
[1]

www.EBooksWorld.ir

Mastering JavaScript

Explore and master modern JavaScript techniques
in order to build large-scale web applications

Ved Antani

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

Mastering JavaScript

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1250116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-134-1

www.packtpub.com

www.EBooksWorld.ir

www.packtpub.com

Credits

Author
Ved Antani

Reviewer
Ivano Malavolta

Commissioning Editor
Sarah Crofton

Acquisition Editor
Kevin Colaco

Content Development Editor
Merint Mathew

Technical Editor
Manthan Raja

Copy Editor
Tasneem Fatehi

Project Coordinator
Francina Pinto

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.EBooksWorld.ir

About the Author

Ved Antani is an AVP (engineering) at Myntra. Before Myntra, he worked with
Electronic Arts, NetApp, and Oracle. Ved is passionate about programming and has
been programming in JavaScript since 2005. He has extensive experience in building
scalable systems and mobile applications. Ved is a minimalist, a father, and an avid
tea drinker.

I would like to thank my wife, Meghna, for her support. She was
always there to encourage and help me when I needed it the most.

www.EBooksWorld.ir

About the Reviewer

Ivano Malavolta is a postdoctoral researcher at the Gran Sasso Science Institute
(L'Aquila, Italy), and he holds a PhD in computer science from the University of
L'Aquila. His research is positioned in three main fields: software architecture,
Model-Driven Engineering (MDE), and mobile-enabled systems. He is especially
interested in investigating how MDE techniques can be exploited for architecting
complex and mobile-enabled software systems at the right level of abstraction. He
is the author of more than 40 papers in international journals and peer-reviewed
international conferences' proceedings; among them, he has coauthored two
articles published in the IEEE Transactions on Software Engineering (TSE), which is
considered the leading journal in the field of software engineering. He is a reviewer
for four international journals, a program committee member of 10 international
conferences, a reviewer for 13 international conferences, and a guest editor of an
international journal.

He is an instructor of three courses on software engineering, mobile computing, and
mobile application development via web technologies; these courses are held at the
University of L'Aquila and Gran Sasso Science Institute, Italy.

He has previously reviewed other books about web technologies for Packt
Publishing, such as Backbone.js Cookbook by Vadim Mirgorod and Backbone.js Blueprints
by Andrew Burgess.

www.EBooksWorld.ir

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.EBooksWorld.ir

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: JavaScript Primer	 1

A little bit of history	 2
How to use this book	 3
Hello World	 6

An overview of JavaScript	 6
Comments	 6
Variables	 7
Constants	 7
Number	 8
String	 11
Undefined values	 13
Booleans	 13
The instanceof operator	 15
Date objects	 15
The + operator	 16
The ++ and -- operators	 17
Boolean operators	 18
Equality	 25

JavaScript types	 27
Automatic semicolon insertion	 30
JavaScript style guide	 32

Whitespaces	 32
Parentheses, line breaks, and braces	 32
Quotes	 34
End of lines and empty lines	 34
Type checking	 35
Type casting	 35
Conditional evaluation	 36
Naming	 38

www.EBooksWorld.ir

Table of Contents

[ii]

The eval() method is evil	 39
The strict mode	 39
Running JSHint	 41

Summary	 43
Chapter 2: Functions, Closures, and Modules	 45

A function literal	 46
A function declaration	 46

Functions as data	 49
Scoping	 50

Global scope	 51
Local scope	 52
Function-level scope versus block-level scope	 52
Inline function expressions	 56
Block scopes	 56

Function declarations versus function expressions	 58
The arguments parameter	 60

The this parameter	 61
Invocation as a function	 61
Invocation as a method	 61
Invocation as a constructor	 63
Invocation using apply() and call() methods	 63

Anonymous functions	 64
Anonymous functions while creating an object	 64
Anonymous functions while creating a list	 64
Anonymous functions as a parameter to another function	 65
Anonymous functions in conditional logic	 65

Closures	 66
Timers and callbacks	 69
Private variables	 69
Loops and closures	 70
Modules	 71

Stylistic considerations	 72
Summary	 73

Chapter 3: Data Structures and Manipulation	 75
Regular expressions	 76
Exact match	 77
Match from a class of characters	 77
Repeated occurrences	 81

Alternatives – OR	 84
Beginning and end	 84

www.EBooksWorld.ir

Table of Contents

[iii]

Backreferences	 84
Greedy and lazy quantifiers	 85
Arrays	 86
Maps	 95
Sets	 95
A matter of style	 97
Summary	 97

Chapter 4: Object-Oriented JavaScript	 99
Understanding objects	 99

Behavior of JavaScript objects	 101
Prototypes	 103

Instance properties versus prototype properties	 104
Inheritance	 110
Getters and setters	 117
Summary	 120

Chapter 5: JavaScript Patterns	 121
Design patterns	 122
The namespace pattern	 123
The module pattern	 124

ES6 modules	 131
The factory pattern	 131
The mixin pattern	 133
The decorator pattern	 134
The observer pattern	 137
JavaScript Model-View-* patterns	 139

Model-View-Controller	 139
Models	 140
Views	 140
Controllers	 141

The Model-View-Presenter pattern	 141
Model-View-ViewModel	 142
Summary	 143

Chapter 6: Testing and Debugging	 145
Unit testing	 146

Test-driven development	 147
Behavior-driven development	 147

JavaScript debugging	 154
Syntax errors	 154
Using strict	 155

www.EBooksWorld.ir

Table of Contents

[iv]

Runtime exceptions	 155
Console.log and asserts	 156
Chrome DevTools	 157

Summary	 162
Chapter 7: ECMAScript 6	 163

Shims or polyfills	 164
Transpilers	 164
ES6 syntax changes	 165

Block scoping	 165
Default parameters	 167
Spread and rest	 167
Destructuring	 168
Object literals	 170
Template literals	 171
Maps and Sets	 172
Symbols	 175
Iterators	 175
For..of loops	 176
Arrow functions	 176

Summary	 179
Chapter 8: DOM Manipulation and Events	 181

DOM	 181
Accessing DOM elements	 182
Accessing specific nodes	 183

Chaining	 191
Traversal and manipulation	 191
Working with browser events	 193
Propagation	 194
jQuery event handling and propagation	 195
Event delegation	 198
The event object	 199
Summary	 200

Chapter 9: Server-Side JavaScript	 201
An asynchronous evented-model in a browser	 202
Callbacks	 206
Timers	 210
EventEmitters	 211
Modules	 212

Creating modules	 213

www.EBooksWorld.ir

Table of Contents

[v]

npm	 215
Installing packages	 216

JavaScript performance	 218
JavaScript profiling	 218

The CPU profile	 219
The Timeline view	 220

Summary	 222
Index	 223

www.EBooksWorld.ir

www.EBooksWorld.ir

[vii]

Preface
It would seem that everything that needs to be written about JavaScript has been
written. Frankly, it is difficult to find a topic related to JavaScript that has not been
discussed ad nauseam. However, JavaScript is changing at a rapid pace. ECMAScript
6 has the potential to transform the language and how we code in it. Node.js has
already changed the way in which we write servers in JavaScript. Newer ideas such
as React and Flux will drive the next iteration of the language. While we spend our
time learning the new features, there is no denying that the foundational ideas of
JavaScript have to be mastered. These ideas are fundamental and need attention. If
you are already an experienced JavaScript developer, you will realize that modern
JavaScript is vastly different from the language that most people have known.
Modern JavaScript demands a specific stylistic discipline and rigor of thought.
Tools are more powerful and slowly becoming an integral part of the development
workflow. Though the language seems to be changing, it is built on some very solid
and constant ideas. This book emphasizes on these fundamental ideas.

While the book was being written, things kept changing in the JavaScript landscape.
Luckily, we were able to include all the important and relevant updates in this book.

Mastering JavaScript provides you with a detailed overview of the language's
fundamentals and some of the modern tools and libraries, such as jQuery,
Underscore.js, and Jasmine.

We hope that you enjoy this book as much as we enjoyed writing it.

www.EBooksWorld.ir

Preface

[viii]

What this book covers
Chapter 1, JavaScript Primer, focuses on the language constructs without spending too
much time on the basic details. We will cover the trickier parts of variable scoping
and loops and best practices for using types and data structures. We will also cover
a lot of ground on the coding style and recommended code organization patterns.

Chapter 2, Functions, Closures and Modules, covers the core of the language intricacies.
We will discuss the complexities involved in using functional aspects with different
treatment for closures in JavaScript. This is a careful and elaborate discussion that
will prepare you to explore more advanced design patterns further on.

Chapter 3, Data Structures and Manipulation, takes a detailed look at regular
expressions and arrays. Arrays are a fundamental data type in JavaScript and this
chapter will help you work effectively with arrays. Regular expressions can make
your code concise—we will take a detailed look at how to use RegEx effectively in
your code.

Chapter 4, Object-Oriented JavaScript, discusses object orientation in JavaScript.
We will discuss inheritance and the prototype chain and focus on understanding
the prototypal inheritance model that JavaScript offers. We will also discuss how
different this model is from other object-oriented models to help Java or C++
programmers get familiarized with the change.

Chapter 5, JavaScript Patterns, discusses common design patterns and how to
implement them in JavaScript. Once you master the object-oriented model for
JavaScript, it is easier to understand design and programming patterns to write
modular and easy-to-maintain code.

Chapter 6, Testing and Debugging, covers various modern methods to test and debug
issues in JavaScript code. We will also explore continuous testing and test-driven
methodologies for JavaScript. We will use Jasmine as the test framework.

Chapter 7, ECMAScript 6, focuses on the newer language features introduced by
ECMAScript 6 (ES6). It makes JavaScript more powerful and this chapter will help
you understand the newer features and how to use them in your code.

Chapter 8, DOM Manipulation and Events, takes a detailed look at JavaScript as a
language of the browser. This chapter discusses DOM manipulation and browser
events.

Chapter 9, Server-Side JavaScript, explains how we can use Node.js to write scalable
server systems in JavaScript. We will discuss the architecture of Node.js and several
useful techniques.

www.EBooksWorld.ir

Preface

[ix]

What you need for this book
All the examples in this book can be run on any modern browser. For the last
chapter, you will need Node.js. You will need the following prerequisites to run the
examples and samples from this book:

•	 A computer with Windows 7 or higher, Linux, or Mac OS X installed.
•	 The latest version of the Google Chrome or Mozilla Firefox browser.
•	 A text editor of your choice. Sublime Text, vi, Atom, or Notepad++ would be

ideal. The choice is entirely yours.

Who this book is for
This book is intended to equip you with the details necessary to master JavaScript.
This book will be useful for the following audience:

•	 Experienced developers familiar with other object-oriented languages.
Information in this book will enable them to transition to JavaScript using
their existing experience.

•	 Web developers with some amount of experience with JavaScript. This
book will help them learn advanced concepts of JavaScript and refine their
programming style.

•	 Beginners who want to understand and eventually master JavaScript. This
book has the necessary information for them to get started.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"First, the <script> tag in <head> imports JavaScript, while the second <script> tag
is used to embed inline JavaScript."

A block of code is set as follows:

function sayHello(what) {
 return "Hello " + what;
}
console.log(sayHello("world"));

www.EBooksWorld.ir

Preface

[x]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<head>
 <script type="text/javascript" src="script.js"></script>
 <script type="text/javascript">
 var x = "Hello World";
 console.log(x);
 </script>
</head>

Any command-line input or output is written as follows:

EN-VedA:~$ node

> 0.1+0.2

0.30000000000000004

> (0.1+0.2)===0.3

false

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You can
run the page and inspect using Chrome's Developer Tool"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.EBooksWorld.ir

www.packtpub.com/authors

Preface

[xi]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/MasteringJavaScript_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaScript_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.EBooksWorld.ir

[1]

JavaScript Primer
It is always difficult to pen the first few words, especially on a subject like JavaScript.
This difficulty arises primarily because so many things have been said about this
language. JavaScript has been the Language of the Web—lingua franca, if you will,
since the earliest days of the Netscape Navigator. JavaScript went from a tool of the
amateur to the weapon of the connoisseur in a shockingly short period of time.

JavaScript is the most popular language on the web and open source ecosystem.
http://githut.info/ charts the number of active repositories and overall
popularity of the language on GitHub for the last few years. JavaScript's popularity
and importance can be attributed to its association with the browser. Google's V8
and Mozilla's SpiderMonkey are extremely optimized JavaScript engines that power
Google Chrome and Mozilla Firefox browsers, respectively.

Although web browsers are the most widely used platforms for JavaScript, modern
databases such as MongoDB and CouchDB use JavaScript as their scripting and
query language. JavaScript has become an important platform outside browsers
as well. Projects such as Node.js and io.js provide powerful platforms to develop
scalable server environments using JavaScript. Several interesting projects are
pushing the language capabilities to its limits, for example, Emscripten (http://
kripken.github.io/emscripten-site/) is a Low-Level Virtual Machine (LLVM)-
based project that compiles C and C++ into highly optimizable JavaScript in an asm.
js format. This allows you to run C and C++ on the web at near native speed.

JavaScript is built around solid foundations regarding, for example, functions,
dynamic objects, loose typing, prototypal inheritance, and a powerful object
literal notation.

www.EBooksWorld.ir

http://githut.info/
http://kripken.github.io/emscripten-site/
http://kripken.github.io/emscripten-site/

JavaScript Primer

[2]

While JavaScript is built on sound design principles, unfortunately, the language
had to evolve along with the browser. Web browsers are notorious in the way
they support various features and standards. JavaScript tried to accommodate all
the whims of the browsers and ended up making some very bad design decisions.
These bad parts (the term made famous by Douglas Crockford) overshadowed the
good parts of the language for most people. Programmers wrote bad code, other
programmers had nightmares trying to debug that bad code, and the language
eventually got a bad reputation. Unfortunately, JavaScript is one of the most
misunderstood programming languages (http://javascript.crockford.com/
javascript.html).

Another criticism leveled at JavaScript is that it lets you get things done without
you being an expert in the language. I have seen programmers write exceptionally
bad JavaScript code just because they wanted to get the things done quickly and
JavaScript allowed them to do just this. I have spent hours debugging very bad
quality JavaScript written by someone who clearly was not a programmer. However,
the language is a tool and cannot be blamed for sloppy programming. Like all crafts,
programming demands extreme dedication and discipline.

A little bit of history
In 1993, the Mosaic browser of National Center for Supercomputing Applications
(NCSA) was one of the first popular web browsers. A year later, Netscape
Communications created the proprietary web browser, Netscape Navigator. Several
original Mosaic authors worked on Navigator.

In 1995, Netscape Communications hired Brendan Eich with the promise of letting
him implement Scheme (a Lisp dialect) in the browser. Before this happened,
Netscape got in touch with Sun Microsystems (now Oracle) to include Java in the
Navigator browser.

Due to the popularity and easy programming of Java, Netscape decided that a
scripting language had to have a syntax similar to that of Java. This ruled out
adopting existing languages such as Python, Tool Command Language (TCL), or
Scheme. Eich wrote the initial prototype in just 10 days (http://www.computer.
org/csdl/mags/co/2012/02/mco2012020007.pdf), in May 1995. JavaScript's
first code name was Mocha, coined by Marc Andreessen. Netscape later changed
it to LiveScript, for trademark reasons. In early December 1995, Sun licensed the
trademark Java to Netscape. The language was renamed to its final name, JavaScript.

www.EBooksWorld.ir

http://javascript.crockford.com/javascript.html
http://javascript.crockford.com/javascript.html
http://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf
http://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf

Chapter 1

[3]

How to use this book
This book is not going to help if you are looking to get things done quickly. This
book is going to focus on the correct ways to code in JavaScript. We are going to
spend a lot of time understanding how to avoid the bad parts of the language and
build reliable and readable code in JavaScript. We will skirt away from sloppy
features of the language just to make sure that you are not getting used to them—if
you have already learned to code using these habits, this book will try to nudge you
away from this. There will be a lot of focus on the correct style and tools to make
your code better.

Most of the concepts in this book are going to be examples and patterns from real-
world problems. I will insist that you code each of the snippets to make sure that your
understanding of the concept is getting programmed into your muscle memory. Trust
me on this, there is no better way to learn programming than writing a lot of code.

Typically, you will need to create an HTML page to run an embedded JavaScript
code as follows:

<!DOCTYPE html>
<html>
<head>
 <script type="text/javascript" src="script.js"></script>
 <script type="text/javascript">
 var x = "Hello World";
 console.log(x);
 </script>
</head>
<body>
</body>
</html>

This sample code shows two ways in which JavaScript is embedded into the HTML
page. First, the <script> tag in <head> imports JavaScript, while the second
<script> tag is used to embed inline JavaScript.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support

JavaScript Primer

[4]

You can save this HTML page locally and open it in a browser. On Firefox, you can
open the Developer console (Firefox menu | Developer | Web Console) and you
can see the "Hello World" text on the Console tab. Based on your OS and browser
version, the screen may look different:

You can run the page and inspect it using Chrome's Developer Tool:

A very interesting thing to notice here is that there is an error displayed on the
console regarding the missing .js file that we are trying to import using the
following line of code:

<script type="text/javascript" src="script.js"></script>

Using browser developer consoles or an extension such as Firebug can be very useful
in debugging error conditions in the code. We will discuss in detail the debugging
techniques in later chapters.

Creating such HTML scaffolds can be tedious for every exercise in this book. Instead,
we want to use a Read-Eval-Print-Loop (REPL) for JavaScript. Unlike Python,
JavaScript does not come packaged with an REPL. We can use Node.js as an REPL. If
you have Node.js installed on your machine, you can just type node on the command
line and start experimenting with it. You will observe that Node REPL errors are not
very elegantly displayed.

www.EBooksWorld.ir

Chapter 1

[5]

Let's see the following example:

EN-VedA:~$ node

>function greeter(){
 x="World"l

SyntaxError: Unexpected identifier

 at Object.exports.createScript (vm.js:44:10)

 at REPLServer.defaultEval (repl.js:117:23)

 at bound (domain.js:254:14)

 …

After this error, you will have to restart. Still, it can help you try out small fragments
of code a lot faster.

Another tool that I personally use a lot is JS Bin (http://jsbin.com/). JS Bin
provides you with a great set of tools to test JavaScript, such as syntax highlighting
and runtime error detection. The following is a screenshot of JS Bin:

Based on your preference, you can pick the tool that makes it easier to try out the
code samples. Regardless of which tool you use, make sure that you type out every
exercise in this book.

www.EBooksWorld.ir

http://jsbin.com/

JavaScript Primer

[6]

Hello World
No programming language should be published without a customary Hello World
program—why should this book be any different?

Type (don't copy and paste) the following code in JS Bin:

function sayHello(what) {
 return "Hello " + what;
}
console.log(sayHello("world"));

Your screen should look something as follows:

An overview of JavaScript
In a nutshell, JavaScript is a prototype-based scripting language with dynamic
typing and first-class function support. JavaScript borrows most of its syntax from
Java, but is also influenced by Awk, Perl, and Python. JavaScript is case-sensitive
and white space-agnostic.

Comments
JavaScript allows single line or multiple line comments. The syntax is similar to
C or Java:

// a one line comment

/* this is a longer,
 multi-line comment
 */

/* You can't /* nest comments */ SyntaxError */

www.EBooksWorld.ir

Chapter 1

[7]

Variables
Variables are symbolic names for values. The names of variables, or identifiers, must
follow certain rules.

A JavaScript variable name must start with a letter, underscore (_), or dollar sign
($); subsequent characters can also be digits (0-9). As JavaScript is case sensitive,
letters include the characters A through Z (uppercase) and the characters a through z
(lowercase).

You can use ISO 8859-1 or Unicode letters in variable names.

New variables in JavaScript should be defined with the var keyword. If you declare a
variable without assigning a value to it, its type is undefined by default. One terrible
thing is that if you don't declare your variable with the var keyword, they become
implicit globals. Let me reiterate that implicit globals are a terrible thing—we will
discuss this in detail later in the book when we discuss variable scopes and closures,
but it's important to remember that you should always declare a variable with the
var keyword unless you know what you are doing:

var a; //declares a variable but its undefined
var b = 0;
console.log(b); //0
console.log(a); //undefined
console.log(a+b); //NaN

The NaN value is a special value that indicates that the entity is not a number.

Constants
You can create a read-only named constant with the const keyword. The constant
name must start with a letter, underscore, or dollar sign and can contain alphabetic,
numeric, or underscore characters:

const area_code = '515';

A constant cannot change the value through assignment or be redeclared, and it has
to be initialized to a value.

www.EBooksWorld.ir

JavaScript Primer

[8]

JavaScript supports the standard variations of types:

•	 Number
•	 String
•	 Boolean
•	 Symbol (new in ECMAScript 6)
•	 Object:

°° Function
°° Array
°° Date
°° RegExp

•	 Null
•	 Undefined

Number
The Number type can represent both 32-bit integer and 64-bit floating point values.
For example, the following line of code declares a variable to hold an integer value,
which is defined by the literal 555:

var aNumber = 555;

To define a floating point value, you need to include a decimal point and one digit
after the decimal point:

var aFloat = 555.0;

Essentially, there's no such thing as an integer in JavaScript. JavaScript uses a 64-bit
floating point representation, which is the same as Java's double.

Hence, you would see something as follows:

EN-VedA:~$ node

> 0.1+0.2

0.30000000000000004

> (0.1+0.2)===0.3

false

www.EBooksWorld.ir

Chapter 1

[9]

I recommend that you read the exhaustive answer on Stack Overflow (http://
stackoverflow.com/questions/588004/is-floating-point-math-broken) and
(http://floating-point-gui.de/), which explains why this is the case. However,
it is important to understand that floating point arithmetic should be handled with
due care. In most cases, you will not have to rely on extreme precision of decimal
points but if you have to, you can try using libraries such as big.js (https://
github.com/MikeMcl/big.js) that try to solve this problem.

If you intend to code extremely precise financial systems, you should represent $
values as cents to avoid rounding errors. One of the systems that I worked on used
to round off the Value Added Tax (VAT) amount to two decimal points. With
thousands of orders a day, this rounding off amount per order became a massive
accounting headache. We needed to overhaul the entire Java web service stack and
JavaScript frontend for this.

A few special values are also defined as part of the Number type. The first two are
Number.MAX_VALUE and Number.MIN_VALUE, which define the outer bounds of the
Number value set. All ECMAScript numbers must fall between these two values,
without exception. A calculation can, however, result in a number that does not
fall in between these two numbers. When a calculation results in a number greater
than Number.MAX_VALUE, it is assigned a value of Number.POSITIVE_INFINITY,
meaning that it has no numeric value anymore. Likewise, a calculation that results
in a number less than Number.MIN_VALUE is assigned a value of Number.NEGATIVE_
INFINITY, which also has no numeric value. If a calculation returns an infinite value,
the result cannot be used in any further calculations. You can use the isInfinite()
method to verify if the calculation result is an infinity.

Another peculiarity of JavaScript is a special value called NaN (short for Not a
Number). In general, this occurs when conversion from another type (String, Boolean,
and so on) fails. Observe the following peculiarity of NaN:

EN-VedA:~ $ node

> isNaN(NaN);

true

> NaN==NaN;

false

> isNaN("elephant");

true

> NaN+5;

NaN

www.EBooksWorld.ir

http://stackoverflow.com/questions/588004/is-floating-point-math-broken
http://stackoverflow.com/questions/588004/is-floating-point-math-broken
http://floating-point-gui.de/
https://github.com/MikeMcl/big.js
https://github.com/MikeMcl/big.js

JavaScript Primer

[10]

The second line is strange—NaN is not equal to NaN. If NaN is part of any
mathematical operation, the result also becomes NaN. As a general rule, stay away
from using NaN in any expression. For any advanced mathematical operations, you
can use the Math global object and its methods:

> Math.E

2.718281828459045

> Math.SQRT2

1.4142135623730951

> Math.abs(-900)

900

> Math.pow(2,3)

8

You can use the parseInt() and parseFloat() methods to convert a string
expression to an integer or float:

> parseInt("230",10);

230

> parseInt("010",10);

10

> parseInt("010",8); //octal base

8

> parseInt("010",2); //binary

2

> + "4"

4

With parseInt(), you should provide an explicit base to prevent nasty surprises on
older browsers. The last trick is just using a + sign to auto-convert the "42" string to
a number, 42. It is also prudent to handle the parseInt() result with isNaN(). Let's
see the following example:

var underterminedValue = "elephant";
if (isNaN(parseInt(underterminedValue,2)))
{
 console.log("handle not a number case");
}
else
{
 console.log("handle number case");
}

www.EBooksWorld.ir

Chapter 1

[11]

In this example, you are not sure of the type of the value that the
underterminedValue variable can hold if the value is being set from an external
interface. If isNaN() is not handled, parseInt() will cause an exception and the
program can crash.

String
In JavaScript, strings are a sequence of Unicode characters (each character takes 16
bits). Each character in the string can be accessed by its index. The first character
index is zero. Strings are enclosed inside " or '—both are valid ways to represent
strings. Let's see the following:

> console.log("Hippopotamus chewing gum");
Hippopotamus chewing gum
> console.log('Single quoted hippopotamus');
Single quoted hippopotamus
> console.log("Broken \n lines");
Broken
 lines

The last line shows you how certain character literals when escaped with a backslash
\ can be used as special characters. The following is a list of such special characters:

•	 \n: Newline
•	 \t: Tab
•	 \b: Backspace
•	 \r: Carriage return
•	 \\: Backslash
•	 \': Single quote
•	 \": Double quote

You get default support for special characters and Unicode literals with JavaScript
strings:

> '\xA9'

'©'

> '\u00A9'

'©'

www.EBooksWorld.ir

JavaScript Primer

[12]

One important thing about JavaScript Strings, Numbers, and Booleans is that they
actually have wrapper objects around their primitive equivalent. The following
example shows the usage of the wrapper objects:

var s = new String("dummy"); //Creates a String object
console.log(s); //"dummy"
console.log(typeof s); //"object"
var nonObject = "1" + "2"; //Create a String primitive
console.log(typeof nonObject); //"string"
var objString = new String("1" + "2"); //Creates a String object
console.log(typeof objString); //"object"
//Helper functions
console.log("Hello".length); //5
console.log("Hello".charAt(0)); //"H"
console.log("Hello".charAt(1)); //"e"
console.log("Hello".indexOf("e")); //1
console.log("Hello".lastIndexOf("l")); //3
console.log("Hello".startsWith("H")); //true
console.log("Hello".endsWith("o")); //true
console.log("Hello".includes("X")); //false
var splitStringByWords = "Hello World".split(" ");
console.log(splitStringByWords); //["Hello", "World"]
var splitStringByChars = "Hello World".split("");
console.log(splitStringByChars); //["H", "e", "l", "l", "o", " ",
 "W", "o", "r", "l", "d"]
console.log("lowercasestring".toUpperCase()); //"LOWERCASESTRING"
console.log("UPPPERCASESTRING".toLowerCase());
 //"upppercasestring"
console.log("There are no spaces in the end ".trim());
 //"There are no spaces in the end"

JavaScript allows multiline strings also. Strings enclosed within ` (Grave accent—
https://en.wikipedia.org/wiki/Grave_accent) are considered multiline. Let's
see the following example:

> console.log(`string text on first line

string text on second line `);

"string text on first line

string text on second line "

This kind of string is also known as a template string and can be used for string
interpolation. JavaScript allows Python-like string interpolation using this syntax.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Grave_accent

Chapter 1

[13]

Normally, you would do something similar to the following:

var a=1, b=2;

console.log("Sum of values is :" + (a+b) + " and multiplication is :"
 + (a*b));

However, with string interpolation, things become a bit clearer:

console.log(`Sum of values is :${a+b} and multiplication is :
 ${a*b}`);

Undefined values
JavaScript indicates an absence of meaningful values by two special values—null,
when the non-value is deliberate, and undefined, when the value is not assigned to
the variable yet. Let's see the following example:

> var xl;

> console.log(typeof xl);

undefined

> console.log(null==undefined);

true

Booleans
JavaScript Boolean primitives are represented by true and false keywords. The
following rules govern what becomes false and what turns out to be true:

•	 False, 0, the empty string (""), NaN, null, and undefined are represented as
false

•	 Everything else is true

JavaScript Booleans are tricky primarily because the behavior is radically different in
the way you create them.

There are two ways in which you can create Booleans in JavaScript:

•	 You can create primitive Booleans by assigning a true or false literal to a
variable. Consider the following example:
var pBooleanTrue = true;

var pBooleanFalse = false;

www.EBooksWorld.ir

JavaScript Primer

[14]

•	 Use the Boolean() function; this is an ordinary function that returns a
primitive Boolean:

var fBooleanTrue = Boolean(true);

var fBooleanFalse = Boolean(false);

Both these methods return expected truthy or falsy values. However, if you create a
Boolean object using the new operator, things can go really wrong.

Essentially, when you use the new operator and the Boolean(value) constructor,
you don't get a primitive true or false in return, you get an object instead—and
unfortunately, JavaScript considers an object as truthy:

var oBooleanTrue = new Boolean(true);

var oBooleanFalse = new Boolean(false);

console.log(oBooleanTrue); //true

console.log(typeof oBooleanTrue); //object

if(oBooleanFalse){

 console.log("I am seriously truthy, don't believe me");

}

>"I am seriously truthy, don't believe me"

if(oBooleanTrue){

 console.log("I am also truthy, see ?");

}

>"I am also truthy, see ?"

//Use valueOf() to extract real value within the Boolean object

if(oBooleanFalse.valueOf()){

 console.log("With valueOf, I am false");

}else{

 console.log("Without valueOf, I am still truthy");

}

>"Without valueOf, I am still truthy"

So, the smart thing to do is to always avoid Boolean constructors to create a new
Boolean object. It breaks the fundamental contract of Boolean logic and you should
stay away from such difficult-to-debug buggy code.

www.EBooksWorld.ir

Chapter 1

[15]

The instanceof operator
One of the problems with using reference types to store values has been the use of
the typeof operator, which returns object no matter what type of object is being
referenced. To provide a solution, you can use the instanceof operator. Let's see
some examples:

var aStringObject = new String("string");

console.log(typeof aStringObject); //"object"

console.log(aStringObject instanceof String); //true

var aString = "This is a string";

console.log(aString instanceof String); //false

The third line returns false. We will discuss why this is the case when we discuss
prototype chains.

Date objects
JavaScript does not have a date data type. Instead, you can use the Date object
and its methods to work with dates and times in your applications. A Date object
is pretty exhaustive and contains several methods to handle most date- and time-
related use cases.

JavaScript treats dates similarly to Java. JavaScript store dates as the number of
milliseconds since January 1, 1970, 00:00:00.

You can create a Date object using the following declaration:

var dataObject = new Date([parameters]);

The parameters for the Date object constructors can be as follows:

•	 No parameters creates today's date and time. For example, var today = new
Date();.

•	 A String representing a date as Month day, year hours:minutes:seconds.
For example, var twoThousandFifteen = new Date("December 31, 2015
23:59:59");. If you omit hours, minutes, or seconds, the value will be set
to 0.

•	 A set of integer values for the year, month, and day. For example, var
christmas = new Date(2015, 11, 25);.

•	 A set of integer values for the year, month, day, hour, minute, and seconds.
For example, var christmas = new Date(2015, 11, 25, 21, 00, 0);.

www.EBooksWorld.ir

JavaScript Primer

[16]

Here are some examples on how to create and manipulate dates in JavaScript:

var today = new Date();
console.log(today.getDate()); //27
console.log(today.getMonth()); //4
console.log(today.getFullYear()); //2015
console.log(today.getHours()); //23
console.log(today.getMinutes()); //13
console.log(today.getSeconds()); //10
//number of milliseconds since January 1, 1970, 00:00:00 UTC
console.log(today.getTime()); //1432748611392
console.log(today.getTimezoneOffset()); //-330 Minutes

//Calculating elapsed time
var start = Date.now();
// loop for a long time
for (var i=0;i<100000;i++);
var end = Date.now();
var elapsed = end - start; // elapsed time in milliseconds
console.log(elapsed); //71

For any serious applications that require fine-grained control over date and time
objects, we recommend using libraries such as Moment.js (https://github.com/
moment/moment), Timezone.js (https://github.com/mde/timezone-js), or date.
js (https://github.com/MatthewMueller/date). These libraries simplify a lot of
recurrent tasks for you and help you focus on other important things.

The + operator
The + operator, when used as a unary, does not have any effect on a number.
However, when applied to a String, the + operator converts it to numbers as follows:

var a=25;
a=+a; //No impact on a's value
console.log(a); //25

var b="70";
console.log(typeof b); //string
b=+b; //converts string to number
console.log(b); //70
console.log(typeof b); //number

www.EBooksWorld.ir

https://github.com/moment/moment
https://github.com/moment/moment
https://github.com/mde/timezone-js
https://github.com/MatthewMueller/date

Chapter 1

[17]

The + operator is used often by a programmer to quickly convert a numeric
representation of a String to a number. However, if the String literal is not something
that can be converted to a number, you get slightly unpredictable results as follows:

var c="foo";
c=+c; //Converts foo to number
console.log(c); //NaN
console.log(typeof c); //number

var zero="";
zero=+zero; //empty strings are converted to 0
console.log(zero);
console.log(typeof zero);

We will discuss the effects of the + operator on several other data types later
in the text.

The ++ and -- operators
The ++ operator is a shorthand version of adding 1 to a value and -- is a shorthand
to subtract 1 from a value. Java and C have equivalent operators and most will be
familiar with them. How about this?

var a= 1;
var b= a++;
console.log(a); //2
console.log(b); //1

Err, what happened here? Shouldn't the b variable have the value 2? The ++ and
-- operators are unary operators that can be used either prefix or postfix. The order
in which they are used matters. When ++ is used in the prefix position as ++a, it
increments the value before the value is returned from the expression rather than
after as with a++. Let's see the following code:

var a= 1;
var b= ++a;
console.log(a); //2
console.log(b); //2

Many programmers use the chained assignments to assign a single value to multiple
variables as follows:

var a, b, c;
a = b = c = 0;

www.EBooksWorld.ir

JavaScript Primer

[18]

This is fine because the assignment operator (=) results in the value being assigned.
In this case, c=0 is evaluated to 0; this would result in b=0, which also evaluates to 0,
and hence, a=0 is evaluated.

However, a slight change to the previous example yields extraordinary results.
Consider this:

var a = b = 0;

In this case, only the a variable is declared with var, while the b variable is created
as an accidental global. (If you are in the strict mode, you will get an error for this.)
With JavaScript, be careful what you wish for, you might get it.

Boolean operators
There are three Boolean operators in JavaScript—AND(&), OR(|), and NOT(!).

Before we discuss logical AND and OR operators, we need to understand how they
produce a Boolean result. Logical operators are evaluated from left to right and they
are tested using the following short-circuit rules:

•	 Logical AND: If the first operand determines the result, the second operand
is not evaluated.
In the following example, I have highlighted the right-hand side expression if
it gets executed as part of short-circuit evaluation rules:

console.log(true && true); // true AND true returns true
console.log(true && false);// true AND false returns false
console.log(false && true);// false AND true returns false
console.log("Foo" && "Bar");// Foo(true) AND Bar(true)
 returns Bar
console.log(false && "Foo");// false && Foo(true) returns
 false
console.log("Foo" && false);// Foo(true) && false returns
 false
console.log(false && (1 == 2));// false && false(1==2) returns
false

www.EBooksWorld.ir

Chapter 1

[19]

•	 Logical OR: If the first operand is true, the second operand is not evaluated:

console.log(true || true); // true AND true returns true
console.log(true || false);// true AND false returns true
console.log(false || true);// false AND true returns true
console.log("Foo" || "Bar");// Foo(true) AND Bar(true) returns Foo
console.log(false || "Foo");// false && Foo(true) returns Foo
console.log("Foo" || false);// Foo(true) && false returns Foo
console.log(false || (1 == 2));// false && false(1==2) returns
false

However, both logical AND and logical OR can also be used for non-Boolean
operands. When either the left or right operand is not a primitive Boolean
value, AND and OR do not return Boolean values.

Now we will explain the three logical Boolean operators:

•	 Logical AND(&&): If the first operand object is falsy, it returns that object. If
its truthy, the second operand object is returned:
console.log (0 && "Foo"); //First operand is falsy -
 return it
console.log ("Foo" && "Bar"); //First operand is truthy,
 return the second operand

•	 Logical OR(||): If the first operand is truthy, it's returned. Otherwise, the
second operand is returned:
console.log (0 || "Foo"); //First operand is falsy -
 return second operand
console.log ("Foo" || "Bar"); //First operand is truthy,
 return it
console.log (0 || false); //First operand is falsy, return
 second operand

The typical use of a logical OR is to assign a default value to a variable:
function greeting(name){
 name = name || "John";
 console.log("Hello " + name);
}

greeting("Johnson"); // alerts "Hi Johnson";
greeting(); //alerts "Hello John"

You will see this pattern frequently in most professional JavaScript libraries.
You should understand how the defaulting is done by using a logical OR
operator.

www.EBooksWorld.ir

JavaScript Primer

[20]

•	 Logical NOT: This always returns a Boolean value. The value returned
depends on the following:

//If the operand is an object, false is returned.
var s = new String("string");
console.log(!s); //false

//If the operand is the number 0, true is returned.
var t = 0;
console.log(!t); //true

//If the operand is any number other than 0, false is returned.
var x = 11;
console.log(!x); //false

//If operand is null or NaN, true is returned
var y =null;
var z = NaN;
console.log(!y); //true
console.log(!z); //true
//If operand is undefined, you get true
var foo;
console.log(!foo); //true

Additionally, JavaScript supports C-like ternary operators as follows:

var allowedToDrive = (age > 21) ? "yes" : "no";

If (age>21), the expression after ? will be assigned to the allowedToDrive variable
and the expression after : is assigned otherwise. This is equivalent to an if-else
conditional statement. Let's see another example:

function isAllowedToDrive(age){
 if(age>21){
 return true;
 }else{
 return false;
 }
}
console.log(isAllowedToDrive(22));

www.EBooksWorld.ir

Chapter 1

[21]

In this example, the isAllowedToDrive() function accepts one integer parameter,
age. Based on the value of this variable, we return true or false to the calling
function. This is a well-known and most familiar if-else conditional logic. Most of
the time, if-else keeps the code easier to read. For simpler cases of single conditions,
using the ternary operator is also okay, but if you see that you are using the ternary
operator for more complicated expressions, try to stick with if-else because it is easier
to interpret if-else conditions than a very complex ternary expression.

