
Mastering Entity Framework Core 2.0

Being able to create and maintain
data-oriented applications has become
crucial in modern programming. This is why
Microsoft came up with Entity Framework
so architects can optimize storage
requirements while also writing effi cient and
maintainable application code. This book is
a comprehensive guide that will show how
to utilize the power of Entity Framework to
build effi cient .NET Core applications.

At the beginning of the book, we focus on
building entities and relationships. Here
you will also learn about different mapping
techniques, which will help you choose the
technique best suited for your application
design. Once the fundamentals are learned,
you will move on to learn about validation
and querying. It will also teach you how to
execute raw SQL queries and extend Entity
Framework to leverage Query Objects
using the Query Object Pattern. Finally, we
will learn about performance optimization
and how to manage the security of
your application. You will learn how to
implement failsafe mechanisms using
concurrency tokens. The book also
explores row-level security and multitenant
databases.

By the end of the book, you will be profi cient
in implementing Entity Framework on
your .NET Core applications.

Things you will learn:

• Create databases and perform CRUD
operations on them

• Understand and build relationships
(related to entities, keys, and
properties)

• Understand in-built, custom, and
remote validation (both client and
server side)

• Learn to handle concurrency to build
responsive applications

• Handle transactions and multi-
tenancy while also improving
performance

www.packtpub.com

M
asterin

g
 E

n
tity Fram

ew
o

rk C
o

re 2.0
P

rab
h

akaran
 A

n
b

azh
ag

an

Dive into entities, relationships, querying, performance
optimization, and more, to learn effi cient data-driven
development

Prabhakaran Anbazhagan

Mastering
Entity Framework
Core 2.0

www.EBooksWorld.ir

Mastering Entity Framework Core
2.0

Dive into entities, relationships, querying, performance
optimization, and more, to learn efficient data-driven
development

Prabhakaran Anbazhagan

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

Mastering Entity Framework Core 2.0
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1141217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-413-3

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

Credits

Author
Prabhakaran Anbazhagan

Copy Editor
Safis Editing

Reviewers
Jason De Oliveira
Alvin Ashcraft

Project Coordinator
Prajakta Naik

Commissioning Editor
Merint Mathew

Proofreader
Safis Editing

Acquisition Editor
Chaitanya Nair

Indexer
Francy Puthiry

Content Development Editor
Lawrence Veigas

Graphics
Jason Monteiro

Technical Editor
Tiksha Sarang

Production Coordinator
Deepika Naik

www.EBooksWorld.ir

About the Author
Prabhakaran Anbazhagan is a Microsoft Solution Architect living in Chennai, India. His
passion for programming started while creating a website for his school, and that's where
the never-ending journey started. He became the secretary of a technology group in college,
creating websites yet again, automating symposiums, and much more.

He started his career at a prestigious product-based company; his knowledge was respected
and recognized by his seniors, who let him develop tools and automation to sharpen his
talents. Lucky guy! People hardly ever get to nurture their talent, but he got a handful of
opportunities to sharpen his skills and become a Solution Architect, becoming a jack of all
trades but still an expert in .NET.

Prabhakaran has more than 12 years of IT experience in architecting, designing, and
developing mission-critical desktop, web, and mobile applications. He has experience in
full-stack development spanning ASP.NET MVC, Web API, C#, Mobility expert in Swift,
Objective-C, Blackberry Cascades, hybrid apps, SharePoint, JavaScript, jQuery, and
MEAN.JS.

I would like to thank my lovely wife, Girija, for standing beside me when I took the decision
to write this book. She compromised a lot of quality time and was there beside me
throughout this journey, and I dedicate this book to her. I also want to thank my wonderful
children, Venba and Inba. They were my stress busters in hectic weekends, and I hope one
day they will understand why I was busy with my laptop instead of playing with them. I'd
like to thank my parents for taking care of the kids along with my wife while I was hooked
on my laptop. My family, including my in-laws, have always supported me in authoring
this book, and I really appreciate it.

www.EBooksWorld.ir

About the Reviewers
Jason De Oliveira works as a CTO for MEGA International (http:/ ​/​www. ​mega. ​com), a
software company in Paris (France), providing modeling tools for business transformation,
enterprise architecture, and enterprise governance, risk, and compliance management. He is
an experienced manager and senior solutions architect, with high skills in software
architecture and enterprise architecture.

He loves sharing his knowledge and experience via his blog, speaking at conferences,
writing technical books, writing articles in the technical press, giving software courses as
MCT, and coaching co-workers in his company. He frequently collaborates with Microsoft
and can often be found at the Microsoft Technology Center (MTC) in Paris.

Microsoft has awarded him for more than 6 years with the Microsoft® Most Valuable
Professional (MVP C#/.NET) award for his numerous contributions to the Microsoft
community. Microsoft seeks to recognize the best and brightest from technology
communities around the world with the MVP Award. These exceptional and highly
respected individuals come from more than 90 countries, serving their local online and
offline communities and having an impact worldwide.

Feel free to contact him via his blog if you need any technical assistance or want to talk
about technical subjects (http:/ ​/​www. ​jasondeoliveira. ​com).

Jason has worked on the following books:

.NET 4.5 Expert Programming Cookbook (English)
WCF 4.5 Multi-tier Services Development with LINQ to Entities (English)
.NET 4.5 Parallel Extensions Cookbook (English)
WCF Multi-layer Services Development with Entity Framework (English)
Visual Studio 2013: Concevoir, développer et gérer des projets Web, les gérer avec TFS
2013 (French)

I would like to thank my lovely wife, Orianne, and my beautiful daughters, Julia and
Léonie, for supporting me in my work and for accepting long days and short nights during
the week, and, sometimes, even during the weekend. My life would not be the same without
them!

www.EBooksWorld.ir

http://www.mega.com/
http://www.mega.com/
http://www.mega.com/
http://www.mega.com/
http://www.mega.com/
http://www.mega.com/
http://www.mega.com/
http://www.mega.com/
http://www.mega.com/
http://www.jasondeoliveira.com
http://www.jasondeoliveira.com
http://www.jasondeoliveira.com
http://www.jasondeoliveira.com
http://www.jasondeoliveira.com
http://www.jasondeoliveira.com
http://www.jasondeoliveira.com
http://www.jasondeoliveira.com
http://www.jasondeoliveira.com

Alvin Ashcraft is a software developer living near Philadelphia, PA. He has dedicated his
22-year career to building software with C#, Visual Studio, WPF, ASP.NET,
HTML/JavaScript, UWP, and Xamarin apps and SQL Server. He has been awarded as a
Microsoft MVP nine times; once for Software Architecture, seven times for C# and Visual
Studio & Tools, and for Windows Dev in 2018-2019. You can read his daily links for .NET
developers on his blog at alvinashcraft.com and UWP App Tips blog at www.uwpapp.tips.

He currently works as a Principal Software Engineer for Allscripts, developing clinical
healthcare software. He has previously been employed with several large software
companies, including Oracle, Genzeon, and Corporation Service Company. There, he
helped create software solutions for financial, business, and healthcare organizations using
Microsoft platforms and solutions.

He was a technical reviewer for NuGet 2 Essentials and Mastering ASP.NET Core 2.0 by
Packt.

I would like to thank my wonderful wife, Stelene, and our three amazing daughters for
their support. They were very understanding while I read and reviewed these chapters on
evenings and weekends to help deliver a useful, high-quality book for the ASP.NET Core
developers.

www.EBooksWorld.ir

https://www.alvinashcraft.com/
http://www.uwpapp.tips/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/​/​www.​amazon. ​com/ ​dp/ ​1788294130.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

www.EBooksWorld.ir

https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130
https://www.amazon.com/dp/1788294130

To my lovely wife Girija, wonderful kids Venba and Inba

www.EBooksWorld.ir

Table of Contents
Preface 1

Chapter 1: Kickstart - Introduction to Entity Framework Core 7

Prerequisites 8
Creating a new project 11

The Start page 11
The File menu 12
Structuring the web app 15

Installing Entity Framework 17
Data models 19

Post entity 19
Database context 20
Registering the context in services (.NET Core DI) 21
Creating and seeding databases 22
CRUD operations 26
Summary 34

Chapter 2: The Other Way Around – Database First Approach 35

Preparing the database 36
Blog entity script 36
Post entity script 36

Creating new project 40
Installing Entity Framework 40

Reverse engineering the database 42
Configuring data context 43
Working with the Blog entity 44
Working with the Post entity 45

Registering context in services (.NET Core DI) 45
Refactoring the OnConfiguring() method 46
Refactoring the ConfigureServices method 46
The appsettings.json setting 47

Performing CRUD operations 48
Creating controller action 51
Edit controller action 53
The Delete view 55

www.EBooksWorld.ir

Table of Contents

[ii]

Summary 57

Chapter 3: Relationships – Terminology and Conventions 58

Understanding relationship terms 59
Data models 59

Blog entity 59
The Post entity 59

Principal entity 60
Principal key 61
Dependent entity 63
Foreign key 64
Navigation property 65

Collection navigation property 66
Reference navigation property 67
Inverse navigation property 68

Conventions in a relationship 69
Fully-defined relationships 69

Fully-defined relationships - under the hood 70
No foreign key property 75

No foreign key property - under the hood 76
Single navigation property 77
Foreign key 78
Inverse property 79

Summary 80

Chapter 4: Building Relationships – Understanding Mapping 81

Relationships 82
The one-to-one relationship 83

Building one-to-one relationships using the Fluent API 85
The one-to-many relationship 88
The many-to-many relationship 94

Building many-to-many relationship using the Fluent API 97
Fluent API 99

Identifying navigation property and inverse navigation 99
Identifying the single navigation property 100
Relationship-building techniques 102

Building relationship using a foreign key 102
Building relationships using a principal key 103
Building relationships using the IsRequired method 104

Cascade delete 105
Data migration issue with EF Core 2.0 107

Summary 109

www.EBooksWorld.ir

Table of Contents

[iii]

Chapter 5: Know the Validation – Explore Inbuilt Validations 110

Diving into built-in validations 111
Required field validation 112

Incorporating the Required validation in blogging system models 118
EmailAddress field validation 118

Incorporating EmailAddress validation in blogging system models 124
Compare field validation 124

Incorporating the Compare validation in blogging system models 126
Url field validation 127

Incorporating Url validation in blogging system models 130
MinLength field validation 131
MaxLength field validation 133
RegularExpression field validation 135
Summary 137

Chapter 6: Save Yourself – Hack Proof Your Entities 138

Client-side validation 139
Validating data without client-side scripting 140

Server-side validation 144
Manual validation 146

Custom validation 147
Creating client-side logic for custom validation 153

Remote validation 158
Summary 164

Chapter 7: Going Raw – Leveraging SQL Queries in LINQ 165

Basic raw SQL queries 166
Building parameterized queries 171
Composing with LINQ 177
Executing SQL query without a DBSet or POCO 184
Summary 189

Chapter 8: Query Is All We Need – Query Object Pattern 190

Introduction to query objects 191
Improving repositories with the query object pattern 194

Introduction to repositories 194
Solution to the repository assignment 196

Incorporating the query object pattern into repositories 198
List query object support in the repository 198
Single query object support in the repository 201
Solution to the repository with the queries assignment 205

www.EBooksWorld.ir

Table of Contents

[iv]

Composing queries with commands 206
Solution to the command queries assignment 214

Enhancing queries with expression trees 214
Solution to the expression trees assignment 216

Summary 218

Chapter 9: Fail Safe Mechanism – Transactions 219

Default behavior of a transaction 220
Adding tags support in the blogging system 220
Leveraging default transaction behavior 222

Creating a simple transaction 228
Creating a cross-context transaction 231

File upload support to the blogging system 231
Limitations to the transaction scope 237
Custom transaction scope support 239
Adding date picker support to the blogging system 243

Leveraging transactions between multiple technologies 245
Recent posts support to the blogging system 245
Anonymous posts list and individual blog post 246
Listing comments 248
Adding comments using external database transactions 250

Summary 254

Chapter 10: Make It Real – Handling Concurrencies 255

Handling concurrency in EF 256
Understanding the concurrency conflicts 257

Optimistic concurrency 260
Pessimistic concurrency 261

Introducing concurrency tokens 262
Non-timestamp based concurrency tokens 265

Configuring non-timestamp tokens through data annotation 265
Configuring non-timestamp tokens through Fluent API 272

Timestamp-based concurrency tokens 272
Configuring timestamp tokens through data annotation 273
Configuring timestamp tokens through Fluent API 280

Handling concurrency conflicts 281
Applying optimistic concurrency 281

Database wins 282
Client wins 283
User-specific custom resolution 284

Applying pessimistic concurrency 287

www.EBooksWorld.ir

Table of Contents

[v]

Summary 292

Chapter 11: Performance – It's All About Execution Time 293

The AsNoTracking() method 294
How does tracking work? 294

No-tracking queries 295
Projections 298

Detecting changes 299
Asynchronous operations 300

Transactions leveraging asynchronous operations 302
Unnecessary volume returned 304
The N+1 Select problem 306
More data than required 312
Mismatched data types 316
Missing indexes 320
Summary 330

Chapter 12: Isolation – Building a Multi-Tenant Database 331

Authentication in the blogging system 332
Row-Level Security 338

Filter predicate 341
Block predicate 342

Multi-tenancy 344
Standalone 344
Database-per-tenant 345
Shared multi-tenant 347
Dive into multi-tenancy 348
Blocking cross-tenant write operation 351

Summary 356

Index 357

www.EBooksWorld.ir

Preface
Being able to create and maintain data-oriented applications has become crucial in modern
programming. This is why Microsoft came up with Entity Framework (EF), so architects can
optimize storage requirements while also writing efficient and maintainable application
code. This book is a comprehensive guide that will show you how to utilize the power of
the EF to build efficient .NET Core applications. It not only teaches all the fundamentals of
EF Core, but also demonstrates how to use it practically so you can implement it in your
software development.

This book is divided into three modules. The first module focuses on building entities and
relationships. Here, you will also learn about different mapping techniques, which will help
you choose the one best suited to your application design. Once you have understood the
fundamentals of EF, you will move on to learn about validation and querying in the second
module. It will also teach you how to execute raw SQL queries and extend the EF to
leverage Query Objects using the Query Object Pattern. The final module of the book
focuses on performance optimization and managing the security of your application. You
will learn to implement fail-safe mechanisms using concurrency tokens. The book also
explores row-level security and multitenant databases in detail.

By the end of the book, you will be proficient in implementing EF on your .NET Core
applications.

What this book covers
Chapter 1, Kickstart – Introduction to Entity Framework Core, teaches you about
installing/configuring Entity Framework Core in .NET Core applications. It guides us
through performing CRUD (Create/Read/Update/Delete) operations.

Chapter 2, The Other Way Around – Database First Approach, explains about reverse
engineering and existing database using EF Core. It guides us through performing
migrations and also helps us in retaining model changes that won't be lost during
migrations.

Chapter 3, Relationships – Terminology and Conventions, provides knowledge about
relationship terms related to entities, keys, and properties. We will also see different
conventions available with respect to relationships.

www.EBooksWorld.ir

Preface

[2]

Chapter 4, Building Relationships – Understanding Mapping, helps you explore multiple
relationship techniques and explains how to leverage them in your application design. We
will also explore how to create relationships using Fluent API.

Chapter 5, Know the Validation – Explore Inbuilt Validations, teaches you about how
validation works in the framework, explores built-in validations, shows how they should be
configured, covers the patterns each validation expects from the user, and shows how the
validation error is rendered by the MVC engine.

Chapter 6, Save Yourself – Hack Proof Your Entities, helps us with adding validations,
explains why we need validations on both the client side and server side, and shows how to
achieve it. It also introduces custom validation, and how to create client-side logic for
validation and remote validation.

Chapter 7, Going Raw – Leveraging SQL Queries in LINQ, teaches you about executing Raw
SQL Queries while also teaching you how to execute parameterized queries, compose with
LINQ, and, finally, execute without a DbSet or POCO object.

Chapter 8, Query Is All We Need – Query Object Pattern, helps you understand the Query
Object pattern, and extend EF to leverage query objects.

Chapter 9, Fail Safe Mechanism – Transactions, helps you understand the existing behavior of
transactions, how to create regular/cross-context transactions, and how to use external
DBTransactions.

Chapter 10, Make It Real – Handling Concurrencies, elaborates on how concurrency is wired
in EF and how to handle it. It explains concurrency tokens in detail and shows how to
create a fail-safe mechanism using it.

Chapter 11, Performance – It's All About Execution Time, teaches you how to improve EF's
performance by properly utilizing the framework, reducing abuses, and much more.

Chapter 12, Isolation – Building a Multi-Tenant Database, explores row-level security and
multi-tenant databases in detail.

What you need for this book
To work with this text, we assume you are familiar with .NET Core and C#.

www.EBooksWorld.ir

Preface

[3]

You require the following tools to successfully execute the code in this book:

Visual Studio 2017 Express
SQL Server 2017 Express
SQL Server 2017 Developer

Who this book is for
This book is for .NET Core developers who would like to integrate EF Core in their
application. Prior knowledge of .NET Core and C# is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in a text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "The new column should
be included in the Edit method of PostController."

A block of code is set as follows:

 public interface IPostDetailQueryHandler
 {
 Task<Post> Handle(PostDetailQuery query);
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 public async Task<IActionResult> Index()
 {
 return View(await _context.Blogs.FromSql("Select *
 from dbo.Blog").ToListAsync());
 }

www.EBooksWorld.ir

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "We can see from the
following screenshot that the Url value is unchanged."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files e-mailed directly to you.

www.EBooksWorld.ir

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Mastering- ​Entity- ​Framework- ​Core. We also have other code bundles
from our rich catalog of books and videos available at https:/ ​/​github. ​com/
PacktPublishing/​. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ ​/ ​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​MasteringEntityFrameworkCore20_ ​ColorImages. ​pdf.

www.EBooksWorld.ir

https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEntityFrameworkCore20_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http:/​/ ​www.​packtpub. ​com/ ​submit- ​errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/ ​books/
content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Kickstart - Introduction to Entity

Framework Core
I still remember the days when we were spending quite a lot of time on working
with relational databases rather than just focusing on solving business problems; those days
are definitely gone. To elaborate, let's jot down the issues we had before ORM:

Data access layers were not portable, which made it hard to change from one
platform to another.
There were no abstractions, which forced us to write manual mapping between
objected-oriented objects and data entities.
Vendor-specific SQL statements, which requires knowledge to port between
different RDBMS systems.
Relied heavily on triggers and stored procedures.

The entire product development process shifted towards tools and open source platforms,
and even Microsoft took that path from .NET Core onward. If we keep spending time on
writing code which could be achieved through tools, we might end up looking like
cavemen.

The Entity Framework was created to address this concern; it was not introduced with the
initial .NET framework but rather was introduced in .NET Framework 3.5 SP1.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[8]

If we look closely, it was obvious that the .NET team built it for the following reasons:

To minimize the time spent by the developers/architects on stuff like abstractions
and the portable data access layer
So that the developers do not require vendor specific SQL knowledge
So that we can build object-oriented business logic by eradicating triggers and
SPs

This book uses Visual Studio 2017 (the latest at the time of writing) and
ASP.NET Core 2.0 MVC with Entity Framework 2.0. Even though Entity
Framework 2.0 is the latest version, it is still an evolving one, so it would
take time for the .NET team to develop all the existing features of Entity
Framework 6.2 based on the full .NET Framework.

We will cover the following topics here:

Prerequisites
Creating a new project
Installing Entity Framework 2.0
Data models
Database context
Registering the context in services (.Net Core DI)
Creating and seeding databases
Performing CRUD operations

Prerequisites
.NET Core, the open source platform, paved the way for multi-platform support in Visual
Studio 2017. The editors came in different flavors, supporting both platform-specific and
cross-platform IDEs:

Visual Studio: An exclusive edition for Windows with Community, Professional
and Enterprise editions:

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[9]

Visual Studio 2017 IDE can be downloaded directly from https:/ ​/​www.
visualstudio. ​com.

Visual Studio for Mac: An exclusive edition for macOS, which was actually
inherited from Xamarin Studio (Xamarin was acquired by Microsoft):

www.EBooksWorld.ir

https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com

Kickstart - Introduction to Entity Framework Core Chapter 1

[10]

Visual Studio for Mac can be downloaded from https:/ ​/​www. ​visualstudio. ​com/
vs/​visual- ​studio- ​mac/ ​.

Visual Studio Code: The cross-platform editor from Microsoft for Windows,
Linux, and macOS:

Download the desired version/edition of Visual Studio Code from https:/ ​/​www.
visualstudio. ​com/ ​downloads/ ​.

The Visual Studio 2017 installer is segregated into workloads, individual components, and
language packs. We will be installing and using Visual Studio Community 2017 with the
workloads ASP.NET and web development and .NET Core cross-platform development.
The workload is a combination of one or more individual components which can also be
installed from the Individual components tab of the installer, as follows:

www.EBooksWorld.ir

https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/vs/visual-studio-mac/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

Kickstart - Introduction to Entity Framework Core Chapter 1

[11]

New Visual Studio installer with workloads

We have looked at the different flavors/editions of Visual Studio available to us, and we
will be using Visual Studio Community on our journey, which is free of charge for private
and test purposes. It is up to the reader to pick an edition which suits their needs (the tools
and scaffolding available in the IDE might differ).

Creating a new project
Open Visual Studio and create a new project either from the File menu or from the
Start page.

The Start page
From the New Project section, create a new project using any one of the following
approaches:

Select Create new project.... On the left pane, select Templates | Visual C# |1.
.NET Core. Select the ASP.NET Core Web Application template from the list.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[12]

Search the project templates for the ASP.NET Core Web Application and select2.
it. As displayed in the following screenshot, enter MasteringEFCore.Web as the
Name and MasteringEFCore as the Solution name and click OK:

New project

The File menu
From the File menu, perform the following steps:

Select New | Project.1.
On the left pane, select Templates | Visual C# | .NET Core.2.
Select the ASP.NET Core Web Application template from the list.3.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[13]

As displayed in the previous screenshot, enter4.
MasteringEFCore.CodeFirst.Starter as the Name and
MasteringEFCore as the Solution name and click OK.

Irrespective of the previous two approaches, the selected template will
provide New ASP.NET Web Application (.NET Core) dialog, to let us choose
from the following:

Empty
Web API: Creates a Web API project
Web Application (Model-View-Controller): Creates an MVC Web
application which also allows us to create APIs

We will be selecting Web Application (Model-View-Controller) from the dialog
as shown here:

New ASP.NET web project dialog

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[14]

In our case, select .NET Core, ASP.NET Core 2.0, and the Web Application5.
(Model-View-Controller) template, and also keep the Authentication set to No
Authentication. Click OK:

ASP.NET Core web application

The generated web application displays a tabbed interface which is new to us (instead of
displaying index.cshtml). It allows us to access documentation, connect to any service or
even decide on publishing options right from the start page.

If we look closely, we will notice that Visual Studio was silently restoring
the packages, and almost everything was part of a package in .NET Core.
No more heavyweight framework which always loads tons of DLLs even
though we don't require them! Now everything is broken into lighter
packages which we could utilize based on our requirements.

I know getting into MVC would be a little outside of the scope of this chapter, but let's dig
into a few details before we deep dive into the Entity Framework.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[15]

Structuring the web app
A .NET Core web application is composed of the following folders:

Dependencies: SDK, server, and client-side dependencies
wwwroot: All static resources should reside here
Connected Services: To connect external services available in Marketplace
launchSettings.json: Settings required to launch a web application
appSettings.json: Configurations such as logging and connection strings
bower.json: Client-side dependencies should be configured here
bundleConfig.json: Bundling is moved to the JSON configuration now
Program.cs: Everything starts from Main() and any program can be made into
a web application using the WebHostBuilder API
Startup.cs: For adding and configuring startup services like MVC support,
logging, static files support and so on
Controllers, Views: Part of MVC and contains actions and corresponding
views

The structure we had discussed so far is illustrated in the following screenshot:

ASP.NET Core Web Application structure

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[16]

The following highlighted sections in Views\Shared_Layout.cshtml should be
modified with the desired application name:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0" />
 <title>@ViewData["Title"] - MasteringEFCore.Web</title>
 ...
 </head>
 <body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 ...
 <a asp-area="" asp-controller="Home" asp-action="Index"
 class="navbar-brand">MasteringEFCore.Web
 ...
 <div class="container body-content">
 ...
 <footer>
 <p>© 2017 - MasteringEFCore.Web</p>
 </footer>
 ...
 </body>

We have created a .NET Core web application with no authentication and explored the
structure of the project, which might help us understand MVC in .NET Core. If we expand
the dependencies, it is evident that we don't have built-in support for Entity Framework
(EF) Core. We will look at the different ways of identifying and installing the packages.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[17]

Installing Entity Framework
The Entity Framework package should be installed as part of the NuGet package, and can
be done in the following ways:

Go to the Package Manager Console (Tools | NuGet Package Manager |1.
Package Manager Console), select the project where the package should be
installed:

Add the following command in the PM Console to install the package on the selected
project:

 Install-Package Microsoft.EntityFrameworkCore.SqlServer

The Package Manager Console will be opened as shown in the following screenshot, Kindly use this space to
install the package using the preceding command:

PM console

Go to the Package Management tab (either from Tools or from2.
Dependencies/Project).

For a solution-wide installation, and availability for all projects that are
part of the solution, go to Tools | NuGet Package Manager | Manage
NuGet Packages for Solution... or right-click on the solution from
Solution Explorer and select Manage NuGet Packages for Solution...
For project wise installation, right-click on dependencies from
the desired project or right-click on the desired project and
select Manage NuGet Packages...

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[18]

Search for Microsoft.EntityFrameworkCore.SqlServer, select the stable3.
version 2.0.0 and install the package. It contains all the dependent packages as
well (key dependencies such as System.Data.SqlClient and
Microsoft.EntityFrameworkCore.Relational):

NuGet package manager window

We have looked at different ways of using the Package Manager console so far, and
installed packages related to EF Core. In the next section, we will start building the schema
and later consume the created entities using EF.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[19]

Data models
When we think about creating data models in the .NET world way before creating the
database, we are a little bit off the legacy track, and yes, it's been widely called the Code-
First approach. Let's create entity classes using code-first for the Blogging application, and
put them into the Models folder under the project.

Blog entity
Create a Blog.cs class file and include the following properties:

 public class Blog
 {
 public int Id { get; set; }
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }

The Entity Framework will look for any property with the name Id or TypeNameId and
marks them as the primary key of the table. The Posts property is a navigation property
which contains Post items related to this Blog entity. It doesn't matter whether we use
ICollection<T> or IEnumerable<T> for the navigation property, EF will create a
collection for us, HashSet<T> by default. We could also create a concrete collection using
List<T>.

Post entity
Create a Post.cs class file and include the following properties:

 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 }

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[20]

The BlogId property is a foreign key created for the corresponding Blog navigation
property. As you may notice in this case, we have an individual item as the navigation
property, as opposed to a list in the Blog entity. This is where relationship type comes into
the picture, which we will be exploring more in Chapter 3, Relationships – Terminology and
Conventions.

EF will allow us to create an individual navigation property without any
foreign key in the entity. In those cases, EF will create a foreign key for us
in the database table using the BlogId pattern (the Blog navigation
property along with its Id primary key). EF will generate them
automatically for all navigational properties against the Id primary key,
but it also allows us to name it differently and decorate it via a custom
attribute.

We have built the schema required for the application so far, but it was not configured in
EF, so let's see how the data models get connected/configured with EF using database
context.

Database context
The main entry point for EF would be any class that inherits the
Microsoft.EntityFrameworkCore.DbContext class. Let's create a class called
BlogContext and inherit the same. We will keep the context and other EF related
configurations inside the Data folder. Create a Data folder in the project, and also create
BlogContext.cs inside this folder:

 public class BlogContext: DbContext
 {
 public BlogContext(DbContextOptions<BlogContext> options)
 : base(options)
 {
 }

 public DbSet<Blog> Blogs { get; set; }
 public DbSet<Post> Posts { get; set; }
 }

EF interprets DbSet<T> as a database table; we have created a DbSet<T> property for all
the entities for our blogging system. We usually name the properties in plural form as the
property will hold list of entities, and EF will be using those property names while creating
tables in the database.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[21]

Creating a DbSet for a parent entity is enough for EF to identify the
dependent entities and create corresponding tables for us. EF will be using
plural form while deciding table names.

.NET developers and SQL developers debate plural table names and often end up creating
entities with two different conventions. As a framework, EF supports those scenarios as
well. We could override the default plural naming behavior using Fluent API. Refer to the
following Fluent API code:

 public class BlogContext: DbContext
 {
 ...
 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Blog>().ToTable("Blog");
 modelBuilder.Entity<Post>().ToTable("Post");
 }
 }

We have created a database context and configured the data models in it. You may notice
we cannot see any connection string pointing to the database. It could have been done using
the OnConfiguring() method with a hard-coded connection string, but it would not be an
ideal implementation. Rather, we will use built-in dependency injection support from .NET
Core to configure the same in the next section.

Registering the context in services (.NET
Core DI)
The dependency injection support in the ASP.NET framework came too late for the .NET
developers/architects who were seeking shelter from third-party tools such as Ninject,
StructureMap, Castle Windsor, and so on. Finally, we gained support from ASP.NET Core.
It has most of the features from the third-party DI providers, but the only difference is the
configuration should happen inside the Startup.cs middleware.

First thing's first, let's configure the connection string in our new appSettings.json:

 "ConnectionStrings": {
 "DefaultConnection": "Server
 (localdb)\\mssqllocaldb;Database=MasteringEFCoreBlog;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 },

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[22]

Then configure the context as a service (all service configuration goes into Startup.cs). To
support that, import MasteringEFCore.Web.Data
and Microsoft.EntityFrameworkCore in the Startup class. Finally, add the DbContext
to the services collection by creating and including DbContextOptionsBuilder using
UseSqlServer():

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddDbContext<BlogContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("
 DefaultConnection")));
 services.AddMvc();
 }

We will be using a lightweight version of SQL Server called LocalDB for
development. This edition was created with the intention of development,
so we shouldn't be using it in any other environments. It runs with very
minimal configuration, so it's invoked while running the application. The
.mdf database file is stored locally.

We have configured the database context using dependency injection, and at this stage, we
are good to go. We are almost there. As of now, we have the schema required for the
database and the context for EF and services being configured. All of these will end up
providing an empty database with literally no values in it. Run the application and see that
an empty database is created. It will be of no use. In the next section, let's see how we can
seed the database with master data/create tables with sample data, which can be consumed
by the application.

Creating and seeding databases
We have created an empty database, and we should have a mechanism by which we can
seed the initial/master data that might be required by the web application. In our case,
we don't have any master data, so all we can do is create a couple of blogs and
corresponding posts. We need to ensure whether the database was created or not before we
start adding data to it. The EnsureCreated method helps us in verifying this. Create a
new DbInitializer.cs class file inside the Data folder and include the following code:

 public static void Initialize(BlogContext context)
 {
 context.Database.EnsureCreated();
 // Look for any blogs.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[23]

 if (context.Blogs.Any())
 {
 return; // DB has been seeded
 }
 var dotnetBlog = new Blog {
 Url = "http://blogs.packtpub.com/dotnet" };
 var dotnetCoreBlog = new Blog { Url =
 "http://blogs.packtpub.com/dotnetcore" };
 var blogs = new Blog[]
 {
 dotnetBlog,
 dotnetCoreBlog
 };
 foreach (var blog in blogs)
 {
 context.Blogs.Add(blog);
 }
 context.SaveChanges();
 var posts = new Post[]
 {
 new Post{Id= 1,Title="Dotnet 4.7 Released",Blog = dotnetBlog,
 Content = "Dotnet 4.7 Released Contents", PublishedDateTime =
 DateTime.Now},
 new Post{Id= 1,Title=".NET Core 1.1 Released",Blog=
 dotnetCoreBlog,
 Content = ".NET Core 1.1 Released Contents", PublishedDateTime
 =
 DateTime.Now},
 new Post{Id= 1,Title="EF Core 1.1 Released",Blog=
 dotnetCoreBlog,
 Content = "EF Core 1.1 Released Contents", PublishedDateTime =
 DateTime.Now}
 };
 foreach (var post in posts)
 {
 context.Posts.Add(post);
 }
 context.SaveChanges();
 }

In Program.cs, initialize DbInitializer in Main() by creating the BlogContext using
dependency injection and pass the same to the DbInitializer.Initialize():

 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);
 using (var scope = host.Services.CreateScope())

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[24]

 {
 var services = scope.ServiceProvider;
 try
 {
 var context = services.GetRequiredService<BlogContext>();
 DbInitializer.Initialize(context);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred initializing
 the database.");
 }
 }
 host.Run();
 }

One last piece of the puzzle is missing; we need to add migration whenever we
add/manipulate data models, without which EF doesn't know how the database needs to be
created/updated. The migration can be performed with the NuGet Package Manager
console:

 Add-Migration InitialMigration

The preceding statement allows EF to create a migration file with tables created from the
models configured in the DbContext. This can be done as follows:

 Update-Database

The preceding statement applies the migration created to the database. At this moment we
are almost done with the EF configuration. We should run the application and verify the
database regarding whether or not the proper schema and seed data were updated.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[25]

We could verify the table whether it contains seeded data using the following SQL Server
Object Explorer:

Database created successfully

We can see that the schema was created properly inside the MSSQLLocalDB instance, and
we should expand the tables and verify whether the seed data was updated or not. The seed
data of the Blog entity was updated properly, which was verified with the following
screenshot:

Blog table created with configured schema and seed data

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[26]

The seed data of the Post entity was updated properly, which was verified with the
following screenshot.

Post table created with configured schema and seed data

We have ensured that the database was created with the proper schema and seed data, and
now we should start consuming the entities. In the next section, let's see how we can
consume the entities in MVC using scaffolding rather than building everything on our own.

CRUD operations
Creating CRUD (Create/Read/Update/Delete) operations manually would take quite a long
time. It's a repetitive operation that could be automated. The process of automating this
CRUD operation is referred to as scaffolding:

Right-click on the Controllers folder and select Add | New Scaffolded Item.1.
A dialog box will be shown to Add MVC Dependencies.2.
Select Minimal Dependencies from the dialog box.3.
Visual Studio adds the NuGet packages required to scaffold the MVC Controller
and includes the Microsoft.EntityFrameworkCore.Design and the
Microsoft.EntityFrameworkCore.SqlServer.Design packages. It also
includes ScaffoldingReadme.txt, which is not required. We could just delete
it.

Once the minimal setup is completed, we need to build/rebuild the
application otherwise the same Add MVC Dependencies dialog will be
displayed instead of the Add Scaffold dialog.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[27]

At this point, the tools required to scaffold Controller and View are included by Visual
Studio, and we are ready to start the process of scaffolding again:

Right-click on the Controllers folder and select Add | New Scaffolded Item1.
In the Add Scaffold dialog, select MVC Controller with views, using Entity2.
Framework as follows:

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[28]

In the Add Controller dialog, select the appropriate Model and Data context3.
class (Blog and BlogContext in our case), along with
the BlogsController auto-generated controller name:

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[29]

Click Add, shown as follows:4.

Scaffolded items

The scaffolded code includes the CRUD operation in the MVC Controllers and5.
Views. Examining the scaffolded MVC code would be out of the scope of this
chapter, so we will focus on the EF scaffolded part alone:

 public class BlogsController : Controller
 {
 private readonly BlogContext _context;
 public BlogsController(BlogContext context)
 {
 _context = context;
 }
 // GET: Blogs
 public async Task<IActionResult> Index()
 {
 return View(await _context.Blogs.ToListAsync());
 }
 ...
 }

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[30]

In the preceding code block, you may notice that the dependency injection was6.
used when passing the BlogContext (MasteringEFCoreBlog database context)
to the controller, which was also used in the Index() action:

 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home"
 asp-action="Index">Home
 <a asp-area="" asp-controller="Blogs"
 asp-action="Index">Blogs
 ...

We need to update the navigation, as displayed in the preceding code, in7.
Views\Shared_Layout.cshtml, without which we won't be able to view the
CRUD operations in the Blogs module. All set. Let's run and see the CRUD
operations in action:

Updated navigation menu with Blogs

The preceding screenshot is the home page of the ASP.NET Core web application. We have
highlighted the Blogs hyperlink in the navigation menu. The Blogs hyperlink would take
the user to the Index page, which would list all the blog items:

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[31]

Blogs list

 Let's try to create a blog entry in the system, as follows:

Creating a Blog

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[32]

The Create page provides input elements required to populate the entity which needs to be
created, so let's provide the required data and verify it:

Blog detail page

The Details page displays the entity, and the preceding screenshot displays the entity that
was just created. The Edit page provides input elements required and also pre-populates
with existing data, which could be edited by using and updating the data:

Editing a Blog

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[33]

The Delete page provides a confirmation view that lets the users confirm whether or not
they would like to delete the item:

Deleting a Blog

This Delete page will be displayed when the user selects
the Delete hyperlink in the item row on the list page. Instead of deleting
the blog directly from the action, we will be routing the user to the Delete
page to get confirmation before performing the action.

We have identified how to perform CRUD operations using EF Core; since exploring MVC
was out of the scope of this book. We stuck to analyzing scaffolding related to EF only.

www.EBooksWorld.ir

Kickstart - Introduction to Entity Framework Core Chapter 1

[34]

Summary
We started our journey with Entity Framework by knowing what difference it made when
compared with the legacy approach at a high level. We also looked at building the .NET
environment and creating and configuring the .NET Core web application with Entity
Framework. We explored NuGet packages and package manager, which will be extensively
used in the entire book. We also identified and installed the packages required for the
Entity Framework in this chapter. Using the Code-First approach, we built the schema,
configured them with EF and created and seeded the database with schema and seed data.
Finally, we consumed the built schema in our MVC application using the scaffolding tool
(which was installed along the way), and also looked at the usage of the database context in
the controllers. The Code-First approach can be used for building new systems, but we need
a different approach for existing systems. That's where the Database-First approach comes
into the picture. Let's explore this in Chapter 2, The Other Way Around – Database First
Approach.

www.EBooksWorld.ir

2
The Other Way Around –
Database First Approach

In Chapter 1, Kickstart - Introduction to Entity Framework Core, we were exposed to the Entity
Framework (EF) Code-First approach, which might not be useful in all scenarios. We need a
provision to reverse engineer existing databases using EF Core, which guides us in
performing migrations and helps us in retaining model changes that won't be lost during
migrations.

When EF was first released, it supported only the database-first approach, which means we
could use the framework only on the existing database. As opposed to the Code-
First approach discussed in the previous chapter, the database-first approach will be widely
used while we decide to use EF in the existing system.

The topics we will cover here are:

Preparing the database
Creating a new project
Installing Entity Framework
Reverse engineering the database
Registering context in services (.Net Core DI)
Performing CRUD operations

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[36]

Preparing the database
We will use the same blogging system used in Chapter 1, Kickstart - Introduction to Entity
Framework Core. In this case, we will create SQL queries required for the existing database
and then we will build our blogging system using the database-first approach. Let's write
the SQL query of Blog and Post, which were required for the blogging system.

Blog entity script
We will create a Blog table, then alter it to add a primary key constraint, and finally, insert
some dummy data into the table. The complete script is available in the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Mastering- ​Entity- ​Framework- ​Core/ ​blob/
master/​Chapter%202/ ​Final/ ​MasteringEFCore. ​DatabaseFirst. ​Final/ ​dbo. ​Blog. ​sql.

The script required for creating the Blog table and inserting the data is displayed as
follows:

 // Code removed for brevity
 CREATE TABLE [dbo].[Blog] (
 [Id] INT IDENTITY (1, 1) NOT NULL,
 [Url] NVARCHAR (MAX) NULL
);
 GO
 // Code removed for brevity
 INSERT INTO [Blog] (Url) VALUES
 ('http://blogs.packtpub.com/dotnet'),
 ('http://blogs.packtpub.com/dotnetcore'),
 ('http://blogs.packtpub.com/signalr')
 GO

We have looked at the Blog table SQL script, now let's look at the Post table script that will
introduce a non-clustered index and foreign key.

