this output:

This is how the code works:

1. First, we import the React core module, then the React server-side module,
and then Express.

2. We're using the same code we used earlier to create the component.
3. Then, we create a route for the root path.
4. The root path uses the renderToString method of the React server-side

module to generate the HTML code of the component.
5. Finally, we send the HTML to the client.

Note that by default, React will be in development mode. To use
React in production mode, set the environment variable NODE_ENV to
production.

Getting started with JSX
Writing JavaScript to define a tree-like structure and attributes while building
UI using React is difficult and also makes it difficult to understand the UI. So,
the React team came up with an alternative syntax to write React code, which is
easier to write and understand. This alternate syntax is called JSX. JSX stands for
JavaScript syntax extension. It looks similar to XML. Files that contain JSX code
have the.jsx extension.

Compiling JSX
Of course, browsers and server-side engines cannot understand and interpret JSX;
therefore, we need to compile JSX into pure JavaScript before using it.

There are various open source JSX compilers. You can find the list at https://
github.com/facebook/react/wiki/Complementary-Tools#build-
tools. The most popular and recommended compiler for JSX is Babel. Babel can
be installed (https://babeljs.io/docs/setup/), we can use the Babel compiler
online (https://babeljs.io/repl/), and we can also embed the Babel compiler in
our HTML page so that it compiles in the browser.

https://github.com/facebook/react/wiki/Complementary-Tools#build- tools
https://github.com/facebook/react/wiki/Complementary-Tools#build- tools
https://github.com/facebook/react/wiki/Complementary-Tools#build- tools
https://babeljs.io/docs/setup/
https://babeljs.io/repl/

Building User Interfaces Using React

[210]

For the purpose of demonstration, we will embed the Babel compiler in our HTML
page. Compiling takes time, so in production sites, you should never embed the
compiler in web pages; instead, you should precompile and serve JSX code.

To embed the Babel compiler in a webpage, visit https://cdnjs.com/libraries/
babel-core and download the Babel core. These are CDN links, so they can be
embedded directly, but let's download and embed them in our webpage. Download
the browser.min.js file and place it in the react-demo directory. And then, embed
it in the index.html page by placing the following code in the <head> tag:

<script src="browser.min.js"></script>

Now, create a new <script> tag at the end of the body tag and set the type attribute
to text/babel so that the Babel compiler knows which code to compile. Here is how
the code should look:

<script type="text/babel">
</script>

From now on, all the JSX code will be placed in this script tag.

JSX editors
There are extensions available for almost all the popular code editors to
properly highlight JSX syntax.

JSX syntax
Let's rewrite the data-binding example code using JSX syntax. Place this code in the
body tag to create a new container element:

<div id="container4"></div>

Here is the JSX code. Place it in the script tag that will be compiled by Babel:

var HideShowBoxButton = React.createClass({
 getInitialState: function(){
 return {
 display: "inline-block"
 }
 },
 handleClick: function(){
 if(this.state.display == "inline-block")
 {

https://cdnjs.com/libraries/babel-core
https://cdnjs.com/libraries/babel-core

Chapter 10

[211]

 this.setState({display: "none"});
 }
 else
 {
 this.setState({display: "inline-block"});
 }
 },
 render: function(){
 var boxStyle = {
 display: this.state.display,
 height: 30,
 width: 30,
 backgroundColor: "red"
 };

 return (
 <div>
 Click to
 Show/Hide

 </div>
)
 }
});

ReactDOM.render(<HideShowBoxButton />,
document.getElementById("container4"));

The output of the code is as follows:

Before we see how this code works, let's look at its compiled version:

var HideShowBoxButton = React.createClass({
 displayName: "HideShowBoxButton",

 getInitialState: function getInitialState() {
 return {
 display: "inline-block"
 };
 },

Building User Interfaces Using React

[212]

 handleClick: function handleClick() {
 if (this.state.display == "inline-block") {
 this.setState({ display: "none" });
 }
 else
 {
 this.setState({ display: "inline-block" });
 }
 },
 render: function render() {
 var boxStyle = {
 display: this.state.display,
 height: "30px",
 width: "30px",
 backgroundColor: "red"
 };

 return React.createElement(
 "div",
 null,
 React.createElement(
 "a",
 { href: "#", onClick: this.handleClick },
 "Click to Show/Hide"
),
 React.createElement("span", { style: boxStyle })
);
 }
});

ReactDOM.render(React.createElement(HideShowBoxButton, null),
document.getElementById("container4"));

This compiled version will give you a basic idea of how JSX syntax works.
Let's understand how the previous JSX code works.

In a nutshell, JSX is used to write the React.createElement method in
XML-like syntax. The XML tag name is the first argument, the attributes
are the second argument, and finally, the child elements are the other
arguments of React.createElement.

Chapter 10

[213]

If a JSX tag name starts with a lowercase letter, it's an HTML tag, whereas if it starts
with a capital letter, it's a component. So here, we made the component name start
with a capital H. Had we used a small H, it would have been treated as an HTML
tag, and <hideShowBoxButton></hideShowBoxButton> would have been inserted
into the page, which would have rendered nothing.

In the HideShowBoxButton component, except the render method code, everything
else is the same. We rewrote the render method using JSX syntax.

JSX provides {} braces to wrap JavaScript expressions while assigning them
to attributes or using them as child elements. Here, we've assigned JavaScript
expressions to onClick and style attributes.

Finally, we created an instance of the component using JSX syntax.

In the compiled code, you will find a displayName property in the object passed to
React.createClass. The displayName property is used for debugging. If not set,
it's set to the component name while compiling.

Digging into components
Let's dig further into components and master them. We'll look at component
composition and ownership. Learning this will help us build complex reactive UIs
that are easier to manage.

Component composition
Composability is a feature that lets you use a component inside another component's
render method.

Let's look at a basic example of component composition. First, create a new container
element. To do so, place the following code in the body tag:

<div id="container5"></div>

Here is the component composition example code. Place this code in the script tag
that's compiled by Babel:

var ResponsiveImage = React.createClass({
 render: function(){

 var imgWidth = {
 width: "100%"
 }

Building User Interfaces Using React

[214]

 return (

)
 }
})

var Card = React.createClass({
 render: function(){
 var CardContainerStyle = {
 maxWidth: 300,
 backgroundColor: "grey"
 }

 return (
 <div style={CardContainerStyle}>
 <h4>{this.props.heading}</h4>
 <ResponsiveImage src={this.props.src} />
 </div>
)
 }
})

ReactDOM.render(<Card src="http://placehold.it/350x150"
heading="This is a Card Header" />,
document.getElementById("container5"));

This is the output of the code:

Chapter 10

[215]

Here, we've created two different components. Inside the Card component, we are
using the ResponsiveImage component to display a responsive image in it.

Component ownership
When components are used inside other components' render methods, they are
said to have an owner-ownee relationship and not a parent-child relationship.
Component X is said to be the owner of component Y if component X created an
instance of component Y in its render method.

Note that component X is not called the parent; rather, it's called the
owner of component Y.

For example, in the previous code, the Card component is the owner of the
ResponsiveImage component and <div> is the parent of ResponsiveImage.

If we place a component instance inside the opening and closing tags of a component
instance, then they are said to be in a parent-child relationship. The parent can
access its children by using the this.props.children object. React also provides
utility functions to make working with children easier. You can find the utilities
at https://facebook.github.io/react/docs/top-level-api.html#react.
children.

Reconciliation
Reconciliation is the process by which React updates the DOM whenever the state
changes. React doesn't re-render everything from scratch when the state changes;
instead, it first finds whether a mutation is required by comparing the new virtual
DOM with the old one, and if there is a difference, it compares the new virtual DOM
with the real DOM and makes the necessary mutations.

Note that reconciliation doesn't happen only when you change the
component state; it also happens when you call ReactDOM.render on
the same container element again.

https://facebook.github.io/react/docs/top-level-api.html#react.children
https://facebook.github.io/react/docs/top-level-api.html#react.children

Building User Interfaces Using React

[216]

Let's see how exactly reconciliation happens by looking at an example. Suppose this
is the initial render:

 Item 1
 Item 2

If we remove Item 1 from the state, then the render will change to this:

 Item 2

React algorithms compare DOM items one by one, and whenever they find a
difference between two nodes, they make mutations. So here, React will remove the
Item 1 list item by changing the text of the first list item and removing the last one.
This process is much faster than removing both the list items and adding a new list
item, which is what ng-repeat does and what we used to do using JavaScript.

If the node type is different, React will treat them as two different subtrees, throw
away the first one, and build/insert the second one. For example, if we change
to , the complete tree will be deleted.

This behavior is fine until you add new items to the end of the list or modify them. In
case you add new items to the beginning or in between the list, you will start facing
rendering performance issues. To understand the issue, let's take an example. Let's
add Item 0 to the beginning. Now, the render will look like this:

 Item 0
 Item 1
 Item 2

Here, while reconciling, React will first change the text of the first list item to Item
0, then change the text of the second list item to Item 1, and finally will add a new
list item and assign its text to Item 2 instead of simply adding a new list item to the
beginning of the list. This behavior makes the rendering actually slower.

React does provide a way to get around this kind of issue as well. It lets us uniquely
identify each child by assigning it a unique key. When React reconciles the keyed
children, it will ensure that any child with a key will be reordered (instead of being
mutated) or destroyed (instead of being reused). A key is assigned using the key
attribute.

Chapter 10

[217]

Let's look at an example of how to create keyed children. Here is the code to create a
new container element. Place this code in the body tag:

<div id="container6"></div>

Here is the React code for creating keyed children:

var DynamicList = React.createClass({
 getInitialState: function(){
 return {
 results: this.props.results
 }
 },
 handleClick: function(){
 var results = this.state.results;
 var firstId = results[0].id - 1;
 var firstValue = results[0].value - 1;

 results.unshift({id: firstId, value: firstValue});
 this.setState({results: results});
 },
 render: function(){
 return (
 <div>
 Click to add new
 item

 {this.state.results.map(function(result) {
 return <li key={result.id}> {result.value} ;
 })}

 </div>

)
 }
})

var results = [{id: 1, value: 1}, {id: 2, value: 2}];

ReactDOM.render(<DynamicList results={results} />,
document.getElementById("container6"));

Building User Interfaces Using React

[218]

Here is the output of the code:

Here, when the anchor element is clicked on, a new object is added to the beginning
of the result array. As the state changes, the list is re-rendered. While rendering,
React will reorder the list items and add new list items to the beginning instead of
mutating them.

Remember that when dynamically creating component instances, the
key should always be supplied to the components in the array, not to the
container element of each component in the array.

Default component property values
React lets you define default values for properties in a very declarative way.
The default value is used if the parent does not pass a property.

Default values are returned by a method getDefaultProps, which is a member of
the object passed to React.createClass. Here is some sample code:

var ComponentWithDefaultProps = React.createClass({
 getDefaultProps: function() {
 return {
 value: 'default value'
 };
 }
});

Component life cycle methods
Various methods are executed at specific points in a component's lifecycle. Let's look
at them.

Chapter 10

[219]

componentWillMount()
The componentWillMount() method is invoked once immediately before the initial
rendering occurs. If you call setState within this method, render() will see the
updated state and will be executed only once despite the state change.

componentDidMount()
The componentDidMount() method is invoked only on the client side. It is invoked
only once after initial rendering has occurred.

componentWillReceiveProps(nextProps)
Directly mutating the properties passed to a component will have no effect because
there is no way for React to find value changes as it doesn't watch the properties
directly. But sometimes, it is possible for React to predict property value changes,
and in that case, it calls the componentWillReceiveProps method, if it exists, with
the new property values as its parameters, and it also re-renders the component.

For example, if we change the state of the owner of a component, then that sends a
signal that the properties of the components it owns might have changed, so it calls
the componentWillReceiveProps method and re-renders the components it owns.

Let's look at an example to demonstrate the componentWillReceiveProps method.
We will create a button whose value increments every second. Here is the code to
create a new container element. Place it in the body tag:

<div id="container7"></div>

Here is the code for our example. Place this code in the script tag that will be
compiled by Babel:

var ButtonComponent = React.createClass({
 componentWillReceiveProps: function(nextProps){
 console.log("Text changed to " + nextProps.text);
 },
 render: function(){
 return (
 <button>{this.props.text}</button>
)
 }
})

var ButtonHolderComponent = React.createClass({
 componentDidMount: function(){

Building User Interfaces Using React

[220]

 setInterval(function(){
 this.setState({
 text: this.state.text + 1
 });
 }.bind(this), 1000)
 },
 getInitialState: function(){
 return {
 text: 1
 }
 },
 render: function(){
 return (
 <ButtonComponent text={this.state.text} />
)
 }
})

ReactDOM.render(<ButtonHolderComponent />,
document.getElementById("container7"));

Here is the output of the code:

In the code, we are changing the state of the owner every second after
the initial rendering has occurred. Whenever the state changes, the
componentWillReceieveProps object of ButtonComponent is called. Inside the
componentWillReceieveProps object, we can use this.props to access the
previous values of the properties. The button is rendered whenever its owner's
state changes.

Remember that componentWillReceieveProps is called before the component is
re-rendered, so we can make any state changes we want inside it.

Chapter 10

[221]

shouldComponentUpdate(nextProps,
nextState)
The shouldComponentUpdate(nextProps, nextState) method is called before the
render method is called, that is, before rendering happens. If this method returns
false, then rendering is skipped.

Remember that this method is not called before forced updates or initial rendering.

What is a forced update?
React provides a forceUpdate method inside a component, which
renders the component when called. This can be used when the
render() method depends on some other data instead of just this.
props and this.state, as changes to other data don't trigger the
render method.

componentWillUpdate(nextProps, nextState)
The componentWillUpdate(nextProps, nextState) method is invoked
immediately before rendering when new props or state are being received.
This method is not called for the initial render.

Note that you cannot use this.setState inside this method.

componentDidUpdate(prevProps, prevState)
The componentDidUpdate(prevProps, prevState) method is invoked
immediately after the component's updates are flushed to the real DOM.
This method is not called for the initial render.

componentWillUnmount()
The componentWillUnmount() method is invoked immediately before a component
is unmounted from the real DOM.

Building User Interfaces Using React

[222]

Mixins
There are times when multiple components share the same code; in such cases,
we can use mixins instead of writing the same code again and again.

A mixin is an object that holds component methods that can be easily plugged in to
any component.

Let's look at an example to demonstrate mixins. Here is the code to create a new
container element. Place it in the body tag:

<div id="container8"></div>

Here is the code for our example. Place it in the script tag that will be compiled
by Babel.

var Mixin1 = {
 componentWillMount: function(){
 console.log("Component will mount now");
 }
}

var Mixin2 = {
 componentDidMount: function(){
 console.log("Component did mount");
 }
}

var HeadingComponent = React.createClass({
 mixins: [Mixin1, Mixin2],
 render: function(){
 return <h1>React is Awesome</h1>
 }
});

ReactDOM.render(<HeadingComponent />,
document.getElementById("container8"));

This is the output of the code on the page:

Chapter 10

[223]

And this is the output on the console:

Here, we've created two mixins and added them to HeadingComponent.
These mixins can be used in any number of methods. Mixins simply increase
code reusability.