If-else conditional statements can be nested as follows:

if (condition1) {
 statement1
} else if (condition2) {
 statement2
} else if (condition3) {
 statement3
}
..
} else {
 statementN
}

Purely as a matter of taste, you can indent the nested else if as follows:

if (condition1) {
 statement1
} else
 if (condition2) {

Do not use assignments in place of a conditional statement. Most of the time,
they are used because of a mistake as follows:

if(a=b) {
 //do something
}

Mostly, this happens by mistake; the intended code was if(a==b), or better,
if(a===b). When you make this mistake and replace a conditional statement with
an assignment statement, you end up committing a very difficult-to-find bug.
However, if you really want to use an assignment statement with an if statement,
make sure that you make your intentions very clear.

www.EBooksWorld.ir

JavaScript Primer

[22]

One way is to put extra parentheses around your assignment statement:

if((a=b)){
 //this is really something you want to do
}

Another way to handle conditional execution is to use switch-case statements.
The switch-case construct in JavaScript is similar to that in C or Java. Let's see the
following example:

function sayDay(day){
 switch(day){
 case 1: console.log("Sunday");
 break;
 case 2: console.log("Monday");
 break;
 default:
 console.log("We live in a binary world. Go to Pluto");
 }
}

sayDay(1); //Sunday
sayDay(3); //We live in a binary world. Go to Pluto

One problem with this structure is that you have break out of every case; otherwise,
the execution will fall through to the next level. If we remove the break statement
from the first case statement, the output will be as follows:

>sayDay(1);
Sunday
Monday

As you can see, if we omit the break statement to break the execution immediately
after a condition is satisfied, the execution sequence follows to the next level. This
can lead to difficult-to-detect problems in your code. However, this is also a popular
style of writing conditional logic if you intend to fall through to the next level:

function debug(level,msg){
 switch(level){
 case "INFO": //intentional fall-through
 case "WARN" :
 case "DEBUG": console.log(level+ ": " + msg);
 break;
 case "ERROR": console.error(msg);
 }
}

www.EBooksWorld.ir

Chapter 1

[23]

debug("INFO","Info Message");
debug("DEBUG","Debug Message");
debug("ERROR","Fatal Exception");

In this example, we are intentionally letting the execution fall through to write a
concise switch-case. If levels are either INFO, WARN, or DEBUG, we use the switch-
case to fall through to a single point of execution. We omit the break statement for
this. If you want to follow this pattern of writing switch statements, make sure that
you document your usage for better readability.

Switch statements can have a default case to handle any value that cannot be
evaluated by any other case.

JavaScript has a while and do-while loop. The while loop lets you iterate a set of
expressions till a condition is met. The following first example iterates the statements
enclosed within {} till the i<10 expression is true. Remember that if the value of the
i counter is already greater than 10, the loop will not execute at all:

var i=0;
while(i<10){
 i=i+1;
 console.log(i);
}

The following loop keeps executing till infinity because the condition is always
true—this can lead to disastrous effects. Your program can use up all your memory
or something equally unpleasant:

//infinite loop
while(true){
 //keep doing this
}

If you want to make sure that you execute the loop at least once, you can use the do-
while loop (sometimes known as a post-condition loop):

var choice;
do {
 choice=getChoiceFromUserInput();
} while(!isInputValid(input));

www.EBooksWorld.ir

JavaScript Primer

[24]

In this example, we are asking the user for an input till we find a valid input from the
user. While the user types invalid input, we keep asking for an input to the user. It is
always argued that, logically, every do-while loop can be transformed into a while
loop. However, a do-while loop has a very valid use case like the one we just saw
where you want the condition to be checked only after there has been one execution
of the loop block.

JavaScript has a very powerful loop similar to C or Java—the for loop. The for loop
is popular because it allows you to define the control conditions of the loop in a
single line.

The following example prints Hello five times:

for (var i=0;i<5;i++){
 console.log("Hello");
}

Within the definition of the loop, you defined the initial value of the loop counter i
to be 0, you defined the i<5 exit condition, and finally, you defined the increment
factor.

All three expressions in the previous example are optional. You can omit them if
required. For example, the following variations are all going to produce the same
result as the previous loop:

var x=0;
//Omit initialitzation
for (;x<5;x++){
 console.log("Hello");
}

//Omit exit condition
for (var j=0;;j++){
 //exit condition
 if(j>=5){
 break;
 }else{
 console.log("Hello");
 }
}
//Omit increment
for (var k=0; k<5;){
 console.log("Hello");
 k++;
}

www.EBooksWorld.ir

Chapter 1

[25]

You can also omit all three of these expressions and write for loops. One interesting
idiom used frequently is to use for loops with empty statements. The following loop
is used to set all the elements of the array to 100. Notice how there is no body to the
for-loop:

var arr = [10, 20, 30];
// Assign all array values to 100
for (i = 0; i < arr.length; arr[i++] = 100);
console.log(arr);

The empty statement here is just the single that we see after the for loop statement.
The increment factor also modifies the array content. We will discuss arrays later in
the book, but here it's sufficient to see that the array elements are set to the 100 value
within the loop definition itself.

Equality
JavaScript offers two modes of equality—strict and loose. Essentially, loose equality
will perform the type conversion when comparing two values, while strict equality
will check the values without any type conversion. A strict equality check is
performed by === while a loose equality check is performed by ==.

ECMAScript 6 also offers the Object.is method to do a strict equality check like ===.
However, Object.is has a special handling for NaN: -0 and +0. When NaN===NaN
and NaN==NaN evaluates to false, Object.is(NaN,NaN) will return true.

Strict equality using ===
Strict equality compares two values without any implicit type conversions. The
following rules apply:

•	 If the values are of a different type, they are unequal.
•	 For non-numerical values of the same type, they are equal if their values are

the same.
•	 For primitive numbers, strict equality works for values. If the values are the

same, === results in true. However, a NaN doesn't equal to any number and
NaN===<a number> would be a false.

www.EBooksWorld.ir

JavaScript Primer

[26]

Strict equality is always the correct equality check to use. Make it a rule to always
use === instead of ==:

Condition Output
"" === "0" false
0 === "" false
0 === "0" false
false === "false" false
false === "0" false
false === undefined false
false === null false
null === undefined false

In case of comparing objects, we get results as follows:

Condition Output
{} === {}; false
new String('bah') === 'bah'; false
new Number(1) === 1; false
var bar = {};

bar === bar;

true

The following are further examples that you should try on either JS Bin or Node REPL:

var n = 0;
var o = new String("0");
var s = "0";
var b = false;

console.log(n === n); // true - same values for numbers
console.log(o === o); // true - non numbers are compared for their
values
console.log(s === s); // true - ditto

console.log(n === o); // false - no implicit type conversion, types
are different
console.log(n === s); // false - types are different
console.log(o === s); // false - types are different
console.log(null === undefined); // false
console.log(o === null); // false
console.log(o === undefined); // false

You can use !== to handle the Not Equal To case while doing strict equality checks.

www.EBooksWorld.ir

Chapter 1

[27]

Weak equality using ==
Nothing should tempt you to use this form of equality. Seriously, stay away from
this form. There are many bad things with this form of equality primarily due to the
weak typing in JavaScript. The equality operator, ==, first tries to coerce the type
before doing a comparison. The following examples show you how this works:

Condition Output
"" == "0" false
0 == "" true
0 == "0" true
false == "false" false
false == "0" true
false == undefined false
false == null false
null == undefined true

From these examples, it's evident that weak equality can result in unexpected
outcomes. Also, implicit type coercion is costly in terms of performance. So, in
general, stay away from weak equality in JavaScript.

JavaScript types
We briefly discussed that JavaScript is a dynamic language. If you have a
previous experience of strongly typed languages such as Java, you may feel a bit
uncomfortable about the complete lack of type checks that you are used to. Purists
argue that JavaScript should claim to have tags or perhaps subtypes, but not types.
Though JavaScript does not have the traditional definition of types, it is absolutely
essential to understand how JavaScript handles data types and coercion internally.
Every nontrivial JavaScript program will need to handle value coercion in some
form, so it's important that you understand the concept well.

Explicit coercion happens when you modify the type yourself. In the following
example, you will convert a number to a String using the toString() method and
extract the second character out of it:

var fortyTwo = 42;
console.log(fortyTwo.toString()[1]); //prints "2"

This is an example of an explicit type conversion. Again, we are using the word type
loosely because type was not enforced anywhere when you declared the fortyTwo
variable.

www.EBooksWorld.ir

JavaScript Primer

[28]

However, there are many different ways in which such coercion can happen.
Coercion happening explicitly can be easy to understand and mostly reliable; but if
you're not careful, coercion can happen in very strange and surprising ways.

Confusion around coercion is perhaps one of the most talked about frustrations
for JavaScript developers. To make sure that you never have this confusion in your
mind, let's revisit types in JavaScript. We talked about some concepts earlier:

typeof 1 === "number"; // true
typeof "1" === "string"; // true
typeof { age: 39 } === "object"; // true
typeof Symbol() === "symbol"; // true
typeof undefined === "undefined"; // true
typeof true === "boolean"; // true

So far, so good. We already knew this and the examples that we just saw reinforce
our ideas about types.

Conversion of a value from one type to another is called casting or explicit coercion.
JavaScript also does implicit coercion by changing the type of a value based on
certain guesses. These guesses make JavaScript work around several cases and
unfortunately make it fail quietly and unexpectedly. The following snippet shows
cases of explicit and implicit coercion:

var t=1;
var u=""+t; //implicit coercion
console.log(typeof t); //"number"
console.log(typeof u); //"string"
var v=String(t); //Explicit coercion
console.log(typeof v); //"string"
var x=null
console.log(""+x); //"null"

It is easy to see what is happening here. When you use ""+t to a numeric value of
t (1, in this case), JavaScript figures out that you are trying to concatenate something
with a "" string. As only strings can be concatenated with other strings, JavaScript
goes ahead and converts a numeric 1 to a "1" string and concatenates both into a
resulting string value. This is what happens when JavaScript is asked to convert
values implicitly. However, String(t) is a very deliberate call to convert a number
to a String. This is an explicit conversion of types. The last bit is surprising. We are
concatenating null with ""—shouldn't this fail?

So how does JavaScript do type conversions? How will an abstract value become
a String or number or Boolean? JavaScript relies on toString(), toNumber(), and
toBoolean() methods to do this internally.

www.EBooksWorld.ir

Chapter 1

[29]

When a non-String value is coerced into a String, JavaScript uses the toString()
method internally to do this. All primitives have a natural string form—null has
a string form of "null", undefined has a string form of "undefined", and so on.
For Java developers, this is analogous to a class having a toString() method that
returns a string representation of the class. We will see exactly how this works in
case of objects.

So essentially you can do something similar to the following:

var a="abc";
console.log(a.length);
console.log(a.toUpperCase());

If you are keenly following and typing all these little snippets, you would have
realized something strange in the previous snippet. How are we calling properties
and methods on primitives? How come primitives have objects such as properties
and methods? They don't.

As we discussed earlier, JavaScript kindly wraps these primitives in their wrappers
by default thus making it possible for us to directly access the wrapper's methods
and properties as if they were of the primitives themselves.

When any non-number value needs to be coerced into a number, JavaScript uses the
toNumber() method internally: true becomes 1, undefined becomes NaN, false
becomes 0, and null becomes 0. The toNumber() method on strings works with
literal conversion and if this fails, the method returns NaN.

What about some other cases?

typeof null ==="object" //true

Well, null is an object? Yes, an especially long-lasting bug makes this possible. Due to
this bug, you need to be careful while testing if a value is null:

var x = null;
if (!x && typeof x === "object"){
 console.log("100% null");
}

What about other things that may have types, such as functions?

f = function test() {
 return 12;
}
console.log(typeof f === "function"); //prints "true"

www.EBooksWorld.ir

JavaScript Primer

[30]

What about arrays?

console.log (typeof [1,2,3,4]); //"object"

Sure enough, they are also objects. We will take a detailed look at functions and
arrays later in the book.

In JavaScript, values have types, variables don't. Due to the dynamic nature of the
language, variables can hold any value at any time.

JavaScript doesn't does not enforce types, which means that the language doesn't
insist that a variable always hold values of the same initial type that it starts out with.
A variable can hold a String, and in the next assignment, hold a number, and so on:

var a = 1;
typeof a; // "number"
a = false;
typeof a; // "boolean"

The typeof operator always returns a String:

typeof typeof 1; // "string"

Automatic semicolon insertion
Although JavaScript is based on the C style syntax, it does not enforce the use of
semicolons in the source code.

However, JavaScript is not a semicolon-less language. A JavaScript language
parser needs the semicolons in order to understand the source code. Therefore,
the JavaScript parser automatically inserts them whenever it encounters a parse
error due to a missing semicolon. It's important to note that automatic semicolon
insertion (ASI) will only take effect in the presence of a newline (also known as a
line break). Semicolons are not inserted in the middle of a line.

Basically, if the JavaScript parser parses a line where a parser error would occur (a
missing expected ;) and it can insert one, it does so. What are the criteria to insert a
semicolon? Only if there's nothing but white space and/or comments between the
end of some statement and that line's newline/line break.

There have been raging debates on ASI—a feature justifiably considered to be a
very bad design choice. There have been epic discussions on the Internet, such as
https://github.com/twbs/bootstrap/issues/3057 and https://brendaneich.
com/2012/04/the-infernal-semicolon/.

www.EBooksWorld.ir

https://github.com/twbs/bootstrap/issues/3057
https://brendaneich.com/2012/04/the-infernal-semicolon/
https://brendaneich.com/2012/04/the-infernal-semicolon/

Chapter 1

[31]

Before you judge the validity of these arguments, you need to understand what is
affected by ASI. The following statements are affected by ASI:

•	 An empty statement
•	 A var statement
•	 An expression statement
•	 A do-while statement
•	 A continue statement
•	 A break statement
•	 A return statement
•	 A throw statement

The idea behind ASI is to make semicolons optional at the end of a line. This way,
ASI helps the parser to determine when a statement ends. Normally, it ends with a
semicolon. ASI dictates that a statement also ends in the following cases:

•	 A line terminator (for example, a newline) is followed by an illegal token
•	 A closing brace is encountered
•	 The end of the file has been reached

Let's see the following example:

if (a < 1) a = 1 console.log(a)

The console token is illegal after 1 and triggers ASI as follows:

if (a < 1) a = 1; console.log(a);

In the following code, the statement inside the braces is not terminated by a
semicolon:

function add(a,b) { return a+b }

ASI creates a syntactically correct version of the preceding code:

function add(a,b) { return a+b; }

www.EBooksWorld.ir

JavaScript Primer

[32]

JavaScript style guide
Every programming language develops its own style and structure. Unfortunately,
new developers don't put much effort in learning the stylistic nuances of a language.
It is very difficult to develop this skill later once you have acquired bad practices. To
produce beautiful, readable, and easily maintainable code, it is important to learn
the correct style. There are a ton of style suggestions. We will be picking the most
practical ones. Whenever applicable, we will discuss the appropriate style. Let's set
some stylistic ground rules.

Whitespaces
Though whitespace is not important in JavaScript, the correct use of whitespace
can make the code easy to read. The following guidelines will help in managing
whitespaces in your code:

•	 Never mix spaces and tabs.
•	 Before you write any code, choose between soft indents (spaces) or real tabs.

For readability, I always recommend that you set your editor's indent size to
two characters—this means two spaces or two spaces representing a real tab.

•	 Always work with the show invisibles setting turned on. The benefits of this
practice are as follows:

°° Enforced consistency.
°° Eliminates the end-of-line white spaces.
°° Eliminates blank line white spaces.
°° Commits and diffs that are easier to read.
°° Uses EditorConfig (http://editorconfig.org/) when possible.

Parentheses, line breaks, and braces
If, else, for, while, and try always have spaces and braces and span multiple lines.
This style encourages readability. Let's see the following code:

//Cramped style (Bad)
if(condition) doSomeTask();

while(condition) i++;

for(var i=0;i<10;i++) iterate();

//Use whitespace for better readability (Good)

www.EBooksWorld.ir

http://editorconfig.org/

Chapter 1

[33]

//Place 1 space before the leading brace.
if (condition) {
 // statements
}

while (condition) {
 // statements
}

for (var i = 0; i < 100; i++) {
 // statements
}

// Better:

var i,
 length = 100;

for (i = 0; i < length; i++) {
 // statements
}

// Or...

var i = 0,
 length = 100;

for (; i < length; i++) {
 // statements
}

var value;

for (value in object) {
 // statements
}

if (true) {
 // statements
} else {
 // statements
}

www.EBooksWorld.ir

JavaScript Primer

[34]

//Set off operators with spaces.
// bad
var x=y+5;

// good
var x = y + 5;

//End files with a single newline character.
// bad
(function(global) {
 // ...stuff...
})(this);

// bad
(function(global) {
 // ...stuff...
})(this);↵
↵

// good
(function(global) {
 // ...stuff...
})(this);↵

Quotes
Whether you prefer single or double quotes shouldn't matter; there is no difference
in how JavaScript parses them. However, for the sake of consistency, never mix
quotes in the same project. Pick one style and stick with it.

End of lines and empty lines
Whitespace can make it impossible to decipher code diffs and changelists. Many
editors allow you to automatically remove extra empty lines and end of lines—you
should use these.

www.EBooksWorld.ir

Chapter 1

[35]

Type checking
Checking the type of a variable can be done as follows:

//String:
typeof variable === "string"
//Number:
typeof variable === "number"
//Boolean:
typeof variable === "boolean"
//Object:
typeof variable === "object"
//null:
variable === null
//null or undefined:
variable == null

Type casting
Perform type coercion at the beginning of the statement as follows:

// bad
const totalScore = this.reviewScore + '';
// good
const totalScore = String(this.reviewScore);

Use parseInt() for Numbers and always with a radix for the type casting:

const inputValue = '4';
// bad
const val = new Number(inputValue);
// bad
const val = +inputValue;
// bad
const val = inputValue >> 0;
// bad
const val = parseInt(inputValue);
// good
const val = Number(inputValue);
// good
const val = parseInt(inputValue, 10);

www.EBooksWorld.ir

JavaScript Primer

[36]

The following example shows you how to type cast using Booleans:

const age = 0; // bad
const hasAge = new Boolean(age); // good
const hasAge = Boolean(age); // good
const hasAge = !!age;

Conditional evaluation
There are various stylistic guidelines around conditional statements. Let's study the
following code:

// When evaluating that array has length,
// WRONG:
if (array.length > 0) ...

// evaluate truthiness(GOOD):
if (array.length) ...

// When evaluating that an array is empty,
// (BAD):
if (array.length === 0) ...

// evaluate truthiness(GOOD):
if (!array.length) ...

// When checking if string is not empty,
// (BAD):
if (string !== "") ...

// evaluate truthiness (GOOD):
if (string) ...

// When checking if a string is empty,
// BAD:
if (string === "") ...

// evaluate falsy-ness (GOOD):
if (!string) ...

// When checking if a reference is true,
// BAD:
if (foo === true) ...

www.EBooksWorld.ir

Chapter 1

[37]

// GOOD
if (foo) ...

// When checking if a reference is false,
// BAD:
if (foo === false) ...

// GOOD
if (!foo) ...

// this will also match: 0, "", null, undefined, NaN
// If you MUST test for a boolean false, then use
if (foo === false) ...

// a reference that might be null or undefined, but NOT false, "" or
0,
// BAD:
if (foo === null || foo === undefined) ...

// GOOD
if (foo == null) ...

// Don't complicate matters
return x === 0 ? 'sunday' : x === 1 ? 'Monday' : 'Tuesday';

// Better:
if (x === 0) {
 return 'Sunday';
} else if (x === 1) {
 return 'Monday';
} else {
 return 'Tuesday';
}

// Even Better:
switch (x) {
 case 0:
 return 'Sunday';
 case 1:
 return 'Monday';
 default:
 return 'Tuesday';
}

www.EBooksWorld.ir

JavaScript Primer

[38]

Naming
Naming is super important. I am sure that you have encountered code with terse and
undecipherable naming. Let's study the following lines of code:

//Avoid single letter names. Be descriptive with your naming.
// bad
function q() {

}

// good
function query() {
}

//Use camelCase when naming objects, functions, and instances.
// bad
const OBJEcT = {};
const this_is_object = {};
function c() {}

// good
const thisIsObject = {};
function thisIsFunction() {}

//Use PascalCase when naming constructors or classes.
// bad
function user(options) {
 this.name = options.name;
}

const bad = new user({
 name: 'nope',
});

// good
class User {
 constructor(options) {
 this.name = options.name;
 }
}

www.EBooksWorld.ir

Chapter 1

[39]

const good = new User({
 name: 'yup',
});

// Use a leading underscore _ when naming private properties.
// bad
this.__firstName__ = 'Panda';
this.firstName_ = 'Panda';

// good
this._firstName = 'Panda';

The eval() method is evil
The eval() method, which takes a String containing JavaScript code, compiles it and
runs it, is one of the most misused methods in JavaScript. There are a few situations
where you will find yourself using eval(), for example, when you are building an
expression based on the user input.

However, most of the time, eval() is used is just because it gets the job done. The
eval() method is too hacky and makes the code unpredictable. It's slow, unwieldy,
and tends to magnify the damage when you make a mistake. If you are considering
using eval(), then there is probably a better way.

The following snippet shows the usage of eval():

console.log(typeof eval(new String("1+1"))); // "object"
console.log(eval(new String("1+1"))); //1+1
console.log(eval("1+1")); // 2
console.log(typeof eval("1+1")); // returns "number"
var expression = new String("1+1");
console.log(eval(expression.toString())); //2

I will refrain from showing other uses of eval() and make sure that you are
discouraged enough to stay away from it.

The strict mode
ECMAScript 5 has a strict mode that results in cleaner JavaScript, with fewer
unsafe features, more warnings, and more logical behavior. The normal (non-strict)
mode is also called sloppy mode. The strict mode can help you avoid a few sloppy
programming practices. If you are starting a new JavaScript project, I would highly
recommend that you use the strict mode by default.

www.EBooksWorld.ir

JavaScript Primer

[40]

You switch on the strict mode by typing the following line first in your JavaScript file
or in your <script> element:

'use strict';

Note that JavaScript engines that don't support ECMAScript 5 will simply ignore the
preceding statement and continue as non-strict mode.

If you want to switch on the strict mode per function, you can do it as follows:

function foo() {
 'use strict';

}

This is handy when you are working with a legacy code base where switching on the
strict mode everywhere may break things.

If you are working on an existing legacy code, be careful because using the strict
mode can break things. There are caveats on this:

Enabling the strict mode for an existing code can break it
The code may rely on a feature that is not available anymore or on behavior that
is different in a sloppy mode than in a strict mode. Don't forget that you have the
option to add single strict mode functions to files that are in the sloppy mode.

Package with care
When you concatenate and/or minify files, you have to be careful that the strict
mode isn't switched off where it should be switched on or vice versa. Both can
break code.

The following sections explain the strict mode features in more detail. You normally
don't need to know them as you will mostly get warnings for things that you
shouldn't do anyway.

Variables must be declared in strict mode
All variables must be explicitly declared in strict mode. This helps to prevent typos.
In the sloppy mode, assigning to an undeclared variable creates a global variable:

function sloppyFunc() {
 sloppyVar = 123;
} sloppyFunc(); // creates global variable `sloppyVar`
console.log(sloppyVar); // 123

www.EBooksWorld.ir

Chapter 1

[41]

In the strict mode, assigning to an undeclared variable throws an exception:

function strictFunc() {
 'use strict';
 strictVar = 123;
}
strictFunc(); // ReferenceError: strictVar is not defined

The eval() function is cleaner in strict mode
In strict mode, the eval() function becomes less quirky: variables declared in the
evaluated string are not added to the scope surrounding eval() anymore.

Features that are blocked in strict mode
The with statement is not allowed. (We will discuss this in the book later.) You get a
syntax error at compile time (when loading the code).

In the sloppy mode, an integer with a leading zero is interpreted as octal (base 8) as
follows:

> 010 === 8 true

In strict mode, you get a syntax error if you use this kind of literal:

function f() {
'use strict';
return 010
}
//SyntaxError: Octal literals are not allowed in

Running JSHint
JSHint is a program that flags suspicious usage in programs written in JavaScript.
The core project consists of a library itself as well as a command line interface (CLI)
program distributed as a Node module.

If you have Node.js installed, you can install JSHint using npm as follows:

npm install jshint –g

www.EBooksWorld.ir

JavaScript Primer

[42]

Once JSHint is installed, you can lint a single or multiple JavaScript files. Save the
following JavaScript code snippet in the test.js file:

function f(condition) {
 switch (condition) {
 case 1:
 console.log(1);
 case 2:
 console.log(1);
 }
}

When we run the file using JSHint, it will warn us of a missing break statement in
the switch case as follows:

>jshint test.js

test.js: line 4, col 19, Expected a 'break' statement before 'case'.

1 error

JSHint is configurable to suit your needs. Check the documentation at http://
jshint.com/docs/ to see how you can customize JSHint according to your project
needs. I use JSHint extensively and suggest you start using it. You will be surprised
to see how many hidden bugs and stylistic issues you will be able to fix in your code
with such a simple tool.

You can run JSHint at the root of your project and lint the entire project. You can
place JSHint directives in the .jshintrc file. This file may look something as
follows:

{
 "asi": false,
 "expr": true,
 "loopfunc": true,
 "curly": false,
 "evil": true,
 "white": true,
 "undef": true,
 "indent": 4
}

www.EBooksWorld.ir

http://jshint.com/docs/
http://jshint.com/docs/

Chapter 1

[43]

Summary
In this chapter, we set some foundations around JavaScript grammar, types, and
stylistic considerations. We have consciously not talked about other important
aspects such as functions, variable scopes, and closures primarily because they
deserve their own place in this book. I am sure that this chapter helps you
understand some of the primary concepts of JavaScript. With these foundations in
place, we will take a look at how we can write professional quality JavaScript code.

www.EBooksWorld.ir

www.EBooksWorld.ir

[45]

Functions, Closures,
and Modules

In the previous chapter, we deliberately did not discuss certain aspects of JavaScript.
These are some of the features of the language that give JavaScript its power and
elegance. If you are an intermediate- or advanced-level JavaScript programmer, you
may be actively using objects and functions. In many cases, however, developers
stumble at these fundamental levels and develop a half-baked or sometimes
wrong understanding of the core JavaScript constructs. There is generally a
very poor understanding of the concept of closures in JavaScript, due to which
many programmers cannot use the functional aspects of JavaScript very well. In
JavaScript, there is a strong interconnection between objects, functions, and closures.
Understanding the strong relationship between these three concepts can vastly
improve our JavaScript programming ability, giving us a strong foundation for any
type of application development.

Functions are fundamental to JavaScript. Understanding functions in JavaScript
is the single most important weapon in your arsenal. The most important fact
about functions is that in JavaScript, functions are first-class objects. They are
treated like any other JavaScript object. Just like other JavaScript data types, they
can be referenced by variables, declared with literals, and even passed as function
parameters.

www.EBooksWorld.ir

Functions, Closures, and Modules

[46]

As with any other object in JavaScript, functions have the following capabilities:

•	 They can be created via literals
•	 They can be assigned to variables, array entries, and properties of other

objects
•	 They can be passed as arguments to functions
•	 They can be returned as values from functions
•	 They can possess properties that can be dynamically created and assigned

We will talk about each of these unique abilities of a JavaScript function in this
chapter and the rest of the book.

A function literal
One of the most important concepts in JavaScript is that the functions are the
primary unit of execution. Functions are the pieces where you will wrap all your
code, hence they will give your programs a structure.

JavaScript functions are declared using a function literal.

Function literals are composed of the following four parts:

•	 The function keyword.
•	 An optional name that, if specified, must be a valid JavaScript identifier.
•	 A list of parameter names enclosed in parentheses. If there are no parameters

to the function, you need to provide empty parentheses.
•	 The body of the function as a series of JavaScript statements enclosed in braces.

A function declaration
The following is a very trivial example to demonstrate all the components of a
function declaration:

function add(a,b){
 return a+b;
}
c = add(1,2);
console.log(c); //prints 3

www.EBooksWorld.ir

Chapter 2

[47]

The declaration begins with a function keyword followed by the function name.
The function name is optional. If a function is not given a name, it is said to be
anonymous. We will see how anonymous functions are used. The third part is the
set of parameters of the function, wrapped in parentheses. Within the parentheses
is a set of zero or more parameter names separated by commas. These names will
be defined as variables in the function, and instead of being initialized to undefined,
they will be initialized to the arguments supplied when the function is invoked. The
fourth part is a set of statements wrapped in curly braces. These statements are the
body of the function. They are executed when the function is invoked.

This method of function declaration is also known as function statement. When you
declare functions like this, the content of the function is compiled and an object with
the same name as the function is created.

Another way of function declaration is via function expressions:

var add = function(a,b){
 return a+b;
}
c = add(1,2);
console.log(c); //prints 3

Here, we are creating an anonymous function and assigning it to an add variable; this
variable is used to invoke the function as in the earlier example. One problem with
this style of function declaration is that we cannot have recursive calls to this kind of
function. Recursion is an elegant style of coding where the function calls itself. You
can use named function expressions to solve this limitation. As an example, refer to
the following function to compute the factorial of a given number, n:

var facto = function factorial(n) {
 if (n <= 1)
 return 1;
 return n * factorial(n - 1);
};
console.log(facto(3)); //prints 6

Here, instead of creating an anonymous function, you are creating a named function.
Now, because the function has a name, it can call itself recursively.

Finally, you can create self-invoking function expressions (we will discuss them
later):

(function sayHello() {
 console.log("hello!");
})();

www.EBooksWorld.ir

Functions, Closures, and Modules

[48]

Once defined, a function can be called in other JavaScript functions. After the
function body is executed, the caller code (that executed the function) continues to
execute. You can also pass a function as a parameter to another function:

function changeCase(val) {
 return val.toUpperCase();
}
function demofunc(a, passfunction) {
 console.log(passfunction(a));
}
demofunc("smallcase", changeCase);

In the preceding example, we are calling the demofunc() function with two
parameters. The first parameter is the string that we want to convert to uppercase
and the second one is the function reference to the changeCase() function. In
demofunc(), we call the changeCase() function via its reference passed to the
passfunction argument. Here we are passing a function reference as an argument
to another function. This powerful concept will be discussed in detail later in the
book when we discuss callbacks.

A function may or may not return a value. In the previous examples, we saw that the
add function returned a value to the calling code. Apart from returning a value at the
end of the function, calling return explicitly allows you to conditionally return from
a function:

var looper = function(x){
 if (x%5===0) {
 return;
 }
 console.log(x)
}
for(var i=1;i<10;i++){
 looper(i);
}

This code snippet prints 1, 2, 3, 4, 6, 7, 8, and 9, and not 5. When the if (x%5===0)
condition is evaluated to true, the code simply returns from the function and the rest
of the code is not executed.

www.EBooksWorld.ir

Chapter 2

[49]

Functions as data
In JavaScript, functions can be assigned to variables, and variables are data. You will
shortly see that this is a powerful concept. Let's see the following example:

var say = console.log;
say("I can also say things");

In the preceding example, we assigned the familiar console.log() function to the
say variable. Any function can be assigned to a variable as shown in the preceding
example. Adding parentheses to the variable will invoke it. Moreover, you can pass
functions in other functions as parameters. Study the following example carefully
and type it in JS Bin:

var validateDataForAge = function(data) {
 person = data();
 console.log(person);
 if (person.age <1 || person.age > 99){
 return true;
 }else{
 return false;
 }
};

var errorHandlerForAge = function(error) {
 console.log("Error while processing age");
};

function parseRequest(data,validateData,errorHandler) {
 var error = validateData(data);
 if (!error) {
 console.log("no errors");
 } else {
 errorHandler();
 }
}

var generateDataForScientist = function() {
 return {
 name: "Albert Einstein",
 age : Math.floor(Math.random() * (100 - 1)) + 1,
 };
};

www.EBooksWorld.ir

Functions, Closures, and Modules

[50]

var generateDataForComposer = function() {
 return {
 name: "J S Bach",
 age : Math.floor(Math.random() * (100 - 1)) + 1,
 };
};

//parse request
parseRequest(generateDataForScientist, validateDataForAge,
errorHandlerForAge);
parseRequest(generateDataForComposer, validateDataForAge,
errorHandlerForAge);

In this example, we are passing functions as parameters to a parseRequest() function.
We are passing different functions for two different calls, generateDataForScientist
and generateDataForComposers, while the other two functions remain the same.
You can observe that we defined a generic parseRequest(). It takes three functions
as arguments, which are responsible for stitching together the specifics: the data,
validator, and error handler. The parseRequest() function is fully extensible and
customizable, and because it will be invoked by every request, there is a single, clean
debugging point. I am sure that you have started to appreciate the incredible power
that JavaScript functions provide.

Scoping
For beginners, JavaScript scoping is slightly confusing. These concepts may seem
straightforward; however, they are not. Some important subtleties exist that must
be understood in order to master the concept. So what is Scope? In JavaScript, scope
refers to the current context of code.

A variable's scope is the context in which the variable exists. The scope specifies from
where you can access a variable and whether you have access to the variable in that
context. Scopes can be globally or locally defined.

www.EBooksWorld.ir

Chapter 2

[51]

Global scope
Any variable that you declare is by default defined in global scope. This is one of
the most annoying language design decisions taken in JavaScript. As a global
variable is visible in all other scopes, a global variable can be modified by any scope.
Global variables make it harder to run loosely coupled subprograms in the same
program/module. If the subprograms happen to have global variables that share
the same names, then they will interfere with each other and likely fail, usually
in difficult-to-diagnose ways. This is sometimes known as namespace clash.
We discussed global scope in the previous chapter but let's revisit it briefly to
understand how best to avoid this.

You can create a global variable in two ways:

•	 The first way is to place a var statement outside any function. Essentially,
any variable declared outside a function is defined in the global scope.

•	 The second way is to omit the var statement while declaring a variable (also
called implied globals). I think this was designed as a convenience for new
programmers but turned out to be a nightmare. Even within a function
scope, if you omit the var statement while declaring a variable, it's created
by default in the global scope. This is nasty. You should always run your
program against ESLint or JSHint to let them flag such violations. The
following example shows how global scope behaves:

//Global Scope
var a = 1;
function scopeTest() {
 console.log(a);
}
scopeTest(); //prints 1

Here we are declaring a variable outside the function and in the global scope. This
variable is available in the scopeTest() function. If you assign a new value to a
global scope variable within a function scope (local), the original value in the global
scope is overwritten:

//Global Scope
var a = 1;
function scopeTest() {
 a = 2; //Overwrites global variable 2, you omit 'var'
 console.log(a);
}
console.log(a); //prints 1
scopeTest(); //prints 2
console.log(a); //prints 2 (global value is overwritten)

www.EBooksWorld.ir

Functions, Closures, and Modules

[52]

Local scope
Unlike most programming languages, JavaScript does not have block-level scope
(variables scoped to surrounding curly brackets); instead, JavaScript has function-
level scope. Variables declared within a function are local variables and are only
accessible within that function or by functions inside that function:

var scope_name = "Global";
function showScopeName () {
 // local variable; only accessible in this function
 var scope_name = "Local";
 console.log (scope_name); // Local
}
console.log (scope_name); //prints - Global
showScopeName(); //prints – Local

Function-level scope versus block-level
scope
JavaScript variables are scoped at the function level. You can think of this as a small
bubble getting created that prevents the variable to be visible from outside this
bubble. A function creates such a bubble for variables declared inside the function.
You can visualize the bubbles as follows:

-GLOBAL SCOPE---|
var g =0; |
function foo(a) { -----------------------| |
 var b = 1; | |
 //code | |
 function bar() { ------| | |
 // ... |ScopeBar | ScopeFoo |
 } ------| | |
 // code | |
 var c = 2; | |
}--| |
foo(); //WORKS |
bar(); //FAILS

www.EBooksWorld.ir

Chapter 2

[53]

JavaScript uses scope chains to establish the scope for a given function. There is
typically one global scope, and each function defined has its own nested scope. Any
function defined within another function has a local scope that is linked to the outer
function. It's always the position in the source that defines the scope. When resolving a
variable, JavaScript starts at the innermost scope and searches outwards. With this,
let's look at various scoping rules in JavaScript.

In the preceding crudely drawn visual, you can see that the foo() function is defined
in the global scope. The foo() function has its local scope and access to the g variable
because it's in the global scope. The a, b, and c variables are available in the local scope
because they are defined within the function scope. The bar() function is also declared
within the function scope and is available within the foo() function. However, once
the function scope is over, the bar() function is not available. You cannot see or call
the bar() function from outside the foo() function—a scope bubble.

Now that the bar() function also has its own function scope (bubble), what is
available in here? The bar() function has access to the foo() function and all the
variables created in the parent scope of the foo() function—a, b, and c. The bar()
function also has access to the global scoped variable, g.

This is a powerful idea. Take a moment to think about it. We just discussed how
rampant and uncontrolled global scope can get in JavaScript. How about we take an
arbitrary piece of code and wrap it around with a function? We will be able to hide
and create a scope bubble around this piece of code. Creating the correct scope using
function wrapping will help us create correct code and prevent difficult-to-detect
bugs.