Post entity script
We will create a Post table and a non-clustered index for better performance, later alter
them to add a primary key and foreign key constraints, and finally, insert some dummy
data into the table. The complete script is available in the GitHub repository at https:/ ​/
github.​com/​PacktPublishing/ ​Mastering- ​Entity- ​Framework- ​Core/ ​blob/ ​master/
Chapter%202/​Final/ ​MasteringEFCore. ​DatabaseFirst. ​Final/ ​dbo. ​Post. ​sql.

www.EBooksWorld.ir

https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Blog.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql
https://github.com/PacktPublishing/Mastering-Entity-Framework-Core/blob/master/Chapter%202/Final/MasteringEFCore.DatabaseFirst.Final/dbo.Post.sql

The Other Way Around – Database First Approach Chapter 2

[37]

The script required for creating the Post table and inserting the data is displayed below:

 // Code removed for brevity
 CREATE TABLE [dbo].[Post] (
 [Id] INT IDENTITY (1, 1) NOT NULL,
 [BlogId] INT NOT NULL,
 [Content] NVARCHAR (MAX) NULL,
 [PublishedDateTime] DATETIME2 (7) NOT NULL,
 [Title] NVARCHAR (MAX) NOT NULL
);
 GO
 // Code removed for brevity
 INSERT INTO [Post] ([BlogId], [Title], [Content],
 [PublishedDateTime]) VALUES
 (1, 'Dotnet 4.7 Released', 'Dotnet 4.7 Released Contents',
 '20170424'),
 (2, '.NET Core 1.1 Released', '.NET Core 1.1 Released Contents',
 '20170424'),
 (2, 'EF Core 1.1 Released', 'EF Core 1.1 Released Contents',
 '20170424')
 GO

While inserting data time values, we should use the YYYYMMDD format,
such as 20170424, and if we are tuned with the DD-MM-YYYY hh:mm:ss
xm format, then we need to perform an explicit conversion, such
as convert(datetime,'24-04-2017 01:34:09 PM',5), otherwise we
would get the message, the conversion of a varchar data type to a
datetime data type resulted in an out-of-range value.

We need to figure out how to execute the previous script using LocalDB:

Open the SQL Server Object Explorer from the View menu.1.
Expand SQL Server and (localdb)\MSSQLLocalDB.2.
Right-click on Databases and select Add New Database.3.
In the Create Database dialog box, provide the Database Name as4.
MasteringEFCoreDbFirst and Database Location as your project path, and
click OK.
Expand Databases, right-click on the MasteringEFCoreDbFirst database, and5.
select New Query.

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[38]

Copy the Blog.sql content and paste it into the New Query window, and click6.
the execute icon or Ctrl+Shift+E:

The script execution of the Blog script is shown as follows:

Execute Blog.sql on the New Query window

Copy the Post.sql content and paste it in the New Query window, and click the7.
execute icon or Ctrl+Shift+E:

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[39]

The script execution of the Post script is shown here:

Execute Post.sql on New Query window

We have prepared the database for the Database-First approach; now let's see how we could
leverage Entity Framework on the existing database.

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[40]

Creating new project
We have exhaustively seen how to create a new project in Chapter 1, Kickstart - Introduction
to Entity Framework Core. Kindly refer to the steps involved in creating the project and use
the following project information:

Project name: MasteringEFCore.DatabaseFirst

Solution name: MasteringEFCore

Installing Entity Framework
The Entity Framework package inclusion and the steps involved were also
discussed extensively in Chapter 1, Kickstart - Introduction to Entity Framework Core. So let's
focus on the packages that are required for the reverse engineering (database-first
approach). The basic package required for the Entity Framework to integrate with SQL
Server is as follows:

Add the following command in the PM Console to install the following package:

 Install-Package Microsoft.EntityFrameworkCore.SqlServer

We could also search and install the Microsoft.EntityFrameworkCore.SqlServer
package using NuGet Package Manager window:

Microsoft.EntityFrameworkCore.SqlServer NuGet package

The packages required for the reverse engineering (auto-generating the models from the
database) are listed below, we could add the following command in the PM Console to
install these packages:

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[41]

 Install-Package Microsoft.EntityFrameworkCore.Tools
 Install-Package Microsoft.EntityFrameworkCore.SqlServer.Design

We could also search and install the preceding listed packages using NuGet Package
Manager window as shown here:

Microsoft.EntityFrameworkCore.Tools NuGet package

Install the Microsoft.EntityFrameworkCore.Tools package. This package exposes the
Entity Framework commands to the NuGet Package Manager console, with which we
could perform certain operations such as scaffolding database context:

Microsoft.EntityFrameworkCore.SqlServer.Design NuGet package

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[42]

Install the Microsoft.EntityFrameworkCore.SqlServer.Design package. This
package lets us scaffold the models from the SQL Server database.

At the time of writing,
Microsoft.EntityFrameworkCore.SqlServer.Design 2.0.0 was
available only as a preview release.

We have installed the packages required to reverse engineer the existing database entities in
EF Core. In the next section, we will start reverse engineering to configure EF Core against
the database.

Reverse engineering the database
Reverse engineering can be performed on the NuGet Package Manager console. We have
already seen how to open it, so just execute the following command to scaffold the context
and models files:

 Scaffold-DbContext "Server
 (localdb)\mssqllocaldb;Database=MasteringEFCoreDbFirst;
 Trusted_Connection=True;"
 Microsoft.EntityFrameworkCore.SqlServer -OutputDir Models

Sometimes we might get errors stating that The package could not be
located. The workaround would be opening the project in a separate
solution. If we get an Unable to open the database error, then providing
access in the SQL Management Studio (connecting the locals from the
studio) would resolve the issue. SQL Server Management Studio (SSMS)
is a free version and can be downloaded from https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​sql/ ​ssms/ ​download- ​sql- ​server- ​management- ​studio- ​ssms.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

The Other Way Around – Database First Approach Chapter 2

[43]

Please refer to the following screenshot:

The scaffolding process generates database context files and corresponding data models (in
our case, three files in total).

Configuring data context
The auto-generated database context (which is presented in the following code) will
include:

Virtual properties of the tables/entities to hold corresponding data.
The OnConfiguring method, which will configure EF with the database.
The OnModelCreating method, which will ensure certain constraints and
relationships are built while creating the database. It would not be used in our
database-first approach as we already have them in place.

The database context should contain the following configuration:

 public partial class MasteringEFCoreDbFirstContext : DbContext
 {
 public virtual DbSet<Blog> Blog { get; set; }
 public virtual DbSet<Post> Post { get; set; }
 protected override void OnConfiguring(DbContextOptionsBuilder
 optionsBuilder)
 {
 if (!optionsBuilder.IsConfigured)
 {
 // Move this connection string to config file later

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[44]

 ptionsBuilder.UseSqlServer(@"Server=
 (localdb)\mssqllocaldb;Database=MasteringEFCoreDbFirst;
 Trusted_Connection=True;");
 }
 }
 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 modelBuilder.Entity<Post>(entity =>
 {
 entity.HasIndex(e => e.BlogId).HasName("IX_Post_BlogId");
 entity.Property(e => e.Title).IsRequired();
 entity.HasOne(d => d.Blog).WithMany(p => p.Post)
 .HasForeignKey(d => d.BlogId);
 });
 }
 }

In case you have noticed the warning, we need to remove the section using dependency
injection, which will be performed in the Registering Context in Services (.NET Core
DI) section.

Working with the Blog entity
We have discussed in detail the Blog model in Chapter 1, Kickstart - Introduction to Entity
Framework Core, but still, the following highlighted part looks pretty new to us:

The Blog() constructor initializes the Post property, which ensures that the
collection has a concrete HashSet list created and ready to accept any new items
The Post property has a virtual keyword, which instructs EF to lazy load the
navigational property Post:

 public partial class Blog
 {
 public Blog()
 {
 Post = new HashSet<Post>();
 }
 public int Id { get; set; }
 public string Url { get; set; }
 public virtual ICollection<Post> Post { get; set; }
 }

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[45]

There is nothing much to explore in the Blog class so, let's move on to the Post class.

Working with the Post entity
In Chapter 1, Kickstart - Introduction to Entity Framework Core, even the Post model was
discussed in detail, except we have a virtual Blog property, which is nothing but a
navigational property:

 public partial class Post
 {
 public int Id { get; set; }
 public int BlogId { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public string Title { get; set; }
 public virtual Blog Blog { get; set; }
 }

We have seen the differences between the model created manually in Chapter 1, Kickstart -
Introduction to Entity Framework Core, and the auto-generated models. Let's see how the
database context configuration could be made generic rather than hardcoding the
connection string inside the code.

Registering context in services (.NET Core
DI)
The warning displayed in
the OnConfiguring(DbContextOptionsBuilder optionsBuilder) method needs to
be addressed. So let's remove that method (highlighted in the following code) and perform
configuration inside the Startup.cs file using dependency injection.

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[46]

Refactoring the OnConfiguring() method
If we recap on how we have configured the database context, the auto-generated code had a
hardcoded connection string used for configuration. To avoid it, we should have a
mechanism to pass on the database context options to the DbContext base class; let's see
how to do it:

 public partial class MasteringEFCoreDbFirstContext : DbContext
 {
 public virtual DbSet<Blog> Blog { get; set; }
 public virtual DbSet<Post> Post { get; set; }
 protected override void OnConfiguring(DbContextOptionsBuilder
 optionsBuilder)
 {
 // Move this connection string to config file later
 optionsBuilder.UseSqlServer(@"Server=
 (localdb)\mssqllocaldb;Database=MasteringEFCoreDbFirst;
 Trusted_Connection=True;");
 }
 }

Also include a constructor for the MasteringEFCoreDbFirstContext class, which will
initialize the DbContext through dependency injection from the Startup class:

 public
 MasteringEFCoreDbFirstContext(
 DbContextOptions<MasteringEFCoreDbFirstContext> options)
 : base(options)
 {
 }

We have seen how to pass on the options to the database context base class, now we will see
how the options were configured with a connection string.

Refactoring the ConfigureServices method
We will use the ConfigureServices() method to include the database context framework
service to the service collection. Add the following using statements to configure the
DbContext options and to add database context to the services list:

 using Microsoft.EntityFrameworkCore;
 using MasteringEFCore.DatabaseFirst.Final.Models;

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[47]

As we did in Chapter 1, Kickstart - Introduction to Entity Framework Core, we will configure
context as a service and add DbContext (created using
UseSqlServer() through DbContextOptionsBuilder) to the services collection:

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddDbContext<MasteringEFCoreDbFirstContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString(
 "DefaultConnection")));
 services.AddMvc();
 }

We have configured the database context in the framework, but if we watch closely, we see
that the connection string is coming from a configuration. Next, we will see how the
configuration is included in appsettings.json.

The appsettings.json setting
The application settings, as we explored earlier, are based on JSON, and in order to include
a setting, we need to add a JSON key-value pair. In our case, ConnectionStrings is the
key and the value is again a JSON object that defines DefaultConnection:

 {
 "ConnectionStrings": {
 "DefaultConnection": "Server=
 (localdb)\\mssqllocaldb;Database=MasteringEFCoreDbFirst;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
 }

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[48]

In this section, we have configured the database context in the ConfigureServices()
method and also leveraged appsettings.json to make the connection configurable. At
this point, all the configuration necessary is completed and EF is ready to consume the
database for further implementation. Let's see how the CRUD operations could be
performed using EF (we have already seen them in Chapter 1, Kickstart - Introduction to
Entity Framework Core, but still, we will explore a few parts with respect to rendering that
which were not covered earlier).

Performing CRUD operations
We have already seen how to create CRUD operations right from scaffolding controllers
to their corresponding views for the Blog model, so we will create them for the Post model
in this section:

Right-click on the Controllers folder and select Add | New Scaffolded Item.1.
 Add Scaffold dialog box, select MVC Controller with views, using Entity2.
Framework:

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[49]

In the Add Controller dialog box, select the appropriate Model class and Data3.
Context class (Post and MasteringEFCoreDbFirstContext in our case) along
with the auto-generated controller name, PostsController:

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[50]

Next click Add as shown in the following screenshot:4.

Scaffolded items

The Blog URL should be displayed instead of the Blog ID, which was part
of the scaffolding. As displaying the ID raises security issues and usability
concerns, let's change this mapping to URL.

Let's start our changes from the Index.cshml file, where we have listed Blog.Id instead
of Blog.Url:

 @foreach (var item in Model) {
 <tr>
 ...
 <td>
 //@Html.DisplayFor(modelItem => item.Blog.Id)
 @Html.DisplayFor(modelItem => item.Blog.Url)
 </td>
 </tr>
 }

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[51]

The changes are reflected on the screen, where we can see Blog URLs rendered instead of
the IDs that were listed before:

Posts list view

We have scaffolded CRUD operations and modified Blog ID usage to URLs in the Post
index action. Let's update the same on the other actions as well.

Creating controller action
The changes we made in the previous section need to be updated in
the SelectList collection, which will be used by MVC to render the drop-down list. By
default, MVC scaffolding provides a SelectList (we have commented on that line) that
has Id in the Value field and needs to be modified to Url, otherwise it will display only
numeric values on the screen (a serious security issue and not so user-friendly):

 public IActionResult Create()
 {
 //ViewData["BlogId"] = new SelectList(_context.Blog, "Id", "Id");
 ViewData["BlogId"] = new SelectList(_context.Blog, "Id", "Url");
 return View();
 }

The following screenshot shows the Url mapped to the BlogId control, but there is
something additional that needs to be fixed. The BlogId should be either just Blog or Blog
URL.

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[52]

I will leave this part as an exercise, kindly make changes to all the labels associated with the
BlogId column:

Posts create view

The same change needs to be applied to the Post action of Create as well:

 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult>
 Create([Bind("Id,BlogId,Content,PublishedDateTime,Title")]
 Post post)
 {
 ...
 ViewData["BlogId"] = new SelectList(_context.Blog, "Id", "Url",
 post.BlogId);
 return View(post);
 }

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[53]

The changes are reflected in the newly included/added items displayed on the screen (the
Index action was already modified to list the Blog URLs):

List view with new post

We have updated the references to the Blog ID with Blog URLs in the Post Create (HTTP,
GET, and POST) action. Let's update the same on the other actions as well.

Edit controller action
The same changes that we discussed with respect to the SelectList collection must be
made to the Edit action as well:

 public async Task<IActionResult> Edit(int? id)
 {
 ...
 ViewData["BlogId"] = new SelectList(_context.Blog, "Id", "Url",
 post.BlogId);
 return View(post);
 }

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[54]

The following screenshot shows the URL mapped to the BlogId control, and as part of
the exercise, kindly make changes to the BlogId label with the literal changes you made in
the Creating controller action section:

Edit a post

The same change needs to be applied to the Post action of Edit as well:

 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Edit(int id,
 [Bind("Id,BlogId,Content,PublishedDateTime,Title")] Post post)
 {
 ...
 ViewData["BlogId"] = new SelectList(_context.Blog, "Id", "Url",
 post.BlogId);
 return View(post);
 }

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[55]

The changes were reflected in the updated item that was displayed on the screen:

List view with edited post

We have updated the references to the Blog ID with Blog URLs in the Post Edit (HTTP, Get,
and Post) action. Let's update this on the remaining DELETE action.

The Delete view
Blog.Url should be displayed instead of Blog ID in the Delete view as well:

 <dl class="dl-horizontal">
 ...
 <dd>
 @Html.DisplayFor(model => model.Blog.Url)
 </dd>
 </dl>

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[56]

 The changes were reflected on the Delete confirmation screen that now displays the Blog
URL instead of the Blog ID:

Delete a post

The Post list page doesn't display the deleted item, which ensures that the data has been
deleted from the table:

List view after deleting a post

www.EBooksWorld.ir

The Other Way Around – Database First Approach Chapter 2

[57]

We have identified certain missing pieces of the puzzle in the CRUD operations that were
covered in Chapter 1, Kickstart - Introduction to Entity Framework Core because there is no
specific change that needs to be addressed in the database-first approach.

Summary
We have learned how to leverage Entity Framework on an existing system that has a live
database (for illustrative purposes, we have created SQL scripts to create and simulate an
existing database). We have explored NuGet packages that expose the APIs required to
reverse engineer the database (including database context and corresponding data models).
Finally, we have consumed the existing database in our MVC application using the
scaffolding tool (which was installed on the way), and have also seen the changes
required to the auto-generated code (which were not covered in Chapter 1, Kickstart -
Introduction to Entity Framework Core). The database-first approach was just a mechanism
used for building existing systems (leveraging EF in the existing system). So far, we have
used relationships (new or existing ones), but haven't figured out the relationships
supported by Entity Framework. Let's explore them in Chapter 3, Relationships –
Terminology and Conventions.

www.EBooksWorld.ir

3
Relationships – Terminology

and Conventions
In Chapter 2, The Other Way Around – Database First Approach, we re-engineered the existing
database using Entity Framework's Database-First approach. Let's now start to understand
the terminologies and conventions used in relationships.

Entities are of no use if we don't give them an identity. The relationship terms we will be
exploring in this chapter will provide an identity for the entities, which not only describes
them, but also helps us in creating relationships between different entities.

The topics we will cover in this chapter are:

Understanding relationship terms:
Data models
Principal entity
Principal key
Dependent entity
Foreign key
Navigation property

Conventions in a relationship:
Fully-defined relationships
No foreign key property
Single navigation property
Foreign key
Inverse property

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[59]

Understanding relationship terms
We have created and used data models or entities so far, but we haven't figured out how
they are related. Let's understand how they are related and the terminologies used for those
relationships.

Data models
We will revisit the data models we created and consumed in Chapter 1, Kickstart -
Introduction to Entity Framework Core (using the Code-First approach), which could be used
to understand the relationship terminologies. For illustration purposes, we will tweak those
objects to understand different terminologies that were not used in the system.

Blog entity
The Blog entity/data model we created using the Code First approach is displayed as
follows:

 public class Blog
 {
 public int Id { get; set; }
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }

We will be using the Blog model to understand the following:

Principal entity
Principal key
Navigational property

The Post entity
The Post entity/data model we created using the Code-First approach is displayed as
follows:

 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[60]

 public DateTime PublishedDateTime { get; set; }
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 }

We will be using the Post model to understand the following:

Dependent entity
Foreign key
Navigational property
Reference navigation property
Inverse navigation property

As part of the Data model section, we captured key relationship terms in their appropriate
models, now we will focus on each one of them in detail.

Principal entity
The entity that will serve as a parent in a relationship is termed a principal entity. In the
database world, this entity holds the primary key that will be used by the dependent
entities in building relationships. Consider the following diagram:

In our blogging system, the Blog entity serves as a parent to the Post entity, hence we
could conclude Blog is the principal entity. The relationship we have between the two
entities could be termed as an Association. Consider the following diagram:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[61]

In our blogging system, the Person entity serves as a parent to the User entity, hence we
could conclude Person is the Principal entity. The relationship we have between the two
entities could be termed a Containment. Consider the following diagram:

We have seen the principal entity; let's explore the key of the relationships built using a
principal entity in the next section.

Principal key
The parent entity needs a unique key to associate itself with the child, and the key used for
this purpose is termed as the principal key. In our blogging system, the Id property of the
Blog entity would be the unique key/principal key of the blog entry/item that will be used
by the dependent Post entity to build a relationship with the Blog entity:

 public class Blog
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Subtitle { get; set; }
 public string Url { get; set; }
 public string Description { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public ICollection<Post> Posts { get; set; }
 }

The Blog table design is shown as follows. In the table design, the highlighted Id field
would be the unique primary key of the table:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[62]

Apart from the primary key, there is a possibility that a non-primary key could be used in
building relationships, which could be termed an alternate key. In our blogging system, the
Url property of the Blog entity could be an alternate key for building relationships:

We have seen the principal key, which defines the relationships built using the principal
entity; let's explore the dependent entity in the next section.

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[63]

Dependent entity
The entity that cannot survive on its own (always dependent on its parent) ends up being a
child. In a relationship, this would be termed a Dependent entity. Consider the following
diagram:

In our blogging system, the Post entity depends on the Blog entity (posts are made for the
corresponding blog, so without a blog entry the post wouldn't exist), hence we could
conclude Post is the dependent entity. In the database world, this entity holds a foreign key
that will hold the reference to the primary entity in the relationships. This is depicted in the
following diagram:

In our blogging system, the User entity depends on the Person entity, hence we could
conclude User is the dependent entity. This is depicted in the following diagram:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[64]

We have seen the dependent entity; let's explore the key of the relationships built using the
dependent entity in the next section.

Foreign key
The child entity needs a unique key to associate itself with the parent. The key usually holds
the value of the principal key to mark its relationship with the parent and is termed a
foreign key. In our blogging system, the BlogId property of the Post entity holds the
reference to the parent unique key/principal key to denote the relationship with the Blog
entity:

 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public string Summary { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public string Url { get; set; }
 public long VisitorCount { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 public int AuthorId { get; set; }
 public User Author { get; set; }
 public int CategoryId { get; set; }
 public Category Category { get; set; }
 public ICollection<TagPost> TagPosts { get; set; }
 public ICollection<Comment> Comments { get; set; }
 }

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[65]

In database terminology, we would still call the property a foreign key. The Post table
design is shown as follows. In the design, the highlighted BlogId field would be the
foreign key of the table:

We have seen the foreign key, which defines the relationships built using the dependent
entity. Let's explore navigation properties, which define the direction or nature of
relationships, in the next section.

Navigation property
A property that can be defined as either a principal entity or dependent entity, whether it's
referring to its parent or holding one or many dependent entities to it, is called the
navigation property. We can see that it just holds the references to both parent and child
but in a different way, so we could categorize them as the following:

Collection navigation property
Reference navigation property
Inverse navigation property

Let's explore the types of navigation property in detail.

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[66]

Collection navigation property
We can work out what it actually does from its name, it holds a collection of dependent
entities (or references to a list of dependent items) and it always holds references to
multiple items. In our blogging system, the Posts property of the Blog entity could be
treated as a collection navigation property:

 public class Blog
 {
 ... // code removed for brevity
 public ICollection<Post> Posts { get; set; }
 }

The Blog and Post class diagrams are displayed as follows. In the design, the highlighted
Posts field in the Blog entity would be the collection navigation property:

We have seen the property that holds the child collection; let's explore how the dependent
entity holds a reference to its parent in the next section.

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[67]

Reference navigation property
We can work out what it actually does from its name. Yes, it holds a reference to its parent
entity and it always holds a reference to a single item. In our blogging system, the Blog
property of the Post entity could be treated as a reference navigation property:

 public class Post
 {
 ... // code removed for brevity
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 }

The Blog and Post class diagrams are shown as follows. In the design, the highlighted
Blog field in the Post entity would be the reference navigation property:

We have seen the property that holds the reference to its parent, and it causes some
confusion as to what the inverse navigation property will be.

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[68]

Inverse navigation property
You guessed it, this is a little bit tricky as it always refers to the other end of the
relationship. In our blogging system, the Blog property of the Post entity could be treated
as an inverse navigation property of the Posts property of the Blog entity:

 public class Post
 {
 ... // code removed for brevity
 public Blog Blog { get; set; }
 }

This is also true vice versa, which means the Posts property of the Blog entity could be
treated as an inverse navigation property of the Blog property of the Post entity:

 public class Blog
 {
 ... // code removed for brevity
 public ICollection<Post> Posts { get; set; }
 }

The Blog and Post class diagrams are shown as follows. In the design, the highlighted
Blog field in the Post entity and the Posts field in the Blog entity would be the inverse
navigation properties:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[69]

We have explored different relationship terms so far; let's explore the conventions available
in a relationship in the next section.

Conventions in a relationship
By now, we should be able to say that relationships are identified by Entity Framework
while it is analyzing our data model. So, from the preceding section, it is evident that we
should have a navigation property in both the entities for a relationship.

While analyzing the relationship, Entity Framework can only identify a
primary key on its own. But, if we use an alternate key for a relationship,
then explicitly we should mark it as the principal key using the Fluent
API. In our blogging system, the implementation in OnModelCreating
would be as follows:
modelBuilder.Entity<Post>()
.HasOne(p => p.Blog)
.WithMany(b => b.Posts)
.HasForeignKey(p => p.BlogUrl)
.HasPrincipalKey(b => b.Url);

It's also evident that, for any relationship, we need a property that should be against a data
model and not a scalar datatype (it would be ignored by EF for relationships).

Fully-defined relationships
A relationship that contains all properties/terminologies seen in the previous section could
be termed a fully-defined relationship. To be precise, it should have navigational
properties on both entities involved in a relationship, and the dependent entity should have
a foreign key property as well:

 public class Blog
 {
 ... // code removed for brevity
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 ... // code removed for brevity
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 }

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[70]

The Blog and Post class diagrams are shown as follows. In the design, the highlighted
properties would be the navigational properties:

The Blog field in the Post entity and the Posts field in the Blog entity would be
the inverse navigation properties
The Blog field in the Post entity would be the reference navigation property
The preceding two navigation properties complete the relationship, so it's called a
fully-defined relationship

The following diagram illustrates fully-defined relationship between Blog and Post
entities:

The data models we have used so far have a fully-defined relationship. We will tweak these
data models to illustrate the other conventions in future sections.

Fully-defined relationships - under the hood
The EF Core uses the mechanism internally for creating relationship between entities based
on the following scenarios:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[71]

If the two entities have navigation properties pointing to each other; EF will
configure them as inverse navigation properties

In the following code, the Posts property of the Blog entity and
the Blog property of the Post entity would be configured as inverse navigation
properties:

public class Blog
{
 // Code removed for brevity
 public ICollection<Post> Posts { get; set; }
}
public class Post
{
 // Code removed for brevity
 public Blog Blog { get; set; }
}

The following image illustrates the relationship created based on the navigational
properties:

EF will consider the property a foreign key if the naming convention uses
principal entity name with primary key property name:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[72]

In the following code, the principal entity Blog, with its primary key Id, will have
the foreign key BlogId in the Post entity:

public class Blog
{
 public int Id { get; set; }
 // Code removed for brevity
}
public class Post
{
 // Code removed for brevity
 public int BlogId { get; set; }
}

The following image illustrates the how a foreign key is created in Post entity:

EF will create a foreign key relationship if the principal entity primary key
matches the dependent entity reference key.

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[73]

In the following code, the primary key BlogId of the Blog entity will have the foreign
key BlogId in the Post entity:

 public class Blog
 {
 public int BlogId { get; set; }
 // code removed for brevity
 }
 public class Post
 {
 // code removed for brevity
 public int BlogId { get; set; }
 }

The following image illustrates foreign key is related with its matching principal entity's
identifier:

EF will create a foreign key

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[74]

In the following code, the SomeBlog navigation property of the Post entity with the
primary key Id of the Blog entity will have the foreign key SomeBlogId in the Post entity:

public class Blog
{
 public int Id { get; set; }
 // code removed for brevity
}
public class Post
{
 // code removed for brevity
 public Blog SomeBlog { get; set; }
 public int SomeBlogId { get; set; }
}

The following image illustrates foreign key is based on dependent entity's navigation
property name:

We have explored a fully-defined relationship with the different naming conventions
expected by EF on identifying the relationship; let us see about other conventions in the
coming sections.

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[75]

No foreign key property
We usually create entities using fully-defined relationships, but this is not expected by
Entity Framework. In a relationship, the foreign key is not required, but it is recommended
to have one:

The following code does not contain foreign key in the Post entity and still the relationship
is formed:

 public class Blog
 {
 // code removed for brevity
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 // code removed for brevity
 // Foreign key BlogId was removed from here
 public Blog Blog { get; set; }
 }

The following image illustrates that without foreign key, the relationship is built:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[76]

We have removed the BlogId foreign key from the Post entity, and it still works as
expected.

No foreign key property - under the hood
The relationship works even if the foreign key is not available because Entity Framework
creates a shadow property for us. It follows the naming convention of navigational
property with primary key name:

In the following code the foreign key in the Post entity is injected by the framework:

 public class Blog
 {
 ... // code removed for brevity
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 ... // code removed for brevity
 public int BlogId { get; set; } // shadow property created by EF
 public Blog Blog { get; set; }
 }

The following image illustrates that foreign key is injected by the framework:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[77]

We did something different from the conventional entities removed the foreign key from
the navigational properties, but still, the relationship worked as expected. Let us see what
other parts can be removed in the coming sections.

Single navigation property
In the same way we removed the foreign key from the entity, we could remove a navigation
property completely from an entity and the relationship would still work. In a relationship,
the navigation property is not required in the dependent entity, meaning that having a
single navigation property on a principal entity is more than sufficient:

In the following code, both the foreign key and navigation property were removed and still
relationship works as expected:

 public class Blog
 {
 ... // code removed for brevity
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 ... // code removed for brevity
 // Foreign key "BlogId" and navigation property "Blog" was
 removed here
 }

The following image illustrates that both foreign key and navigation key were removed
from the entity:

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[78]

We have removed the Blog navigation property from the Post entity, and it still works as
expected.

Foreign key
We could use a different naming convention for a foreign key and still map that foreign key
against the navigation property (using the ForeignKey data annotation does the trick). In a
relationship, a navigation property is not required in the dependent entity, meaning that
having a single navigation property on a principal entity is more than sufficient:

In the following code, the custom foreign key is mapped against the navigation property:

 public class Blog
 {
 ... // code removed for brevity
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 ... // code removed for brevity
 public int BlogSomeId { get; set; }
 [ForeignKey("BlogSomeId")]
 public Blog Blog { get; set; }
 }

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[79]

The following image illustrates that the custom foreign key is mapped against the
navigation property:

We have modified the foreign key to BlogSomeId and configured it against the navigation
property which is the Blog of the Post entity, and it still works as expected.

Inverse property
If we have more than one navigation property in an entity, it makes sense to use an inverse
property to pair the navigational properties for a relationship. There will be occurrences
where even though we have a fully-defined relationship, we still need an inverse property
in order to pair up the navigational properties due to custom naming conventions that don't
fall into any of EF's discovery mechanisms:

In the following code, the custom foreign key and navigation property were configured in
the inverse navigation property:

 public class Blog
 {
 ... // code removed for brevity
 [InverseProperty("SomeBlog")]
 public ICollection<Post> SomePosts { get; set; }
 }
 public class Post
 {
 ... // code removed for brevity
 public int SomeBlogId { get; set; }
 public Blog SomeBlog { get; set; }
 }

www.EBooksWorld.ir

Relationships – Terminology and Conventions Chapter 3

[80]

The following image illustrates that the custom foreign key and navigation property were
configured in the inverse navigation property:

We have introduced the SomeBlog inverse property in the Blog entity, which pairs with
the SomeBlog navigation property of the Post entity.

Summary
In this chapter, we were introduced to the terminologies and conventions used for
relationships in Entity Framework. We started right from a fully-defined relationship, and
from there we started trimming the relationship, but still made the relationship work.
Finally, we customized and paired up navigational properties with customized properties,
and still made the relationship work. This chapter has introduced us to relationships (we
also had a peek at the Fluent API), but we didn't get the chance to understand different
relationships. Let's explore them in Chapter 4, Building Relationships – Understanding
Mapping.

www.EBooksWorld.ir

4
Building Relationships –
Understanding Mapping

In Chapter 3, Relationships – Terminology and Conventions, we studied terminologies and
conventions used in a relationship; let's start using them in building relationships. We have
been using only Blog and Post entities so far, which doesn't do any good to the blogging
system. Let's expand them to other entities such as Comment, Tag, and so on, and we will
leverage them to understand the relationships as well.

The relationship was introduced right from the initial Entity Framework (EF) version, but
there was a limitation on the bi-directional relationship. In the matured framework, we
have support for multiplicity, enabling that multiple entities can be related together.

The topics we will cover in this chapter are:

Relationships:
One-to-one
One-to-many
Many-to-many

Fluent API:
Identifying navigation property and inverse navigation
Identifying single navigation property
Relationship-building techniques
Cascade delete

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[82]

Relationships
We could have conventional relationships such as one-to-one, one-to-many, and many-to-
many in our entity relationships with ease in EF. Let's explore them in detail in this section.
To make it interesting, let's design the database of the blogging system during the course of
understanding relationships:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[83]

We have seen the proposed design of the blogging system; now let's learn about the
relationships and how they could be built using the same design.

The one-to-one relationship
We need a new entity to explain the one-to-one relationship, as the existing entities don't
have the provision to explain the same. So let's pick the Address entity from the proposed
design and see how the one-to-one relationship is built:

The code illustrating one-to-one relationship between User and Address entities was listed
as follows:

 public class User
 {
 public int Id { get; set; }
 public string DisplayName { get; set; }
 public string Username { get; set; }
 public string PasswordHash { get; set; }
 public string Email { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public ICollection<Blog> Blogs { get; set; }
 public ICollection<Post> Posts { get; set; }
 public ICollection<Comment> Comments { get; set; }
 public int? AddressId { get; set; }
 public Address Address { get; set; }
 public int PersonId { get; set; }
 public Person Person { get; set; }
 }

 public class Address
 {
 public int Id { get; set; }
 public string FlatHouseInfo { get; set; }
 public string StreetName { get; set; }
 public string Locality { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public string LatitudeLongitude { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[84]

 public int ModifiedBy { get; set; }
 public int UserId { get; set; }
 public User User { get; set; }
 }

As you will notice, we have only a reference navigation property on both the User and
Address entities, and additionally, a foreign key is introduced to allow EF to differentiate
between the principal and dependent entities.

In the following diagram, the foreign key UserId is mapped against the Id primary key
which has one-to-one relationship:

The User entity's Id primary key highlighted below is used as a foreign key in Address
entity to form one-to-one relationship:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[85]

We have identified the provision, the UserId field that will allow the entity to configure the
relationship. Let us build the relationship using the Fluent API in the next section.

Building one-to-one relationships using the Fluent API
We could configure the relationship using the Fluent API with the HasOne, WithOne, and
HasForeignKey methods. The HasForeignKey method needs to be generic in a one-to-one
relationship (a one-to-many relationship doesn't require this) since we need to explicitly
mark the dependent type. In our case, we have specified the Address entity for the foreign
key:

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Blog>().ToTable("Blog");
 modelBuilder.Entity<Post>().ToTable("Post");
 modelBuilder.Entity<User>()
 .ToTable("User")
 .HasOne(x=>x.Address)
 .WithOne(x=>x.User)
 .HasForeignKey<Address>(x=>x.UserId);
 modelBuilder.Entity<Address>().ToTable("Address");
 }

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[86]

The Fluent API configuration will provide us with the expected relationship, which is
reflected in the following database diagram. The one-to-one relationship is now built
between the User and Address entities, except the AddressId field would be optional as
it's not mandatory while creating a user, but a user is required to create an address:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[87]

We could capture a lot more relationships in the blogging system that come under one-to-
many relationships. The following diagram shows one-to-many relationships between
the Person and User entities:

 We have already seen the User table design; let's look at the Person table design content:

 public class Person
 {
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string NickName { get; set; }
 public string Url { get; set; }
 public string Biography { get; set; }
 public string ImageUrl { get; set; }

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[88]

 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public int? UserId { get; set; }
 public User User { get; set; }
 public ICollection<Comment> Comments { get; set; }
 }

We have looked at the one-to-one relationship in this section. Let us explore the one-to-
many relationship in the next section.

The one-to-many relationship
So far, the illustrations carried out between the Blog and Post entities have had a one-to-
many relationship. If we watch closely, we might be able to figure it out; the Blog entity is
the principal entity and the Post entity is the dependent entity where the Blog entity can
contain one or more posts (violà! one-to-many was already in place):

 public class Blog
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Subtitle { get; set; }
 public string Url { get; set; }
 public string Description { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public ICollection<Post> Posts { get; set; }
 }

 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public string Summary { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public string Url { get; set; }
 public long VisitorCount { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[89]

 public int ModifiedBy { get; set; }
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 public int AuthorId { get; set; }
 public User Author { get; set; }
 public int CategoryId { get; set; }
 public Category Category { get; set; }
 public ICollection<TagPost> TagPosts { get; set; }
 public ICollection<Comment> Comments { get; set; }
 }

The preceding fully-defined relationship in the model would provide the following
relationship. It doesn't require Fluent API configuration unless we have a lot of navigation
properties:

Since we have a one-to-many relationship, and it is clearly evident that Blog is a principal
entity and Post is a dependent entity, EF doesn't need any explicit configuration to define
the nature of the relationship, and hence it is done implicitly.

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[90]

We could capture a lot more relationships in the blogging system that comes under one-to-
many relationships. The following diagram shows other one-to-many relationships in the
blogging system:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[91]

The other one-to-many relationships were between the following entities:

Blog and Post
Blog and User
Blog and Category

From the preceding entities, we have already seen all the table designs except the Category
class. Let's look at its design content:

 public class Category
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public int? ParentCategoryId { get; set; }
 public Category ParentCategory { get; set; }
 public ICollection<Category> Subcategories { get; set; }
 public ICollection<Blog> Blogs { get; set; }
 public ICollection<Post> Posts { get; set; }
 }

We have seen three relationships so far in the blogging system design; the following
diagram shows couple of other one-to-many relationships in the blogging system:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[92]

The couple of other one-to-many relationships were between the following entities:

Post and Comment
User and Comment
Person and Comment

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[93]

From the preceding entities, we have already seen all the table designs except Comment.
Let's look at its design content:

 public class Comment
 {
 public int Id { get; set; }
 public string Content { get; set; }
 public DateTime CommentedAt { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public int PostId { get; set; }
 public Post Post { get; set; }
 public int? PersonId { get; set; }
 public Person Person { get; set; }
 public int? UserId { get; set; }
 public User User { get; set; }
 }

We have come across the Comment entity that has some different relationships. It has a self-
referencing relationship (to be blunt, it points to itself), it also falls under the one-to-many
relationship, and the only difference is that the parent and the dependent entities were the
same in this case:

We have covered the one-to-many relationship along with the blogging system design. Let
us explore the many-to-many relationship in the next section.

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[94]

The many-to-many relationship
The many-to-many relationship is a tricky one; we need to understand how these kinds of
relationships are built. Usually, we will build two different entities that require a many-to-
many relationship, create an entity that will be purely used to join the first two entities, and
then map one-to-many between this entity (created to join two separate one-to-many
relationships) and the two entities (created first) separately:

 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public string Summary { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public string Url { get; set; }
 public long VisitorCount { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 public int AuthorId { get; set; }
 public User Author { get; set; }
 public int CategoryId { get; set; }
 public Category Category { get; set; }
 public ICollection<TagPost> TagPosts { get; set; }
 public ICollection<Comment> Comments { get; set; }
 }

 public class Tag
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public ICollection<TagPost> TagPosts { get; set; }
 }

 public class TagPost
 {
 public int Id { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[95]

 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public int TagId { get; set; }
 public Tag Tag { get; set; }
 public int PostId { get; set; }
 public Post Post { get; set; }
 }

The Post and Tag entities require many-to-many relationships for which the TagPost
entity is created, and its only job is to join the Post and Tag entities.

The following diagram, illustrates many-to-many between Post and Tag entities through
TagPost entity:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[96]

The Tag entity table diagram is displayed as follows

The TagPost entity which will contain PostId and TagId to form many-to-many relationship is displayed
as follows

In order to have a many-to-many relationship between the Post and Tag entities, we
created a TagPost (a kind of walk down table) entity purely to allow EF to join the Post
and Tag entities. It is achieved by having a one-to-many relationship between
the Tag and TagPost and Post and TagPost entities.