Using Refs
Refs are used inside components to return references to real DOM elements
rendered by React. So, instead of assigning an id or class value to elements, we can
assign refs. It's easier to get references to real DOM elements using refs than id or
class attributes.

Let's look at a basic example of how to use refs by creating a form. First, create a
container element and place it inside the body tag. Here is the code:

<div id="container9"></div>

Here is the code for the form, which uses refs:

var FormComponent = React.createClass({
 clicked: function(){
 console.log(this.refs.myInput.value);
 },
 render: function(){
 return (
 <div>
 <input type="text" placeholder="Write Something"
 ref="myInput" />
 <input type="button" value="Click to Submit"
 onClick={this.clicked} />
 </div>

)
 }
})

ReactDOM.render(<FormComponent />,
document.getElementById("container9"));

Building User Interfaces Using React

[224]

The output of this code on the webpage is as follows:

If we enter Hello World in the text field and click on the button, then the output of
the console is this:

Hello World

In the previous code, we're assigning a ref attribute to the button element. To refer
to the button in the methods of the component, we use this.refs.

ReactDOMServer.renderToStaticMarkup
Earlier in this chapter, we used React on the server side to generate HTML. The
HTML generated by React on the server and client side contains data-reactid
attributes, which are used by React internally. On the client side, it makes sense
to have data-reactid, as it is used during reconciliation and other processes and
features.

You must be wondering what the point of adding this attribute on the server side is.
Actually, it is added so that if you call ReactDOM.render() on the client side on a
node that already has React server-rendered markup, React will preserve it and only
reconcile it.

If you don't want data-reactid attributes to be generated on the server side, you
can use renderToStaticMarkup instead of renderToString.

Summary
In this chapter, we learned React up to an intermediate level by covering in depth
its features and components, JSX, using it for server-side rendering, reconciliation,
and so on. We also learned miscellaneous features such as mixins and refs. Now,
you should have a basic understanding of how and when to integrate React into
your websites.

In the next chapter, we will learn React in more depth by building an application that
uses the Flux and SPA architectures.

[225]

Building an RSS Reader
Using React and Flux

React is not enough to build a complete application, as it's just the view layer. We
need an architecture for holding the application logic and data, and this is where
Flux comes in. Obviously, React can be used with any other architecture, but Flux
is what is mostly used with React, as Flux is based on unidirectional data flow, like
React. In this chapter, we will build a single-page RSS reader using React and Flux.

We will cover the following topics:

• Flux architecture in depth
• Routing using the React Router library
• Using Flux.js to create a dispatcher
• Using MicroEvent.js to emit events
• Integrating Flux and routing

Understanding Flux
Flux is an application architecture and not a framework. You can think of it as
an alternative to MVC. It was primarily developed to be used with React as both
of them are based on unidirectional data flow. The Flux architecture enforces
unidirectional data flow.

Building an RSS Reader Using React and Flux

[226]

Here is a diagram that shows all the parts of the Flux architecture and how data
flows in it:

Here is how each part works:

• Actions: An action is an object that describes what we want to do and the
data that we need to do it. In Flux, all events and data from all sources are
converted to actions. Even UI events are converted to actions.

• Dispatcher: The dispatcher is a special type of event system. It is used to
broadcast actions to registered callbacks. What the dispatcher does is not
the same as a pub/sub system, as callbacks are not subscribed to particular
events. Instead, every action is dispatched to every registered callback. An
application should contain only one dispatcher.

• Action creators: Action creators are methods that dispatch actions to
the dispatcher.

• Stores: Stores are objects that store the application data and logic. Stores react
to actions. Callbacks ping the store to take appropriate action whenever an
action that the store depends on is dispatched by the dispatcher.

• React views: React views are the React components that can retrieve data
from stores and display as well as listen to events emitted from stores
whenever there is a change in the data stored by them. Note that the events
emitted by stores are not converted into actions.

So, in Flux, all the events and data from different sources are dispatched to the
dispatcher as actions, then the stores update themselves whenever the dispatcher
dispatches actions, and finally, views get updated whenever stores update.

Chapter 11

[227]

Here is an another diagram, which provides a much higher-level abstraction of how
Flux works:

Here you can see that the data flows in a single direction, that is, data and events first
go to the Dispatcher, then to the Store, and finally to the View. So, we can say that
dispatcher, store, and view are the three major parts of the Flux architecture.

Just as there are many MVC frameworks, such as Angular, Ember, and Backbone,
there are many Flux frameworks, such as Fluxible, Reflux, Alt, and Redux. But to
keep things simple and easier to learn, we will not use any of these frameworks.
Instead, we will use the Flux.js and MicroEvent.js libraries to implement the
Flux architecture.

Using Flux.js
The Flux.js is a library created by the creators of Flux. It is used to build dispatchers.
You can find the Flux.js source code at https://github.com/facebook/flux and
the CDN version at https://cdnjs.com/libraries/flux.

A dispatcher is created using the Dispatcher constructor. It has five methods,
as follows:

• register(callback): This method lets us register a callback. It returns a
string called the callback ID to uniquely identify a callback.

• unregister(id): This is a method lets us unregister a registered callback. To
unregister, we need to pass the ID of the callback that we want to unregister.

• waitFor(array): This waits for the specified callbacks to be invoked before
continuing with the execution of the current callback. This method should
only be used by a callback in response to a dispatched action.

https://github.com/facebook/flux
https://cdnjs.com/libraries/flux

Building an RSS Reader Using React and Flux

[228]

• dispatch(action): This dispatches an action to registered callbacks.
• isDispatching(): This returns a Boolean indication of whether the

dispatcher is currently dispatching.

We will go through example code while building the RSS feed reader.

Using MicroEvent.js
MicroEvent.js is an event emitter library, which provides the observer pattern
to JavaScript objects. We need MicroEvent.js for triggering events from stores to
update views.

You can get MicroEvent.js from http://notes.jetienne.com/2011/03/22/
microeventjs.html.

To make an object or constructor be able to emit events and others to be able to
subscribe to it, we need to integrate a MicroEvent interface into the object or
constructor using the MicroEvent.mixin method.

Now, inside the object or constructor, we can trigger events using this.trigger(),
and others can subscribe to events using the bind() method of the object. We can
also unbind using the unbind() method.

We will look at example code while building the RSS feed reader.

Introduction to React Router
The RSS feed reader application we will create is going to be a single-page
application. In single-page applications, routes are defined on the frontend instead
of the backend. We need some sort of library that lets us define routes and assign
components to them, that is, it can keep the UI in sync with the URL.

React Router is the most popular and recommended routing library for React.
It provides a simple API with powerful features such as dynamic route matching
and location transition handling built in.

You can find the source code of React Router at https://github.com/reactjs/
react-router and the CDN version at https://cdnjs.com/libraries/react-
router.

http://notes.jetienne.com/2011/03/22/microeventjs.html
http://notes.jetienne.com/2011/03/22/microeventjs.html
https://github.com/reactjs/react-router
https://github.com/reactjs/react-router
https://cdnjs.com/libraries/react-router
https://cdnjs.com/libraries/react-router

Chapter 11

[229]

Here is a code sample of how to define routes using React Router and assign
components to them:

var Router = ReactRouter.Router;
var Route = ReactRouter.Route;
var Link = ReactRouter.Link;
var BrowserHistory = ReactRouter.browserHistory;

var Routes = (
 <Router history={BrowserHistory}>
 <Route path="/" component={Home}></Route>
 <Route path="/profile/:username" component={Profile}></Route>
 <Route path="*" component={NotFound}/>
 </Router>
)

ReactDOM.render(Routes, document.body);

Here is how the preceding code works:

1. React Router lets us define routes and their components using React
components themselves. This makes it easy to write routes.

2. A Route component is used to define individual routes. The paths of the
routes are of the same pattern as the paths in Express.

3. All the Route components are wrapped with the Router component and the
Router component is rendered on the page. The Router component finds the
matching route for the current URL and renders the component assigned to
the route.

4. We assigned the history property of the Router component to
ReactRouter.browserHistory, which makes Router use the HTML5
History API.

5. The Link component should be used instead of the <a> tag as this component
prevents full-page reloads and instead just changes the URL and renders the
matching component.

Creating the RSS feed reader
The RSS feed reader we will create will let you add feed URLs, view a list of added
URLs, and view the content of each feed URL. We will be storing the URLs in
HTML5 local storage.

Building an RSS Reader Using React and Flux

[230]

Setting up the project directories and files
In the exercise files of this chapter, you will find two directories: Initial and Final.
Final contains the final source code of the application whereas Initial contains the
files to help you quickly get started with building the application.

In the Initial directory, you will find app.js, package.json, and a public
directory containing files to be served to the frontend. The app.js file will contain
backend code. Currently, app.js and package.json contain no code.

We will put our HTML code in public/html/index.html, and in the public/js/
index.js file, we will place our frontend JavaScript code, that is, React code.

Let's first build the backend, after which we will build the frontend.

Building the backend
First, let's download the packages required for the backend. Place this code in the
package.json file:

{
 "name": "rss-reader",
 "dependencies": {
 "express": "4.13.3",
 "request": "2.69.0",
 "xml2json": "0.9.0"
 }
}

Now, run npm install in the Initial directory to download the packages.
Here, we require the express, request and xml2json npm packages.

Place the following code in the app.js file:

var express = require("express");
var app = express();
var request = require("request");
var parser = require("xml2json");

app.use(express.static(__dirname + "/public"));

app.get("/feed", function(httpRequest, httpResponse, next){
 request(httpRequest.query.url, function (error, response, body)
{
 if (!error && response.statusCode == 200)

Chapter 11

[231]

 {
 httpResponse.send(parser.toJson(body));
 }
 })
})

app.get("/*", function(httpRequest, httpResponse, next){
 httpResponse.sendFile(__dirname + "/public/html/index.html");
})

app.listen(8080);

This is how the preceding code works:

1. At first, we import the libraries.
2. Then, we add a middleware program to serve static files.
3. We then create a route that takes a URL as a query parameter, fetches the

content of the URL, and sends it back as a response. We cannot fetch the
feeds from the frontend because of CROS; therefore, we will fetch it through
this route. It also converts the XML to JSON, because JSON is easier to
work with.

4. Then, for all other paths, we return the index.html file.
5. Finally, we listen on port number 8080.

Building the frontend
In the public/js directory, you will find all the libraries that we will be using in the
frontend. In the public/css directory, you will find Bootstrap 4, which we will use
for designing.

Place this code in the index.html file to enqueue the JS and CSS files as well as
creating a container for React components to render:

<!doctype html>
<html>
 <head>
 <title>RSS Feed Reader</title>

 <link rel="stylesheet" type="text/css"
 href="/css/bootstrap.min.css">
 </head>
 <body>

Building an RSS Reader Using React and Flux

[232]

 <div id="appContainer"></div>

 <script src="/js/react.js"></script>
 <script src="/js/react-dom.js"></script>
 <script src="/js/ReactRouter.js"></script>
 <script src="/js/Flux.js"></script>
 <script src="/js/microevent.js"></script>
 <script src="/js/index.js"></script>
 </body>
</html>

At first, we enqueued Bootstrap 4. Then, we enqueued the React, React Router, Flux,
and MicroEvent libraries. Finally, we enqueued the index.js file, in which we will
put our application code.

The appContainer element is the one inside which all of the UI will be displayed.

Defining routes
Here is the code to define routes for our application. Compile it using Babel and
place it in the index.js file:

var Router = ReactRouter.Router;
var Route = ReactRouter.Route;
var Link = ReactRouter.Link;
var BrowserHistory = ReactRouter.browserHistory;

var Routes = (
 <Router history={BrowserHistory}>
 <Route path="/" component={FeedList}></Route>
 <Route path="/feed/:id" component={Feed}></Route>
 <Route path="submit" component={SubmitFeed}></Route>
 <Route path="*" component={NotFound}/>
 </Router>
)

ReactDOM.render(Routes,
document.getElementById("appContainer"));

We've defined four routes here, as follows:

1. The first route is for the home page. When a user visits the home page,
we will display a list of feed URLs that the user has added.

2. The second route is for displaying the content of a feed.

Chapter 11

[233]

3. The third route is for adding a new feed URL.
4. Finally, if nothing matches, then the fourth route displays a

not found message.

Creating dispatcher, actions, and stores
Let's create the dispatcher, a store that lets us manage feed URLs, and the FeedList
component for displaying the feed URLs on the home page. To create all these,
compile and place the following code in the index.js file:

var AppDispatcher = new Flux.Dispatcher();

var FeedStore = {
 addFeed: function(url){
 var valid = /^(ftp|http|https):\/\/[^ "]+$/.test(url);

 if(valid)
 {
 var urls = localStorage.getItem("feed-urls");
 urls = JSON.parse(urls);

 if(urls == null)
 {
 urls = [url];
 }
 else
 {
 urls[urls.length] = url;
 }

 localStorage.setItem("feed-urls", JSON.stringify(urls));

 this.trigger("valid-url");
 }
 else
 {
 this.trigger("invalid-url");
 }
 },
 getFeeds: function(){
 var urls = localStorage.getItem("feed-urls");
 urls = JSON.parse(urls);

Building an RSS Reader Using React and Flux

[234]

 if(urls == null)
 {
 return [];
 }
 else
 {
 return urls;
 }
 }
}

MicroEvent.mixin(FeedStore);

var Header = React.createClass({
 render: function(){
 return(
 <nav className="navbar navbar-light bg-faded">
 <ul className="nav navbar-nav">
 <li className="nav-item">
 <Link className="nav-link" to="/">Home</Link>

 <li className="nav-item">
 <Link className="nav-link" to="submit">Add</Link>

 </nav>
)
 }
})

var FeedList = React.createClass({
 getInitialState: function(){
 return {
 urls: FeedStore.getFeeds()
 };
 },
 render: function(){
 var count = 0;
 return(
 <div>
 <Header />
 <div className="container">

Chapter 11

[235]

 {
 this.state.urls.map(function(url)
 {
 count++;
 return <Link to={"/feed/" +
 count}>{url}</Link>;
 })}

 </div>
 </div>
)
 }
})

This is how the code works:

1. First, we create a dispatcher for our app.
2. Then, we create a store named FeedStore, which provides us methods to

add or retrieve a list of feed URLs. If we try to add an invalid URL, it sends
out an invalid-url event; otherwise, it sends out a valid-url event so
that we can display a message to the user indicating whether the URL was
successfully added. This store stores and retrieves feed URLs from the
HTML5 local storage.

3. Then, we call MicroEvent.mixin by passing FeedStore as an argument so
that the store is able to trigger events and others can bind to those events.

4. Then, we create a Header component, which will be our application header.
The Header component currently displays only two links: the root path and
the path to add a new URL.