Another advantage of the function scope and hiding variables and functions within
this scope is that you can avoid collisions between two identifiers. The following
example shows such a bad case:

function foo() {
 function bar(a) {
 i = 2; // changing the 'i' in the enclosing scope's for-loop
 console.log(a+i);
 }
 for (var i=0; i<10; i++) {
 bar(i); // infinite loop
 }
}
foo();

www.EBooksWorld.ir

Functions, Closures, and Modules

[54]

In the bar() function, we are inadvertently modifying the value of i=2. When we
call bar() from within the for loop, the value of the i variable is set to 2 and we
never come out of an infinite loop. This is a bad case of namespace collision.

So far, using functions as a scope sounds like a great way to achieve modularity and
correctness in JavaScript. Well, though this technique works, it's not really ideal.
The first problem is that we must create a named function. If we keep creating such
functions just to introduce the function scope, we pollute the global scope or parent
scope. Additionally, we have to keep calling such functions. This introduces a lot of
boilerplate, which makes the code unreadable over time:

var a = 1;
//Lets introduce a function -scope
//1. Add a named function foo() into the global scope
function foo() {
 var a = 2;
 console.log(a); // 2
}
//2. Now call the named function foo()
foo();
console.log(a); // 1

We introduced the function scope by creating a new function foo() to the global
scope and called this function later to execute the code.

In JavaScript, you can solve both these problems by creating functions that
immediately get executed. Carefully study and type the following example:

var a = 1;
//Lets introduce a function -scope
//1. Add a named function foo() into the global scope
(function foo() {
 var a = 2;
 console.log(a); // 2
})(); //<---this function executes immediately
console.log(a); // 1

Notice that the wrapping function statement starts with function. This means that
instead of treating the function as a standard declaration, the function is treated as a
function expression.

www.EBooksWorld.ir

Chapter 2

[55]

The (function foo(){ }) statement as an expression means that the
identifier foo is found only in the scope of the foo() function, not in the outer
scope. Hiding the name foo in itself means that it does not pollute the enclosing
scope unnecessarily. This is so useful and far better. We add () after the function
expression to execute it immediately. So the complete pattern looks as follows:

(function foo(){ /* code */ })();

This pattern is so common that it has a name: IIFE, which stands for Immediately
Invoked Function Expression. Several programmers omit the function name when
they use IIFE. As the primary use of IIFE is to introduce function-level scope, naming
the function is not really required. We can write the earlier example as follows:

var a = 1;
(function() {
 var a = 2;
 console.log(a); // 2
})();
console.log(a); // 1

Here we are creating an anonymous function as IIFE. While this is identical to the
earlier named IIFE, there are a few drawbacks of using anonymous IIFEs:

•	 As you can't see the function name in the stack traces, debugging such code
is very difficult

•	 You cannot use recursion on anonymous functions (as we discussed earlier)
•	 Overusing anonymous IIFEs sometimes results in unreadable code

Douglas Crockford and a few other experts recommend a slight variation of IIFE:

(function(){ /* code */ }());

Both these IIFE forms are popular and you will see a lot of code using both these
variations.

You can pass parameters to IIFEs. The following example shows you how to pass
parameters to IIFEs:

(function foo(b) {
 var a = 2;
 console.log(a + b);
})(3); //prints 5

www.EBooksWorld.ir

Functions, Closures, and Modules

[56]

Inline function expressions
There is another popular usage of inline function expressions where the functions are
passed as parameters to other functions:

function setActiveTab(activeTabHandler, tab){
 //set active tab
 //call handler
 activeTabHandler();
}
setActiveTab(function (){
 console.log("Setting active tab");
}, 1);
//prints "Setting active tab"

Again, you can name this inline function expression to make sure that you get a
correct stack trace while you are debugging the code.

Block scopes
As we discussed earlier, JavaScript does not have the concept of block scopes.
Programmers familiar with other languages such as Java or C find this very
uncomfortable. ECMAScript 6 (ES6) introduces the let keyword to introduce
traditional block scope. This is so incredibly convenient that if you are sure your
environment is going to support ES6, you should always use the let keyword. See
the following code:

var foo = true;
if (foo) {
 let bar = 42; //variable bar is local in this block { }
 console.log(bar);
}
console.log(bar); // ReferenceError

However, as things stand today, ES6 is not supported by default in most popular
browsers.

This chapter so far should have given you a fair understanding of how scoping
works in JavaScript. If you are still unclear, I would suggest that you stop here and
revisit the earlier sections of this chapter. Research your doubts on the Internet or
put your questions on Stack Overflow. In short, make sure that you have no doubts
related to the scoping rules.

www.EBooksWorld.ir

Chapter 2

[57]

It is very natural for us to think of code execution happening from top to bottom, line
by line. This is how most of JavaScript code is executed but with some exceptions.

Consider the following code:

console.log(a);
var a = 1;

If you said this is an invalid code and will result in undefined when we call
console.log(), you are absolutely correct. However, what about this?

a = 1;
var a;
console.log(a);

What should be the output of the preceding code? It is natural to expect undefined
as the var a statement comes after a = 1, and it would seem natural to assume that
the variable is redefined and thus assigned the default undefined. However, the
output will be 1.

When you see var a = 1, JavaScript splits it into two statements: var a and a = 1.
The first statement, the declaration, is processed during the compilation phase. The
second statement, the assignment, is left in place for the execution phase.

So the preceding snippet would actually be executed as follows:

var a; //----Compilation phase

a = 1; //------execution phase
console.log(a);

The first snippet is actually executed as follows:

var a; //-----Compilation phase

console.log(a);
a = 1; //------execution phase

So, as we can see, variable and function declarations are moved up to the top of the
code during compilation phase—this is also popularly known as hoisting. It is very
important to remember that only the declarations themselves are hoisted, while any
assignments or other executable logic are left in place. The following snippet shows
you how function declarations are hoisted:

foo();
function foo() {
 console.log(a); // undefined
 var a = 1;
}

www.EBooksWorld.ir

Functions, Closures, and Modules

[58]

The declaration of the foo() function is hoisted such that we are able to execute
the function before defining it. One important aspect of hoisting is that it works per
scope. Within the foo() function, declaration of the a variable will be hoisted to the
top of the foo() function, and not to the top of the program. The actual execution of
the foo() function with hoisting will be something as follows:

function foo() {
 var a;
 console.log(a); // undefined
 a = 1;
}

We saw that function declarations are hoisted but function expressions are not. The
next section explains this case.

Function declarations versus function
expressions
We saw two ways by which functions are defined. Though they both serve identical
purposes, there is a difference between these two types of declarations. Check the
following example:

//Function expression
functionOne();
//Error
//"TypeError: functionOne is not a function

var functionOne = function() {
 console.log("functionOne");
};
//Function declaration
functionTwo();
//No error
//Prints - functionTwo

function functionTwo() {
 console.log("functionTwo");
}

www.EBooksWorld.ir

Chapter 2

[59]

A function declaration is processed when execution enters the context in which it
appears before any step-by-step code is executed. The function that it creates is given
a proper name (functionTwo() in the preceding example) and this name is put in the
scope in which the declaration appears. As it's processed before any step-by-step code
in the same context, calling functionTwo() before defining it works without an error.

However, functionOne() is an anonymous function expression, evaluated when it's
reached in the step-by-step execution of the code (also called runtime execution); we
have to declare it before we can invoke it.

So essentially, the function declaration of functionTwo() was hoisted while the
function expression of functionOne() was executed when line-by-line execution
encountered it.

Both function declarations and variable declarations are hoisted but
functions are hoisted first, and then variables.

One thing to remember is that you should never use function declarations
conditionally. This behavior is non-standardized and can behave differently across
platforms. The following example shows such a snippet where we try to use function
declarations conditionally. We are trying to assign different function body to
function sayMoo() but such a conditional code is not guaranteed to work across all
browsers and can result in unpredictable results:

// Never do this - different browsers will behave differently
if (true) {
 function sayMoo() {
 return 'trueMoo';
 }
}
else {
 function sayMoo() {
 return 'falseMoo';
 }
}
foo();

However, it's perfectly safe and, in fact, smart to do the same with function
expressions:

var sayMoo;
if (true) {
 sayMoo = function() {

www.EBooksWorld.ir

Functions, Closures, and Modules

[60]

 return 'trueMoo';
 };
}
else {
 sayMoo = function() {
 return 'falseMoo';
 };
}
foo();

If you are curious to know why you should not use function declarations in
conditional blocks, read on; otherwise, you can skip the following paragraph.

Function declarations are allowed to appear only in the program or function body.
They cannot appear in a block ({ ... }). Blocks can only contain statements and
not function declarations. Due to this, almost all implementations of JavaScript have
behavior different from this. It is always advisable to never use function declarations
in a conditional block.

Function expressions, on the other hand, are very popular. A very common pattern
among JavaScript programmers is to fork function definitions based on some kind
of a condition. As such forks usually happen in the same scope, it is almost always
necessary to use function expressions.

The arguments parameter
The arguments parameter is a collection of all the arguments passed to the function.
The collection has a property named length that contains the count of arguments,
and the individual argument values can be obtained using an array indexing
notation. Okay, we lied a bit. The arguments parameter is not a JavaScript array, and
if you try to use array methods on arguments, you'll fail miserably. You can think of
arguments as an array-like structure. This makes it possible to write functions that
take an unspecified number of parameters. The following snippet shows you how
you can pass a variable number of arguments to the function and iterate through
them using an arguments array:

var sum = function () {
 var i, total = 0;
 for (i = 0; i < arguments.length; i += 1) {
 total += arguments[i];
 }
 return total;
};
console.log(sum(1,2,3,4,5,6,7,8,9)); // prints 45
console.log(sum(1,2,3,4,5)); // prints 15

www.EBooksWorld.ir

Chapter 2

[61]

As we discussed, the arguments parameter is not really an array; it is possible to
convert it to an array as follows:

var args = Array.prototype.slice.call(arguments);

Once converted to an array, you can manipulate the list as you wish.

The this parameter
Whenever a function is invoked, in addition to the parameters that represent the
explicit arguments that were provided on the function call, an implicit parameter
named this is also passed to the function. It refers to an object that's implicitly
associated with the function invocation, termed as a function context. If you have
coded in Java, the this keyword will be familiar to you; like Java, this points to an
instance of the class in which the method is defined.

Equipped with this knowledge, let's talk about various invocation methods.

Invocation as a function
If a function is not invoked as a method, constructor, or via apply() or call(),
it's simply invoked as a function:

function add() {}
add();
var substract = function() {

};
substract();

When a function is invoked with this pattern, this is bound to the global object.
Many experts believe this to be a bad design choice. It is natural to assume that this
would be bound to the parent context. When you are in a situation such as this, you
can capture the value of this in another variable. We will focus on this pattern later.

Invocation as a method
A method is a function tied to a property on an object. For methods, this is bound to
the object on invocation:

var person = {
 name: 'Albert Einstein',
 age: 66,
 greet: function () {

www.EBooksWorld.ir

Functions, Closures, and Modules

[62]

 console.log(this.name);
 }
};
person.greet();

In this example, this is bound to the person object on invoking greet because greet
is a method of person. Let's see how this behaves in both these invocation patterns.

Let's prepare this HTML and JavaScript harness:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>This test</title>
 <script type="text/javascript">
 function testF(){ return this; }
 console.log(testF());
 var testFCopy = testF;
 console.log(testFCopy());
 var testObj = {
 testObjFunc: testF
 };
 console.log(testObj.testObjFunc ());
 </script>
</head>
<body>
</body>
</html>

In the Firebug console, you can see the following output:

The first two method invocations were invocation as a function; hence, the this
parameter pointed to the global context (Window, in this case).

www.EBooksWorld.ir

Chapter 2

[63]

Next, we define an object with a testObj variable with a property named
testObjFunc that receives a reference to testF()—don't fret if you are not really
aware of object creation yet. By doing this, we created a testObjMethod() method.
Now, when we invoke this method, we expect the function context to be displayed
when we display the value of this.

Invocation as a constructor
Constructor functions are declared just like any other functions and there's nothing
special about a function that's going to be used as a constructor. However, the way in
which they are invoked is very different.

To invoke the function as a constructor, we precede the function invocation with the
new keyword. When this happens, this is bound to the new object.

Before we discuss more, let's take a quick introduction to object orientation in
JavaScript. We will, of course, discuss the topic in great detail in the next chapter.
JavaScript is a prototypal inheritance language. This means that objects can inherit
properties directly from other objects. The language is class-free. Functions that
are designed to be called with the new prefix are called constructors. Usually, they
are named using PascalCase as opposed to CamelCase for easier distinction. In
the following example, notice that the greet function uses this to access the name
property. The this parameter is bound to Person:

var Person = function (name) {
 this.name = name;
};
Person.prototype.greet = function () {
 return this.name;
};
var albert = new Person('Albert Einstein');
console.log(albert.greet());

We will discuss this particular invocation method when we study objects in the next
chapter.

Invocation using apply() and call() methods
We said earlier that JavaScript functions are objects. Like other objects, they also
have certain methods. To invoke a function using its apply() method, we pass two
parameters to apply(): the object to be used as the function context and an array
of values to be used as the invocation arguments. The call() method is used in a
similar manner, except that the arguments are passed directly in the argument list
rather than as an array.

www.EBooksWorld.ir

Functions, Closures, and Modules

[64]

Anonymous functions
We introduced you to anonymous functions a bit earlier in this chapter, and as they're
a crucial concept, we will take a detailed look at them. For a language inspired by
Scheme, anonymous functions are an important logical and structural construct.

Anonymous functions are typically used in cases where the function doesn't need
to have a name for later reference. Let's look at some of the most popular usages of
anonymous functions.

Anonymous functions while creating an object
An anonymous function can be assigned to an object property. When we do that,
we can call that function with a dot (.) operator. If you are coming from a Java or
other OO language background, you will find this very familiar. In such languages,
a function, which is part of a class is generally called with a notation—Class.
function(). Let's consider the following example:

var santa = {
 say :function(){
 console.log("ho ho ho");
 }
}
santa.say();

In this example, we are creating an object with a say property, which is an
anonymous function. In this particular case, this property is known as a method and
not a function. We don't need to name this function because we are going to invoke it
as the object property. This is a popular pattern and should come in handy.

Anonymous functions while creating a list
Here, we are creating two anonymous functions and adding them to an array. (We
will take a detailed look at arrays later.) Then, you loop through this array and
execute the functions in a loop:

<script type="text/javascript">
var things = [
 function() { alert("ThingOne") },
 function() { alert("ThingTwo") },
];
for(var x=0; x<things.length; x++) {
 things[x]();
}
</script>

www.EBooksWorld.ir

Chapter 2

[65]

Anonymous functions as a parameter to
another function
This is one of the most popular patterns and you will find such code in most
professional libraries:

// function statement
function eventHandler(event){
 event();
}

eventHandler(function(){
 //do a lot of event related things
 console.log("Event fired");
});

You are passing the anonymous function to another function. In the receiving
function, you are executing the function passed as a parameter. This can be very
convenient if you are creating single-use functions such as object methods or event
handlers. The anonymous function syntax is more concise than declaring a function
and then doing something with it as two separate steps.

Anonymous functions in conditional logic
You can use anonymous function expressions to conditionally change behavior. The
following example shows this pattern:

var shape;
if(shape_name === "SQUARE") {
 shape = function() {
 return "drawing square";
 }
}
else {
 shape = function() {
 return "drawing square";
 }
}
alert(shape());

Here, based on a condition, we are assigning a different implementation to the shape
variable. This pattern can be very useful if used with care. Overusing this can result
in unreadable and difficult-to-debug code.

www.EBooksWorld.ir

Functions, Closures, and Modules

[66]

Later in this book, we will look at several functional tricks such as memoization
and caching function calls. If you have reached here by quickly reading through the
entire chapter, I would suggest that you stop for a while and contemplate on what
we have discussed so far. The last few pages contain a ton of information and it will
take some time for all this information to sink in. I would suggest that you reread
this chapter before proceeding further. The next section will focus on closures and
the module pattern.

Closures
Traditionally, closures have been a feature of purely functional programming
languages. JavaScript shows its affinity with such functional programming
languages by considering closures integral to the core language constructs. Closures
are gaining popularity in mainstream JavaScript libraries and advanced production
code because they let you simplify complex operations. You will hear experienced
JavaScript programmers talking almost reverently about closures—as if they are
some magical construct far beyond the reach of the intellect that common men
possess. However, this is not so. When you study this concept, you will find closures
to be very obvious, almost matter-of-fact. Till you reach closure enlightenment, I
suggest you read and reread this chapter, research on the Internet, write code, and
read JavaScript libraries to understand how closures behave—but do not give up.

The first realization that you must have is that closure is everywhere in JavaScript. It
is not a hidden special part of the language.

Before we jump into the nitty-gritty, let's quickly refresh the lexical scope in
JavaScript. We discussed in great detail how lexical scope is determined at the
function level in JavaScript. Lexical scope essentially determines where and how all
identifiers are declared and predicts how they will be looked up during execution.

In a nutshell, closure is the scope created when a function is declared that allows the
function to access and manipulate variables that are external to this function. In other
words, closures allow a function to access all the variables, as well as other functions,
that are in scope when the function itself is declared.

Let's look at some example code to understand this definition:

var outer = 'I am outer'; //Define a value in global scope
function outerFn() { //Declare a a function in global scope
 console.log(outer);
}
outerFn(); //prints - I am outer

www.EBooksWorld.ir

Chapter 2

[67]

Were you expecting something shiny? No, this is really the most ordinary case of a
closure. We are declaring a variable in the global scope and declaring a function in
the global scope. In the function, we are able to access the variable declared in the
global scope—outer. So essentially, the outer scope for the outerFn() function is a
closure and always available to outerFn(). This is a good start but perhaps then you
are not sure why this is such a great thing.

Let's make things a bit more complex:

var outer = 'Outer'; //Variable declared in global scope
var copy;
function outerFn(){ //Function declared in global scope

 var inner = 'Inner'; //Variable has function scope only, can not be
 //accessed from outside

 function innerFn(){ //Inner function within Outer function,
 //both global context and outer
 //context are available hence can access
 //'outer' and 'inner'
 console.log(outer);
 console.log(inner);
 }
 copy=innerFn; //Store reference to inner function,
 //because 'copy' itself is declared
 //in global context, it will be available
 //outside also
}
outerFn();
copy(); //Cant invoke innerFn() directly but can invoke via a
//variable declared in global scope

Let's analyze the preceding example. In innerFn(), the outer variable is available
as it's part of the global context. We're executing the inner function after the outer
function has been executed via copying a reference to the function to a global
reference variable, copy. When innerFn() executes, the scope in outerFn() is gone
and not visible at the point at which we're invoking the function through the copy
variable. So shouldn't the following line fail?

console.log(inner);

www.EBooksWorld.ir

Functions, Closures, and Modules

[68]

Should the inner variable be undefined? However, the output of the preceding code
snippet is as follows:

"Outer"
"Inner"

What phenomenon allows the inner variable to still be available when we execute
the inner function, long after the scope in which it was created has gone away? When
we declared innerFn() in outerFn(), not only was the function declaration defined,
but a closure was also created that encompasses not only the function declaration,
but also all the variables that are in scope at the point of the declaration. When
innerFn() executes, even if it's executed after the scope in which it was declared
goes away, it has access to the original scope in which it was declared through its
closure.

Let's continue to expand this example to understand how far you can go with
closures:

var outer='outer';
var copy;
function outerFn() {
 var inner='inner';
 function innerFn(param){
 console.log(outer);
 console.log(inner);
 console.log(param);
 console.log(magic);
 }
 copy=innerFn;
}
console.log(magic); //ERROR: magic not defined
var magic="Magic";
outerFn();
copy("copy");

In the preceding example, we have added a few more things. First, we added a
parameter to innerFn()—just to illustrate that parameters are also part of the
closure. There are two important points that we want to highlight.

All variables in an outer scope are included even if they are declared after the
function is declared. This makes it possible for the line, console.log(magic), in
innerFn(), to work.

However, the same line, console.log(magic), in the global scope will fail because
even within the same scope, variables not yet defined cannot be referenced.

www.EBooksWorld.ir

Chapter 2

[69]

All these examples were intended to convey a few concepts that govern how closures
work. Closures are a prominent feature in the JavaScript language and you can see
them in most libraries.

Let's look at some popular patterns around closures.

Timers and callbacks
In implementing timers or callbacks, you need to call the handler asynchronously,
mostly at a later point in time. Due to the asynchronous calls, we need to access
variables from outside the scope in such functions. Consider the following example:

function delay(message) {
 setTimeout(function timerFn(){
 console.log(message);
 }, 1000);
}
delay("Hello World");

We pass the inner timerFn() function to the built-in library function, setTimeout().
However, timerFn() has a scope closure over the scope of delay(), and hence it can
reference the variable message.

Private variables
Closures are frequently used to encapsulate some information as private variables.
JavaScript does not allow such encapsulation found in programming languages such
as Java or C++, but by using closures, we can achieve similar encapsulation:

function privateTest(){
 var points=0;
 this.getPoints=function(){
 return points;
 };
 this.score=function(){
 points++;
 };
}

var private = new privateTest();
private.score();
console.log(private.points); // undefined
console.log(private.getPoints());

www.EBooksWorld.ir

Functions, Closures, and Modules

[70]

In the preceding example, we are creating a function that we intend to call as a
constructor. In this privateTest() function, we are creating a var points=0
variable as a function-scoped variable. This variable is available only in
privateTest(). Additionally, we create an accessor function (also called a getter)—
getPoints()—this method allows us to read the value of only the points variable
from outside privateTest(), making this variable private to the function. However,
another method, score(), allows us to modify the value of the private point variable
without directly accessing it from outside. This makes it possible for us to write code
where a private variable is updated in a controlled fashion. This pattern can be very
useful when you are writing libraries where you want to control how variables are
accessed based on a contract and pre-established interface.

Loops and closures
Consider the following example of using functions inside loops:

for (var i=1; i<=5; i++) {
 setTimeout(function delay(){
 console.log(i);
 }, i*100);
}

This snippet should print 1, 2, 3, 4, and 5 on the console at an interval of 100 ms, right?
Instead, it prints 6, 6, 6, 6, and 6 at an interval of 100 ms. Why is this happening? Here,
we encounter a common issue with closures and looping. The i variable is being
updated after the function is bound. This means that every bound function handler
will always print the last value stored in i. In fact, the timeout function callbacks are
running after the completion of the loop. This is such a common problem that JSLint
will warn you if you try to use functions this way inside a loop.

How can we fix this behavior? We can introduce a function scope and local copy of
the i variable in that scope. The following snippet shows you how we can do this:

for (var i=1; i<=5; i++) {
 (function(j){
 setTimeout(function delay(){
 console.log(j);
 }, j*100);
 })(i);
}

www.EBooksWorld.ir

Chapter 2

[71]

We pass the i variable and copy it to the j variable local to the IIFE. The introduction
of an IIFE inside each iteration creates a new scope for each iteration and hence
updates the local copy with the correct value.

Modules
Modules are used to mimic classes and focus on public and private access to
variables and functions. Modules help in reducing the global scope pollution.
Effective use of modules can reduce name collisions across a large code base. A
typical format that this pattern takes is as follows:

Var moduleName=function() {
 //private state
 //private functions
 return {
 //public state
 //public variables
 }
}

There are two requirements to implement this pattern in the preceding format:

•	 There must be an outer enclosing function that needs to be executed at least
once.

•	 This enclosing function must return at least one inner function. This is
necessary to create a closure over the private state—without this, you can't
access the private state at all.

Check the following example of a module:

var superModule = (function (){
 var secret = 'supersecretkey';
 var passcode = 'nuke';

 function getSecret() {
 console.log(secret);
 }

 function getPassCode() {
 console.log(passcode);
 }

www.EBooksWorld.ir

Functions, Closures, and Modules

[72]

 return {
 getSecret: getSecret,
 getPassCode: getPassCode
 };
})();
superModule.getSecret();
superModule.getPassCode();

This example satisfies both the conditions. Firstly, we create an IIFE or a named
function to act as an outer enclosure. The variables defined will remain private
because they are scoped in the function. We return the public functions to make sure
that we have a closure over the private scope. Using IIFE in the module pattern will
actually result in a singleton instance of this function. If you want to create multiple
instances, you can create named function expressions as part of the module as well.

We will keep exploring various facets of functional aspects of JavaScript and closures
in particular. There can be a lot of imaginative uses of such elegant constructs. An
effective way to understand various patterns is to study the code of popular libraries
and practice writing these patterns in your code.

Stylistic considerations
As in the previous chapter, we will conclude this discussion with certain stylistic
considerations. Again, these are generally accepted guidelines and not rules—feel
free to deviate from them if you have reason to believe otherwise:

•	 Use function declarations instead of function expressions:
// bad
const foo = function () {
};

// good
function foo() {
}

•	 Never declare a function in a non-function block (if, while, and so on). Assign
the function to a variable instead. Browsers allow you to do it, but they all
interpret it differently.

•	 Never name a parameter arguments. This will take precedence over the
arguments object that is given to every function scope.

www.EBooksWorld.ir

Chapter 2

[73]

Summary
In this chapter, we studied JavaScript functions. In JavaScript, functions play a
critical role. We discussed how functions are created and used. We also discussed
important ideas of closures and the scope of variables in terms of functions. We
discussed functions as a way to create visibility classes and encapsulation.

In the next chapter, we will look at various data structures and data manipulation
techniques in JavaScript.

www.EBooksWorld.ir

www.EBooksWorld.ir

[75]

Data Structures and
Manipulation

Most of the time that you spend in programming, you do something to manipulate
data. You process properties of data, derive conclusions based on the data, and
change the nature of the data. In this chapter, we will take an exhaustive look at
various data structures and data manipulation techniques in JavaScript. With the
correct usage of these expressive constructs, your programs will be correct, concise,
easy to read, and most probably faster. This will be explained with the help of the
following topics:

•	 Regular expressions
•	 Exact match
•	 Match from a class of characters
•	 Repeated occurrences
•	 Beginning and end
•	 Backreferences
•	 Greedy and lazy quantifiers
•	 Arrays
•	 Maps
•	 Sets
•	 A matter of style

www.EBooksWorld.ir

Data Structures and Manipulation

[76]

Regular expressions
If you are not familiar with regular expressions, I request you to spend time
learning them. Learning and using regular expressions effectively is one of the most
rewarding skills that you will gain. During most of the code review sessions, the first
thing that I comment on is how a piece of code can be converted to a single line of
regular expression (or RegEx). If you study popular JavaScript libraries, you will be
surprised to see how ubiquitous RegEx are. Most seasoned engineers rely on RegEx
primarily because once you know how to use them, they are concise and easy to test.
However, learning RegEx will take a significant amount of effort and time. A regular
expression is a way to express a pattern to match strings of text. The expression itself
consists of terms and operators that allow us to define these patterns. We'll see what
these terms and operators consist of shortly.

In JavaScript, there are two ways to create a regular expression: via a regular
expression literal and constructing an instance of a RegExp object.

For example, if we wanted to create a RegEx that matches the string test exactly, we
could use the following RegEx literal:

var pattern = /test/;

RegEx literals are delimited using forward slashes. Alternatively, we could construct
a RegExp instance, passing the RegEx as a string:

var pattern = new RegExp("test");

Both of these formats result in the same RegEx being created in the variable pattern.
In addition to the expression itself, there are three flags that can be associated with a
RegEx:

•	 i: This makes the RegEx case-insensitive, so /test/i matches not only test,
but also Test, TEST, tEsT, and so on.

•	 g: This matches all the instances of the pattern as opposed to the default of
local, which matches the first occurrence only. More on this later.

•	 m: This allows matches across multiple lines that might be obtained from the
value of a textarea element.

These flags are appended to the end of the literal (for example, /test/ig) or passed
in a string as the second parameter to the RegExp constructor (new RegExp("test",
"ig")).

www.EBooksWorld.ir

Chapter 3

[77]

The following example illustrates the various flags and how they affect the pattern
match:

var pattern = /orange/;
console.log(pattern.test("orange")); // true

var patternIgnoreCase = /orange/i;
console.log(patternIgnoreCase.test("Orange")); // true

var patternGlobal = /orange/ig;
console.log(patternGlobal.test("Orange Juice")); // true

It isn't very exciting if we can just test whether the pattern matches a string. Let's see
how we can express more complex patterns.

Exact match
Any sequence of characters that's not a special RegEx character or operator
represents a character literal:

var pattern = /orange/;

We mean o followed by r followed by a followed by n followed by …—you get
the point. We rarely use exact match when using RegEx because that is the same as
comparing two strings. Exact match patterns are sometimes called simple patterns.

Match from a class of characters
If you want to match against a set of characters, you can place the set inside []. For
example, [abc] would mean any character a, b, or c:

var pattern = /[abc]/;
console.log(pattern.test('a')); //true
console.log(pattern.test('d')); //false

You can specify that you want to match anything but the pattern by adding a ^ (caret
sign) at the beginning of the pattern:

var pattern = /[^abc]/;
console.log(pattern.test('a')); //false
console.log(pattern.test('d')); //true

www.EBooksWorld.ir

Data Structures and Manipulation

[78]

One critical variation of this pattern is a range of values. If we want to match against
a sequential range of characters or numbers, we can use the following pattern:

var pattern = /[0-5]/;
console.log(pattern.test(3)); //true
console.log(pattern.test(12345)); //true
console.log(pattern.test(9)); //false
console.log(pattern.test(6789)); //false
console.log(/[0123456789]/.test("This is year 2015")); //true

Special characters such as $ and period (.) characters either represent matches to
something other than themselves or operators that qualify the preceding term. In
fact, we've already seen how [,], -, and ^ characters are used to represent something
other than their literal values.

How do we specify that we want to match a literal [or $ or ^ or some other special
character? Within a RegEx, the backslash character escapes whatever character
follows it, making it a literal match term. So \[specifies a literal match to the [
character rather than the opening of a character class expression. A double backslash
(\\) matches a single backslash.

In the preceding examples, we saw the test() method that returns true or false
based on the pattern matched. There are times when you want to access occurrences
of a particular pattern. The exec() method comes in handy in such situations.

The exec() method takes a string as an argument and returns an array containing all
matches. Consider the following example:

var strToMatch = 'A Toyota! Race fast, safe car! A Toyota!';
var regExAt = /Toy/;
var arrMatches = regExAt.exec(strToMatch);
console.log(arrMatches);

The output of this snippet would be ['Toy']; if you want all the instances of the
pattern Toy, you can use the g (global) flag as follows:

var strToMatch = 'A Toyota! Race fast, safe car! A Toyota!';
var regExAt = /Toy/g;
var arrMatches = regExAt.exec(strToMatch);
console.log(arrMatches);

www.EBooksWorld.ir

Chapter 3

[79]

This will return all the occurrences of the word oyo from the original text. The String
object contains the match() method that has similar functionality of the exec()
method. The match() method is called on a String object and the RegEx is passed to
it as a parameter. Consider the following example:

var strToMatch = 'A Toyota! Race fast, safe car! A Toyota!';
var regExAt = /Toy/;
var arrMatches = strToMatch.match(regExAt);
console.log(arrMatches);

In this example, we are calling the match() method on the String object. We pass the
RegEx as a parameter to the match() method. The results are the same in both these
cases.

The other String object method is replace(). It replaces all the occurrences of a
substring with a different string:

var strToMatch = 'Blue is your favorite color ?';
var regExAt = /Blue/;
console.log(strToMatch.replace(regExAt, "Red"));
//Output- "Red is your favorite color ?"

It is possible to pass a function as a second parameter of the replace() method. The
replace() function takes the matching text as a parameter and returns the text that
is used as a replacement:

var strToMatch = 'Blue is your favorite color ?';
var regExAt = /Blue/;
console.log(strToMatch.replace(regExAt, function(matchingText){
 return 'Red';
}));
//Output- "Red is your favorite color ?"

The String object's split() method also takes a RegEx parameter and returns an
array containing all the substrings generated after splitting the original string:

var sColor = 'sun,moon,stars';
var reComma = /\,/;
console.log(sColor.split(reComma));
//Output - ["sun", "moon", "stars"]

www.EBooksWorld.ir

Data Structures and Manipulation

[80]

We need to add a backslash before the comma because a comma is treated specially
in RegEx and we need to escape it if we want to use it literally.

Using simple character classes, you can match multiple patterns. For example, if you
want to match cat, bat, and fat, the following snippet shows you how to use simple
character classes:

var strToMatch = 'wooden bat, smelly Cat,a fat cat';
var re = /[bcf]at/gi;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["bat", "Cat", "fat", "cat"]

As you can see, this variation opens up possibilities to write concise RegEx patterns.
Take the following example:

var strToMatch = 'i1,i2,i3,i4,i5,i6,i7,i8,i9';
var re = /i[0-5]/gi;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["i1", "i2", "i3", "i4", "i5"]

In this example, we are matching the numeric part of the matching string with a
range [0-5], hence we get a match from i0 to i5. You can also use the negation class
^ to filter the rest of the matches:

var strToMatch = 'i1,i2,i3,i4,i5,i6,i7,i8,i9';
var re = /i[^0-5]/gi;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["i6", "i7", "i8", "i9"]

Observe how we are negating only the range clause and not the entire expression.

Several character groups have shortcut notations. For example, the shortcut \d
means the same thing as [0-9]:

Notation Meaning
\d Any digit character
\w An alphanumeric character (word character)
\s Any whitespace character (space, tab, newline, and similar)
\D A character that is not a digit
\W A non-alphanumeric character
\S A non-whitespace character
. Any character except for newline

www.EBooksWorld.ir

Chapter 3

[81]

These shortcuts are valuable in writing concise RegEx. Consider this example:

var strToMatch = '123-456-7890';
var re = /[0-9][0-9][0-9]-[0-9][0-9][0-9]/;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["123-456"]

This expression definitely looks a bit strange. We can replace [0-9] with \d and
make this a bit more readable:

var strToMatch = '123-456-7890';
var re = /\d\d\d-\d\d\d/;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["123-456"]

However, you will soon see that there are even better ways to do something like this.

Repeated occurrences
So far, we saw how we can match fixed characters or numeric patterns. Most often,
you want to handle certain repetitive natures of patterns also. For example, if I want
to match 4 as, I can write /aaaa/, but what if I want to specify a pattern that can
match any number of as?

Regular expressions provide you with a wide variety of repetition quantifiers.
Repetition quantifiers let us specify how many times a particular pattern can occur.
We can specify fixed values (characters should appear n times) and variable values
(characters can appear at least n times till they appear m times). The following table
lists the various repetition quantifiers:

•	 ?: Either 0 or 1 occurrence (marks the occurrence as optional)
•	 *: 0 or more occurrences
•	 +: 1 or more occurrences
•	 {n}: Exactly n occurrences
•	 {n,m}: Occurrences between n and m
•	 {n,}: At least an n occurrence
•	 {,n}: 0 to n occurrences

www.EBooksWorld.ir

Data Structures and Manipulation

[82]

In the following example, we create a pattern where the character u is optional (has 0
or 1 occurrence):

var str = /behaviou?r/;
console.log(str.test("behaviour"));
// true
console.log(str.test("behavior"));
// true

It helps to read the /behaviou?r/ expression as 0 or 1 occurrences of character u.
The repetition quantifier succeeds the character that we want to repeat. Let's try out
some more examples:

console.log(/'\d+'/.test("'123'")); // true

You should read and interpret the \d+ expression as ' is a literal character match, \d
matches characters [0-9], the + quantifier will allow one or more occurrences, and '
is a literal character match.

You can also group character expressions using (). Observe the following example:

var heartyLaugh = /Ha+(Ha+)+/i;
console.log(heartyLaugh.test("HaHaHaHaHaHaHaaaaaaaaaaa"));
//true

Let's break the preceding expression into smaller chunks to understand what is
going on in here:

•	 H: literal character match
•	 a+: 1 or more occurrences of character a
•	 (: start of the expression group
•	 H: literal character match
•	 a+: 1 or more occurrences of character a
•): end of expression group
•	 +: 1 or more occurrences of expression group (Ha+)

Now it is easier to see how the grouping is done. If we have to interpret the
expression, it is sometimes helpful to read out the expression, as shown in the
preceding example.

www.EBooksWorld.ir

Chapter 3

[83]

Often, you want to match a sequence of letters or numbers on their own and not just
as a substring. This is a fairly common use case when you are matching words that
are not just part of any other words. We can specify the word boundaries by using
the \b pattern. The word boundary with \b matches the position where one side is
a word character (letter, digit, or underscore) and the other side is not. Consider the
following examples.

The following is a simple literal match. This match will also be successful if cat is
part of a substring:

console.log(/cat/.test('a black cat')); //true

However, in the following example, we define a word boundary by indicating \b
before the word cat—this means that we want to match only if cat is a word and
not a substring. The boundary is established before cat, and hence a match is found
on the text, a black cat:

console.log(/\bcat/.test('a black cat')); //true

When we use the same boundary with the word tomcat, we get a failed match
because there is no word boundary before cat in the word tomcat:

console.log(/\bcat/.test('tomcat')); //false

There is a word boundary after the string cat in the word tomcat, hence the
following is a successful match:

console.log(/cat\b/.test('tomcat')); //true

In the following example, we define the word boundary before and after the word
cat to indicate that we want cat to be a standalone word with boundaries before
and after:

console.log(/\bcat\b/.test('a black cat')); //true

Based on the same logic, the following match fails because there are no boundaries
before and after cat in the word concatenate:

console.log(/\bcat\b/.test("concatenate")); //false

www.EBooksWorld.ir

Data Structures and Manipulation

[84]

The exec() method is useful in getting information about the match found because
it returns an object with information about the match. The object returned from
exec() has an index property that tells us where the successful match begins in the
string. This is useful in many ways:

var match = /\d+/.exec("There are 100 ways to do this");
console.log(match);
// ["100"]
console.log(match.index);
// 10

Alternatives – OR
Alternatives can be expressed using the | (pipe) character. For example, /a|b/
matches either the a or b character, and /(ab)+|(cd)+/ matches one or more
occurrences of either ab or cd.

Beginning and end
Frequently, we may wish to ensure that a pattern matches at the beginning of a
string or perhaps at the end of a string. The caret character, when used as the first
character of the RegEx, anchors the match at the beginning of the string such that
/^test/ matches only if the test substring appears at the beginning of the string
being matched. Similarly, the dollar sign ($) signifies that the pattern must appear at
the end of the string: /test$/.