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[97]

Building many-to-many relationship using the Fluent
API
We should configure the relationship in the Fluent API in two different one-to-many
relationships between the Tag and TagPost and Post and TagPost entities. The
HasForeignKey method doesn't need to be generic, since one-to-many relationships don't
need to mark the dependent type explicitly:

The many-to-many relationship between Tag and Post entities require the following
configuration:

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Blog>().ToTable("Blog");
 modelBuilder.Entity<Post>().ToTable("Post");
 modelBuilder.Entity<User>()
 .ToTable("User")
 .HasOne(x=>x.Address)
 .WithOne(x=>x.User)
 .HasForeignKey<Address>(x=>x.UserId);
 modelBuilder.Entity<Address>().ToTable("Address");
 modelBuilder.Entity<Tag>().ToTable("Tag");
 modelBuilder.Entity<TagPost>()
 .ToTable("TagPost")
 .HasOne(x => x.Tag)
 .WithMany(x => x.TagPosts)
 .HasForeignKey(x => x.TagId);
 modelBuilder.Entity<TagPost>()
 .ToTable("TagPost")
 .HasOne(x => x.Post)
 .WithMany(x => x.TagPosts)
 .HasForeignKey(x => x.PostId);
 }

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[98]

The Fluent API configuration would provide us with the expected relationship, which is
reflected in the following database diagram. The many-to-many relationship is now built
between the Post and Tag entities through the TagPost entity:

We have learned about the many-to-many relationship in this section. Let us explore more
about the Fluent API in the next section.

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[99]

Fluent API
We already had a sneak peek into the Fluent API, without which the relationship can never
be complete (in a few cases, it is mandatory).

Identifying navigation property and inverse
navigation
We used the Fluent API in one-to-one and many-to-many relationships. We will use the
same method to leverage the terminologies we have seen so far. The HasOne and HasMany
methods allow us to identify the navigation property in the dependent entity or simply a
reference navigation property.

The following code configures the foreign key explicitly in the one-to-many relationship:

 modelBuilder.Entity<TagPost>()
 .ToTable("TagPost")
 .HasOne(x => x.Tag)
 .WithMany(x => x.TagPosts)
 .HasForeignKey(x => x.TagId);

The following diagram, the TagId highlighted is required for the foreign key of the
relationship:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[100]

The HasOne method identifies the Tag navigation in the TagPost entity. The WithOne and
WithMany methods allow us to identify the inverse navigation in the principal entity or
simply a collection navigation property.

The code required for inverse navigation property configuration is shown below:

 modelBuilder.Entity<TagPost>()
 .ToTable("TagPost")
 .HasOne(x => x.Tag)
 .WithMany(x => x.TagPosts)
 .HasForeignKey(x => x.TagId);

The following diagram illustrates that we require an inverse navigation property for the
relationship:

The HasOne method identifies the TagPosts inverse navigation in the Tag entity.

We have seen Fluent API identification and usages from a many-to-many relationship; let's
use the same approach to identify the usage in terminologies.

Identifying the single navigation property
In the single navigation property, we will never have a navigation property in a dependent
entity, which makes it hard for us in identifying the reference navigation property. This is
where HasMany comes into the picture, helping us to identify the relationship:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[101]

The following code contains entity and its configuration of single navigation property,
where Blog entity contains the navigation property and configuration uses HasOne() to
complete the relationship:

 public class Blog
 {
 public int Id { get; set; }
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 // Foreign key "BlogId" and navigation property "Blog" was
 removed here
 }

 // onModelCreating method implementation inside context class
 modelBuilder.Entity<Blog>()
 .HasMany(x => x.Posts)
 .WithOne()

The following diagram, illustrates the relationship built between entities with single
navigation property:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[102]

As you may have guessed, we started with HasMany and ended up with WithOne and, of
course, we don't have any overload for WithOne as we don't have any reference property,
and EF will configure against the dependent entity internally.

Relationship-building techniques
Let's build a relationship using the same approach and see the usages for the following
terminologies as well.

Building relationship using a foreign key
We have seen that the foreign key property was applied using a data annotation approach,
but what if we had to apply the same thing from the Fluent API? It is still possible. With
the HasForeignKey Fluent API method exposed to us, we could use it in configuration to
achieve the same:

The code required for custom foreign key mapping in entity and configuration were
displayed here:

 public class Blog
 {
 public int Id { get; set; }
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public int SomeBlogId { get; set; }
 [ForeignKey("SomeBlogId")]
 public Blog Blog { get; set; }
 }

 // onModelCreating method implementation inside context class
 modelBuilder.Entity<Post>()
 .HasOne(x => x.Blog)
 .WithMany(x => x.Posts)
 .HasForeignKey(x => x.SomeBlogId);

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[103]

We have modified the foreign key as SomeBlogId and configured against the Blog
navigation property of the Post entity, and it is configured using the Fluent API.

Building relationships using a principal key
The principal key doesn't require a Fluent API configuration if it's a primary key, but what
if we had to apply a relationship against an alternate key? Then, we need the Fluent API to
complete the configuration. We could achieve the same using the HasPrincipalKey Fluent
API method exposed to us:

The code required for custom foreign key mapping in entity and configuration using
principal key instead of primary key were displayed as follows:

 public class Blog
 {
 public int Id { get; set; }
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public int SomeBlogId { get; set; }
 [ForeignKey("SomeBlogId")]
 public Blog Blog { get; set; }
 }

 // onModelCreating method implementation inside context class
 modelBuilder.Entity<Post>()
 .HasOne(x => x.Blog)
 .WithMany(x => x.Posts)
 .HasForeignKey(x => x.SomeBlogId)
 .HasPrincipalKey(x => x.Url); // not a valid
 relationship in real time

We have created a relationship using the modified foreign key BlogSomeId against the
alternate key Url from Blog. This was achieved using the HasPrincipalKey Fluent API
method.

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[104]

Building relationships using the IsRequired method
We can configure the relationship as required or optional using the same Fluent API with
the IsRequired method. We can use the same approach to define whether a relationship is
mandatory or optional:

 public class Blog
 {
 public int Id { get; set; }
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public int BlogSomeId { get; set; }
 [ForeignKey("BlogSomeId")]
 public Blog Blog { get; set; }
 }

 // onModelCreating method implementation inside context class
 modelBuilder.Entity<Blog>()
 .Property(x => x.Url)
 .IsRequired()
 modelBuilder.Entity<Post>()
 .HasOne(x => x.Blog)
 .WithMany(x => x.Posts)
 .IsRequired();

The first configuration applies the Url property on the Blog entity to be a
mandatory/required field, and the second configuration enforces the relationship as
mandatory.

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[105]

Cascade delete
The relationship we have created so far allows us to build the data with relationship, and
the deletion mechanism need to be configured as well. What would happen if we try to
delete a principal entity row? Would that do nothing on dependent elements or remove
them as well? Let's see the different ways available to perform those operations:

Cascade: If we delete the principal entity row, the dependent entity rows get
deleted as well
The following code would configure that the dependent rows would be deleted
as well if the primary row is deleted:

 public class Blog
 {
 public int Id { get; set; }
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public int BlogSomeId { get; set; }
 [ForeignKey("BlogSomeId")]
 public Blog Blog { get; set; }
 }

 // onModelCreating method implementation inside context class
 modelBuilder.Entity<Post>()
 .HasOne(x => x.Blog)
 .WithMany(x => x.Posts)
 .OnDelete(DeleteBehavior.Cascade);

This enforces EF to delete Post elements if a Blog element is deleted.

SetNull: If we delete the principal entity row, the dependent entity row's foreign
key will be set to null values:
The following code would configure the dependent rows to be set to null if the
primary row is deleted:

 public class Blog
 {
 public int Id { get; set; }

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[106]

 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public int BlogSomeId { get; set; }
 [ForeignKey("BlogSomeId")]
 public Blog Blog { get; set; }
 }

 // onModelCreating method implementation inside context class
 modelBuilder.Entity<Post>()
 .HasOne(x => x.Blog)
 .WithMany(x => x.Posts)
 .OnDelete(DeleteBehavior.SetNull);

This enforces EF to set null values on the Blog column of the Post entity elements
if a Blog element is deleted:

Restrict: If we delete the principal entity row, the dependent entity's rows
remain untouched:
The following code would configure that the dependent rows would retain their
values even though the primary row is deleted:

 public class Blog
 {
 public int Id { get; set; }
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 }
 public class Post
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public int BlogSomeId { get; set; }
 [ForeignKey("BlogSomeId")]
 public Blog Blog { get; set; }
 }

 // onModelCreating method implementation inside context class
 modelBuilder.Entity<Post>()

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[107]

 .HasOne(x => x.Blog)
 .WithMany(x => x.Posts)
 .OnDelete(DeleteBehavior.Restrict);

This does nothing on the Post entity elements if a Blog element is deleted.

We have seen different scenarios of delete behavior on dependent entities if a principal
entity gets deleted, and this completes the relationship configuration.

Data migration issue with EF Core 2.0
In Chapter 1, Kickstart - Introduction to Entity Framework Core, we saw that data migration
has to be performed whenever we add/update the data model. The data migration using
the Add-Migration command stopped working in EF Core 2.0. As a workaround, we need
to leverage .NET Command Line Interface (CLI) commands to achieve the same.

The first problem is that we were unable to add the
Microsoft.EntityFrameworkCore.Tools.DotNet package; it throws the error Package
'Microsoft.EntityFrameworkCore.Tools.DotNet.2.0.1' has a package type 'DotnetCliTool'
that is not supported by project 'MasteringEFCore.BuildRelationships.Final' displayed in
the following screenshot:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[108]

It could be resolved by unloading the project file and including the
DotNetCliToolReference code block manually in the .csproj file content, then
reloading the project and restoring the NuGet package. This should resolve the package-
related issue:

 <ItemGroup>
 <DotNetCliToolReference Include=
 "Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.1" />
 </ItemGroup>

Go to the Developer Command Prompt for VS 2017 (search for the command in the Start
menu), and execute the following .NET CLI command to add the migration:

 dotnet ef migrations add

The following screenshot adds the migration "Models with relationship" and the
execution log shows Done. To undo this action, use 'ef migrations
remove', which means the data migration was successful:

The database update could be performed using the following .NET CLI command:

 dotnet ef database update

The following screenshot confirms that the database was updated successfully with a Done
success message, as shown in the following screenshot:

www.EBooksWorld.ir

Building Relationships – Understanding Mapping Chapter 4

[109]

I love to fool people in the beginning and then provide them with a solution, and that
makes sure that they never forget it. Let me break the ice, the migration issue could be
simply resolved by removing and adding the Microsoft.EntityFrameworkCore.Tools
NuGet package.

Yes, we have explored .NET CLI commands within the context of a data migration issue,
and also learned how to resolve it using both CLI and package update in this section.

Summary
We have learned and built different kinds of relationships supported by EF in this chapter.
We started with regular one-to-one, one-to-many, and many-to-many relationships,
and from there applied a few Fluent API methods to achieve relationships. Then, we
covered different usages of the Fluent API on the terminologies we saw in Chapter 3,
Relationships – Terminology and Conventions. Finally, we have seen the behavior of Delete
operations on dependent entities if a principal entity gets deleted. These sections dealt
with relationships, but never looked at validations, except where required. Let's explore
them in the next chapter.

www.EBooksWorld.ir

5
Know the Validation – Explore

Inbuilt Validations
We have learned and built different kinds of relationships supported by EF in this chapter.
We started with regular one-to-one, one-to-many, and many-to-many relationships,
and from there applied a few Fluent API methods to achieve relationships. Then, we
covered different usages of the Fluent API on the terminologies we saw in Chapter 3,
Relationships – Terminology and Conventions. Finally, we have seen the behavior of Delete
operations on dependent entities if a principal entity gets deleted. These sections dealt
with relationships, but never looked at validations, except where required. Let's explore
them in the next chapter.

We have explored about different kind in-built relationships, leveraged Fluent API methods
in creating relationships. We have also looked at the use of the Fluent API on navigational
properties, mandating certain fields using isRequired(), implementing principal and
foreign keys using HasPrincipalKey() and HasForeignKey() methods, and much
more.

In this chapter, we will address the following concerns with respect to data security:

What should be done to the data before we send it over the network?
Add certain rules/conditions to the data (defined in the model)
Validate the models both on the client-side and server-side
(supported out of the box)

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[111]

How are the validations handled in ASP.NET?
We started with JavaScript-based validation, then control-driven
validations were performed and finally from MVC we started
using data model-driven validations
We will be exploring how MVC handles validation through the
data model

Do we need to explicitly use HTML5 validation?
Not required, as rendering the MVC engine internally converts
the data-model driven validations into HTML5 data-attribute
driven validations

We will be covering all built-in validations in this chapter, listed as follows:

Built-in validations
Required field validation
EmailAddress field validation
Compare field validation
Url field validation
MinLength field validation
MaxLength field validation
RegularExpression field validation

Diving into built-in validations
Data security plays a vital role in any application's development, as almost everything
revolves around data. So it is crucial that we store valid data in the database, ensuring that
the data passed on from the user to the application server is safely transmitted; the data
reaching the server also should contain valid data (probably having a valid datatype,
length, and so on).

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[112]

We started performing validations using JavaScript in ASP.NET Web Forms initially; sadly,
most of the ASP.NET developers in the initial days used JavaScript only for validations.
Then we moved onto control-driven validation which wraps up all the scripting inside ASP
controls accepting parameters required for validation. Finally, we were exposed to data
model-driven validation, which allows developers to configure validation through data
annotation, automatically handling both client-side (using jQuery unobtrusive validation)
and server-side (using MVC model binder validation).

The Entity Framework (EF) allows us to achieve the same, using annotation/attribute
validation, which reduces a lot of coding with respect to security (client-side and server-
side validations are simplified due to this requirement). EF provides us with certain built-in
validations:

Required

EmailAddress

Compare

Url

MinLength

MaxLength

RegularExpression

The preceding list briefly covers most of the validators. If you would like to take a look at a
complete list of validators, please visit https:/ ​/​msdn. ​microsoft. ​com/ ​en- ​us/​library/
system.​componentmodel. ​dataannotations(v= ​vs. ​110). ​aspx. Let's take a look at each of the
validators listed in detail.

Required field validation
We will start with the Required built-in validation which allows validators to check
whether the field has a value or not. The required validation is necessary to ensure that the
mandatory fields are filled in or updated by the user before transmitting the data to the
server for further processing.

The following steps will help us in understanding how validation works:

The Required field validator is added using data annotation in the model.1.

The MVC engine performs validation on both client-side and server-side using2.
this configuration.

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(v=vs.110).aspx

Know the Validation – Explore Inbuilt Validations Chapter 5

[113]

When MVC engine generates the form view with the input field, it also scaffolds3.
the element along with each input field to hold error messages.

When we run the application and submit the form without providing any value4.
in the input field, which has aria-required field validation, a validation error
would be added to the model state errors list.

The errors would be displayed in the associated with each element of the5.
form.

The validation error would be captured in the Required data annotation if the field is
NULL or "" (empty) or has white space in it.

Data type of the field value can be anything. So why on earth is the
validator checking for an empty string? It's simple. Because most of the
datatypes were translated from a string into their appropriate types by the
model binder, so it's easy for the framework to check whether the value
exists or not using String as the default datatype.

The Required attribute/data annotation can be added in the Blog code shown as follows;
the DataAnnotations reference should be included to configure validation. The following
screenshot displays the intelli-sense that allows us to import required namespace (triggered
using Ctrl + .):

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[114]

The source code required to add Required validation is shown here; it consumes built-in
validation and throws a default error message:

 public class Blog
 {
 public int Id { get; set; }
 [Required]
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 public int AuthorId { get; set; }
 public User Author { get; set; }
 }

The scaffolded HTML code has data-attribute driven validation which is consumed by
jQuery validate unobtrusive library, the highlighted scaffolded HTML content in
the following screenshot is consumed by the library:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[115]

The preceding method would force EF to emit the standard validation error message, The
Url field is required, if the field contains invalid data during validation. The scaffolded
 element is used for populating the validation error as displayed in the following
screenshot:

We can also perform validation using a custom error message using the ErrorMessage
field; the configuration is highlighted as follows:

public class Blog
{
 public int Id { get; set; }
 [Required]
 public string Url { get; set; }
 public ICollection<Post> Posts { get; set; }
 [Required(ErrorMessage = "Author is required, kindly
 pick one!")]
 public int AuthorId { get; set; }
 public User Author { get; set; }
}

The preceding configuration would use the custom error message in the data-val-
required attribute instead of the standard validation error message:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[116]

The MVC scaffolding engine, for a <select> field, would not include the element
required to display the error message, so kindly include the following section:

 <form asp-action="Create">
 <div asp-validation-summary="ModelOnly" class="text-danger">
 </div>
 // Code removed for brevity
 <div class="form-group">
 <label asp-for="AuthorId" class="control-label"></label>
 <select asp-for="AuthorId" class ="form-control"
 asp-items="ViewBag.AuthorId </select>

 </div>
 // Code removed for brevity
 </form>

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[117]

The preceding method would force EF to emit a custom error message, Author is required,
kindly pick one!, if the field contains invalid data during validation, which is shown in the
following screenshot:

The displayed error message will be cleared once the user starts typing any value into the
field.

The client-side validation logic works based on the jQuery validate library
and is performed on the fly when the user types the value by using
the jQuery validate unobtrusive library.

We have explored Required field validation by configuring it in the Blog entity; let's
configure the validation for the remaining entities of the blogging system in the next
section.

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[118]

Incorporating the Required validation in blogging
system models
We will update our blogging system models to accommodate the Required field validation
in the following entities:

Data model entities: Address, Blog, Category, Comment, Person, Post, Tag,
TagPost, and User
View model entities: RegistrationViewModel and LoginViewModel

The preceding listed implementation is performed and available at the following Git
repository commit—https:/ ​/​goo. ​gl/ ​4jyHa2.

We have introduced a couple of view models in this commit which will be used in the
authentication mechanism. We have looked, exhaustively, at Required field validations;
let's explore the EmailAddress validation in the next section.

EmailAddress field validation
The Required validation was straightforward, but email validation is a little bit different;
each developer would adopt different approaches for the validation. The emergence of
jQuery validation provided consistent behavior for most of the validations. Later, the
standard set by the HTML5 team is not adopted widely by all browsers and development
teams.

Let's explore the EmailAddress built-in validation which would allow us to validate
whether the value is a valid email or not. The following steps will help us in understanding
how validation works:

The data annotation was already discussed; we will be using1.
the EmailAddress attribute in this section.

The MVC engine scaffolding part, the validations, populating model state errors,2.
and displaying errors on the screen, almost the entire process, would be the same
for the remaining of the chapters. We can additionally cover how the validation is
performed in each section as each of the in-built validation follow different
patterns.

www.EBooksWorld.ir

https://goo.gl/4jyHa2
https://goo.gl/4jyHa2
https://goo.gl/4jyHa2
https://goo.gl/4jyHa2
https://goo.gl/4jyHa2
https://goo.gl/4jyHa2
https://goo.gl/4jyHa2
https://goo.gl/4jyHa2
https://goo.gl/4jyHa2

Know the Validation – Explore Inbuilt Validations Chapter 5

[119]

The validation error can be captured in the EmailAddress data annotation in the following
scenarios:

If the field does not have the @ symbol followed by one or more character(s) (for
instance, a or a@), then the validation error will be reported to the user

After providing the @ symbol following one or more character, if we introduce a .
(period) then the validation engine will expect the field value to be followed by
one or more characters, and if not satisfied it will throw a validation error (for
instance, a@a.)

The EmailAddress attribute/data annotation can be configured as follows:

 public class User
 {
 // Code removed for brevity
 [EmailAddress]
 public string Email { get; set; }
 }

As seen in the previous section, the scaffolded HTML code follows the same data attribute-
driven approach for validation. The highlighted section in the following screenshot
illustrates that the validation is performed using data-attribute driven validation:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[120]

The preceding method will force EF to emit a standard validation error message, The Email
field is not a valid e-mail address., if the field contains invalid data during validation, as
shown in the following screenshot:

We can see that just after providing a value after the @ symbol, the error is removed, even
though the email is not yet complete, as shown in the following screenshot:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[121]

Introducing a . (period) symbol would again throw an error as the email is not complete
without the complete domain name in the email, as shown in the following screenshot:

We can also see that after providing one or more characters, the error is removed, and now
we have a valid email value, shown as follows:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[122]

We can configure the custom error message for each model field, shown as follows:

 public class User
 {
 // Code removed for brevity
 [Required(ErrorMessage = "Email is required"]
 [EmailAddress(ErrorMessage = "Provide a valid email address")]
 public string Email { get; set; }
 // Code removed for brevity
 }

The preceding method will force EF to emit the custom error message, Provide a valid
email address, if the field contains invalid data during validation, shown as follows:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[123]

The custom error would still work or be consumed for throwing invalid domain validation
errors as well:

The displayed error message will be cleared once the user starts typing a valid email value
into the field.

The valid email value was decided by checking the @ symbol of the value;
mysteriously, it clears the validation (test@somedomain) before the user
completes the email with a valid domain name (gmail.com or yahoo.com).
Once the . value is provided again, it displays the error message,
expecting the user to provide any domain extension value such as.com or
.net (it works perfectly, even if we provide .abc).

www.EBooksWorld.ir

http://gmail.com
http://yahoo.com

Know the Validation – Explore Inbuilt Validations Chapter 5

[124]

Incorporating EmailAddress validation in
blogging system models
We will update our blogging system model to accommodate the EmailAddress field
validation in the View model:

 public class RegistrationViewModel
 {
 // Code removed for brevity
 [Required(ErrorMessage = "Email is required")]
 [EmailAddress(ErrorMessage = "Provide a valid email address")]
 public string Email { get; set; }
 [Required(ErrorMessage = "Email is required")]
 [EmailAddress(ErrorMessage = "Provide a valid email address")]
 public string ConfirmEmail { get; set; }
 }

We have looked, exhaustively, at EmailAddress field validations; let's explore the
Compare validation in the next section.

Compare field validation
We will be exploring Compare validation in this section, and since the steps are common for
all the built-in validations except the pattern, we will be covering only the validation
pattern in the other validation sections. The compare validation will avoid the round-trip
between the UI and the service, providing client-side validation for comparing passwords,
emails, or even sensitive information such as bank account numbers, which require this
compare validation to be in place.

The validation error can be captured in the Compare data annotation in the following
scenarios:

If the field is NULL or empty or a whitespace

If the field has a value which doesn't match the configured field value

The Compare attribute/data annotation can be configured as follows:

 public class RegistrationViewModel
 {
 // Code removed for brevity

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[125]

 [Required(ErrorMessage = "ConfirmPassword is required")]
 [Compare("Password")]
 public string ConfirmPassword { get; set; }
 }

We can verify that if the Password and ConfirmPassword fields don't match then
the standard validation error message 'ConfirmPassword' and 'Password' do not match.
appears:

We can configure the custom error message for each model field, shown as follows:

 public class RegistrationViewModel
 {
 // Code removed for brevity
 [Required(ErrorMessage = "ConfirmPassword is required")]
 [Compare("Password", ErrorMessage = "Password does not match")]
 public string ConfirmPassword { get; set; }
 }

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[126]

We can also conclude that compare validation consumes the custom validation error
message as well. Our test scenario would emit the Password does not match validation
error message, shown as follows:

The displayed error message will be cleared once the user starts typing a valid password
value in the field.

Incorporating the Compare validation in blogging
system models
We will update our blogging system model to accommodate the Compare field validation in
the View model:

 public class LoginViewModel
 {
 [Required(ErrorMessage = "Username is required")]
 public string Username { get; set; }
 [Required(ErrorMessage = "Password is required")]
 public string Password { get; set; }
 [Required(ErrorMessage = "ConfirmPassword is required")]
 [Compare("Password", ErrorMessage = "Password does not match")]
 public string ConfirmPassword { get; set; }
 }

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[127]

We have looked, exhaustively, at the Compare field validations. Let's explore the Url
validation in the next section.

Url field validation
We will look into Url validation, how it should be configured, and how it works with the
MVC engine. It does the basic syntax check on the URL value rather than verifying the URL
itself, so it would be ideal to have a consistent mechanism to perform, such as verification,
to have uniform behavior between systems. The Url validation is performed based on
the pattern -

 <protocol>://<domain-name>.<extension> . Let's explore the pattern in detail:

Protocol: It should be HTTP, https, or FTP
Domain name: It should be one or more characters
Extension: It should be two or more characters (for instance, http://a.bc is
valid since it follows the preceding pattern)

The Url attribute/data annotation can be used in the following ways:

 public class Blog
 {
 // Code removed for brevity
 [Required(ErrorMessage = "Url is required")]
 [Url]
 public string Url { get; set; }
 }

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[128]

The Url validation reports the following value as the error The Url field is not a valid
fully-qualified http, https, or ftp URL. since the value contains only the protocol and does
not satisfy the URL pattern:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[129]

If the field value follows the URL pattern properly, the error will be removed, and we can
see that the field value seems to be valid (following the pattern) in the following screenshot:

We can configure the custom error message for each model field as follows:

 public class Blog
 {
 // Code removed for brevity
 [Required(ErrorMessage = "Url is required")]
 [Url(ErrorMessage = "Provide a valid url")]
 public string Url { get; set; }
 }

The preceding method will force EF to emit a custom error message, Provide a valid url, if
the field contains invalid data during validation, shown as follows:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[130]

The displayed error message will be cleared once the user starts typing a valid URL value
into the field.

Incorporating Url validation in blogging system
models
We will update our blogging system model to accommodate Url field validation, the data
model driven Url validation is performed in the below entities:

 public class Blog
 {
 // Code removed for brevity
 [Required(ErrorMessage = "Url is required")]
 [Url(ErrorMessage = "Provide a valid url")]
 public string Url { get; set; }
 }

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[131]

 public class Post
 {
 // Code removed for brevity
 [Url(ErrorMessage = "Provide a valid url")]
 public string Url { get; set; }
 }

 public class Person
 {
 // Code removed for brevity
 [Url(ErrorMessage = "Provide a valid url")]
 public string Url { get; set; }
 [Url(ErrorMessage = "Provide a valid image url")]
 public string ImageUrl { get; set; }
 }

We have exhaustively seen the Url field validations; let's explore about the MinLength
validation in the next section.

MinLength field validation
The MinLength validation is helpful for creating constraints on certain fields such as
Username, Zip Code, and so on. We will start investigating MinLength validation in this
section.

The validation error can be captured in MinLength data annotation in the following
scenarios:

If the field is NULL or empty or whitespace.
If the field value length is less than configured. For instance, if the MinLength is
configured as 6, then if the number of characters provided in the field is less than
6 the min length validation error would be thrown.

The MinLength attribute/data annotation can be configured as follows:

 public class RegistrationViewModel
 {
 [Required(ErrorMessage = "Username is required")]
 [MinLength(6)]
 public string Username { get; set; }
 // Code removed for brevity
 }

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[132]

If field value does not meet the minimum length requirement, then the validation error The
field Username must be a string or array type with a minimum length of '6' would be
thrown, whereas the field name and length of the error message is based on the field name
and configuration, shown as follows:

Once satisfied with the length constraint, the error message will be removed from the user
interface, shown as follows:

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[133]

We can configure the custom error message for each model field as follows:

 public class RegistrationViewModel
 {
 [Required(ErrorMessage = "Username is required")]
 [MinLength(6, ErrorMessage = "Username needs minimum
 6 characters")]
 public string Username { get; set; }
 // Code removed for brevity
 }

The preceding method will force EF to emit a custom error message, Username needs
minimum 6 characters, if the field contains invalid data during validation, shown as
follows:

We have looked, exhaustively, at MinLength field validation; let's explore MaxLength
validation in the next section.

MaxLength field validation
The MaxLength validation is helpful for creating constraints on certain fields such as
Username, Zip code, and so on. We will investigate MaxLength validation in this section.

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[134]

The validation error can be captured in the MaxLength data annotation if the field value
length is greater than the configured length. For instance, if the maximum length is
configured as 30, then if the length of total characters provided in the field is greater than
30, the max length validation error would be thrown.

The MaxLength attribute/data annotation can be configured as follows:

 public class RegistrationViewModel
 {
 [Required(ErrorMessage = "Username is required")]
 [MinLength(6, ErrorMessage = "Username needs minimum 6
 characters")]
 [MaxLength(30)]
 public string Username { get; set; }
 // Code removed for brevity
 }

If the field value does not meet the maximum length requirement, then the validation
error, The field Username must be a string or array type with a maximum length of
'30'. would be thrown, whereas the field name and length of the error message is based on
the field name and configuration, as follows:

We can configure the custom error message for each model field, shown as follows:

 public class RegistrationViewModel
 {
 [Required(ErrorMessage = "Username is required")]

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[135]

 [MinLength(6, ErrorMessage = "Username needs minimum
 6 characters")]
 [MaxLength(6, ErrorMessage = "Username cannot exceed
 30 characters")]
 public string Username { get; set; }
 // Code removed for brevity
 }

The preceding method will force EF to emit a custom error message, Username cannot
exceed 30 characters, if the field contains invalid data during validation, shown as follows:

We have looked, exhaustively, at MaxLength field validation; let's
explore RegularExpression validation in the next section.

RegularExpression field validation
Regular expression validation is the only solution used for most validations such as email,
phone number, zip code, username, password, and so on. Most of the patterns used with
regular expressions are wrapped into separate validations. Still, the usage is vast and
requires a method to define custom validation. That's
where RegularExpression validation comes in handy. Lets investigate regular
expressions in this section.

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[136]

If the field value doesn't follow the defined regular expression pattern, then a validation
error would be returned by the engine. For instance, if the regular expression is configured
to contain only letters of the alphabet, then any other character inclusion would throw a
validation error.

The RegularExpression attribute/data annotation can be configured as follows:

 public class Person
 {
 public int Id { get; set; }
 [Required(ErrorMessage = "First Name is required")]
 [RegularExpression("^[a-zA-Z]+$")]
 public string FirstName { get; set; }
 // Code removed for brevity
 }

If the field value does not match the regular expression, then the validation error, The field
Username must match the regular expression '^[a-zA-Z]+$'.", would be thrown, which is
shown as follows:

We can configure the custom error message on each model field, as follows:

 public class Person
 {
 public int Id { get; set; }
 [Required(ErrorMessage = "First Name is required")]
 [RegularExpression("^[a-zA-Z]+$", ErrorMessage = "Only
 alphabets were allowed")]

www.EBooksWorld.ir

Know the Validation – Explore Inbuilt Validations Chapter 5

[137]

 public string FirstName { get; set; }
 // Code removed for brevity
 }

The preceding method will force EF to emit a custom error message, Only alphabets were
allowed, if the field contains invalid data during validation, which is shown as follows:

We have looked, exhaustively, at RegularExpression field validation and other built -in
validations in this chapter. We also built validations for the blogging system we are
building along the way.

Summary
We have explored various built-in validations provided by EF in this chapter. We started
with the Required field validator which was widely used, then looked into the email
address validator, and then we covered other validators such as compare, MinLength,
MaxLength and RegularExpression field validators. Finally, we configured these field
validators for the blogging system we are building in this book. This chapter dealt only
with built-in validations but never discussed how client-side validations are performed or
custom validations handled. Let's explore this and a few other things in Chapter 6, Save
Yourself – Hack Proof Your Entities.

www.EBooksWorld.ir

6
Save Yourself – Hack Proof

Your Entities
In Chapter 5, Know the Validation – Explore Inbuilt Validations, we understood about in-built
validations available in the Entity Framework Core. We explored each one of the validation
in detail by starting with how the validation were handled earlier, the way how framework
handles it, the configurations required and the rendering performed by the framework.

In this chapter, we will address the following concerns with respect to data security:

What should be done to the data before we send it over the network?
Could you make a wild guess on what should be performed before
we send the data over the network?

What if someone hacks the client-side validation? Or the scripting stops working?
We could shield ourselves by introducing server-side validation.

Beyond client-side and server-side validations, do we need anything in addition?
Yes, usual server-side validations would look for any errors
and validators of all properties of the model would be taken into
account by manual validations.

Hoping we have custom implementations of validations as well?
Yeah, we do have provision to create custom validators and .NET
Core's data-attribute approach for custom validators as well.

Damn, we should have covered almost everything. Guess we didn't leave behind
anything else?

Except for one thing—remote validation. For instance, checking
username availability could be done using remote validation from
the client-side without adding any client-side code.

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[139]

After addressing the concerns, we have a fair idea of what we will be covering in this
chapter:

Client-side validation
Consequences if the client-side scripting stops working
Server-side validation
Manual validation
Custom validation
Create client-side logic for custom validation
Remote validation

Client-side validation
The client-side validation is really a boon to modern web applications. There were many
instances that proved jQuery is helpful on both the development and the user experience
front. The client-side validations were the biggest advantage we had in saving multiple
round trips between client/browser to the server just to perform basic validations.

The jQuery, jQuery Validate, and jQuery Validate Unobtrusive libraries helped us in
performing those basic validations on the client (browser) end rather than relying on the
server in performing the same. There were multiple discussions or even arguments
regarding validating the models at the client-side, which opens security considerations. The
following sections will address this issue.

The task to enable client-side validation is just to provide a section for MVC to inject
validation errors in the user interface, which has nothing to do with validation-related
attributes (as it will be available in the model):

 <div class="form-group">
 <label asp-for="Title" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Title" class="form-control" />

 </div>
 </div>

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[140]

The MVC templating engine will generate the HTML tags with data- attributes, which will
have the same behavior for both built-in and custom validations. The rendered HTML
content for the previously mentioned Title field with the Required validation is
displayed as follows:

 <div class="form-group">
 <label class="col-md-2 control-label" for="Title">Title</label>
 <div class="col-md-10">
 <input class="form-control" type="text" data-val="true" data-val-
 required="Title is required" id="Title" name="Title"
 value="" />
 <span class="text-danger field-validation-valid"
 data-valmsg-for="Title" data-valmsg-replace="true">
 </div>
 </div>

The validation is performed when the user tries to submit the form, which will end up in
populating the error messages using client-side validation. Further, when we try to edit the
messages, the Unobtrusive Validation library kicks in and does the validation way before
the user submits the form again.

We have seen what client-side validation does; now, let's see what happens if the JavaScript
stops working in the next section.

Validating data without client-side scripting
We live in a world that recognizes the open source, performance-oriented, single page
applications (reducing server round trips) as professional applications. Microsoft was too
comfortable to move beyond server-side development. Later, they started experimenting
client-side validations mainly, thanks to MVC2. Now, with MVC Core, they're back in the
game!

This brings us to the million dollar question—is the client-side programming really safe?
How long will it take for the hacker to break the client-side validation and get into the
server? In today's world, even a dummy who has just started to learn how to hack could do
that in minutes. To be blunt, we have no control on the client, and we cannot blindly trust
the data we receive from the client (which could be hacked/injected by anybody using tools
such as Fiddler, REST Client, and many more).

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[141]

Knowing that the data we receive may not be authentic, why do we still need client-side
validation? Simple. We need better user experience, and we cannot simply ignore a
mechanism that will provide us with a mechanism to achieve it. Not only authenticity, but
also if somebody disables the JavaScript in their client, then we may be processing unsafe
data (not validated) received from the client.

The JavaScript could be disabled using the browser settings. The following screenshot
shows how that can be performed using Chrome settings (Content | JavaScript):

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[142]

It will enable users to submit any form without client-side validation, so the following form
will be submitted without any issues despite not having values in Title, Content,
Summary, and so on:

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[143]

The model that reaches the server without validation is still processed, which opens up
security issues. However, we have additional control over the model at the web server. We
could see that the values in Title, Content, and Summary were bound as null at the server:

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[144]

The model needs to be validated before we persist the data back to the data store, and the
validation of the posted model is performed by the MVC engine while model binder
performs its operation. We should make sure that the model state is IsValid and then
proceed with the data persistence; it ensures that invalid data doesn't get persisted in the
system:

We have figured out how the data is validated without client-side validation; now let's look
at the server-side validation in the next section.

Server-side validation
How can we protect our application, even though we are still leveraging client-side logic
while retaining the security of the application? The problem can be resolved in two ways:
one is to perform anti-forgery token verification (making sure that the transmitted data has
not been tampered with) and the other is to validate the model again in the server side
(double-checking ensures that the model is still safe).

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[145]

A pure MVC Core web application that uses an MVC templating engine can perform the
anti-forgery verification in a straightforward manner. MVC generates the anti-forgery token
by default for us and all we have to do is verify it at the server side. We could still configure
the view to support anti-forgery token generation by enabling asp-antiforgery in the
<form> tag, as follows:

 <form asp-action="Create" asp-antiforgery="true">
 <div class="form-horizontal">
 ...

The old-fashioned way of generating an anti-forgery token is still available and can be done
in the following way:

 <form asp-action="Create">
 @Html.AntiForgeryToken()
 <div class="form-horizontal">
 ...

The anti-forgery token can be validated in the server side by configuring it using the
custom ValidateAntiForgeryToken attribute on the action level:

 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Create(User user)

The anti-forgery token can be validated in the server side by configuring it using the custom
AutoValidateAntiForgeryToken attribute on the controller level:

 [AutoValidateAntiForgeryToken]
 public class UsersController : Controller

The same verification can also be done on a global level using
AutoValidateAntiforgeryTokenAttribute configured in StartUp.cs inside the
ConfigureServices() method, as follows:

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddDbContext<BlogContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString
 ("DefaultConnection")));
 services.AddMvc(options =>
 options.Filters.Add(new AutoValidateAntiforgeryTokenAttribute()));
 services.AddAuthorization(options =>
 {
 options.AddPolicy("Administrators", policy =>
 policy.RequireRole("Administrators"));

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[146]

 });
 }

An AngularJS templating engine works a little different in processing the anti-forgery; it
uses the XSRF-TOKEN cookie to address the issue. We have a provision in MVC to
configure and send the information that would be leveraged by the AngularJS $http
service. Exploring those details would be out of context for this book, so just know that we
have a provision to use them in a pure JavaScript templating engine as well.

We have figured out how the client-side validation is shielded from attacks; now let's look
at the manual validation in the next section.

Manual validation
There may be instances that require manual intervention before we persist something to the
database, such as mapping the view model back to the data model. We need a provision in
EF to achieve the manual validation to the model in addition to validations performed
during model binding of the action invoker (in layman's terms, when the data binding
happens in action parameters from request context).

The manual validation can be performed using two ways (ValidateModel and
TryValidateModel) in Entity Framework; however, in EF Core, we could use only one
and it is TryValidateModel.

We can leverage TryValidateModel() with the user registration module, which contains
a view model rather than presenting the actual model itself. We were supposed to validate
the data before persisting the view model data into the datastore; in our case, mapping the
data between view model to data model and then persisting them into a database:

 public async Task<IActionResult> Register(RegistrationViewModel
 registrationViewModel)
 {
 var user = new User
 {
 Username = registrationViewModel.Username,
 Email = registrationViewModel.Email,
 PasswordHash = Cryptography.Instance.HashPassword(
 registrationViewModel.Password)
 };
 if (TryValidateModel(user))
 {
 await _context.Users.AddAsync(user);
 ViewBag.Message = "User created successfully";

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[147]

 return RedirectToAction("Index");
 }
 else
 {
 ViewBag.Message = "Error occurred while validating the user";
 }

 return View(user);
 }

The preceding implementation illustrates how we perform manual validation, and it does
the following:

Maps the data from Registration View Model to User Data Model
We should always suspect that the mapped data may not be valid
It is always safer to validate the mapped data manually before we persist the data
back to the data store
If we have any validation errors, we would be publishing the information to the
user through the ViewBag message

The IsValid property of the model would be false before we trigger TryValidateModel,
and later it will be updated based on validation. We have seen how to perform manual
validation, and now we will move to custom validation in the next section.

Custom validation
The built-in validations exposed in the framework may be solving most of our technical
validation problems, but there may be some business needs/requirements that require
additional provision on top of built-in validations.