5. Finally, we create the FeedList component. The getInitialState method
of the component retrieves the list of feed URLs from FeedStore and
returns them to be displayed. Note that we are not using the <a> tag while
displaying the list; instead, we are using the Link component. The ID of a
feed is its position in the array stored in local storage.

Now, let's create the SubmitFeed component, which lets us add a new feed URL and
then displays whether the URL has been added successfully. Here is the code for it.
Compile and place it in the index.js file:

var SubmitFeed = React.createClass({
 add: function(){
 AppDispatcher.dispatch({
 actionType: "add-feed-url",
 feedURL: this.refs.feedURL.value

Building an RSS Reader Using React and Flux

[236]

 });
 },
 componentDidMount: function()
 {
 FeedStore.bind("invalid-url", this.invalid_url);
 FeedStore.bind("valid-url", this.valid_url);
 },
 valid_url: function()
 {
 alert("Added successfully");
 },
 invalid_url: function()
 {
 alert("Please enter a valid URL");
 },
 componentWillUnmount: function()
 {
 FeedStore.unbind("invalid-url", this.invalid_url);
 FeedStore.unbind("valid-url", this.valid_url);
 },
 render: function(){
 return(
 <div>
 <Header />
 <div className="container">

 <form>
 <fieldset className="form-group">
 <label for="formGroupURLInput">Enter URL</label>
 <input type="url" className="form-control"
 id="formGroupURLInput" ref="feedURL"
 placeholder="Enter RSS Feed URL" />
 </fieldset>
 <input type="button" value="Submit" className="btn"
 onClick={this.add} />
 </form>
 </div>
 </div>
)
 }
})

Chapter 11

[237]

AppDispatcher.register(function(action){
 if(action.actionType == "add-feed-url")
 {
 FeedStore.addFeed(action.feedURL);
 }
})

Here is how this code works:

1. The SubmitFeed component displays a form with a text field and a button to
submit it.

2. When a user clicks on the Submit button, the add handler is invoked. The
add handler dispatches an action with the add-feed-url action type and the
URL to be added as the data.

3. As soon as the component is mounted, we start listening to the invalid-url
and valid-url events from FeedStore. If a URL is added successfully, we
display a success message; otherwise, we get a failure message.

4. And, as soon as the component is unmounted, we stop listening to
events from FeedStore. We should unbind, or we will end up with
multiple listeners.

5. Finally, we register an action callback that checks for the add-feed-url
action type and invokes the addFeed method of the FeedStore store.

Now, let's create the Feed component, which displays the content of an individual
feed URL. Here's the code for it. Compile and place it in the index.js file:

var SingleFeedStore = {
 get: function(id){
 var urls = localStorage.getItem("feed-urls");
 urls = JSON.parse(urls);

 var request_url = urls[id - 1];

 var request;
 if(window.XMLHttpRequest)
 {
 request = new XMLHttpRequest();
 }
 else if(window.ActiveXObject)
 {
 try
 {

Building an RSS Reader Using React and Flux

[238]

 request = new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (e)
 {}
 }
 }

 request.open("GET", "/feed?url=" +
 encodeURIComponent(request_url));

 var self = this;

 request.addEventListener("load", function(){
 self.trigger("feed-fetched", request.responseText);
 }, false);

 request.send(null);
 }
}

MicroEvent.mixin(SingleFeedStore);

var Feed = React.createClass({
 getInitialState: function(){
 return {
 data: []
 };
 },
 componentDidMount: function(){
 SingleFeedStore.get(this.props.params.id);
 SingleFeedStore.bind("feed-fetched", this.update);
 },
 update: function(data){
 var data = JSON.parse(data);
 this.setState({data: data.rss.channel.item});
 },
 componentWillUnmount: function(){
 SingleFeedStore.unbind("feed-fetched", this.update);
 },
 render: function(){
 return(

Chapter 11

[239]

 <div>
 <Header />
 <div className="container">

 {this.state.data.map(function(post) {
 return {post.title}</
li>;
 })}

 </div>
 </div>
)
 }
})

Here's how it works:

1. At first, we create SingleFeedStore, which has a get method that returns
the content of a feed URL. It uses our server route to fetch the content of the
URL. Once the content has been fetched, it triggers the feed-fetched event
with that content.

2. Then, we called MicroEvent.mixin by passing SingleFeedStore as an
argument so that the store is able to trigger events and others can bind to
those events.

3. Then, in the getInitialState method of the Feed component, we return
an empty data array, and inside the componentDidMount method, we make
a request to SingleFeedStore as the get method of SingleFeedStore gets
the data asynchronously.

4. In componentDidMount, we bind an event handler for the feed-fetched
event and update the view as soon as the event occurs.

5. As usual, we unbind the event handler as soon as the component
is unmounted.

Finally, let's create the NotFound component. Here is the code for it. Compile and
place it in the index.js file:

var NotFound = React.createClass({
 render: function(){
 return(
 <h1>Page Not Found</h1>
)
 }
})

Building an RSS Reader Using React and Flux

[240]

Testing the application
We are now done with building the application. To run the webserver, inside the
Initial directory, run node app.js. Now, in a browser, open localhost:8080.
You will only be able to see the header as we haven't added anything yet. Here is
how it should look:

Now, click on the Add menu item. You would see a form like this:

Enter a valid feed URL, such as http://qnimate.com/feed/, and click on Submit.
Now, go back to the home page, and you will see this output:

http://qnimate.com/feed/

Chapter 11

[241]

Now, click on the URL to see the content of the feed. The output will be something
like this:

Clicking on any of the titles will open the URL in the same tab.

Summary
In this chapter, we learned how to build a single page application using React and
Flux. We also explored many libraries, such as xml2json, Flux.js, MicroEvent.js,
and React Router. Afterwards, we built a fully operational RSS feed reader.

You can now go ahead and add new things to the app, such as real-time feed
updates and notifications.

[243]

New Features of Angular 2
Angular 1 was based on the MVC architecture whereas Angular 2 is based on a
components-and-services architecture. Angular 1 and Angular 2 are completely
different in terms of architecture and APIs, so previous knowledge of Angular 1
is unlikely to help you much in learning Angular 2. In this chapter, we will learn
Angular 2 without comparing it with Angular 1 as doing that will create confusion
and is unnecessary. Even if you don't have knowledge about Angular 1, you can
continue with this chapter.

We will cover the following topics:

• Web components
• The Angular 2 architecture
• Template language
• Component inputs and outputs
• The component life cycle
• Events
• Forms
• Services

And much more...

The Angular 2 architecture
Angular 2 is a framework for building the client side of web applications, based on a
services-and-components architecture.

New Features of Angular 2

[244]

An Angular 2 application is composed of a view and various services. Services are
simple JavaScript objects that hold application logic and state. Services should be
reusable. Views consume services, and services can also interact with each other.

Views and services are loosely coupled so that an Angular 2 view can be used with
any other architecture, such as Flux. Similarly, services can be used with any other
view, such as React.

Angular 2 views are based on component-oriented architecture. In component-
oriented architecture, the application UI is divided into reusable components. A
component has a UI with code to update the UI and handle user actions on the
UI. A custom tag is associated with a component, and whenever the custom tag
appears, a new instance of the component is created and rendered. So, we can say
that component-oriented architecture is architecture for the view of an application.
Actually, the components consume the services.

In the previous two chapters, we studied React, which is also based
on component-oriented architecture, since with React, we build an
application as a set of components.

Here is a diagram from the official Angular 2 website (https://angular.io) that
shows the complete architecture of Angular 2:

Property
Binding

Event
Binding

Module
Component

{}

Module
Service

{}

Module
value

3.14.15

Module
Fn
λ

Injector

Service

{ }
Component

{ }

Metadata

Template

<>

Metadata

Directive
{}

Here, you can see that the UI of a Component is defined using a Template.
Templates are written using template HTML, that is, a combination of HTML and
many other tokens. A component also holds the UI state and event handlers of
the UI.

https://angular.io

Chapter 12

[245]

We shouldn't store application logic and state inside a component, as it will have
an impact on code reusability and cause issues while developing large and complex
apps. Application state and logic should be stored in services.

Angular 2 only implements one-way data binding. This makes large and complex
apps easier to debug.

Services are injected into specific components that need them, and not all
the components.

Introducing web components
Before we get into web components, you need to know why we are learning about
them. Well, we are learning about web components because Angular 2 components
utilize shadow DOM and templates, which are a part of web components.

In a nutshell, web components are a collection of four different browser
specifications that enable the creation of reusable components in web pages. These
four specifications are HTML imports, shadow DOM, templates, and custom
elements. They can be used together or separately.

Web components provide native implementation of component-oriented
architecture. A component created using web components is called a web
component as well.

Before we learn about web components, let's consider a project for demonstration
purposes. Create a directory named web-components, and then create a file named
index.html in it. Web components have pretty poor browser support, so let's
download webcomponents.js polyfill. Download the webcomponents.js file
from https://github.com/webcomponents/webcomponentsjs and place it in the
web-components directory.

Now, place this code in the index.html file:

<!doctype html>
<html>
 <head>
 <title>Web Components Demo</title>
 <script src="webcomponents.js"></script>
 </head>
 <body>
 <script>
 //place JavaScript code here
 </script>
 </body>
</html>

https://github.com/webcomponents/webcomponentsjs

New Features of Angular 2

[246]

Let's now look at an overview of shadow DOM, templates, and custom elements by
building a component to display a card that has an image, title, and description.

Templates
Templates are used to define reusable code. A template is defined using the
<template> tag. Code for the template is placed inside this tag. We can place any
tag, such as <script> and <style>.

The code inside the <template> tag is only parsed, not rendered.

Here is an example of how to create a template. Place this code in the body tag:

<template id="cardTemplate">
 <style type="text/css">
 .container
 {
 width: 250px;
 float: left;
 margin-right: 10px;
 }

 img
 {
 width: 100%;
 }
 </style>
 <div class="container">

 <div>
 <h3></h3>
 <p></p>
 </div>
 </div>
</template>

Here, the template holds the UI code for the card component. Now, if you open the
index.html file in a browser, you won't see anything because the <template> tag is
only parsed, not rendered.

Chapter 12

[247]

Custom elements
Custom elements let us define new types of HTML elements (that is, new types
of HTML tags). When we use a tag name that's not recognized by the browser, the
browser simply treats it like a tag. But when we register a custom tag, it gets
recognized by the browser. It can inherit other elements, lets us perform different
operations on different stages of the element lifecycle, and much more.

Let's create a custom element for our component. Wherever the tag appears, a new
instance of the component will be displayed.

Here is the code to display the custom element. Place it in the <body> tag:

<custom-card data-img="http://placehold.it/250x250" data-
title="Title 1" data-description="Description 1" is="custom-
card"></custom-card>
<custom-card data-img="http://placehold.it/250x250" data-
title="Title 2" data-description="Description 2"></custom-
card>

We have to use the - character in the custom element name. This is compulsory
because this restriction allows the parser to distinguish custom elements from
regular elements and ensures forward compatibility when new tags are added to
HTML. Here, we are passing properties of the component as data attributes.

Now, let's define <custom-card> as a custom element and place the template code
inside the tag whenever a new instance of <custom-card> is created. To do that,
place this code in the <script> tag:

var customCardProto = Object.create(HTMLElement.prototype);
customCardProto.createdCallback = function(){
 var template = document.querySelector("#cardTemplate");
 template.content.querySelector("img").src =
 this.getAttribute("data-img");
 template.content.querySelector("h3").innerHTML =
 this.getAttribute("data-title");
 template.content.querySelector("p").innerHTML =
 this.getAttribute("data-description");

 var clone = document.importNode(template.content, true);
 this.appendChild(clone)
}
var customCard = document.registerElement("custom-card", {
 prototype: customCardProto
});

New Features of Angular 2

[248]

Here is how the code works:

• By default, custom elements inherit methods and properties of HTMLElement.
• To register a custom element, we need to use the document.

registerElement method. The first argument is the custom tag name and
the second argument is an optional object. This optional object can take
a property called prototype. The prototype property defines the HTML
element it inherits, that is, the properties and methods of the HTML element
it inherits. By default, it's assigned to Object.create(HTMLElement.
prototype).

• We can also add new properties and methods to our custom element
by adding new properties and methods to the object assigned to the
prototype property.

• Here, we've added a method called createdCallback, which is invoked
whenever an instance of a custom element is created, that is, either an
instance created using JavaScript or HTML.

• Inside createdCallback, we are retrieving our template and setting the
image source, title, and description and then appending it to the custom
element by creating a clone of it, as many custom elements will share the
same template.

Now, if you open index.html in a browser, you will see this output:

Chapter 12

[249]

Shadow DOM
Shadow DOM allows HTML elements to get a new kind of node called a shadow
root associated with them. An element that has a shadow root associated with it is
called a shadow host. The content of a shadow host isn't rendered; the content of
the shadow root is rendered instead. A shadow root can have another shadow root
below it.

The benefit of shadow DOM is that CSS styles defined inside a shadow root won't
affect its parent document, and CSS styles defined outside the shadow root will
not affect the elements inside the shadow root. This is useful to define styles
specific to the components. In short, we can say that shadow DOM provides
style encapsulation.

Style encapsulation is not the only benefit of shadow DOM. The HTML inside the
shadow root is protected from accidental modification from JavaScript. We can still
inspect the shadow root in browser developer tools.

Many native element, such as <video> and <audio>, have a shadow root, but when
you inspect it, you won't see the shadow root. Browsers by default hide the shadow
roots of these elements. To see their shadow roots, you need to change browser-
specific settings.

Let's modify the previous custom element code to render the template inside shadow
DOM. Replace the previous createdCallback method with this one:

customCardProto.createdCallback = function(){
 var template = document.querySelector("#cardTemplate");
 template.content.querySelector("img").src =
 this.getAttribute("data-img");
 template.content.querySelector("h3").innerHTML =
 this.getAttribute("data-title");
 template.content.querySelector("p").innerHTML =
 this.getAttribute("data-description");

 var clone = document.importNode(template.content, true);

 var shadow = this.createShadowRoot();

 shadow.appendChild(clone);
}

Here, instead of appending the template code directly to the custom element,
we created a shadow root using createShadowRoot and appended the template
code to it.

New Features of Angular 2

[250]

Setting up an Angular 2 project
Angular 2 code can be written in JavaScript, TypeScript, or Dart. In case you
are writing Angular 2 code in TypeScript or Dart, you will need to transpile the
code to JavaScript before serving to the client. We will use JavaScript to write
Angular 2 code.

Create a directory named angular2-demo. Then, inside the directory, create the app.
js and package.json files. Then, create a directory named public, and inside the
directory, create four more directories named html, js, componentTemplates,
and componentStyles. Now, create a file named index.html and place it in
the html directory.

Then, download angular2-polyfills.js, Rx.umd.js, and angular2-all.umd.
js from https://cdnjs.com/libraries/angular.js/ and place them in the
angular2-demo/js directory. These files are what they sound like. You can also
enqueue the CDN links directly if you want to.