Using both ^ and $ indicates that the specified pattern must encompass the entire
candidate string: /^test$/.

Backreferences
After an expression is evaluated, each group is stored for later use. These values are
known as backreferences. Backreferences are created and numbered by the order in
which opening parenthesis characters are encountered going from left to right. You
can think of backreferences as the portions of a string that are successfully matched
against terms in the regular expression.

The notation for a backreference is a backslash followed by the number of the
capture to be referenced, beginning with 1, such as \1, \2, and so on.

www.EBooksWorld.ir

Chapter 3

[85]

An example could be /^([XYZ])a\1/, which matches a string that starts with any
of the X, Y, or Z characters followed by an a and followed by whatever character
matched the first capture. This is very different from /[XYZ] a[XYZ]/. The character
following a can't be any of X, or Y, or Z, but must be whichever one of those that
triggered the match for the first character. Backreferences are used with String's
replace() method using the special character sequences, $1, $2, and so on. Suppose
that you want to change the 1234 5678 string to 5678 1234. The following code
accomplishes this:

var orig = "1234 5678";
var re = /(\d{4}) (\d{4})/;
var modifiedStr = orig.replace(re, "$2 $1");
console.log(modifiedStr); //outputs "5678 1234"

In this example, the regular expression has two groups each with four digits. In the
second argument of the replace() method, $2 is equal to 5678 and $1 is equal to
1234, corresponding to the order in which they appear in the expression.

Greedy and lazy quantifiers
All the quantifiers that we discussed so far are greedy. A greedy quantifier starts
looking at the entire string for a match. If there are no matches, it removes the last
character in the string and reattempts the match. If a match is not found again, the
last character is again removed and the process is repeated until a match is found or
the string is left with no characters.

The \d+ pattern, for example, will match one or more digits. For example, if your
string is 123, a greedy match would match 1, 12, and 123. Greedy pattern h.+l would
match hell in a string hello—which is the longest possible string match. As \d+ is
greedy, it will match as many digits as possible and hence the match would be 123.

In contrast to greedy quantifiers, a lazy quantifier matches as few of the quantified
tokens as possible. You can add a question mark (?) to the regular expression to
make it lazy. A lazy pattern h.?l would match hel in the string hello—which is the
shortest possible string.

The \w*?X pattern will match zero or more words and then match an X. However, a
question mark after * indicates that as few characters as possible should be matched.
For an abcXXX string, the match can be abcX, abcXX, or abcXXX. Which one should
be matched? As *? is lazy, as few characters as possible are matched and hence the
match is abcX.

With this necessary information, let's try to solve some common problems using
regular expressions.

www.EBooksWorld.ir

Data Structures and Manipulation

[86]

Removing extra white space from the beginning and end of a string is a very
common use case. As a String object did not have the trim() method until recently,
several JavaScript libraries provide and use an implementation of string trimming
for older browsers that don't have the String.trim() method. The most commonly
used approach looks something like the following code:

function trim(str) {
 return (str || "").replace(/^\s+|\s+$/g, "");
}
console.log("--"+trim(" test ")+"--");
//"--test--"

What if we want to replace repeated whitespaces with a single whitespace?

re=/\s+/g;
console.log('There are a lot of spaces'.replace(re,' '));
//"There are a lot of spaces"

In the preceding snippet, we are trying to match one or more space character
sequences and replacing them with a single space.

As you can see, regular expressions can prove to be a Swiss army knife in your
JavaScript arsenal. Careful study and practice will be extremely rewarding for you in
the long run.

Arrays
An array is an ordered set of values. You can refer to the array elements with a name
and index. These are the three ways to create arrays in JavaScript:

var arr = new Array(1,2,3);
var arr = Array(1,2,3);
var arr = [1,2,3];

When these values are specified, the array is initialized with them as the array's
elements. An array's length property is equal to the number of arguments. The
bracket syntax is called an array literal. It's a shorter and preferred way to initialize
arrays.

www.EBooksWorld.ir

Chapter 3

[87]

You have to use the array literal syntax if you want to initialize an array with a single
element and the element happens to be a number. If you pass a single number value
to the Array() constructor or function, JavaScript considers this parameter as the
length of the array, not as a single element:

var arr = [10];
var arr = Array(10); // Creates an array with no element, but with
 arr.length set to 10
// The above code is equivalent to
var arr = [];
arr.length = 10;

JavaScript does not have an explicit array data type. However, you can use the
predefined Array object and its methods to work with arrays in your applications.
The Array object has methods to manipulate arrays in various ways, such as joining,
reversing, and sorting them. It has a property to determine the array length and
other properties for use with regular expressions.

You can populate an array by assigning values to its elements:

var days = [];
days[0] = "Sunday";
days[1] = "Monday";

You can also populate an array when you create it:

var arr_generic = new Array("A String", myCustomValue, 3.14);
var fruits = ["Mango", "Apple", "Orange"]

In most languages, the elements of an array are all required to be of the same type.
JavaScript allows an array to contain any type of values:

var arr = [
 'string', 42.0, true, false, null, undefined,
 ['sub', 'array'], {object: true}, NaN
];

You can refer to elements of an Array using the element's index number. For
example, suppose you define the following array:

var days = ["Sunday", "Monday", "Tuesday"]

You then refer to the first element of the array as colors[0] and the second element
of the array as colors[1]. The index of the elements starts with 0.

www.EBooksWorld.ir

Data Structures and Manipulation

[88]

JavaScript internally stores array elements as standard object properties, using the
array index as the property name. The length property is different. The length
property always returns the index of the last element plus one. As we discussed,
JavaScript array indexes are 0-based: they start at 0, not 1. This means that the
length property will be one more than the highest index stored in the array:

var colors = [];
colors[30] = ['Green'];
console.log(colors.length); // 31

You can also assign to the length property. Writing a value that is shorter than the
number of stored items truncates the array; writing 0 empties it entirely:

var colors = ['Red', 'Blue', 'Yellow'];
console.log(colors.length); // 3
colors.length = 2;
console.log(colors); // ["Red","Blue"] - Yellow has been removed
colors.length = 0;
console.log(colors); // [] the colors array is empty
colors.length = 3;
console.log(colors); // [undefined, undefined, undefined]

If you query a non-existent array index, you get undefined.

A common operation is to iterate over the values of an array, processing each one in
some way. The simplest way to do this is as follows:

var colors = ['red', 'green', 'blue'];
for (var i = 0; i < colors.length; i++) {
 console.log(colors[i]);
}

The forEach() method provides another way of iterating over an array:

var colors = ['red', 'green', 'blue'];
colors.forEach(function(color) {
 console.log(color);
});

The function passed to forEach() is executed once for every item in the array, with
the array item passed as the argument to the function. Unassigned values are not
iterated in a forEach() loop.

The Array object has a bunch of useful methods. These methods allow the
manipulation of the data stored in the array.

www.EBooksWorld.ir

Chapter 3

[89]

The concat() method joins two arrays and returns a new array:

var myArray = new Array("33", "44", "55");
myArray = myArray.concat("3", "2", "1");
console.log(myArray);
// ["33", "44", "55", "3", "2", "1"]

The join() method joins all the elements of an array into a string. This can be useful
while processing a list. The default delimiter is a comma (,):

var myArray = new Array('Red','Blue','Yellow');
var list = myArray.join(" ~ ");
console.log(list);
//"Red ~ Blue ~ Yellow"

The pop() method removes the last element from an array and returns that element.
This is analogous to the pop() method of a stack:

var myArray = new Array("1", "2", "3");
var last = myArray.pop();
// myArray = ["1", "2"], last = "3"

The push() method adds one or more elements to the end of an array and returns
the resulting length of the array:

var myArray = new Array("1", "2");
myArray.push("3");
// myArray = ["1", "2", "3"]

The shift() method removes the first element from an array and returns that
element:

var myArray = new Array ("1", "2", "3");
var first = myArray.shift();
// myArray = ["2", "3"], first = "1"

The unshift() method adds one or more elements to the front of an array and
returns the new length of the array:

var myArray = new Array ("1", "2", "3");
myArray.unshift("4", "5");
// myArray = ["4", "5", "1", "2", "3"]

The reverse() method reverses or transposes the elements of an array—the first
array element becomes the last and the last becomes the first:

var myArray = new Array ("1", "2", "3");
myArray.reverse();
// transposes the array so that myArray = ["3", "2", "1"]

www.EBooksWorld.ir

Data Structures and Manipulation

[90]

The sort() method sorts the elements of an array:

var myArray = new Array("A", "C", "B");
myArray.sort();
// sorts the array so that myArray = ["A","B","c"]

The sort() method can optionally take a callback function to define how the
elements are compared. The function compares two values and returns one of three
values. Let us study the following functions:

•	 indexOf(searchElement[, fromIndex]): This searches the array for
searchElement and returns the index of the first match:
var a = ['a', 'b', 'a', 'b', 'a','c','a'];
console.log(a.indexOf('b')); // 1
// Now try again, starting from after the last match
console.log(a.indexOf('b', 2)); // 3
console.log(a.indexOf('1')); // -1, 'q' is not found

•	 lastIndexOf(searchElement[, fromIndex]): This works like indexOf(),
but only searches backwards:
var a = ['a', 'b', 'c', 'd', 'a', 'b'];
console.log(a.lastIndexOf('b')); // 5
// Now try again, starting from before the last match
console.log(a.lastIndexOf('b', 4)); // 1
console.log(a.lastIndexOf('z')); // -1

Now that we have covered JavaScript arrays in depth, let me introduce you to a
fantastic library called Underscore.js (http://underscorejs.org/). Underscore.js
provides a bunch of exceptionally useful functional programming helpers to make
your code even more clear and functional.

We will assume that you are familiar with Node.js; in this case, install Underscore.js
via npm:

npm install underscore

As we are installing Underscore as a Node module, we will test all the examples by
typing them in a .js file and running the file on Node.js. You can install Underscore
using Bower also.

Like jQuery's $ module, Underscore comes with a _ module defined. You will call all
functions using this module reference.

www.EBooksWorld.ir

http://underscorejs.org/

Chapter 3

[91]

Type the following code in a text file and name it test_.js:

var _ = require('underscore');
function print(n){
 console.log(n);
}
_.each([1, 2, 3], print);
//prints 1 2 3

This can be written as follows, without using each() function from underscore
library:

var myArray = [1,2,3];
var arrayLength = myArray.length;
for (var i = 0; i < arrayLength; i++) {
 console.log(myArray[i]);
}

What you see here is a powerful functional construct that makes the code much
more elegant and concise. You can clearly see that the traditional approach is
verbose. Many languages such as Java suffer from this verbosity. They are slowly
embracing functional paradigms. As JavaScript programmers, it is important for us
to incorporate these ideas into our code as much as possible.

The each() function we saw in the preceding example iterates over a list of
elements, yielding each to an iteratee function in turn. Each invocation of iteratee
is called with three arguments (element, index, and list). In the preceding example,
the each() function iterates over the array [1,2,3], and for each element in the
array, the print function is called with the array element as the parameter. This
is a convenient alternative to the traditional looping mechanism to access all the
elements in an array.

The range() function creates lists of integers. The start value, if omitted, defaults to
0 and step defaults to 1. If you'd like a negative range, use a negative step:

var _ = require('underscore');
console.log(_.range(10));
// [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
console.log(_.range(1, 11));
//[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
console.log(_.range(0, 30, 5));
//[0, 5, 10, 15, 20, 25]
console.log(_.range(0, -10, -1));
//[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
console.log(_.range(0));
//[]

www.EBooksWorld.ir

Data Structures and Manipulation

[92]

By default, range() populates the array with integers, but with a little trick, you can
populate other data types also:

console.log(_.range(3).map(function () { return 'a' }));
['a', 'a', 'a']

This is a fast and convenient way to create and initialize an array with values.
We frequently do this by traditional loops.

The map() function produces a new array of values by mapping each value in
the list through a transformation function. Consider the following example:

var _ = require('underscore');
console.log(_.map([1, 2, 3], function(num){ return num * 3; }));
//[3,6,9]

The reduce() function reduces a list of values to a single value. The initial state is
passed by the iteratee function and each successive step is returned by the iteratee.
The following example shows the usage:

var _ = require('underscore');
var sum = _.reduce([1, 2, 3], function(memo, num){
 console.log(memo,num);return memo + num; }, 0);
console.log(sum);

In this example, the line, console.log(memo,num);, is just to make the idea clear.
The output will be as follows:

0 1
1 2
3 3
6

The final output is a sum of 1+2+3=6. As you can see, two values are passed to the
iteratee function. On the first iteration, we call the iteratee function with two values
(0,1)—the value of the memo is defaulted in the call to the reduce() function and
1 is the first element of the list. In the function, we sum memo and num and return
the intermediate sum, which will be used by the iterate() function as a memo
parameter—eventually, the memo will have the accumulated sum. This concept is
important to understand how the intermediate states are used to calculate eventual
results.

www.EBooksWorld.ir

Chapter 3

[93]

The filter() function iterates through the entire list and returns an array of all the
elements that pass the condition. Take a look at the following example:

var _ = require('underscore');
var evens = _.filter([1, 2, 3, 4, 5, 6], function(num){
 return num % 2 == 0; });
console.log(evens);

The filter() function's iteratee function should return a truth value. The resulting
evens array contains all the elements that satisfy the truth test.

The opposite of the filter() function is reject(). As the name suggests, it iterates
through the list and ignores elements that satisfy the truth test:

var _ = require('underscore');
var odds = _.reject([1, 2, 3, 4, 5, 6], function(num){
 return num % 2 == 0; });
console.log(odds);
//[1, 3, 5]

We are using the same code as the previous example but using the reject() method
instead of filter()—the result is exactly the opposite.

The contains() function is a useful little function that returns true if the value is
present in the list; otherwise, returns false:

var _ = require('underscore');
console.log(_.contains([1, 2, 3], 3));
//true

One very useful function that I have grown fond of is invoke(). It calls a specific
function on each element in the list. I can't tell you how many times I have used it
since I stumbled upon it. Let us study the following example:

var _ = require('underscore');
console.log(_.invoke([[5, 1, 7], [3, 2, 1]], 'sort'));
//[[1, 5, 7], [1, 2, 3]]

In this example, the sort() method of the Array object is called for each element in
the array. Note that this would fail:

var _ = require('underscore');
console.log(_.invoke(["new","old","cat"], 'sort'));
//[undefined, undefined, undefined]

www.EBooksWorld.ir

Data Structures and Manipulation

[94]

This is because the sort method is not part of the String object. This, however,
would work perfectly:

var _ = require('underscore');
console.log(_.invoke(["new","old","cat"], 'toUpperCase'));
//['NEW', 'OLD', 'CAT']

This is because toUpperCase() is a String object method and all elements of the
list are of the String type.

The uniq() function returns the array after removing all duplicates from the
original one:

var _ = require('underscore');
var uniqArray = _.uniq([1,1,2,2,3]);
console.log(uniqArray);
//[1,2,3]

The partition() function splits the array into two; one whose elements satisfy
the predicate and the other whose elements don't satisfy the predicate:

var _ = require('underscore');
function isOdd(n){
 return n%2==0;
}
console.log(_.partition([0, 1, 2, 3, 4, 5], isOdd));
//[[0, 2, 4], [1, 3, 5]]

The compact() function returns a copy of the array without all falsy values (false,
null, 0, "", undefined, and NaN):

console.log(_.compact([0, 1, false, 2, '', 3]));

This snippet will remove all falsy values and return a new array with elements
[1,2,3]—this is a helpful method to eliminate any value from a list that can
cause runtime exceptions.

The without() function returns a copy of the array with all instances of the specific
values removed:

var _ = require('underscore');
console.log(_.without([1,2,3,4,5,6,7,8,9,0,1,2,0,0,1,1],0,1,2));
//[3, 4, 5, 6, 7, 8, 9]

www.EBooksWorld.ir

Chapter 3

[95]

Maps
ECMAScript 6 introduces maps. A map is a simple key-value map and can iterate its
elements in the order of their insertion. The following snippet shows some methods
of the Map type and their usage:

var founders = new Map();
founders.set("facebook", "mark");
founders.set("google", "larry");
founders.size; // 2
founders.get("twitter"); // undefined
founders.has("yahoo"); // false

for (var [key, value] of founders) {
 console.log(key + " founded by " + value);
}
// "facebook founded by mark"
// "google founded by larry"

Sets
ECMAScript 6 introduces sets. Sets are collections of values and can be iterated in the
order of the insertion of their elements. An important characteristic about sets is that
a value can occur only once in a set.

The following snippet shows some basic operations on sets:

var mySet = new Set();
mySet.add(1);
mySet.add("Howdy");
mySet.add("foo");

mySet.has(1); // true
mySet.delete("foo");
mySet.size; // 2

for (let item of mySet) console.log(item);
// 1
// "Howdy"

www.EBooksWorld.ir

Data Structures and Manipulation

[96]

We discussed briefly that JavaScript arrays are not really arrays in a traditional sense.
In JavaScript, arrays are objects that have the following characteristics:

•	 The length property
•	 The functions that inherit from Array.prototype (we will discuss this in the

next chapter)
•	 Special handling for keys that are numeric keys

When we write an array index as numbers, they get converted to strings—arr[0]
internally becomes arr["0"]. Due to this, there are a few things that we need to be
aware of when we use JavaScript arrays:

•	 Accessing array elements by an index is not a constant time operation as it is
in, say, C. As arrays are actually key-value maps, the access will depend on
the layout of the map and other factors (collisions and others).

•	 JavaScript arrays are sparse (most of the elements have the default value),
which means that the array can have gaps in it. To understand this, look at
the following snippet:

var testArr=new Array(3);
console.log(testArr);

You will see the output as [undefined, undefined, undefined]—
undefined is the default value stored on the array element.

Consider the following example:

var testArr=[];
testArr[3] = 10;
testArr[10] = 3;
console.log(testArr);
// [undefined, undefined, undefined, 10, undefined, undefined,
 undefined, undefined, undefined, undefined, 3]

You can see that there are gaps in this array. Only two elements have elements
and the rest are gaps with the default value. Knowing this helps you in a couple of
things. Using the for...in loop to iterate an array can result in unexpected results.
Consider the following example:

var a = [];
a[5] = 5;
for (var i=0; i<a.length; i++) {
 console.log(a[i]);
}

www.EBooksWorld.ir

Chapter 3

[97]

// Iterates over numeric indexes from 0 to 5
// [undefined,undefined,undefined,undefined,undefined,5]

for (var x in a) {
 console.log(x);
}
// Shows only the explicitly set index of "5", and ignores 0-4

A matter of style
Like the previous chapters, we will spend some time discussing the style
considerations while creating arrays.

•	 Use the literal syntax for array creation:
// bad
const items = new Array();
// good
const items = [];

•	 Use Array#push instead of a direct assignment to add items to an array:

const stack = [];
// bad
stack[stack.length] = 'pushme';
// good
stack.push('pushme');

Summary
As JavaScript matures as a language, its tool chain also becomes more robust and
effective. It is rare to see seasoned programmers staying away from libraries such
as Underscore.js. As we see more advanced topics, we will continue to explore
more such versatile libraries that can make your code compact, more readable,
and performant. We looked at regular expressions—they are first-class objects
in JavaScript. Once you start understanding RegExp, you will soon find yourself
using more of them to make your code concise. In the next chapter, we will look at
JavaScript Object notation and how JavaScript prototypal inheritance is a new way
of looking at object-oriented programming.

www.EBooksWorld.ir

www.EBooksWorld.ir

[99]

Object-Oriented JavaScript
JavaScript's most fundamental data type is the Object data type. JavaScript objects
can be seen as mutable key-value-based collections. In JavaScript, arrays, functions,
and RegExp are objects while numbers, strings, and Booleans are object-like
constructs that are immutable but have methods. In this chapter, you will learn the
following topics:

•	 Understanding objects
•	 Instance properties versus prototype properties
•	 Inheritance
•	 Getters and setters

Understanding objects
Before we start looking at how JavaScript treats objects, we should spend some time
on an object-oriented paradigm. Like most programming paradigms, object-oriented
programming (OOP) also emerged from the need to manage complexity. The main
idea is to divide the entire system into smaller pieces that are isolated from each
other. If these small pieces can hide as many implementation details as possible,
they become easy to use. A classic car analogy will help you understand this very
important point about OOP.

www.EBooksWorld.ir

Object-Oriented JavaScript

[100]

When you drive a car, you operate on the interface—the steering, clutch, brake, and
accelerator. Your view of using the car is limited by this interface, which makes it
possible for us to drive the car. This interface is essentially hiding all the complex
systems that really drive the car, such as the internal functioning of its engine, its
electronic system, and so on. As a driver, you don't bother about these complexities.
A similar idea is the primary driver of OOP. An object hides the complexities of how
to implement a particular functionality and exposes a limited interface to the outside
world. All other systems can use this interface without really bothering about the
internal complexity that is hidden from view. Additionally, an object usually hides
its internal state from other objects and prevents its direct modification. This is an
important aspect of OOP.

In a large system where a lot of objects call other objects' interfaces, things can
go really bad if you allow them to modify the internal state of such objects. OOP
operates on the idea that the state of an object is inherently hidden from the outside
world and it can be changed only via controlled interface operations.

OOP was an important idea and a definite step forward from the traditional
structured programming. However, many feel that OOP is overdone. Most OOP
systems define complex and unnecessary class and type hierarchies. Another big
drawback was that in the pursuit of hiding the state, OOP considered the object state
almost immaterial. Though hugely popular, OOP was clearly flawed in many areas.
Still, OOP did have some very good ideas, especially hiding the complexity and
exposing only the interface to the outside world. JavaScript picked up a few
good ideas and built its object model around them. Luckily, this makes JavaScript
objects very versatile. In their seminal work, Design Patterns: Elements of Reusable
Object-Oriented Software, the Gang of Four gave two fundamental principles of a
better object-oriented design:

•	 Program to an interface and not to an implementation
•	 Object composition over class inheritance

These two ideas are really against how classical OOP operates. The classical style
of inheritance operates on inheritance that exposes parent classes to all child classes.
Classical inheritance tightly couples children to its parents. There are mechanisms
in classical inheritance to solve this problem to a certain extent. If you are using
classical inheritance in a language such as Java, it is generally advisable to program
to an interface, not an implementation. In Java, you can write a decoupled code using
interfaces:

//programming to an interface 'List' and not implementation
 'ArrayList'
List theList = new ArrayList();

www.EBooksWorld.ir

Chapter 4

[101]

Instead of programming to an implementation, you can perform the following:

ArrayList theList = new ArrayList();

How does programming to an interface help? When you program to the List
interface, you can call methods only available to the List interface and nothing
specific to ArrayList can be called. Programming to an interface gives you the
liberty to change your code and use any other specific child of the List interface.
For example, I can change my implementation and use LinkedList instead of
ArrayList. You can change your variable to use LinkedList instead:

List theList = new LinkedList();

The beauty of this approach is that if you are using the List at 100 places in your
program, you don't have to worry about changing the implementation at all these
places. As you were programming to the interface and not to the implementation,
you were able to write a loosely coupled code. This is an important principle when
you are using classical inheritance.

Classical inheritance also has a limitation where you can only enhance the child class
within the limit of the parent classes. You can't fundamentally differ from what you
have got from the ancestors. This inhibits reuse. Classical inheritance has several
other problems as follows:

•	 Inheritance introduces tight coupling. Child classes have knowledge about
their ancestors. This tightly couples a child class with its parent.

•	 When you subclass from a parent, you don't have a choice to select what you
want to inherit and what you don't. Joe Armstrong (the inventor of Erlang)
explains this situation very well—his now famous quote:

"The problem with object-oriented languages is they've got all this
implicit environment that they carry around with them. You want-
ed a banana but what you got was a gorilla holding the banana and
the entire jungle."

Behavior of JavaScript objects
With this background, let's explore how JavaScript objects behave. In broad terms, an
object contains properties, defined as a key-value pair. A property key (name) can be
a string and the value can be any valid JavaScript value. You can create objects using
object literals. The following snippet shows you how object literals are created:

var nothing = {};
var author = {

www.EBooksWorld.ir

Object-Oriented JavaScript

[102]

 "firstname": "Douglas",
 "lastname": "Crockford"
}

A property's name can be any string or an empty string. You can omit quotes around
the property name if the name is a legal JavaScript name. So quotes are required
around first-name but are optional around firstname. Commas are used to
separate the pairs. You can nest objects as follows:

var author = {
 firstname : "Douglas",
 lastname : "Crockford",
 book : {
 title:"JavaScript- The Good Parts",
 pages:"172"
 }
};

Properties of an object can be accessed by using two notations: the array-like notation
and dot notation. According to the array-like notation, you can retrieve the value
from an object by wrapping a string expression in []. If the expression is a valid
JavaScript name, you can use the dot notation using . instead. Using . is a preferred
method of retrieving values from an object:

console.log(author['firstname']); //Douglas
console.log(author.lastname); //Crockford
console.log(author.book.title); // JavaScript- The Good Parts

You will get an undefined error if you attempt to retrieve a non-existent value. The
following would return undefined:

console.log(author.age);

A useful trick is to use the || operator to fill in default values in this case:

console.log(author.age || "No Age Found");

You can update values of an object by assigning a new value to the property:

author.book.pages = 190;
console.log(author.book.pages); //190

If you observe closely, you will realize that the object literal syntax that you see is
very similar to the JSON format.

www.EBooksWorld.ir

Chapter 4

[103]

Methods are properties of an object that can hold function values as follows:

var meetingRoom = {};
meetingRoom.book = function(roomId){
 console.log("booked meeting room -"+roomId);
}
meetingRoom.book("VL");

Prototypes
Apart from the properties that we add to an object, there is one default property
for almost all objects, called a prototype. When an object does not have a
requested property, JavaScript goes to its prototype to look for it. The Object.
getPrototypeOf() function returns the prototype of an object.

Many programmers consider prototypes closely related to objects' inheritance—
they are indeed a way of defining object types—but fundamentally, they are closely
associated with functions.

Prototypes are used as a way to define properties and functions that will be applied
to instances of objects. The prototype's properties eventually become properties
of the instantiated objects. Prototypes can be seen as blueprints for object creation.
They can be seen as analogous to classes in object-oriented languages. Prototypes in
JavaScript are used to write a classical style object-oriented code and mimic classical
inheritance. Let's revisit our earlier example:

var author = {};
author.firstname = 'Douglas';
author.lastname = 'Crockford';

In the preceding code snippet, we are creating an empty object and assigning
individual properties. You will soon realize that this is not a very standard way of
building objects. If you know OOP already, you will immediately see that there is
no encapsulation and the usual class structure. JavaScript provides a way around
this. You can use the new operator to instantiate an object via constructors. However,
there is no concept of a class in JavaScript, and it is important to note that the new
operator is applied to the constructor function. To clearly understand this, let's look
at the following example:

//A function that returns nothing and creates nothing
function Player() {}

www.EBooksWorld.ir

Object-Oriented JavaScript

[104]

//Add a function to the prototype property of the function
Player.prototype.usesBat = function() {
 return true;
}

//We call player() as a function and prove that nothing happens
var crazyBob = Player();
if(crazyBob === undefined){
 console.log("CrazyBob is not defined");
}

//Now we call player() as a constructor along with 'new'
//1. The instance is created
//2. method usesBat() is derived from the prototype of the function
var swingJay = new Player();
if(swingJay && swingJay.usesBat && swingJay.usesBat()){
 console.log("SwingJay exists and can use bat");
}

In the preceding example, we have a player() function that does nothing. We
invoke it in two different ways. The first call of the function is as a normal function
and second call is as a constructor—note the use of the new() operator in this call.
Once the function is defined, we add a usesBat() method to it. When this function
is called as a normal function, the object is not instantiated and we see undefined
assigned to crazyBob. However, when we call this function with the new operator,
we get a fully instantiated object, swingJay.

Instance properties versus prototype
properties
Instance properties are the properties that are part of the object instance itself, as
shown in the following example:

function Player() {
 this.isAvailable = function() {
 return "Instance method says - he is hired";
 };
}
Player.prototype.isAvailable = function() {
 return "Prototype method says - he is Not hired";
};
var crazyBob = new Player();
console.log(crazyBob.isAvailable());

www.EBooksWorld.ir

Chapter 4

[105]

When you run this example, you will see that Instance method says - he is hired
is printed. The isAvailable() function defined in the Player() function is called
an instance of Player. This means that apart from attaching properties via the
prototype, you can use the this keyword to initialize properties in a constructor.
When we have the same functions defined as an instance property and also as
a prototype, the instance property takes precedence. The rules governing the
precedence of the initialization are as follows:

•	 Properties are tied to the object instance from the prototype
•	 Properties are tied to the object instance in the constructor function

This example brings us to the use of the this keyword. It is easy to get confused
by the this keyword because it behaves differently in JavaScript. In other OO
languages such as Java, the this keyword refers to the current instance of the class.
In JavaScript, the value of this is determined by the invocation context of a function
and where it is called. Let's see how this behavior needs to be carefully understood:

•	 When this is used in a global context: When this is called in a global
context, it is bound to the global context. For example, in the case of a
browser, the global context is usually window. This is true for functions also.
If you use this in a function that is defined in the global context, it is still
bound to the global context because the function is part of the global context:
function globalAlias(){
 return this;
}
console.log(globalAlias()); //[object Window]

•	 When this is used in an object method: In this case, this is assigned or
bound to the enclosing object. Note that the enclosing object is the immediate
parent if you are nesting the objects:
var f = {
 name: "f",
 func: function () {
 return this;
 }
};
console.log(f.func());
//prints -
//[object Object] {
// func: function () {
// return this;
// },
// name: "f"
//}

www.EBooksWorld.ir

Object-Oriented JavaScript

[106]

•	 When there is no context: A function, when invoked without any object, does
not get any context. By default, it is bound to the global context. When you
use this in such a function, it is also bound to the global context.

•	 When this is used in a constructor function: As we saw earlier, when a
function is called with a new keyword, it acts as a constructor. In the case of
a constructor, this points to the object being constructed. In the following
example, f() is used as a constructor (because it's invoked with a new
keyword) and hence, this is pointing to the new object being created. So
when we say this.member = "f", the new member is added to the object
being created, in this case, that object happens to be o:

var member = "global";
function f()
{
 this.member = "f";
}
var o= new f();
console.log(o.member); // f

We saw that instance properties take precedence when the same property is defined
both as an instance property and prototype property. It is easy to visualize that
when a new object is created, the properties of the constructor's prototype are copied
over. However, this is not a correct assumption. What actually happens is that the
prototype is attached to the object and referred when any property of this object
is referred. Essentially, when a property is referenced on an object, either of the
following occur:

•	 The object is checked for the existence of the property. If it's found, the
property is returned.

•	 The associated prototype is checked. If the property is found, it is returned;
otherwise, an undefined error is returned.

This is an important understanding because, in JavaScript, the following code
actually works perfectly:

function Player() {
 isAvailable=false;
}
var crazyBob = new Player();
Player.prototype.isAvailable = function() {
 return isAvailable;
};
console.log(crazyBob.isAvailable()); //false

www.EBooksWorld.ir

Chapter 4

[107]

This code is a slight variation of the earlier example. We are creating the object
first and then attaching the function to its prototype. When you eventually call the
isAvailable() method on the object, JavaScript goes to its prototype to search for
it if it's not found in the particular object (crazyBob, in this case). Think of this as
hot code loading—when used properly, this ability can give you incredible power to
extend the basic object framework even after the object is created.

If you are familiar with OOP already, you must be wondering whether we can
control the visibility and access of the members of an object. As we discussed earlier,
JavaScript does not have classes. In programming languages such as Java, you have
access modifiers such as private and public that let you control the visibility of the
class members. In JavaScript, we can achieve something similar using the function
scope as follows:

•	 You can declare private variables using the var keyword in a function. They
can be accessed by private functions or privileged methods.

•	 Private functions may be declared in an object's constructor and can be called
by privileged methods.

•	 Privileged methods can be declared with this.method=function() {}.
•	 Public methods are declared with Class.prototype.method=function()

{}.
•	 Public properties can be declared with this.property and accessed from

outside the object.

The following example shows several ways of doing this:

function Player(name,sport,age,country){

 this.constructor.noOfPlayers++;

 // Private Properties and Functions
 // Can only be viewed, edited or invoked by privileged members
 var retirementAge = 40;
 var available=true;
 var playerAge = age?age:18;
 function isAvailable(){ return available &&
(playerAge<retirementAge); }
 var playerName=name ? name :"Unknown";
 var playerSport = sport ? sport : "Unknown";

www.EBooksWorld.ir

Object-Oriented JavaScript

[108]

 // Privileged Methods
 // Can be invoked from outside and can access private members
 // Can be replaced with public counterparts
 this.book=function(){
 if (!isAvailable()){
 this.available=false;
 } else {
 console.log("Player is unavailable");
 }
 };
 this.getSport=function(){ return playerSport; };
 // Public properties, modifiable from anywhere
 this.batPreference="Lefty";
 this.hasCelebGirlfriend=false;
 this.endorses="Super Brand";
}

// Public methods - can be read or written by anyone
// Can only access public and prototype properties
Player.prototype.switchHands = function(){ this.
batPreference="righty"; };
Player.prototype.dateCeleb = function(){ this.hasCelebGirlfriend=true;
} ;
Player.prototype.fixEyes = function(){ this.wearGlasses=false; };

// Prototype Properties - can be read or written by anyone (or
overridden)
Player.prototype.wearsGlasses=true;

// Static Properties - anyone can read or write
Player.noOfPlayers = 0;

(function PlayerTest(){
 //New instance of the Player object created.
 var cricketer=new Player("Vivian","Cricket",23,"England");
 var golfer =new Player("Pete","Golf",32,"USA");
 console.log("So far there are " + Player.noOfPlayers + " in the
guild");

www.EBooksWorld.ir

Chapter 4

[109]

 //Both these functions share the common 'Player.prototype.
wearsGlasses' variable
 cricketer.fixEyes();
 golfer.fixEyes();

 cricketer.endorses="Other Brand";//public variable can be updated

 //Both Player's public method is now changed via their prototype
 Player.prototype.fixEyes=function(){
 this.wearGlasses=true;
 };
 //Only Cricketer's function is changed
 cricketer.switchHands=function(){
 this.batPreference="undecided";
 };

})();

Let's understand a few important concepts from this example:

•	 The retirementAge variable is a private variable that has no privileged
method to get or set its value.

•	 The country variable is a private variable created as a constructor argument.
Constructor arguments are available as private variables to the object.

•	 When we called cricketer.switchHands(), it was only applied to the
cricketer and not to both the players, although it's a prototype function of
the Player itself.

•	 Private functions and privileged methods are instantiated with each new
object created. In our example, new copies of isAvailable() and book()
would be created for each new player instance that we create. On the other
hand, only one copy of public methods is created and shared between all
instances. This can mean a bit of performance gain. If you don't really need to
make something private, think about keeping it public.

www.EBooksWorld.ir

Object-Oriented JavaScript

[110]

Inheritance
Inheritance is an important concept of OOP. It is common to have a bunch of objects
implementing the same methods. It is also common to have an almost similar object
definition with differences in a few methods. Inheritance is very useful in promoting
code reuse. We can look at the following classic example of inheritance relation:

Here, you can see that from the generic Animal class, we derive more specific classes
such as Mammal and Bird based on specific characteristics. Both the Mammal and
Bird classes do have the same template of an Animal; however, they also define
behaviors and attributes specific to them. Eventually, we derive a very specific
mammal, Dog. A Dog has common attributes and behaviors from an Animal class
and Mammal class, while it adds specific attributes and behaviors of a Dog. This can
go on to add complex inheritance relationships.

Traditionally, inheritance is used to establish or describe an IS-A relationship.
For example, a dog IS-A mammal. This is what we know as classical inheritance.
You would have seen such relationships in object-oriented languages such as C++
and Java. JavaScript has a completely different mechanism to handle inheritance.
JavaScript is classless language and uses prototypes for inheritance. Prototypal
inheritance is very different in nature and needs thorough understanding. Classical
and prototypal inheritance are very different in nature and need careful study.

www.EBooksWorld.ir

Chapter 4

[111]

In classical inheritance, instances inherit from a class blueprint and create subclass
relationships. You can't invoke instance methods on a class definition itself. You
need to create an instance and then invoke methods on this instance. In prototypal
inheritance, on the other hand, instances inherit from other instances.

As far as inheritance is concerned, JavaScript uses only objects. As we discussed
earlier, each object has a link to another object called its prototype. This prototype
object, in turn, has a prototype of its own, and so on until an object is reached with
null as its prototype; null, by definition, has no prototype, and acts as the final link
in this prototype chain.

To understand prototype chains better, let's consider the following example:

function Person() {}
Person.prototype.cry = function() {
 console.log("Crying");
}
function Child() {}
Child.prototype = {cry: Person.prototype.cry};
var aChild = new Child();
console.log(aChild instanceof Child); //true
console.log(aChild instanceof Person); //false
console.log(aChild instanceof Object); //true

Here, we define a Person and then Child—a child IS-A person. We also copy the
cry property of a Person to the cry property of Child. When we try to see this
relationship using instanceof, we soon realize that just by copying a behavior, we
could not really make Child an instance of Person; aChild instanceof Person
fails. This is just copying or masquerading, not inheritance. Even if we copy all the
properties of Person to Child, we won't be inheriting from Person. This is usually
a bad idea and is shown here only for illustrative purposes. We want to derive a
prototype chain—an IS-A relationship, a real inheritance where we can say that
child IS-A person. We want to create a chain: a child IS-A person IS-A mammal
IS-A animal IS-A object. In JavaScript, this is done using an instance of an object as a
prototype as follows:

SubClass.prototype = new SuperClass();
Child.prototype = new Person();

Let's modify the earlier example:

function Person() {}
Person.prototype.cry = function() {
 console.log("Crying");
}

www.EBooksWorld.ir

Object-Oriented JavaScript

[112]

function Child() {}
Child.prototype = new Person();
var aChild = new Child();
console.log(aChild instanceof Child); //true
console.log(aChild instanceof Person); //true
console.log(aChild instanceof Object); //true

The changed line uses an instance of Person as the prototype of Child. This is an
important distinction from the earlier method. Here we are declaring that child IS-A
person.