The custom validation can be performed at two levels:

Field level
Class level

The field-level custom validator can be created using the following:

Inherit the custom validation class from the ValidationAttribute base type
Override the IsValid method and handle your business validation
The IsValid method accepts two parameters—value and validationContext

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[148]

The value field is the actual field value against which the attribute is configured
The validationContext field would have ObjectInstance of the model that
contains the configured field

In our blogging system, we can provide a business validation to the publication date; it
needs a validation that prohibits the user from publishing the post in a past date. Let's call
the custom validation attribute FutureOnly and perform the following validation in the
overridden IsValid method:

 public class FutureOnlyAttribute : ValidationAttribute
 {
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 var post = (Post) validationContext.ObjectInstance;
 return post.PublishedDateTime.CompareTo(DateTime.Now) < 0
 ? new ValidationResult("Publishing Date cannot be in past,
 kindly provide a future date")
 : ValidationResult.Success;
 }
 }

 public class Post
 {
 public int Id { get; set; }
 [Required(ErrorMessage = "Title is required")]
 public string Title { get; set; }
 [Required(ErrorMessage = "Content is required")]
 public string Content { get; set; }
 public string Summary { get; set; }
 [FutureOnly]
 public DateTime PublishedDateTime { get; set; }
 [Url(ErrorMessage = "Provide a valid url")]
 public string Url { get; set; }
 public long VisitorCount { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 [Required(ErrorMessage = "Blog is required")]
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 [Required(ErrorMessage = "Author is required")]
 public int AuthorId { get; set; }
 public User Author { get; set; }
 [Required(ErrorMessage = "Category is required")]

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[149]

 public int CategoryId { get; set; }
 public Category Category { get; set; }
 public ICollection<TagPost> TagPosts { get; set; }
 public ICollection<Comment> Comments { get; set; }
 }

The preceding implementation will verify whether the publication date is future only, and,
if it encounters any past date, it will throw a Publishing Date cannot be in past, kindly
provide a future date validation error.

Let's provide an invalid value in the FutureOnly attribute field and see how the validation
is performed:

The IsValid parameter deals with the actual value passed on both the value and
validationContext parameters; as mentioned earlier, both of them will have the value
provided by the user. We are considering validationContext in our implementation and
it is evident that the provided value is in a past date (when compared to the current date),
hence the validation error will be thrown; it is shown as follows:

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[150]

The class-level custom validator can be created using the following:

Inheriting the validate object interface, IValidatableObject
Implementing the Validate method and handling your business validation
The Validate method must yield the validation errors if it had any

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[151]

In our blogging system, we can remove the FutureOnly attribute included in the model
and replace it with class-level validation. The business validation will be triggered
automatically (during model binding), and, as it happened in the field-level validation, it
updates the model state and error collection. The business validation using
IValidatableObject is furnished as follows:

 public class Post : IValidatableObject
 {
 public int Id { get; set; }
 [Required(ErrorMessage = "Title is required")]
 public string Title { get; set; }
 [Required(ErrorMessage = "Content is required")]
 public string Content { get; set; }
 public string Summary { get; set; }
 public DateTime PublishedDateTime { get; set; }
 [Url(ErrorMessage = "Provide a valid url")]
 public string Url { get; set; }
 public long VisitorCount { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 [Required(ErrorMessage = "Blog is required")]
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 [Required(ErrorMessage = "Author is required")]
 public int AuthorId { get; set; }
 public User Author { get; set; }
 [Required(ErrorMessage = "Category is required")]
 public int CategoryId { get; set; }
 public Category Category { get; set; }
 public ICollection<TagPost> TagPosts { get; set; }
 public ICollection<Comment> Comments { get; set; }

 public IEnumerable<ValidationResult> Validate(ValidationContext
 validationContext)
 {
 var post = (Post)validationContext.ObjectInstance;
 if (post.PublishedDateTime.CompareTo(DateTime.Now) < 0)
 yield return
 new ValidationResult("Publishing Date cannot be in past,
 kindly provide a future date", new []{ "PublishedDateTime"
 });
 }
 }

 // One way to consume manual business validation

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[152]

 var results = new List<ValidationResult>();
 var isBusinessValid = Validator.TryValidateObject(post,
 new ValidationContext(post, null, null), results, false);

The IValidatableObject implementation also does business validation, and updates the
error collection with the validation error, Publishing Date cannot be in past, kindly
provide a future date, if it encounters any business validation issues.

The same scenario was present in the earlier FutureOnly attribute validation. Providing a
past date would be validated in the Validate method. The only difference in both of the
approaches was the former does the implementation once and applies to all applicable
fields, whereas the latter requires implementation for each field done on the class level. In
layman's terms, if we need to include one more field for the validation, we will need to
perform the validation for the field again in the Validate method:

We explored custom validation that is performed at server side; now, let's explore the
custom validation that could be leveraged at a client side as well in the next section.

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[153]

Creating client-side logic for custom validation
The custom validator we created in this chapter should provide client-side validation
support as well. By default, EF will only perform server-side validation (out of the box), but
the client-side validation should be performed manually. The framework has provision to
inject custom validation and its errors in the context attributes. However, we need to
perform/implement client-side validation on our own.

The FutureOnly custom validation attribute can be configured to support client-side
validation using IClientModelValidator, which expects us to implement
the AddValidation method. We should be injecting the required custom validation values
in the context attributes; the required implementation is displayed as follows:

 public class FutureOnlyAttribute : ValidationAttribute,
 IClientModelValidator
 {
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 var post = (Post) validationContext.ObjectInstance;
 return post.PublishedDateTime.CompareTo(DateTime.Now) < 0
 ? new ValidationResult("Publishing Date cannot be in past,
 kindly provide a future date")
 : ValidationResult.Success;
 }

 public void AddValidation(ClientModelValidationContext context)
 {
 if (context == null)
 {
 throw new ArgumentNullException(nameof(context));
 }
 context.Attributes["data-val"] = "true";
 context.Attributes["data-val-futureonly"] = "Publishing Date
 cannot be in past, kindly provide a future date";
 }
 }

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[154]

The context attributes don't have the custom attributes unless we manually configure them
inside the element's context; the following screenshot shows that the context doesn't have
those custom attributes:

The MVC rendering engine will render HTML content with the data attributes required for
client-side validation, and the values that we injected in AddValidation were added as
attributes to the element context:

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[155]

This injected data attribute will be leveraged while implementing the client-side validation,
the rendered HTML code required for validation is highlighted as follows:

<div class="form-group">
 <label class="col-md-2 control-label"
for="PublishedDateTime">PublishedDateTime</label>
 <div class="col-md-10">
 <input name="PublishedDateTime" class="form-control valid"
id="PublishedDateTime" aria-invalid="false" aria-required="true"
 aria-describedby="PublishedDateTime-error" type="datetime"
 value="" data-val-required="The PublishedDateTime field is
 required." data-val="true" data-val-futureonly="Publishing Date
 cannot be in past, kindly provide a future date">
<span class="text-danger field-validation-valid" data-valmsg-
replace="true"
 data-valmsg-for="PublishedDateTime">
 </div>
</div>

The client-side validation should be performed by configuring them in the jQuery
validator, which also requires an unobtrusive adaptor. The implementation required for the
FutureOnly custom field validation is furnished below, which will be processed in
PublishedDate, which consumes the FutureOnly custom validation:

 @section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
 <script>
 $(function () {
 jQuery.validator.addMethod('futureonly',
 function (value, element, params) {
 return (new Date($(params[0]).val())) > (new Date());
 });
 jQuery.validator.unobtrusive.adapters.add('futureonly',
 ['element'],
 function (options) {
 var element = $(options.form).find('input#PublishedDateTime')[0];
 options.rules['futureonly'] = [element];
 options.messages['futureonly'] = options.message;
 });
 }(jQuery));
 </script>
 }

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[156]

The preceding implementation will let the JavaScript engine embed unobtrusive validation
to the custom attribute element during the page load, which lets the application perform
client-side validation. We could verify in the below screenshot that the client-side validation
is executed before sending the data over the network:

When the user moves over to the other control, unobtrusive validation kicks in, which
validates the control using custom JavaScript implementation, shown as follows:

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[157]

The validation outcome would either let the user continue with his input operation or
display an error and stop the user from submitting the form (without reaching the server).
In the following example, it was an invalid date and the custom error message is populated
in the error collection, which was also displayed in the view as shown in the following
screehshot:

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[158]

We explored the complete configuration and implementation required for the client-side
validation of custom validator; now, let's explore the remote validation feature available
with us that will perform something in addition to the custom validation.

Remote validation
The validations we have done so far were configured at model level, and when we say
model, it happens within its own domain. We may have a requirement where we need to
operate across models. Entity Framework has a provision to achieve the same since it is data
driven and the validation required outside the model is not available in Entity Framework.
To fill this gap, MVC has a provision to achieve the same using RemoteAttribute, which
allows the user to consume the controller action that follows a certain pattern in the
implementation.

The remote validation requires the following boundary conditions:

RemoteAttribute requires two properties—controller and action
Configured field name should be used as the action parameter name
The action should return a Json data
The returned data must have a boolean value

The blogging system has a similar requirement that requires remote validation:

Validation should be performed without submitting the entire form
Username can be verified on the fly when the user types in the value
The remote validation should verify the value against the database and respond
whether the username is available or not

RemoteAttribute should be implemented in the user model described as follows:

Create an action named IsUsernameAvailable in the Users controller.
The action should have the parameter name as username and type as String.
Perform the validation on the username value against the users table and capture
the result in a boolean variable.

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[159]

Return the boolean value in the Json method against the data parameter. This is
shown in the following code snippet:

 public async Task<IActionResult> IsUsernameAvailable(string
 username)
 {
 var usernameAvailable =
 await _context.Users.AnyAsync(x =>
 x.Username.Equals(username,
 StringComparison.OrdinalIgnoreCase));
 return Json(data: !usernameAvailable);
 }

Configure RemoteAttribute in the User model against the Username property.
The validation should pass the parameter's controller as Users and action as
IsUsernameAvailable

The following code would configure the remote validation in the User entity:

 public class User
 {
 public int Id { get; set; }
 [Required(ErrorMessage = "Display Name is required")]
 public string DisplayName { get; set; }
 [Required(ErrorMessage = "Username is required")]
 [Remote(action: "IsUsernameAvailable", controller:"Users")]
 public string Username { get; set; }
 [Required(ErrorMessage = "Password is required")]
 public string PasswordHash { get; set; }
 [Required(ErrorMessage = "Email is required")]
 [EmailAddress(ErrorMessage = "Provide a valid email address")]
 public string Email { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime ModifiedAt { get; set; }
 public int CreatedBy { get; set; }
 public int ModifiedBy { get; set; }
 public ICollection<Blog> Blogs { get; set; }
 public ICollection<Post> Posts { get; set; }
 public ICollection<Comment> Comments { get; set; }
 public int? AddressId { get; set; }
 public Address Address { get; set; }
 public int PersonId { get; set; }
 public Person Person { get; set; }
 }

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[160]

It would be wise to perform unit testing on the remote validation since we are relying on an
external functionality to validate a model field. Let's validate the code against a success
scenario by providing a username that is available (the highlighted watch console window,
as you can see in the following screenshot, shows that the username "prabhakaran" is still
available):

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[161]

The valid username will not be throwing any validation errors on the Create User screen.
We can see the username on the screen and then highlight on the very next field and there
are still no validation errors; it means that the username is available (displaying the content
in the Username field is old-fashioned EF!). This is shown in the following screenshot:

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[162]

Let's validate the code against a failure scenario by providing a username that is not
available (the highlighted watch console window, as you can see in the following
screenshot, shows that the username "prabhakar" is not available):

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[163]

This invalid username will be throwing a validation error in the Create User screen. We can
see that the username furnished in the text field is not available in the database and the
corresponding validation error is displayed next to the text field:

One last thing, in the boundary condition, we mentioned that the parameter name should
match the field name configured for the remote validation. Do we need to know what
would happen if there is a deviation? If the parameter name is different from the name
configured? Well, the value binding will not happen, instead the value would be null.

www.EBooksWorld.ir

Save Yourself – Hack Proof Your Entities Chapter 6

[164]

We never discussed assignment as of now, so let's take that as a task and get the proper
validation performed as displayed in the following screenshot:

We learned about remote validation in this chapter, and that wraps up the custom
validations we can perform beyond the built-in validations available in the framework.

Summary
We learned about custom validations that were provided by Entity Framework and MVC in
this chapter. We started with client-side validation, which changed the user experience
completely, then looked at what would happen if somebody hacks in and bypasses the
client-side validation. We overcame those issues by applying second-level validation at the
server side. We saw the urge in performing manual validation rather than the framework
doing it for us out of the box; we then performed some custom validation that was required
beyond the built-in validations. We also applied the same validation to the client side by
leveraging IClientModelValidator. Finally, we performed a remote validation that was
not even a part of Entity Framework but was available in the MVC Framework.

So far, we were accessing the data only through data context, and we have never written
any plain SQL queries. In a few valid scenarios, we had a need for the provision to bypass
the data context for better performance or to avoid heavy lifting tasks done by the
framework. We will figure this out in Chapter 7, Going Raw – Leveraging SQL Queries in
LINQ.

www.EBooksWorld.ir

7
Going Raw – Leveraging SQL

Queries in LINQ
We have learned about custom validations, leveraging client-side validation, responding if
somebody hacks into the system and bypasses the client-side validation, and additional
layer security at the server side. Finally, we performed remote validation from the MVC
framework.

In this chapter, we will address the following concerns with respect to data security:

Do we have a provision in Entity Framework (EF) to control SQL queries?
We can perform or execute inline SQL queries directly from EF.

What if someone hacks the system and performs SQL injection? Do SQL queries
actually open up those security issues?

We could use parametrized queries to avoid SQL injection.
If we go down the plain SQL queries route, can we leverage LINQ queries?

Yes, we can still leverage them in LINQ queries.
Can we execute the queries without the DBSet class or POrtable COmponents
(POCO) object?

Yes, we do have a provision to execute queries without DBSet or a
POCO object.

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[166]

After addressing these concerns, we have a fair idea of what we will be covering in this
chapter:

Basic raw SQL queries
Building parameterized queries
Composing with LINQ
Executing SQL query without a DBSet class or POCO

Basic raw SQL queries
The main idea of abstracting SQL queries from the framework is to perform implementation
irrespective of the data source that we will be using in the application. We might think that
creating raw SQL queries must be defeating the very purpose of EF Core's existence. There
are a few valid requirements that might need raw SQL instead of leaving Entity to do the
work for us.

It could be anything, something that could not be achieved through LINQ queries or
performance that was not optimized by Entity-generated queries. The reason could be
anything, but, at the end of the day, we all work for an outcome, an optimized outcome
with better performance. We might be ready to take extreme measures in not aligning with
the framework/APIs, provided the reason is substantiated more than the API usage.

We could perform basic SQL queries or execute stored procedures or functions from EF in
raw mode. The framework has a provision in the DBSet through the FromSql method that
does the job for us, allowing us to execute raw SQL using EF. It also allows us to create
LINQ queries based on SQL queries; because was made possible since it has been exposed
from the DBSet type.

Let's extend the blogging system by making the blogs controller execution into raw SQL
queries, and we will begin with the Index action using a raw SQL query, displayed as
follows:

 public async Task<IActionResult> Index()
 {
 return View(await _context.Blogs.FromSql("Select *
 from dbo.Blog").ToListAsync());
 }

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[167]

The preceding listed implementation produces the following output in the view, and it
doesn't make much difference to the existing rendered view:

We will create a new action just to illustrate the stored procedure (SP) GetLatestBlogs
execution using raw SQL query EF. The implementation of an SP using FromSql is listed as
follows:

 public async Task<IActionResult> LatestBlogs()
 {
 return View("Index", await _context.Blogs.FromSql("EXEC
 [dbo].[GetLatestBlogs]").ToListAsync());
 }

The preceding listed implementation produces the following output in the view. All it does
is render the SP's outcome within an existing Index view:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[168]

FromSql could perform raw SQL queries only if the returned data is of the
DBSet type being accessed. In the preceding example, we used Blogs and
DBSet, and it would expect the query to return blogs, and other entities
would not be accepted by the framework.

Let's try to return a different type other than the one being configured against the DBSet
and see how EF is behaving:

 public async Task<IActionResult> Index()
 {
 return View(await _context.Blogs.FromSql("Select *
 from dbo.Post").ToListAsync());
 }

The preceding query would trigger an invalid operation since the data returned doesn't
match the type it is trying to map:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[169]

With the preceding displayed error, it is evident that something beyond the type mismatch
is happening here since the error doesn't specify anything about the type mismatch.

FromSql expects that the column names returned from the database
match with the ones available in the mapping object. If there is a mismatch
in the object then an invalid operation exception would be thrown by the
framework.

If we have any requirement to consume anonymous types in the raw SQL queries using
FromSql, we definitely won't get them until EF Core 2.0, and the same is available on the
following shared link at https:/ ​/​github. ​com/​aspnet/ ​EntityFramework/ ​issues/ ​1862,
which says:

"This is something we are still trying to get in 2.0, but the schedule is tight and there is a
high risk that we will need to punt it to the next minor release after 2.0." - Diego Vega.

"Unfortunately, we don't have time to do this for the 2.0 release. We are considering it a
high priority for post 2.0." - Arthur Vickers

The preceding listed responses were from a Entity Framework GitHub repository owner
and member, so it's official that we might not get this feature this year.

Let's try to limit the columns returned from the database and see whether we have any
impact on the application. The SELECT statement is tweaked with limited columns from the
Blog entity:

 public async Task<IActionResult> Index()
 {
 return View(await _context.Blogs.FromSql("Select [Id],[Title],
 [Subtitle],[Description],[Url] from dbo.Blog").ToListAsync());
 }

www.EBooksWorld.ir

https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862
https://github.com/aspnet/EntityFramework/issues/1862

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[170]

The framework doesn't support inline queries that don't provide data to all the
properties/fields of the data model. It would start throwing errors, as follows, until all the
fields were satisfied in the SQL query:

We have seen queries or SPs without any parameters so far, and only a few cases use them
in real-time applications. We will explore inline queries that accept parameters and see how
we could utilize them safely in the next section.

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[171]

Building parameterized queries
Building and executing parameterless queries would have fewer usages, whereas most
usages in any application would be based on parameters/conditions. Introducing
parameters in flat/raw queries would expose us to a threat of SQL injection. How are we
going to protect our application from such a threat? We cannot ignore them in a real-world
application, as we have applications that are hugely dependent on inline queries.

SQL injection is a technique used by hackers to exploit any system, and it
would shake it to its core in terms of security. It could be performed by
embedding user inputs blindly with inline SQL queries.

The most commonly injected value would be OR 1 = 1 , which would
pump an entire record set instead of using the input value for filtering. For
instance, in our blogging system, if a hacker tries to retrieve user
information he could tweak the following query (assuming we have such
a query in the system):

SELECT * FROM USERS WHERE Id = + userId +. userId could be a
field storing the user input value.

Considering the userId passed as 5 from the application, it could be
constructed as follows:
SELECT * FROM USERS WHERE Id = 5

The preceding query displays or returns only one user matching the Id as
5.

If the hacker injects the previously mentioned value, it would be as
follows:

SELECT * FROM USERS WHERE Id = 5 OR 1 = 1

The preceding SQL injection would return all users' information, rather
than returning only the user matching ID 5. This is a simple SQL injection.

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[172]

Parameterized queries are the mechanism used to protect us from such threats. They ensure
that the SQL injection doesn't happen, and the previously mentioned injection problem
would not happen with the parameterized queries:

 public async Task<IActionResult> Details(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 var blog = await _context.Blogs.FromSql("Select * from dbo.Blog WHERE
 Id = {0}", id).FirstOrDefaultAsync();
 if (blog == null)
 {
 return NotFound();
 }

 return View(blog);
 }

Instead of directly passing the input value as a parameter in the FromSql method, we could
also use the SqlParameter object to construct the parameter, which also ensures that the
query is safe from SQL injection. The following code would illustrate parameterised query
execution in EF Core:

 public async Task<IActionResult> Details(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 var blog = await _context.Blogs.FromSql("Select * from dbo.Blog
 WHERE Id = @id", new SqlParameter("id", id)).FirstOrDefaultAsync();
 if (blog == null)
 {
 return NotFound();
 }

 return View(blog);
 }

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[173]

The following screenshot displays a blog item as usual without any changes to its previous
state. The only difference is its rendering through a parameterized query:

If we try to inject the value through any of the following means, the system would still be
handling the injection of the model binder itself since we are dealing with identifiers that
were exposed as an integer. Let's visit the following paths:

http://localhost:54346/Blogs/Details/1OR1=1

http://localhost:54346/Blogs/Details?id=1OR1=1

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[174]

Trying to access anyone of the preceding link would throw the following error:

For the sake of argument, let's change the parameter type of the identifier to a string and try
injecting the value again to the Details action to see how SQL injection is really handled
by parameterized queries. It is evident in the following screenshot that the parameterized
query is trying to convert the value to an integer that actually fails and the execution is
stopped, thereby protecting the application against SQL injection:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[175]

Still not convinced? Me neither. Unless we handle injection for a string column, I won't be
convinced. Let's tweak the system just for the purpose of illustration by adding the
following action, which would filter blogs using a wildcard search in the Title column,
returning the first item from the result set and finally rendering them in an existing
Details view:

 public async Task<IActionResult> GetBlogByTitle(string keyword)
 {
 if (keyword == null)
 {
 return NotFound();
 }

 var blog = await _context.Blogs.FromSql("Select * from dbo.Blog WHERE
 Title like '%' + @keyword + '%'",
 new SqlParameter("keyword", keyword)).FirstOrDefaultAsync();
 if (blog == null)
 {
 return NotFound();
 }

 return View("Details", blog);
 }

Try to inject the values as we did earlier, by visiting the following paths:

http://localhost:54346/Blogs/GetBlogByTitle/keyword=core OR 1=1
http://localhost:54346/Blogs/GetBlogByTitle?keyword=core OR 1=1

Still, the system would be handling the injection, but now at the database end as it would be
treated as a string value. The query fails to return any records, thereby
returning NotFound() from the action:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[176]

We have exhaustively seen the inline parameterized queries. Let us explore them using
stored procedures, which are also one of the techniques in handling SQL injections. The SP
execution looks similar to the parameterized inline query, still protecting the application
from SQL injection. Let's tweak the system just for the purpose of illustration by adding the
following action which would filter blogs by category, return the list of blog items, and
finally render them in an existing Index view:

 public async Task<IActionResult> BlogsByCategory(int categoryId)
 {
 return View("Index", await _context.Blogs.FromSql("EXEC
 [dbo].[GetBlogsByCategory] @categoryId = {0}",
 categoryId).ToListAsync());
 }

The preceding query could be tweaked to accommodate the SqlParameter object, which
streamlines the parameterized query in a more readable manner. The following would
consume SqlParameter in the parameterised SQL execution:

 public async Task<IActionResult> BlogsByCategory(int categoryId)
 {
 return View("Index", await _context.Blogs.FromSql("EXEC
 [dbo].[GetBlogsByCategory] @categoryId = @Id",
 new SqlParameter("id", categoryId)).ToListAsync());
 }

The following screenshot displays a list of filtered blog items in the Index view; only it is
processed from a different action and mainly uses parameterized queries:

We have seen parameterized inline queries or SPs so far, which satisfy the use cases in real-
time applications. We will further explore leveraging them with the LINQ queries to
filter/process data in the Composing with LINQ section.

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[177]

Composing with LINQ
We have performed flat SQL queries so far. This doesn't involve LINQ queries. If we had a
mechanism that could leverage flat queries composed of LINQ to SQL queries, then we
could get the best of both worlds. Fortunately, we do have built-in support in Entity
Framework, and the flat SQL queries could be composed of LINQ queries, and we will
cover them in detail in this section.

Let's comment the current implementation in LatestBlogs() and perform the SP
implementation using flat queries composed with LINQ. Ideally, what we are trying to
achieve is to get the table data using a LINQ query and compose the result with a LINQ
query to perform filtering and ordering from a LINQ query (this might not be a real-world
scenario, but it works well for illustration):

 public async Task<IActionResult> LatestBlogs()
 {
 //return View("Index", await _context.Blogs.FromSql("EXEC [dbo].
 [GetLatestBlogs]").ToListAsync());
 var comparisonDateTime = DateTime.Now.AddMonths(-3);
 return View("Index", await _context.Blogs
 .FromSql("Select * from dbo.Blog")
 .Where(x=>x.CreatedAt >= comparisonDateTime)
 .OrderByDescending(x=>x.Id)
 .ToListAsync());
 }

We can see the outcome as expected, and it reflects that of the earlier result set for the latest
blogs in the following screenshot:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[178]

Let's dig in further and see what is happening internally and how Entity Framework is
processing these queries. We might be thinking that EF Core would be retrieving blog
entries and does a LINQ query with in-memory data. The following SQL Server Profiler
trace will prove us wrong. If we closely watch the highlighted part of the trace, it is evident
that Entity Framework is performing a LINQ to an SQL query by translating the LINQ
query into the required SQL query and executing it in one shot in the database. Cool, right?
The following screenshot would illustrate that the parameterised execution is translated
into SQL statement:

We have looked at the mechanism to compose flat SQL queries with LINQ, but we haven't
covered the Include() data, which is a powerful feature of Entity Framework. You
guessed it right, we could perform the Include() operation on flat SQL queries composed
of LINQ queries as well. All we need to do is have the .Include() method as usual before
the .ToList() call, which translates the LINQ queries into SQL queries. The following
code would consume the .Include() functionality:

 public async Task<IActionResult> LatestBlogs()
 {
 //return View("Index", await _context.Blogs.FromSql("EXEC [dbo].
 [GetLatestBlogs]").ToListAsync());

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[179]

 var comparisonDateTime = DateTime.Now.AddMonths(-3);
 return View("Index", await _context.Blogs
 .FromSql("Select * from dbo.Blog")
 .Where(x=>x.CreatedAt >= comparisonDateTime)
 .OrderByDescending(x=>x.Id)
 .Include(x => x.Posts)
 .ToListAsync());
 }

We can see the outcome of the query in the following screenshots. The first screenshot
shows that the total blogs returned has a count of 2, out of which the first blog has a total of
two posts. We can see the blog Id used in the post matching with the Id field of the first
blog:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[180]

The same is applied to the second post item inside the first blogs Posts array, which ensures
that the Include() method worked as expected, returning corresponding posts to the blog
item:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[181]

As an additional check, we could verify the second blog item and its corresponding single
post, which was included as well:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[182]

We have seen how the Include() functionality worked with the flat SQL query composed
with LINQ; let's see how it has been translated into an SQL query (LINQ to SQL). The
following screenshot shows us that there were two SQL statements executed, out of which
the first statement was similar to the earlier one that retrieves data from the Blog table:

The second statement does the trick for us, executing the code required to include the post
table data with the LINQ query. This is depicted in the following screenshot:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[183]

We have seen how to consume flat SQL queries with LINQ to SQL queries in this section,
and so far we have seen the execution of flat SQL queries with respect to DBSet or a POCO
object. Let's investigate whether the same could be achieved anonymously in the Executing
SQL query without a DBSet or POCO section.

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[184]

Executing SQL query without a DBSet or
POCO
We need to investigate whether Microsoft supports flat SQL execution anonymously
without requiring a DBSet or POCO object. Since it's open source, it is easy for us to
investigate this. We could directly get into their source code in the GitHub repository
(https:/​/​github.​com/ ​aspnet/ ​EntityFramework) and investigate whether they have any
implementation of the expected behavior.

Microsoft does have a couple of extension methods for a relational database as a façade,
which is available at https:/ ​/ ​github. ​com/ ​aspnet/ ​EntityFramework/ ​blob/
0024373adae7e331ed217de2b4bd12be5eedf925/ ​src/ ​EFCore. ​Relational/
RelationalDatabaseFacadeExtensions. ​cs.

The extension method located in the preceding GitHub location is illustrated as follows. We
need to capture it, as we will be discussing the implementation in this section:

www.EBooksWorld.ir

https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs
https://github.com/aspnet/EntityFramework/blob/0024373adae7e331ed217de2b4bd12be5eedf925/src/EFCore.Relational/RelationalDatabaseFacadeExtensions.cs

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[185]

They have an implementation for raw SQL queries, but it is a limited implementation. It has
ExecuteSqlCommand that supports only ExecuteNonQuery functionality, which means we
couldn't use this method for processing SQL queries that return result sets:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[186]

The same implementation is available in an asynchronous way as well, which instructs us to
perform two implementations if we are planning to have an extension of our
requirement. The following screenshot will have asynchronous implementation:

The EF Core community has an open issue created with respect to our requirement, which
is available at https:/ ​/​github. ​com/ ​aspnet/ ​EntityFramework/ ​issues/ ​1862#issuecomment-
220787464.​

In the preceding issue thread, a user sirentek provided us with a workaround until
Microsoft fixes the same for us in the framework. Let's implement the extension methods
required for the anonymous SQL query execution:

Create a DatabaseExtensions static class that holds the extension methods.1.

www.EBooksWorld.ir

https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464
https://github.com/aspnet/EntityFramework/issues/1862#issuecomment-220787464

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[187]

Implement ExecuteSqlQuery for an SQL query that returns a result set as2.
opposed to ExecuteSqlCommand, which doesn't return anything.
Implement ExecuteSqlQueryAsync for asynchronous operations matching3.
the ExecuteSqlCommandAsync implementation from Microsoft.

Microsoft has no plans to include them at the present time, not even in EF Core 2.0. It is
similar to the earlier discussion we had for anonymous types support:

 public static class DatabaseExtensions
 {
 public static RelationalDataReader ExecuteSqlQuery(this
 DatabaseFacade databaseFacade, string sql, params
 object[] parameters)
 {
 var concurrencyDetector =
 databaseFacade.GetService<IConcurrencyDetector>();
 using (concurrencyDetector.EnterCriticalSection())
 {
 var rawSqlCommand = databaseFacade
 .GetService<IRawSqlCommandBuilder>()
 .Build(sql, parameters);

 return rawSqlCommand
 .RelationalCommand
 .ExecuteReader(
 databaseFacade.GetService<IRelationalConnection>(),
 parameterValues: rawSqlCommand.ParameterValues);
 }
 }

 public static async Task<RelationalDataReader>
 ExecuteSqlQueryAsync(this DatabaseFacade databaseFacade,
 string sql,
 CancellationToken cancellationToken = default(CancellationToken),
 params object[] parameters)
 {
 var concurrencyDetector =
 databaseFacade.GetService<IConcurrencyDetector>();
 using (concurrencyDetector.EnterCriticalSection())
 {
 var rawSqlCommand = databaseFacade
 .GetService<IRawSqlCommandBuilder>()
 .Build(sql, parameters);

 return await rawSqlCommand
 .RelationalCommand

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[188]

 .ExecuteReaderAsync(
 databaseFacade.GetService<IRelationalConnection>(),
 parameterValues: rawSqlCommand.ParameterValues,
 cancellationToken: cancellationToken);
 }
 }
 }

The following code usage is pretty simple; all it does is pass the SQL query required for
the ExecuteSqlQueryAsync extension method and return a result set in the form of
DbDataReader:

 var results = await _context.Database
 .ExecuteSqlQueryAsync(@"select b.Title as BlogTitle, p.* from
 Post p join Blog b on b.Id = p.BlogId");
 while (results.DbDataReader.Read())
 {
 Console.Write(
 $"Blog Title: '{results.DbDataReader["BlogTitle"]}',
 Post Title: '{results.DbDataReader["Title"]}'");
 }

We have iterated the DbDataReader, which prints the post along with its blog title. The
following screenshot proves that anonymous types were returned from flat SQL queries
from Entity Framework using our own extension method:

As an additional check, let us verify the second item being returned in the result set, and its
matching with the .NET Core entry available in the Post table, the following screenshot
confirms that the post entries were from .NET core blog only:

www.EBooksWorld.ir

Going Raw – Leveraging SQL Queries in LINQ Chapter 7

[189]

We have investigated the availability of raw SQL execution without DBSet or POCO objects
in Entity Framework. It was proven that Microsoft doesn't have any support at the present
time. So, we had a workaround suggested by a user in the community to create an
extension method to achieve the same. Then we were able to execute flat SQL queries
directly on a database (without a DBSet) and return anonymous types (without a POCO
object).

Summary
We have explored how to execute raw SQL queries in EF Core without providing direct
ADO.NET implementation, and have a consistent implementation of the Data Access layer.
We started with a simple SQL query, then looked at the security threats (SQL injection) it
would expose us to. We have overcome those threats by using parameterized queries and
stored procedures. We saw the ways available to marry (composing with LINQ) Entity
Framework with raw SQL query execution, leveraging the same with Include
functionality. Finally, we executed raw SQL queries without DBSet and the POCO model,
even though there is no built-in support in EF Core.

So far, we have been accessing the data through LINQ to SQL or raw SQL queries without
any pattern applied. In Chapter 8, Query Is All We Need – Query Object Pattern, we will
figure out how to apply query-related patterns.

www.EBooksWorld.ir

8
Query Is All We Need – Query

Object Pattern
We have covered raw SQL query execution in Entity Framework (EF), which might be
required in a few valid scenarios to have control over queries or to improve performance.
We have seen a simple SQL query, the security threat it could pose, and also a solution for
this. Then we covered different ways of executing raw SQL queries in Entity Framework.
 Finally, we created an extension method to execute raw SQL queries without a DBSet and
POCO model.

Let's discuss the repository pattern currently used in the Object Relational Mapping
(ORM) layer, looking at its design issues, and we'll see how the query object pattern helps
us in achieving this efficiently. The following design issues will be addressed in this
chapter:

The repository pattern started to abstract the ORM layer, but lately, the methods
included in the repository were growing drastically, which defeats its purpose:

The necessity to simplify the data access layer led to the query
object pattern

We have been creating multiple methods in repositories that differ only by the
nature of queries:

The query object pattern generalizes and improvises the repository
methods

Queries alone would not be sufficient in simplifying the data access layer:
Composing queries with generic commands extends the pattern to
all CRUD operations

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[191]

The query object pattern still doesn't let the user extend the queries dynamically:
The simple query objects perform implementation inside queries,
but expression trees delegate the implementation to the user,
providing the required extendibility to the user

Ideally, we will be covering the following topics:

Introduction to query objects
Improving repositories with the query object pattern
Composing queries with commands
Enhancing queries with expression trees

Introduction to query objects
The query object pattern could be incorporated by introducing a query type and processing
the query through the type, instead of processing it directly. Please perform the following
approach we need to follow in order to incorporate the pattern in any application:

Create a query type with the fields required for the query, as follows:1.
Have a parameterized constructor that enforces the type instance to be
created only if mandatory field values were provided
The mandatory fields required for the query must be included in the
constructor

Let's create a query type that filters posts by Id; we need a query type that has an
Id field and a constructor that populates the Id field:

 public class PostDetailQuery
 {
 public PostDetailQuery(int? id)
 {
 this.Id = id;
 }
 public int? Id { get; set; }
 }

The query type is ready for implementation; let's proceed to the next step, creating
handlers.

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[192]

Create a query handler interface that enforces the type to handle queries, create2.
Handle() in the interface that would enforces type to implement it.

The handler must be created in two folds; first, an interface should be created with
the provision required for handling the execution:

 public interface IPostDetailQueryHandler
 {
 Task<Post> Handle(PostDetailQuery query);
 }

The provision is in place; let's create the implementation with a concrete query
handler type.

Create a query handler type that performs queries using data context, inject the3.
database context using a constructor

The BlogContext database context is injected into the handler through the
constructor, shown as follows:

 public class PostDetailQueryHandler : IPostDetailQueryHandler
 {
 private readonly BlogContext _context;
 public PostDetailQueryHandler(BlogContext context)
 {
 _context = context;
 }
 }

The data context is now available; let's use the context of the query object to
perform the query execution:

Implement Handle() with actual queries using the data context

The query handler implementation consumes the query type created earlier, and
the data context creates a filter using the data available in the query object and
performs its execution:

 public class PostDetailQueryHandler : IPostDetailQueryHandler
 {
 // Code removed for brevity
 public async Task<Post> Handle(PostDetailQuery query)
 {
 return await _context.Posts
 .Include(p => p.Author)

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[193]

 .Include(p => p.Blog)
 .Include(p => p.Category)
 .FirstOrDefaultAsync(x => x.Id == query.Id);
 }
 }

Now the query handler implementation is complete, but it's still not consumed
anywhere in the application. Let's see how it could be consumed in our controller.

Consume the query handler in the controller, inject the query handler using a4.
constructor

The PostDetailQueryHandler type is injected through the constructor against
the IPostDetailQueryHandler interface using the dependency injection (as we
previously did for BlogContext) supported in .NET Core:

 public class PostsController : Controller
 {
 private readonly BlogContext _context;
 private readonly IPostDetailQueryHandler
 _postDetailQueryHandler;

 public PostsController(BlogContext context,
 IPostDetailQueryHandler postDetailQueryHandler)
 {
 _context = context;
 _postDetailQueryHandler = postDetailQueryHandler;
 }
 // Code removed for brevity
 }

The query handler is available in the constructor now; let's consume this to
perform the required execution in the action that requires it, identify the action
(from the controller) that requires the query and consume the query handler to
perform the execution

The Details action in the controller requires a query execution based on the post
Id, so let's consume the query using PostDetailQuery created for this
requirement. The following code would consume the query handler in
the controller:

 public async Task<IActionResult> Details(int? id)
 {
 // Code removed for brevity
 var post = await _postDetailQueryHandler.Handle(new
 PostDetailQuery(id));

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[194]

 // Code removed for brevity
 }

The preceding implementation would trigger a post filter based on the id passed
on to the query object, thus wrapping the core implementation to the query type,
satisfying the query object pattern:

Finally, do not forget to support the constructor execution in the
dependency injection in Startup.cs inside the ConfigureServices
method:

 services.AddScoped<IPostDetailQueryHandler,
 PostDetailQueryHandler>();

We have seen how to create query objects and handlers, and how to consume them in
controllers. In Chapter 9, Fail Safe Mechanism – Transactions, we'll see how to leverage or
improvise the repositories by consuming query objects.

Improving repositories with the query object
pattern
We need a provision to explain the necessity of a query object pattern, so let's create such a
requirement and then we will look into query objects. We will create a repository for blogs
in our system, we will see the advantages and disadvantages it brings to the application,
and finally, we will see what are query objects and how they help us in improvising
repositories.

Introduction to repositories
We have been performing CRUD operations in the controller directly with the data context;
we could incorporate a repository in our application first, and later, query objects could be
implemented in the repository.

Let us start with creating the interface required for the repository. It includes basic retrieval,
business-specific retrievals, and the remaining CRUD operations. The following code
contains the methods required for the IPostRepository:

 public interface IPostRepository
 {
 IEnumerable<Post> GetAllPosts();

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[195]

 Task<IEnumerable<Post>> GetAllPostsAsync();
 Post GetPostById(int? id, bool includeData = true);
 Task<Post> GetPostByIdAsync(int? id, bool includeData = true);
 IEnumerable<Post> FindPostByTitle(string title);
 IEnumerable<Post> FindPostByAuthor(string author);
 IEnumerable<Post> FindPostByPublishedYear(int year);
 IEnumerable<Post> FindPostByHighestVisitors();
 IEnumerable<Post> FindPostByCategory(string category);
 IEnumerable<Post> FindPost(string keyword, int pageCount,
 int pageSize);
 int AddPost(Post item);
 Task<int> AddPostAsync(Post item);
 int UpdatePost(Post item);
 Task<int> UpdatePostAsync(Post item);
 int DeletePost(int? id);
 Task<int> DeletePostAsync(int? id);
 }

The repository implementation starts with the database context injection, BlogContext in
our case. Then the interface implementation starts with FindPost, which takes keyword,
pageCount, and pageSize, which were consumed by the LINQ query in filtering posts
using those parameters. The keyword was used as a wildcard search across all fields
available in the Post entity:

 public class PostRepository : IPostRepository
 {
 private readonly BlogContext _context;
 public PostRepository(BlogContext context)
 {
 _context = context;
 }

 public IEnumerable<Post> FindPost(string keyword, int pageCount,
 int pageSize)
 {
 return _context.Posts
 .Where(x =>
 x.Title.ToLower().Contains(keyword.ToLower())
 || x.Blog.Title.ToLower().Contains(keyword.ToLower())
 || x.Blog.Subtitle.ToLower().Contains(keyword.ToLower())
 || x.Category.Name.ToLower().Contains(keyword.ToLower())
 || x.Content.ToLower().Contains(keyword.ToLower())
 || x.Summary.ToLower().Contains(keyword.ToLower())
 || x.Author.Username.ToLower().Contains(keyword.ToLower())
 || x.Url.ToLower().Contains(keyword.ToLower()))
 .Skip(pageCount-1).Take(pageSize);
 }

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[196]

We could have the assignment to cover the remaining implementations (as well as new
actions required to filter posts by category, author, and so on) required in the controller, as
we mostly port the controller implementations into a repository method; for instance, the
action implementation of the Get action gets into the GetAllPosts method of the
repository. In this chapter, since we are working on an assignment that is required to
proceed to the next section, we will have the solutions captured as well, just to ensure we
have everything implemented before we move on to the next section.