Inside the index.html file, place this starting code:

<!doctype html>
<html>
 <head>
 <title>Angular 2 Demo</title>
 </head>
 <body>

 <script src="/js/angular2-polyfills.js"></script>
 <script src="/js/Rx.umd. js"></script>
 <script src="/js/angular2-all.umdn.js"></script>
 <script>
 //App code here
 </script>
 </body>
</html>

Inside the app.js file, place this code:

var express = require("express");
var app = express();

app.use(express.static(__dirname + "/public"));

app.get("/", function(httpRequest, httpResponse, next){
 httpResponse.sendFile(__dirname + "/public/html/index.html");
})

app.listen(8080);

https://cdnjs.com/libraries/angular.js/

Chapter 12

[251]

This is the server-side code. It's self-explanatory.

Now, in the package.json file, place this code and run npm install to download
the express package:

{
 "name": "Angular2-Demo",
 "dependencies": {
 "express": "4.13.3"
 }
}

To start the server, run node app.js. Then, open the app using localhost:8080 as
the address in a browser.

Angular 2 fundamentals
An Angular 2 application is completely split into components. Technically, an
Angular 2 component is a reusable custom tag that is mutable and encapsulated with
an embedded state, that is, changes to the state or properties will mutate the UI.

Remember that Angular 2 doesn't register the custom tag name as
a custom element.

All the components of the application are arranged in a tree structure, with a
component as the root node.

Here is an example of how to create a component. It creates a card component that
displays an image, title, and description. Place this code in the <script> tag:

var Card = ng.core.Component({
 selector: "card",
 inputs: ["src", "title", "desc"],
 templateUrl: "templates/card-template.html",
 styleUrls: ["templateStyles/card-style.css"]
})
.Class({
 constructor: function(){
 }
})

New Features of Angular 2

[252]

Then, create a file named card-template.html, and place it in the
componentTemplates directory. Place this code in the file:

<style>
 .container
 {
 width: 250px;
 float: left;
 margin-right: 10px;
 }

 img
 {
 width: 100%;
 }
</style>
<div class="container">

 <div>
 <h3>{{title}}</h3>
 <p>{{desc}}</p>
 </div>
</div>

After that, create a file named card-style.css and place it in the componentStyles
directory. Place this code in the file:

.container
{
 width: 250px;
 float: left;
 margin-right: 10px;
}

img
{
 width: 100%;
}

Chapter 12

[253]

This is how these three code snippets work:

• A component needs to be created by chaining Component and Class methods
that belong to an ng.core object.

• The Component method takes a configuration object with various properties,
whereas the Class method takes an object with component lifecycle
methods, constructors, and UI action handlers.

• Here, the configuration properties we've provided are selector, inputs,
templateUrl, and styleUrls. The selector property is used to define the
custom tag for the component. The inputs property is used to define the
attributes that the custom tag takes. The templateUrl property is used to
define the file containing the template of the component. You can also use
template if you want to inline the template code. Finally, styleUrls is used
to define the CSS files containing the style for the component. You can also
use the styles property to inline CSS code, or you can define CSS using a
<style> tag inside the template itself. CSS defined in any of these three
ways won't affect other components, that is, it's encapsulated to the
component itself.

• In the Class method, we will have to provide the constructor method even
if it does nothing. It's invoked during the construction of a new instance of
the component. By construction of the component, I mean the construction
of the component in memory—not resolving attributes, resolving its
children, rendering its view, and so on. The primary use of the constructor
method is to inject services into the component. Services cannot be injected
automatically as we may sometimes need to initialize services for every
component, and Angular is unaware of how to do this. The constructor
method has access to the state of the component but not its properties. Here,
we shouldn't do any heavy work or something else that would slow down
or cause the construction of the component to fail. constructor is not a
component lifecycle method.

• Then, we have the component template code. In this template file, we
are simply rendering the properties passed to the component. To render
anything that's in the component state, we need to use the {{}} token.

New Features of Angular 2

[254]

Let's create another component called Cards, which displays a list of cards. It gets
information about cards from a service.

Place this code in the <script> tag of the index.html file:

var CardsService = ng.core.Class({
 constructor: function() {
 },
 getCards: function() {
 return [{
 src: "http://placehold.it/350x150",
 title: "Title 1",
 desc: "Description 1"
 },
 {
 src: "http://placehold.it/350x150",
 title: "Title 2",
 desc: "Description 2"
 },
 {
 src: "http://placehold.it/350x150",
 title: "Title 3",
 desc: "Description 3"
 }]
 }
});

var Cards = ng.core.Component({
 selector: "cards",
 viewProviders: [CardsService],
 directives: [Card],
 templateUrl: "componentTemplates/cards-template.html"
}).Class({
 constructor: [CardsService, function(cardsService){
 this.getCards = cardsService.getCards;
}],
 ngOnInit: function(){
 this.cards = this.getCards();
 }
})

Chapter 12

[255]

var App = ng.core.Component({
 selector: "app",
 directives: [Cards],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){

 }
})

ng.platform.browser.bootstrap(App);

Now, create a file named cards-template.html in the componentTemplates
directory and place this code in it:

<card *ngFor="#card of cards" title="{{card.title}}"
src="{{card.src}}" desc="{{card.desc}}"></card>

Now, create a file named app-template.html in the componentTemplates directory
and place this code in it:

<cards></cards>

Now, in the <body> tag of the index.html file, place this code:

<app></app>

Here is how these four code snippets work:

• To create a service, we need to use the ng.core.Class method. It takes
an object with the constructor method and other methods or properties
that the service exposes. While injecting the service into other services or
components, a new instance of the service is created and injected. While
creating a new instance of a service, the constructor method is called. We
have to provide this method even if it doesn't do anything. The primary
purpose of this method is to inject services that this service depends on. Here,
our CardsService method is not dependent on any other service, so we
have no code inside the constructor method. Then, we defined a getCards
method, which returns data of three different cards to display.

New Features of Angular 2

[256]

• Then, we created a Cards component. It takes the data from CardsService
and renders a Card component for each card data. While creating the Cards
component, we provide viewProviders and directives properties to the
configuration object. viewProviders is the list of services the component
is dependent on, and directives is the list of other components this
component renders. Here, you can see that instead of directly assigning a
function to the constructor property, we are assigning an array with a list
of services the component depends upon and the last array item as the actual
function. This is the format of injecting services into components. Inside the
constructor method, we store references to the methods or properties of
the service that the component needs, that is, we can use services inside the
constructor method. We will learn more about viewProviders later on.
The this keyword in any of the methods passed to the Class method points
to the state of the component. After a component instance has been created,
whenever the component state changes, the template bindings are updated.
We have another method here, called ngOnInit. It's a lifecycle method that's
invoked after a new instance of the component has been created and its
attributes resolved. Inside this, we call the getCards method and store the
returned value inside the cards property of the state. Note that the attributes
passed to a component tag are accessible using the this keyword after the
component instance has been created.

• Inside the template of CardsComponent, we are using the *ngFor directive to
display the cards. We will learn more about directives later.

• Then, we create an App component, which acts as the root of our component.
Inside this component, we are displaying the Cards component.

• Finally, we initialize the application. An Angular 2 application is initialized
explicitly. While initializing it, we need to provide a reference to the root
component. This is done to ensure that applications are composed of nested
components all the way down. The root component is the one that's added to
the <body> tag. Adding tags of other components to the body tag will not do
anything.

Now, if you refresh your localhost:8080 page in your browser, you will see
this output:

Chapter 12

[257]

Styling components and shadow DOM
Earlier, we saw that there are three ways of defining styles specific to components
(styles encapsulated in the component template scope). A component's CSS doesn't
even affect the components it owns.

Angular 2 doesn't use shadow DOM by default; instead, it uses a different technique
to achieve style encapsulation. This is due to the lack of browser support.

By default, Angular 2 modifies the CSS selector in such a way that it only targets the
elements in the component, and it then places the CSS in the <head> tag of the page.
If you inspect our current app using browser developer tools, you will see this:

New Features of Angular 2

[258]

Here, you can see that the CSS has been modified and inserted into the <head> tag.

To force Angular 2 to use shadow DOM, we need to assign the encapsulation
property of the component configuration object to ng.core.ViewEncapsulation.
Native. By default, it's assigned to ng.core.ViewEncapsulation.Emulated.

When you inspect the app after assigning the encapsulation property of the Card
and Cards components to ng.core.ViewEncapsulation.Native, you will see
something like this:

Chapter 12

[259]

Here, you can see that shadow DOM was used to achieve style encapsulation.

In case you don't want style encapsulation for a component, you can
assign the encapsulation property to ng.core.ViewEncapsulation.
None. In this case, all of the CSS will be placed directly in the <head> tag.

Angular 2 change detection
Change detection is the process of detecting component state change. The state of
a component is stored and manipulated using the this keyword. Therefore, there
is no direct way for Angular 2 to detect when the state changes. So, Angular 2 uses
complex algorithms and third-party libraries to detect state changes.

The first thing Angular 2 does for detecting state changes is that it pretends that all
the changes happen asynchronously. Then, it uses the zone.js library to monitor
browser events, timers, AJAX requests, WebSockets, and other asynchronous things
that are supported by zone.js.

Now, whenever any of these asynchronous activities takes place, it checks everything
that could change, including object properties and array elements of the this
keyword of all the components from the root node; if any change is detected, then
the template bindings of the component are updated. Angular 2 doesn't simply re-
render the whole component. Instead, it checks for the bindings that have changed
and selects and updates them specifically.

Some components can have a lot of state data, and checking the state for every
asynchronous operation will unnecessarily impact app performance if their state
has not changed. Therefore, Angular 2 provides an option to mark such kinds of
components so that it does not check their states unless the component itself tells
Angular 2 to check its state during the next detection cycle, that is, when the next
asynchronous activity occurs. Let's look at an example to demonstrate this.

Place this code above the App component code in the <script> tag of the index.
html file:

var SampleComponent1 = ng.core.Component({
 selector: "sampleone",
 template: "{{value}}",
 viewProviders: [ng.core.ChangeDetectorRef],
 changeDetection: ng.core.ChangeDetectionStrategy.Detached
}).Class({

New Features of Angular 2

[260]

 constructor: [ng.core.ChangeDetectorRef, function(cd){
 this.cd = cd;
 }],
 ngOnInit: function(){
 this.value = 1;
 setInterval(function(){
 this.value++;
 this.cd.markForCheck();
 }.bind(this), 2000)
 }
})

Then, add SampleComponent1 to the directives array of the App component.
So now, the App component's code should be this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){
 }
})

Now, add this code to the end of the app-template.html file:

<br style="clear: both">
<sampleone></sampleone>

Here is how these three code snippets work:

1. In this example, we are displaying a value that gets incremented every 2
seconds and the template is re-rendered to display the updated value.

2. At first, we create a component called SampleComponent1. It simply
displays value. We have set the changeDetection property to ng.core.
ChangeDetectionStrategy.Detached, which tells Angular 2 to not check
its state change. By default, the changeDetection property is assigned to
ng.core.ChangeDetectionStrategy.Default, which tells Angular 2 to
check its state change during every change-detection cycle. We then inject the
ng.core.ChangeDetectorRef service into the component, which provides
various APIs related to change detection. And then, in the ngOnInit method,
we increment the value of value every 2 seconds, after which we call
the markForCheck method of ng.core.ChangeDetectorRef, which tells
Angular 2 to check for changes in the state of the component during the
next change-detection cycle. markForCheck will make Angular 2 check for a
change in state for the next detection cycle only, not for the ones after that.

3. Then, we simply display SampleComponent1 in the App component.

Chapter 12

[261]

If a component depends only on its inputs and/or UI events or if you want
a component's state change, check only whether its inputs have changed or
events have been fired; then, you can assign changeDetection to ng.core.
ChangeDetectionStrategy.OnPush.

If at any time you want to force a change-detection cycle
instead of waiting for an asynchronous operation to happen,
you can call the detectChanges method of the ng.core.
ChangeDetectorRef service.

Understanding view children and content
children
Elements present inside the tags of a component are called content children, and
elements present inside the template of a component are called view children.

To display the content children of a component in the component's view, we need to
use the <ng-content> tag. Let's look at an example of this.

Place this code above the App component's code:

var ListItem = ng.core.Component({
 selector: "item",
 inputs: ["title"],
 template: "{{title}} | <ng-content></ng-content>",
}).Class({
 constructor: function(){}
})

var List = ng.core.Component({
 selector: "list",
 template: "<ng-content select='item'></ng-content>"
}).Class({
 constructor: function(){}
})

Now, change the App component's code to this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

New Features of Angular 2

[262]

To the end of the app-template.html file, add this code:

<list>
 <item title="first">first</item>
 <item title="second">second</item>
</list>

The output of this code is as follows:

This is how these three code snippets work:

1. In the App component's template file, we add a <list> tag, which displays
a list. And inside its opening and closing tags, we define the individual list
items that it should display.

2. We create ListItem and List components that are bound to <list> and
<item> tags, respectively.

3. We add List component to the directives property of the App component,
not List, because the <list> tag is present in the template of the App
component, and the App component is responsible for creating its instances.

4. The App component looks for the <ng-content> tag in the template of the
List component and renders the List component instances there.

5. <ng-content> takes an optional select attribute that's assigned to a CSS
selector that indicates which elements of the content children we want to
display. There can be multiple <ng-content> tags in a template. If the
select attribute has not been provided, then all the content children will be
rendered. Here, the select attribute is not required; we are using it just for
demonstration.

Chapter 12

[263]

Getting the reference of components of
content children and view children
To get access to the reference of components of view children or content children,
we can use the ng.core.ContentChildren, ng.coreViewChildren, ng.core.
ContentChild, and ng.core.ViewChild constructors. The difference between
ng.core.ContentChildren and ng.core.ContentChild is that the first one returns
all the references of a given component whereas the second one returns the reference
of the first occurrence. The same difference also stands for ng.core.ViewChild and
ng.core.ViewChildren.

Here is an example to demonstrate ng.core.ContentChildren. Replace the code for
the List component with this:

var List = ng.core.Component({
 selector: "list",
 template: "<ng-content select='item'></ng-content>",
 queries: {
 list_items: new ng.core.ContentChildren(ListItem)
 }
}).Class({
 constructor: function(){},
 ngAfterContentInit: function(){
 this.list_items._results.forEach(function(e){
 console.log(e.title);
 })
 }
})

The output of this code in the console is as follows:

first

second

New Features of Angular 2

[264]

Most of this code is self-explanatory. What's new is the ngAfterContentInit
lifecycle method. It's triggered after the content children have been initialized.
Similarly, if we want to access the view children, we need to use the
ngAfterViewInit lifecycle method.

Note that we only have access to the state of the components—nothing else.

Local template variables
We can assign a local template variable to a content child or view child. Local
template variables let us get the reference of any element of the content children
or view children, that is, component references or HTML element references.

To assign a local template variable to an element of the view children or content
children, we need to place #variable_name in the opening tag.