We discussed about how JavaScript looks for a property up the prototype chain till
it reaches Object.prototype. Let's discuss the concept of prototype chains in detail
and try to design the following employee hierarchy:

This is a typical pattern of inheritance. A manager IS-A(n) employee. Manager has
common properties inherited from an Employee. It can have an array of reportees.
An Individual Contributor is also based on an employee but he does not have any
reportees. A Team Lead is derived from a Manager with a few functions that are
different from a Manager. What we are doing essentially is that each child is deriving
properties from its parent (Manager being the parent and Team Lead being the child).

www.EBooksWorld.ir

Chapter 4

[113]

Let's see how we can create this hierarchy in JavaScript. Let's define our Employee
type:

function Employee() {
 this.name = '';
 this.dept = 'None';
 this.salary = 0.00;
}

There is nothing special about these definitions. The Employee object contains three
properties—name, salary, and department. Next, we define Manager. This definition
shows you how to specify the next object in the inheritance chain:

function Manager() {
 Employee.call(this);
 this.reports = [];
}
Manager.prototype = Object.create(Employee.prototype);

In JavaScript, you can add a prototypical instance as the value of the prototype
property of the constructor function. You can do so at any time after you define the
constructor. In this example, there are two ideas that we have not explored earlier.
First, we are calling Employee.call(this). If you come from a Java background,
this is analogous to the super() method call in the constructor. The call() method
calls a function with a specific object as its context (in this case, it is the given the
this value), in other words, call allows to specify which object will be referenced
by the this keyword when the function will be executed. Like super() in Java,
calling parentObject.call(this) is necessary to correctly initialize the object being
created.

The other thing we see is Object.create() instead of calling new. Object.create()
creates an object with a specified prototype. When we do new Parent(), the
constructor logic of the parent is called. In most cases, what we want is for Child.
prototype to be an object that is linked via its prototype to Parent.prototype. If
the parent constructor contains additional logic specific to the parent, we don't want
to run this while creating the child object. This can cause very difficult-to-find bugs.
Object.create() creates the same prototypal link between the child and parent as
the new operator without calling the parent constructor.

www.EBooksWorld.ir

Object-Oriented JavaScript

[114]

To have a side effect-free and accurate inheritance mechanism, we have to make sure
that we perform the following:

•	 Setting the prototype to an instance of the parent initializes the prototype
chain (inheritance); this is done only once (as the prototype object is shared)

•	 Calling the parent's constructor initializes the object itself; this is done
with every instantiation (you can pass different parameters each time you
construct it)

With this understanding in place, let's define the rest of the objects:

function IndividualContributor() {
 Employee.call(this);
 this.active_projects = [];
}
IndividualContributor.prototype = Object.create(Employee.prototype);

function TeamLead() {
 Manager.call(this);
 this.dept = "Software";
 this.salary = 100000;
}
TeamLead.prototype = Object.create(Manager.prototype);

function Engineer() {
 TeamLead.call(this);
 this.dept = "JavaScript";
 this.desktop_id = "8822" ;
 this.salary = 80000;
}
Engineer.prototype = Object.create(TeamLead.prototype);

Based on this hierarchy, we can instantiate these objects:

var genericEmployee = new Employee();
console.log(genericEmployee);

You can see the following output for the preceding code snippet:

[object Object] {
 dept: "None",
 name: "",
 salary: 0
}

www.EBooksWorld.ir

Chapter 4

[115]

A generic Employee has a department assigned to None (as specified in the default
value) and the rest of the properties are also assigned as the default ones.

Next, we instantiate a manager; we can provide specific values as follows:

var karen = new Manager();
karen.name = "Karen";
karen.reports = [1,2,3];
console.log(karen);

You will see the following output:

[object Object] {
 dept: "None",
 name: "Karen",
 reports: [1, 2, 3],
 salary: 0
}

For TeamLead, the reports property is derived from the base class (Manager in this
case):

var jason = new TeamLead();
jason.name = "Json";
console.log(jason);

You will see the following output:

[object Object] {
 dept: "Software",
 name: "Json",
 reports: [],
 salary: 100000
}

When JavaScript processes the new operator, it creates a new object and passes this
object as the value of this to the parent—the TeamLead constructor. The constructor
function sets the value of the projects property and implicitly sets the value of the
internal __proto__ property to the value of TeamLead.prototype. The __proto__
property determines the prototype chain used to return property values. This
process does not set values for properties inherited from the prototype chain in the
jason object. When the value of a property is read, JavaScript first checks to see
whether the value exists in that object. If the value does exist, this value is returned.
If the value is not there, JavaScript checks the prototype chain using the __proto__
property. Having said this, what happens when you do the following:

Employee.prototype.name = "Undefined";

www.EBooksWorld.ir

Object-Oriented JavaScript

[116]

It does not propagate to all the instances of Employee. This is because when you
create an instance of the Employee object, this instance gets a local value for the
name. When you set the TeamLead prototype by creating a new Employee object,
TeamLead.prototype has a local value for the name property. Therefore, when
JavaScript looks up the name property of the jason object, which is an instance of
TeamLead), it finds the local value for this property in TeamLead.prototype. It does
not try to do further lookups up the chain to Employee.prototype.

If you want the value of a property changed at runtime and have the new value be
inherited by all the descendants of the object, you cannot define the property in the
object's constructor function. To achieve this, you need to add it to the constructor's
prototype. For example, let's revisit the earlier example but with a slight change:

function Employee() {
 this.dept = 'None';
 this.salary = 0.00;
}
Employee.prototype.name = '';
function Manager() {
 this.reports = [];
}
Manager.prototype = new Employee();
var sandy = new Manager();
var karen = new Manager();

Employee.prototype.name = "Junk";

console.log(sandy.name);
console.log(karen.name);

You will see that the name property of both sandy and karen has changed to Junk.
This is because the name property is declared outside the constructor function. So,
when you change the value of name in the Employee's prototype, it propagates to all
the descendants. In this example, we are modifying Employee's prototype after the
sandy and karen objects are created. If you changed the prototype before the sandy
and karen objects were created, the value would still have changed to Junk.

All native JavaScript objects—Object, Array, String, Number, RegExp, and
Function—have prototype properties that can be extended. This means that we
can extend the functionality of the language itself. For example, the following
snippet extends the String object to add a reverse() method to reverse a string.
This method does not exist in the native String object but by manipulating String's
prototype, we add this method to String:

www.EBooksWorld.ir

Chapter 4

[117]

String.prototype.reverse = function() {
 return Array.prototype.reverse.apply(this.split('')).join('');
};
var str = 'JavaScript';
console.log(str.reverse()); //"tpircSavaJ"

Though this is a very powerful technique, care should be taken not to overuse
it. Refer to http://perfectionkills.com/extending-native-builtins/ to
understand the pitfalls of extending native built-ins and what care should be taken if
you intend to do so.

Getters and setters
Getters are convenient methods to get the value of specific properties; as the name
suggests, setters are methods that set the value of a property. Often, you may want
to derive a value based on some other values. Traditionally, getters and setters used
to be functions such as the following:

var person = {
 firstname: "Albert",
 lastname: "Einstein",
 setLastName: function(_lastname){
 this.lastname= _lastname;
 },
 setFirstName: function (_firstname){
 this.firstname= _firstname;
 },
 getFullName: function (){
 return this.firstname + ' '+ this.lastname;
 }
};
person.setLastName('Newton');
person.setFirstName('Issac');
console.log(person.getFullName());

As you can see, setLastName(), setFirstName(), and getFullName() are functions
used to do get and set of properties. Fullname is a derived property by concatenating
the firstname and lastname properties. This is a very common use case and
ECMAScript 5 now provides you with a default syntax for getters and setters.

www.EBooksWorld.ir

http://perfectionkills.com/extending-native-builtins/

Object-Oriented JavaScript

[118]

The following example shows you how getters and setters are created using the
object literal syntax in ECMAScript 5:

var person = {
 firstname: "Albert",
 lastname: "Einstein",
 get fullname() {
 return this.firstname +" "+this.lastname;
 },
 set fullname(_name){
 var words = _name.toString().split(' ');
 this.firstname = words[0];
 this.lastname = words[1];
 }
};
person.fullname = "Issac Newton";
console.log(person.firstname); //"Issac"
console.log(person.lastname); //"Newton"
console.log(person.fullname); //"Issac Newton"

Another way of declaring getters and setters is using the Object.defineProperty()
method:

var person = {
 firstname: "Albert",
 lastname: "Einstein",
};
Object.defineProperty(person, 'fullname', {
 get: function() {
 return this.firstname + ' ' + this.lastname;
 },
 set: function(name) {
 var words = name.split(' ');
 this.firstname = words[0];
 this.lastname = words[1];
 }
});
person.fullname = "Issac Newton";
console.log(person.firstname); //"Issac"
console.log(person.lastname); //"Newton"
console.log(person.fullname); //"Issac Newton"

In this method, you can call Object.defineProperty() even after the object is
created.

www.EBooksWorld.ir

Chapter 4

[119]

Now that you have tasted the object-oriented flavor of JavaScript, we will go through
a bunch of very useful utility methods provided by Underscore.js. We discussed the
installation and basic usage of Underscore.js in the previous chapter. These methods
will make common operations on objects very easy:

•	 keys(): This method retrieves the names of an object's own enumerable
properties. Note that this function does not traverse up the prototype chain:
var _ = require('underscore');
var testobj = {
 name: 'Albert',
 age : 90,
 profession: 'Physicist'
};
console.log(_.keys(testobj));
//['name', 'age', 'profession']

•	 allKeys(): This method retrieves the names of an object's own and inherited
properties:
var _ = require('underscore');
function Scientist() {
 this.name = 'Albert';
}
Scientist.prototype.married = true;
aScientist = new Scientist();
console.log(_.keys(aScientist)); //['name']
console.log(_.allKeys(aScientist));//['name', 'married']

•	 values(): This method retrieves the values of an object's own properties:
var _ = require('underscore');
function Scientist() {
 this.name = 'Albert';
}
Scientist.prototype.married = true;
aScientist = new Scientist();
console.log(_.values(aScientist)); //['Albert']

•	 mapObject(): This method transforms the value of each property in the
object:
var _ = require('underscore');
function Scientist() {
 this.name = 'Albert';
 this.age = 90;
}

www.EBooksWorld.ir

Object-Oriented JavaScript

[120]

aScientist = new Scientist();
var lst = _.mapObject(aScientist, function(val,key){
 if(key==="age"){
 return val + 10;
 } else {
 return val;
 }
});
console.log(lst); //{ name: 'Albert', age: 100 }

•	 functions(): This returns a sorted list of the names of every method in an
object—the name of every function property of the object.

•	 pick(): This function returns a copy of the object, filtered to just the values
of the keys provided:
var _ = require('underscore');
var testobj = {
 name: 'Albert',
 age : 90,
 profession: 'Physicist'
};
console.log(_.pick(testobj, 'name','age')); //{ name: 'Albert',
age: 90 }
console.log(_.pick(testobj, function(val,key,object){
 return _.isNumber(val);
})); //{ age: 90 }

•	 omit(): This function is an invert of pick()—it returns a copy of the object,
filtered to omit the values for the specified keys.

Summary
JavaScript applications can improve in clarity and quality by allowing for the
greater degree of control and structure that object-orientation can bring to the code.
JavaScript object-orientation is based on the function prototypes and prototypal
inheritance. These two ideas can provide an incredible amount of wealth to
developers.

In this chapter, we saw basic object creation and manipulation. We looked at how
constructor functions are used to create objects. We dived into prototype chains and
how inheritance operates on the idea of prototype chains. These foundations will
be used to build your knowledge of JavaScript patterns that we will explore in the
next chapter.

www.EBooksWorld.ir

[121]

JavaScript Patterns
So far, we have looked at several fundamental building blocks necessary to write
code in JavaScript. Once you start building larger systems using these fundamental
constructs, you soon realize that there can be a standard way of doing a few things.
While developing a large system, you will encounter repetitive problems; a pattern
intends to provide a standardized solution to such known and identified problems.
A pattern can be seen as a best practice, useful abstraction, or template to solve
common problems. Writing maintainable code is difficult. The key to write modular,
correct, and maintainable code is the ability to understand the repeating themes and
use common templates to write optimized solutions to these. The most important
text on design patterns was a book published in 1995 called Design Patterns: Elements
Of Reusable Object-Oriented Software written by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides—a group that became known as the Gang of Four (GOF
for short). This seminal work gave a formal definition to various patterns and
explained implementation details of most of the popular patterns that we use today.
It is important to understand why patterns are important:

•	 Patterns offer proven solutions to common problems: Patterns provide
templates that are optimized to solve a particular problem. These patterns are
backed by solid engineering experience and tested for validity.

•	 Patterns are designed to be reused: They are generic enough to fit variations
of a problem.

•	 Patterns define vocabulary: Patterns are well-defined structures and hence
provide a generic vocabulary to the solution. This can be very expressive
when communicating across a larger group.

www.EBooksWorld.ir

JavaScript Patterns

[122]

Design patterns
In this chapter, we will take a look at some of the design patterns that make sense
for JavaScript. However, coding patterns are very specific for JavaScript and are of
great interest to us. While we spend a lot of time and effort trying to understand and
master design patterns, it is important to understand anti-patterns and how to avoid
pitfalls. In the usual software development cycle, there are several places where bad
code is introduced, mainly around the time where the code is nearing a release or
when the code is handed over to a different team for maintenance. If such bad design
constructs are documented as anti-patterns, they can provide guidance to developers
in knowing what pitfalls to avoid and how not to subscribe to bad design patterns.
Most languages have their set of anti-patterns. Based on the kind of problems that
they solve, design patterns were categorized into a few broad categories by the GOF:

•	 Creational design patterns: These patterns deal with various mechanisms of
object creation. While most languages provide basic object creation methods,
these patterns look at optimized or more controlled mechanisms of object
creation.

•	 Structural design patterns: These patterns are all about the composition of
objects and relationships among them. The idea is to have minimal impact on
overall object relationships when something in the system changes.

•	 Behavioral design patterns: These patterns focus on the interdependency
and communication between objects.

The following table is a useful ready reckoner to identify categories of patterns:

•	 Creational patterns:
°° Factory method
°° Abstract factory
°° Builder
°° Prototype
°° Singleton

•	 Structural patterns:
°° Adapter
°° Bridge
°° Composite
°° Decorator
°° Façade

www.EBooksWorld.ir

Chapter 5

[123]

°° Flyweight
°° Proxy

•	 Behavioral patterns

°° Interpreter
°° Template method
°° Chain of responsibility
°° Command
°° Iterator
°° Mediator
°° Memento
°° Observer
°° State
°° Strategy
°° Visitor

Some patterns that we will discuss in this chapter may not be part of this list as they
are more specific to JavaScript or a variation of these classical patterns. Similarly, we
will not discuss patterns that do not fit into JavaScript or are not in popular use.

The namespace pattern
Excessive use of the global scope is almost a taboo in JavaScript. When you build
larger programs, it is sometimes difficult to control how much the global scope is
polluted. Namespace can reduce the number of globals created by the program
and also helps in avoiding naming collisions or excessive name prefixing. The idea
of using namespaces is creating a global object for your application or library and
adding all these objects and functions to that object rather than polluting the global
scope with objects. JavaScript doesn't have an explicit syntax for namespaces, but
namespaces can be easily created. Let's consider the following example:

function Car() {}
function BMW() {}
var engines = 1;
var features = {
 seats: 6,
 airbags:6
};

www.EBooksWorld.ir

JavaScript Patterns

[124]

We are creating all this in the global scope. This is an anti-pattern, and this is never a
good idea. We can, however, refactor this code and create a single global object and
make all the functions and objects part of this global object as follows:

// Single global object
var CARFACTORY = CARFACTORY || {};
CARFACTORY.Car = function () {};
CARFACTORY.BMW = function () {};
CARFACTORY.engines = 1;
CARFACTORY.features = {
 seats: 6,
 airbags:6
};

By convention, the global namespace object name is generally written in all caps.
This pattern adds namespace to the application and prevents naming collisions in
your code and between your code and external library that you use. Many projects
use a distinct name after their company or project to create a unique name for their
namespace.

Though this seems like an ideal way to restrict your globals and add a namespace
to your code, it is a bit verbose; you need to prefix every variable and function
with the namespace. You need to type more and the code becomes unnecessarily
verbose. Additionally, a single global instance would mean that any part of the code
can modify the global instance and the rest of the functionality gets the updated
state—this can cause very nasty side-effects. A curious thing to observe in the earlier
example is this line—var CARFACTORY = CARFACTORY || {};. When you are
working on a large code base, you can't assume that you are creating this namespace
(or assigning a property to it) for the first time. It is possible that the namespace may
pre-exist. To make sure that you create the namespace only if it is not already created,
it is safe to always rely on the quick defaulting via a short-circuit || operator.

The module pattern
As you build large applications, you will soon realize that it becomes increasingly
difficult to keep the code base organized and modular. The module patterns help in
keeping the code cleanly separated and organized.

Module separates bigger programs into smaller pieces and gives them a namespace.
This is very important because once you separate code into modules, these modules
can be reused in several places. Carefully designing interfaces for the modules will
make your code very easy to reuse and extend.

www.EBooksWorld.ir

Chapter 5

[125]

JavaScript offers flexible functions and objects that make it easy to create robust
module systems. Function scopes help create namespaces that are internal for the
module, and objects can be used to store sets of exported values.

Before we start exploring the pattern itself, let's quickly brush up on a few concepts
that we discussed earlier.

We discussed object literals in detail. Object literals allow you to create name-value
pairs as follows:

var basicServerConfig = {
 environment: "production",
 startupParams: {
 cacheTimeout: 30,
 locale: "en_US"
 },
 init: function () {
 console.log("Initializing the server");
 },
 updateStartup: function(params) {
 this.startupParams = params;
 console.log(this.startupParams.cacheTimeout);
 console.log(this.startupParams.locale);
 }
};
basicServerConfig.init(); //"Initializing the server"
basicServerConfig.updateStartup({cacheTimeout:60,
 locale:"en_UK"}); //60, en_UK

In this example, we are creating an object literal and defining key-value pairs to
create properties and functions.

In JavaScript, the module pattern is used very heavily. Modules help in mimicking
the concept of classes. Modules allow us to include both public/private methods and
variables of an object, but most importantly, modules restrict these parts from the
global scope. As the variables and functions are contained in the module scope, we
automatically prevent naming conflict with other scripts using the same names.

Another beautiful aspect of the module pattern is that we expose only a public API.
Everything else related to the internal implementation is held private within the
module's closure.

www.EBooksWorld.ir

JavaScript Patterns

[126]

Unlike other OO languages, JavaScript has no explicit access modifiers and, hence,
there is no concept of privacy. You can't have public or private variables. As we
discussed earlier, in JavaScript, the function scope can be used to enforce this
concept. The module pattern uses closures to restrict variable and function access
only within the module; however, variables and functions are defined in the object
being returned, which is available to the public.

Let's consider the earlier example and turn this into a module. We are essentially
using an IIFE and returning the interface of the module, namely, the init and
updateStartup functions:

var basicServerConfig = (function () {
 var environment= "production";
 startupParams= {
 cacheTimeout: 30,
 locale: "en_US"
 };
 return {
 init: function () {
 console.log("Initializing the server");
 },
 updateStartup: function(params) {
 this.startupParams = params;
 console.log(this.startupParams.cacheTimeout);
 console.log(this.startupParams.locale);
 }
 };
})();
basicServerConfig.init(); //"Initializing the server"
basicServerConfig.updateStartup({cacheTimeout:60,
 locale:"en_UK"}); //60, en_UK

In this example, basicServerConfig is created as a module in the global context. To
make sure that we are not polluting the global context with modules, it is important
to create namespaces for the modules. Moreover, as modules are inherently reused, it
is important to make sure that we avoid naming conflicts using namespaces. For the
basicServerConfig module, the following snippet shows you the way to create a
namespace:

// Single global object
var SERVER = SERVER||{};
SERVER.basicServerConfig = (function () {
 Var environment= "production";
 startupParams= {

www.EBooksWorld.ir

Chapter 5

[127]

 cacheTimeout: 30,
 locale: "en_US"
 };
 return {
 init: function () {
 console.log("Initializing the server");
 },
 updateStartup: function(params) {
 this.startupParams = params;
 console.log(this.startupParams.cacheTimeout);
 console.log(this.startupParams.locale);
 }
 };
})();
SERVER.basicServerConfig.init(); //"Initializing the server"
SERVER.basicServerConfig.updateStartup({cacheTimeout:60,
 locale:"en_UK"}); //60, en_UK

Using namespace with modules is generally a good idea; however, it is not required
that a module must have a namespace associated.

A variation of the module pattern tries to overcome a few problems of the original
module pattern. This improved variation of the module pattern is also known as the
revealing module pattern (RMP). RMP was first popularized by Christian Heilmann.
He disliked that it was necessary to use the module name while calling a public
function from another function or accessing a public variable. Another small problem
is that you have to use an object literal notation while returning the public interface.
Consider the following example:

var modulePattern = function(){
 var privateOne = 1;
 function privateFn(){
 console.log('privateFn called');
 }
 return {
 publicTwo: 2,
 publicFn:function(){
 modulePattern.publicFnTwo();
 },
 publicFnTwo:function(){
 privateFn();
 }
 }
}();
modulePattern.publicFn(); "privateFn called"

www.EBooksWorld.ir

JavaScript Patterns

[128]

You can see that we need to call publicFnTwo() via modulePattern in publicFn().
Additionally, the public interface is returned in an object literal. The improvement
on the classic module pattern is what is known as the RMP. The primary idea
behind this pattern is to define all of the members in the private scope and return an
anonymous object with pointers to the private functionality that needs to be revealed
as public.

Let's see how we can convert our previous example to an RMP. This example is
heavily inspired from Christian's blog:

var revealingExample = function(){
 var privateOne = 1;
 function privateFn(){
 console.log('privateFn called');
 }
 var publicTwo = 2;
 function publicFn(){
 publicFnTwo();
 }
 function publicFnTwo(){
 privateFn();
 }
 function getCurrentState(){
 return 2;
 }
 // reveal private variables by assigning public pointers
 return {
 setup:publicFn,
 count:publicTwo,
 increaseCount:publicFnTwo,
 current:getCurrentState()
 };
}();
console.log(revealingExample.current); // 2
revealingExample.setup(); //privateFn called

An important distinction here is that you define functions and variables in the
private scope and return an anonymous object with pointers to the private variables
and functions that you want to reveal as public. This is a much cleaner variation and
should be preferred over the classic module pattern.

www.EBooksWorld.ir

Chapter 5

[129]

In production code, however, you would want to use more a standardized approach
to create modules. Currently, there are two main approaches to create modules. The
first is known as CommonJS modules. CommonJS modules are usually more suited
for server-side JavaScript environments such as Node.js. A CommonJS module
contains a require() function that receives the name of the module and returns the
module's interface. The format was proposed by the volunteer group of CommonJS;
their aim was to design, prototype, and standardize JavaScript APIs. CommonJS
modules consist of two parts. Firstly, list of variables and functions the module needs
to expose; when you assign a variable or function to the module.exports variable,
it is exposed from the module. Secondly, a require function that modules can use
to import the exports of other modules:

//Add a dependency module
var crypto = require('crypto');
function randomString(length, chars) {
 var randomBytes = crypto.randomBytes(length);
 ...
 ...
}
//Export this module to be available for other modules
module.exports=randomString;

CommonJS modules are supported by Node.js on the server and curl.js in the
browser.

The other flavor of JavaScript modules is called Asynchronous Module Definition
(AMD). They are browser-first modules and opt for asynchronous behavior. AMD
uses a define function to define the modules. This function takes an array of module
names and a function. Once the modules are loaded, the define function executes
the function with their interface as an argument. The AMD proposal is aimed at the
asynchronous loading of both the module and dependencies. The define function is
used to define named or unnamed modules based on the following signature:

define(
 module_id /*optional*/,
 [dependencies] /*optional*/,
 definition function /*function for instantiating the module or
 object*/
);

www.EBooksWorld.ir

JavaScript Patterns

[130]

You can add a module without dependencies as follows:

define(
{
 add: function(x, y){
 return x + y;
 }
});

The following snippet shows you a module that depends on two other modules:

define("math",
 //dependency on these two modules
 ["sum", "multiply"],
 // module definition function
 // dependencies (foo and bar) are mapped to function parameters
 function (sum, multiply) {
 // return a value that defines the module export
 // (that is, the functionality we want to expose for consumption)

 // create your module here
 var math = {
 demo : function () {
 console.log(sum.calculate(1,2));
 console.log(multiply.calculate(1,2));
 }
 };
 return math;
});

The require module is used as follows:

require(["math","draw"], function (math,draw) {
 draw.2DRender(math.pi);
});

RequireJS (http://requirejs.org/docs/whyamd.html) is one of the module
loaders that implements AMD.

www.EBooksWorld.ir

http://requirejs.org/docs/whyamd.html

Chapter 5

[131]

ES6 modules
Two separate module systems and different module loaders can be a bit
intimidating. ES6 tries to solve this. ES6 has a proposed module specification that
tries to keep the good aspects of both the CommonJS and AMD module patterns.
The syntax of ES6 modules is similar to CommonJS and the ES6 modules support
asynchronous loading and configurable module loading:

//json_processor.js
function processJSON(url) {
 ...
}
export function getSiteContent(url) {
 return processJSON(url);
}
//main.js
import { getSiteContent } from "json_processor.js";
content=getSiteContent("http://google.com/");

ES6 export lets you export a function or variable in a way similar to CommonJS.
In the code where you want to use this imported function, you use the import
keyword to specify from where you want the dependency to be imported. Once the
dependency is imported, it can be used as a member of the program. We will discuss
in later chapters how you can use ES6 in environments where ES6 is not supported.

The factory pattern
The factory pattern is another popular object creation pattern. It does not require the
usage of constructors. This pattern provides an interface to create objects. Based on
the type passed to the factory, that particular type of object is created by the factory.
A common implementation of this pattern is usually using a class or static method of
a class. The purposes of such a class or method are as follows:

•	 It abstracts out repetitive operations when creating similar objects
•	 It allows the consumers of the factory to create objects without knowing the

internals of the object creation

www.EBooksWorld.ir

JavaScript Patterns

[132]

Let's take a common example to understand the usage of a factory. Let's say that we
have the following:

•	 A constructor, CarFactory()
•	 A static method in CarFactory called make() that knows how to create

objects of the car type
•	 Specific car types such as CarFactory.SUV, CarFactory.Sedan, and so on

We want to use CarFactory as follows:

var golf = CarFactory.make('Compact');
var vento = CarFactory.make('Sedan');
var touareg = CarFactory.make('SUV');

Here is how you would implement such a factory. The following implementation
is fairly standard. We are programmatically calling the constructor function that
creates an object of the specified type—CarFactory[const].prototype = new
CarFactory();.

We are mapping object types to the constructors. There can be variations in how you
can go about implementing this pattern:

// Factory Constructor
function CarFactory() {}
CarFactory.prototype.info = function() {
 console.log("This car has "+this.doors+" doors and a
 "+this.engine_capacity+" liter engine");
};
// the static factory method
CarFactory.make = function (type) {
 var constr 0= type;
 var car;
 CarFactory[constr].prototype = new CarFactory();
 // create a new instance
 car = new CarFactory[constr]();
 return car;
};

CarFactory.Compact = function () {
 this.doors = 4;
 this.engine_capacity = 2;
};

www.EBooksWorld.ir

Chapter 5

[133]

CarFactory.Sedan = function () {
 this.doors = 2;
 this.engine_capacity = 2;
};
CarFactory.SUV = function () {
 this.doors = 4;
 this.engine_capacity = 6;
};
 var golf = CarFactory.make('Compact');
 var vento = CarFactory.make('Sedan');
 var touareg = CarFactory.make('SUV');
 golf.info(); //"This car has 4 doors and a 2 liter engine"

We suggest that you try this example in JS Bin and understand the concept by
actually writing its code.

The mixin pattern
Mixins help in significantly reducing functional repetition in our code and help
in function reuse. We can move this shared functionality to a mixin and reduce
duplication of shared behavior. You can then focus on building the actual
functionality and not keep repeating the shared behavior. Let's consider the
following example. We want to create a custom logger that can be used by any object
instance. The logger will become a functionality shared across objects that want to
use/extend the mixin:

var _ = require('underscore');
//Shared functionality encapsulated into a CustomLogger
var logger = (function () {
 var CustomLogger = {
 log: function (message) {
 console.log(message);
 }
 };
 return CustomLogger;
}());

//An object that will need the custom logger to log system
 specific logs
var Server = (function (Logger) {
 var CustomServer = function () {
 this.init = function () {
 this.log("Initializing Server...");
 };

www.EBooksWorld.ir

JavaScript Patterns

[134]

 };

 // This copies/extends the members of the 'CustomLogger' into
 'CustomServer'
 _.extend(CustomServer.prototype, Logger);
 return CustomServer;
}(logger));

(new Server()).init(); //Initializing Server...

In this example, we are using _.extend from Underscore.js—we discussed this
function in the previous chapter. This function is used to copy all the properties
from the source (Logger) to the destination (CustomServer.prototype). As you
can observe in this example, we are creating a shared CustomLogger object that is
intended to be used by any object instance needing its functionality. One such object
is CustomServer—in its init() method, we call this custom logger's log() method.
This method is available to CustomServer because we are extending CustomLogger
via Underscore's extend(). We are dynamically adding functionality of a mixin to
the consumer object. It is important to understand the distinction between mixins
and inheritance. When you have shared functionality across multiple objects and
class hierarchies, you can use mixins. If you have shared functionality along a single
class hierarchy, you can use inheritance. In prototypical inheritance, when you
inherit from a prototype, any change to the prototype affects everything that inherits
the prototype. If you do not want this to happen, you can use mixins.

The decorator pattern
The primary idea behind the decorator pattern is that you start your design with a
plain object, which has some basic functionality. As the design evolves, you can use
existing decorators to enhance your plain object. This is a very popular pattern in the
OO world and especially in Java. Let's take an example of BasicServer—a server
with very basic functionality. This basic functionality can be decorated to serve
specific purposes. We can have two different cases where this server can serve both
PHP and Node.js and serve them on different ports. These different functionality are
decorated to the basic server:

var phpServer = new BasicServer();
phpServer = phpServer.decorate('reverseProxy');
phpServer = phpServer.decorate('servePHP');
phpServer = phpServer.decorate('80');
phpServer = phpServer.decorate('serveStaticAssets');
phpServer.init();

www.EBooksWorld.ir

Chapter 5

[135]

The Node.js server will have something as follows:

var nodeServer = new BasicServer();
nodeServer = nodeServer.decorate('serveNode');
nodeServer = nodeServer.decorate('3000');
nodeServer.init();

There are several ways in which the decorator pattern is implemented in JavaScript.
We will discuss a method where the pattern is implemented by a list and does not
rely on inheritance or method call chain:

//Implement BasicServer that does the bare minimum
function BasicServer() {
 this.pid = 1;
 console.log("Initializing basic Server");
 this.decorators_list = []; //Empty list of decorators
}
//List of all decorators
BasicServer.decorators = {};

//Add each decorator to the list of BasicServer's decorators
//Each decorator in this list will be applied on the BasicServer
 instance
BasicServer.decorators.reverseProxy = {
 init: function(pid) {
 console.log("Started Reverse Proxy");
 return pid + 1;
 }
};
BasicServer.decorators.servePHP = {
 init: function(pid) {
 console.log("Started serving PHP");
 return pid + 1;
 }
};
BasicServer.decorators.serveNode = {
 init: function(pid) {
 console.log("Started serving Node");
 return pid + 1;
 }
};

www.EBooksWorld.ir

JavaScript Patterns

[136]

//Push the decorator to this list everytime decorate() is called
BasicServer.prototype.decorate = function(decorator) {
 this.decorators_list.push(decorator);
};
//init() method looks through all the applied decorators on
 BasicServer
//and executes init() method on all of them
BasicServer.prototype.init = function () {
 var running_processes = 0;
 var pid = this.pid;
 for (i = 0; i < this.decorators_list.length; i += 1) {
 decorator_name = this.decorators_list[i];
 running_processes =
 BasicServer.decorators[decorator_name].init(pid);
 }
 return running_processes;
};

//Create server to serve PHP
var phpServer = new BasicServer();
phpServer.decorate('reverseProxy');
phpServer.decorate('servePHP');
total_processes = phpServer.init();
console.log(total_processes);

//Create server to serve Node
var nodeServer = new BasicServer();
nodeServer.decorate('serveNode');
nodeServer.init();
total_processes = phpServer.init();
console.log(total_processes);

BasicServer.decorate() and BasicServer.init() are the two methods where
the real stuff happens. We push all decorators being applied to the list of decorators
for BasicServer. In the init() method, we execute or apply each decorator's
init() method from this list of decorators. This is a cleaner approach to decorator
patterns that does not use inheritance. This method was described by Stoyan
Stefanov in his book, JavaScript Patterns, O'Reilly Media, and has gained prominence
among JavaScript developers due to its simplicity.

www.EBooksWorld.ir

Chapter 5

[137]

The observer pattern
Let's first see the language-agnostic definition of the observer pattern. The GOF book,
Design Patterns: Elements of Reusable Object-Oriented Software, defines the observer
pattern as follows:

One or more observers are interested in the state of a subject and register their interest with
the subject by attaching themselves. When something changes in our subject that the observer
may be interested in, a notify message is sent which calls the update method in each observer.
When the observer is no longer interested in the subject's state, they can simply detach
themselves.

In the observer design pattern, the subject keeps a list of objects depending on it
(called observers) and notifies them when the state changes. The subject uses a
broadcast to the observers to inform them of the change. Observers can remove
themselves from the list once they no longer wish to be notified. Based on this
understanding, we can define the participants in this pattern:

•	 Subject: This keeps the list of observers and has methods to add, remove,
and update observers

•	 Observer: This provides an interface for objects that need to be notified when
the subject's state changes

Let's create a subject that can add, remove, and notify observers:

var Subject = (function() {
 function Subject() {
 this.observer_list = [];
 }
 // this method will handle adding observers to the internal list
 Subject.prototype.add_observer = function (obj) {
 console.log('Added observer');
 this.observer_list.push(obj);
 };
 Subject.prototype.remove_observer = function (obj) {
 for(var i = 0; i < this.observer_list.length; i++) {
 if(this.observer_list[i] === obj) {
 this.observer_list.splice(i, 1);
 console.log('Removed Observer');
 }
 }
 };

www.EBooksWorld.ir

JavaScript Patterns

[138]

 Subject.prototype.notify = function () {
 var args = Array.prototype.slice.call(arguments, 0);
 for(var i = 0; i<this.observer_list.length; i++) {
 this.observer_list[i].update(args);
 }
 };
 return Subject;
})();

This is a fairly straightforward implementation of a Subject. The important fact
about the notify() method is the way in which all the observer objects' update()
methods are called to broadcast the update.

Now let's define a simple object that creates random tweets. This object is providing
an interface to add and remove observers to the Subject via addObserver() and
removeObserver() methods. It also calls the notify() method of Subject with the
newly fetched tweet. When this happens, all the observers will broadcast that the
new tweet has been updated with the new tweet being passed as the parameter:

function Tweeter() {
 var subject = new Subject();
 this.addObserver = function (observer) {
 subject.add_observer(observer);
 };
 this.removeObserver = function (observer) {
 subject.remove_observer(observer);
 };
 this.fetchTweets = function fetchTweets() {
 // tweet
 var tweet = {
 tweet: "This is one nice observer"
 };
 // notify our observers of the stock change
 subject.notify(tweet);
 };
}

Let's now add two observers:

var TweetUpdater = {
 update : function() {
 console.log('Updated Tweet - ', arguments);
 }
};

www.EBooksWorld.ir

Chapter 5

[139]

var TweetFollower = {
 update : function() {
 console.log('"Following this tweet - ', arguments);
 }
};

Both these observers will have one update() method that will be called by the
Subject.notify() method. Now we can actually add these observers to the
Subject via Tweeter's interface:

var tweetApp = new Tweeter();
tweetApp.addObserver(TweetUpdater);
tweetApp.addObserver(TweetFollower);
tweetApp.fetchTweets();
tweetApp.removeObserver(TweetUpdater);
tweetApp.removeObserver(TweetFollower);

This will result in the following output:

Added observer
Added observer
Updated Tweet - { '0': [{ tweet: 'This is one nice observer' }] }
"Following this tweet - { '0': [{ tweet: 'This is one nice
observer' }] }
Removed Observer
Removed Observer

This is a basic implementation to illustrate the idea of the observer pattern.

JavaScript Model-View-* patterns
Model-View-Controller (MVC), Model-View-Presenter (MVP), and Model-View-
ViewModel (MVVM) have been popular with server applications, but in recent
years JavaScript applications are also using these patterns to structure and manage
large projects. Many JavaScript frameworks have emerged that support MV*
patterns. We will discuss a few examples using Backbone.js.

Model-View-Controller
MVC is a popular structural pattern where the idea is to divide an application into
three parts so as to separate the internal representations of information from the
presentation layer. MVC consists of components. The model is the application object,
view is the presentation of the underlying model object, and controller handles the
way in which the user interface behaves, depending on the user interactions.

www.EBooksWorld.ir

JavaScript Patterns

[140]

Models
Models are constructs that represent data in the applications. They are agnostic of the
user interface or routing logic. Changes to models are typically notified to the view
layer by following the observer design pattern. Models may also contain code to
validate, create, or delete data. The ability to automatically notify the views to react
when the data is changed makes frameworks such as Backbone.js, Amber.js, and
others very useful in building MV* applications. The following example shows you a
typical Backbone model:

var EmployeeModel = Backbone.Model.extend({
 url: '/employee/1',
 defaults: {
 id: 1,
 name: 'John Doe',
 occupation: null
 }
 initialize: function() {
 }
}); var JohnDoe = new EmployeeModel();

This model structure may vary between different frameworks but they usually have
certain commonalities in them. In most real-world applications, you would want
your model to be persisted to an in-memory store or database.