Solution to the repository assignment
We could come up with the following URI that could be used in the application for filtering
posts. We should definitely need provision to filter posts by category, author, visitor count,
and so on, and these URIs should serve a response in a JSON format that will be consumed
by AJAX calls. The following actions would server JSON data which could be consumed by
the AJAX calls:

Posts/FindPostsByAuthor

Posts/FindPostByCategory

Posts/FindPostByHighestVisitors

Posts/FindPostByPublishedYear

Posts/FindPostByTitle

Let's start building those JSON endpoints first, and then we will move on to porting existing
actions into the repository.

The following steps need to be followed to implement JSON-driven HTTP action:

Set the appropriate HTTP verb, [HttpGet] in our case.1.
Set the return type as JSON using [Produces("application\json")].2.
The method implementation is straightforward:3.

Define the controller action with the appropriate return type and an1.
input parameter.
Filter the data context using the input parameter and return the filtered2.
data.

The code for the action is listed as follows:4.

 [HttpGet]
 [Produces("application/json")]
 public IEnumerable<Post> FindPostByAuthor(string author)
 {

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[197]

 return _context.Posts
 .Where(x => x.Author.Username.ToLower().
 Contains(author.ToLower()));
 }

This implementation alone would not be enough, as we are deviating from the regular
MVC content negotiation. This action requires us to return JSON, so we need to configure
the services to support this. Additionally, we will ignore the ReferenceLoopHandling to
avoid unnecessary data included in the response.

In startup.cs, add the following configuration inside
the ConfigureServices method:

 services.AddMvc().AddJsonOptions(options =>
 {
 options.SerializerSettings.ContractResolver =
 new DefaultContractResolver();
 options.SerializerSettings.ReferenceLoopHandling =

 Newtonsoft.Json.ReferenceLoophandling.Ignore;
 });

Similar changes are required for the remaining URIs; let's take it up as an assignment:

Posts/FindPostByCategory

Posts/FindPostByHighestVisitors

Posts/FindPostByPublishedYear

Posts/FindPostByTitle

The same pattern should be followed for the remaining JSON actions and
also for the remaining actions that need to be ported into a repository. The
solution for this is available in the following Git repository:
https:/ ​/​goo. ​gl/ ​DGBZMK

The repository implementation is far more complete now. In the next section, we will start
incorporating the query object pattern into the repository.

www.EBooksWorld.ir

https://goo.gl/DGBZMK
https://goo.gl/DGBZMK
https://goo.gl/DGBZMK
https://goo.gl/DGBZMK
https://goo.gl/DGBZMK
https://goo.gl/DGBZMK
https://goo.gl/DGBZMK
https://goo.gl/DGBZMK
https://goo.gl/DGBZMK

Query Is All We Need – Query Object Pattern Chapter 8

[198]

Incorporating the query object pattern into
repositories
In the Introduction to query objects section of this chapter, the query object pattern we had
explored need to be incorporated into the repository. Since we know the steps that need to
be followed in creating query objects, let's start creating the required types.

List query object support in the repository
We have seen the GetAllPosts method, which includes related data for all
implementations. Since we are creating a common query, which could be consumed in
multiple places, we need to include this as a filter in the GetAllPostsQuery object:

 public class GetAllPostsQuery
 {
 public GetAllPostsQuery(bool includeData)
 {
 this.IncludeData = includeData;
 }
 public bool IncludeData { get; set; }
 }

The GetAllPostsQuery consumes only the IncludeData filter in the type, which doesn't
filter any data from the result set, but only excludes/includes related data. The following
code would create a contract to enforce consumers to implement handle methods:

 public interface IPostQueryHandler<T> where T : class
 {
 IEnumerable<Post> Handle(T query);
 Task<IEnumerable<Post>> HandleAsync(T query);
 }

The generic query handler interface now supports both synchronous and asynchronous
operations, which returns a list of Posts. The GetAllPostsQueryHandler would perform
the concrete implementation which will yield a list of Posts in synchronous and
asynchronous manner as displayed in the following code:

 public class GetAllPostsQueryHandler :
 IPostQueryHandler<GetAllPostsQuery>
 {
 private readonly BlogContext _context;
 public GetAllPostsQueryHandler(BlogContext context)
 {
 this._context = context;

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[199]

 }

 public IEnumerable<Post> Handle(GetAllPostsQuery query)
 {
 return query.IncludeData
 ? _context.Posts.Include(p =>
 p.Author).Include(p => p.Blog).Include(p => p.Category).ToList()
 : _context.Posts.ToList();
 }
 public async Task<IEnumerable<Post>>
 HandleAsync(GetAllPostsQuery query)
 {
 return query.IncludeData
 ? await _context.Posts.Include(p => p.Author).Include(p
 => p.Blog).Include(p => p.Category).ToListAsync()
 : await _context.Posts.ToListAsync();
 }
 }

The GetAllPostsQuery consumes the generic query handler to return all posts with or
without including related data. The IPostRepositoryWithQueries will create a contract
with Get() and GetAsync() method to retrieve list of Posts with the following code:

 public interface IPostRepositoryWithQueries
 {
 IEnumerable<Post> Get<T>(BlogContext context, T query)
 where T : class;
 Task<IEnumerable<Post>> GetAsync<T>(BlogContext context,
 T query) where T : class;
 }

The PostRepositoryWithQueries repository is created to accommodate the query objects
with generic methods to accept any query type for its execution, thereby reducing the
multiple methods created in the repository earlier. The concrete implementation of the
repository is displayed below which delegates the query execution based on the query type:

 public class PostRepositoryWithQueries : IPostRepositoryWithQueries
 {
 private readonly BlogContext _context;

 public PostRepositoryWithQueries(BlogContext context)
 {
 _context = context;
 }

 public IEnumerable<Post> Get<T>(BlogContext context, T query)
 where T : class

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[200]

 {
 switch(typeof(T).Name)
 {
 case "GetAllPostsQuery":
 var getAllPostsQueryHandler =
 new GetAllPostsQueryHandler(context);
 return getAllPostsQueryHandler.Handle(query
 as GetAllPostsQuery);
 }
 }

 public async Task<IEnumerable<Post>> GetAsync<T>(BlogContext
 context, T query)
 where T : class
 {
 switch (typeof(T).Name)
 {
 case "GetAllPostsQuery":
 var getAllPostsQueryHandler = new
 GetAllPostsQueryHandler(context);
 return await getAllPostsQueryHandler.HandleAsync(query
 as GetAllPostsQuery);
 }
 }
 }

The repository's Get generic method changes its implementation based on the type passed
during its invocation, and that reduces the repository implementation to one for all post list
retrievals. The PostRepositoryWithQueries were consumed in the PostsController
as shown in the following code:

 public class PostsController : Controller
 {
 private readonly BlogContext _context;
 private readonly IPostRepositoryWithQueries _repositoryWithQueries;

 public PostsController(BlogContext context,
 IPostRepositoryWithQueries repositoryWithQueries)
 {
 _context = context;
 _repositoryWithQueries = repositoryWithQueries;
 }

 // GET: Posts
 public async Task<IActionResult> Index()
 {
 return View(await _repositoryWithQueries.GetAsync(_context,

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[201]

 new GetAllPostsQuery(true)));
 }

 // Code removed for brevity
 }

We can see the controller started using the new repository through dependency injection
and corresponding the Get action being called using the appropriate query object. In the
preceding scenario, we have been using the GetAllPostsQuery object that was passed on
to the GetAsync method of the new repository. In the next section, let's explore the
implementation required to return an individual post object from the repository.

Single query object support in the repository
We have seen how a list of objects was returned from the repository in a generic fashion.
Let's have a provision to return a single object from the repository:

 public interface IPostRepositoryWithQueries
 {
 // Code removed for brevity
 Post GetSingle<T>(T query) where T : class;
 Task<Post> GetSingleAsync<T>(T query) where T : class;
 }

The preceding code adds synchronous and asynchronous methods to return a single Post
object from the repository, still retaining the generic implementation since it could be used
by multiple query objects that might return individual Post objects:

 public class GetPostByIdQuery
 {
 public GetPostByIdQuery(int? id, bool includeData)
 {
 this.Id = id;
 this.IncludeData = includeData;
 }

 public int? Id { get; set; }
 public bool IncludeData { get; set; }
 }

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[202]

The query type we have created now has one more filter by Id, apart from retaining
IncludeData from the previous query type. The handler interface required to return single
Post type is defined below:

 public interface IPostQuerySingleHandler<T> where T : class
 {
 Post Handle(T query);
 Task<Post> HandleAsync(T query);
 }

We have a corresponding generic query handler to handle a single object from the handler
implementation, which has synchronous and asynchronous support as well. The following
code provides concrete implementation required for the GetPostByIdQueryHandler to
filter Posts by identifier:

 public class GetPostByIdQueryHandler :
 IPostQuerySingleHandler<GetPostByIdQuery>
 {
 private readonly BlogContext _context;

 public GetPostByIdQueryHandler(BlogContext context)
 {
 this._context = context;
 }

 public Post Handle(GetPostByIdQuery query)
 {
 return query.IncludeData
 ? _context.Posts.Include(p => p.Author)
 .Include(p => p.Blog)
 .Include(p => p.Category).SingleOrDefault(x =>
 x.Id.Equals(query.Id))
 : _context.Posts
 .SingleOrDefault(x => x.Id.Equals(query.Id));
 }

 public async Task<Post> HandleAsync(GetPostByIdQuery query)
 {
 return query.IncludeData
 ? await _context.Posts.Include(p => p.Author)
 .Include(p => p.Blog)
 .Include(p => p.Category).SingleOrDefaultAsync(x =>
 x.Id.Equals(query.Id))
 : await _context.Posts
 .SingleOrDefaultAsync(x => x.Id.Equals(query.Id));
 }
 }

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[203]

The query handler now ports the filter by id implementation to the handler; additionally, it
includes/excludes related data based on the IncludeData filter:

 public class PostRepositoryWithQueries :
 IPostRepositoryWithQueries
 {
 private readonly BlogContext _context;

 public PostRepositoryWithQueries(BlogContext context)
 {
 _context = context;
 }

 public Post GetSingle<T>(BlogContext context, T query)
 where T : class
 {
 //switch (typeof(T).Name)
 //{
 // case "GetPostByIdQuery":
 // var getPostByIdQueryHandler = new
 GetPostByIdQueryHandler(context);
 // return getPostByIdQueryHandler.Handle(query as
 GetPostByIdQuery);
 //}

 var getPostByIdQueryHandler = new
 GetPostByIdQueryHandler(context);
 return getPostByIdQueryHandler.Handle(query
 as GetPostByIdQuery);
 }

 public async Task<Post> GetSingleAsync<T>(BlogContext
 context, T query)
 where T : class
 {
 //switch (typeof(T).Name)
 //{
 // case "GetPostByIdQuery":
 // var getPostByIdQueryHandler =
 new GetPostByIdQueryHandler(context);
 // return await getPostByIdQueryHandler.HandleAsync(query
 as GetPostByIdQuery);
 //}

 var getPostByIdQueryHandler =
 new GetPostByIdQueryHandler(context);
 return await getPostByIdQueryHandler.HandleAsync(query

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[204]

 as GetPostByIdQuery);
 }
 }

We have commented code in the repository implementations since, currently, it supports
only one query handler for returning a single object and having a switch case doesn't make
any sense. Once we start adding new implementations for handling single objects, we will
be using commented code instead, which supports multiple queries through a single action:

 public class PostsController : Controller
 {
 // Code removed for brevity

 // GET: Posts/Details/5
 public async Task<IActionResult> Details(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 var post = await _repositoryWithQueries.GetSingleAsync(_context,
 new GetPostByIdQuery(id, true));
 if (post == null)
 {
 return NotFound();
 }

 return View(post);
 }

 // GET: Posts/Edit/5
 public async Task<IActionResult> Edit(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 var post = await _repositoryWithQueries.GetSingleAsync(_context,
 new GetPostByIdQuery(id, false));

 // Code removed for brevity
 }
 }

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[205]

In the controller code, it is obvious that GetSingleAsync is used in multiple actions, but in
the preceding highlighted usages one was including related data and the other was
excluding it. We can also see the following code which provides the Delete action
implementation along with include related data as it will be rendered in the Delete
confirmation screen:

 // GET: Posts/Delete/5
 public async Task<IActionResult> Delete(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 var post = await _repositoryWithQueries.GetSingleAsync(_context,
 new GetPostByIdQuery(id, true));
 if (post == null)
 {
 return NotFound();
 }

 return View(post);
 }

We have explored how query objects need to be incorporated inside the repository and
implemented this for one single and list operation. Let's again take the remaining
implementations as an assignment and complete the repository incorporation.

Solution to the repository with the queries assignment
The solution to the query objects' implementation to the remaining modules is available in
the following Git repository path:

https:/​/​goo.​gl/​iZb1Pg

The solution to the query handler implementations to the remaining modules is available in
the following Git repository path:

https:/​/​goo.​gl/​XbXCM6

The controller implementation with the remaining queries from the repository is listed as
follows:

https:/​/​goo.​gl/​yV474G

www.EBooksWorld.ir

https://goo.gl/iZb1Pg
https://goo.gl/iZb1Pg
https://goo.gl/iZb1Pg
https://goo.gl/iZb1Pg
https://goo.gl/iZb1Pg
https://goo.gl/iZb1Pg
https://goo.gl/iZb1Pg
https://goo.gl/iZb1Pg
https://goo.gl/iZb1Pg
https://goo.gl/XbXCM6
https://goo.gl/XbXCM6
https://goo.gl/XbXCM6
https://goo.gl/XbXCM6
https://goo.gl/XbXCM6
https://goo.gl/XbXCM6
https://goo.gl/XbXCM6
https://goo.gl/XbXCM6
https://goo.gl/XbXCM6
https://goo.gl/yV474G
https://goo.gl/yV474G
https://goo.gl/yV474G
https://goo.gl/yV474G
https://goo.gl/yV474G
https://goo.gl/yV474G
https://goo.gl/yV474G
https://goo.gl/yV474G
https://goo.gl/yV474G

Query Is All We Need – Query Object Pattern Chapter 8

[206]

In this section, we have incorporated query objects inside the repository. In the next section,
we will see how we can compose queries with commands.

Composing queries with commands
We will streamline the implementation while implementing commands in our repository.
The following code will allow us to create an interface which enforces IncludeData to be
set for all queries:

 public interface IQueryRoot
 {
 bool IncludeData { get; set; }
 }

We will use IQueryRoot as a base interface for the query handler, which returns generic
return typed data. The following code extends the IQueryRoot and provide two interfaces
to support synchronous and asynchronous operations:

 public interface IQueryHandler<out TReturn> : IQueryRoot
 {
 TReturn Handle();
 }
 public interface IQueryHandlerAsync<TReturn> : IQueryRoot
 {
 Task<TReturn> HandleAsync();
 }

Let's keep creating multiple generic interfaces required for different queries that inherit the
query handler with a configured return type, and additionally define the fields required in
each query type.

We will be using Variant Generic Interfaces. Even though they are out of
scope, let's discuss them briefly to understand the
code. The covariant generic interface expects the type to implement
methods that have a return type specified in the generic type parameters
using the out keyword. The contravariant generic interface expects the
type to accept method arguments as the type specified in the generic type
parameters using the in keyword.

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[207]

We will be using the contravariant generic interface in the following example, whereas the
covariant generic interfaces were used widely in this chapter:

 public interface IGetAllPostsQuery<in T> :
 IQueryHandler<IEnumerable<Post>>,
 IQueryHandlerAsync<IEnumerable<Post>>
 {
 }
 public interface IGetPaginatedPostByKeywordQuery<in T> :
 IQueryHandler<IEnumerable<Post>>,
 IQueryHandlerAsync<IEnumerable<Post>>
 {
 string Keyword { get; set; }
 int PageNumber { get; set; }
 int PageCount { get; set; }
 }
 public interface IGetPostByAuthorQuery<T> :
 IQueryHandler<IEnumerable<Post>>,
 IQueryHandlerAsync<IEnumerable<Post>>
 {
 string Author { get; set; }
 }
 public interface IGetPostByCategoryQuery<T> :
 IQueryHandler<IEnumerable<Post>>,
 IQueryHandlerAsync<IEnumerable<Post>>
 {
 string Category { get; set; }
 }
 public interface IGetPostByHighestVisitorsQuery<T> :
 IQueryHandler<IEnumerable<Post>>,
 IQueryHandlerAsync<IEnumerable<Post>>
 {
 }
 public interface IGetPostByIdQuery<T> :
 IQueryHandler<Post>, IQueryHandlerAsync<Post>
 {
 int? Id { get; set; }
 }
 public interface IGetPostByPublishedYearQuery<T> :
 IQueryHandler<IEnumerable<Post>>,
 IQueryHandlerAsync<IEnumerable<Post>>
 {
 int Year { get; set; }
 }
 public interface IGetPostByTitleQuery<T> :
 IQueryHandler<IEnumerable<Post>>,
 IQueryHandlerAsync<IEnumerable<Post>>

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[208]

 {
 string Title { get; set; }
 }

Let's create a command handler that would handle a command execution similar to the
query handler interface that orchestrates the query execution. The following command
handler code will create a generic interface which provides handle mechanism with generic
return type:

 public interface ICommandHandler<out TReturn>
 {
 TReturn Handle();
 }
 public interface ICommandHandlerAsync<TReturn>
 {
 Task<TReturn> HandleAsync();
 }

Let's keep creating multiple generic interfaces required for different commands that inherit
the command handlers. The following code will create interfaces required the Post CRUD
operation using commands:

 public interface ICreatePostCommand<TReturn> :
 ICommandHandler<TReturn>, ICommandHandlerAsync<TReturn>
 {
 }
 public interface IDeletePostCommand<TReturn> :
 ICommandHandler<TReturn>, ICommandHandlerAsync<TReturn>
 {
 }
 public interface IUpdatePostCommand<TReturn> :
 ICommandHandler<TReturn>, ICommandHandlerAsync<TReturn>
 {
 }

We need a QueryBase, which allows database context to be injected through the
constructor, and this will be used by all queries that inherit QueryBase. The following code
will create QueryBase which consumes BlogContext used by all queries accessing the
data context:

 public class QueryBase
 {
 internal readonly BlogContext Context;
 public QueryBase(BlogContext context)
 {
 this.Context = context;

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[209]

 }
 }

The GetAllPostsQuery inherits QueryBase and IGetAllPostsQuery, it enforces the
developer to define IncludeData field and implement the Handle and HandleAsync
methods that consume data context from the QueryBase type. The following code provides
the concrete implementation of GetAllPostsQuery consuming QueryBase type:

 public class GetAllPostsQuery : QueryBase,
 IGetAllPostsQuery<GetAllPostsQuery>
 {
 public GetAllPostsQuery(BlogContext context) : base(context)
 {
 }

 public bool IncludeData { get; set; }
 public IEnumerable<Post> Handle()
 {
 return IncludeData
 ? Context.Posts
 .Include(p => p.Author).Include(p =>
 p.Blog).Include(p => p.Category)
 .ToList()
 : Context.Posts
 .ToList();
 }
 public async Task<IEnumerable<Post>> HandleAsync()
 {
 return IncludeData
 ? await Context.Posts
 .Include(p => p.Author).Include(p =>
 p.Blog).Include(p => p.Category)
 .ToListAsync()
 : await Context.Posts
 .ToListAsync();
 }
 }

We could take up an assignment to implement the remaining queries we had earlier using
the new approach.

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[210]

Similar to QueryBase, CommandBase is a base required for all commands that expose the
data context for all consumers. The following code will create CommandBase which
consumes BlogContext consumed by all command objects:

 public class CommandBase
 {
 internal readonly BlogContext Context;
 public CommandBase(BlogContext context)
 {
 Context = context;
 }
 }

The CreatePostCommand inherits CommandBase and ICreatePostCommand, it enforces
developers to define all the fields necessary to create a Post object and implement
the Handle and HandleAsync methods that consume the data context from the
CommandBase type. The following code creates concrete implementation of
CreatePostCommand consuming CommandBase type:

 public class CreatePostCommand : CommandBase,
 ICreatePostCommand<int>
 {
 public CreatePostCommand(BlogContext context) : base(context)
 {
 }
 public string Title { get; set; }
 public string Content { get; set; }
 public string Summary { get; set; }
 public int BlogId { get; set; }
 public int AuthorId { get; set; }
 public int CategoryId { get; set; }
 public DateTime PublishedDateTime { get; set; }
 public int Handle()
 {
 Context.Add(new Post
 {
 Title = Title,
 Content = Content,
 Summary = Summary,
 BlogId = BlogId,
 AuthorId = AuthorId,
 CategoryId = CategoryId,
 PublishedDateTime = PublishedDateTime,
 CreatedAt = DateTime.Now,
 CreatedBy = AuthorId,
 Url = Title.Generate()

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[211]

 });
 return Context.SaveChanges();
 }
 public async Task<int> HandleAsync()
 {
 Context.Add(new Post
 {
 Title = Title,
 Content = Content,
 Summary = Summary,
 BlogId = BlogId,
 AuthorId = AuthorId,
 CategoryId = CategoryId,
 PublishedDateTime = PublishedDateTime,
 CreatedAt = DateTime.Now,
 CreatedBy = AuthorId,
 Url = Title.Generate()
 });
 return await Context.SaveChangesAsync();
 }
 }

We could take up an assignment to implement the Update and Delete commands and
proceed with configuring the queries and commands in the new repository. The interface
code required for the repository is listed below, which has provisions to query single or a
list of data and also to execute any commands; every one of them is implemented in a
generic fashion:

 public interface IPostRepositoryWithCommandsQueries
 {
 IEnumerable<Post> Get<T>(T query) where T :
 IQueryHandler<IEnumerable<Post>>;
 Task<IEnumerable<Post>> GetAsync<T>(T query) where T :
 IQueryHandlerAsync<IEnumerable<Post>>;
 Post GetSingle<T>(T query) where T : IQueryHandler<Post>;
 Task<Post> GetSingleAsync<T>(T query)
 where T : IQueryHandlerAsync<Post>;
 int Execute<T>(T command) where T : ICommandHandler<int>;
 Task<int> ExecuteAsync<T>(T command) where T :
 ICommandHandlerAsync<int>;
 }

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[212]

The generic implementation of the new repository is listed as follows as well. At this point,
the repository doesn't know which query or command it's executing as it's resolved at run-
time, the following code would create concrete implementation of
PostRepositoryWithCommandQueries consuming command handling statements as
well:

 public class PostRepositoryWithCommandsQueries :
 IPostRepositoryWithCommandsQueries
 {
 private readonly BlogContext _context;
 public PostRepositoryWithCommandsQueries(BlogContext context)
 {
 _context = context;
 }
 public IEnumerable<Post> Get<T>(T query)
 where T : IQueryHandler<IEnumerable<Post>>
 {
 return query.Handle();
 }
 public async Task<IEnumerable<Post>> GetAsync<T>(T query)
 where T : IQueryHandlerAsync<IEnumerable<Post>>
 {
 return await query.HandleAsync();
 }
 public Post GetSingle<T>(T query)
 where T : IQueryHandler<Post>
 {
 return query.Handle();
 }
 public async Task<Post> GetSingleAsync<T>(T query)
 where T : IQueryHandlerAsync<Post>
 {
 return await query.HandleAsync();
 }
 public int Execute<T>(T command) where T : ICommandHandler<int>
 {
 return command.Handle();
 }
 public async Task<int> ExecuteAsync<T>(T command) where T :
 ICommandHandlerAsync<int>
 {
 return await command.HandleAsync();
 }
 }

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[213]

The controller update to accommodate the new repository is listed as follows:

 public class PostsController : Controller
 {
 private readonly BlogContext _context;
 private readonly IPostRepositoryWithCommandsQueries
 _postRepositoryWithCommandsQueries;
 public PostsController(BlogContext context,
 IPostRepositoryWithCommandsQueries repositoryWithCommandsQueries)
 {
 _context = context;
 _postRepositoryWithCommandsQueries = repositoryWithCommandsQueries;
 }
 }

The Index method that executes GetAllPostsQuery is updated, as follows:

 // GET: Posts
 public async Task<IActionResult> Index()
 {
 return View(await _postRepositoryWithCommandsQueries.GetAsync(
 new GetAllPostsQuery(_context)
 {
 IncludeData = true
 }));
 }

The Create command replaces the data context manipulation, as follows:

 public async Task<IActionResult> Create([Bind("Id,Title,
 Content,Summary,PublishedDateTime,Url,VisitorCount,CreatedAt,
 ModifiedAt,BlogId,AuthorId,CategoryId")] Post post)
 {
 // code removed for brevity
 await _postRepositoryWithCommandsQueries.ExecuteAsync(
 new CreatePostCommand(_context)
 {
 Title = post.Title,
 Summary = post.Summary,
 Content = post.Content,
 PublishedDateTime = post.PublishedDateTime,
 AuthorId = post.AuthorId,
 BlogId = post.BlogId,
 CategoryId = post.CategoryId
 });
 // code removed for brevity
 }

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[214]

We have covered exhaustively how commands are created and consumed along with
queries in repositories and controllers. Let's visit the solution required for the previous
assignment in the next section to proceed with the missing implementations.

Solution to the command queries assignment
The solution to the command queries assignment starts with the implementation of query
objects, and is available in the following Git repository path:

https:/​/​goo.​gl/​RFKed5

The solution to the implementation of the remaining commands is available in the
following Git repository path:

https:/​/​goo.​gl/​6aW15n

The solution to the controller implementation for the commands and queries is available in
the following Git repository path:

https:/​/​goo.​gl/​ysNyc7

We have seen the exhaustive coverage of composing commands with queries. In the next
section, let's explore enhancing the queries using expression trees.

Enhancing queries with expression trees
An expression tree is a mechanism that allows developers to create expressions that are
necessary for the filters in the queries. In .NET, we have Func<T, TResult> to wrap a
Where predicate and use it in multiple occurrences. We could use the same mechanism to
create expression trees and leverage them in query objects.

The generic IQueryExpression interface has a provision to create an expression through
Func, the following code creates contract for AsExpression().

 public interface IQueryExpression<T>
 {
 Expression<Func<T, bool>> AsExpression();
 }

www.EBooksWorld.ir

https://goo.gl/RFKed5
https://goo.gl/RFKed5
https://goo.gl/RFKed5
https://goo.gl/RFKed5
https://goo.gl/RFKed5
https://goo.gl/RFKed5
https://goo.gl/RFKed5
https://goo.gl/RFKed5
https://goo.gl/RFKed5
https://goo.gl/6aW15n
https://goo.gl/6aW15n
https://goo.gl/6aW15n
https://goo.gl/6aW15n
https://goo.gl/6aW15n
https://goo.gl/6aW15n
https://goo.gl/6aW15n
https://goo.gl/6aW15n
https://goo.gl/6aW15n
https://goo.gl/ysNyc7
https://goo.gl/ysNyc7
https://goo.gl/ysNyc7
https://goo.gl/ysNyc7
https://goo.gl/ysNyc7
https://goo.gl/ysNyc7
https://goo.gl/ysNyc7
https://goo.gl/ysNyc7
https://goo.gl/ysNyc7

Query Is All We Need – Query Object Pattern Chapter 8

[215]

The concrete expression class implements IQueryExpression with concrete methods and
their interface counterpart and wraps the Where predicate inside the AsExpression
method, which returns a Func object. The following code provides a wildcard search on all
fields from the Post entity using the expression approach:

 public class GetPaginatedPostByKeywordQueryExpression :
 IQueryExpression<Post>
 {
 public string Keyword { get; set; }
 public Expression<Func<Post, bool>> AsExpression()
 {
 return (x => x.Title.ToLower().Contains(Keyword.ToLower())
 || x.Blog.Title.ToLower().Contains(Keyword.ToLower())
 || x.Blog.Subtitle.ToLower().Contains(Keyword.ToLower())
 || x.Category.Name.ToLower().Contains(Keyword.ToLower())
 || x.Content.ToLower().Contains(Keyword.ToLower())
 || x.Summary.ToLower().Contains(Keyword.ToLower())
 || x.Author.Username.ToLower().Contains(Keyword.ToLower())
 || x.Url.ToLower().Contains(Keyword.ToLower()));
 }
 }

The expression tree is used in the query object, as shown. It is obvious that the expression
object is constructed and used as a parameter to the Where condition in the LINQ query.
The below GetPaginatedPostByKeywordQuery implementation consumes the expression
required for wild card search:

 public class GetPaginatedPostByKeywordQuery : QueryBase,
 IGetPaginatedPostByKeywordQuery<GetPaginatedPostByKeywordQuery>
 {
 // Code removed for brevity
 public IEnumerable<Post> Handle()
 {
 var expression = new GetPaginatedPostByKeywordQueryExpression
 {
 Keyword = Keyword
 };
 return IncludeData
 ? Context.Posts.Include(p => p.Author).Include(p =>
 p.Blog).Include(p => p.Category)
 .AsQueryable()
 .Where(expression.AsExpression())
 .Skip(PageNumber - 1).Take(PageCount)
 .ToList()
 : Context.Posts
 .AsQueryable()

www.EBooksWorld.ir

Query Is All We Need – Query Object Pattern Chapter 8

[216]

 .Where(expression.AsExpression())
 .Skip(PageNumber - 1).Take(PageCount)
 .ToList();
 }
 public async Task<IEnumerable<Post>> HandleAsync()
 {
 var expression = new GetPaginatedPostByKeywordQueryExpression
 {
 Keyword = Keyword
 };
 return IncludeData
 ? await Context.Posts.Include(p => p.Author).Include(p
 => p.Blog).Include(p => p.Category)
 .AsQueryable()
 .Where(expression.AsExpression())
 .Skip(PageNumber - 1).Take(PageCount)
 .ToListAsync()
 : await Context.Posts
 .AsQueryable()
 .Where(expression.AsExpression())
 .Skip(PageNumber - 1).Take(PageCount)
 .ToListAsync();
 }
 }

Here, the controller code remains intact as it has nothing to do with expression tree
implementation, as it's the responsibility of the query object and the controller usage is not
affected due to this change.

Solution to the expression trees assignment
The solution to the expression concrete classes required for the remaining queries is
available in the following Git repository path:

https:/​/​goo.​gl/​gE6ZBK

www.EBooksWorld.ir

https://goo.gl/gE6ZBK
https://goo.gl/gE6ZBK
https://goo.gl/gE6ZBK
https://goo.gl/gE6ZBK
https://goo.gl/gE6ZBK
https://goo.gl/gE6ZBK
https://goo.gl/gE6ZBK
https://goo.gl/gE6ZBK
https://goo.gl/gE6ZBK

Query Is All We Need – Query Object Pattern Chapter 8

[217]

The author, category, published year, and title-related query expressions are shared in the
preceding repository path, as shown in the following screenshot:

The solution to the remaining queries with expressions are available in the following Git
repository path:

https:/​/​goo.​gl/​2tz9d9

The author, category, published year, and title-related query implementations using
expressions are shared in the preceding repository path, which is shown in the following
screenshot:

www.EBooksWorld.ir

https://goo.gl/2tz9d9
https://goo.gl/2tz9d9
https://goo.gl/2tz9d9
https://goo.gl/2tz9d9
https://goo.gl/2tz9d9
https://goo.gl/2tz9d9
https://goo.gl/2tz9d9
https://goo.gl/2tz9d9
https://goo.gl/2tz9d9

Query Is All We Need – Query Object Pattern Chapter 8

[218]

The expression trees were incorporated in commands and queries and we have seen the
huge difference this brings up with respect to reusable code.

Summary
We have explored how to create query objects and applied patterns that would provide
neat separation between queries and commands. We started with a simple query object,
then created a repository that would wrap complete CRUD operations, followed by
leveraging query objects in the repositories. Later, we created commands and objects, which
were also incorporated into the repositories. Finally, we created expression trees to simplify
and reuse the conditions and Where predicates in the query execution.

We have been working on an application that cannot be recovered from any failure. In
Chapter 9, Fail Safe Mechanism – Transactions, we will revisit the application and handle
code from any failures, using transactions.

www.EBooksWorld.ir

9
Fail Safe Mechanism –

Transactions

We have applied query object patterns to isolate query objects from the repository, which
maintains query logic in one single place. We created a simple query object, then invented a
repository to illustrate how query objects could be accommodated in the repositories. We
then moved from queries to commands to perform real transactions using a similar pattern.
Finally, we worked with expression trees to simplify and configure the conditions in a
query execution.

Let's discuss how we could handle failure scenarios using transactions, how the
transaction could be accessed between contexts, and also between different data access
technologies:

Is there any complex system that performs more than one data manipulation
activity, then handles failures to maintain atomicity?

Transactions allow us to handle atomicity in failure scenarios.
Do we need to handle transactions in simple applications?

Not required. The default behavior in EF would handle
transactions only if all the changes were committed through
SaveChanges.

What if we need transactions to be maintained between multiple contexts in a
complex system?

We do have provision to maintain transactions between multiple
database contexts.

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[220]

What if we need transactions to be maintained between multiple technologies (EF
and ADO.NET) in a complex system?

We do have provision to maintain transactions between EF and
ADO.NET data manipulations.

The following topics will be covered to handle transactions in multiple scenarios:

Default behavior of a transaction
Creating a simple transaction
Creating a cross-context transaction
Leveraging transactions between multiple technologies

Default behavior of a transaction
EF supports transactions out of the box, all we need to do is perform SaveChanges() only
once; it saves changes only if the transaction has been executed successfully, otherwise, the
transactions will be rolled back automatically.

Let's investigate how we could practically leverage the default transactional behavior in our
blogging system:

We need two entities that need to be updated in a single web request
Both the entities should be added/updated in the data context
With a single SaveChanges(), both entities will be updated in the data store

In the blogging system, let's include support to add one or more tags in posts and learn
about default transaction support in parallel with the Tags integration in posts.

Adding tags support in the blogging system
The fields required in the Post entity to incorporate Tags support in posts will be covered
in this section. Let's start the activity by including the fields required to persist tag
information in the Post model, as follows:

 public class Post
 {
 // Code removed for brevity
 [NotMapped]
 public ICollection<Tag> Tags { get; set; }

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[221]

 [NotMapped]
 public ICollection<int> TagIds { get; set; }
 [NotMapped]
 public string TagNames { get; set; }
 }

The tag information required in the Posts list view is listed as follows:

Tags : This tag information is a filtered list of tags associated with the Post
TagNames : This tag information is a filtered tag name in a comma-
separated string

Let's incorporate the code required to expose the filtered Tag list flattened to a string named
TagNames in the GetAllPostsQuery object. The flattened string value will be flattened
using string.Join() as shown in the following code:

 public class GetAllPostsQuery : QueryBase,
 IGetAllPostsQuery<GetAllPostsQuery>
 {
 // Code removed for brevity
 public IEnumerable<Post> Handle()
 {
 // Code removed for brevity
 posts.ForEach(x =>
 {
 var tags = (from tag in Context.Tags
 join tagPost in Context.TagPosts
 on tag.Id equals tagPost.TagId
 where tagPost.PostId == x.Id
 select tag).ToList();
 x.TagNames = string.Join(", ",
 tags.Select(y => y.Name).ToArray());
 });
 return posts;
 }

 public async Task<IEnumerable<Post>> HandleAsync()
 {
 // Code removed for brevity
 posts.ForEach(x =>
 {
 var tags = (from tag in Context.Tags
 join tagPost in Context.TagPosts
 on tag.Id equals tagPost.TagId
 where tagPost.PostId == x.Id
 select tag).ToList();

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[222]

 x.TagNames = string.Join(", ",
 tags.Select(y => y.Name).ToArray());
 });
 return posts;
 }
 }

The tags will be listed in the Posts Index view, displayed as follows:

We have seen the support provided for tags in the blogging system. In the next section, let's
explore how the default transactional behavior works.

Leveraging default transaction behavior
We will be witnessing the default behavior of EF transactions in this section; let's continue
in adding support to tags and see how transactions get involved on their own.

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[223]

The changes required in the individual Post Add/Edit view are listed as follows:

Tags: This tag information is a filtered list of tags associated with the Post
TagIds: This tag information is a list of filtered tag IDs
TagNames: This tag information is the filtered tag names in a comma-separated
string

Let's incorporate the code required to expose the filtered tag list, tag ID list, and tag names
flattened to a string in the GetPostByIdQuery object. These values will enable us to pre-
select the tags while adding/editing Post:

 public class GetPostByIdQuery : QueryBase,
 IGetPostByIdQuery<GetPostByIdQuery>
 {
 // Code removed for brevity
 private Post IncludeTags(Post post)
 {
 int idValue = Id ?? 0;
 post.Tags = (from tag in Context.Tags
 join tagPost in Context.TagPosts
 on tag.Id equals tagPost.TagId
 where tagPost.PostId == idValue
 select tag).ToList();
 post.TagIds = post.Tags.Select(x => x.Id).ToList();
 post.TagNames = string.Join(", ",
 post.Tags.Select(x => x.Name).ToArray());
 return post;
 }
 }

The tags that were selected while creating/editing the Post must be persisted in a different
entity Tag. Let's see how this persistence occurs along with the Post persistence in the
CreatePostCommand object. If we notice, there is no change to the Post persistence, but
the Tag persistence consumes a concrete Post object in order to persist the tag. We need
PostId, which will be available only after SaveChanges() is called, but we need this
association before calling the SaveChanges(); let's get to that part shortly. After persisting
both Tag and Post, we call SaveChanges() or SaveChangesAsync() only once; this
ensures that the persistence occurs in a single transaction (default EF behavior).

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[224]

Usually, we will perform SaveChanges() twice, one for Post and
another for the Tag object. The first SaveChanges() will insert Post and
allow us to fetch the auto-generated PostId that will be used in Tag row
creation. We could leverage the default transaction by making only one
SaveChanges() call and still fill the PostId data by passing the whole
Post object to the Tag object, and EF ensures that it fills the PostId once
the Post row is created.

EF ensures that even if any one of the transactions fails, the changes will be rolled back, as
EF covers our back by default and we need to ensure that we make only one
SaveChanges() to leverage this transaction behavior. The following implementation
performs write operations in Post and Tag entities, yet having only one SaveChanges()
ensures that transaction is maintained:

 public class CreatePostCommand : CommandBase,
 ICreatePostCommand<int>
 {
 // Code removed for brevity
 public ICollection<int> TagIds { get; set; }
 public int Handle()
 {
 Post post = new Post
 {
 // Code removed for brevity
 };
 Context.Add(post);
 foreach (int tagId in TagIds)
 {
 Context.Add(new TagPost
 {
 TagId = tagId,
 Post = post
 });
 }
 return Context.SaveChanges();
 }

 public async Task<int> HandleAsync()
 {
 Post post = new Post
 {
 // Code removed for brevity
 };
 Context.Add(post);
 foreach (int tagId in TagIds)

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[225]

 {
 Context.Add(new TagPost
 {
 TagId = tagId,
 Post = post
 });
 }
 return await Context.SaveChangesAsync();
 }
 }

The tags will be listed in the Posts Add view, displayed as follows:

Similar changes are required for the UpdatePostCommand and DeletePostCommand
objects; let's take it up as an assignment.