Here is an example to demonstrate how local template variables work. Place this
code above the App component:

var SampleComponent2 = ng.core.Component({
 selector: "sampletwo",
 template: "<input type='text' #input />",
 queries: {
 input_element: new ng.core.ViewChild("input")
 }
}).Class({
 constructor: function(){},
 ngAfterViewInit: function(){
 this.input_element.nativeElement.value = "Hi";
 }
})

Change the App component's code to this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

And then, add this code to the end of the app-template.html file:

<sampletwo></sampletwo>

Chapter 12

[265]

The output of this code is as follows:

Here is how these three code snippets work:

1. We create a new component named SampleComponent2, which displays an
HTML input text element. We assign the input element to a local template
variable named input.

2. Then, we use the ng.core.ViewChild to get a reference to the element. If
we pass a string to ng.core.ViewChild, ng.core.ViewChildren, ng.core.
ContentChild, and ng.core.ContentChildren, then they will look for the
elements with the same local variable name as the string, and if we pass a
component, they will look for the component, like we saw before.

3. The reference of the components we get from the local template variable is of
the same interface we got before. But for HTML element references, we can
access the real DOM of the element by using the nativeElement property.

Component lifecycle methods
When a component tag appears, Angular 2 creates an instance of a component,
renders it, checks for changes in attributes, checks for changes in state, and destroys
it when it's no longer needed. These steps together form the lifecycle of a component.

Angular 2 lets us register methods that are called at various stages of the
component lifecycle.

Here are the various lifecycle methods provided by Angular 2; lifecycle hooks are
explained in the order they occur:

• ngOnChanges: This is invoked whenever the attributes of a component
change. It's also invoked after the attributes of a component are resolved
for the first time after the creation of a new instance of the component. It's
invoked after the state has been changed due to the attributes but before the
view is updated. This method receives the current and previous values of
the attributes.

• ngOnInit: This is invoked after the first instance of ngOnChanges. It states
that the component has been successfully created and attributes have
been read.

New Features of Angular 2

[266]

• ngDoCheck: This is called during every change-detection cycle and right after
ngOnInit. We can detect and act upon changes that Angular 2 can't or won't
detect on its own. This is invoked after Angular 2 is done checking state
changes for the component and has updated the state if there was any change
in the attributes but before the component view is updated. After this call is
over, the view is rendered, and while rendering it, ngAfterContentInit,
ngAfterContentChecked, ngAfterViewInit, and ngAfterViewChecked
are invoked.

• ngAfterContentInit: This is invoked after content children have been
initialized but not yet rendered, that is, after the ngOnChanges, ngOnInit,
ngDoCheck, ngAfterContentInit, and ngAfterContentChecked methods
of the content children have been called.

• ngAfterContentChecked: This is invoked whenever the change-detection
cycle checks whether the content children have changed as well as right after
ngAfterContentInit. If there is a change, it's invoked before the views
of the content children are updated. Before invoking it, the query results
of ng.core.ViewChildren, ng.core.ContentChildren, and so on are
updated, that is, it's invoked after ngAfterContentChecked of the content
children has been invoked. After this call, the content children views
are updated.

• ngAfterViewInit: This is invoked after view children have been initialized
but not yet rendered, that is, after the ngOnChanges, ngOnInit, ngDoCheck,
ngAfterContentInit, ngAfterContentChecked, ngAfterViewInit, and
ngAfterViewChecked methods of the view children have been called.

• ngAfterViewChecked: This is invoked whenever the change-detection
cycle checks whether the view children have changed as well as right after
ngAfterViewInit. If there is a change, it's invoked before the views of the
view children are updated but after the ngAfterViewChecked methods of the
view children have been invoked.

• ngOnDestroy: This is invoked before a component is destroyed. The
ngOnDestroy method of a component is invoked before the ngOnDestroy
methods of its content children and view children.

Writing templates
We need to use template language to write component templates. Template language
is composed of HTML along with the {}, [], (), [()], *, |, and # tokens. Let's see
what each of these is used for and how to use them.

Chapter 12

[267]

Rendering a value
To simply render a property of the this keyword, we need to use the {{}} token.
Inside these braces, we can simply place the property name.

We can only place expressions inside braces. The expressions we place inside them
look like JavaScript. But there are a few JavaScript expressions that we are not
allowed to use inside these braces. Here they are:

• Assignments (=, +=, -=)
• The new operator
• Chaining expressions with ; or ,
• Increment and decrement operators (++ and --)
• The bitwise operators | and &

Pipes
We can also place pipes in braces. A pipe is a function that accepts an input value
and returns a transformed value. A pipe is represented by the | operator. The final
result of expressions inside braces can be transformed using pipes. There can be as
many pipes in the braces as we want. A pipe can also take parameters.

Angular 2 provides some built-in pipes: date, uppercase, lowercase, currency,
and percent. We can also create our own pipes.

Here is an example of using {{}}. Place this code above the App component:

var SampleComponent3 = ng.core.Component({
 selector: "samplethree",
 template: "{{info.firstname + info.lastname | uppercase}}"
}).Class({
 constructor: function(){
 this.info = {
 firstname: "firstname",
 lastname: " lastname"
 }
 }
})

New Features of Angular 2

[268]

Replace the App component code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

And then, place this in the app-template.html file:

<samplethree></samplethree>

The output of the code is as follows:

Note that the final result of the expression inside the braces is converted
into a string if the final value is not a string.

Handling events
To handle events of elements in a template, we need to use the () operator. Here is
an example of how to handle events. Place this code above the App component code:

var SampleComponent4 = ng.core.Component({
 selector: "samplefour",
 template: "<input (click)='clicked($event)'
 (mouseover)='mouseover($event)' type='button'
 value='Click Me!!!' />"
}).Class({
 constructor: function(){
 this.clicked = function(e){
 alert("Hi from SampleComponent4");
 };

 this.mouseover = function(e){
 console.log("Mouse over event");
 }

 }
})

Chapter 12

[269]

Replace the App component code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

Place this code in app-template.html:

<samplefour></samplefour>

The preceding code is self-explanatory.

Binding state to element attributes
To bind the value of a property of the this keyword to the attribute of an element in
a template, we can simply use {{}}, like this, for example:

<component title="{{title}}"></component>

But if you want to pass an object, this method will not work, as the expression inside
the {{}} token is always converted to a string. Therefore, Angular 2 provides the
[] operator, which enables a component to pass an object through attributes to a
component in its template.

Here is an example to demonstrate this. Place this code above the App
component code:

var SampleComponent5 = ng.core.Component({
 selector: "samplefive",
 inputs: ["info"],
 template: "{{info.name}}"
}).Class({
 constructor: function(){}
})

var SampleComponent6 = ng.core.Component({
 selector: "samplesix",
 directives: [SampleComponent5],
 template: "<samplefive [info]='myInfo'></samplefive>"
}).Class({

New Features of Angular 2

[270]

 constructor: function(){
 this.myInfo = {
 name: "Name"
 }
 }
})

Replace the App component's code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4,
 SampleComponent6],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

Place this code at the end of the app-template.html file:

<samplesix></samplesix>

The output of this code is as follows:

Note that while assigning attributes to an HTML tag, if we assign
an attribute that's not native to the element, we need to prefix the
attribute name using attr.. For example, to assign a value attribute
to a tag, we need to name the attribute attr.value, not
simply value. Otherwise, Angular 2 will throw an error. This is
because while interpreting a template and creating its DOM, Angular
2 sets the attributes by assigning the values to the properties of DOM
elements. So when we use the attr. prefix, it signals Angular 2 to use
setAttribute instead.

Chapter 12

[271]

Two-way data binding
By default, Angular 2 doesn't use two-way data binding. It uses unidirectional
binding but offers the [()] operator for two-way data binding, if needed.

Here is an example to demonstrate [()]. Place this code above the App
component's code:

var SampleComponent7 = ng.core.Component({
 selector: "sampleseven",
 template: "<input [(ngModel)]='name' /><input
 (click)='clicked()' value='Click here' type='submit' />"
}).Class({
 constructor: function(){},
 clicked: function(){
 alert(this.name);
 }
})

Replace the App component code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4,
 SampleComponent6, SampleComponent7],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

Place this code in the app-template.html file:

<sampleseven></sampleseven>

The output of this code is as follows:

Here, enter something in the text field and click on the button. You will see an alert
box with the text field's value.

New Features of Angular 2

[272]

To capture the value of HTML form elements, we need to place ngModel inside the
[()] brackets. We can place an attribute name if we are setting up two-way data
binding between inputs and outputs. We will learn more about outputs later.

Directives
Directives are used to change the DOM based on the state. There are two types of
directives: attribute directives and structural directives. Let's look at each of them.

Attribute directives
An attribute directive changes the appearance or behavior of a DOM element based
on a change in state. ngClass and ngStyle are the built-in attribute directives.
We can also create our own attribute directives.

The ngClass directive is used to add or remove CSS classes from an element
whereas the ngStyle directive is used to set inline styles.

Here is an example of how to use the ngClass and ngStyle directives. Place this
code above the App component's code:

var SampleComponent8 = ng.core.Component({
 selector: "sampleeight",
 template: "<div [ngStyle]='styles' [ngClass]='classes'></div>"
}).Class({
 constructor: function(){
 this.styles = {
 "font-size": "20px",
 "font-weight": "bold"
 }

 this.classes = {
 a: true,
 b: true,
 c: false
 };
 }
})

Chapter 12

[273]

Replace the App component's code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4,
 SampleComponent6, SampleComponent7, SampleComponent8],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

And then, place this code at the end of the app-template.html file:

<sampleeight></sampleeight>

Now, if you inspect the <sampleeight> tag in browser developer tools, you will
see this:

Most of this code is self-explanatory. You can see that the same [] token is also used
for attribute directives. When the [] token is used, Angular 2 first checks to see
whether a built-in attribute directive or custom directive is present with that name,
and if not, it treats it as an attribute.

Structural directives
A structural directive changes the DOM layout by adding or removing DOM
elements. ngIf, ngSwitch, and ngFor are the three built-in structural directives.
We can also create our own custom structural directives.

Here is an example to demonstrate ngIf and ngSwitch. We have already seen an
example of ngFor previously. Place this code above the App component's code:

var SampleComponent9 = ng.core.Component({
 selector: "samplenine",
 templateUrl: "componentTemplates/samplecomponent9-template.html"
}).Class({
 constructor: function(){

New Features of Angular 2

[274]

 this.display1 = true;
 this.display2 = false;
 this.switchOption = 'A';
 }
})

Create a file named samplecomponent9-template.html, and place it in the
componentTemplates directory. Place this code in that file:

<div *ngIf="display1">Hello</div>
<div *ngIf="display2">Hi</div>

 A
 B
 C
 D
 other

Replace the App component's code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4,
 SampleComponent6, SampleComponent7, SampleComponent8,
 SampleComponent9],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

Finally, place this code in the app-template.html file:

<samplenine></samplenine>

The output of this code is as follows:

Chapter 12

[275]

Most of this code is self-explanatory. You can see that we are using the * token for
structural directives. The * token treats the element as a template, that is, it doesn't
render the element but uses it as a template to create the DOM.

Actually, both attribute and structural directives are written using the [] token, but
writing code using structural directives with the [] token makes the code longer.
Therefore, Angular 2 introduced the * token, which makes it easy to write code using
structural directives. Internally, Angular 2 translates the code that uses the * token to
use the [] token. Learn more about it here:

https://angular.io/docs/ts/latest/guide/template-syntax.html#!#star-
template

Outputs
Outputs allow components to emit custom events. For example, if we have a
component that displays a button and we want the parent component to be able to
add an event handler for the click event of the child component, we can achieve this
using outputs.

Here is an example of how to integrate outputs. Place this code above the App
component's code:

var SampleComponent10 = ng.core.Component({
 selector: "sampleten",
 outputs: ["click"],
 template: ""
}).Class({
 constructor: function(){
 this.click = new ng.core.EventEmitter();
 setInterval(function(){
 this.click.next({});
 }.bind(this), 10000)
 }
})

var SampleComponent11 = ng.core.Component({
 selector: "sampleeleven",
 directives: [SampleComponent10],
 template: "
<sampleten
 (click)='clicked($event)'></sampleten>{{value}}"
}).Class({
 constructor: function(){
 this.value = 1;

https://angular.io/docs/ts/latest/guide/template-syntax.html#!#star-template
https://angular.io/docs/ts/latest/guide/template-syntax.html#!#star-template

New Features of Angular 2

[276]

 this.clicked = function(e){
 this.value++;
 }
 }
})

Replace the App component's code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4,
 SampleComponent6, SampleComponent7, SampleComponent8,
 SampleComponent9, SampleComponent11],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

Finally, place this code at the end of the app-template.html file:

<sampleeleven></sampleeleven>

Now, you will start seeing a counter appear on the page.

The outputs property is used to define the events the component emits. We need
to create a property in this keyword with the same name as the output and assign
it to a new instance of ng.core.EventEmitter so that it can emit events. ng.core.
EventEmitter provides observer patterns to objects.

To capture events, we need to use the () token, just like we used it to capture native
UI events.

Note that we need to assign output to a new instance of ng.core.
EventEmitter inside the constructor property, that is, during the
creation of a new instance of the component.

Two-way data binding with inputs and outputs
You can implement two-way data binding between inputs and outputs. For example,
if a parent component passes an attribute to a component of the view children
and the child component notifies the parent component whenever the input value
changes, then instead of using () and [] separately, we can use [()].

Chapter 12

[277]

Here is an example to demonstrate this. Place this code above the App
component's code:

var SampleComponent12 = ng.core.Component({
 selector: "sampletwelve",
 inputs: ["count"],
 outputs: ["countChange"],
 template: ""
}).Class({
 constructor: function(){
 this.countChange = new ng.core.EventEmitter();
 setInterval(function(){
 this.count++;
 this.countChange.next(this.count);
 }.bind(this), 10000);
 }
})

var SampleComponent13 = ng.core.Component({
 selector: "samplethirteen",
 directives: [SampleComponent12],
 template: "
<sampletwelve
 [(count)]='count'></sampletwelve>{{count}}"
}).Class({
 constructor: function(){
 this.count = 1;
 }
})

Replace the App component's code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4,
 SampleComponent6, SampleComponent7, SampleComponent8,
 SampleComponent9, SampleComponent11, SampleComponent13],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

New Features of Angular 2

[278]

Finally, add this code to the end of the app-template.html file:

<samplethirteen></samplethirteen>

Here, the output is same as the previous example. Most of the things are
self-explanatory. The only thing you need to know is that both these code
snippets do the same thing:

<sampletwelve [(count)]='count'></sampletwelve>
<sampletwelve [count]='count' (countChange)=
'count=$event'></sampletwelve>

Understanding providers
A provider tells Angular 2 how to create an instance of a service while injecting it. A
provider is set using the providers or viewProviders properties of a component.