Views
Views are the visual representations of your model. Usually, the state of the model is
processed, filtered, or massaged before it is presented to the view layer. In JavaScript,
views are responsible for rendering and manipulating DOM elements. Views
observe models and get notified when there is a change in the model. When the user
interacts with the view, certain attributes of the model are changed via the view layer
(usually via controllers). In JavaScript frameworks such as Backbone, the views are
created using template engines such as Handlebar.js (http://handlebarsjs.com/)
or mustache.js (https://mustache.github.io/). These templates themselves are
not views. They observe models and keep the view state updated based on these
changes. Let's see an example of a view defined in Handlebar:

<li class="employee_photo">
 <h2>{{title}}</h2>

 <div class="employee_details">
 {{employee_details}}
 </div>

www.EBooksWorld.ir

http://handlebarsjs.com/
https://mustache.github.io/

Chapter 5

[141]

Views such as the preceding example contain markup tags containing template
variables. These variables are delimited via a custom syntax. For example, template
variables are delimited using {{ }} in Handlebar.js. Frameworks typically transmit
data in JSON format. How the view is populated from the model is handled
transparently by the framework.

Controllers
Controllers act as a layer between models and views and are responsible for updating
the model when the user changes the view attributes. Most JavaScript frameworks
deviate from the classical definition of a controller. For example, Backbone does not
have a concept called controller; they have something called a router that is responsible
to handle routing logic. You can think of a combination of the view and router as a
controller because a lot of the logic to synchronize models and views is done within the
view itself. A typical Backbone router would look as follows:

var EmployeeRouter = Backbone.Router.extend({
 routes: { "employee/:id": "route" },
 route: function(id) {
 ...view render logic...
 }
});

The Model-View-Presenter pattern
Model-View-Presenter is a variation of the original MVC pattern that we discussed
previously. Both MVC and MVP target the separation of concerns but they are
different on many fundamental aspects. The presenter in MVP has the necessary
logic for the view. Any invocation from the view gets delegated to the presenter.
The presenter also observes the model and updates the views when the model
updates. Many authors take the view that because the presenter binds the model
with views, it also performs the role of a traditional controller. There are various
implementations of MVP and there are no frameworks that offer classical MVP out
of the box. In implementations of MVP, the following are the primary differences
that separate MVP from MVC:

•	 The view has no reference to the model
•	 The presenter has a reference to the model and is responsible for updating

the view when the model changes

www.EBooksWorld.ir

JavaScript Patterns

[142]

MVP is generally implemented in two flavors:

•	 Passive view: The view is as naïve as possible and all the business logic is
within the presenter. For example, a plain Handlebars template can be seen
as a passive view.

•	 Supervising controller: Views mostly contain declarative logic. A presenter
takes over when the simple declarative logic in the view is insufficient.

The following figure depicts MVP architecture:

Model-View-ViewModel
MVVM was originally coined by Microsoft for use with Windows Presentation
Foundation (WPF) and Silverlight. MVVM is a variation of MVC and MVP and
further tries to separate the user interface (view) from the business model and
application behavior. MVVM creates a new model layer in addition to the domain
model that we discussed in MVC and MVP. This model layer adds properties as
an interface for the view. Let's say that we have a checkbox on the UI. The state of
the checkbox is captured in an IsChecked property. In MVP, the view will have
this property and the presenter will set it. However, in MVVM, the presenter will
have the IsChecked property and the view is responsible for syncing with it. Now
that the presenter is not really doing the job of a classical presenter, it's renamed as
ViewModel:

www.EBooksWorld.ir

Chapter 5

[143]

Implementation details of these approaches are dependent on the problem that we
are trying to solve and the framework that we use.

Summary
While building large applications, we see certain problem patterns repeating over
and over. These patterns have well-defined solutions that can be reused to build a
robust solution. In this chapter, we discussed some of the important patterns and
ideas around these patterns. Most modern JavaScript applications use these patterns.
It is rare to see a large-scale system built without implementing modules, decorators,
factories, or MV* patterns. These are foundational ideas that we discussed in this
chapter. We will discuss various testing and debugging techniques in the next chapter.

www.EBooksWorld.ir

www.EBooksWorld.ir

[145]

Testing and Debugging
As you write JavaScript applications, you will soon realize that having a sound
testing strategy is indispensable. In fact, not writing enough tests is almost always a
bad idea. It is essential to cover all the non-trivial functionality of your code to make
sure of the following points:

•	 The existing code behaves as per the specifications
•	 Any new code does not break the behavior defined by the specifications

Both these points are very important. Many engineers consider only the first point
the sole reason to cover your code with enough tests. The most obvious advantage
of test coverage is to really make sure that the code being pushed to the production
system is mostly error-free. Writing test cases to smartly cover the maximum
functional areas of the code generally gives you a good indication about the overall
quality of the code. There should be no arguments or compromises around this
point. It is unfortunate though that many production systems are still bereft of
adequate code coverage. It is very important to build an engineering culture where
developers think about writing tests as much as they think about writing code.

The second point is even more important. Legacy systems are usually very difficult
to manage. When you are working on code written either by someone else or a large
distributed team, it is fairly easy to introduce bugs and break things. Even the best
engineers make mistakes. When you are working on a large code base that you are
unfamiliar with and if there is no sound test coverage to help you, you will introduce
bugs. As you won't have the confidence in the changes that you are making (because
there are no test cases to confirm your changes), your code releases will be shaky,
slow, and obviously full of hidden bugs.

www.EBooksWorld.ir

Testing and Debugging

[146]

You will refrain from refactoring or optimizing your code because you won't really
be sure what changes to the code base would potentially break something (again,
because there are no test cases to confirm your changes)—all this is a vicious circle.
It's like a civil engineer saying, "though I have constructed this bridge, I have no
confidence in the quality of the construction. It may collapse immediately or never."
Though this may sound like an exaggeration, I have seen a lot of high impact
production code being pushed with no test coverage. This is risky and should
be avoided. When you are writing enough test cases to cover majority of your
functional code and when you make a change to these pieces, you immediately
realize if there is a problem with this new change. If your changes make the test case
fail, you realize the problem. If your refactoring breaks the test scenario, you realize
the problem—all this happens much before the code is pushed to production.

In recent years, ideas such as test-driven development and self-testing code are
gaining prominence, especially in agile methodology. These are fundamentally
sound ideas and will help you write robust code—code that you are confident of. We
will discuss all these ideas in this chapter. You will understand how to write good
test cases in modern JavaScript. We will also look at several tools and methods to
debug your code. JavaScript has been traditionally a bit difficult to test and debug
primarily due to lack of tools, but modern tools make both of these easy and natural.

Unit testing
When we talk about test cases, we mostly mean unit tests. It is incorrect to assume
that the unit that we want to test is always a function. The unit (or unit of work) is a
logical unit that constitutes a single behavior. This unit should be able to be invoked
via a public interface and should be testable independently.

Thus, a unit test performs the following functions:

•	 It tests a single logical function
•	 It can be run without a specific order of execution
•	 It takes care of its own dependencies and mock data
•	 It always returns the same result for the same input
•	 It should be self-explanatory, maintainable, and readable

www.EBooksWorld.ir

Chapter 6

[147]

Martin Fowler advocates the test pyramid (http://martinfowler.
com/bliki/TestPyramid.html) strategy to make sure that we have
a high number of unit tests to ensure maximum code coverage. The test
pyramid says that you should write many more low-level unit tests than
higher level integration and UI tests.

There are two important testing strategies that we will discuss in this chapter.

Test-driven development
Test-driven development (TDD) has gained a lot of prominence in the last
few years. The concept was first proposed as part of the Extreme Programming
methodology. The idea is to have short repetitive development cycles where the
focus is on writing the test cases first. The cycle looks as follows:

1.	 Add a test case as per the specifications for a specific unit of code.
2.	 Run the existing suite of test cases to see if the new test case that you wrote

fails—it should (because there is no code for this unit yet). This step ensures
that the current test harness works well.

3.	 Write the code that serves mainly to confirm the test case. This code is not
optimized or refactored or even entirely correct. However, this is fine at the
moment.

4.	 Rerun the tests and see if all the test cases pass. After this step, you will be
confident that the new code is not breaking anything.

5.	 Refactor the code to make sure that you are optimizing the unit and handling
all corner cases.

These steps are repeated for all the new code that you add. This is an elegant strategy
that works really well for the agile methodology. TDD will be successful only if the
testable units of code are small and confirm only to the test case and nothing more.
It is important to write small, modular, and precise code units that have input and
output confirming the test case.

Behavior-driven development
A very common problem while trying to follow TDD is vocabulary and the
definition of correctness. BDD tries to introduce a ubiquitous language while writing
the test cases when you are following TDD. This language makes sure that both the
business and engineering teams are talking about the same thing.

www.EBooksWorld.ir

http://martinfowler.com/bliki/TestPyramid.html
http://martinfowler.com/bliki/TestPyramid.html

Testing and Debugging

[148]

We will use Jasmine as the primary BDD framework and explore various testing
strategies.

You can install Jasmine by downloading the standalone package from
https://github.com/jasmine/jasmine/releases/download/
v2.3.4/jasmine-standalone-2.3.4.zip.

When you unzip this package, you will have the following directory structure:

The lib directory contains the JavaScript files that you need in your project to start
writing Jasmine test cases. If you open SpecRunner.html, you will find the following
JavaScript files included in it:

<script src="lib/jasmine-2.3.4/jasmine.js"></script>
<script src="lib/jasmine-2.3.4/jasmine-html.js"></script>
<script src="lib/jasmine-2.3.4/boot.js"></script>

<!-- include source files here... -->
<script src="src/Player.js"></script>

www.EBooksWorld.ir

https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip
https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip

Chapter 6

[149]

<script src="src/Song.js"></script>
<!-- include spec files here... -->
<script src="spec/SpecHelper.js"></script>
<script src="spec/PlayerSpec.js"></script>

The first three are Jasmine's own framework files. The next section includes the
source files that we want to test and the actual test specifications.

Let's experiment with Jasmine with a very ordinary example. Create a
bigfatjavascriptcode.js file and place it in the src/ directory. We will test the
following function:

function capitalizeName(name){
 return name.toUpperCase();
}

This is a simple function that does one single thing. It receives a string and returns a
capitalized string. We will test various scenarios around this function. This is the unit
of code that we discussed earlier.

Next, create the test specifications. Create one JavaScript file, test.spec.js, and
place it in the spec/ directory. The file should contain the following. You will need
to add the following two lines to SpecRunner.html:

<script src="src/bigfatjavascriptcode.js"></script>
<script src="spec/test.spec.js"></script>

The order of this inclusion does not matter. When we run SpecRunner.html, you
will see something as follows:

www.EBooksWorld.ir

Testing and Debugging

[150]

This is the Jasmine report that shows the details about the number of tests that were
executed and the count of failures and successes. Now, let's make the test case fail.
We want to test a case where an undefined variable is passed to the function. Add
one more test case as follows:

it("can handle undefined", function() {
 var str= undefined;
 expect(capitalizeName(str)).toEqual(undefined);
});

Now, when you run SpecRunner.html, you will see the following result:

As you can see, the failure is displayed for this test case in a detailed error stack.
Now, we go about fixing this. In your original JavaScript code, we can handle an
undefined condition as follows:

function capitalizeName(name){
 if(name){
 return name.toUpperCase();
 }
}

With this change, your test case will pass and you will see the following in the
Jasmine report:

www.EBooksWorld.ir

Chapter 6

[151]

This is very similar to what a test-driven development would look. You write test
cases, you then fill in the necessary code to confirm to the specifications, and rerun
the test suite. Let's understand the structure of the Jasmine tests.

Our test specification looks as follows:

describe("TestStringUtilities", function() {
 it("converts to capital", function() {
 var str = "albert";
 expect(capitalizeName(str)).toEqual("ALBERT");
 });
 it("can handle undefined", function() {
 var str= undefined;
 expect(capitalizeName(str)).toEqual(undefined);
 });
});

The describe("TestStringUtilities" is a test suite. The name of the test suite
should describe the unit of code that we are testing—this can be a function or group
of related functionality. In the specifications, you call the global Jasmine it function
to which you pass the title of the specification and test function used by the test
case. This function is the actual test case. You can catch one or more assertions or
the general expectations using the expect function. When all expectations are true,
your specification is passed. You can write any valid JavaScript code in the describe
and it functions. The values that you verify as part of the expectations are matched
using a matcher. In our example, toEqual() is the matcher that matches two values
for equality. Jasmine contains a rich set of matches to suit most of the common use
cases. Some common matchers supported by Jasmine are as follows:

•	 toBe(): This matcher checks whether two objects being compared are equal.
This is the same as the === comparison, as shown in the following code:
var a = { value: 1};
var b = { value: 1 };

expect(a).toEqual(b); // success, same as == comparison
expect(b).toBe(b); // failure, same as === comparison
expect(a).toBe(a); // success, same as === comparison

•	 not: You can negate a matcher with a not prefix. For example, expect(1).
not.toEqual(2); will negate the match made by toEqual().

www.EBooksWorld.ir

Testing and Debugging

[152]

•	 toContain(): This checks whether an element is part of an array. This is not
an exact object match as toBe(). For example, look at the following code:
expect([1, 2, 3]).toContain(3);
expect("astronomy is a science").toContain("science");

•	 toBeDefined() and toBeUndefined(): These two matches are handy to
check whether a variable is undefined (or not).

•	 toBeNull(): This checks whether a variable's value is null.
•	 toBeGreaterThan() and toBeLessThan(): These matchers perform numeric

comparisons (they work on strings too):

expect(2).toBeGreaterThan(1);
expect(1).toBeLessThan(2);
expect("a").toBeLessThan("b");

One interesting feature of Jasmine is the spies. When you are writing a large system,
it is not possible to make sure that all systems are always available and correct. At
the same time, you don't want your unit tests to fail due to a dependency that may be
broken or unavailable. To simulate a situation where all dependencies are available
for a unit of code that we want to test, we mock these dependencies to always give
the response that we expect. Mocking is an important aspect of testing and most
testing frameworks provide support for the mocking. Jasmine allows mocking using
a feature called a spy. Jasmine spies essentially stub the functions that we may not
have ready; at the time of writing the test case but as part of the functionality, we
need to track that we are executing these dependencies and not ignoring them.
Consider the following example:

describe("mocking configurator", function() {
 var configurator = null;
 var responseJSON = {};

 beforeEach(function() {
 configurator = {
 submitPOSTRequest: function(payload) {
 //This is a mock service that will eventually be replaced
 //by a real service
 console.log(payload);
 return {"status": "200"};
 }
 };
 spyOn(configurator,
 'submitPOSTRequest').and.returnValue({"status": "200"});
 configurator.submitPOSTRequest({

www.EBooksWorld.ir

Chapter 6

[153]

 "port":"8000",
 "client-encoding":"UTF-8"
 });
 });

 it("the spy was called", function() {
 expect(configurator.submitPOSTRequest).toHaveBeenCalled();
 });

 it("the arguments of the spy's call are tracked", function() {
 expect(configurator.submitPOSTRequest).toHaveBeenCalledWith({"port
":"8000","client-encoding":"UTF-8"});
 });
});

In this example, while we are writing this test case, we either don't have the real
implementation of the configurator.submitPOSTRequest() dependency or
someone is fixing this particular dependency. In any case, we don't have it available.
For our test to work, we need to mock it. Jasmine spies allow us to replace a function
with its mock and track its execution.

In this case, we need to ensure that we called the dependency. When the actual
dependency is ready, we will revisit this test case to make sure that it fits the
specifications, but at this time, all that we need to ensure is that the dependency is
called. The Jasmine tohaveBeenCalled() function lets us track the execution of a
function, which may be a mock. We can use toHaveBeenCalledWith() that allows
us to determine if the stub function was called with the correct parameters. There
are several other interesting scenarios that you can create using Jasmine spies. The
scope of this chapter won't permit us to cover them all, but I would encourage you to
discover these areas on your own.

You can refer to the user manual for Jasmine for more information
on Jasmine spies at http://jasmine.github.io/2.0/
introduction.html.

Mocha, Chai, and Sinon
Though Jasmine is the most prominent JavaScript testing framework,
Mocha and Chai are gaining prominence in the Node.js environment.
Mocha is the testing framework used to describe and run test cases.
Chai is the assertion library supported by Mocha. Sinon.JS comes in
handy while creating mocks and stubs for your tests. We won't discuss
these frameworks in this book, but experience on Jasmine will be handy
if you want to experiment with these frameworks.

www.EBooksWorld.ir

http://jasmine.github.io/2.0/introduction.html
http://jasmine.github.io/2.0/introduction.html

Testing and Debugging

[154]

JavaScript debugging
If you are not a completely new programmer, I am sure you must have spent some
amount of time debugging your or someone else's code. Debugging is almost like an
art form. Every language has different methods and challenges around debugging.
JavaScript has traditionally been a difficult language to debug. I have personally
spent days and nights of misery trying to debug badly-written JavaScript code
using alert() functions. Fortunately, modern browsers such as Mozilla Firefox
and Google Chrome have excellent developer tools to help debug JavaScript in
the browser. There are IDEs like IntelliJ WebStorm with great debugging support
for JavaScript and Node.js. In this chapter, we will focus primarily on Google
Chrome's built-in developer tool. Firefox also supports the Firebug extension and
has excellent built-in developer tools, but as they behave more or less the same as
Google Chrome's Developer Tools (DevTools), we will discuss common debugging
approaches that work in both of these tools.

Before we talk about the specific debugging techniques, let's understand the type of
errors that we would be interested in while we try to debug our code.

Syntax errors
When your code has something that does not confirm to the JavaScript language
grammar, the interpreter rejects this piece of code. These are easy to catch if your
IDE is helping you with syntax checking. Most modern IDEs help with these errors.
Earlier, we discussed the usefulness of the tools such as JSLint and JSHint around
catching syntax issues with your code. They analyze the code and flag errors in the
syntax. JSHint output can be very illuminating. For example, the following output
shows up so many things that we can change in the code. This snippet is from one of
my existing projects:

temp git:(dev_branch) ✗ jshint test.js
test.js: line 1, col 1, Use the function form of "use strict".
test.js: line 4, col 1, 'destructuring expression' is available in
 ES6 (use esnext option) or Mozilla JS extensions (use moz).
test.js: line 44, col 70, 'arrow function syntax (=>)' is only
 available in ES6 (use esnext option).
test.js: line 61, col 33, 'arrow function syntax (=>)' is only
 available in ES6 (use esnext option).
test.js: line 200, col 29, Expected ')' to match '(' from line 200
 and instead saw ':'.
test.js: line 200, col 29, 'function closure expressions' is only
 available in Mozilla JavaScript extensions (use moz option).
test.js: line 200, col 37, Expected '}' to match '{' from line 36
 and instead saw ')'.

www.EBooksWorld.ir

Chapter 6

[155]

test.js: line 200, col 39, Expected ')' and instead saw '{'.
test.js: line 200, col 40, Missing semicolon.

Using strict
We briefly discussed the strict mode in earlier chapters. The strict mode in JavaScript
flags or eliminates some of the JavaScript silent errors. Rather than silently failing,
the strict mode makes these failures throw errors instead. The strict mode also helps
in converting mistakes to actual errors. There are two ways of enforcing the strict
mode. If you want the strict mode for the entire script, you can just add the use
strict statement as the first line of your JavaScript program. If you want a specific
function to conform with the strict mode, you can add the directive as the first line of
a function:

function strictFn(){
// This line makes EVERYTHING under this strict mode
'use strict';
…
function nestedStrictFn() {
//Everything in this function is also nested
…
}
}

Runtime exceptions
These errors appear when you execute the code and try to refer to an undefined
variable or process a null. When a runtime exception occurs, any code after that
particular line (which caused the exception) does not get executed. It is essential to
handle such exceptional scenarios correctly in the code. While exception handling
can help prevent crashes, they also aid in debugging. You can wrap the code that
may encounter a runtime exception in a try{ } block. When any code in this block
generates a runtime exception, a corresponding handler captures it. The handler is
defined by a catch(exception){} block. Let's clarify this using an example:

try {
 var a = doesnotexist; // throws a runtime exception
} catch(e) {
 console.log(e.message); //handle the exception
 //prints - "doesnotexist is not defined"
}

www.EBooksWorld.ir

Testing and Debugging

[156]

In this example, the var a = doesnotexist; line tries to assign an undefined
variable, doesnotexist, to another variable, a. This causes a runtime exception.
When we wrap this problematic code in the try{} catch(){} block and when the
exception occurs (or is thrown), the execution stops in the try{} block and goes
directly to the catch() {} handler. The catch handler is responsible for handling
the exceptional scenario. In this case, we are displaying the error message on the
console for debugging purposes. You can explicitly throw an exception to trigger an
unhandled scenario in the code. Consider the following example:

function engageGear(gear){
 if(gear==="R"){ console.log ("Reversing");}
 if(gear==="D"){ console.log ("Driving");}
 if(gear==="N"){ console.log ("Neutral/Parking");}
 throw new Error("Invalid Gear State");
}
try
{
 engageGear("R"); //Reversing
 engageGear("P"); //Invalid Gear State
}
catch(e){
 console.log(e.message);
}

In this example, we are handling valid states of a gear shift (R, N, and D), but when
we receive an invalid state, we are explicitly throwing an exception clearly stating
the reason. When we call the function that we think may throw an exception, we
wrap the code in the try{} block and attach a catch(){} handler with it. When
the exception is caught by the catch() block, we handle the exceptional condition
appropriately.

Console.log and asserts
Displaying the state of execution on the console can be very useful while debugging.
However, modern developer tools allow you to put breakpoints and halt execution
to inspect a particular value during runtime. You can quickly detect small issues by
logging some variable state on the console.

With these concepts, let's see how we can use Chrome Developer Tools to debug
JavaScript code.

www.EBooksWorld.ir

Chapter 6

[157]

Chrome DevTools
You can start Chrome DevTools by navigating to menu | More tools | Developer
Tools:

Chrome DevTools opens up on the lower pane of your browser and has a bunch of
very useful sections:

The Elements panel helps you inspect and monitor the DOM tree and associated
style sheet for each of these components.

The Network panel is useful to understand network activity. For example, you can
monitor the resources being downloaded over the network in real time.

www.EBooksWorld.ir

Testing and Debugging

[158]

The most important pane for us is the Sources pane. This pane is where the
JavaScript source and debugger are displayed. Let's create a sample HTML with the
following content:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>This test</title>
 <script type="text/javascript">
 function engageGear(gear){
 if(gear==="R"){ console.log ("Reversing");}
 if(gear==="D"){ console.log ("Driving");}
 if(gear==="N"){ console.log ("Neutral/Parking");}
 throw new Error("Invalid Gear State");
 }
 try
 {
 engageGear("R"); //Reversing
 engageGear("P"); //Invalid Gear State
 }
 catch(e){
 console.log(e.message);
 }
 </script>
</head>
<body>
</body>
</html>

Save this HTML file and open it in Google Chrome. Open DevTools in the browser
and you will see the following screen:

www.EBooksWorld.ir

Chapter 6

[159]

This is the view of the Sources panel. You can see the HTML and embedded
JavaScript source in this panel. You can see the Console window as well. You can see
that the file is executed and output is displayed in the Console.

On the right-hand side, you will see the debugger window:

www.EBooksWorld.ir

Testing and Debugging

[160]

In the Sources panel, click on the line numbers 8 and 15 to add a breakpoint. The
breakpoints allow you to stop the execution of the script at the specified point:

In the debugging pane, you can see all the existing breakpoints:

Now, when you rerun the same page, you will see that the execution stops at the
debug point. One very useful technique is to inject code during the debugging phase.
While the debugger is running, you can add code in order to help you understand
the state of the code better:

www.EBooksWorld.ir

Chapter 6

[161]

This window now has all the action. You can see that the execution is paused on
line 15. In the debug window, you can see which breakpoint is being triggered. You
can see the Call Stack also. You can resume execution in several ways. The debug
command window has a bunch of actions:

You can resume execution (which will execute until the next breakpoint) by clicking
on the button. When you do this, the execution continues until the next
breakpoint is encountered. In our case, we halt at line 8:

You can observe that the Call Stack window shows you how we arrived at line 8.
The Scope panel shows the Local scope where you can see the variables in the scope
when the breakpoint was arrived at. You can also step into or step over the next
function.

There are other very useful mechanisms to debug and profile your code using
Chrome DevTools. I would suggest you to go experiment with the tool and make it a
part of your regular development flow.

www.EBooksWorld.ir

Testing and Debugging

[162]

Summary
Both the testing and debugging phases are essential to developing robust JavaScript
code. TDD and BDD are approaches closely associated with the agile methodology
and are widely embraced by the JavaScript developer community. In this chapter,
we reviewed the best practices around TDD and usage of Jasmine as the testing
framework. We saw various methods of debugging JavaScript using Chrome
DevTools. In the next chapter, we will explore the new and exciting world of ES6,
DOM manipulation, and cross-browser strategies.

www.EBooksWorld.ir

[163]

ECMAScript 6
So far, we have taken a detailed tour of the JavaScript programming language. I am
sure that you must have gained significant insight into the core of the language. What
we saw so far was as per the ECMAScript 5 (ES5) standards. ECMAScript 6 (ES6)
or ECMAScript 2015 (ES2015) is the latest version of the ECMAScript standard.
This standard is evolving and the last round of modifications was done in June,
2015. ES2015 is significant in its scope and the recommendations of ES2015 are being
implemented in most JavaScript engines. This is great news. ES6 introduces a huge
number of features that add syntactic forms and helpers that enrich the language
significantly. The pace at which ECMAScript standards keep evolving makes it a
bit difficult for browsers and JavaScript engines to support new features. It is also a
practical reality that most programmers have to write code that can be supported by
older browsers. The notorious Internet Explorer 6 was once the most widely used
browser in the world. To make sure that your code is compatible with the most
number of browsers is a daunting task. So, while you want to jump to the next set
of awesome ES6 features, you will have to consider the fact that several ES6 features
may not be supported by the most popular of browsers or JavaScript frameworks.

This may look like a dire scenario, but things are not that dark. Node.js uses the
latest version of the V8 engine that supports majority of ES6 features. Facebook's
React also supports them. Mozilla Firefox and Google Chrome are two of the most
used browsers today and they support a majority of ES6 features.

To avoid such pitfalls and unpredictability, certain solutions have been proposed.
The most useful among these are polyfills/shims and transpilers.

www.EBooksWorld.ir

ECMAScript 6

[164]

Shims or polyfills
Polyfills (also known as shims) are patterns to define behavior from a new version
in a compatible form supported by an older version of the environment. There's a
great collection of ES6 shims called ES6 shim (https://github.com/paulmillr/
es6-shim/); I would highly recommend a study of these shims. From the ES6 shim
collection, consider the following example of a shim.

The Number.isFinite() method of the ECMAScript 2015 (ES6) standard determines
whether the passed value is a finite number. The equivalent shim for it would look
something as follows:

var numberIsFinite = Number.isFinite || function isFinite(value) {
 return typeof value === 'number' && globalIsFinite(value);
};

The shim first checks if the Number.isFinite() method is available; if not, it fills
it up with an implementation. This is a pretty nifty technique to fill in gaps in
specifications. Shims are constantly upgraded with newer features and, hence, it is a
sound strategy to keep the most updated shims in your project.

The endsWith() polyfill is described in detail at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/String/endsWith. String.endsWith() is part
of ES6 but can be polyfilled easily for pre-ES6 environments.

Shims, however, cannot polyfill syntactical changes. For this, we can consider
transpilers as an option.

Transpilers
Transpiling is a technique that combines both compilation and transformation. The
idea is to write ES6-compatible code and use a tool that transpiles this code into a
valid and equivalent ES5 code. We will be looking at the most complete and popular
transpiler for ES6 called Babel (https://babeljs.io/).

Babel can be used in various ways. You can install it as a node module and invoke
it from the command line or import it as a script in your web page. Babel's setup
is exhaustive and well-documented at https://babeljs.io/docs/setup/. Babel
also has a great Read-Eval-Print-Loop (REPL). We will Babel REPL for most of the
examples in this chapter. An in-depth understanding of various ways in which Babel
can be used is out of the scope of this book. However, I would urge you to start using
Babel as part of your development workflow.

www.EBooksWorld.ir

https://github.com/paulmillr/es6-shim/
https://github.com/paulmillr/es6-shim/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://babeljs.io/
https://babeljs.io/docs/setup/

Chapter 7

[165]

We will cover the most important part of ES6 specifications in this chapter. You
should explore all the features of ES6 if possible and make them part of your
development workflow.

ES6 syntax changes
ES6 brings in significant syntactic changes to JavaScript. These changes need careful
study and some getting used to. In this section, we will study some of the most
important syntax changes and see how you can use Babel to start using these newer
constructs in your code right away.

Block scoping
We discussed earlier that the variables in JavaScript are function-scoped. Variables
created in a nested scope are available to the entire function. Several programming
languages provide you with a default block scope where any variable declared
within a block of code (usually delimited by {}) is scoped (available) only within this
block. To achieve a similar block scope in JavaScript, a prevalent method is to use
immediately-invoked function expressions (IIFE). Consider the following example:

var a = 1;
(function blockscope(){
 var a = 2;
 console.log(a); // 2
})();
console.log(a); // 1

Using the IIFE, we are creating a block scope for the a variable. When a variable is
declared in the IIFE, its scope is restricted within the function. This is the traditional
way of simulating the block scope. ES6 supports block scoping without using IIFEs.
In ES6, you can enclose any statement(s) in a block defined by {}. Instead of using
var, you can declare a variable using let to define the block scope. The preceding
example can be rewritten using ES6 block scopes as follows:

"use strict";
var a = 1;
{
 let a = 2;
 console.log(a); // 2
}
console.log(a); // 1

www.EBooksWorld.ir

ECMAScript 6

[166]

Using standalone brackets {} may seem unusual in JavaScript, but this convention is
fairly common to create a block scope in many languages. The block scope kicks in
other constructs such as if { } or for (){ } as well.

When you use a block scope in this way, it is generally preferred to put the variable
declaration on top of the block. One difference between variables declared using
var and let is that variables declared with var are attached to the entire function
scope, while variables declared using let are attached to the block scope and they
are not initialized until they appear in the block. Hence, you cannot access a variable
declared with let earlier than its declaration, whereas with variables declared using
var, the ordering doesn't matter:

function fooey() {
 console.log(foo); // ReferenceError
 let foo = 5000;
}

One specific use of let is in for loops. When we use a variable declared using
var in a for loop, it is created in the global or parent scope. We can create a block-
scoped variable in the for loop scope by declaring a variable using let. Consider the
following example:

for (let i = 0; i<5; i++) {
 console.log(i);
}
console.log(i); // i is not defined

As i is created using let, it is scoped in the for loop. You can see that the variable is
not available outside the scope.

One more use of block scopes in ES6 is the ability to create constants. Using the
const keyword, you can create constants in the block scope. Once the value is set,
you cannot change the value of such a constant:

if(true){
 const a=1;
 console.log(a);
 a=100; ///"a" is read-only, you will get a TypeError
}

A constant has to be initialized while being declared. The same block scope rules
apply to functions also. When a function is declared inside a block, it is available
only within that scope.

www.EBooksWorld.ir

Chapter 7

[167]

Default parameters
Defaulting is very common. You always set some default value to parameters passed
to a function or variables that you initialize. You may have seen code similar to the
following:

function sum(a,b){
 a = a || 0;
 b = b || 0;
 return (a+b);
}
console.log(sum(9,9)); //18
console.log(sum(9)); //9

Here, we are using || (the OR operator) to default variables a and b to 0 if no value
was supplied when this function was invoked. With ES6, you have a standard way of
defaulting function arguments. The preceding example can be rewritten as follows:

function sum(a=0, b=0){
 return (a+b);
}
console.log(sum(9,9)); //18
console.log(sum(9)); //9

You can pass any valid expression or function call as part of the default parameter
list.

Spread and rest
ES6 has a new operator, …. Based on how it is used, it is called either spread or rest.
Let's look at a trivial example:

function print(a, b){
 console.log(a,b);
}
print(...[1,2]); //1,2

What's happening here is that when you add … before an array (or an iterable) it
spreads the element of the array in individual variables in the function parameters.
The a and b function parameters were assigned two values from the array when it
was spread out. Extra parameters are ignored while spreading an array:

print(...[1,2,3]); //1,2

www.EBooksWorld.ir

ECMAScript 6

[168]

This would still print 1 and 2 because there are only two functional parameters
available. Spreads can be used in other places also, such as array assignments:

var a = [1,2];
var b = [0, ...a, 3];
console.log(b); //[0,1,2,3]

There is another use of the … operator that is the very opposite of the one that we just
saw. Instead of spreading the values, the same operator can gather them into one:

function print (a,...b){
 console.log(a,b);
}
console.log(print(1,2,3,4,5,6,7)); //1 [2,3,4,5,6,7]

In this case, the variable b takes the rest of the values. The a variable took the first
value as 1 and b took the rest of the values as an array.

Destructuring
If you have worked on a functional language such as Erlang, you will relate to the
concept of pattern matching. Destructuring in JavaScript is something very similar.
Destructuring allows you to bind values to variables using pattern matching.
Consider the following example:

var [start, end] = [0,5];
for (let i=start; i<end; i++){
 console.log(i);
}
//prints - 0,1,2,3,4

We are assigning two variables with the help of array destructuring:

var [start, end] = [0,5];

As shown in the preceding example, we want the pattern to match when the first
value is assigned to the first variable (start) and the second value is assigned to the
second variable (end). Consider the following snippet to see how the destructuring of
array elements works:

function fn() {
 return [1,2,3];
}
var [a,b,c]=fn();
console.log(a,b,c); //1 2 3

www.EBooksWorld.ir

Chapter 7

[169]

//We can skip one of them
var [d,,f]=fn();
console.log(d,f); //1 3
//Rest of the values are not used
var [e,] = fn();
console.log(e); //1

Let's discuss how objects' destructuring works. Let's say that you have a function f
that returns an object as follows:

function f() {
 return {
 a: 'a',
 b: 'b',
 c: 'c'
 };
}

When we destructure the object being returned by this function, we can use the
similar syntax as we saw earlier; the difference is that we use {} instead of []:

var { a: a, b: b, c: c } = f();
console.log(a,b,c); //a b c

Similar to arrays, we use pattern matching to assign variables to their corresponding
values returned by the function. There is an even shorter way of writing this if you
are using the same variable as the one being matched. The following example would
do just fine:

var { a,b,c } = f();

However, you would mostly be using a different variable name from the one being
returned by the function. It is important to remember that the syntax is source:
destination and not the usual destination: source. Carefully observe the following
example:

//this is target: source - which is incorrect
var { x: a, x: b, x: c } = f();
console.log(x,y,z); //x is undefined, y is undefined z is undefined
//this is source: target - correct
var { a: x, b: y, c: z } = f();
console.log(x,y,z); // a b c

This is the opposite of the target = source way of assigning values and hence will take
some time in getting used to.

www.EBooksWorld.ir

ECMAScript 6

[170]

Object literals
Object literals are everywhere in JavaScript. You would think that there is no scope
of improvement there. However, ES6 wants to improve this too. ES6 introduces
several shortcuts to create a concise syntax around object literals:

var firstname = "Albert", lastname = "Einstein",
 person = {
 firstname: firstname,
 lastname: lastname
 };

If you intend to use the same property name as the variable that you are assigning,
you can use the concise property notation of ES6:

var firstname = "Albert", lastname = "Einstein",
 person = {
 firstname,
 lastname
 };

Similarly, you are assigning functions to properties as follows:

var person = {
 getName: function(){
 // ..
 },
 getAge: function(){
 //..
 }
}

Instead of the preceding lines, you can say the following:

var person = {
 getName(){
 // ..
 },
 getAge(){
 //..
 }
}

www.EBooksWorld.ir

Chapter 7

[171]

Template literals
I am sure you have done things such as the following:

function SuperLogger(level, clazz, msg){
 console.log(level+": Exception happened in class:"+clazz+" -
 Exception :"+ msg);
}

This is a very common way of replacing variable values to form a string literal. ES6
provides you with a new type of string literal using the backtick (`) delimiter. You
can use string interpolation to put placeholders in a template string literal. The
placeholders will be parsed and evaluated.

The preceding example can be rewritten as follows:

function SuperLogger(level, clazz, msg){
 console.log(`${level} : Exception happened in class: ${clazz} -
 Exception : {$msg}`);
}

We are using `` around a string literal. Within this literal, any expression of the
${..} form is parsed immediately. This parsing is called interpolation. While
parsing, the variable's value replaces the placeholder within ${}. The resulting string
is just a normal string with the placeholders replaced with actual variable values.

With string interpolation, you can split a string into multiple lines also, as shown in
the following code (very similar to Python):

var quote =
`Good night, good night!
Parting is such sweet sorrow,
that I shall say good night
till it be morrow.`;
console.log(quote);

You can use function calls or valid JavaScript expressions as part of the string
interpolation:

function sum(a,b){
 console.log(`The sum seems to be ${a + b}`);
}
sum(1,2); //The sum seems to be 3

www.EBooksWorld.ir

ECMAScript 6

[172]

The final variation of the template strings is called tagged template string. The idea
is to modify the template string using a function. Consider the following example:

function emmy(key, ...values){
 console.log(key);
 console.log(values);
}
let category="Best Movie";
let movie="Adventures in ES6";
emmy`And the award for ${category} goes to ${movie}`;

//["And the award for "," goes to ",""]
//["Best Movie","Adventures in ES6"]

The strangest part is when we call the emmy function with the template literal. It's not
a traditional function call syntax. We are not writing emmy(); we are just tagging the
literal with the function. When this function is called, the first argument is an array
of all the plain strings (the string between interpolated expressions). The second
argument is the array where all the interpolated expressions are evaluated and
stored.