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[226]

The solution to the assignment is available in the Git repository, at the
following links:
https:/ ​/​goo. ​gl/ ​feBh9g

https:/ ​/​goo. ​gl/ ​q5fXRi

We haven't covered the updates required in the Controller and View for the previous
functionality. Even though it seems out of scope, let's quickly cover the same. The view
changes (including the Tags column) required for the Posts list view are displayed as
follows:

 // Code removed for brevity
 <table class="table">
 <thead>
 <tr>
 // code removed for brevity
 <th>
 @Html.DisplayNameFor(model => model.Tags)
 </th>
 // Code removed for brevity
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model) {
 <tr>
 // Code removed for brevity
 <td>
 @Html.DisplayFor(modelItem => item.TagNames)
 </td>
 // Code removed for brevity
 </tr>
 }
 </tbody>
 </table>
 // Code removed for brevity

The Tags list required for the Create screen to populate tag drop-down is persisted in
ViewData as a MultiSelectList object, which allows the user to map multiple tags to an
individual post. The code which sets the MultiSelectList field with data is shown below:

 public IActionResult Create()
 {
 // Code removed for brevity
 ViewData["TagIds"] =
 new MultiSelectList(_context.Tags, "Id", "Name");
 }

www.EBooksWorld.ir

https://goo.gl/feBh9g
https://goo.gl/feBh9g
https://goo.gl/feBh9g
https://goo.gl/feBh9g
https://goo.gl/feBh9g
https://goo.gl/feBh9g
https://goo.gl/feBh9g
https://goo.gl/feBh9g
https://goo.gl/feBh9g
https://goo.gl/q5fXRi
https://goo.gl/q5fXRi
https://goo.gl/q5fXRi
https://goo.gl/q5fXRi
https://goo.gl/q5fXRi
https://goo.gl/q5fXRi
https://goo.gl/q5fXRi
https://goo.gl/q5fXRi
https://goo.gl/q5fXRi

Fail Safe Mechanism – Transactions Chapter 9

[227]

The tags were populated in the view as a select control assigning source from ViewBag.
Also, we need to ensure the multiple attribute is enabled; otherwise, the control will not
let the user select multiple tags, the multiple attribute is set as shown below:

 <form asp-action="Create">
 <div class="form-horizontal">
 // Code removed for brevity
 <div class="form-group">
 <label asp-for="TagIds" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <select asp-for="TagIds" class="form-control"
 asp-items="ViewBag.TagIds" multiple="multiple"></select>
 </div>
 </div>
 // Code removed for brevity
 </div>
 </form>

In the Post action, we still persist the MultiSelectList, but this time we pass on the
selected TagIds along with the source data. This ensures that if there were any model
errors while repopulating the view, the tags control will be pre-selected with the values
from the model. The TagIds field should be included in the view model white-listing and
finally the MultiSelectList is populated with the TagIds as shown in the following
code:

 public async Task<IActionResult>
 Create([Bind("Id,Title,Content,Summary,PublishedDateTime,Url,
 VisitorCount,CreatedAt,ModifiedAt,BlogId,AuthorId,
 CategoryId,TagIds")] Post post)
 {
 // Code removed for brevity
 ViewData["TagIds"] = new MultiSelectList(_context.Tags, "Id",
 "Name", post.TagIds);
 return View(post);
 }

Similar changes are required for the Update and Delete operations of posts. Let's take it up
as an assignment; the solution to the assignment is available in the Git repository. This
concludes the default behavior of transactions in this section; let's explore creating a simple
transaction in the next section.

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[228]

Creating a simple transaction
We have seen the default behavior of a transaction if the multiple persistence occurs within
a single SaveChanges(), what if we have a business requirement where multiple
SaveChanges() are required and we still need to maintain the transaction scope? We have
a provision to explicitly define a transaction and bring in the changes required inside this
scope; EF exposes the Database type in Context, which has the BeginTransaction()
functionality.

Let's try to achieve the aforementioned functionality in our CreatePostCommand type and
still maintain the transaction scope. We could perform the same by retrieving the
transaction object using the BeginTransaction() function; the retrieved object could be
used either to commit or roll back the changes. The following code commits the changes
after persisting the Post and Tag objects:

 public class CreatePostCommand : CommandBase, ICreatePostCommand<int>
 {
 // Code removed for brevity
 public int Handle()
 {
 int returnValue;
 using (var transaction = Context.Database.BeginTransaction())
 {
 // Code removed for brevity
 Context.Add(post);
 returnValue = Context.SaveChanges();
 foreach (int tagId in TagIds)
 {
 Context.Add(new TagPost
 {
 TagId = tagId,
 Post = post
 });
 }
 returnValue = Context.SaveChanges();

 transaction.Commit();
 }
 return returnValue;
 }
 public async Task<int> HandleAsync()
 {
 int returnValue;
 using (var transaction = Context.Database.BeginTransaction())
 {

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[229]

 // Code removed for brevity
 Context.Add(post);
 returnValue = await Context.SaveChangesAsync();
 foreach (int tagId in TagIds)
 {
 Context.Add(new TagPost
 {
 TagId = tagId,
 Post = post
 });
 }
 returnValue = await Context.SaveChangesAsync();

 transaction.Commit();
 }
 return returnValue;
 }
 }

Similarly, the transaction was supported for the Update and Delete operations as well; the
code for the same is listed as follows:

 public class UpdatePostCommand : CommandBase, ICreatePostCommand<int>
 {
 // Code removed for brevity
 public int Handle()
 {
 int returnValue;
 using (var transaction = Context.Database.BeginTransaction())
 {
 // Code removed for brevity
 returnValue = Context.SaveChanges();
 UpdateTags();
 returnValue = Context.SaveChanges();
 transaction.Commit();
 }
 return returnValue;
 }

 public async Task<int> HandleAsync()
 {
 int returnValue;
 using (var transaction = Context.Database.BeginTransaction())
 {
 // Code removed for brevity
 returnValue = await Context.SaveChangesAsync();
 UpdateTags();

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[230]

 returnValue = await Context.SaveChangesAsync();
 transaction.Commit();
 }
 return returnValue;
 }
 // Code removed for brevity
 }

The code required for the Delete operation is listed as follows:

 public class DeletePostCommand : CommandBase, ICreatePostCommand<int>
 {
 // Code removed for brevity
 public int Handle()
 {
 int returnValue;
 using (var transaction = Context.Database.BeginTransaction())
 {
 DeletePost();
 returnValue = Context.SaveChanges();
 DeleteTag();
 returnValue = Context.SaveChanges();
 transaction.Commit();
 }
 return returnValue;
 }

 public async Task<int> HandleAsync()
 {
 int returnValue;
 using (var transaction = Context.Database.BeginTransaction())
 {
 DeletePost();
 returnValue = await Context.SaveChangesAsync();
 DeleteTag();
 returnValue = await Context.SaveChangesAsync();
 transaction.Commit();
 }
 return returnValue;
 }
 // Code removed for brevity
 }

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[231]

We have seen how to create a simple transaction in this section. Let's dive deep in the
coming sections. We will be exploring cross-context transactions in the next section.

Creating a cross-context transaction
We have seen transactions within a single context so far. Let's now explore how transactions
could be maintained between different data contexts. We still have only one data context in
the blogging system; let's introduce file upload functionality that will be maintained in a
different database, thereby requiring us to create a different data context.

File upload support to the blogging system
The file upload functionality will be introduced in the Posts section, where we could
upload an image against a post. To start with, let's create a File type, which is inherited
from IFormFile. It will be used as a base type while uploading the file content to the
controller action, the following code implementation would provide support for file upload
functionality:

 public class File : IFormFile
 {
 public Guid Id { get; set; }
 public string ContentType { get; set; }
 string ContentDisposition { get; set; }
 public byte[] Content { get; set; }
 [NotMapped]
 public IHeaderDictionary Headers { get; set; }
 public long Length { get; set; }
 public string Name { get; set; }
 public string FileName { get; set; }
 public void CopyTo(Stream target)
 {
 throw new NotImplementedException();
 }
 public Task CopyToAsync(Stream target, CancellationToken
 cancellationToken = default(CancellationToken))
 {
 throw new NotImplementedException();
 }
 public Stream OpenReadStream()
 {
 throw new NotImplementedException();
 }

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[232]

 }

We need the command interface, ICreateFileCommand, to define handles required for
CreateFileCommand execution. We will be consuming the existing ICommandHandler and
ICommandHandleAsync as base types as shown below:

 public interface ICreateFileCommand<TReturn> :
 ICommandHandler<TReturn>, ICommandHandlerAsync<TReturn>
 {
 }

We require a separate CommandFileBase with the blog file's data context since the
CommandBase uses the blog context, the BlogFilesContext was consumed by the
CommandFileBase as shown in the following code:

 public class CommandFileBase
 {
 internal readonly BlogFilesContext Context;
 public CommandFileBase(BlogFilesContext context)
 {
 Context = context;
 }
 }

The CreateFileCommand type performs file persistence, which maintains the transaction
and also consumes the transaction that was passed on to it through the constructor, the
transaction shared through constructor and its usage is displayed in the following code:

 public class CreateFileCommand : CommandFileBase,
 ICreateFileCommand<int>
 {
 private readonly DbTransaction _dbTransaction;
 public CreateFileCommand(BlogFilesContext context) : base(context)
 {
 }
 public CreateFileCommand(BlogFilesContext context, DbTransaction
 dbTransaction)
 : this(context)
 {
 _dbTransaction = dbTransaction;
 }
 public Guid Id { get; set; }
 public string ContentType { get; set; }
 public string ContentDisposition { get; set; }
 public byte[] Content { get; set; }
 public long Length { get; set; }
 public string Name { get; set; }

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[233]

 public string FileName { get; set; }
 public int Handle()
 {
 int returnValue = 0;
 using (var transaction = _dbTransaction != null
 ? Context.Database.UseTransaction(_dbTransaction)
 : Context.Database.BeginTransaction())
 {
 try
 {
 AddFile();
 returnValue = Context.SaveChanges();
 transaction.Commit();
 }
 catch (Exception exception)
 {
 transaction.Rollback();
 ExceptionDispatchInfo.Capture
 (exception.InnerException).Throw();
 }
 }
 return returnValue;
 }
 private void AddFile()
 {
 File file = new File()
 {
 Id = Guid.NewGuid(),
 Name = Name,
 FileName = FileName,
 Content = Content,
 Length = Length,
 ContentType = ContentType
 };
 Context.Add(file);
 }
 public async Task<int> HandleAsync()
 {
 int returnValue = 0;
 using (var transaction = _dbTransaction != null
 ? Context.Database.UseTransaction(_dbTransaction)
 : Context.Database.BeginTransaction())
 {
 try
 {
 AddFile();
 returnValue = await Context.SaveChangesAsync();
 transaction.Commit();

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[234]

 }
 catch (Exception exception)
 {
 transaction.Rollback();
 ExceptionDispatchInfo.Capture(
 exception.InnerException).Throw();
 }
 }
 return returnValue;
 }
 }

Similar changes are required for the Update and Delete operations; let's take it up as an
assignment.

The solution to the assignment is available in the Git repository, and the
core implementation of file persistence is available at https:/ ​/​goo. ​gl/
CUxFs9. ​
The concrete implementation of file persistence is available at https:/ ​/
goo.​gl/ ​1fEbCa. ​

The CreatePostCommand receives the file along with the Post content. It creates a
transaction and performs Post persistence, and passes on its transaction to the file
command where the files get persisted and the transaction is reused as highlighted in the
following code:

 public class CreatePostCommand : CommandBase, ICreatePostCommand<int>
 {
 // Code removed for brevity
 public CreatePostCommand(BlogContext context, BlogFilesContext
 blogFilesContext)
 : this(context)
 {
 _blogFilesContext = blogFilesContext;
 }
 // Code removed for brevity
 public ICollection<int> TagIds { get; set; }
 public File File { get; set; }
 public int Handle()
 {
 // Code removed for brevity
 }
 public async Task<int> HandleAsync()
 {
 int returnValue = 0;using (var transaction =
 Context.Database.BeginTransaction())

www.EBooksWorld.ir

https://goo.gl/CUxFs9
https://goo.gl/CUxFs9
https://goo.gl/CUxFs9
https://goo.gl/CUxFs9
https://goo.gl/CUxFs9
https://goo.gl/CUxFs9
https://goo.gl/CUxFs9
https://goo.gl/CUxFs9
https://goo.gl/CUxFs9
https://goo.gl/1fEbCa
https://goo.gl/1fEbCa
https://goo.gl/1fEbCa
https://goo.gl/1fEbCa
https://goo.gl/1fEbCa
https://goo.gl/1fEbCa
https://goo.gl/1fEbCa
https://goo.gl/1fEbCa
https://goo.gl/1fEbCa

Fail Safe Mechanism – Transactions Chapter 9

[235]

 {
 try
 {
 CreateFileCommand createFileCommand =
 new CreateFileCommand(_blogFilesContext,
 transaction.GetDbTransaction())
 {
 Id = Guid.NewGuid(),
 Name = File.Name,
 FileName = File.FileName,
 Content = File.Content,
 Length = File.Length,
 ContentType = File.ContentType,
 ContentDisposition = File.ContentDisposition
 };
 returnValue = await createFileCommand.HandleAsync();
 Post post = new Post
 {
 // Code removed for brevity
 FileId = File.Id
 };
 // Code removed for brevity
 foreach (int tagId in TagIds)
 {
 Context.Add(new TagPost
 {
 TagId = tagId,
 Post = post
 });
 }
 returnValue = await Context.SaveChangesAsync();
 transaction.Commit();
 }
 catch (Exception exception)
 {
 transaction.Rollback();
 ExceptionDispatchInfo.
 Capture(exception.InnerException).Throw();
 }
 }
 return returnValue;
 }
 }

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[236]

Similar changes are required for the Update and Delete operations; let's take it up as an
assignment.

The solution to the assignment is available in the Git repository at https:/
/​goo. ​gl/ ​fDP1q4. ​

The Create action supports the file upload functionality, where the file content is passed
on to the create command to persist the file content to the file context. The following code
provides file upload support in the controller Create action:

 public async Task<IActionResult> Create([Bind("Id,Title,Content,
 Summary," + "PublishedDateTime,Url,VisitorCount,CreatedAt,
 ModifiedAt,BlogId," + "AuthorId,CategoryId,TagIds")] Post
 post, IFormFile headerImage)
 {
 if (ModelState.IsValid)
 {
 Models.File file = null;
 if (headerImage != null ||
 headerImage.ContentType.ToLower().StartsWith("image/"))
 {
 MemoryStream ms = new MemoryStream();
 headerImage.OpenReadStream().CopyTo(ms);
 file = new Models.File()
 {
 Id = Guid.NewGuid(),
 Name = headerImage.Name,
 FileName = headerImage.FileName,
 Content = ms.ToArray(),
 Length = headerImage.Length,
 ContentType = headerImage.ContentType
 };
 }
 await _postRepository.ExecuteAsync(
 new CreatePostCommand(_context, _filesContext)
 {
 // Code removed for brevity
 TagIds = post.TagIds,
 File = file
 });
 return RedirectToAction("Index");
 }
 // Code removed for brevity
 }

www.EBooksWorld.ir

https://goo.gl/fDP1q4
https://goo.gl/fDP1q4
https://goo.gl/fDP1q4
https://goo.gl/fDP1q4
https://goo.gl/fDP1q4
https://goo.gl/fDP1q4
https://goo.gl/fDP1q4
https://goo.gl/fDP1q4
https://goo.gl/fDP1q4

Fail Safe Mechanism – Transactions Chapter 9

[237]

Similar changes are required for the Update and Delete operations; let's take it up as an
assignment.

The solution to the assignment is available in the Git repository at https:/
/​goo. ​gl/ ​HWZXkC. ​

We have seen the file upload functionality and shared the database transaction between
context persistence; let's see whether it works as expected.

Limitations to the transaction scope
There is a limitation with EF Core with respect to multiple data contexts that work between
two different connections. We will get the following error if we try to execute the current
code, throwing the message, "The specified transaction is not associated with the current
connection. Only transactions associated with the current connection may be used":

www.EBooksWorld.ir

https://goo.gl/HWZXkC
https://goo.gl/HWZXkC
https://goo.gl/HWZXkC
https://goo.gl/HWZXkC
https://goo.gl/HWZXkC
https://goo.gl/HWZXkC
https://goo.gl/HWZXkC
https://goo.gl/HWZXkC
https://goo.gl/HWZXkC

Fail Safe Mechanism – Transactions Chapter 9

[238]

The explicit TransactionScope is required to support transactions between different data
contexts (even between different connections); it is still not available in the current EF.

The TransactionScope available in EF is yet to be supported by EF Core.
It was initially planned to be shipped in EF Core 2.0 but was not released
in the framework. Now the Microsoft EF team is currently targeting the
first half of 2018 for the v2.1 framework, System.Transactions should
be part of the release.

We have to closely watch the releases for the further updates:, the following screenshot
confirms that the transactions will be supported in EF Core 2.1 release:

The limitation with the EF Core transaction scope should never stop us from the
development. So, in the next section, let's create our own custom TransactionScope,
which will perform the same functionality.

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[239]

Custom transaction scope support
The transaction scope could be created by defining an interface, which requires us to either
Commit() or Rollback(). The contract required for the custom transaction interface code
is shown in the following code:

 public interface ITransactionScope
 {
 void Commit();
 void Rollback();
 }

The database transactions were maintained/logged in a transaction list, which is then used
to either Commit() or Rollback() for the entire set of transaction objects. In order to use
TransactionScope within a using statement, we need to inherit and implement
IDisposable as well. The custom TransactionScope implementation which maintains
the Commit() and Rollback() is shown in the following code:

 public class TransactionScope : ITransactionScope, IDisposable
 {
 // Flag: Has Dispose already been called?
 private bool disposed = false;
 public TransactionScope()
 {
 Transactions = new List<IDbContextTransaction>();
 }
 ~TransactionScope()
 {
 Dispose(false);
 }
 public List<IDbContextTransaction> Transactions { get; set; }
 public void Commit()
 {
 Transactions.ForEach(item =>
 {
 item.Commit();
 });
 }
 public void Rollback()
 {
 Transactions.ForEach(item =>
 {
 item.Rollback();
 });
 }
 public void Dispose()

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[240]

 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
 protected virtual void Dispose(bool disposing)
 {
 if (disposed)
 return;
 if (disposing)
 {
 // Free any other managed objects here.
 //
 }
 // Free any unmanaged objects here.
 //
 disposed = true;
 }
 }

We have seen the Files implementation/support for the blogging system, and we could
start creating a repository that will allow us to perform persistence. For now, let's support
Execute() and ExecuteAsync() in the repository, the contract required for the interface
is defined in the following code:

 public interface IFileRepository
 {
 int Execute<T>(T command) where T : ICommandHandler<int>;
 Task<int> ExecuteAsync<T>(T command)
 where T : ICommandHandlerAsync<int>;
 }

The concrete implementation of the FileRepository will consume the blog file context
and invoke file commands created for the persistence operation, and the controller
consumes the repository to achieve the functionality as shown in the following code:

 public class FileRepository : IFileRepository
 {
 private readonly BlogFilesContext _context;
 public FileRepository(BlogFilesContext context)
 {
 _context = context;
 }
 public int Execute<T>(T command) where T : ICommandHandler<int>
 {
 return command.Handle();
 }
 public async Task<int> ExecuteAsync<T>(T command)

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[241]

 where T : ICommandHandlerAsync<int>
 {
 return await command.HandleAsync();
 }
 }

The repository injection could happen only if we provide support for the FileRepository
in the ConfigureServices(), which injects the concrete object wherever required. The
following configuration would inject the concrete object wherever the type is required:

 public void ConfigureServices(IServiceCollection services)
 {
 // Code removed for brevity
 services.AddScoped<IFileRepository, FileRepository>();
 }

We can see the code implementation in the below PostsController, which consumes the
FileRepository through the dependency injection using contructor:

 public class PostsController : Controller
 {
 // Code removed for brevity
 private readonly IFileRepository _fileRepository;
 public PostsController(BlogContext context, BlogFilesContext
filesContext,
 IPostRepository repository, IFileRepository fileRepository)
 {
 // Code removed for brevity
 _fileRepository = fileRepository;
 }
 }

The injected repository will then be used in the post CRUD operations. The main focus for
us is the custom TransactionScope usage to which multiple transactions were added. On
successful execution of both the files and posts repositories, we commit the transaction
scope, otherwise we roll back the changes. The code required for the custom transaction
scope implementation is highlighted in the following code:

 public async Task<IActionResult> Create([Bind("Id,Title,
 Content,Summary," + "PublishedDateTime,Url,VisitorCount,
 CreatedAt, ModifiedAt,BlogId," + "AuthorId,CategoryId,TagIds")]
 Post post, IFormFile headerImage)
 {
 if (ModelState.IsValid)
 {
 // Code removed for brevity
 var transactions = new TransactionScope();

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[242]

 try
 {
 transactions.Transactions.Add
 (_filesContext.Database.BeginTransaction());
 await _fileRepository.ExecuteAsync(
 new CreateFileCommand(_filesContext)
 {
 // Code removed for brevity
 Id = file.Id
 });
 transactions.Transactions.Add(
 _context.Database.BeginTransaction());
 await _postRepository.ExecuteAsync(
 new CreatePostCommand(_context)
 {
 // Code removed fore brevity
 FileId = file.Id
 });
 transactions.Commit();
 }
 catch (Exception exception)
 {
 transactions.Rollback();
 ExceptionDispatchInfo.Capture(
 exception.InnerException).Throw();
 }
 return RedirectToAction("Index");
 }
 // Code removed for brevity
 }

Similar changes are required for the Update and Delete operations; let's take it up as an
assignment.

The solution to the assignment is available in the following Git repository
commit:
https:/ ​/​goo. ​gl/ ​yLubPh

We have seen the transaction scope between different contexts and looked at, its limitations,
and we created our own custom transaction scope as well. In the next section, we will add
something we should have done long ago. Let's add a date picker to the solution, without
which it's always difficult for us to perform repeated testing.

www.EBooksWorld.ir

https://goo.gl/yLubPh
https://goo.gl/yLubPh
https://goo.gl/yLubPh
https://goo.gl/yLubPh
https://goo.gl/yLubPh
https://goo.gl/yLubPh
https://goo.gl/yLubPh
https://goo.gl/yLubPh
https://goo.gl/yLubPh

Fail Safe Mechanism – Transactions Chapter 9

[243]

Adding date picker support to the blogging
system
We can add the date picker to the system by importing moment and datetimepicker,
which requires style sheets and JavaScript. The required libraries were included in the
_Layout.cshtml as displayed below:

 // Code removed for brevity
 <head>
 // Code removed for brevity
 <environment names="Development">
 // Code removed for brevity
 <link rel="stylesheet" href="~/lib/eonasdan-bootstrap-
 datetimepicker/build/css/bootstrap-datetimepicker.css" />
 </environment>
 <environment names="Staging,Production">
 // Code removed for brevity
 <link rel="stylesheet" href="~/lib/eonasdan-bootstrap-
 datetimepicker/build/css/bootstrap-datetimepicker.min.css" />
 </head>
 <body>
 // Code removed for brevity
 <environment names="Development">
 // Code removed for brevity
 <script src="~/lib/moment/moment.js"></script>
 <script src="~/lib/eonasdan-bootstrap-datetimepicker/src/
 js/bootstrap-datetimepicker.js"></script>
 </environment>
 <environment names="Staging,Production">
 // Code removed for brevity
 <script src="~/lib/moment/min/moment.min.js"></script>
 <script src="~/lib/eonasdan-bootstrap-datetimepicker/build/
 js/bootstrap-datetimepicker.min.js"></script>
 </environment>
 </body>

The datepicker class is added to the input control, which requires datepicker to be
implemented, and the datepicker initialization is performed in the JavaScript code. With
respect to this section, dealing with file uploading functionality, we have included the input
file type, which allows us to upload the file content from UI to the controller action:

 // Code removed for brevity
 <form asp-action="Create" enctype="multipart/form-data">
 <div class="form-horizontal">
 // Code removed for brevity

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[244]

 <div class="form-group">
 <label class="col-md-2 control-label">Header Image</label>
 <div class="col-md-10">
 <input type="file" id="headerImage" name="headerImage" />
 </div>
 </div>
 // Code removed for brevity
 <div class="form-group">
 <label asp-for="PublishedDateTime" class="col-md-2
 control-label"></label>
 <div class="col-md-10">
 <input asp-for="PublishedDateTime"
 class="form-control datepicker" />
 <span asp-validation-for="PublishedDateTime"
 class="text-danger">
 </div>
 </div>
 // Code removed for brevity
 <div class="form-group">
 <label asp-for="TagIds" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <select asp-for="TagIds" class="form-control"
 asp-items="ViewBag.TagIds" multiple="multiple"></select>
 </div>
 </div>
 // Code removed for brevity
 </div>
 </form>
 // Code removed for brevity
 @section Scripts {
 // Code removed for brevity
 <script>
 // Code removed for brevity
 $('.datepicker').datetimepicker();
 </script>
 }

We have seen the datepicker incorporation and the file upload input type included in
the Post view. In the next section, we will see how transactions could be maintained
between multiple technologies.

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[245]

Leveraging transactions between multiple
technologies
To illustrate the transactions between multiple technologies, let's implement a few of the
missing features in the blogging system. In that way, we will have a mature, deployable
blogging system towards the end of the book, and at the same time we will learn the
concepts along the way. The features that we could consider for this section are:

Recent Posts (anonymous)
Post View (anonymous)
Comments list to a blog post
Adding comments to a blog post

Let's see how we will be using these features in the current section.

Recent posts support to the blogging system
The recent posts feature could be added to the system by performing the following steps:

Create an IGetRecentPostQuery query object interface.1.
Create a GetRecentPostQuery concrete query object.2.
Create a RecentPostsViewComponent View component.3.
Create a Default.cshtml view under Shared | Components | RecentPosts.4.
Perform a component invoke using the View component name and its parameter.5.

To reduce more code footprint where we just add features to the blogging system, let's
maintain and share the code from Git repository commits. The previously listed
implementation is performed and available in the following Git repository commit:

https:/​/​goo.​gl/​kcWD3P

www.EBooksWorld.ir

https://goo.gl/kcWD3P
https://goo.gl/kcWD3P
https://goo.gl/kcWD3P
https://goo.gl/kcWD3P
https://goo.gl/kcWD3P
https://goo.gl/kcWD3P
https://goo.gl/kcWD3P
https://goo.gl/kcWD3P
https://goo.gl/kcWD3P

Fail Safe Mechanism – Transactions Chapter 9

[246]

We will be using View components to render the recent posts. It is a new concept that
replaces the child actions in ASP.NET MVC Core, and it would be out of scope to explain
them in detail, so kindly refer to the following official documentation for more information:

https:/​/​docs.​microsoft. ​com/ ​en- ​us/ ​aspnet/ ​core/ ​mvc/ ​views/ ​view- ​components

The following screenshot will render the Recent Posts as a view component:

We have seen the changes required to include recent posts to the system. In the next section,
let's focus on how anonymous posts were listed and an individual anonymous post was
displayed.

Anonymous posts list and individual blog post
The anonymous posts list and individual blog post View feature could be added to the
system by performing the following steps:

Change the current posts listing route to admin route.1.
Change the current display post route to admin route as well.2.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/view-components

Fail Safe Mechanism – Transactions Chapter 9

[247]

Create an IGetPaginatedPostQuery query object interface.3.
Create a GetPaginatedPostQuery concrete query object.4.
Create an action to list blogs anonymously, GetPostsBlogHome().5.
Create an action to display blog anonymously, Display().6.
Create a layout exclusively for a blog, since most of the sites have different7.
layouts between landing pages and blogs.
Create a view, GetPostsBlogHome.cshtml, under the Posts View folder.8.
Create a view, Display.cshtml, under the Posts View folder as well.9.
Provide an appropriate hyperlink and its updates.10.

The preceding listed implementation is performed and available in the following Git
repository commit:

https:/​/​goo.​gl/​VPVJBg

We have to show the posts to the anonymous users and let only authorized users see the
administrator view of editing posts. In order to achieve this functionality, we have modified
the route of the posts controller to wrap inside Admin, and the anonymous post listing was
moved to the root (the tilde ~ symbol is used to redefine the API route) using attribute
routing, as shown in the following screenshot:

www.EBooksWorld.ir

https://goo.gl/VPVJBg
https://goo.gl/VPVJBg
https://goo.gl/VPVJBg
https://goo.gl/VPVJBg
https://goo.gl/VPVJBg
https://goo.gl/VPVJBg
https://goo.gl/VPVJBg
https://goo.gl/VPVJBg
https://goo.gl/VPVJBg

Fail Safe Mechanism – Transactions Chapter 9

[248]

The anonymous post listing view would consume the preceding listed action, which would
be rendered, as shown in the following screenshot, in the highlighted configured ~/blog
route:

We have seen the changes required to include the anonymous posts list, and similar
changes required for displaying an individual blog post are also available in the same
repository commit page. In the next section, let's focus on how comments are listed.

Listing comments
The comments list feature could be added to the system by performing the following steps:

Create a repository interface, ICommentRepository.1.
Create a repository object, CommentRepository.2.

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[249]

Create a query object interface, IGetCommentsByPostQuery.3.
Create a concrete query object, GetCommentsByPostQuery.4.
Configure the CommentRepository injection in the Startup file.5.
Create a View component, CommentsListViewComponent.6.
Create a View, Default.cshtml, under7.
Shared | Components | CommentsList.
Include the current library in the _ViewImports.cshtml to support the custom8.
tag helper.
Add components using the custom tag helper, <vc:comments>.9.

The preceding listed implementation is performed and available in the following Git
repository commit:

https:/​/​goo.​gl/​HqznNF

The View component rendering of the comments list is displayed in the following
screenshot:

www.EBooksWorld.ir

https://goo.gl/HqznNF
https://goo.gl/HqznNF
https://goo.gl/HqznNF
https://goo.gl/HqznNF
https://goo.gl/HqznNF
https://goo.gl/HqznNF
https://goo.gl/HqznNF
https://goo.gl/HqznNF
https://goo.gl/HqznNF

Fail Safe Mechanism – Transactions Chapter 9

[250]

The comments list that gets rendered using the View component in the anonymous blog is
displayed in the following screenshot:

We have seen the changes required to include Post comments to the system. In the next
section, let's focus on how comments are added.

Adding comments using external database
transactions
The comments list feature could be added to the system by performing the following steps:

Inject the IConfigurationRoot from the Startup file.1.
Add Execute methods in the ICommentRepository interface. 2.
Add Execute methods in the CommentRepository concrete type.3.

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[251]

Create a query object interface, ICreateCommentCommand.4.
Create a concrete query object, CreateCommentCommand.5.
Inject ICommentRepository and IConfigurationRoot in the comments6.
controller.
Create a View model, CommentViewModel.7.
Create an action to add comments anonymously, CreatePostComment(), to a8.
blog post.
Create an action to display or add comments to the View component9.
anonymously, GetCommentsListViewComponent().
Create a View component, AddCommentViewComponent.10.
Create a Default.cshtm view under Shared | Components | AddComment.11.
Update the Display.cshtml view under the Posts View folder:12.

Add components using the <vc:add-comment> custom tag helper.
Add jQuery and other JavaScript-based libraries that were missed in the blog13.
layout.

In step 5, while implementing Handle(), we will be implementing a transaction between
multiple technologies, but it should be executed in the same connection.

The transaction was created between an ADO.NET implementation and an EF context
implementation. It was made possible due to two things:

Sharing connections between technologies
Sharing transactions between technologies

The connection is passed to SqlCommand (for ADO.NET) and DbContextOptionsBuilder
(for EF). The transaction is assigned to the SqlCommand Transaction field (for ADO.NET)
and consumed using Database.UseTransaction(for EF). The connection shared between
different technologies and maintaining the transaction scope is highlighted in the following
implementation:

 public class CreateCommentCommand: CommandBase,
 ICreateCommentCommand<int>
 {
 // Code removed for brevity
 public int Handle()
 {
 int returnValue = 0;
 using (SqlConnection connection = new
 SqlConnection(_configuration.GetConnectionString("
 DefaultConnection")))

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[252]

 {
 connection.Open();
 using (var transaction = connection.BeginTransaction())
 {
 try
 {
 using (SqlCommand sqlCommand = new SqlCommand(
 "INSERT INTO Person(Nickname) " +
 "output INSERTED.ID VALUES(@Nickname)", connection))
 {
 sqlCommand.Parameters.AddWithValue("@FirstName",
 Nickname);
 sqlCommand.Transaction = transaction;
 int personId = (int)sqlCommand.ExecuteScalar();

 var options = new DbContextOptionsBuilder<BlogContext>()
 .UseSqlServer(connection)
 .Options;
 using (var context = new BlogContext(options))
 {
 Comment comment = new Comment
 {
 Content = Content,
 PostId = PostId,
 CreatedAt = DateTime.Now,
 ModifiedAt = DateTime.Now,
 CommentedAt = DateTime.Now,
 PersonId = personId,
 CreatedBy = personId,
 ModifiedBy = personId
 };

 context.Database.UseTransaction(transaction);
 context.Comments.Add(comment);
 returnValue = context.SaveChanges();
 }
 transaction.Commit();
 if (connection.State == System.Data.ConnectionState.Open)
 connection.Close();
 return returnValue;
 }
 }
 catch (Exception exception)
 {
 transaction.Rollback();
 ExceptionDispatchInfo.Capture(
 exception.InnerException).Throw();
 }

www.EBooksWorld.ir

Fail Safe Mechanism – Transactions Chapter 9

[253]

 }
 }
 return returnValue;
 }
 // Code removed for brevity
 }

The preceding listed implementation is performed and available in the following Git
repository commit:

https:/​/​goo.​gl/​1CJDLv

The implementation required to add comments to the blog post is available in the preceding
shared Git repository commit, and the View component rendering of the Add Comment
view is displayed in the following screenshot:

www.EBooksWorld.ir

https://goo.gl/1CJDLv
https://goo.gl/1CJDLv
https://goo.gl/1CJDLv
https://goo.gl/1CJDLv
https://goo.gl/1CJDLv
https://goo.gl/1CJDLv
https://goo.gl/1CJDLv
https://goo.gl/1CJDLv
https://goo.gl/1CJDLv

Fail Safe Mechanism – Transactions Chapter 9

[254]

We have seen the transaction created and maintained between multiple technologies in this
section, which wraps up the implementation of transactions between multiple technologies.

Summary
We have explored how to leverage the default transaction behavior in EF, which could be
leveraged only if multiple operations are performed using a single SaveChanges(). Then
we created a simple transaction, which allowed us to maintain transactions between
multiple SaveChanges() commits. Later, we created cross-context transactions, identified
their limitations, and overcame them with the custom TransactionScope that we built in
this chapter. Finally, we created a transaction that was maintained between multiple
technologies, provided it shares the connection and transaction objects. The different ways
of handling transactions ensure that if anything goes wrong, they will be handled, ensuring
we have built a fail-safe mechanism within single or between different data contexts, even
between different technologies.

So far, we have been working with a single user and haven't factored in what will happen if
we have concurrent users. In Chapter 10, Make It Real – Handling Concurrencies, we will
revisit the application and handle concurrencies in all the transactions we have performed
so far.

www.EBooksWorld.ir

10
Make It Real – Handling

Concurrencies
We have explored transactions, without which real-world transactions are not possible. We
started with the default behavior and then went on to creating a transaction. Later, we
learned about how a transaction could be shared between contexts, and finally we
concluded by learning how external transactions were handled.

Let's identify the real-world problems available with respect to concurrencies, and we will
see how we could handle them using the EF Core Framework:

In a real-world application, the same data store might be accessed by different
modules at the same time. How does EF Core handle those persistences?

EF Core has a few concurrency techniques that help us in creating a
fail-safe mechanism.

In which mechanism does EF Core expose concurrency techniques?
It exposes them using the usual techniques—data annotation and
Fluent API.

Do we need to add anything to the design to support concurrency?
It's a paradox; yes and no. If we are marking a column for
concurrency checks then no schema change is required; otherwise,
we need to introduce a timestamp/date row version column.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[256]

Do we have any provision in not having such a column in a data model but still
support concurrency tokens?

Yeah, it's quite possible. In the No foreign key property section of
Chapter 3, Relationships - Terminology and Conventions, we
discussed shadow properties. The same concept could be applied
here where EF Core does internal concurrency checks without
exposing them in the data model in a context.

Nothing is fail-safe. Even if we build the mechanism to handle concurrencies,
what control do we have if we face this conflict? What would be the action item
and how do we ensure that the application is really fail-safe?

We could capture concurrency issues, and deal with current,
original, and database values to resolve them.

The sections we will be including in this chapter are:

Handling concurrency in EF
Introducing concurrency tokens
Concurrency tokens through shadow properties
Concurrency tokens based on timestamp/row version
Handling concurrency conflicts

Handling concurrency in EF
Imagine we were the developers assigned to develop/handle concurrency in the blogging
system, what would be the starting point for us? The analysis would provide us with an
answer for what is required to handle concurrency. Most importantly, it would help us
understand the concurrency conflict and how it needs to be handled.

We will explore how concurrency conflict occurs and what needs to be done to handle it.
Finally, we will see how it has been handled by the EF Core team.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[257]

Understanding the concurrency conflicts
We need to visualize where we would be facing this issue, in general, when the user tries to
update data that is stale, which means the underlying data in the database has changed
since the object was filled. Then we have a problem that needs to be addressed before we go
live. If we don't handle concurrency, then the user who updates it last would retain his
change, overwriting the data updated by other users.

In a real-world application, no single user accesses the application at a single point in time,
multiple users use the application and it complicates the persistence of the data store.

Let's look at some scenarios that occur in such an application:

Two users try to update the same entity at the same time
If one of the users succeeds in the first persistence, then we end up overwriting
the same entity by the second user

This is our point of interest, which could be coined as concurrency conflict. To replicate the
issue, open the Edit Post page in two tabs. Assume the first user in the first tab is updating
the post information, such as editing a blog post's Title and Content:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[258]

Another user in the second tab tries to modify the Post Content, who is unaware of the
change performed in the Post Title and content by the other user (from the first tab):

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[259]

The change committed by the first user is no longer available in the model, which
overwrites the data from the second user. Further execution with the highlighted data in the
below screenshot would overwrite the data from second user:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[260]

The Post list displays that the changes performed by the first user are overwritten by the
second user:

The change committed by the first user should not be removed/overwritten with the new
data without considering the data updated in the database. This is a concurrency issue that
we will be discussing further in the next section.

Optimistic concurrency
Optimistic concurrency allows the concurrency conflict to occur and the application should
respond appropriately, as mentioned in the following list:

Tracking the changes on every property/column of an entity, which allows us to
persist changes without affecting the stale data in the database, provided both the
changes were performed in different properties

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[261]

Prevents the changes from being updated, by highlighting the current value from
the data store and allowing the user to revisit his data for further persistence
Overwrite the changes with the latest ones, and ignore the updated data in the
data store

Optimistic concurrency could be adopted in an application that is more focused on
performance and only during conflicts; the user would be spending additional time. This
ensures that the time is spent wisely on most occasions, since we do not have any overhead
for regular operations. The trade-off in the optimistic concurrency approach is that we are
leaving the developers and the users to handle conflicts and store appropriate data stored in
the database.

We have learnt about optimistic concurrency; let's look into pessimistic concurrency in the
next section.