Let's look at an example of how to create providers. Place this code above the App
component's code:

var Service1 = ng.core.Class({
 constructor: function() {
 },
 getValue: function() {
 return "xyz"
 }
});

var Service2 = ng.core.Class({
 constructor: function() {
 },
 getValue: function() {
 return "def"
 }
});

var Service3 = ng.core.Class({
 constructor: function() {
 },
 getValue: function() {
 return "mno"
 }
});

Chapter 12

[279]

var Service4 = ng.core.Class({
 constructor: [Service2, Service3, function(s2, s3) {
 console.log(s2);
 console.log(s3);
 }],
 getValue: function() {
 return "abc"
 }
});

var ServiceTest1 = ng.core.Component({
 selector: "st1",
 viewProviders: [
 ng.core.provide(Service1, {useClass: Service4}),
 ng.core.provide(Service2, {useValue: "def"}),
 ng.core.provide(Service3, {useFactory: function(){
 return "mno";
 }})
],
 template: ""
}).Class({
 constructor: [Service1, function(s1){
 console.log(s1.getValue());
 }]
})

Replace the App component's code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4,
 SampleComponent6, SampleComponent7, SampleComponent8,
 SampleComponent9, SampleComponent11, SampleComponent13,
 ServiceTest1],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

Finally, add this to the end of the app-template.html file:

<st1></st1>

New Features of Angular 2

[280]

This is the console output of the code:

def

mno

abc

This is how it works:

• First, we create four services: Service1, Service2, Service3, and Service4.
They all have a getValue method, which returns a string. Service4 is
dependent on Service2 and Service3.

• Then, we create a component called ServiceTest1. It's dependent on
Service1. In the viewProviders property, we passed an array of providers.
A provider is created using the ng.core.provide method. It takes two
arguments; the first one is the service name, and the second one is the
configuration object, which states how to create an instance of this service.
The useClass property tells Angular 2 to create a instance of this service
when an instance of the service in the first argument is requested. So here,
when an instance of Service1 is required, an instance of Service4 is what
is actually created. Similarly, useValue is used to provide a value, and
useFactory is used to pass control to a function to decide what to return
when a new instance is requested. So here, when an instance of Service2 is
requested, we get the def string, and when Service3 is requested, we get the
mno string.

Earlier in this chapter, we were simply assigning viewProviders to the services
themselves. A service also implements the interface of a provider such that it creates
the instance of the service itself.

If there are multiple providers matching a service, then the latest one overrides the
previous one.

The difference between providers and the
viewProviders property
The viewProviders property allows us to make providers available to the
component's view only, whereas the providers property makes a provider
available to its content children and view children.

Chapter 12

[281]

The providers property creates a service instance only once and provides the same
to whichever component asks for it. We have already seen how viewProviders
works. Let's look at an example of how providers works. Place this code above the
App component's code:

var counter = 1;

var Service5 = ng.core.Class({
 constructor: function(){}
})

var ServiceTest2 = ng.core.Component({
 selector: "st2",
 template: ""
}).Class({
 constructor: [Service5, function(s5){
 console.log(s5);
 }]
})

var ServiceTest3 = ng.core.Component({
 selector: "st3",
 providers: [ng.core.provide(Service5, {useFactory: function(){
 counter++;
 return counter;
 }})],
 directives: [ServiceTest2],
 template: "<st2></st2>"
}).Class({
 constructor: [Service5, function(s5){
 console.log(s5);
 }]
})

Replace the App component's code with this:

var App = ng.core.Component({
 selector: "app",
 directives: [Cards, SampleComponent1, List, ListItem,
 SampleComponent2, SampleComponent3, SampleComponent4,
 SampleComponent6, SampleComponent7, SampleComponent8,
 SampleComponent9, SampleComponent11, SampleComponent13,
 ServiceTest1, ServiceTest3],
 templateUrl: "componentTemplates/app-template.html"
}).Class({
 constructor: function(){}
})

New Features of Angular 2

[282]

Finally, at the end of the app-template.html file, place this code:

<st3></st3>

The console output of this code is as follows:

2

2

Most of the things in this code are self-explanatory. We are using providers instead
of viewProviders. The ServiceTest2 component is dependent on Service5, but
it doesn't have a provider for Service5, so Angular 2 uses the provider provided
by ServiceTest3, as ServiceTest3 is its parent. If ServiceTest3 hadn't had a
provider for Service5, Angular 2 would have gone further above and looked for the
provider in the App component.

The ng.platform.browser.bootstrap method also takes a
second argument, which is a list of providers that is available to all the
components. So, instead of passing providers in the App component,
we can pass them through the ng.platform.browser.bootstrap
method.

Summary
In this chapter, we learned about Angular 2. We saw what components are, how
to write templates, how to create services, and so on. We also learned about web
components and how Angular 2 takes advantage of them. You should now be
comfortable with building Angular 2 applications.

In the next chapter, we will learn how to build an SPA using Angular 2 by building a
complete app.

[283]

Building a Search Engine
Template Using AngularJS 2

To build single page applications (SPAs) using Angular 2, we need to learn how to
implement routing in Angular 2. Angular 2 comes with built-in routing APIs, which
are very powerful, feature rich, and easy to use. In this chapter, we will build a basic
search engine template to demonstrate routing in Angular 2. We won't be building
a complete search engine because that's out of the scope of this book. We will use
Bootstrap 4 to design the search engine template. At the end of this chapter, you will
be comfortable with building SPAs using Angular 2.

In this chapter, we will cover the following topics:

• Routing in Angular 2
• The built-in HTTP client provided by Angular 2
• Generating random textual data using the Chance.js library

Setting up the project
Follow these steps to set up your project:

1. In the exercise files of this chapter, you will find two directories, initial
and final. The final directory contains the final search engine template
whereas the initial directory contains the files to quickly get started with
building the search engine template.

Building a Search Engine Template Using AngularJS 2

[284]

2. In the initial directory, you will find app.js and package.json. In the
package.json file, place this code:
{
 "name": "SearchEngine-Template",
 "dependencies": {
 "express": "4.13.3",
 "chance": "1.0.3"
 }
}

Here, we are listing Express.js and Chance.js as dependencies. Express
will be used to build the web server whereas Chance.js will be used to
generate random textual data to populate the template's search results.

3. Now, run npm install inside the initial directory to download
the packages.
Inside the initial directory, you will find a directory named public, inside
which all the static assets will be placed. Inside the public directory, you
will find the componentTemplates, css, html, and js directories.
Inside the css directory, you will find bootstrap.min.css; index.html
inside the html directory; and finally, index.js, angular2-all.umd.js,
angular2-polyfills.js, and Rx.umd.js inside the js directory.

4. In index.html, place this starting code to load Angular, Bootstrap, and the
index.js file:
<!doctype html>
<html>
 <head>
 <title>Search Engine Template</title>
 <link rel="stylesheet" type="text/css"
 href="/css/bootstrap.min.css">
 </head>
 <body>

 <script src="/js/angular2-polyfills.js"></script>
 <script src="/js/Rx.umd.js"></script>
 <script src="/js/angular2-all.umd.js"></script>
 <script src="/js/index.js"></script>
 </body>
</html>

This code is self-explanatory.

Chapter 13

[285]

5. Now, in the app.js file, place this code:

var express = require("express");
var app = express();

app.use(express.static(__dirname + "/public"));

app.get("/*", function(httpRequest, httpResponse, next){
 httpResponse.sendFile(__dirname +
 "/public/html/index.html");
})

app.listen(8080);

Here as well, most of the code is self-explanatory. We are simply serving
index.html regardless of what the HTTP request path is.

Configuring routes and bootstrapping
the app
In SPA, the routes for our app are defined in the frontend. In Angular 2, we need to
define the paths and a component associated with the path that will be rendered for
that path.

We provide the routes to the root component, and the root component displays the
component bound to the route.

Let's create the root component and routes for our search engine template:

1. Place this code in the index.js file to to create the root components
and routes:
var AppComponent = ng.core.Component({
 selector: "app",
 directives: [ng.router.ROUTER_DIRECTIVES],
 templateUrl: "componentTemplates/app.html"
}).Class({
 constructor: function(){}
})

AppComponent = ng.router.RouteConfig([
 { path: "/", component: HomeComponent, name: "Home" },
 { path: "/search-result", component:
 SearchResultComponent, name: "SearchResult" },

Building a Search Engine Template Using AngularJS 2

[286]

 { path: "/*path", component: NotFoundComponent, name:
"NotFound" }
])(AppComponent);

ng.platform.browser.bootstrap(AppComponent, [
 ng.router.ROUTER_PROVIDERS,
 ng.core.provide(ng.router.APP_BASE_HREF, {useValue : "/" })
]);

2. Now, create a file named app.html in the componentTemplates directory
and place this code in it:
<nav class="navbar navbar-light bg-faded">
 <ul class="nav navbar-nav">
 <li class="nav-item">
 <a class="nav-link"
 [routerLink]="['Home']">Home

</nav>
<router-outlet></router-outlet>

Here is how this code works:

1. At first, we create the root component, called AppComponent. While creating
the root component, we add the ng.router.ROUTER_DIRECTIVES directive to
it, which lets us use the routerLink directive.

2. Then, we use ng.router.RouteConfig to configure the routes for our
application. We are providing an array of routes as an argument to the
ng.router.RouteConfig method. A route consists of a path, component,
and the name of the route. The paths can be static, parameterized, or
wildcard, just like Express route paths. Here, the first route is for the home
page, second for displaying the search result, and finally, the third for
handling invalid URLs, that is, URLs for which routes are not defined. The
ng.router.RouteConfig method returns a function that takes the root
component and attaches the routes to it.

3. We then initialize the application. While initializing the app, we're passing
the ng.router.ROUTER_PROVIDERS provider, which will be used to create
instances of various services related to routing. Also, we are providing a
custom provider, which returns the / character when an instance of the
ng.router.APP_BASE_HREF service is requested. ng.router.APP_BASE_
HREF is used to find the base URL of the app.

Chapter 13

[287]

4. In the AppComponent template, we are displaying a navigation bar. The
navigation bar has an anchor tag that doesn't have an href attribute; instead,
we are using the routerLink directive to assign the redirect link so that
when clicked on, instead of a complete page reload, it only changes the
URL and component. And finally, <router-outlet> is what displays the
component based on the current URL.

Generating random search results
To populate our template, we need to generate some random search result data. For
this, we can use the Chance.js library. We will generate random data on the server
side, not on client side, so that we can later demonstrate how to make an HTTP
request using Angular 2.

Chance.js is available for both client-side and server-side JavaScript. We earlier
downloaded the Chance.js package to use with Node.js. Here is the code to
generate random data. Place it in the app.js file above the /* route so that /*
doesn't override the random data route:

var Chance = require("chance"),
chance = new Chance();
app.get("/getData", function(httpRequest, httpResponse, next){

 var result = [];

 for(var i = 0; i < 10; i++)
 {
 result[result.length] = {
 title: chance.sentence(),
 desc: chance.paragraph()
 }
 }

 httpResponse.send(result);
})

Here, we first create a route for the /getData path, which sends an array of
search results as a response. The route callback uses chance.sentence() to
generate random titles for the search result and chance.paragraph() to
generate a description.

Building a Search Engine Template Using AngularJS 2

[288]

Creating route components
Let's create HomeComponent, SearchResultComponent, and NotFoundComponent.
Before that, let's create a component to display the search form. The search form will
have a textbox and a search button. Follow these steps:

1. Place this code in the index.js file, above the AppComponent code:
var FormComponent = ng.core.Component({
 selector: "search-form",
 directives: [ng.router.ROUTER_DIRECTIVES],
 templateUrl: "componentTemplates/search-form.html",
}).Class({
 constructor: function(){},
 ngOnInit: function(){
 this.searchParams = {
 query: ""
 };

 this.keyup = function(e){
 this.searchParams = {
 query: e.srcElement.value
 };
 };
 }
})

2. Now, create a file named search-form.html in the componentTemplates
directory, and place this code in it:

<div class="m-a-2 text-xs-center">
 <h1>Search for Anything</h1>
 <form class="form-inline m-t-1">
 <input (keyup)="keyup($event)" class="form-control"
 type="text" placeholder="Search">
 <a [routerLink]="['SearchResult', searchParams]">
 <button class="btn btn-success-outline"
 type="submit">Search</button>

 </form>
</div>

Chapter 13

[289]

This is how the code works:

1. At first, we create a component called FormComponent. It uses the
ng.router.ROUTER_DIRECTIVES directive.

2. In the template of the component, we display an HTML form. The form has a
textbox and button.

3. We handle the keyup event of the text input box and store the value in the
searchParams.query property.

4. The button redirects to the SearchResult component. Note that here we
are passing searchParams object to routerLink, which becomes the query
parameter when redirecting.

Now, let's create the HomeComponent component. This component is displayed on
the home page. It displays the search form.

Here is how to create HomeComponent:

1. Place this code in the index.js file, above the AppComponent code:
var HomeComponent = ng.core.Component({
 selector: "home",
 directives: [FormComponent],
 templateUrl: "componentTemplates/home.html",
}).Class({
 constructor: function(){}
})

2. Now, create a file named search-form.html, and place it in the
componentTemplates directory:
<search-form></search-form>

Here, the HomeComponent code is self-explanatory.

3. Now, let's create the SearchResultComponent component. This component
should display the search form and the search result below it. It should
fetch the result by making an HTTP request to the server. Here is the code
for the SearchResultComponent. Place it in the index.js file, above the
AppComponent code:
var SearchResultComponent = ng.core.Component({
 selector: "search-result",
 directives: [FormComponent],
 viewProviders: [ng.http.HTTP_PROVIDERS],
 templateUrl: "componentTemplates/searchResult.html"
}).Class({

Building a Search Engine Template Using AngularJS 2

[290]

 constructor: [ng.router.RouteParams, ng.http.Http,
 function(params, http) {
 this.params = params;
 this.http = http;
 this.response = [];
 }],
 ngOnInit: function(){
 var q = this.params.get("query");
 this.http.get("getData").subscribe(function(res){
 this.response = JSON.parse(res._body);
 }.bind(this));
 }
})

4. Now, create a file named searchResult.html and place it in
componentTemplates. Place this code in the file:

<style>
 ul
 {
 list-style-type: none;
 }
</style>

<div class="container">
 <search-form></search-form>
 <div class="m-a-2 text-xs-center">

 <li *ngFor="#item of response" class="m-t-2">
 <h4>{{item.title}}</h4>
 <p>{{item.desc}}</p>

 </div>
</div>

Chapter 13

[291]

This is how the code works:

1. Here, we are providing the ng,http.HTTP_PROVIDERS provider, which is
used when using the HTTP client service provided by Angular 2. Using the
HTTP client service, we can make HTTP requests.

2. In the constructor property, we are injecting the HTTP service along with
the ng.router.RouteParams service, which is used to obtain the query
parameters of the current URL.

3. In the ngOnInit method, you can see how to make a GET request using
the HTTP service and also how to get the query parameters using the
ng.router.RouteParams service.

4. In the template of the component, we are displaying the fetched search result
using the ngFor directive.

You can learn about the HTTP service provided by Angular 2 at
https://angular.io/docs/ts/latest/guide/server-
communication.html.