Now what this means is that the tag function can actually change the resulting
template tag:

function priceFilter(s, ...v){
 //Bump up discount
 return s[0]+ (v[0] + 5);
}
let default_discount = 20;
let greeting = priceFilter `Your purchase has a discount of
 ${default_discount} percent`;
console.log(greeting); //Your purchase has a discount of 25

As you can see, we modified the value of the discount in the tag function and
returned the modified values.

Maps and Sets
ES6 introduces four new data structures: Map, WeakMap, Set, and WeakSet.
We discussed earlier that objects are the usual way of creating key-value pairs in
JavaScript. The disadvantage of objects is that you cannot use non-string values as
keys. The following snippets demonstrate how Maps are created in ES6:

www.EBooksWorld.ir

Chapter 7

[173]

let m = new Map();
let s = { 'seq' : 101 };

m.set('1','Albert');
m.set('MAX', 99);
m.set(s,'Einstein');

console.log(m.has('1')); //true
console.log(m.get(s)); //Einstein
console.log(m.size); //3
m.delete(s);
m.clear();

You can initialize the map while declaring it:

let m = new Map([
 [1, 'Albert'],
 [2, 'Douglas'],
 [3, 'Clive'],
]);

If you want to iterate over the entries in the Map, you can use the entries()
function that will return you an iterator. You can iterate through all the keys using
the keys() function and you can iterate through the values of the Map using the
values() function:

let m2 = new Map([
 [1, 'Albert'],
 [2, 'Douglas'],
 [3, 'Clive'],
]);
for (let a of m2.entries()){
 console.log(a);
}
//[1,"Albert"] [2,"Douglas"][3,"Clive"]
for (let a of m2.keys()){
 console.log(a);
} //1 2 3
for (let a of m2.values()){
 console.log(a);
}
//Albert Douglas Clive

www.EBooksWorld.ir

ECMAScript 6

[174]

A variation of JavaScript Maps is a WeakMap—a WeakMap does not prevent its keys
from being garbage-collected. Keys for a WeakMap must be objects and the values
can be arbitrary values. While a WeakMap behaves in the same way as a normal
Map, you cannot iterate through it and you can't clear it. There are reasons behind
these restrictions. As the state of the Map is not guaranteed to remain static (keys
may get garbage-collected), you cannot ensure correct iteration.

There are not many cases where you may want to use WeakMap. Most uses of a Map
can be written using normal Maps.

While Maps allow you to store arbitrary values, Sets are a collection of unique
values. Sets have similar methods as Maps; however, set() is replaced with add(),
and the get() method does not exist. The reason that the get() method is not there
is because a Set has unique values, so you are interested in only checking whether
the Set contains a value or not. Consider the following example:

let x = {'first': 'Albert'};
let s = new Set([1,2,'Sunday',x]);
//console.log(s.has(x)); //true
s.add(300);
//console.log(s); //[1,2,"Sunday",{"first":"Albert"},300]

for (let a of s.entries()){
 console.log(a);
}
//[1,1]
//[2,2]
//["Sunday","Sunday"]
//[{"first":"Albert"},{"first":"Albert"}]
//[300,300]
for (let a of s.keys()){
 console.log(a);
}
//1
//2
//Sunday
//{"first":"Albert"}
//300
for (let a of s.values()){
 console.log(a);
}
//1
//2
//Sunday
//{"first":"Albert"}
//300

www.EBooksWorld.ir

Chapter 7

[175]

The keys() and values() iterators both return a list of the unique values in the Set.
The entries() iterator yields a list of entry arrays, where both items of the array are
the unique Set values. The default iterator for a Set is its values() iterator.

Symbols
ES6 introduces a new data type called Symbol. A Symbol is guaranteed to be unique
and immutable. Symbols are usually used as an identifier for object properties.
They can be considered as uniquely generated IDs. You can create Symbols with the
Symbol() factory method—remember that this is not a constructor and hence you
should not use a new operator:

let s = Symbol();
console.log(typeof s); //symbol

Unlike strings, Symbols are guaranteed to be unique and hence help in preventing
name clashes. With Symbols, we have an extensibility mechanism that works for
everyone. ES6 comes with a number of predefined built-in Symbols that expose
various meta behaviors on JavaScript object values.

Iterators
Iterators have been around in other programming languages for quite some time.
They give convenience methods to work with collections of data. ES6 introduces
iterators for the same use case. ES6 iterators are objects with a specific interface.
Iterators have a next() method that returns an object. The returning object has two
properties—value (the next value) and done (indicates whether the last result has
been reached). ES6 also defines an Iterable interface, which describes objects that
must be able to produce iterators. Let's look at an array, which is an iterable, and the
iterator that it can produce to consume its values:

var a = [1,2];
var i = a[Symbol.iterator]();
console.log(i.next()); // { value: 1, done: false }
console.log(i.next()); // { value: 2, done: false }
console.log(i.next()); // { value: undefined, done: true }

As you can see, we are accessing the array's iterator via Symbol.iterator() and
calling the next() method on it to get each successive element. Both value and done
are returned by the next() method call. When you call next() past the last element
in the array, you get an undefined value and done: true, indicating that you have
iterated over the entire array.

www.EBooksWorld.ir

ECMAScript 6

[176]

For..of loops
ES6 adds a new iteration mechanism in form of the for..of loop, which loops over
the set of values produced by an iterator.

The value that we iterate over with for..of is an iterable.

Let's compare for..of to for..in:

var list = ['Sunday','Monday','Tuesday'];
for (let i in list){
 console.log(i); //0 1 2
}
for (let i of list){
 console.log(i); //Sunday Monday Tuesday
}

As you can see, using the for..in loop, you can iterate over indexes of the list
array, while the for..of loop lets you iterate over the values stored in the list
array.

Arrow functions
One of the most interesting new parts of ECMAScript 6 is arrow functions. Arrow
functions are, as the name suggests, functions defined with a new syntax that uses an
arrow (=>) as part of the syntax. Let's first see how arrow functions look:

//Traditional Function
function multiply(a,b) {
 return a*b;
}
//Arrow
var multiply = (a,b) => a*b;
console.log(multiply(1,2)); //2

The arrow function definition consists of a parameter list (of zero or more parameters
and surrounding (..) if there's not exactly one parameter), followed by the =>
marker, which is followed by a function body.

www.EBooksWorld.ir

Chapter 7

[177]

The body of the function can be enclosed by { .. } if there's more than one
expression in the body. If there's only one expression, and you omit the surrounding
{ .. }, there's an implied return in front of the expression. There are several
variations of how you can write arrow functions. The following are the most
commonly used:

// single argument, single statement
//arg => expression;
var f1 = x => console.log("Just X");
f1(); //Just X

// multiple arguments, single statement
//(arg1 [, arg2]) => expression;
var f2 = (x,y) => x*y;
console.log(f2(2,2)); //4

// single argument, multiple statements
// arg => {
// statements;
// }
var f3 = x => {
 if(x>5){
 console.log(x);
 }
 else {
 console.log(x+5);
 }
}
f3(6); //6

// multiple arguments, multiple statements
// ([arg] [, arg]) => {
// statements
// }
var f4 = (x,y) => {
 if(x!=0 && y!=0){
 return x*y;
 }
}
console.log(f4(2,2));//4

www.EBooksWorld.ir

ECMAScript 6

[178]

// with no arguments, single statement
//() => expression;
var f5 = () => 2*2;
console.log(f5()); //4

//IIFE
console.log((x => x * 3)(3)); // 9

It is important to remember that all the characteristics of a normal function
parameter are available to arrow functions, including default values, destructuring,
and rest parameters.

Arrow functions offer a convenient and short syntax, which gives your code a
very functional programming flavor. Arrow functions are popular because they offer
an attractive promise of writing concise functions by dropping function, return,
and { .. } from the code. However, arrow functions are designed to fundamentally
solve a particular and common pain point with this-aware coding. In normal ES5
functions, every new function defined its own value of this (a new object in case of
a constructor, undefined in strict mode function calls, context object if the function
is called as an object method, and so on). JavaScript functions always have their own
this and this prevents you from accessing the this of, for example, a surrounding
method from inside a callback. To understand this problem, consider the following
example:

function CustomStr(str){
 this.str = str;
}
CustomStr.prototype.add = function(s){ // --> 1
 'use strict';
 return s.map(function (a){ // --> 2
 return this.str + a; // --> 3
 });
};

var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//Cannot read property 'str' of undefined

On the line marked with 3, we are trying to get this.str, but the anonymous
function also has its own this, which shadows this from the method from line 1. To
fix this in ES5, we can assign this to a variable and use the variable instead:

function CustomStr(str){
 this.str = str;
}

www.EBooksWorld.ir

Chapter 7

[179]

CustomStr.prototype.add = function(s){
 'use strict';
 var that = this; // --> 1
 return s.map(function (a){ // --> 2
 return that.str + a; // --> 3
 });
};

var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//["HelloWorld]

On the line marked with 1, we are assigning this to a variable, that, and in the
anonymous function we are using the that variable, which will have a reference to
this from the correct context.

ES6 arrow functions have lexical this, meaning that the arrow functions capture
the this value of the enclosing context. We can convert the preceding function to an
equivalent arrow function as follows:

function CustomStr(str){
 this.str = str;
}
CustomStr.prototype.add = function(s){
 return s.map((a)=> {
 return this.str + a;
 });
};
var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//["HelloWorld]

Summary
In this chapter, we discussed a few important features being added to the language
in ES6. It's an exciting collection of new language features and paradigms and, using
polyfills and transpilers, you can start with them right away. JavaScript is an ever
growing language and it is important to understand what the future holds. ES6
features make JavaScript an even more interesting and mature language. In the next
chapter, we will dive deep into manipulating the browser's Document Object Model
(DOM) and events using JavaScript with jQuery.

www.EBooksWorld.ir

www.EBooksWorld.ir

[181]

DOM Manipulation
and Events

The most important reason for JavaScript's existence is the web. JavaScript is the
language for the web and the browser is the raison d'être for JavaScript. JavaScript
gives dynamism to otherwise static web pages. In this chapter, we will dive deep
into this relationship between the browser and language. We will understand the
way in which JavaScript interacts with the components of the web page. We will look
at the Document Object Model (DOM) and JavaScript event model.

DOM
In this chapter, we will look at various aspects of JavaScript with regard to the
browser and HTML. HTML, as I am sure you are aware, is the markup language
used to define web pages. Various forms of markups exist for different uses. The
popular marks are Extensible Markup Language (XML) and Standard Generalized
Markup Language (SGML). Apart from these generic markup languages, there are
very specific markup languages for specific purposes such as text processing and
image meta information. HyperText Markup Language (HTML) is the standard
markup language that defines the presentation semantics of a web page. A web
page is essentially a document. The DOM provides you with a representation of this
document. The DOM also provides you with a means of storing and manipulating
this document. The DOM is the programming interface of HTML and allows
structural manipulation using scripting languages such as JavaScript. The DOM
provides a structural representation of the document. The structure consists of nodes
and objects. Nodes have properties and methods on which you can operate in order
to manipulate the nodes themselves. The DOM is just a representation and not a
programming construct. DOM acts as a model for DOM processing languages such
as JavaScript.

www.EBooksWorld.ir

DOM Manipulation and Events

[182]

Accessing DOM elements
Most of the time, you will be interested in accessing DOM elements to inspect their
values or processing these values for some business logic. We will take a detailed
look at this particular use case. Let's create a sample HTML file with the following
content:

<html>
<head>
 <title>DOM</title>
</head>
<body>
 <p>Hello World!</p>
</body>
</html>

You can save this file as sample_dom.html; when you open this in the Google
Chrome browser, you will see the web page displayed with the Hello World text
displayed. Now, open Google Chrome Developer Tools by navigating to options |
More Tools | Developer Tools (this route may differ on your operating system and
browser version). In the Developer Tools window, you will see the DOM structure:

Next, we will insert some JavaScript into this HTML page. We will invoke the
JavaScript function when the web page is loaded. To do this, we will call a function
on window.onload. You can place your script in the <script> tag located under the
<head> tag. Your page should look as follows:

<html>
 <head>
 <title>DOM</title>
 <script>

www.EBooksWorld.ir

Chapter 8

[183]

 // run this function when the document is loaded
 window.onload = function() {
 var doc = document.documentElement;
 var body = doc.body;
 var _head = doc.firstChild;
 var _body = doc.lastChild;
 var _head_ = doc.childNodes[0];
 var title = _head.firstChild;
 alert(_head.parentNode === doc); //true
 }
 </script>
 </head>
 <body>
 <p>Hello World!</p>
 </body>
</html>

The anonymous function is executed when the browser loads the page. In the
function, we are getting the nodes of the DOM programmatically. The entire HTML
document can be accessed using the document.documentElement function. We
store the document in a variable. Once the document is accessed, we can traverse the
nodes using several helper properties of the document. We are accessing the <body>
element using doc.body. You can traverse through the children of an element using
the childNodes array. The first and last children of a node can be accessed using
additional properties—firstChild and lastChild.

It is not recommended to use render-blocking JavaScript in the <head>
tag. This slows down the page render dramatically. Modern browsers
support the async and defer attributes to indicate to the browsers
that the rendering can go on while the script is being downloaded.
You can use these tags in the <head> tag without worrying about
performance degradation. You can get more information at http://
stackoverflow.com/questions/436411/where-is-the-best-
place-to-put-script-tags-in-html-markup.

Accessing specific nodes
The core DOM defines the getElementsByTagName() method to return NodeList
of all the element objects whose tagName property is equal to a specific value. The
following line of code returns a list of all the <p/> elements in a document:

var paragraphs = document.getElementsByTagName('p');

www.EBooksWorld.ir

http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup

DOM Manipulation and Events

[184]

The HTML DOM defines getElementsByName() to retrieve all the elements that
have their name attribute set to a specific value. Consider the following snippet:

<html>
 <head>
 <title>DOM</title>
 <script>
 showFeelings = function() {
 var feelings = document.getElementsByName("feeling");
 alert(feelings[0].getAttribute("value"));
 alert(feelings[1].getAttribute("value"));
 }
 </script>
 </head>
 <body>
 <p>Hello World!</p>
 <form method="post" action="/post">
 <fieldset>
 <p>How are you feeling today?</p>
 <input type="radio" name="feeling" value="Happy" />
 Happy

 <input type="radio" name="feeling" value="Sad" />Sad

 </fieldset>
 <input type="button" value="Submit"
 onClick="showFeelings()"/>
 </form>
 </body>
</html>

In this example, we are creating a group of radio buttons with the name attribute
defined as feeling. In the showFeelings function, we get all the elements with the
name attribute set to feeling and we iterate through all these elements.

The other method defined by the HTML DOM is getElementById(). This is a
very useful method in accessing a specific element. This method does the lookup
based on the id associated with an element. The id attribute is unique for every
element and, hence, this kind of lookup is very fast and should be preferred over
getElementsByName(). -However, you should be aware that the browser does
not guarantee the uniqueness of the id attribute. In the following example, we are
accessing a specific element using the ID. Element IDs are unique as opposed to tags
or name attributes:

<html>
 <head>

www.EBooksWorld.ir

Chapter 8

[185]

 <title>DOM</title>
 <script>
 window.onload= function() {
 var greeting = document.getElementById("greeting");
 alert(greeting.innerHTML); //shows "Hello World" alert
 }
 </script>
 </head>
 <body>
 <p id="greeting">Hello World!</p>
 <p id="identify">Earthlings</p>
 </body>
</html>

What we discussed so far was the basics of DOM traversal in JavaScript. When
the DOM gets complex and you want sophisticated operations on the DOM, these
traversal and access functions seem limiting. With this basic knowledge with us, it's
time to get introduced to a fantastic library for DOM traversal (among other things)
called jQuery.

jQuery is a lightweight library designed to make common browser operations easier.
Common operations such as DOM traversal and manipulation, event handling,
animation, and Ajax can be tedious if done using pure JavaScript. jQuery provides
you with easy-to-use and shorter helper mechanisms to help you develop these
common operations very easily and quickly. jQuery is a feature-rich library, but as
far as this chapter goes, we will focus primarily on DOM manipulation and events.

You can add jQuery to your HTML by adding the script directly from a content
delivery network (CDN) or manually downloading the file and adding it to the
script tag. The following example shows you how to download jQuery from Google's
CDN:

<html>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/2.1.4/jquery.min.js"></script>
 </head>
 <body>
 </body>
</html>

www.EBooksWorld.ir

DOM Manipulation and Events

[186]

The advantage of a CDN download is that Google's CDN automatically finds the
nearest download server for you and keeps an updated stable copy of the jQuery
library. If you wish to download and manually host jQuery along with your website,
you can add the script as follows:

<script src="./lib/jquery.js"></script>

In this example, the jQuery library is manually downloaded in the lib directory.
With the jQuery setup in the HTML page, let's explore the methods of manipulating
the DOM elements. Consider the following example:

<html>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/2.1.4/jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $('#greeting').html('Hello World Martian');
 });
 </script>
 </head>
 <body>
 <p id="greeting">Hello World Earthling ! </p>
 </body>
</html>

After adding jQuery to the HTML page, we write the custom JavaScript that selects
the element with a greeting ID and changes its value. The strange-looking code
within $() is the jQuery in action. If you read the jQuery source code (and you
should, it's brilliant) you will see the final line:

// Expose jQuery to the global object
window.jQuery = window.$ = jQuery;

The $ is just a function. It is an alias for the function called jQuery. The $ is a
syntactic sugar that makes the code concise. In fact, you can use both $ and jQuery
interchangeably. For example, both $('#greeting').html('Hello World
Martian'); and jQuery('#greeting').html('Hello World Martian'); are the
same.

www.EBooksWorld.ir

Chapter 8

[187]

You can't use jQuery before the page is completely loaded. As jQuery will need to
know all the nodes of the DOM structure, the entire DOM has to be in-memory.
To ensure that the page is completely loaded and in a state where it's ready to be
manipulated, we can use the $(document).ready() function. Here, the IIFE is
executed only after the entire documented is ready:

$(document).ready(function() {
 $('#greeting').html('Hello World Martian');
});

This snippet shows you how we can associate a function to jQuery's .ready()
function. This function will be executed once the document is ready. We are using
$(document) to create a jQuery object from our page's document. We are calling the
.ready() function on the jQuery object and passing it the function that we want to
execute.

This is a very common thing to do when using jQuery—so much so that it has its
own shortcut. You can replace the entire ready() call with a short $() call:

$(function() {
 $('#greeting').html('Hello World Martian');
});

The most important function in jQuery is $(). This function typically accepts a
CSS selector as its sole parameter and returns a new jQuery object pointing to the
corresponding elements on the page. The three primary selectors are the tag name,
ID, and class. They can be used either on their own or in combination with others.
The following simple examples illustrate how these three selectors appear in code:

Selector CSS Selector jQuery Selector Output from the selector
Tag p{} $('p') This selects all the p tags

from the document.
Id #div_1 $('#div_1') This selects single elements

that have a div_1 ID. The
symbol used to identify the
ID is #.

Class .bold_fonts $('.bold_fonts') This selects all the elements
in the document that have
the CSS class bold_fonts.
The symbol used to identify
the class match is ".".

www.EBooksWorld.ir

DOM Manipulation and Events

[188]

jQuery works on CSS selectors.

As CSS selectors are not in the scope of this book, I would suggest that
you go to http://www.w3.org/TR/CSS2/selector.html to get a
fair idea of the concept.

We also assume that you are familiar with HTML tags and syntax. The following
example covers the fundamental idea of how jQuery selectors work:

<html>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
 <script>
 $(function() {
 $('h1').html(function(index, oldHTML){
 return oldHTML + "Finally?";
 });
 $('h1').addClass('highlight-blue');
 $('#header > h1 ').css('background-color', 'cyan');
 $('ul li:not(.highlight-blue)').addClass(
 'highlight-green');
 $('tr:nth-child(odd)').addClass('zebra');
 });
 </script>
 <style>
 .highlight-blue {
 color: blue;
 }
 .highlight-green{
 color: green;
 }
 .zebra{
 background-color: #666666;
 color: white;
 }
 </style>
 </head>
 <body>

www.EBooksWorld.ir

http://www.w3.org/TR/CSS2/selector.html

Chapter 8

[189]

 <div id=header>
 <h1>Are we there yet ? </h1>

 <p>Journey to Mars</p>

 First
 Second
 <li class="highlight-blue">Third

 <table>
 <tr><th>Id</th><th>First name</th><th>Last Name</th></tr>
 <tr><td>1</td><td>Albert</td><td>Einstein</td></tr>
 <tr><td>2</td><td>Issac</td><td>Newton</td></tr>
 <tr><td>3</td><td>Enrico</td><td>Fermi</td></tr>
 <tr><td>4</td><td>Richard</td><td>Feynman</td></tr>
 </table>
 </div>
 </body>
</html>

In this example, we are selecting several DOM elements in the HTML page using
selectors. We have an H1 header with the text, Are we there yet ?; when the page
loads, our jQuery script accesses all H1 headers and appends the text Finally? to
them:

$('h1').html(function(index, oldHTML){
 return oldHTML + "Finally ?";
});

The $.html() function sets the HTML for the target element—an H1 header in this
case. Additionally, we select all H1 headers and apply a specific CSS style class,
highlight-blue, to all of them. The $('h1').addClass('highlight-blue')
statement selects all the H1 headers and uses the $.addClass(<CSS class>)
method to apply a CSS class to all the elements selected using the selector.

We use the child combinator (>) to custom CSS styles using the $.css() function. In
effect, the selector in the $() function is saying, "Find each header (h1) that is a child
(>) of the element with an ID of header (#header)." For each such element, we apply
a custom CSS. The next usage is interesting. Consider the following line:

$('ul li:not(.highlight-blue)').addClass('highlight-green');

www.EBooksWorld.ir

DOM Manipulation and Events

[190]

We are selecting "For all list elements (li) that do not have the class highlight-
blue applied to them, apply CSS class highlight-green. The final line—
$('tr:nth-child(odd)').addClass('zebra')—can be interpreted as: From all
table rows (tr), for every odd row, apply CSS style zebra. The nth-child selector is
a custom selector provided by jQuery. The final output looks something similar to
the following (Though it shows several jQuery selector types, it is very clear that
knowledge of jQuery is not a substitute for bad design taste.):

Once you have made a selection, there are two broad categories of methods that
you can call on the selected element. These methods are getters and setters. Getters
retrieve a piece of information from the selection, and setters alter the selection in
some way.

Getters usually operate only on the first element in a selection while setters operate
on all the elements in a selection. Setters use implicit iteration to automatically iterate
over all the elements in the selection.

For example, we want to apply a CSS class to all list items on the page. When we call
the addClass method on the selector, it is automatically applied to all elements of
this particular selection. This is implicit iteration in action:

$('li').addClass(highlighted');

www.EBooksWorld.ir

Chapter 8

[191]

However, sometimes you just don't want to go through all the elements via implicit
iteration. You may want to selectively modify only a few of the elements. You can
explicitly iterate over the elements using the .each() method. In the following code,
we are processing elements selectively and using the index property of the element:

$('li').each(function(index, element) {
 if(index % 2 == 0)
 $(elem).prepend('' + STATUS + '');
});

Chaining
Chaining jQuery methods allows you to call a series of methods on a selection
without temporarily storing the intermediate values. This is possible because every
setter method that we call returns the selection on which it was called. This is a
very powerful feature and you will see it being used by many professional libraries.
Consider the following example:

$('#button_submit')
 .click(function() {
 $(this).addClass('submit_clicked');
 })
 .find('#notification')
 .attr('title', 'Message Sent');x

In this snippet, we are chaining click(), find(), and attr() methods on a selector.
Here, the click() method is executed, and once the execution finishes, the find()
method locates the element with the notification ID and changes its title
attribute to a string.

Traversal and manipulation
We discussed various methods of element selection using jQuery. We will discuss
several DOM traversal and manipulation methods using jQuery in this section. These
tasks would be rather tedious to achieve using native DOM manipulation. jQuery
makes them intuitive and elegant.

www.EBooksWorld.ir

DOM Manipulation and Events

[192]

Before we delve into these methods, let's familiarize ourselves with a bit of HTML
terminology that we will be using from now on. Consider the following HTML:

 <-This is the parent of both 'li' and ancestor of everything
 in
 <-The first (li) is a child of the (ul)
 <-this is the descendent of the 'ul'
 <i>Hello</i>

 World <-both 'li' are siblings

Using jQuery traversal methods, we select the first element and traverse through
the DOM in relation to this element. As we traverse the DOM, we alter the original
selection and we are either replacing the original selection with the new one or we
are modifying the original selection.

For example, you can filter an existing selection to include only elements that match
a certain criterion. Consider this example:

var list = $('li'); //select all list elements
// filter items that has a class 'highlight' associated
var highlighted = list.filter('.highlight);
// filter items that doesn't have class 'highlight' associated
var not_highlighted = list.not('.highlight);

jQuery allows you to add and remove classes to elements. If you want to toggle class
values for elements, you can use the toggleClass() method:

$('#usename').addClass('hidden');
$('#usename').removeClass('hidden');
$('#usename').toggleClass('hidden');

Most often, you may want to alter the value of elements. You can use the val()
method to alter the form of element values. For example, the following line alters the
value of all the text type inputs in the form:

$('input[type="text"]').val('Enter usename:');

To modify element attributes, you can use the attr() method as follows:

$('a').attr('title', 'Click');

jQuery has an incredible depth of functionality when it comes to DOM
manipulation—the scope of this book restricts a detailed discussion of all the
possibilities.

www.EBooksWorld.ir

Chapter 8

[193]

Working with browser events
When are you developing for browsers, you will have to deal with user interactions
and events associated to them, for example, text typed in the textbox, scrolling of the
page, mouse button press, and others. When the user does something on the page,
an event takes place. Some events are not triggered by user interaction, for example,
load event does not require a user input.

When you are dealing with mouse or keyboard events in the browser, you can't
predict when and in which order these events will occur. You will have to constantly
look for a key press or mouse move to happen. It's like running an endless
background loop listening to some key or mouse event to happen. In traditional
programming, this was known as polling. There were many variations of these
where the waiting thread used to be optimized using queues; however, polling is still
not a great idea in general.

Browsers provide a much better alternative to polling. Browsers provide you with
programmatic means to react when an event occurs. These hooks are generally called
listeners. You can register a listener that reacts to a particular event and executes an
associated callback function when the event is triggered. Consider this example:

<script>
 addEventListener("click", function() {
 ...
 });
</script>

The addEventListener function registers its second argument as a callback function.
This callback is executed when the event specified in the first argument is triggered.

What we saw just now was a generic listener for the click event. Similarly, every
DOM element has its own addEventListener method, which allows you to listen
specifically on this element:

<button>Submit</button>
<p>No handler here.</p>
<script>
 var button = document.getElementById("#Bigbutton");
 button.addEventListener("click", function() {
 console.log("Button clicked.");
 });
</script>

www.EBooksWorld.ir

DOM Manipulation and Events

[194]

In this example, we are using the reference to a specific element—a button with
a Bigbutton ID—by calling getElementById(). On the reference of the button
element, we are calling addEventListener() to assign a handler function for the
click event. This is perfectly legitimate code that works fine in modern browsers such
as Mozilla Firefox or Google Chrome. On Internet Explorer prior to IE9, however,
this is not a valid code. This is because Microsoft implements its own custom
attachEvent() method as opposed to the W3C standard addEventListener()
prior to Internet Explorer 9. This is very unfortunate because you will have to write
very bad hacks to handle browser-specific quirks.

Propagation
At this point, we should ask an important question—if an element and one of
its ancestors have a handler on the same event, which handler will be fired first?
Consider the following figure:

For example, we have Element2 as a child of Element1 and both have the onClick
handler. When a user clicks on Element2, onClick on both Element2 and Element1
is triggered but the question is which one is triggered first. What should the event
order be? Well, the answer, unfortunately, is that it depends entirely on the browser.
When browsers first arrived, two opinions emerged, naturally, from Netscape and
Microsoft.

Netscape decided that the first event triggered should be Element1's onClick. This
event ordering is known as event capturing.

Microsoft decided that the first event triggered should be Element2's onClick. This
event ordering is known as event bubbling.

www.EBooksWorld.ir

Chapter 8

[195]

These are two completely opposite views and implementations of how browsers
handled events. To end this madness, World Wide Web Consortium (W3C) decided
a wise middle path. In this model, an event is first captured until it reaches the
target element and then bubbles up again. In this standard behavior, you can choose
in which phase you want to register your event handler—either in the capturing
or bubbling phase. If the last argument is true in addEventListener(), the event
handler is set for the capturing phase, if it is false, the event handler is set for the
bubbling phase.

There are times when you don't want the event to be raised by the parents if it was
already raised by the child. You can call the stopPropagation() method on the
event object to prevent handlers further up from receiving the event. Several events
have a default action associated with them. For example, if you click on a URL link,
you will be taken to the link's target. The JavaScript event handlers are called before
the default behavior is performed. You can call the preventDefault() method on
the event object to stop the default behavior from being triggered.

These are event basics when you are using plain JavaScript on a browser. There is
a problem here. Browsers are notorious when it comes to defining event-handling
behavior. We will look at jQuery's event handling. To make things easier to manage,
jQuery always registers event handlers for the bubbling phase of the model. This
means that the most specific elements will get the first opportunity to respond to
any event.

jQuery event handling and propagation
jQuery event handling takes care of many of these browser quirks. You can focus on
writing code that runs on most supported browsers. jQuery's support for browser
events is simple and intuitive. For example, this code listens for a user to click on any
button element on the page:

$('button').click(function(event) {
 console.log('Mouse button clicked');
});

Just like the click() method, there are several other helper methods to cover almost
all kinds of browser event. The following helpers exist:

•	 blur

•	 change

•	 click

•	 dblclick

www.EBooksWorld.ir

DOM Manipulation and Events

[196]

•	 error

•	 focus

•	 keydown

•	 keypress

•	 keyup

•	 load

•	 mousedown

•	 mousemove

•	 mouseout

•	 mouseover

•	 mouseup

•	 resize

•	 scroll

•	 select

•	 submit

•	 unload

Alternatively, you can use the .on() method. There are a few advantages of using
the on() method as it gives you a lot more flexibility. The on() method allows you to
bind a handler to multiple events. Using the on() method, you can work on custom
events as well.

Event name is passed as the first parameter to the on() method just like the other
methods that we saw:

$('button').on('click', function(event) {
 console.log(' Mouse button clicked');
});

Once you've registered an event handler to an element, you can trigger this event as
follows:

$('button').trigger('click');

www.EBooksWorld.ir

Chapter 8

[197]

This event can also be triggered as follows:

$('button').click();

You can unbind an event using jQuery's .off() method. This will remove any event
handlers that were bound to the specified event:

$('button').off('click');

You can add more than one handler to an element:

$("#element")
.on("click", firstHandler)
.on("click", secondHandler);

When the event is fired, both the handlers will be invoked. If you want to remove
only the first handler, you can use the off() method with the second parameter
indicating the handler that you want to remove:

$("#element).off("click",firstHandler);

This is possible if you have the reference to the handler. If you are using anonymous
functions as handlers, you can't get reference to them. In this case, you can use
namespaced events. Consider the following example:

$("#element").on("click.firstclick",function() {
 console.log("first click");
});

Now that you have a namespaced event handler registered with the element, you
can remove it as follows:

$("#element).off("click.firstclick");

A major advantage of using .on() is that you can bind to multiple events at once.
The .on() method allows you to pass multiple events in a space-separated string.
Consider the following example:

$('#inputBoxUserName').on('focus blur', function() {
 console.log(Handling Focus or blur event');
});

www.EBooksWorld.ir

DOM Manipulation and Events

[198]

You can add multiple event handlers for multiple events as follows:

$("#heading").on({
 mouseenter: function() {
 console.log("mouse entered on heading");
 },
 mouseleave: function() {
 console.log("mouse left heading");
 },
 click: function() {
 console.log("clicked on heading");
 }
});

As of jQuery 1.7, all events are bound via the on() method, even if you call helper
methods such as click(). Internally, jQuery maps these calls to the on() method.
Due to this, it's generally recommended to use the on() method for consistency and
faster execution.

Event delegation
Event delegation allows us to attach a single event listener to a parent element. This
event will fire for all the descendants matching a selector even if these descendants
will be created in the future (after the listener was bound to the element).

We discussed event bubbling earlier. Event delegation in jQuery works primarily
due to event bubbling. Whenever an event occurs on a page, the event bubbles up
from the element that it originated from, up to its parent, then up to the parent's
parent, and so on, until it reaches the root element (window). Consider the following
example:

<html>
 <body>
 <div id="container">
 <ul id="list">
 Google
 Myntra
 Bing

 </div>
 </body>
</html>

www.EBooksWorld.ir

Chapter 8

[199]

Now let's say that we want to perform some common action on any of the URL
clicks. We can add an event handler to all the a elements in the list as follows:

$("#list a").on("click", function(event) {
 console.log($(this).text());
});

This works perfectly fine, but this code has a minor bug. What will happen if there
is an additional URL added to the list as a result of some dynamic action? Let's say
that we have an Add button that adds new URLs to this list. So, if the new list item
is added with a new URL, the earlier event handler will not be attached to it. For
example, if the following link is added to the list dynamically, clicking on it will not
trigger the handler that we just added:

Yahoo

This is because such events are registered only when the on() method is called. In
this case, as this new element did not exist when .on() was called, it does not get the
event handler. With our understanding of event bubbling, we can visualize how the
event will travel up the DOM tree. When any of the URLs are clicked on, the travel
will be as follows:

a(click)->li->ul#list->div#container->body->html->root

We can create a delegated event as follows:

$("#list").on("click", "a", function(event) {
 console.log($(this).text());
});

We moved a from the original selector to the second parameter in the on() method.
This second parameter of the on() method tells the handler to listen to this specific
event and check whether the triggering element was the second parameter (the a in
our case). As the second parameter matches, the handler function is executed. With
this delegate event, we are attaching a single handler to the entire ul#list. This
handler will listen to the click event triggered by any descendent of the ul element.

The event object
So far, we attached anonymous functions as event handlers. To make our event
handlers more generic and useful, we can create named functions and assign them to
the events. Consider the following lines:

function handlesClicks(event){
 //Handle click event
}
$("#bigButton").on('click', handlesClicks);

www.EBooksWorld.ir

DOM Manipulation and Events

[200]

Here, we are passing a named function instead of an anonymous function to the
on() method. Let's shift our focus now to the event parameter that we pass to
the function. jQuery passes an event object with all the event callbacks. An event
object contains very useful information about the event being triggered. In cases
where we don't want the default behavior of the element to kick in, we can use the
preventDefault() method of the event object. For example, we want to fire an
AJAX request instead of a complete form submission or we want to prevent the
default location to be opened when a URL anchor is clicked on. In these cases, you
may also want to prevent the event from bubbling up the DOM. You can stop the
event propagation by calling the stopPropagation() method of the event object.
Consider this example:

$("#loginform").on("submit", function(event) {
 // Prevent the form's default submission.
 event.preventDefault();
 // Prevent event from bubbling up DOM tree, also stops any
 delegation
 event.stopPropagation();
});

Apart from the event object, you also get a reference to the DOM object on which the
event was fired. This element can be referred by $(this). Consider the following
example:

$("a").click(function(event) {
 var anchor = $(this);
 if (anchor.attr("href").match("google")) {
 event.preventDefault();
 }
});

Summary
This chapter was all about understanding JavaScript in its most important role—
that of browser language. JavaScript plays the role of introducing dynamism on the
web by facilitating DOM manipulation and event management on the browser. We
discussed both of these concepts with and without jQuery. As the demands of the
modern web are increasing, using libraries such as jQuery is essential. These libraries
significantly improve the code quality and efficiency and, at the same time, give you
the freedom to focus on important things.

We will focus on another incarnation of JavaScript—mainly on the server side. Node.js
has become a popular JavaScript framework to write scalable server-side applications.
We will take a detailed look at how we can best utilize Node.js for server applications.

www.EBooksWorld.ir

[201]

Server-Side JavaScript
We have been focusing so far on the versatility of JavaScript as the language of the
browser. It speaks volumes about the brilliance of the language given that JavaScript
has gained significant popularity as a language to program scalable server systems.
In this chapter, we will look at Node.js. Node.js is one of the most popular JavaScript
frameworks used for server-side programming. Node.js is also one of the most
watched project on GitHub and has superb community support.

Node uses V8, the virtual machine that powers Google Chrome, for server-side
programming. V8 gives a huge performance benefit to Node because it directly
compiles the JavaScript into native machine code over executing bytecode or using
an interpreter as a middleware.

The versatility of V8 and JavaScript is a wonderful combination—the performance,
reach, and overall popularity of JavaScript made Node an overnight success. In this
chapter, we will cover the following topics:

•	 An asynchronous evented-model in a browser and Node.js
•	 Callbacks
•	 Timers
•	 EventEmitters
•	 Modules and npm

www.EBooksWorld.ir

Server-Side JavaScript

[202]

An asynchronous evented-model in a
browser
Before we try to understand Node, let's try to understand JavaScript in a browser.

Node relies on event-driven and asynchronous platforms for server-side JavaScript.
This is very similar to how browsers handle JavaScript. Both the browser and Node
are event-driven and non-blocking when they use I/O.