Pessimistic concurrency
As the name suggests, we perform locks at the data store that prevent users from updating
stale data at the cost of performance. Yes, managing those locks by a data store consumes
more resources, which in turn affects the performance. This could be achieved in the
following way:

While reading/updating the data from/into the data store, we will request a lock
for other read-only or update access:

Locking a row for read-only access will allow other users to gain a
lock for read-only but not for update
Locking a row for an update access will not let any other users
either lock for read-only or update

Pessimistic concurrency could be adopted in the application where the users were too
specific with the data and they do not compromise how the data was dealt with against the
performance. The persisted data will always be valid, or in other words, we might never
run into conflicts, but with a huge cost, performance. Every persistence will involve an
overhead that ensures that we never run into conflicts with data persistence. In most
scenarios, we will never compromise performance, and taking this approach would be very
rare.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[262]

The ASP.NET Core Microsoft documentation (https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/
aspnet/​core/​data/ ​ef- ​mvc/ ​concurrency) highlights the disadvantages of pessimistic
concurrency:

"Managing locks has disadvantages. It can be complex to program. It requires significant database
management resources, and it can cause performance problems as the number of users of an
application increases. For these reasons, not all database management systems support pessimistic
concurrency. Entity Framework Core provides no built-in support for it, and this tutorial doesn't
show you how to implement it."

Even though EF Core does not support pessimistic lock, we could leverage the same using
flat SQL queries. We have learnt about pessimistic concurrency in this section; let's move on
to start applying these concurrency tokens in the next section.

Introducing concurrency tokens
The concurrency token would be the benchmark value used by EF to identify whether the
transaction has a conflict or not. We will be exploring different types of concurrency tokens
available and, if modified, how they stop the other user from updating the same.

The concept should be pretty simple, and we will keep ourselves in the shoes of the
Microsoft developers and see what algorithm should be adopted for the implementation.

The following algorithm is required at the higher level:

The entity should identify at least one column (concurrency check column) to let's
validate whether the row is updated or not
The identified column will be used in any update operation performed by the
framework to check whether the update is valid or not:

The column is concluded as valid if the previous value in the
updating model and the original value fed to the data store match,
otherwise it would be marked as invalid

If the concurrency column has invalid data then an exception should be thrown:
A new concurrency exception should be created that will allow
users to handle them
We should give a provision to the user to handle concurrency
issues, and that's the reason we should throw an exception instead
of a graceful exit

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/concurrency

Make It Real – Handling Concurrencies Chapter 10

[263]

If the concurrency column has valid data, then the update could be performed

The algorithm could be visualized using the following flow chart:

Let's visualize the preceding algorithm to resolve the concurrency conflict we faced while
updating the post:

The Post entity identifies and configures the Timestamp column as a concurrency
check column
The concurrency implementation expects the Timestamp column to be valid:

The Post model, which we send to the framework to update, will
have:

Current Timestamp value as a byte array
Original Timestamp value fetched from the database
before presenting to the update screen

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[264]

The Timestamp value's original value should match with the
existing database value in the Timestamp value for the given row
If the value doesn't match, concurrency exception should be
thrown
If the value matches, then the update is considered as valid and the
framework allows the data store to be updated

We will explore the way in which the Microsoft team actually implemented the concurrency
token mechanism:

EF Core introduced a custom Timestamp attribute. Developers should mark one
of the columns as the concurrency column
The framework treats this column especially by marking the data loaded on the
concurrency column in the context as the original value of the concurrency token
When the user tries to update the record, it would check the original value
against the value available in the database
If the values don't match, then the framework throws a concurrency exception
If both the values match, then the update is allowed by the framework

The concurrency token mechanism previously discussed matches with the flow diagram we
used in this section. The concurrency is handled using the Timestamp property of the Post
model, displayed as follows:

 public class Post
 {
 // Code removed for brevity
 [Timestamp]
 public string Timestamp { get; set; }
 }

We have exhaustively learnt about what is a concurrency conflict, how it could be handled,
and how Microsoft has supported concurrency in EF Core. In the next section, we will learn
how to configure and use them in applications.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[265]

Non-timestamp based concurrency tokens
The knowledge we gained about concurrency tokens and how the implementation was
performed in the EF Core Framework would be useful in introducing concurrency tokens in
this section.

Introducing the usages of concurrency tokens would be a meager topic, so we will
implement them in the blogging system and see them in action. After all, talking about
algorithms and scenarios would not be sufficient. In order to understand and grasp the
topic, we need to handle them in action, so let's do it.

The concurrency token could be configured in the following ways:

Data annotations
Fluent API

We will see how the configurations were performed using both the approaches in our
blogging system in the next two sections.

Configuring non-timestamp tokens through data
annotation
The data annotation configuration is straightforward; we have already seen the annotation
in the Introducing concurrency tokens section of this chapter and it is not something new to
us. Let's see how the ConcurrencyCheck attribute is configured:

 public class Post
 {
 // Code removed for brevity
 [ConcurrencyCheck]
 public string Url { get; set; }
 // Code removed for brevity
 }

The preceding configuration will let EF Core consider the Url column as the concurrency
check column, and any further update to this column will restrict users from performing
parallel updates.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[266]

We have already seen the concurrency conflicts while trying to edit posts in different tabs,
which is kind of a simulation of a real-time concurrency conflict. Since we have handled the
concurrency, let's now see how it stops the user from persisting values into the data store.

The post highlighted in the following screenshot will have a Url value of test-1, and if the
value is changed, then any other new persistence will be rejected by the framework:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[267]

Again, we were following the same simulation of having two tabs of the same blog Edit
page; the first tab updates the post data with the same URL, which will allow the
persistence. The following screenshot is the data populated and updated from the first user:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[268]

If the second tab retains the Url value, EF Core will persist the updated post data into the
data store:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[269]

We can see from the following screenshot that the Url value is unchanged. This ensures that
the record we were searching for of an update exists, thereby allowing EF to persist the
entity:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[270]

The second tab will try to change the Url value, which causes EF Core to stop the
persistence of post data into the data store, which throws the error Database operation
expected to affect 1 row(s) but actually affected 0 row(s):

We can see that the error is thrown as explained, which says that the records don't exist
anymore, which is supposed to update one row(s):

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[271]

There is an internal operation carried out by EF to finalize whether the update is valid or
not; that's the reason it says 1 row(s) is expected but 0 row(s) affected.

EF will translate the update into an SQL query that will contain the where
clause, including the identity column and the concurrency check column.
If the value is changed, then obviously no record would be available for
the update operation (which was supposed to exist), and that's the reason
it simply responds back saying it expected 1 row(s) to be updated but 0
row(s) were affected.

We have seen how non-timestamp concurrency works, along with annotation
configuration. In the next section, let's see how the same concurrency token could be
configured through Fluent API.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[272]

Configuring non-timestamp tokens through
Fluent API
The Fluent API configuration is made possible because Microsoft has exposed a series of
extension methods, which allows us to execute appropriate functionality against the
property of the model that supports it. In our blogging system, we will configure the Url of
the Post entity as the concurrency token by enabling the property using
IsConcurrencyToken() as shown in the following code:

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 // Code removed for brevity
 modelBuilder.Entity<Post>()
 .ToTable("Post")
 .Property(x=>x.Url)
 .IsConcurrencyToken();
 // Code removed for brevity
 }

The preceding configuration will let EF Core consider the Url column as the concurrency
token, and any further update to this column will restrict users from performing parallel
updates, as it did in the data annotation configuration.

We have exhaustively seen how this concurrency token works, so let's move on to the next
section that explores timestamp-based concurrency tokens.

Timestamp-based concurrency tokens
We have already explored Timestamp-based concurrency tokens in the Introducing
concurrency tokens section. We can jump directly into the configuration, consider the same
scenario and see how the conflicts were handled using the Timestamp concurrency token.

As we did with the non-timestamp based concurrency token, timestamp-based concurrency
tokens could also be configured in the following ways:

Data annotations
Fluent API

We will see how the configurations were performed using both the approaches in our
blogging system, and later we will see them in action.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[273]

Configuring timestamp tokens through data
annotation
We have already seen how data annotation configuration works. For timestamp-based
tokens, we need a property that will have a byte array, and it should be marked using
the Timestamp data annotation. This is the only configuration required from our end; EF
will take care of the rest:

 public class Post
 {
 // Code removed for brevity
 [Timestamp]
 public byte[] Timestamp { get; set; }
 }

The preceding configuration will let EF Core consider the Timestamp column as the
concurrency column, and any further update to this column will restrict users from
performing parallel updates.

Since we are introducing a new column to the entity, related commands should be updated
as well. In our scenario, we need to update the UpdatePostCommand type with new byte
array Timestamp property and its usage as shown in the following code:

 public class UpdatePostCommand : CommandBase, ICreatePostCommand<int>
 {
 // Code removed for brevity
 public byte[] Timestamp { get; set; }
 // Code removed for brevity
 public async Task<int> HandleAsync()
 {
 var post = new Post
 {
 // Code removed for brevity
 Timestamp = Timestamp
 };
 // Code removed for brevity
 }
 }

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[274]

The new column should be included in the Edit method of PostController:

 public async Task<IActionResult> Edit(
 int id, [Bind("Id,Title,Content,Summary," + "PublishedDateTime,
 Url,VisitorCount,CreatedAt,ModifiedAt,BlogId,AuthorId,"
 + "CategoryId,TagIds,FileId,Timestamp")] Post post,
 IFormFile headerImage)
 {
 // Code removed for brevity
 if (ModelState.IsValid)
 {
 var transactions = new TransactionScope();
 try
 {
 Models.File file = null;
 if (headerImage == null || (headerImage != null
 && !headerImage.ContentType.ToLower().StartsWith("image/")))
 {
 await _postRepository.ExecuteAsync(
 new UpdatePostCommand(_context)
 {
 // Code removed for brevity
 Timestamp = post.Timestamp
 });
 return RedirectToAction("Index");
 }
 // Code removed for brevity
 transactions.Transactions.Add
 (_context.Database.BeginTransaction());
 await _postRepository.ExecuteAsync(
 new UpdatePostCommand(_context)
 {
 // Code removed for brevity
 Timestamp = post.Timestamp
 });
 transactions.Commit();
 }
 catch (DbUpdateConcurrencyException exception)
 {
 // Code removed for brevity
 }
 return RedirectToAction("Index");
 }
 // Code removed for brevity
 }

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[275]

Finally, the Timestamp column should be configured as a hidden column, just like we
would perform for an identity column. This is required since the UI should retain the
timestamp value on the Post:

 // Code removed for brevity
 <form asp-action="Edit">
 <div class="form-horizontal">
 <// Code removed for brevity
 <input type="hidden" asp-for="Timestamp" />
 // Code removed for brevity
 </div>
 </form>
 // Code removed for brevity

We are not there yet; we have updated the entity, but we are supposed to update the
database. So, we need to update the schema as shown in the following screenshot, by
adding migration and updating the database:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[276]

Let's get back to the same scenario, which will have two tabs and will try to perform the
update at the same time. The following Post list page screenshot is highlighted with the
existing values which will be modified by users for testing:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[277]

In the first tab, we are retaining the value and performing an update that will update the
values, since EF will allow one update to happen irrespective of the values updated in any
of the columns (except Timestamp, which should not be updated by the user):

The Post entity data will be persisted without any issues since the Timestamp value doesn't
change and it matches the value from the database.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[278]

The non-timestamp based concurrency token stops the update from
happening if the concurrency check column value is changed, whereas the
timestamp-based concurrency token will track the changes performed in
the entity and will allow the change to be persisted if the timestamp value
matches with the database value. Before persisting, it will increment the
timestamp value.

The first tab operation works fine as expected; we can see the modified column was
updated with the new value, confirming that the data was updated properly in the
following screenshot:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[279]

The second tab will try to update the Post entity, but it will fail irrespective of the column
that was updated during this Edit operation. This behavior is expected since the
Timestamp value was changed during the previous update, which makes the Timestamp
value stale. The data in the following screenshot is updated by the second user which will
be posted to the service:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[280]

We can see from the following error that the concurrency conflict has occurred and EF has
thrown the error, which restricts the user from persisting the stale record. The data update
is restricted due to stale data and the same is highlighted in the following image:

We have exhaustively seen how the timestamp-based concurrency token works and how it
can be configured using data annotation. In the next section, let's see how we can configure
the same token using Fluent API.

Configuring timestamp tokens through Fluent API
The Fluent API configuration is made possible because Microsoft has exposed such
functionality against any property in the model. In our blogging system, we will configure
the Timestamp of the Post entity as a concurrency token by enabling the property
using IsConcurrencyToken() along with ValueGeneratedOnAddOrUpdate(). The
following code would add a new property Timestamp as discussed in this section:

 public class Post
 {
 // Code removed for brevity
 public byte[] Timestamp { get; set; }
 }

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[281]

We have revisited the Post type and included the byte array timestamp property that will
be used in the Fluent API configuration. The following configuration code would enforce
the property value to be added or updated during persistence and marked as a concurrency
token:

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 // Code removed for brevity
 modelBuilder.Entity<Post>()
 .ToTable("Post")
 .Property(x=>x.Timestamp)
 .ValueGeneratedOnAddOrUpdate()
 .IsConcurrencyToken();
 // Code removed for brevity
 }

The preceding configuration will let EF Core consider the Timestamp column as the
concurrency token, and any further update to this column will restrict users from
performing parallel updates, as it did in the data annotation configuration.

We have exhaustively seen how this concurrency token works, so let's move on to the next
section, which explores how concurrency conflicts were handled.

Handling concurrency conflicts
We have seen how to configure concurrency tokens and the errors it throws whenever there
is a concurrency conflict. In this section, we will discuss different approaches available for
handling concurrency conflicts.

The preceding configuration will let EF Core consider the ModifiedAt column as the
concurrency check column, and any further update to this column will restrict users from
performing parallel updates.

We have seen the approaches available for handling conflicts, let's discuss them in detail.

Applying optimistic concurrency
The optimistic concurrency will let the user try to update the entity. EF handles the
overhead operations to ensure whether there is any concurrency conflict or not. This
operation does not hurt performance, as pessimistic concurrency hurts, but it does handle
concurrency in different ways.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[282]

The different approaches for handling optimistic concurrency are:

Database wins
Client wins
User-specific custom resolution

We will be investigating further each of the approaches, one by one, in the next section.

Database wins
The database wins approach would allow the system/application to discard the client/UI
changes and override the update operation using the latest data loaded from the database.

The following code shows how the concurrency conflicts are handled in the database wins
approach. It reloads the entries from the database using Reload(), discards the client data
in favor of the database, and performs the SaveChanges() operation to persist the updated
changes from the database. The following code performs handles database first concurrency
in the Post persistence:

 public async Task<IActionResult> Edit(int id, [Bind("Id,Title,Content,
 Summary," + "PublishedDateTime,Url,VisitorCount,CreatedAt,
 ModifiedAt, BlogId,AuthorId," + "CategoryId,TagIds,FileId,
 Timestamp")] Post post, IFormFile headerImage)
 {
 if (id != post.Id)
 {
 return NotFound();
 }
 if (ModelState.IsValid)
 {
 var transactions = new TransactionScope();
 try
 {
 // Code removed for brevity
 }
 catch (DbUpdateConcurrencyException dbUpdateConcurrencyException)
 {
 if (!PostExists(post.Id))
 {
 return NotFound();
 }
 else
 {
 try

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[283]

 {
 dbUpdateConcurrencyException.Entries.Single().Reload();
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 catch (Exception exception)
 {
 ExceptionDispatchInfo.Capture
 (exception.InnerException).Throw();
 }
 }
 }
 }
 // Code removed for brevity
 }

We have seen how the database wins approach handles the concurrency conflict. In the next
section, let's explore how the client wins approach handles the concurrency conflict.

Client wins
The client wins approach allows the system/application to override the database changes
with the client/UI changes and update the data into the database.

The following code shows how the concurrency conflicts are handled in the client wins
approach. It just updates the original values from the database, which will avoid
concurrency conflict. It also allows the system/application to persist the changes
from client/UI to be updated in the database without any issues:

 public async Task<IActionResult> Edit(int id, [Bind("Id,Title,Content,
 Summary," + "PublishedDateTime,Url,VisitorCount,CreatedAt,ModifiedAt,
 BlogId,AuthorId," + "CategoryId,TagIds,FileId,Timestamp")] Post post,
 IFormFile headerImage)
 {
 if (id != post.Id)
 {
 return NotFound();
 }
 if (ModelState.IsValid)
 {
 var transactions = new TransactionScope();
 try
 {
 // Code removed for brevity
 }
 catch (DbUpdateConcurrencyException dbUpdateConcurrencyException)

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[284]

 {
 if (!PostExists(post.Id))
 {
 return NotFound();
 }
 else
 {
 try
 {
 var entry = dbUpdateConcurrencyException.Entries.Single();
 entry.OriginalValues.SetValues(entry.GetDatabaseValues());
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 catch (Exception exception)
 {
 ExceptionDispatchInfo.Capture
 (exception.InnerException).Throw();
 }
 }
 }
 }
 // Code removed for brevity
 }

We have seen how the client wins approach handles the concurrency conflict. In the next
section, let's explore how the user-specific custom resolution approach handles the
concurrency conflict.

It would be helpful to read Client Wins and Database Wins as Last
In Wins and First In Wins respectively. This is a metaphor of the
warehousing practices of FIFO (First in First out) and LIFO (Last in First
out).

User-specific custom resolution
The user-specific custom resolution highlights the latest changes from the database in the
client/UI changes and updates the timestamp value so that on next SaveChanges(), the
user could either consider the latest changes from the database and update them in
client/UI, or just ignore them and proceed with saving the changes from the client/UI.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[285]

The following code shows how the concurrency conflicts are handled in the user-specific
custom resolution approach. It just adds the model state error on to the conflicting fields
with the current value, which gets displayed in the client/UI. The following code would
handle concurrency and update the model state errors based on validation errors:

 public async Task<IActionResult> Edit(int id, [Bind("Id,Title,
 Content,Summary," + "PublishedDateTime,Url,VisitorCount,
 CreatedAt,ModifiedAt, BlogId,AuthorId," +"CategoryId,TagIds,
 FileId,Timestamp")] Post post, IFormFile headerImage)
 {
 if (id != post.Id)
 {
 return NotFound();
 }
 if (ModelState.IsValid)
 {
 var transactions = new TransactionScope();
 try
 {
 // Code removed for brevity
 }
 catch (DbUpdateConcurrencyException dbUpdateConcurrencyException)
 {
 if (!PostExists(post.Id))
 {
 return NotFound();
 }
 else
 {
 try
 {
 foreach (var entry in dbUpdateConcurrencyException.Entries)
 {
 if (entry.Entity is Post)
 {
 var postEntry = entry.GetDatabaseValues();
 var postFromDatabase = (Post)postEntry.ToObject();
 var postToBeUpdated = (Post)entry.Entity;
 if (postFromDatabase.Title != postToBeUpdated.Title)
 {
 ModelState.AddModelError("Title", $"Current value:
 {postFromDatabase.Title}");
 }
 if (postFromDatabase.Content !=
 postToBeUpdated.Content)
 {
 ModelState.AddModelError("Content", $"Current value:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[286]

 {postFromDatabase.Content}");
 }
 ModelState.AddModelError(string.Empty, "The record was
 modified by another user" + " after the page
 was loaded.
 The save operation was canceled and the" + " updated
 database values were displayed. If you still want
 to edit" + " this record, click the Save button
 again.");
 post.Timestamp = (byte[])postFromDatabase.Timestamp;
 ModelState.Remove("Timestamp");
 }
 else
 {
 throw new NotSupportedException("Don't know how
 to handle concurrency conflicts for " +
 entry.Metadata.Name);
 }
 }
 }
 catch (Exception exception)
 {
 ExceptionDispatchInfo.Capture
 (exception.InnerException).Throw();
 }
 }
 }
 }
 // Code removed for brevity
 }

The custom resolution will handle the conflict displayed as follows, which will highlight the
issue in the validation summary, and also displays the current value against each
conflicting field:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[287]

We have seen how the user-specific custom resolution approach handles the concurrency
conflict. In the next section, let's explore how pessimistic concurrency handles the conflict.

Applying pessimistic concurrency
The pessimistic concurrency lets the user block everyone from accessing the entity until the
read/write operation is complete. This might not give a good performance, but it ensures
that nobody accesses the system with stale data. The following code would perform
pessimistic lock which avoids conflict at the datastore itself:

 public async Task<IActionResult> Edit(int id,
 [Bind("Id,Url,Title,Subtitle,Description,CategoryId")] Blog blog)
 {
 // Code removed for brevity
 if (ModelState.IsValid)
 {
 try
 {

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[288]

 using (var transaction = _context.Database.BeginTransaction())
 {
 try
 {
 var blogToUpdate =
 await _context.Blogs.FromSql($"Select *
 from dbo.Blog with (xlock) where id={id}")
 .FirstOrDefaultAsync();

 if (blogToUpdate == null)
 return NotFound();

 blogToUpdate.Title = blog.Title;
 blogToUpdate.Subtitle = blog.Subtitle;
 blogToUpdate.Description = blog.Description;
 blogToUpdate.CategoryId = blog.CategoryId;
 blogToUpdate.Url = blog.Url;
 blogToUpdate.ModifiedAt = DateTime.Now;
 _context.Update(blogToUpdate);
 await _context.SaveChangesAsync();
 transaction.Commit();
 }
 catch (Exception)
 {
 transaction.Rollback();
 }
 }
 }
 // Code removed for brevity
 }
 // Code removed for brevity
 }

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[289]

The xlock used in the preceding query will ensure that no other read/write operations can
be performed against the entity. Let's test the functionality by refactoring the Edit method
using transactions, which also uses xlock before performing the update:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[290]

We can see that just before transaction.commit(), a breakpoint was set, which will still
have an active xlock against the Blog entity. Meanwhile, if we try to fetch the records from
the Blog entity, the operation will wait for the lock to be released, and that is why the
following screenshot shows Executing query... until it gets access to the read operation:

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[291]

Once the transaction is committed, the select query executes as expected with the list of
blogs as an outcome. This is the expected behavior in the pessimistic lock, and we have
achieved the same using xlock in our code. In the following screenshot, the query which
was loading during the persistence now executed completely as the lock is released after the
persistence:

The pessimistic concurrency conflict was identified and resolved in this section, which
concludes the concurrency handling in this chapter.

www.EBooksWorld.ir

Make It Real – Handling Concurrencies Chapter 10

[292]

Summary
We started by exploring what is a concurrency conflict, and how Microsoft would have
handled them in the Entity Framework implementation. We have seen how the concurrency
token implementation would solve our issue, and then started with using concurrency
tokens with the non-timestamp approach. Later, we used the timestamp-based concurrency
token to catch the conflicts. Finally, we have found ways to handle those concurrency
conflicts using both optimistic and pessimistic approaches. We can choose between the two
based on our priority; if performance is vital to the project then pick optimistic concurrency,
or if the business users are keen on data and are ready to have a trade-off with performance,
then pick pessimistic concurrency. We have built the blogging system to illustrate certain
features covered in the book, but it was not created to provide better performance. We
might have used approaches that would yield better performance through muscle memory,
but it's time to explore all possible options available in the framework to improve the
application's performance. Let's explore them in Chapter 11, Performance – It's All About
Execution Time.

www.EBooksWorld.ir

11
Performance – It's All About

Execution Time
We have created transactions to ensure every transaction will be committed only if all the
transactions were successful. We have started with identifying conflicts, resolved them
using the built-in/default transactions supported by Entity Framework (EF), then worked
with simple transactions. Then we covered handling transactions using timestamp and non-
timestamp fields. Finally, we created transactions that could handle different data contexts
and different technologies.

Let's discuss the performance issues we commonly face in EF, or any other data access layer
implementation, and a way to address those performance concerns.

In this chapter, we will be covering the following:

AsNoTracking() method
Detecting changes
Asynchronous operations
Unnecessary volume returned
N + 1 Select problem
More data than required
Mismatched datatypes
Missing indexes

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[294]

The AsNoTracking() method
EF's tracking behavior depends on the entry available in the change tracker; it is the default
behavior. We could override this behavior to achieve performance improvements in certain
scenarios where tracking is not required; for example, the read-only operations such
as displaying a list of posts, displaying post information, and so on. This tracking is the key
to EF in arriving at the changes required to be persisted during SaveChanges() execution.

How does tracking work?
As discussed in the previous section, any query that returns an entity (registered in data
context) will be a part of tracking. Also as mentioned about how persistence occurs, the
changes performed on those entities will be tracked and those changes will be persisted
during SaveChanges() execution.

Let's look at the following code, which illustrates how tracking works in the framework:

 public async Task<IActionResult> Edit(int id,
 [Bind("Id,FirstName,
 LastName,NickName,Url,Biography,ImageUrl")] Person person)
 {
 // Code removed for brevity
 var personToUpdate = await
 _context.People.SingleOrDefaultAsync(
 item => item.Id.Equals(person.Id));
 // Code removed for brevity
 personToUpdate.Biography = person.Biography;
 personToUpdate.Comments = person.Comments;
 personToUpdate.FirstName = person.FirstName;
 personToUpdate.ImageUrl = person.ImageUrl;
 personToUpdate.LastName = person.LastName;
 personToUpdate.ModifiedAt = DateTime.Now;
 personToUpdate.NickName = person.NickName;
 personToUpdate.PhoneNumber = person.PhoneNumber;
 personToUpdate.Url = person.Url;
 personToUpdate.User = person.User;
 _context.Update(personToUpdate);
 await _context.SaveChangesAsync();
 // Code removed for brevity
 }

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[295]

The personToUpdate retrieved from the data context will be part of tracking as it is
returning the Person entity that is registered in the data context. The following code
registers the Person entity to enable tracking in the framework:

 public class BlogContext: DbContext
 {
 // Code removed for brevity
 public DbSet<Person> People { get; set; }
 // Code removed for brevity
 }

Since the entity is part of the data context, any changes performed in the returned item(s)
will be tracked by EF Core irrespective of its usages, which could be read-only or might
perform a write operation as well.

No-tracking queries
In the blogging system, the Person index screen will load a list of people available in the
data store, which will not perform any write operation. In this use case, the code doesn't
require any tracking as once the data is rendered in the View, the scope is complete. Having
tracking over here is an overhead.

The following code would allow us to disable tracking in the executing query:

 public async Task<IActionResult> Index()
 {
 var people = await _context.People
 .AsNoTracking()
 .ToListAsync();
 // Code removed for brevity
 }

The tracking could be disabled using AsNoTracking(), as used in the preceding query
against the navigational property of data context in the LINQ query. This instructs EF Core
that we do not require an overhead tracking operation as we are not intending to perform
any changes with the result set.

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[296]

The mock data should be generated to illustrate the performance impact in
the application, the script we have used in this chapter to generate the
mock data is available in the following Git commit:
https:/ ​/​goo. ​gl/ ​Fg2YMF
Kindly use this script to mock thousands/millions of records in the tables,
the file in the preceding commit contains script for the Person, User, and
Post tables mocking. This has been included to help you evaluate
performance in the DB.

The previous query, before optimization, took 170,294ms to execute in a table with a million
records, as illustrated in the following image:

The LINQ query, after optimization, took only 59,017ms to execute, which improved total
execution time by 65%, as shown in following image:

This optimization is just a first step towards performance improvement; there is lot of scope
to improve the application performance and we will visit each aspect of them in other
sections of this chapter.

www.EBooksWorld.ir

https://goo.gl/Fg2YMF
https://goo.gl/Fg2YMF
https://goo.gl/Fg2YMF
https://goo.gl/Fg2YMF
https://goo.gl/Fg2YMF
https://goo.gl/Fg2YMF
https://goo.gl/Fg2YMF
https://goo.gl/Fg2YMF
https://goo.gl/Fg2YMF

Performance – It's All About Execution Time Chapter 11

[297]

The million records we had inserted in the Person table would affect the
preceding illustrated Index() action, which would return a list of people,
it would throw a timeout error instead of rendering the list. We could
avoid this issue by handling pagination implemented in Chapter 8, Query
Is All We Need – Query Object Pattern, which is available in
the GetPaginatedPostByKeywordQuery.cs of the following Git
repository path:
https:/ ​/​goo. ​gl/ ​SwvVcC.
The same approach of Skip() and Take() could be used here to avoid
timeout issue, a quick fix would be limiting to 100 records as shown,
which should be a paginated query in the future.
var people = await _context.People.Take(100)
.AsNoTracking()
.ToListAsync();

If the tracking is not required for the entire controller, we could disable it on a context level
using QueryTrackingBehavior of the ChangeTracker type. Since the blogging system
initializes the context on each request, we could disable tracking on the constructor using
QueryTrackingBehavior as shown in the following code:

 public PeopleController(BlogContext context)
 {
 _context = context;
 _context.ChangeTracker.QueryTrackingBehavior =
 QueryTrackingBehavior.NoTracking;
 }

We have seen how the tracking could be disabled at the query level or context level using
two approaches. Kindly use them wisely to avoid running into updating/deletion issues, as
those operations require tracking.

www.EBooksWorld.ir

https://goo.gl/SwvVcC
https://goo.gl/SwvVcC
https://goo.gl/SwvVcC
https://goo.gl/SwvVcC
https://goo.gl/SwvVcC
https://goo.gl/SwvVcC
https://goo.gl/SwvVcC
https://goo.gl/SwvVcC
https://goo.gl/SwvVcC

Performance – It's All About Execution Time Chapter 11

[298]

Projections
There is another built-in support from EF Core that provides tracking over projections
(anonymous types or custom types that project the entity) as well. In the following example,
we are projecting the Person model as PersonViewModel, which will contain both the
type and an additional NoOfComments field. In this case, EF Core will track changes
performed over the Person property of PersonViewModel, since it is part of the data
context and the NoOfComments will not be tracked. The following code provides the above
discussed projection:

 public async Task<IActionResult> Index()
 {
 return View(await _context.People
 .AsNoTracking()
 .Select(item =>
 new PersonViewModel
 {
 Person = item,
 NoOfComments = item.Comments.Count
 }).ToListAsync());
 }

There is one more projection that will never perform any tracking. If the projection takes
only the fields rather than the entity itself, then it will not track changes to the projected
entity. Let's see them in action by introducing an About panel, which will be displayed
across the public post that displays author information. A component is created to display
author details, and its View implementation creates a projection that takes only Name and
Biography from the Person entity. Since it's not projecting the entire entity, the
AboutViewModel will not be tracked.

The following projection ensures that the data will never be tracked, as it does not contain
any entities registered in the data context:

 public class AboutViewComponent : ViewComponent
 {
 private readonly BlogContext _context;
 private readonly IPersonRepository _repository;
 public AboutViewComponent(IPersonRepository repository,
 BlogContext context)
 {
 _repository = repository;
 _context = context;
 }

 public IViewComponentResult Invoke(int id)

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[299]

 {
 var aboutViewModel = _context.People
 .Where(item => item.Id.Equals(id))
 .Select(item => new AboutViewModel
 {
 Name = item.FirstName,
 Biography = item.Biography
 }).SingleOrDefault();

 return View(aboutViewModel);
 }
 }

We have seen how tracking works, ways to disable it, and also explored projections and
their tracking behavior in EF Core. In the next section, let's investigate how detecting
change behavior could be modified.

Detecting changes
We might run into performance issue while trying to perform bulk insertion that might be
importing data from other sources or migrating content from another blogging system. In
those scenarios, if we have AutoDetectChangesEnabled, then we might run into
performance issues since EF Core's ObjectStateManager.DetectChanges() performs
too costly operations on each insert operation.

For illustration, we could handle the bulk insert/update detect changes partly in our
CreatePost code, which will perform a bulk tag insertion. We could handle this issue by
disabling AutoDetectChangesEnabled just before adding the entities and enabling them
back before calling SaveChanges(). The following little highlighted change would provide
a huge performance improvement against the execution time:

 public class CreatePostCommand : CommandBase,
 ICreatePostCommand<int>
 {
 // Code removed for brevity
 public int Handle()
 {
 // Code removed for brevity
 Context.ChangeTracker.AutoDetectChangesEnabled = false;
 foreach (int tagId in TagIds)
 {
 Context.Add(new TagPost
 {
 TagId = tagId,

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[300]

 Post = post
 });
 }
 Context.ChangeTracker.AutoDetectChangesEnabled = true;
 // Code removed for brevity
 }
 // Code removed for brevity
 }

We have seen how DetectChanges() affects the performance of bulk insert/update
operations and the solution to the issue. In the next section, let's focus on asynchronous
operations.

Asynchronous operations
We could call it a muscle memory, as we could notice that an asynchronous operation is
already in place; we perform all operations in an asynchronous way. Even though it's been
covered, let's reiterate how the asynchronous operations were handled in our blogging
system and see the simplicity when we used async/await syntactic sugar implementations
for asynchronous operations.

The asynchronous execution helps us in supporting multiple requests in parallel, without
locking a thread against a long-running process. To understand how the threads should be
managed properly, let's go through the following execution process:

The request reaching the ASP.NET pipeline will be allocated to a thread, which
takes care of the execution
The thread will be occupied until the request is complete
If the action consumes any long-running process in a synchronous way, then the
thread will be blocked until the process execution is complete. If all the threads in
the thread pool is occupied, then it cannot serve additional requests
If the long-running process is implemented in an asynchronous way, then once
the action is triggered, the thread will be released back to the thread pool, the
released thread would be allocated to new request
Once the long-running process is complete, a new thread will be allocated to
complete the request execution

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[301]

Since we already have an asynchronous implementation in place, we will start examining
them right from the controller up to the data context execution. Let's take a look at the post
controller Index action that is decorated with the async keyword, which also requires a
return type to be wrapped inside the Task<> generic type. The asynchronous method
should be invoked using the await keyword as shown in the following code:

 public async Task<IActionResult> Index()
 {
 var posts = await _postRepository.GetAsync(
 new GetAllPostsQuery(_context)
 {
 IncludeData = true
 });
 // Code removed for brevity
 }

Let's dig in deep and investigate how this GetAsync() is implemented. It is a generic
implementation that invokes HandleAsync() using the async/await keywords as shown
here:

 public async Task<IEnumerable<Post>> GetAsync<T>(T query)
 where T : IQueryHandlerAsync<IEnumerable<Post>>
 {
 return await query.HandleAsync();
 }

The HandleAsync() method is again implemented inside GetAllPostsQuery (in our
scenario), which consumes the EF Core asynchronous ToListAsync() method, which
wraps up our asynchronous implementation. This ensures that the database execution
happens in an asynchronous way, and the operation continues after the data is returned
from the data store. The following code performs asynchronous executions on
ToListAsync() methods which will perform database operation:

 public class GetAllPostsQuery : QueryBase,
 IGetAllPostsQuery<GetAllPostsQuery>
 {
 // Code removed for brevity
 public async Task<IEnumerable<Post>> HandleAsync()
 {
 var posts = IncludeData
 ? await Context.Posts
 .Include(p => p.Author).Include(p => p.Blog)
 .Include(p => p.Category).Include(p=>p.TagPosts)
 .ToListAsync()
 : await Context.Posts
 .ToListAsync();

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[302]

 // Code removed for brevity
 }
 }

We have explored how asynchronous operations are implemented consuming EF Core
async methods. In the next section, let's move on a little further and see how transactions
are leveraged.

Transactions leveraging asynchronous
operations
The transaction implementation still honors the asynchronous implementation; it doesn't
bother even if the execution is performed using different threads, all it cares about is that
the executions should happen within a given transaction. We can see that there is nothing in
addition performed to support asynchronous operations for transactions; the async
operation is simply performed within the transaction scope and it simply takes care of the
rest.

Done. The asynchronous operations are still valid with the transactions we have created
and used in the posts controller; the create action implements ExecuteAsync() using
async and await keywords are highlighted as follows:

` public async Task<IActionResult> Create([Bind("Id,Title,
 Content,Summary," +
 "PublishedDateTime,Url,VisitorCount,CreatedAt,
 ModifiedAt,BlogId," + "AuthorId,CategoryId,TagIds")] Post post,
 IFormFile headerImage)
 {
 if (ModelState.IsValid)
 {
 // Code removed for brevity
 var transactions = new TransactionScope();
 try
 {
 if (file != null)
 {
 transactions.Transactions.Add(_filesContext.Database
 .BeginTransaction());
 await _fileRepository.ExecuteAsync(
 new CreateFileCommand(_filesContext)
 {
 Content = file.Content,
 ContentDisposition = file.ContentDisposition,

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[303]

 ContentType = file.ContentType,
 FileName = file.FileName,
 Id = file.Id,
 Length = file.Length,
 Name = file.Name
 });
 }
 transactions.Transactions.Add(_context.
 Database.BeginTransaction());
 await _postRepository.ExecuteAsync(
 new CreatePostCommand(_context)
 {
 Title = post.Title,
 Summary = post.Summary,
 Content = post.Content,
 PublishedDateTime = post.PublishedDateTime,
 AuthorId = post.AuthorId,
 BlogId = post.BlogId,
 CategoryId = post.CategoryId,
 TagIds = post.TagIds,
 FileId = file.Id
 });
 transactions.Commit();
 }
 catch (Exception exception)
 {
 transactions.Rollback();
 ExceptionDispatchInfo.Capture
 (exception.InnerException).Throw();
 }
 return RedirectToAction("Index");
 }
 // Code removed for brevity
 }

We have seen how async operations provide performance improvement for our
application and its support in transactions. In the next section, let's focus on the volume of
data returned.

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[304]

Unnecessary volume returned
We have been using data luxuriously so far without keeping usage in mind. One fine
example is the delete operation, which we can see in all the CRUD operations. If we take a
look at the Person delete operation, we can see that the entire Person entity was
returned from the context and it was used for the deletion. The following code retrieves the
Person entity and uses the entity for delete operation:

 public async Task<IActionResult> DeleteConfirmed(int id)
 {
 var person =
 await _context.People.SingleOrDefaultAsync(m => m.Id == id);
 _context.People.Remove(person);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }

The pitfall for the preceding approach was, first a database call was made to retrieve the
entire Person object, which is an overhead. After that, the required delete operation was
performed using the Id of the person, which was available before the Person retrieval. The
following screenshot is highlighted with the discussed two queries:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[305]

We could simplify the approach by removing the person retrieval and creating a Person
object using just the Id value, and updating the state of the entity as Deleted would
instruct EF Core to perform a delete operation directly without retrieving the object from
the data store. The following code reduces the query into one which performs delete
operation alone:

 [HttpPost, ActionName("Delete")]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> DeleteConfirmed(int id)
 {
 Person person = new Person() { Id = id };
 _context.Entry(person).State = EntityState.Deleted;
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }

We can see that the preceding approach does not make any Person retrievals yet. Still, the
delete operation was performed successfully, as shown in the following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[306]

We have seen ways to avoid retrieving unnecessary data from the data store. In the next
section, we will explore the N + 1 Select problem.

The N+1 Select problem
The N + 1 Select problem arises due to an internal data store call made by any ORM
framework to perform a single operation. The problem could be outlined as follows:

A list of entities was returned that will be further iterated to perform some1.
additional operation.
Assuming a navigational property is accessed inside the iteration:2.

Each time an iteration tries to access the navigational property, a
database hit occurs
The hits will happen N times for N number of items returned in the first
step

This makes the application perform N+1 Select (N for the iterations and 1 for3.
the first call that retrieves the list), which should have been performed in a single
database call.

This behavior is often termed as lazy loading in any ORM frameworks, which loads the
subsequent/dependent data only when required. The lazy loading is yet to be supported by
EF Core. This can be verified in the EF Core road map, which lists it as Stretch goals, as
shown in the following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[307]

The issue (lazy loading support) created in the EF Core repository is also listed as follows:

https:/​/​github.​com/ ​aspnet/ ​EntityFrameworkCore/ ​issues/ ​3797

Even though the framework currently does not support the feature, it would be ideal to
analyze the issue and study the solutions for lazy loading. For discussion's sake, if EF Core
supports lazy loading in the future, the following implementation will create the N + 1
Select issue, which will perform individual data store calls whenever the Comments
navigational property is accessed.