Now, let's create NotFoundComponent. Here is the code for that:

1. Place this code in the index.js file, above the AppComponent code:
var NotFoundComponent = ng.core.Component({
 selector: "name-search",
 templateUrl: "componentTemplates/notFound.html"
}).Class({
 constructor: function(){}
})

2. Now, create a file named notFound.html and place it in the
componentTemplates directory. Place this code inside the file:

<div class="container">
 <div class="m-a-2 text-xs-center">
 <h1>The page your are looking for is not found</h1>
 </div>
</div>

The code is self-explanatory.

https://angular.io/docs/ts/latest/guide/server-communication.html
https://angular.io/docs/ts/latest/guide/server-communication.html

Building a Search Engine Template Using AngularJS 2

[292]

Testing the template
To test the template, we will follow these steps:

1. Inside the initial directory, run the node app.js command.
2. Now, in a browser, open the http://localhost:8080/ URL. You should

see this output:

3. Now, type something in the search box and click on the Search button.
You should then see this output:

Chapter 13

[293]

4. Now, enter an invalid path in the address bar. You should be able to see
this output:

Routing life cycle methods
When a path matches a component, Angular 2 activates the component, and when
the path changes, Angular 2 deactivates it. When we say that a component has been
activated, it means that Angular 2 has created an instance of the component, that is,
called the constructor method of the component, whereas when we say a component
has been deactivated, it means the component has been removed from the DOM and
instance is deleted.

The methods of a component that are called while activating or deactivating it are
called routing lifecycle methods.

Here is the list of routing lifecycle methods:

• CanActivate: This hook is invoked before activating the component.
It should return a boolean value or a promise indicating whether to
activate the component.

• routerOnActivate: This method is invoked after the component has
been activated.

• routerCanReuse: This method is invoked to find out whether to reuse the
previous instance of the component when the next URL change is the same
URL again. It should return a boolean value or a promise indicating whether
to reuse. It's invoked only if an instance had been created earlier.

• routerOnReuse: This method is invoked if the component is being reused.
It's called after routerCanReuse.

• routerCanDeactivate: This method is invoked before deactivating the
component. It should return a boolean value or a promise indicating
whether to deactivate the component.

• routerOnDeactivate: This method is invoked after the component has
been deactivated.

Building a Search Engine Template Using AngularJS 2

[294]

Let's look at a code example of the routing lifecycle methods. Replace the
HomeComponent code with this:

var HomeComponent = ng.core.Component({
 selector: "home",
 directives: [FormComponent],
 templateUrl: "componentTemplates/home.html",
}).Class({
 constructor: function(){},
 routerOnActivate: function(){
 console.log("Component has been activated");
 },
 routerCanReuse: function(){
 console.log("Component can be reused");
 return true;
 },
 routerOnReuse: function(){
 console.log("Component is being reused");
 },
 routerCanDeactivate: function(){
 console.log("Component can be deactivated");
 return true;
 },
 routerOnDeactivate: function(){
 console.log("Component has been deactivated");
 }
})

HomeComponent = ng.router.CanActivate(function(){
 console.log("Component can be activated");
 return true;
})(HomeComponent);

Now, visit the home page. There, click on the home button again. Now, type
something in the search box and click on the Search button. This is the console
output you will see:

Component can be activated

Component has been activated

Component can be reused

Component is being reused

Component can be deactivated

Component has been deactivated

Chapter 13

[295]

Production mode versus development
mode
Until now, we have been running Angular 2 in development mode. The difference
between development and production mode is that in development mode, Angular 2
starts change detection immediately after the first run and logs a value has changed
after it was checked error if anything changes between the first and second run. This
helps locate bugs.

To enable production mode, place this code above the ng.platform.browser.
bootstrap() method call:

ng.core.enableProdMode();

Summary
In this chapter, we learned routing in Angular 2 by building a basic search engine
template. Along with learning routing in depth, we also learned about the Angular 2
HTTP client service as well as how to switch to production mode in Angular 2.

You should now be comfortable with building the frontend of any kind of web
application using Angular 2.

[297]

Securing and Scaling Node.js
Applications

It's very important to scale and secure your applications. Scaling and securing are
not one-time tasks. You need to keep making changes to your code as you add new
features to increase application security, and as your application traffic and data
increases, you need to scale your servers. In this chapter, you will learn how to
make Node.js applications more secure and how to scale Node.js applications.
I will be assuming that your are using Express for creating your web server as
it is the most common.

In this chapter, we will cover:

• Application vulnerabilities
• Non-vulnerability attacks
• Various third-party services to protect your application
• Checking security issues in third-party packages
• Techniques of distributing traffic

Common vulnerabilities in applications
According to Wikipedia, a vulnerability is a weakness in the application that allows
an attacker to reduce a system's information assurance. Applications expose different
types of vulnerability.

Let's look at some important vulnerabilities and how to prevent them.

Securing and Scaling Node.js Applications

[298]

Helmet
Helmet is a Node.js library that helps you prevent various attacks by setting various
security-related HTTP headers.

Here are the various headers added by Helmet:

• Strict-Transport-Policy: This header is used to enforce secure (HTTP
over SSL/TLS) connections to the server. HTTPS prevents man-in-the-
middle attacks. In a man-in-the-middle attack, an attacker secretly alters the
communication between the client and server. This is done to steal data, add
ads to web pages, and so on.

• X-Frame-Options: This header provides clickjacking protection.
Clickjacking is a technique by which an attacker uses multiple transparent
or opaque layers to trick a user into clicking on a button or link on another
page when they intended to click on the top-level page. Thus, the attacker is
"hijacking" clicks meant for their page and routing them to some other page,
most likely owned by another application, domain, or both. This header
prevents the application from being viewed inside an iFrame, therefore
providing clickjacking protection.

• X-XSS-Protection: This header prevents reflective XSS attacks. Reflective
XSS attacks are a type of XSS attack. Cross-Site Scripting (XSS) attacks are
a type of injection in which malicious scripts are injected into otherwise
benign and trusted web sites. XSS attacks occur when an attacker uses a
web application to send malicious code, generally in the form of a browser-
side script, to a different end user. Reflected XSS is the most frequent type
of XSS attack. They are also known as non-persistent XSS attacks since the
attack payload is delivered and executed via a single request and response.
Reflected XSS occurs when the attacker injects executable JavaScript code
into the HTML response by injecting the code into the URL.

• X-Content-Type-Options: Browsers can override response Content-Type
headers to guess and process data using an implicit content type. While
this can be convenient in some scenarios, it can also lead to some kinds of
attack, such as a MIME confusion attack, authorized hotlinking, and so
on. Returning X-Content-Type-Options will cause browsers to use the
provided Content-Type header and not interpret the content as a different
content type.

• Content-Security-Policy: This header lets us provide a list of trusted
sources to the browser, from which content such as JavaScript, CSS, HTML
frames, fonts, images, and embeddable objects (Java applets, ActiveX, audio,
and video) can be loaded onto a page. This helps us prevent XSS attacks.

To learn more about Helmet, visit https://www.npmjs.com/package/helmet

https://www.npmjs.com/package/helmet

Chapter 14

[299]

Cross-site request forgery
Cross-site request forgery (CSRF) is a type of attack in which requests from a user
are sent to servers without the user knowing about it.

For example, if an attacker is able to find a reproducible link that executes a specific
action on the target page while the victim is logged in to it, he is able to embed such
a link on a page he controls and trick the victim into opening it. The attack-carrying
link may be placed in a location that the victim is likely to visit while logged in to the
target site sent in a HTML e-mail body or attachment.

There are various ways to prevent CSRF attacks. Most CSRF prevention techniques
work by embedding additional authentication data into requests, which allows the
web application to detect requests from unauthorized locations.

There is a library named csrf (https://www.npmjs.com/package/csrf) for Node.
js that lets you prevent CSRF attacks. It provides you middleware to protect Express
web servers from CSRF attacks.

Cross-site scripting
We saw earlier what the XSS vulnerability is. We basically saw what a reflected XSS
attack is. There is another type of XSS attack called stored XSS.

Stored XSS occurs when the application stores user input that is not correctly
filtered. For example, while chatting, if a message is not sanitized, then both users
can run scripts on each other's browsers by sending JS code within <script> tags
as messages.

To prevent both types of XSS attack, we should always filter/sanitize user input.

Session fixation
Session fixation is an attack that permits an attacker to hijack a valid user session.
Here are several techniques to prevent session fixation:

• Set session timeouts
• Regenerate session tokens frequently
• When logged out, expire the session token
• Store the user agent and IP address of the user when creating a session and

check whether the value matches during the following HTTP requests.

https://www.npmjs.com/package/csrf

Securing and Scaling Node.js Applications

[300]

Non-vulnerability based attacks
There are various kinds of attack that can be made on any kind of application,
as they depend on loopholes in the application. Still, applications can do a lot to
prevent these attacks.

Let's see a few of the most common non-vulnerability-based attacks and how to
prevent them.

Denial-of-service attacks
A denial-of-service (DoS) attack is an attempt to make a server machine unavailable
to its intended users temporarily. An attacker uses one or many machines to make
continuous requests to the server to take it down.

The best way to prevent DoS is to use an external service such as CloudFlare, which
uses a lot of different techniques and data from various sources to block malicious
requests on your server. It's always better to avoid handling DoS on your server and
leave it to a service created by DoS experts.

Brute force attacks
A brute force attack aims at being the simplest kind of method to gain access to a
site: trying usernames and passwords, over and over, until it gets in.

Here are several ways to prevent brute force attacks:

• We can embed CAPTCHA in forms that can completely prevent bots
from making brute force attacks and slow down brute force attacks
made by humans.

• There is a middleware program for Express servers called express-brute
that limits the rate of incoming requests based on several factors. You can
find out more about express-brute at https://www.npmjs.com/package/
express-brute.

Using secure packages
The npm packages you use may contain critical security vulnerabilities that could
also affect your application. It's not possible to go through every package's code or
test each of them separately.

https://www.npmjs.com/package/express-brute
https://www.npmjs.com/package/express-brute

Chapter 14

[301]

There is a database called Node Security Project that has a list of the most important
vulnerable packages. You can use command-line tools such as nsp (https://
www.npmjs.com/package/nsp) and requireSafe (https://www.npmjs.com/
package/requiresafe) to check the vulnerable dependencies of your application.

You should always keep an eye on the new version releases of the packages that
your application is dependent on and update it, as a new release often fixes issues
related to security.

Scaling Node.js servers
If your application has lots of users accessing the system simultaneously, then
obviously a single server cannot handle all the traffic. It will slow down and crash.
Therefore, we need to deploy the application on multiple servers and then distribute
the traffic equally between them.

To distribute traffic between servers, we need to use something called a load
balancer. A load balancer is a server that sits in front of the application servers.
The client communicates with the load balancer instead of the application servers,
and instead of handling the request, the load balancer forwards it to an application
server; when the application servers sends the response, it sends the same response
to the client.

As a load balancer doesn't actually process the request, it can handle many more
requests than an application server. Obviously, a load balancer cannot handle
unlimited requests, so we can use multiple load balancers. When we use multiple
load balancers, the traffic between them is distributed by using the round-robin DNS
technique. In round-robin DNS, the IP address of the domain pointing to the load
balancer changes according to an appropriate statistical model.

Amazon Web Services (AWS) provides a load balancer called Amazon ELB, which
can be used to distribute traffic between Amazon EC2 servers, that is, application
servers. Obviously, it difficult to predict the total number of EC2 instances you
would need to scale your application; therefore, AWS also provides something called
auto scaling, which can add/remove EC2 instances as needed. Therefore, to host a
large-scale application, Amazon is the best choice. It also provides lots of other cloud
services to scale and deploy your application.

In case you don't want to worry about scaling, deploying, and managing your
servers, then you can use cloud services such as Heroku, which makes it much easier
to achieve all this, and you just need to worry about the application code—that's it.

https://www.npmjs.com/package/requiresafe
https://www.npmjs.com/package/requiresafe
http://www.npmjs.com/package/nsp
http://www.npmjs.com/package/nsp

Securing and Scaling Node.js Applications

[302]

Summary
In this chapter, we saw a lot of services and libraries to scale and secure Node.
js applications. We saw various vulnerabilities and how to prevent them. Make
sure you take regular backups of your data so that even if your app is hacked,
you will still have a chance to get the application running again as the data is not
lost. Obviously, there is a lot more to learn about scaling and securing Node.js
applications as this is an unending topic and new things come up regularly.

[303]

Index
A
Angular 2

architecture 243-245
change detection 259-261
fundamentals 251-256
shadow DOM 257, 258
styling components 257, 258
URL 244

angular2-all.umd.js
URL 250

angular2-polyfills.js
URL 250

Angular 2 project
setting up 250

API key
URL 67

architecture 26, 27
attribute directive 272, 273
auto scaling 301

B
Babel

URL, for installing 209
Babel compiler

reference link 209
backend, live score website

admin panel, protecting 119, 120
HTML, serving to administrator 119, 120
HTML, serving to users 119
message, broadcasting

to namespace 121, 122
socket.io cookie, authentication 121, 122
socket.io server, integrating with

Express server 118

static files, serving to users 119
Bacon.js

about 136
errors 147, 148

Bacon.js APIs
about 138
EventStream, creating 138, 139
EventStream, filtering 142
EventStream, merging 142
EventStream, transforming 143-145
properties, creating 139-141
properties, filtering 142
properties, merging 142
properties, transforming 143-145

Bacon.js library
URL 136

Bacon.retry function
delay 149
isRetryable 149
retries 149
source 149

basic plugin 15
Bootstrap 4

21:9 aspect ratio class 195
about 173
browser support 174
card component 183-188
CSS units, em 174, 175
CSS units, rem 174, 175
customizing 195
device support 174
downloading 173, 174
Flexbox support 194
glyphicons, removing 196
grid system 175-179
heading, displaying 181

[304]

inverse table 182, 183
JavaScript improvements 195
Less, moving to Sass 193
margin reset 179
outline buttons 193
reboot 194
spacing utility classes 179-181
Tether, adding 195
URL, for download 173
utility classes, float 194
utility classes, text alignment 194

brute force attack 300
built-in way, Seneca and Express

integration
URL 21

bus 152

C
callback patterns 128
card component

about 183-188
card columns 189-193
card decks 189-193
card groups 189-193

CDN version
URL 227

change detection 259
chatroulette

about 83
backend, building 84-87
creating 83
frontend, building 88-97

chatroulette website
testing 98

clickjacking 298
closures 133
common vulnerabilities,

Node.js applications
cross-site request forgery (CSRF) 299
cross-site scripting 299
Helmet 298
session fixation 299

component composition 213, 214
component lifecycle methods

about 218, 265

componentDidMount() 219
componentDidUpdate(prevProps,

prevState) 221
componentWillMount() 219
componentWillReceiveProps

(nextProps) 219, 220
componentWillUnmount() 221
componentWillUpdate(nextProps,

nextState) 221
ngAfterContentChecke 266
ngAfterContentInit 266
ngAfterViewChecked 266
ngAfterViewInit 266
ngDoCheck 266
ngOnChanges 265
ngOnDestroy 266
ngOnInit 265
shouldComponentUpdate(nextProps,

nextState) 221
component ownership 215
component property

default value 218
components

exploring 213
composability 213
constant properties 151
constructors, PeerJS API

DataConnection 68
MediaConnection 68
Peer 68

content children
about 261, 262
local template variable 264, 265
reference of components, obtaining 263

coupon site
about 26, 49-51
architecture 27
development 52, 53

cross-site request forgery (CSRF) 299
Cross-Site Scripting (XSS) 298
csrf, library

reference link 299
custom elements 245
custom PeerServer

creating 80

[305]