To dive deeper into the event-driven and asynchronous nature of Node.js, let's first
do a comparison of the various kinds of operations and costs associated with them:

L1 cache read 0.5 nanoseconds
L2 cache read 7 nanoseconds
RAM 100 nanoseconds
Read 4 KB randomly from SSD 150,000 ns
Read 1 MB sequentially from SSD 1,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns

These numbers are from https://gist.github.com/jboner/2841832 and show
how costly Input/Output (I/O) can get. The longest operations taken by a computer
program are the I/O operations and these operations slow down the overall program
execution if the program keeps waiting on these I/O operations to finish. Let's see an
example of such an operation:

console.log("1");
var log = fileSystemReader.read("./verybigfile.txt");
console.log("2");

When you call fileSystemReader.read(), you are reading a file from the
filesystem. As we just saw, I/O is the bottleneck here and can take quite a while
before the read operation is completed. Depending on the kind of hardware,
filesystem, OS, and so on, this operation will block the overall program execution
quite a bit. The preceding code does some I/O that will be a blocking operation—
the process will be blocked till I/O finishes and the data comes back. This is the
traditional I/O model and most of us are familiar with this. However, this is costly
and can cause terribly latency. Every process has associated memory and state—both
these will be blocked till I/O is complete.

www.EBooksWorld.ir

https://gist.github.com/jboner/2841832

Chapter 9

[203]

If a program blocks I/O, the Node server will refuse new requests. There are several
ways of solving this problem. The most popular traditional approach is to use
several threads to process requests—this technique is known as multithreading.
If are you familiar with languages such as Java, chances are that you have written
multithreaded code. Several languages support threads in various forms—a thread
essentially holds its own memory and state. Writing multithreaded applications on a
large scale is tough. When multiple threads are accessing a common shared memory
or values, maintaining the correct state across these threads is a very difficult task.
Threads are also costly when it comes to memory and CPU utilization. Threads that
are used on synchronized resources may eventually get blocked.

The browser handles this differently. I/O in the browser happens outside the main
execution thread and an event is emitted when I/O finishes. This event is handled by
the callback function associated with that event. This type of I/O is non-blocking and
asynchronous. As I/O is not blocking the main execution thread, the browser can
continue to process other events as they come without waiting on any I/O. This is a
powerful idea. Asynchronous I/O allows browsers to respond to several events and
allows a high level of interactivity.

Node uses a similar idea for asynchronous processing. Node's event loop runs as
a single thread. This means that the application that you write is essentially single-
threaded. This does not mean that Node itself is single-threaded. Node uses libuv
and is multithreaded—fortunately, these details are hidden within Node and you
don't need to know them while developing your application.

Every call that involves an I/O call requires you to register a callback. Registering a
callback is also asynchronous and returns immediately. As soon as an I/O operation
is completed, its callback is pushed on the event loop. It is executed as soon as
all the other callbacks that were pushed on the event loop before are executed.
All operations are essentially thread-safe, primarily because there is no parallel
execution path in the event loop that will require synchronization.

Essentially, there is only one thread running your code and there is no parallel
execution; however, everything else except for your code runs in parallel.

Node.js relies on libev (http://software.schmorp.de/pkg/libev.html) to
provide the event loop, which is supplemented by libeio (http://software.
schmorp.de/pkg/libeio.html) that uses pooled threads to provide asynchronous
I/O. To learn even more, take a look at the libev documentation at http://pod.tst.
eu/http://cvs.schmorp.de/libev/ev.pod.

www.EBooksWorld.ir

http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libeio.html
http://software.schmorp.de/pkg/libeio.html
http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod
http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod

Server-Side JavaScript

[204]

Consider the following example of asynchronous code execution in Node.js:

var fs = require('fs');
console.log('1');
fs.readFile('./response.json', function (error, data) {
 if(!error){
 console.log(data);
 });
console.log('2');

In this program, we read the response.json file from the disk. When the disk I/O is
finished, the callback is executed with parameters containing the argument's error, if
any error occurred, and data, which is the file data. What you will see in the console
is the output of console.log('1') and console.log('2') one immediately after
another:

Node.js does not need any additional server component as it creates its own server
process. A Node application is essentially a server running on a designated port. In
Node, the server and application are the same.

www.EBooksWorld.ir

Chapter 9

[205]

Here is an example of a Node.js server responding with the Hello Node string when
the http://localhost:3000/ URL is run from a browser:

var http = require('http');
var server = http.createServer();
server.on('request', function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello Node\n');
});
server.listen(3000);

In this example, we are using an http module. If you recall our earlier discussions
on the JavaScript module, you will realize that this is the CommonJS module
implementation. Node has several modules compiled into the binary. The core
modules are defined within Node's source. They can be located in the lib/ folder.

They are loaded first if their identifier is passed to require(). For instance,
require('http') will always return the built-in HTTP module, even if there is a file
by this name.

After loading the module to handle HTTP requests, we create a server object and
use a listener for a request event using the server.on() function. The callback is
called whenever there is a request to this server on port 3000. The callback receives
request and response parameters. We are also setting the Content-Type header
and HTTP response code before we send the response back. You can copy the
preceding code, save it in a plain text file, and name it app.js. You can run the
server from the command line using Node.js as follows:

$ » node app.js

Once the server is started, you can open the http://localhost:3000 URL in a
browser and you will be greeted with unexciting text:

www.EBooksWorld.ir

http://localhost:3000/
http://localhost:3000

Server-Side JavaScript

[206]

If you want to inspect what's happening internally, you can issue a curl command
as follows:

~ » curl -v http://localhost:3000
* Rebuilt URL to: http://localhost:3000/
* Trying ::1...
* Connected to localhost (::1) port 3000 (#0)
> GET / HTTP/1.1
> Host: localhost:3000
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
< Date: Thu, 12 Nov 2015 05:31:44 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
Hello Node
* Connection #0 to host localhost left intact

Curl shows a nice request (>) and response (<) dialog including the request and
response headers.

Callbacks
Callbacks in JavaScript usually take some time getting used to. If you are coming
from some other non-asynchronous programming background, you will need
to understand carefully how callbacks work; you may feel like you're learning
programming for the first time. As everything is asynchronous in Node, you will be
using callbacks for everything without trying to carefully structure them. The most
important part of the Node.js project is sometimes the code organization and module
management.

Callbacks are functions that are executed asynchronously at a later time. Instead of
the code reading top to bottom procedurally, asynchronous programs may execute
different functions at different times based on the order and speed that earlier
functions such as HTTP requests or filesystem reads happen.

www.EBooksWorld.ir

Chapter 9

[207]

Whether a function execution is sequential or asynchronous depends on the context
in which it is executed:

var i=0;
function add(num){
 console.log(i);
 i=i+num;
}
add(100);
console.log(i);

If you run this program using Node, you will see the following output (assuming
that your file is named app.js):

~/Chapter9 » node app.js
0
100

This is what we are all used to. This is traditional synchronous code execution where
each line is executed in a sequence. The code here defines a function and then on the
next line calls this function, without waiting for anything. This is sequential control
flow.

Things will be different if we introduced I/O to this sequence. If we try to read
something from the file or call a remote endpoint, Node will execute these operations
in an asynchronous fashion. For the next example, we are going to use a Node.js
module called request. We will use this module to make HTTP calls. You can install
the module as follows:

npm install request

We will discuss the use of npm later in this chapter. Consider the following example:

var request = require('request');
var status = undefined;
request('http://google.com', function (error, response, body) {
 if (!error && response.statusCode == 200) {
 status_code = response.statusCode;
 }
});
console.log(status);

www.EBooksWorld.ir

Server-Side JavaScript

[208]

When you execute this code, you will see that the value of the status variable
is still undefined. In this example, we are making an HTTP call—this is an I/O
operation. When we do an I/O operation, the execution becomes asynchronous. In
the earlier example, we are doing everything within the memory and there was no
I/O involved, hence, the execution was synchronous. When we run this program,
all of the functions are immediately defined, but they don't all execute immediately.
The request() function is called and the execution continues to the next line. If there
is nothing to execute, Node will either wait for I/O to finish or it will exit. When
the request() function finishes its work, it will execute the callback function (an
anonymous function as the second parameter to the request() function). The reason
that we got undefined in the preceding example is that nowhere in our code exists
the logic that tells the console.log() statement to wait until the request() function
has finished fetching the response from the HTTP call.

Callbacks are functions that get executed at some later time. This changes things
in the way you organize your code. The idea around reorganizing the code is as
follows:

•	 Wrapping the asynchronous code in a function
•	 Passing a callback function to the wrapper function

We will organize our previous example with these two ideas in mind. Consider this
modified example:

var request = require('request');
var status = undefined;
function getSiteStatus(callback){
 request('http://google.com', function (error, response, body) {
 if (!error && response.statusCode == 200) {
 status_code = response.statusCode;
 }
 callback(status_code);
 });
}
function showStatusCode(status){
 console.log(status);
}
getSiteStatus(showStatusCode);

When you run this, you will get the following (correct) output:

$node app.js
200

www.EBooksWorld.ir

Chapter 9

[209]

What we changed was to wrap the asynchronous code in a getSiteStatus()
function, pass a function named callback() as a parameter to this function, and
execute this function on the last line of getSiteStatus(). The showStatusCode()
callback function simply wraps around console.log() that we called earlier. The
difference, however, is in the way the asynchronous execution works. The most
important idea to understand while learning how to program with callbacks is that
functions are first-class objects that can be stored in variables and passed around
with different names. Giving simple and descriptive names to your variables is
important in making your code readable by others. Now that the callback function
is called once the HTTP call is completed, the value of the status_code variable
will have a correct value. There are genuine circumstances where you want an
asynchronous task executed only after another asynchronous task is completed.
Consider this scenario:

http.createServer(function (req, res) {
 getURL(url, function (err, res) {
 getURLContent(res.data, function(err,res) {
 ...
 });
 });
});

As you can see, we are nesting one asynchronous function in another. This kind of
nesting can result in code that is difficult to read and manage. This style of callback
is sometimes known as callback hell. To avoid such a scenario, if you have code
that has to wait for some other asynchronous code to finish, then you express that
dependency by putting your code in functions that get passed around as callbacks.
Another important idea is to name your functions instead of relying on anonymous
functions as callbacks. We can restructure the preceding example into a more
readable one as follows:

var urlContentProcessor = function(data){
 ...
}
var urlResponseProcessor = function(data){
 getURLContent(data,urlContentProcessor);
}
var createServer = function(req,res){
 getURL(url,urlResponseProcessor);
};
http.createServer(createServer);

www.EBooksWorld.ir

Server-Side JavaScript

[210]

This fragment uses two important concepts. First, we are using named functions and
using them as callbacks. Second, we are not nesting these asynchronous functions. If
you are accessing closure variables within the inner functions, the preceding would
be a bit different implementation. In such cases, using inline anonymous functions is
even more preferable.

Callbacks are most frequently used in Node. They are usually preferred to define
logic for one-off responses. When you need to respond to repeating events, Node
provides another mechanism for this. Before going further, we need to understand
the function of timers and events in Node.

Timers
Timers are used to schedule the execution of a particular callback after a specific
delay. There are two primary methods to set up such delayed execution: setTimeout
and setInterval. The setTimeout() function is used to schedule the execution of
a specific callback after a delay, while setInterval is used to schedule the repeated
execution of a callback. The setTimeout function is useful to perform tasks that need
to be scheduled such as housekeeping. Consider the following example:

setTimeout(function() {
 console.log("This is just one time delay");
},1000);
var count=0;
var t = setInterval(function() {
 count++;
 console.log(count);
 if (count> 5){
 clearInteval(t);
 }
}, 2000);

First, we are using setTimeout() to execute a callback (the anonymous function)
after a delay of 1,000 ms. This is just a one-time schedule for this callback. We
scheduled the repeated execution of the callback using setInterval(). Note that we
are assigning the value returned by setInterval() in a variable t—we can use this
reference in clearInterval() to clear this schedule.

www.EBooksWorld.ir

Chapter 9

[211]

EventEmitters
We discussed earlier that callbacks are great for the execution of one-off logic.
EventEmitters are useful in responding to repeating events. EventEmitters fire
events and include the ability to handle these events when triggered. Several
important Node APIs are built on EventEmitters.

Events raised by EventEmitters are handled through listeners. A listener is a callback
function associated with an event—when the event fires, its associated listener
is triggered as well. The event.EventEmitter is a class that is used to provide a
consistent interface to emit (trigger) and bind callbacks to events.

As a common style convention, event names are represented by a camel-cased string;
however, any valid string can be used as an event name.

Use require('events') to access the EventEmitter class:

var EventEmitter = require('events');

When an EventEmitter instance encounters an error, it emits an error event. Error
events are treated as a special case in Node.js. If you don't handle these, the program
exits with an exception stack.

All EventEmitters emit the newListener event when new listeners are added and
removeListener when a listener is removed.

To understand the usage of EventEmitters, we will build a simplistic telnet server
where different clients can log in and enter certain commands. Based on these
commands, our server will respond accordingly:

var _net = require('net');
var _events = require ('events');
var _emitter = new events.EventEmitter();
_emitter.on('join', function(id,caller){
 console.log(id+" - joined");
});
_emitter.on('quit', function(id,caller){
 console.log(id+" - left");
});

www.EBooksWorld.ir

Server-Side JavaScript

[212]

var _server = _net.createServer(function(caller) {
 var process_id = caller.remoteAddress + ':' + caller.remotePort;
 _emitter.emit('join',id,caller);
 caller.on('end', function() {
 console.log("disconnected");
 _emitter.emit('quit',id,caller);
 });
});
_server.listen(8124);

In this code snippet, we are using the net module from Node. The idea here is to
create a server and let the client connect to it via a standard telnet command. When
a client connects, the server displays the client address and port, and when the client
quits, the server logs this too.

When a client connects, we are emitting a join event, and when the client
disconnects, we are emitting a quit event. We have listeners for both these events
and they log appropriate messages on the server.

You start this program and connect to our server using telnet as follows:

telnet 127.0.0.1 8124

On the server console, you will see the server logging which client joined the server:

» node app.js
::ffff:127.0.0.1:51000 - joined
::ffff:127.0.0.1:51001 – joined

If any client quits the session, an appropriate message will appear as well.

Modules
When you are writing a lot of code, you soon reach a point where you have to start
thinking about how you want to organize the code. Node modules are CommonJS
modules that we discussed earlier when we discussed module patterns. Node
modules can be published to the Node Package Manager (npm) repository. The npm
repository is an online collection of Node modules.

www.EBooksWorld.ir

Chapter 9

[213]

Creating modules
Node modules can be either single files or directories containing one or more files.
It's usually a good idea to create a separate module directory. The file in the module
directory that will be evaluated is normally named index.js. A module directory
can look as follows:

node_project/src/nav
 --- >index.js

In your project directory, the nav module directory contains the module code.
Conventionally, your module code needs to reside in the index.js file—you can
change this to another file if you want. Consider this trivial module called geo.js:

exports.area = function (r) {
 return 3.14 * r * r;
};
exports.circumference = function (r) {
 return 3.14 * 3.14 * r;
};

You are exporting two functions via exports. You can use the module using the
require function. This function takes the name of the module or system path to the
module's code. You can use the module that we created as follows:

var geo = require('./geo.js');
console.log(geo.area(2));

As we are exporting only two functions to the outside world, everything else
remains private. If you recollect, we discussed the module pattern in detail—Node
uses CommonJS modules. There is an alternative syntax to create modules as well.
You can use modules.exports to export your modules. Indeed, exports is a helper
created for modules.exports. When you use exports, it attaches the exported
properties of a module to modules.exports. However, if modules.exports already
has some properties attached to it, properties attached by exports are ignored.

www.EBooksWorld.ir

Server-Side JavaScript

[214]

The geo module created earlier in this section can be rewritten in order to return a
single Geo constructor function rather than an object containing functions. We can
rewrite the geo module and its usage as follows:

var Geo = function(PI) {
 this.PI = PI;
}
Geo.prototype.area = function (r) {
 return this.PI * r * r;
};
Geo.prototype.circumference = function (r) {
 return this.PI * this.PI * r;
};
module.exports = Geo;

Consider a config.js module:

var db_config = {
 server: "0.0.0.0",
 port: "3306",
 user: "mysql",
 password: "mysql"
};
module.exports = db_config;

If you want to access db_config from outside this module, you can use require()
to include the module and refer the object as follows:

var config = require('./config.js');
console.log(config.user);

There are three ways to organize modules:

•	 Using a relative path, for example, config = require('./lib/config.
js')

•	 Using an absolute path, for example, config = require('/nodeproject/
lib/config.js')

•	 Using a module search, for example, config = require('config')

The first two are self-explanatory—they allow Node to look for a module in a
particular location in the filesystem.

www.EBooksWorld.ir

Chapter 9

[215]

When you use the third option, you are asking Node to locate the module using the
standard look method. To locate the module, Node starts at the current directory and
appends ./node_modules/ to it. Node then attempts to load the module from this
location. If the module is not found, then the search starts from the parent directory
until the root of the filesystem is reached.

For example, if require('config') is called in /projects/node/, the following
locations will be searched until a match a found:

•	 /projects/node /node_modules/config.js

•	 /projects/node_modules/config.js

•	 /node_modules/config.js

For modules downloaded from npm, using this method is relatively simple. As
we discussed earlier, you can organize your modules in directories as long as you
provide a point of entry for Node.

The easiest way to do this is to create the ./node_modules/supermodule/ directory,
and insert an index.js file in this directory. The index.js file will be loaded by
default. Alternatively, you can put a package.json file in the mymodulename folder,
specifying the name and main file of the module:

{
 "name": "supermodule",
 "main": "./lib/config.js"
}

You have to understand that Node caches modules as objects. If you have two (or
more) files requiring a specific module, the first require will cache the module in
memory so that the second require will not have to reload the module source code.
However, the second require can alter the module functionality if it wishes to. This
is commonly called monkey patching and is used to modify a module behavior
without really modifying or versioning the original module.

npm
The npm is the package manager used by Node to distribute modules. The npm
can be used to install, update, and manage modules. Package managers are popular
in other languages such as Python. The npm automatically resolves and updates
dependencies for a package and hence makes your life easy.

www.EBooksWorld.ir

Server-Side JavaScript

[216]

Installing packages
There are two ways to install npm packages: locally or globally. If you want to use
the module's functionality only for a specific Node project, you can install it locally
relative to the project, which is default behavior of npm install. Alternatively, there
are several modules that you can use as a command-line tool; in this case, you can
install them globally:

npm install request

The install directive with npm will install a particular module—request in this
case. To confirm that npm install worked correctly, check to see whether a node_
modules directory exists and verify that it contains a directory for the package(s) that
you installed.

As you start adding modules to your project, it becomes difficult to manage the
version/dependency of each module. The best way to manage locally installed
packages is to create a package.json file in your project.

A package.json file can help you in the following ways:

•	 Defining versions of each module that you want to install. There are times
when your project depends on a specific version of a module. In this case,
your package.json helps you download and maintain the correct version
dependency.

•	 Serving as a documentation of all the modules that your project needs.
•	 Deploying and packaging your application without worrying about

managing dependencies every time you deploy the code.

You can create package.json by issuing the following command:

npm init

After answering basic questions about your project, a blank package.json is created
with content similar to the following:

{
 "name": "chapter9",
 "version": "1.0.0",
 "description": "chapter9 sample project",
 "main": "app.js",
 "dependencies": {
 "request": "^2.65.0"
 },

www.EBooksWorld.ir

Chapter 9

[217]

 "devDependencies": {},
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "Chapter9",
 "sample",
 "project"
],
 "author": "Ved Antani",
 "license": "MIT"
}

You can manually edit this file in a text editor. An important part of this file is the
dependencies tag. To specify the packages that your project depends on, you need
to list the packages you'd like to use in your package.json file. There are two types
of packages that you can list:

•	 dependencies: These packages are required by your application in
production

•	 devDependencies: These packages are needed only for development and
testing (for example, using the Jasmine node package)

In the preceding example, you can see the following dependency:

"dependencies": {
 "request": "^2.65.0"
},

This means that the project is dependent on the request module.

The version of the module is dependent on the semantic versioning
rules—https://docs.npmjs.com/getting-started/semantic-
versioning.

Once your package.json file is ready, you can simply use the npm install
command to install all the modules for your projects automatically.

www.EBooksWorld.ir

https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/getting-started/semantic-versioning

Server-Side JavaScript

[218]

There is a cool trick that I love to use. While installing modules from the command
line, we can add the --save flag to add that module's dependency to the package.
json file automatically:

npm install async --save
npm WARN package.json chapter9@1.0.0 No repository field.
npm WARN package.json chapter9@1.0.0 No README data
async@1.5.0 node_modules/async

In the preceding command, we installed the async module with the normal npm
command with a --save flag. There is a corresponding entry automatically created
in package.json:

"dependencies": {
 "async": "^1.5.0",
 "request": "^2.65.0"
},

JavaScript performance
Like any other language, writing correct JavaScript code at scale is an involved task.
As the language matures, several of the inherent problems are being taken care of.
There are several exceptional libraries that aid in writing good quality code. For
most serious systems, good code = correct code + high performance code. The demands of
new-generation software systems are high on performance. In this section, we will
discuss a few tools that you can use to analyze your JavaScript code and understand
its performance metrics.

We will discuss the following two ideas in this section:

•	 Profiling: Timing various functions and operations during script-profiling
helps in identifying areas where you can optimize your code

•	 Network performance: Examining the loading of network resources such as
images, stylesheets, and scripts

JavaScript profiling
JavaScript profiling is critical to understand performance aspects of various parts of
your code. You can observe timings of the functions and operations to understand
which operation is taking more time. With this information, you can optimize the
performance of time-consuming functions and tune the overall performance of your
code. We will be focusing on the profiling options provided by Chrome's Developer
Tools. There are comprehensive analysis tools that you can use to understand the
performance metrics of your code.

www.EBooksWorld.ir

Chapter 9

[219]

The CPU profile
The CPU profile shows the execution time spent by various parts of your code.
We have to inform DevTools to record the CPU profile data. Let's take the profiler for
a spin.

You can enable the CPU profiler in DevTools as follows:

1.	 Open the Chrome DevTools Profiles panel.
2.	 Verify that Collect JavaScript CPU Profile is selected:

For this chapter, we will be using Google's own benchmark page, http://octane-
benchmark.googlecode.com/svn/latest/index.html. We will use this because
it contains sample functions where we can see various performance bottlenecks and
benchmarks. To start recording the CPU profile, open DevTools in Chrome, and
in the Profiles tab, click on the Start button or press Cmd/Ctrl + E. Refresh the V8
Benchmark Suite page. When the page has completed reloading, a score for the
benchmark tests is shown. Return to the Profiles panel and stop the recording by
clicking on the Stop button or pressing Cmd/Ctrl + E again.

www.EBooksWorld.ir

Server-Side JavaScript

[220]

The recorded CPU profile shows you a detailed view of the functions and the
execution time taken by them in the bottom-up fashion, as shown in the following
image:

The Timeline view
The Chrome DevTools Timeline tool is the first place you can start looking at the
overall performance of your code. It lets you record and analyze all the activity in
your application as it runs.

The Timeline provides you with a complete overview of where time is spent when
loading and using your site. A timeline recording includes a record for each event
that occurred and is displayed in a waterfall graph:

www.EBooksWorld.ir

Chapter 9

[221]

The preceding screen shows you the timeline view when we try to render https://
twitter.com/ in the browser. The timeline view gives you an overall view of which
operation took how much time in execution:

In the preceding screenshot, we can see the progressive execution of various JavaScript
functions, network calls, resource downloads, and other operations involved in
rendering the Twitter home page. This view gives us a very good idea about which
operations may be taking longer. Once we identify such operations, we can optimize
them for performance. The Memory view is a great tool to understand how the
memory is used during the lifetime of your application in the browser. The Memory
view shows you a graph of the memory used by your application over time and
maintains a counter of the number of documents, DOM nodes, and event listeners that
are held in the memory. The Memory view can help detect memory leaks and give you
good enough hints to understand what optimizations are required:

JavaScript performance is a fascinating subject and deserves its own dedicated text. I
would urge you to explore Chrome's DevTools and understand how best to use the
tools to detect and diagnose performance problems in your code.

www.EBooksWorld.ir

Server-Side JavaScript

[222]

Summary
In this chapter, we looked at a different avatar of JavaScript—that of a server-side
framework in the form of Node.js.

Node offers an asynchronous evented-model to program scalable and high-
performance server applications in JavaScript. We dived deep into some core
concepts on Node, such as an event loop, callbacks, modules, and timers.
Understanding them is critical to write good Node code. We also discussed several
techniques to structure Node code and callbacks in a better way.

With this, we reach the conclusion of our exploration of a brilliant programming
language. JavaScript has been instrumental in the evolution of the World Wide Web
because of its sheer versatility. The language continues to expand its horizons and
improves with each new iteration.

We started our journey with understanding the building blocks of the grammar
and syntax of the language. We grasped the fundamental ideas of closures and
the functional behavior of JavaScript. These concepts are so essential that most of
the JavaScript patterns are based on them. We looked at how we can utilize these
patterns to write better code with JavaScript. We studied how JavaScript can operate
on a DOM and how to use jQuery to manipulate the DOM effectively. Finally, we
looked at the server-side avatar of JavaScript in Node.js.

This book should have enabled you to think differently when you start programming
in JavaScript. Not only will you think about common patterns when you code, but
also appreciate and use newer language features by ES6.

www.EBooksWorld.ir

[223]

Index
Symbols
-- operator 17, 18
+ operator 16
++ operator 17, 18
<script> tags

URL 183
=== strict equality 25, 26
== weak equality 27

A
Agile methodology 146
Amber.js 140
anonymous functions

about 64
as parameter to another function 65
in conditional logic 65, 66
while creating list 64
while creating object 64

arguments parameter
about 60, 61
this parameter 61

arrow functions 176-179
arrays 86-94
asm.js format 1
asserts 156
asynchronous evented-model

in browser 202-206
Asynchronous Module Definition

(AMD) 129
automatic semicolon insertion (ASI)

about 30, 31
references 30

B
Babel

about 164
URL 164

Backbone.js 139
Backreferences 84, 85
beginning and end 84
Behavior-driven development

(BDD) 147, 151-153
big.js

URL 9
block-level scope

versus function-level scope 52-55
block scopes 56, 57, 165, 166
Boolean operators

about 18, 21-24
example 22
Logical AND 18
Logical NOT 20
Logical OR 19

Booleans 13, 14
Bower 90
browser

asynchronous evented-model 202-206
browser events 193, 194

C
callback hell 209
callbacks 69, 206-210
casting 28
Chai 153
chaining, jQuery methods 191
Chrome DevTools 157
classical inheritance 101

www.EBooksWorld.ir

[224]

closures 66-70
command line interface (CLI) 41
comments 6
CommonJS modules 129
console.log 156
constants 7
const keyword 7
content delivery network (CDN) 185
controllers 141
CPU profile 219
CSS selectors

URL 188
curl.js 129

D
date.js

URL 16
Date object 15, 16
decorator pattern 134-136
design patterns

about 122
behavioral 122
creational 122
structural 122

Developers Tools (DevTools) 154
Document Object Model (DOM) 179

about 181
DOM elements, accessing 182, 183
specific nodes, accessing 183-190

E
ECMAScript 6 (ES6), syntax changes

about 56, 165
arrow functions 176-179
block scoping 165, 166
default parameters 167
destructuring 168, 169
For..of loops 176
iterators 175
Maps 175
maps and sets 174
Maps and Sets 172

object literals 170
rest operator 167, 168
Sets 175
spread operator 167, 168
Symbols 175
template literals 171, 172

ECMAScript (ES5) 163
EditorConfig

URL 32
Emscripten

URL 1
endsWith() polyfill

URL 164
equality

about 25
strict equality, with === 25, 26
weak equality, with == 27

Erlang 168
ES6 shim

URL 164
ES2015 163
eval() method 39
event delegation 198, 199
EventEmitters 211, 212
event object 199
exact match patterns 77
explicit coercion 28
Extensible Markup Language (XML) 181
Extreme Programming 147

F
Facebook React 163
factory pattern 131-133
Firebug 4
For..of loops 176
function context 61
function declarations

versus function expressions 58-60
function expressions 47
function-level scope

versus block-level scope 52-55
function literal

about 46
function declaration 46-48

www.EBooksWorld.ir

[225]

functions
as data 49, 50

function statement 47

G
Gang of Four (GOF) 121
getters 117-120, 190
GitHut

URL 1
global scope 51
Grave accent

reference link 12
greedy and lazy quantifiers 85, 86

H
Handlebar.js

URL 140
Hello World program

writing 6
hoisting 57
HyperText Markup Language (HTML) 181

I
Immediately Invoked Function Expression

(IIFE) 55, 165
inheritance 110-116
Input/Output (I/O) 202
instanceof operator 15
instance properties

versus prototype properties 104-109
IntelliJ WebStorm 154
io.js 1
iterators 175

J
Jasmine

URL 148, 153
Jasmine node package 217
JavaScript

history 2
overview 6
patterns 121

reference link 2
URL 2

JavaScript debugging
about 154
Chrome DevTools 157-161
console.log and asserts 156
runtime exceptions 155, 156
strict, using 155
syntax errors 154

JavaScript performance
analyzing 218
profiling 218

jQuery event handling 195-198
JS Bin

about 5
URL 5
using 5

JSHint 154
about 41
running 42
URL 42

JSLint 154

L
libeio

URL 203
libev

URL 203
libuv 203
LiveScript 2
local scope 52
Logical AND Boolean operator 18
Logical NOT Boolean operator 20
Logical OR Boolean operator 19
loops 70
Low-Level Virtual Machine (LLVM)-based

project 1

M
manipulation methods 191, 192
maps

about 95, 172
WeakMap 172, 174

www.EBooksWorld.ir

[226]

match
from class of characters 77, 79, 81

mixin pattern 133, 134
Mocha 153 2
models 140
Model-View-Controller (MVC) 139
Model-View-Presenter (MVP)

pattern 139-142
Model-View-ViewModel

(MVVM) 139-143
module pattern

about 124-129
ES6 modules 131

modules
about 71, 72, 212
creating 213, 214

Moment.js
URL 16

monkey patching 215
Mosaic browser 2
mustache.js

URL 140
MV* patterns 139

N
namespace pattern 123, 124
NaN (Not a Number) 9
native built-ins

URL 117
Netscape Navigator 2
Node.js 1, 90, 129, 163, 201
Node Package Manager (npm)

repository 212
Not Equal To (!==) 26
npm

about 215
packages, installing 216-218

Number 8-10

O
object literals 170
object-oriented programming (OOP) 99, 100
objects

about 99-101
behavior 101, 102

observer pattern
about 137-139
Observer 137
Subject 137

P
patterns

about 121
decorator pattern 134-136
design patterns 122, 123
factory pattern 131-133
mixin pattern 133, 134
module pattern 124-130
namespace pattern 123, 124
observer pattern 137-139

polyfills 164
private variables 69, 70
profiling, JavaScript

about 218
CPU profile 219
Timeline view 220, 221

propagation
about 194, 195
jQuery event handling 195-198

prototype
about 103, 104
properties, versus instance

properties 104-109

R
Read-Eval-Print-Loop (REPL)

about 4
URL 164

RegEx (regular expressions) 76, 77
repeated occurrences

about 81-83
Alternatives - OR 84

RequireJS
URL 130

revealing module pattern (RMP) 127
router 141

S
Scheme 2

www.EBooksWorld.ir

[227]

scoping
about 50
block scopes 56
function-level scope versus block-level

scope 52-55
global scope 51
inline function expressions 56
local scope 52

semantic versioning
URL 217

sets 95, 96, 173
setters 117-120, 190
shims 164
Silverlight 142
simple patterns 77
Sinon.JS 153
sloppy mode 39
special characters 11
Spies 152
Stack Overflow

URL 9
Standard Generalized Markup Language

(SGML) 181
strict equality 25, 26
strict mode

about 39, 40, 155
blocked features 41
enabling 40
eval() function 41
using 40
variables, declaring 40

string 11, 12
style guide

about 32
braces 32
conditional evaluation 36
empty line 34
end of line 34
eval() method 39
JSHint 41, 42
line breaks 32
naming 38
parentheses 32
quotes 34
strict mode 39, 40
type, casting 35, 36
type, checking 35

white spaces 32
styling

considerations 72, 97
subtypes 27

T
tagged template string 172
tags 27
template literals 171, 172
Test-driven development (TDD) 147
TestPyramid

URL 147
this parameter

invocation, as constructor 63
invocation, as function 61
invocation, as method 61-63
invocation, call() methods used 63

Timeline view 220, 221
timers 69, 210
Timezone.js

URL 16
Tool Command Language (TCL) 2
transpilers 164
traversal methods 191, 192
typeof operator 15
types 27-30

U
undefined values 13
Underscore.js

about 119, 134
URL 90

unit testing
about 146
Behavior-driven development

(BDD) 147-152
Test-driven development (TDD) 147

V
V8 201
Value Added Tax (VAT) 9
variables 7
var keyword 7
views 140, 141

www.EBooksWorld.ir

[228]

W
waterfall graph 220
weak equality 27
WeakMap 172-174
WeakSet 172
Windows Presentation Foundation

(WPF) 142
World Wide Web Consortium (W3C) 195

www.EBooksWorld.ir

Thank you for buying
Mastering JavaScript

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.EBooksWorld.ir

HTML5 Boilerplate Web
Development
ISBN: 978-1-84951-850-5 Paperback: 174 pages

Master Web Development with a robust set of
templates to get your projects done quickly and
effectively

1.	 Master HTML5 Boilerplate as starting templates
for future projects.

2.	 Learn how to optimize your workflow with
HTML5 Boilerplate templates and set up
servers optimized for performance.

3.	 Learn to feature-detect and serve appropriate
styles and scripts across browser types.

Mastering JavaScript Design
Patterns
ISBN: 978-1-78398-798-6 Paperback: 290 pages

Discover how to use JavaScript design patterns
to create powerful applications with reliable and
maintainable code

1.	 Learn how to use tried and true software
design methodologies to enhance your
Javascript code.

2.	 Discover robust JavaScript implementations of
classic as well as advanced design patterns.

3.	 Packed with easy-to-follow examples that can
be used to create reusable code and extensible
designs.

Please check www.PacktPub.com for information on our titles

www.EBooksWorld.ir

Learning JavaScriptMVC
ISBN: 978-1-78216-020-5 Paperback: 124 pages

Learn to build well-structured JavaScript web
applications using JavaScriptMVC

1.	 Install JavaScriptMVC in three different ways,
including installing using Vagrant and Chef.

2.	 Document your JavaScript codebase and
generate searchable API documentation.

3.	 Test your codebase and application as well
as learning how to integrate tests with the
continuous integration tool, Jenkins.

Mastering JavaScript High
Performance
ISBN: 978-1-78439-729-6 Paperback: 208 pages

Master the art of building, deploying, and optimizing
faster web applications with JavaScript

1.	 Test and optimize JavaScript code efficiently.

2.	 Build faster and more proficient JavaScript
programs for web browsers and hybrid
mobile apps.

3.	 Step-by-step tutorial stuffed with real-world
examples.

Please check www.PacktPub.com for information on our titles

www.EBooksWorld.ir

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: JavaScript Primer
	A little bit of history
	How to use this book
	Hello World
	An overview of JavaScript
	Comments
	Variables
	Constants
	Number
	String
	Undefined values
	Booleans
	The instanceof operator
	Date objects
	The + operator
	The ++ and -- operators
	Boolean operators
	Equality

	JavaScript types
	Automatic semicolon insertion
	JavaScript style guide
	Whitespaces
	Parentheses, line breaks, and braces
	Quotes
	End of lines and empty lines
	Type checking
	Type casting
	Conditional evaluation
	Naming
	The eval() method is evil
	The strict mode
	Running JSHint

	Summary

	Chapter 2: Functions, Closures,
and Modules
	A function literal
	A function declaration

	Functions as data
	Scoping
	Global scope
	Local scope
	Function-level scope versus block-level scope
	Inline function expressions
	Block scopes

	Function declarations versus function expressions
	The arguments parameter
	The this parameter
	Invocation as a function
	Invocation as a method
	Invocation as a constructor
	Invocation using apply() and call() methods

	Anonymous functions
	Anonymous functions while creating an object
	Anonymous functions while creating a list
	Anonymous functions as a parameter to another function
	Anonymous functions in conditional logic

	Closures
	Timers and callbacks
	Private variables
	Loops and closures
	Modules
	Stylistic considerations

	Summary

	Chapter 3: Data Structures and Manipulation
	Regular expressions
	Exact match
	Match from a class of characters
	Repeated occurrences
	Alternatives – OR

	Beginning and end
	Backreferences
	Greedy and lazy quantifiers
	Arrays
	Maps
	Sets
	A matter of style
	Summary

	Chapter 4: Object-Oriented JavaScript
	Understanding objects
	Behavior of JavaScript objects
	Prototypes

	Instance properties versus prototype properties
	Inheritance
	Getters and setters
	Summary

	Chapter 5: JavaScript Patterns
	Design patterns
	The namespace pattern
	The module pattern
	ES6 modules

	The factory pattern
	The mixin pattern
	The decorator pattern
	The observer pattern
	JavaScript Model-View-* patterns
	Model-View-Controller
	Models
	Views
	Controllers

	The Model-View-Presenter pattern
	Model-View-ViewModel
	Summary

	Chapter 6: Testing and Debugging
	Unit testing
	Test-driven development
	Behavior-driven development

	JavaScript debugging
	Syntax errors
	Using strict
	Runtime exceptions
	Console.log and asserts
	Chrome DevTools

	Summary

	Chapter 7: ECMAScript 6
	Shims or polyfills
	Transpilers
	ES6 syntax changes
	Block scoping
	Default parameters
	Spread and rest
	Destructuring
	Object literals
	Template literals
	Maps and Sets
	Symbols
	Iterators
	For..of loops
	Arrow functions

	Summary

	Chapter 8: DOM Manipulation
and Events
	DOM
	Accessing DOM elements
	Accessing specific nodes

	Chaining
	Traversal and manipulation
	Working with browser events
	Propagation
	jQuery event handling and propagation
	Event delegation
	The event object
	Summary

	Chapter 9: Server-Side JavaScript
	An asynchronous evented-model in a browser
	Callbacks
	Timers
	EventEmitters
	Modules
	Creating modules

	npm
	Installing packages

	JavaScript performance
	JavaScript profiling
	The CPU profile
	The Timeline view

	Summary

	Index