D
database service 26
Datagram Transport

Layer Security (DTLS) 66
denial-of-service. See DoS
directives

about 272
attribute directive 272, 273
structural directive 273, 274

dispatcher 227
dispatcher constructor

dispatch(action) 228
isDispatching() 228
register(callback) 227
unregister(id) 227
waitFor(array) 227

DoS 300

E
element attributes

state, binding 269
errors, Bacon.js

about 147, 148
EventStream, ending on error 150
function call, retrying 149
mapping 148
property, ending on error 150
subscribing to 148

event-driven patterns 128
events handling 268
EventStream

about 134, 135
combining 153, 154
subscribing to end 152, 153
zipping 153, 154

exceptions
handling 150, 151

Express
Seneca, integrating with 21-23

express-brute
about 300
URL 300

Express.js 158

Express server
PeerServer, integrating with 82
socket.io server, integrating with 118

F
feed

URL 240
filtering 142
Flexbox support, Bootstrap 4

reference link 194
Flexbox version, Bootstrap CSS file

URL, for download 194
Flux architecture

about 225, 226
action creators 226
actions 226
dispatcher 226
React views 226
stores 226

Flux.js
about 227, 228
URL, source code 227
using 227, 228

frontend Bacon.js library
URL, for download 136

frontend, building
actions, creating 233-239
dispatcher, creating 233-239
routes, defining 232, 233
stores, creating 233-239

functional programming language 133
functional programming, nutshell

about 130
functional data structures 131
helper functions 133
immutable data, benefits 131
JavaScript used 132
pure functions, benefits 132

functional reactive programming (FRP)
about 127, 134
EventStream 134, 135
project, setting up 136
properties 135, 136
using Bacon.js 136

[306]

G
GitHub repository, WebRTC

reference 76
glyphicons 196

H
headers, Helmet

about 298
Content-Security-Policy 298
Strict-Transport-Policy 298
X-Content-Type-Options 298
X-Frame-Options 298
X-XSS-Protection 298

Helmet
URL 298

HTML imports 245
HTTP

relationship, with WebSocket 100, 101
HTTP service, Angular 2

URL 291

I
image upload server

creating 36-38
Interactive Connectivity

Establishment (ICE) 65
Isomorphic development 207-209

J
JavaScript syntax extension. See JSX
jQuery

URL, for download 136
JSX

about 209
compiling 209, 210

JSX syntax 210-213

L
lazy evaluation

about 155, 156
implementing 155

Less version
URL 193

live score website
about 117
backend, building 117, 118
frontend, building 123, 124
testing 125

M
media consumer 56
media source 56
MediaStream

transferring 65, 66
MediaStream API 58
MediaStream constructor

URL 59
MediaStreamTrack interface

URL 58
mem-store plugin 15
merging 142
MicroEvent.js

about 228
reference link 228
using 228

microservices
implementing, Seneca used 11, 12, 16

microservices architecture
about 5-7
data management 10
demerits 9
merits 7
services, scaling 7, 8
using 9, 10

mixin 222
monolithic architecture

about 2
demerits 2
issues 5
scaling 2-4

monolithic core
creating 38-49

monolithic server side applications
writing 4

N
namespaces 110-112
navigator.getUserMedia 60-63

[307]

Node.js applications
common vulnerabilities 297
non-vulnerability based attacks 300

Node.js servers
scaling 301

Node Security Project
URL 301

non-vulnerability based attacks,
Node.js applications

brute force attack 300
denial-of-service attacks 300

nutshell
functional programming 130

O
open source, JSX compilers

URL 209
outline buttons 193
outputs 275, 276

P
PeerJS

about 56, 67
URL, for download 68
used, for building WebRTC applications 67

PeerJS API
about 68
constructors 68-75
URL, for documentation 76

PeerServer
about 67
running, from shell 80
URL 83

PeerServer library
custom PeerServer, creating 81
PeerServer, integrating with

Express server 82
using 81

peer-to-peer connection
starting 64, 65

peer-to-peer network model 56
pipes 267
profile search widget

building 157
company suggestions route 160, 161

Express.js routes, converting to functional
reactive pattern 158, 159

frontend, building 164-170
functional reactive pattern, Express.js

routes converting 159
functional reactive pattern, Express.js

routes converting to 158
project directories 158
project files 158
search result route 162-164
testing 171, 172
user experience, enhancing 159

promise patterns 128
properties

about 135, 136
combining 154
subscribing to end 152, 153
zipping 154

prototype 248
provider 278-280
providers properties

versus, viewProviders properties 280-282
pure function 130

R
React

about 198
components 203, 204
Isomorphic UI development 207-209
one-way data binding 204-207
project, setting up 199
URL, for download 199
virtual DOM 200-202

ReactDOMServer.renderToStatic
Markup 224

reactive programming
about 128
issues, with writing reactive code 128, 129

React Router
about 228
URL, source code 228

real-time data 57
reconciliation 215-218
refs

about 223, 224
using 223, 224

[308]

requireSafe
reference link 301

room 113
routing lifecycle methods

CanActivate 293
routerCanDeactivate 293
routerCanReuse 293
routerOnActivate 293
routerOnDeactivate 293
routerOnReuse 293

RSS feed reader
application, testing 240, 241
backend, building 230, 231
creating 229
frontend, building 231, 232
project directories, setting up 230
project files, setting up 230

RTCDataChannel API 66
RTCPeerConnection API

about 63
MediaStream, transferring 65, 66
peer-to-peer connection, starting 64, 65

S
search engine template

app, bootstrapping 285, 286
production mode,

versus development mode 295
project, setting up 283-285
random search result, generating 287
route components, creating 288-291
routes, configuring 285, 286
routing lifecycle methods 293, 294
testing 292, 293

secure packages
using 300

Seneca application
actions, creating 14
creating 13
data, storing 18-20
Express, integrating 21-23
plugins, creating 15
services, creating 17, 18

Seneca pattern
URL 15

Seneca plugins
URL 17

services
creating 29
database service 29-31
upload service 32-36
URL config service 31

Session Description Protocol (SDP) 64
Session Traversal Utilities

for NAT (STUN) 65
shadow DOM 245
shim

URL 76
signaling 56
Socket.IO

about 103
namespaces 110, 111
project, setting up 103, 104

Socket.IO API
about 105-108
connected Socket.IO clients in room,

referring to 113
connected Socket.IO clients,

referring to 112
connections restricting, based on origin 109
custom events, broadcasting

to namespace 114
custom events, broadcasting to room 114
disconnecting manually 116
message, broadcasting to namespace 114
message, broadcasting to room 115
middleware 115
namespaces 110
room 113
room, adding 113
room, removing 113

Socket.IO library
URL 103

socket.io server
integrating, with Express server 118

spacing utility classes 179
state

binding, to element attributes 269
store 227
stored XSS 299

[309]

storing data
URL 21

stream 56
structural directive 273, 274
subscribers

unplugging 153

T
templates

directives 272
events handling 268
pipes 267
state, binding to element attributes 269, 270
two-way data binding 271
value, rendering 267
writing 266

temporal coupling
URL 131

Tether 195
thread safety

URL 131
token

URL 275
transforming 143
transport plugin 15
Traversal Using Relays

around NAT (TURN) 65
two-way data binding

about 271
with inputs and outputs 276-278

U
upload service 27
URL config service 27
utilities

reference link 215

V
view 227
view children

about 261, 262
local template variable 264, 265
reference of components, obtaining 263

vulnerability 297

W
web components

about 245
custom elements 247, 248
shadow DOM 249
templates 246

webcomponents.js
URL 245

web plugin 15
Web Real-Time Communications.

See WebRTC
WebRTC

about 56-58
MediaStream API 58, 59
navigator.getUserMedia 60-63
RTCDataChannel API 66
RTCPeerConnection API 63

WebRTC applications
building, PeerJS used 67

WebSocket
about 99, 100
data, receiving 101
data, sending 101
firewalls, interacting with 102
load balancers, interacting with 102
proxy server, interacting with 102
relationship, with HTTP 100, 101
same-origin policy 103

WebSocket protocol 101

Z
zipping 154

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Breaking into Microservices Architecture
	What is monolithic architecture?
	Demerits of monolithic architecture
	Scaling monolithic architecture
	Writing monolithic server-side applications
	Other issues of monolithic architecture

	Microservices architecture to the rescue
	Merits of microservices architecture
	Scaling services
	Demerits of microservices architecture
	When to use microservices architecture
	Data management

	Implementing microservices using Seneca
	Creating your first Seneca application
	Creating actions
	Creating plugins
	Creating services
	Storing data
	Integrating Express and Seneca

	Summary

	Chapter 2: Building a Coupon Site
	Getting started
	Architecture of our site
	Creating the services
	Database service
	URL config service
	Upload service

	Creating the image upload server
	Creating the monolithic core
	Website walkthrough
	Further improvements to the site
	Summary

	Chapter 3: Communication between Browsers in Real Time
	Terminologies
	Stream
	Peer-to-peer network model
	Real-time data

	Introduction to WebRTC
	MediaStream API
	navigator.getUserMedia
	RTCPeerConnection API
	Establishing peer-to-peer connection
	Transferring MediaStream

	RTCDataChannel API

	WebRTC applications using PeerJS
	PeerServer
	PeerJS API

	Miscellaneous
	Summary

	Chapter 4: Building a Chatroulette
	Creating your own PeerServer
	Run PeerServer from shell
	Using PeerServer library
	Creating custom PeerServer
	Integrating PeerServer with the Express server

	Creating a chatroulette
	Building the backend
	Building the frontend
	Testing the website

	Summary

	Chapter 5: Bidirectional Communication in Real Time
	Introducing WebSocket
	The relationship between WebSocket and HTTP
	Sending and receiving data on a WebSocket connection
	WebSocket schemes
	The interaction of WebSocket with proxy servers, load balancers, and firewalls
	The same-origin policy for WebSocket

	Introduction to Socket.IO
	Setting up your project
	Diving into the Socket.IO API
	Restricting connections based on origin
	Namespaces in Socket.IO
	Rooms in Socket.IO
	Broadcasting messages and custom events to namespaces and rooms
	Middleware in Socket.IO
	Disconnecting manually

	Summary

	Chapter 6: Building a Live Score Site
	Building the backend
	Integrating socket.io server with the Express server
	Serving static files and HTML to the users
	Serving HTML to the administrator and protecting the admin panel
	Socket.IO cookie authentication and broadcasting messages to a namespace

	Building the frontend
	Testing the website
	Summary

	Chapter 7: Functional Reactive Programming
	Introduction to reactive programming
	Problems with writing reactive code

	Functional programming in a nutshell
	The advantages of immutable data
	Functional data structures
	The advantages of pure functions
	Functional programming with JavaScript
	Functional programming helper functions

	Getting started with FRP
	EventStreams
	Properties

	FRP using Bacon.js
	Setting up the project
	Bacon.js APIs
	Creating EventStreams
	Creating properties
	Merging, filtering, and transforming EventStreams and properties

	Summary

	Chapter 8: Building an Advanced Profile Search Widget
	Errors in Bacon.js
	Subscribing to errors
	Mapping errors
	Retrying a function call
	Ending an EventStream or property on error

	Handling exceptions
	Constant properties
	An overview of buses
	Subscribing to the end of EventStreams and properties
	Unplugging subscribers
	Combining and zipping
	Lazy evaluation
	Type 1
	Type 2

	Building the profile search widget
	Understanding project directories and files
	Converting Express.js routes to a functional reactive pattern
	Making the user experience better
	The company suggestions route
	The search result route
	Building the frontend
	Testing the widget

	Summary

	Chapter 9: New Features of Bootstrap 4
	Downloading Bootstrap 4
	Browser and device support
	Understanding the rem and em CSS units
	The grid system
	Global margin reset
	Spacing utility classes
	Display headings
	Inverse tables
	The card component
	Card groups, decks, and columns

	Outline buttons
	Moving from Less to Sass
	Text alignment and float utility classes
	Reboot
	Flexbox support
	JavaScript improvements
	Adding Tether
	The 21:9 aspect ratio class
	Customizing Bootstrap 4
	Glyphicons dropped
	Summary

	Chapter 10: Building User Interfaces Using React
	Introducing React
	Setting up a basic React project
	Virtual DOM
	Components
	One-way data binding
	Isomorphic UI development

	Getting started with JSX
	Compiling JSX
	JSX syntax

	Digging into components
	Component composition
	Component ownership

	Reconciliation
	Default component property values
	Component life cycle methods
	componentWillMount()
	componentDidMount()
	componentWillReceiveProps(nextProps)
	shouldComponentUpdate(nextProps, nextState)
	componentWillUpdate(nextProps, nextState)
	componentDidUpdate(prevProps, prevState)
	componentWillUnmount()

	Mixins
	Using Refs
	ReactDOMServer.renderToStaticMarkup
	Summary

	Chapter 11: Building an RSS Reader Using React and Flux
	Understanding Flux
	Using Flux.js
	Using MicroEvent.js
	Introduction to React Router
	Creating the RSS feed reader
	Setting up the project directories and files
	Building the backend
	Building the frontend
	Defining routes
	Creating dispatcher, actions, and stores

	Testing the application

	Summary

	Chapter 12: New Features of Angular 2
	The Angular 2 architecture
	Introducing web components
	Templates
	Custom elements
	Shadow DOM

	Setting up an Angular 2 project
	Angular 2 fundamentals
	Styling components and shadow DOM
	Angular 2 change detection
	Understanding view children and content children
	Getting the reference of components of content children and view children
	Local template variables

	Component lifecycle methods
	Writing templates
	Rendering a value
	Pipes

	Handling events
	Binding state to element attributes
	Two-way data binding
	Directives
	Attribute directives
	Structural directives

	Outputs
	Two-way data binding with inputs and outputs

	Understanding providers
	Properties of providers versus viewProviders properties
	Summary

	Chapter 13: Building a Search Engine Template Using AngularJS 2
	Setting up the project
	Configuring routes and bootstrapping the app
	Generating random search results
	Creating route components
	Testing the template
	Routing life cycle methods
	Production mode versus development mode
	Summary

	Chapter 14: Securing and Scaling Node.js Applications
	Common vulnerabilities in applications
	Helmet
	Cross-site request forgery
	Cross-site scripting
	Session fixation

	Non-vulnerability based attacks
	Denial-of-service attacks
	Brute force attacks

	Using secure packages
	Scaling Node.js servers
	Summary

	Index