The following highlighted code would trigger individual data store calls for populating
the NoOfComments property:

 var people = await _context.People
 .AsNoTracking()
 .ToListAsync();
 var peopleViewModel = new List<PersonViewModel>();
 people.ForEach(item =>
 {
 peopleViewModel.Add(new PersonViewModel
 {
 Person = item,
 NoOfComments = item.Comments != null ?
 item.Comments.Count : 0
 });
 });

www.EBooksWorld.ir

https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797
https://github.com/aspnet/EntityFrameworkCore/issues/3797

Performance – It's All About Execution Time Chapter 11

[308]

In EF Core 2.0, the preceding code will return the navigational Comments property as NULL,
assuming we were not accessing the property, since it is not eager-loaded. The following
screenshot would highlight that the comment was not eager loaded:

It would strangely perform an additional database call to retrieve the count from the data
store, even though the navigational property was returned as NULL:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[309]

When we include the Comments navigational property in the LINQ query, it would perform
eager loading of the Comments entity to serve its request. The following code would let the
EF Core to perform eager loading the comments:

 var people = await _context.People
 .Include(item => item.Comments)
 .AsNoTracking()
 .ToListAsync();
 var peopleViewModel = new List<PersonViewModel>();
 people.ForEach(item =>
 {
 var comment = item.Comments;
 peopleViewModel.Add(new PersonViewModel
 {
 Person = item,
 NoOfComments = item.Comments != null ?
 item.Comments.Count : 0
 });
 });

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[310]

We can see the execution made for the eager loading of the Comments entity in the
following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[311]

The eager loading will now return appropriate comments for the person who has
commented on the blog posts. Now we can perform our operation of listing the number of
comments the user has posted in the listing page as in the following highlighted image the
comments were available:

The number of comments is now listed as expected in the People list page, shown as in the
following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[312]

We have discussed the N + 1 Select problem, and then saw how the current EF Core
Framework handles the scenario and the solution we could provide to resolve the issue. In
the next section, we will explore how the data returned from the service or controller could
be limited to only the fields that were consumed by the views.

More data than required
The About component we were creating consumes the Person entity, which contains a lot
of information that is not necessary for the component, but still it is processed and returned
to the View. We can see in the following code, the AboutComponent consumes the
GetPersonByIdQuery and returns the entire Person entity to the View:

 public IViewComponentResult Invoke(int id)
 {
 var user = _repository.GetSingle(
 new GetPersonByIdQuery(_context)
 {
 IncludeData = true,
 Id = id
 });
 return View(user);
 }

The preceding View component renders only the Name and Biography properties of the
user entity. We can see them in the following view component code:

 <h2>About @Model.Name</h2>
 <p>
 @Model.Biography
 </p>

The View component then consumes the data to render only the FirstName and
Biography of the Person entity. It is obvious that we need to address this problem, as we
are returning unnecessary data to the view.

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[313]

We can visualize the rendered view from the following screenshot and see that it does not
consume any other property from the user entity:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[314]

If we try to profile the data store call, we can see that there are a lot of columns included in
the particular call, which consumes only two-column data:

We can now narrow down the data returned using projection and a View model, which
restricts the data only to Name and Biography:

 public IViewComponentResult Invoke(int id)
 {
 var aboutViewModel = _context.People
 .Where(item => item.Id.Equals(id))
 .Select(item => new AboutViewModel
 {

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[315]

 Name = item.FirstName,
 Biography = item.Biography
 }).SingleOrDefault();

 return View(aboutViewModel);
 }

Now, the profiler highlights the database call that contains only two columns required for
the rendering of the database, thereby reducing the content that was retrieved from the
database, as shown in the following screenshot:

This addresses our problem of returning too much data from the data store. In the next
section, let's look into mismatched data types.

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[316]

Mismatched data types
The mismatched data type would hurt the performance. This might look obvious at first,
but if we take a closer look, it is evident that we should be addressing the concern. The
following tweaked About view component illustrates the retrieval of data using
PhoneNumber rather than Id:

 var aboutViewModel = _context.People
 .Where(item => item.PhoneNumber.Equals("9876543210"))
 //.Where(item => item.Id.Equals(id))
 .Select(item => new AboutViewModel
 {
 Name = item.FirstName,
 Biography = item.Biography
 }).SingleOrDefault();

The preceding LINQ query would be translated into the following SQL query: enable
Actual Execution plan with the query execution, and it would be evident that something is
wrong here. Whenever we have mismatched data types in a query, the data type
conversion would enforce an index scan operation. In the following screenshot, we can see
that the Clustered Index Scan is happening rather than performing a seek operation,
which further affects the performance:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[317]

If we hover on the execution plan, we can see more information, such as the number of
records, the cost of the operation, the number of execution, rows affected, and so on, which
can be visualized in the following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[318]

If we change the query to be based on Id, we can see that it magically uses seek instead of
a scan operation. The following screenshot proves that the seeking operation is performed
as expected:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[319]

The following screenshot confirms our theory that the seek operation is faster than the
scan operation, as the number of rows read was 1 in seek and 2 in the scan operation. The
following screenshot performs seek operation confirms the discussion about row reads:

So, fixing the data type of the model would avoid this data type conversion and would
perform effective filtering of data. In the next section, let's analyze missing indexes.

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[320]

Missing indexes
We will modify the About View component with FirstName and LastName filter, using
which we should have an index in the data store. If we analyse the data store, we don't have
such an index in the following screenshot; it would be wise to create one for better
performance:

Let's start working on improvising SQL query performance, and the starting point would be
tracing the query using a SQL profiler. So, copy the translated SQL query of translated
About View component LINQ query from the right-click the SQL Server Profiler, paste it in
the SQL Query Analyzer window, and select Trace Query in SQL Server Profiler,
highlighted as shown in the following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[321]

Once the profiler is attached, execute the query in the Query Analyzer Window, which
should be displaying the following results, enable and see the actual execution plan as well:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[322]

The SQL profiler will capture anything that occurs in the database. Since we are querying
the Person entity, it is capturing all queries with respect to that entity operation, which is
evident in the following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[323]

The query should be optimized using a tuning advisor and it requires the trace data to
perform its analysis, so we need to save this profiler data for performance tuning analysis,
as shown in the following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[324]

The data required for the performance tuning is now ready. The next step would be to
consume it in a tuning advisor. Right-click the SQL query and select Analyze Query in
Database Engine Tuning Advisor for further operations, as shown in the following
screenshot:

Surprisingly, it throws the following error: The argument type 'server type = Sql, server
name = (localdb)\mssqllocaldb, timeout = 30, database = <DatabaseName>, protocol =
NotSpecified, workstation = , integrated security = True' cannot be converted into
parameter type 'Microsoft.SqlServer.Management.Common.SqlConnectionInfo'.
(mscorlib), which means that we are using a tuning advisor against the SQL Express
Edition, and it is not supported:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[325]

We need at least the Developer Edition to consume a tuning advisor; let's download the
Developer Edition (https:/ ​/​www. ​microsoft. ​com/ ​en- ​in/​sql- ​server/ ​sql-​server-
downloads), as shown in the following screenshot, configure it, and then proceed with the
performance tuning:

Once the Developer Edition is installed and the database is configured, open the tuning
advisor from the query window, and it should now open properly. Then, create a new
session with the following details such as Session name, Workload as File type, and its
location. Select the Database for workload analysis, and finally select the databases we
need to tune, as shown in the following screenshot:

www.EBooksWorld.ir

https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads

Performance – It's All About Execution Time Chapter 11

[326]

We are all set to initiate the analysis. Click the Start Analysis button, as shown in the
following screenshot, to start the tuning analysis, which will perform tuning analysis within
the selected parameters:

When the analysis is completed, we can see the success messages printed out in the
Progress tab, as displayed in the following screenshot. Our point of interest would be in
generating Recommendations:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[327]

Open the Recommendations tab and it will list the recommendations, as shown in the
following screenshot. It allows us to tune the performance of the database, which is a SQL
query in our scenario:

Click the definition entry inside the Recommendations tab, which opens the following SQL
Script Preview, to fix the performance issue. In a regular application, we would be copying
this query and executing it in the database. Since we are using the ORM framework, we
need to perform the same task using the framework instead, and the crux of the message is
that we need an index to fine-tune the SQL query:

The HasIndex() Fluent API method would do the trick for us. It would use the marked
column(s) and create a non-clustered index in the data store, and the code required for our
example is shown as follows:

 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 // Code removed for brevity
 modelBuilder.Entity<Person>()
 .HasIndex(p => new { p.FirstName, p.LastName });
 }

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[328]

The migration added and updated to the database would create the required non-clustered
index, as shown in the following screenshot:

Let's run the same query with execution plan enabled. We can prove that the operation now
consumes only one row to retrieve the record for us, as shown in the following screenshot:

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[329]

We have seen how to create an index required to optimize our retrieval query, which
concludes our analysis and solution towards better performance.

www.EBooksWorld.ir

Performance – It's All About Execution Time Chapter 11

[330]

Summary
We have explored multiple performance issues that we might run into, and the solutions
required to tackle those issues. We started with the tracking behavior of EF Core and its
projection behavior, then we explored detecting changes with bulk insert/updates, and how
to handle them. We enhanced the application by supporting asynchronous operations,
which allow us to handle threads effectively. Then we analyzed/fixed the data that was
retrieved and transmitted over the network, right from volume, and columns until a
number of database calls made to the data store. Finally, we saw how the data type
mismatch affects us, also how the missing indexes affect our retrieval performance, and the
way to improvise in those scenarios. The performance improvement measures we have
been investigating in this chapter would help us in improving a system with worst
performance (10,000ms+) to a system with best performance (<=1000 ms) which will be the
performance Service Level Agreement (SLA) of most systems. So far, we have been dealing
with only one tenant in the data store. In Chapter 12, Isolation – Building a Multi-Tenant
Database, we will be dealing with a multi-tenant database and its row-level security.

www.EBooksWorld.ir

12
Isolation – Building a Multi-

Tenant Database
We explored multiple performance issues that we might run into, and the solution required
to tackle those issues. We started with the tracking behavior of EF Core, its projection
behavior, and then we explored detecting change issues with bulk insert/updates and how
to handle them. We enhanced the application by supporting asynchronous operations that
allow us to handle threads effectively. Then, we analyzed/fixed the data that was retrieved
and transmitted over the network, right from volume and columns, up until the number of
database calls made to the data store. Finally, we saw how the datatype mismatch affected
us, also how the missing indexes affected our retrieval performance, and the way to
improvise in those scenarios.

Let's discuss the authentication implementation required, and then row-level security, and
later multi-tenancy in this chapter.

The sections we will be including in this chapter are as follows:

Authentication in the blogging system
Row-Level Security:

Filter predicate
Block predicate

Multi-tenancy:
Standalone
Database-per-tenant
Shared multi-tenant
Dive into multi-tenancy

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[332]

Authentication in the blogging system
The authentication mechanism is the foundation required to support row-level security or
multi-tenancy in the system, so we have to start building authentication in our application.
There are various forms of authentication available, but we will be implementing cookie-
based authentication in our blogging system.

The following code block will add cookie-based authentication as a service inside
the ConfigureServices() method of Startup.cs:

 public void ConfigureServices(IServiceCollection services)
 {
 // Code removed for brevity
 services.AddAuthentication(o =>
 {
 o.DefaultAuthenticateScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 o.DefaultChallengeScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 })
 .AddCookie();
 }

The configuration required to use the cookie-based authentication service must be
performed inside the Configure() method of Startup.cs, as shown here:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory, BlogContext blogContext)
 {
 // Code removed for brevity
 app.UseAuthentication();
 }

The authentication could be applied globally to all controllers by
adding AuthorizeFilter to the configuration Filters collection. The required
configuration should be performed inside the ConfigureServices() method
of Startup.cs, as shown here:

 public void ConfigureServices(IServiceCollection services)
 {
 // Code removed for brevity
 services.AddMvc(configuration =>
 {
 var authorizationPolicy = new AuthorizationPolicyBuilder()
 .RequireAuthenticatedUser()

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[333]

 .Build();
 configuration.Filters.Add(new
 AuthorizeFilter(authorizationPolicy));
 }).AddJsonOptions(options =>
 {
 options.SerializerSettings.ContractResolver = new
 DefaultContractResolver();
 options.SerializerSettings.ReferenceLoopHandling
 = Newtonsoft.Json.ReferenceLoopHandling.Ignore;
 });
 }

Enabling authorization across the controllers would enforce the authentication API to
redirect the user to Account/Login, which is the default route in authentication. Since the
Login action also requires authorization, we may end up in an infinite redirect to the same
action that would throw the following error message: HTTP Error 404.15 - Not Found. The
request filtering module is configured to deny a request where the query string is too long.
Please refer to the following screenshot:

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[334]

We can solve this issue by enabling the anonymity using the following code snippet that
includes the AllowAnonymous attribute to the Login action method:

 [AllowAnonymous]
 public IActionResult Login(string redirectUrl)
 {
 ViewBag.RedirectUrl = redirectUrl;
 return View();
 }

We will also need the Login HttpPost action to be anonymous since the user will not be
authenticated while sending his login credentials to the server, so add AllowAnonymous to
the following action as well:

 [AllowAnonymous]
 [HttpPost]
 public async Task<IActionResult> Login(LoginViewModel
 loginViewModel)
 {
 // Code removed for brevity
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, loginViewModel.Username)
 };

 var claimsIdentity = new ClaimsIdentity(
 claims,
 CookieAuthenticationDefaults.AuthenticationScheme);

 await HttpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(claimsIdentity));
 return RedirectToAction("Index", "Home");
 }

The authentication-related implementation is committed to the Git repository and is
available in the following URL:

goo.gl/XudiqY

www.EBooksWorld.ir

http://goo.gl/XudiqY

Isolation – Building a Multi-Tenant Database Chapter 12

[335]

We can run and see how the authentication and authorization works in the blogging
system. From the following illustration, we can see that the Register and Login
functionality is included, the other admin hyperlinks were hidden from the user, and,
finally, Blog and Recent Posts were made anonymous so that any user could see the blog
posts. Please refer to the following screenshot:

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[336]

The Blog page displays the list of blog posts created in the system and is anonymously
available to the user to read them. The following image shows the posts from different
blogs listed on the same page anonymously, as expected:

Opening any one of the posts will show the following blog post display page, which
displays a post with corresponding comments, a provision to add comments (even
anonymously), and, finally, an About section that briefs us about the author:

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[337]

If we would like to access the Admin screens, we need to login to the system. Let's use the
following Login screen to get authentication to access the authorized section of the system.
On successful authentication, the system will generate a cookie for the user that will be used
by the system to ensure that the user is authenticated in his concurrent requests:

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[338]

On successful authentication, we will be seeing the following highlighted modules visible
on the screen, the first one is the Welcome message of the user and the other is the admin
links visible in the navigation bar:

Now we are good to go, the system can now support row-level security, which is discussed
in the next section.

Row-Level Security
The Row-Level Security (RLS) will allow us to maintain data from all users in a single
database, but still ensure that only data related to the user is shared and the other user's
content is kept hidden. The underlying logic could be implemented in any approach, which
is left to the developer's creativity, but we will stick with tenants since we will be dealing
with multi-tenancy in the system. Let's create a Tenant type using the following code
snippet that can accommodate a person's information along with their tenant ID and name:

 public class Tenant
 {
 public Guid Id { get; set; }
 public string Name { get; set; }
 public Person Person { get; set; }
 }

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[339]

We have included two tenants to test the row-level security in our implementation, and we
have used two people available in the system to have tenants mapped to them; now,
configure the tenants as shown here:

We had three entries in the Person entity, one was an anonymous user and the other two
were registered users, the registered users having ids 1 and 2003 shown in the following
screenshot were configured while creating tenants:

The Blog entity does not have a provision to segregate the contents based on the tenants.
We need to support tenant in the Blog entity; include the following code lines to have
TenantId property to have tenant support in the Blog entity:

 public class Blog
 {
 // Code removed for brevity
 public Guid TenantId { get; set; }
 }

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[340]

The migration should be added and the database should be updated to have the blog entity
support tenants. Once you complete modifying the blog data to contain appropriate tenant
IDs based on the author information, it should have the following data in the datastore:

The Post entity does not have tenant support either. We should follow the same approach
of adding the following code snippet to support tenants in the Post entity:

 public class Post
 {
 // Code removed for brevity
 public Guid TenantId { get; set; }
 }

Once migration is added and updated to the datastore, we should be performing the same
data modification as we did to blogs that will have the following posts data in the datastore:

The system now supports tenants. Let's move on and perform the configuration required to
ensure that tenant information was properly maintained.

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[341]

Filter predicate
We will start with creating the tenant predicate using the following code that will allow the
user to perform read operations based on the given tenant id or return all data if no tenant
id is provided:

CREATE FUNCTION dbo.TenantPredicate (@TenantId
uniqueidentifier)
 RETURNS TABLE
 WITH SCHEMABINDING
AS
 RETURN SELECT 1 AS TenantPredicateResult
 WHERE (@TenantId = CAST(SESSION_CONTEXT(N'TenantId') AS
 uniqueidentifier))
OR
 (SESSION_CONTEXT(N'TenantId') =
 convert(nvarchar(50),cast(cast(0 as binary) as
 uniqueidentifier)))

The preceding TenantPredicate function will accept tenant id as an input parameter and
returns a bit value as a table if the tenant id matches with the one from the session, or if it's
empty. The tenant id will be matched for the authorized users and the empty tenant id will
be used to display all posts for admins or anonymous users (anonymous user do not have a
tenant id).

Once the predicate is created, we can use them in creating security policies, and, since we
are dealing with filter predicate, let's create a tenant policy for read operations. The
following piece of code will create a filter predicate on blogs and posts, and whenever a
read operation is performed on those entities, the predicate kicks in and verifies and filters
data based on the session value:

 CREATE SECURITY POLICY dbo.TenantPolicy
 ADD FILTER PREDICATE dbo.TenantPredicate(TenantId) ON dbo.Blog,
 ADD FILTER PREDICATE dbo.TenantPredicate(TenantId) ON dbo.Post
 GO

The session context of TenantId could be set using the following SQL query that passes
key and value to the sp_set_session_context stored procedure. The code sets the
Prabhakar-Tenant in the session context, which means it will serve data only specific to
that tenant unless and until the session is changed or cleared:

 EXEC sp_set_session_context @key=N'TenantId', @value='743302BD-
 C230-4BB9-9358-0F4D68F4E820'

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[342]

Once the session is set, any read operation will yield result based on the session tenant
configuration. The following screen displays that the Prabhakar-Tenant is set in the
session, then the posts retrieved were only related to that tenant which ensures that the
filter predicate is working as expected:

If we change the tenant to a Test tenant, then the post related to Test tenant alone will be
returned as shown here:

We explored the filter predicate right from configuration up until verifying it through a
read operation. Now, we will explore the block predicate in the next section.

Block predicate
The block predicate is similar to the filter predicate with respect to configuration, only it
restricts the user from performing write operations on other tenant's data. As mentioned,
the configuration remains the same with a few changes, as shown in the following piece of
code, instead of allowing anonymous users to access. We will restrict it only to the
administrators, as highlighted here:

CREATE FUNCTION dbo.TenantPredicate (@TenantId uniqueidentifier)
 RETURNS TABLE
 WITH SCHEMABINDING
AS
 RETURN SELECT 1 AS TenantPredicateResult
 WHERE (@TenantId = CAST(SESSION_CONTEXT(N'TenantId') AS
uniqueidentifier))
OR
 -- Add administrator support once roles were implemented

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[343]

The security policy creation is also similar, as displayed here. The only difference will be the
predicate used in the policy, which will be the block predicate in our case:

 CREATE SECURITY POLICY dbo.TenantPolicy
 ADD BLOCK PREDICATE dbo.TenantPredicate(TenantId) ON dbo.Blog,
 ADD BLOCK PREDICATE dbo.TenantPredicate(TenantId) ON dbo.Post
 GO

The write operations should be performed in a similar way, where the session context
should be set first with the tenant id, based on that the write operation should be
performed. The following illustration shows that the session context is set to Prabhakar-
Tenant and a write operation is performed:

We never discussed failure scenarios when a user tries to write record in another tenant.
The following screenshot shows that an error, The attempted operation failed because the
target object 'Prabhakarana.Blog.dbo.Blog' has a block predicate that conflicts with this
operation. If the operation is performed on a view, the block predicate might be enforced
on the underlying table. Modify the operation to target only the rows that are allowed by
the block predicate., would be returned if there is any violation to the predicate:

We explored row-level security using both filter and block predicates. Now, we will move
on to the multi-tenant databases in the next section.

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[344]

Multi-tenancy
The people living in a gated community could be easily related with the term multi-
tenancy. We will be having multiple families living in their own flat/home (a user) within a
building/phase (a tenant); together, they will form a gated community that is nothing but
multi tenancy. In software terminology, a system supporting a set of users grouped together
as a tenant (based on roles) would have their data stored in a single or shared database, and
still serving data based on the tenant is called multi-tenancy.

The multi-tenancy application can be classified as follows:

Standalone
Database-per-tenant
Shared multi-tenant

We will explore each one of the applications individually in the next sub-sections.

Standalone
The standalone model deals with an individual application and its own database, isolating
everything from different tenants, right from database to the application. It helps the
developers to customize the application and have different schema for different customers,
which will be widely used in product-based companies. Nowadays, companies were
drifting toward this approach due to microservices architecture. Also, the need arises based
on the volume of the transactions and the sensitivity of data.

The following diagram explains the standalone model, where each application has its own
database:

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[345]

If we watch closely, there is one more thing: the application will never interact with each
other. In the multi-tenancy terminology, each application instance is owned by a tenant and
the tenant has ownership to the complete the database. The financial institutions will have
the standalone model due to sensitivity and volume of data. It would be easy for the
developers to provide access to the vendors if they want to customize, have control over
their data, scale the application or database without affecting others, and more, yet, still, its
a costly solution since it deals with multiple database from a software company's
perspective.

We explored the standalone model in this section. Now, let's move on to database-per-
tenant in the next section.

Database-per-tenant
The database-per-tenant model deals with a single/shared application, but with its own
database (tenant, have their own database), isolating the database alone. It will help
developers have a single code base for the application having customization kept in the
database; if they do not move all their customization to the database, they end up affecting
every vendor whenever any new features/product support is included in the system. The
database isolation will help the companies have control over data, even though the code
base is shared across the vendors.

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[346]

The following diagram explains the database-per-tenant model where one application has
its multiple databases (one per tenant):

The main drawback in sharing a common application is that if any one of the vendor has
more threshold, then the entire application has to be scaled-up. In the multi-tenancy
terminology, one application instance is shared by all the tenants and the tenant has
complete ownership to its own database. The insurance companies providing customized
packages to vendor companies could be having this model, which would let them have
control over functionality, yet still would let the vendors have control over their data. It
would be easy to deploy any vendor customization, but any feature deployment would
become difficult since the code base or the application has been shared across.

We explored the database-per-tenant model in this section. Now, let's move on to shared
multi-tenant in the next section.

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[347]

Shared multi-tenant
The shared multi-tenant model deals with a shared application and all the tenants shared
the single database, isolating the application alone. It helps the developers to deploy
features quickly, without affecting other vendors still maintaining the data in a single
database. Any schema-related changes would be under much scrutiny as it affects all the
other vendors as well as makes the database tightly coupled with other vendors.

The following diagram explains the multi-tenant model where each application shares the
same database:

The main drawback in sharing a common database is that if any one of the vendor has more
volume, it affects all the consuming vendors, forcing us to scale-up the database server. In
the multi-tenancy terminology, multiple application instances of all the tenants share a
single database. A company with different departments/modules sharing a single database
will be a right candidate for this model. Each department will be considered as a tenant that
will have its own users, yet it still shares the single database across the enterprise. It would
be easy to deploy any feature quickly, but vendor customization would become difficult
since the application shares a common database.

We explored the multi-tenant model in this section. Now, let's move on to the multi-tenancy
implementation in the next section.

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[348]

Dive into multi-tenancy
The multi-tenancy implementation is completely dependent on the tenant configuration
that was built in the row-level security section in this chapter. The Entity Framework Core
eradicates the necessity of any custom implementation or any third-party package to handle
tenant handling in the system. EF Core 2.0 provides query-filtering features that allows us
to filter the tenant based on the configured ID right in the data-context level.

The code required to implement the tenant configuration in the data context is highlighted
here:

 public class BlogContext: DbContext
 {
 // Code removed for brevity
 public Guid TenantId { get; set; }
 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 modelBuilder.Entity<Blog>()
 .ToTable("Blog")
 .HasQueryFilter(item => item.TenantId.Equals(TenantId));
 modelBuilder.Entity<Post>()
 .ToTable("Post")
 .HasQueryFilter(item => item.TenantId.Equals(TenantId));
 // Code removed for brevity
 }
 }

The controller implementation required for tenant handling is pretty straightforward:

The User identity name is used to retrive the Person information from the data
store
From the Person entity, the tenant id is retrieved
The retrieved identity is then configured in the data context, which will be used
in the corresponding data context operations

The preceding implementation steps were followed in this piece of code to configure
tenants in the data context from a controller:

 public class BlogsController : Controller
 {
 // Code removed for brevity
 public async Task<IActionResult> Index()
 {
 SetTenantId();

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[349]

 return View(await _context.Blogs.FromSql("Select * from
 dbo.Blog").ToListAsync());
 }

 private void SetTenantId()
 {
 if (this.User == null) return;
 var person = _context.People.FirstOrDefault(item =>
 item.User.Username.Equals(this.User.Identity.Name));
 if (person != null)
 {
 _context.TenantId = person.TenantId.HasValue ?
 person.TenantId.Value : Guid.Empty;
 }
 return;
 }

Do not forget to drop the predicates included in the previous section, otherwise, the
application may not yield any results from the Blog or Post entities. Execute the following
SQL query to remove predicates from the tenant policy:

 ALTER SECURITY POLICY dbo.TenantPolicy
 DROP FILTER PREDICATE ON dbo.Blog,
 DROP FILTER PREDICATE ON dbo.Post,
 DROP BLOCK PREDICATE ON dbo.Blog,
 DROP BLOCK PREDICATE ON dbo.Post
 GO

The Blog listing page looks like the following screenshot before the tenant configuration is
in place, which contains all the blog information even though the user from Prabhakar-
Tenant tenant is logged in:

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[350]

Once the tenant implementation is completed, the following screenshot proves that the
same user who logged in the preceding scenario will now have only two records from the
database to which the user from Prabhakar-Tenant will have access to:

The user from Test-Tenant has logged in the following screenshot and the data is limited
to only one to which the tenant user will have access to:

We explored the multi-tenancy and the different models available in them, and then we
finally configured and used multi-tenancy in our blogging system.

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[351]

Blocking cross-tenant write operation
The multi-tenant implementation does not restrict users from performing cross-tenant
updates like we handled in the row-level security section. We should add this support in
our blogging system through multi-tenant implementation. The current code base does not
allow us to extend the behavior. So far, the information of tenants was stored only in the
entities that do not let's validate them generically on data context. We have a strong
requirement to get a taste of Domain-driven design (DDD) so we can start using
EntityBase in our application. The following entity code has Id and TenantId fields that
contain entity identifier and tenant identifier of the user who owns the entity:

 public class EntityBase
 {
 public int Id { get; set; }
 public Guid TenantId { get; set; }
 }

The EntityBase class should be consumed by the entities that should be a part of a tenant
implementation; this enforcement will help us in handling cross-tenant updates. This does
not stop the user to implement tenants without inheriting from EntityBase, it just does
not handle cross-tenant updates out of the box. The Blog entity should inherit EntityBase;
this enforces us to remove the redundant Id and TenantId fields as shown here:

 public class Blog : EntityBase
 {
 // Remove the Id and TenantId fields
 // Code removed for brevity
 }

The cross-tenant update should be handled in BlogContext, which will allow us to
override the SaveChanges() method. The EntityBase type is the key in differentiating
entities that support tenants from the others. The following piece of code filters
ChangeTracker entries based on EntityBase and projects TenantId as a distinct list,
which would allow us to validate and throw an exception if there are more than one tenants
present in the filtered tenantIds:

 public class BlogContext: DbContext
 {
 public override int SaveChanges()
 {
 ValidateMultiTenantPersistence();
 return base.SaveChanges();
 }
 // Override other save changes as well

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[352]

 private void ValidateMultiTenantPersistence()
 {
 var tenantIds = ChangeTracker.Entries()
 .Where(item => item.Entity is EntityBase)
 .Select(item => ((EntityBase)item.Entity).TenantId)
 .Distinct();
 if (!tenantIds.Any()) return;
 if (tenantIds.Count() > 1 ||
 !(tenantIds.Count().Equals(1) &&
 tenantIds.First().Equals(TenantId)))
 {
 throw new MultiTenantException("Invalid tenant id(s) found:
 " + string.Join(", ", tenantIds));
 }
 }
 }

We have used a custom exception in the preceding implementation, but we haven't
implemented it, so let's do it now. The custom exception is expected to inherit
an Exception type, and it should also have a provision to contain the error message to pass
it on or the data required to build the error message. In the following code snippet, we are
receiving a custom error message injected by the consuming code that throws it:

 public class MultiTenantException : Exception
 {
 public string ErrorMessage { get; private set; }
 public MultiTenantException(string errorMessage)
 {
 ErrorMessage = errorMessage;
 }
 }

The last piece of the puzzle, TenantId, must be set in the controller that consumes the data
context, and the following piece of code will set the tenant information. The user
information is retrieved using the logged in user's identity. Get TenantId from the data
store and finally update it in the data context:

 public async Task<IActionResult> Create(Blog blog)
 {
 SetTenantId();
 blog.TenantId = _context.TenantId;
 // Code removed for brevity
 }
 private void SetTenantId()
 {
 if (this.User == null) return;
 var person = _context.People.FirstOrDefault(item =>

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[353]

 item.User.Username.Equals(this.User.Identity.Name));
 if (person != null)
 {
 _context.TenantId = person.TenantId.HasValue ?
 person.TenantId.Value : Guid.Empty;
 }

 return;
 }

We have completed our cross-tenant update handling, and the blog creation will let us see
them in action. The blog create operation will set TenantId from the logged in user
prabhakar, who is a part of the tenant, Prabhakar-Tenant, with the {743302BD-
C230-4BB9-9358-0F4D68F4E820} identifier, as illustrated in this screenshot:

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[354]

The tenant id could not be modified, but for illustration purpose, let's modify the tenant
information and see how the update is handled in the data context. The TenantId that is
modified in the Immediate Window, from {743302BD-
C230-4BB9-9358-0F4D68F4E820} (Prabhakar-Tenant) to {EC6875CA-21EF-4649-
AA95-119EFDF7D55E} (Test-Tenant), is highlighted in the following screenshot:

If we further process with the updated TenantId, we will get the following highlighted
exception since the Blog entity is marked with EntityBase. The exception is thrown as
highlighted here, because TenandId retrieved from the change tracker does not match
TenantId from the data context:

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[355]

The exception thrown from the controller will be rendered as displayed in the following
screenshot. This does not redirect to the custom error page since the
ASPNETCORE_ENVIRONMENT is set to Development, the users from the other environment
will view a custom error screen that will limit the information rendered to the user:

The anonymous pages would get affected due to the query filter, which could be handled
using IgnoreQueryFilters() fluent api method. The RecentPosts module
implementation could be fixed as shown in the following code:

public class GetRecentPostQuery : QueryBase,
IGetRecentPostQuery<GetRecentPostQuery>
 {
 // Code removed for brevity
 public IEnumerable<Post> Handle()
 {
 var posts = IncludeData
 ? Context.Posts
 .IgnoreQueryFilters()
 // Code removed for brevity
 : Context.Posts
 .IgnoreQueryFilters()
 // Code removed for brevity
 // Code removed for brevity
 }
 // Code removed for brevity
 }

www.EBooksWorld.ir

Isolation – Building a Multi-Tenant Database Chapter 12

[356]

The same approach could be applied on GetPostByUrlQuery and
GetPaginatedPostQuery to render posts anonymously.

The cross-tenant update is handled using multi-tenant implementation with data context
validation in this section. This makes the behavior consistent with the implementation we
performed in the row-level security section as well.

Summary
We started with authentication implementation, which is the foundation for row-level
security and multi-tenancy. Then, we explored row-level security and how we could
manage them using filter and block predicates. Finally, we started exploring multi-tenancy
and its different models and deep dived into the implementation in our blogging system.
We have come to a conclusion in our EF Core journey, along with building a complete
ecosystem for the blogging system.

We had explored Entity Framework Core by building a blogging system, the features were
included in the system with the intention of covering topics. So ideally we could leverage
the knowledge we had acquired so far to build a complete blogging ecosystem. We could
develop our own .NET Core blogging system which could be deployed in any operating
system, which saves our hosting cost a lot since we have a lot cheaper hosting options using
Linux operating system. Glad I could help you in acquiring EF Core knowledge, the use
case is not limited to blogging system but it is vast, you could now build any system you
have in mind rapidly using EF Core ORM now. Happy coding!

www.EBooksWorld.ir

Index

A
anonymous posts list
 adding 246
appsettings.json
 setting 47
AsNoTracking() method
 about 294
 projections 298
 tracking, disabling 295
 working 294
asynchronous operation
 about 300
 transaction, leveraging 302
authentication
 reference link 334

B
block predicate 342
blog entity script
 about 36
 reference link 36
blog entity
 about 19
 post entity 19
 working with 44
blogging system models
 Compare field validation, incorporating 126
 EmailAddress field validation, incorporating 124
 Required field validation, incorporating 118
 Url field validation, incorporating 130
blogging system
 authentication 332, 334
 date picker support, adding 243
 file upload functionality 231
 recent posts feature, adding 245
 tags support, adding 220

built-in validations 111

C
cascade delete 105
changes
 detecting 299
client wins 283
client-side logic
 creating, for custom validation 153, 154, 155,

156, 158
client-side validation 139
Code-First approach 19
Command Line Interface (CLI) 107
command
 queries assignment, solution 214
 used, for composing queries 206, 211, 214
comments list feature 248
compare field validation
 about 124, 126
 incorporating, in blogging system models 126
concurrency conflict
 about 257, 260
 handling 281
 optimistic concurrency 260
 optimistic concurrency, applying 281
 pessimistic concurrency 261
 pessimistic concurrency, applying 287, 291
concurrency tokens 262, 264
concurrency
 handling, in EF 256
ConfigureServices method
 refactoring 46
contravariant generic interface 207
controller action
 creating 51, 53
 editing 53, 55

www.EBooksWorld.ir

[358]

conventions, relationship
 about 69
 foreign key 78
 fully-defined relationship 69, 70
 inverse property 79, 80
 no foreign key property 75
 single navigation property 77, 78
covariant generic interface 207
cross tenant write operation
 blocking 351, 352
cross-context transaction
 blogging system, file upload functionality 231
 creating 231
 custom transaction scope support 239
 date picker support, adding to blogging system

243

 transaction scope, limitation 237
CRUD (Create/Read/Update/Delete) operations
 about 26, 29, 32, 33
 controller action, creating 51, 53
 controller action, editing 53, 55
 creating 26
 Delete view 55, 57
 performing 48, 51
custom transaction scope support 239
custom validation
 about 147, 149, 151, 152
 client-side logic, creating for 153, 154, 155, 156,

158

D
data annotation
 non-timestamp concurrency tokens, configuring

through 265, 271
 timestamp-based concurrency tokens, configuring

through 273, 277, 280
data context
 configuring 43
data migration issue
 with EF Core 2.0 107
data model
 about 19, 59
 blog entity 19
 Blog entity 59
 Post entity 59

data
 validating, without client-side scripting 140, 142,

143, 144
database context 20
database wins 282
database-per-tenant model 345
databases
 blog entity script 36
 blog entity, working with 44
 creating 22, 24, 26
 data context, configuring 43
 post entity script 36, 39
 post entity, working with 45
 preparing 36
 reverse engineering 42
 seeding 22, 24, 26
date picker support
 adding, to blogging system 243
DBSet
 avoiding, for SQL query execution 184
default transaction behavior
 about 220
 leveraging 222, 225
 tags support, adding in blogging system 220
Delete view 56, 57
dependent entity 63, 64

E
EF Core 2.0
 used, for data migration issue 107
EF Core community
 reference link 186
EmailAddress field validation
 about 118, 120, 122
 incorporating, in blogging system models 124
Entity Framework (EF)
 about 16, 35, 81, 112, 165, 190, 293
 concurrency, handling 256
 installing 17, 18, 40
 reference link 307
Entity Framework Core
 prerequisites 8
expression trees
 assignment, solution 216, 218
 used, for enhancing queries 214

www.EBooksWorld.ir

[359]

external databaseTransactions
 used, for adding comments list feature 250

F
FIFO (First in First out) 284
filter predicate 341
Fluent API
 about 99
 Data migration issue, with EF Core 2.0 107
 inverse navigation, identifying 99
 navigation property, identifying 99
 non-timestamp concurrency tokens, configuring

through 272
 relationship, building techniques 102
 single navigation property, identifying 100
 timestamp-based concurrency tokens, configuring

through 280
 used, for implementing many-to-many

relationship 97
foreign key 64, 65, 78
fully-defined relationship 69, 70

G
Git commit
 reference link 295
Git repository commit
 reference link 118, 242, 245, 247, 249, 253
Git repository
 reference link 197, 205, 214, 216, 217, 226,

234, 236, 237
GitHub repository
 reference link 184

I
indexes
 missing 320, 327
individual blog post
 adding 246
inverse navigation
 identifying 99
inverse property 79, 80

L
lazy loading 306
Leverage Query Object Pattern
 reference link 297
LIFO (Last in First out) 284
LINQ
 composing with 177, 178, 182, 183
LocalDB 22

M
manual validation 146
many-to-many relationship
 about 94, 96
 building, with Fluent API 97
MaxLength field validation 133, 135
MinLength field validation 131, 133
mismatched data type 316, 319
multi-tenancy
 about 344
 cross tenant write operation, blocking 351, 353
 database-per-tenant model 345
 implementation 348
 shared multi-tenant model 347
 standalone model 344

N
N+1 Select problem 306, 312
navigation property
 about 65
 collection navigation property 66
 identifying 99
 inverse navigation property 68, 69
 reference navigation property 67
no foreign key property 75
non-timestamp based concurrency tokens
 about 265
 configuring through data annotation 265, 271
 configuring, through Fluent API 272

O
Object Relational Mapping (ORM) 190
OnConfiguring() method
 refactoring 46

www.EBooksWorld.ir

[360]

one-to-many relationship 88, 92
one-to-one relationship
 about 83
 building, with Fluent API 85, 88
optimistic concurrency
 about 260
 applying 281
 client wins 283
 database wins 282
 user-specific custom resolution 284

P
parameterized queries
 building 171, 173, 174, 176
pessimistic concurrency
 about 261
 applying 287, 291
 reference link 262
POrtable COmponents (POCO)
 about 165
 avoiding, for SQL query execution 184
post entity script
 about 36, 39
 reference link 36
post entity
 working with 45
principal entity 60
principal key 61
project
 creating 11, 40
 Entity Framework, installing 40
 File menu 12
 Start page 11
 Web App structure 15, 16

Q
queries
 composing, with commands 206, 211, 213
 enhancing, with expression trees 214
query object pattern
 about 191, 192, 194
 incorporating, into repositories 198
 used, for improving repositories 194

R
raw SQL queries
 about 166
 reference link 169
recent posts feature
 adding, to blogging system 245
RegularExpression field validation 135, 137
relational database facade extension
 reference link 184
relationship terms
 about 59
 alternate key 62
 Association 60
 Containment 61
 data models 59
 dependent entity 63, 64
 foreign key 64, 65
 navigation property 65
 principal entity 60
 principal key 61
relationships
 about 82
 building techniques 102
 building, with foreign key 102
 building, with principal key 103
 building, with required method 104
 many-to-many relationship 94, 96
 one-to-many relationship 88, 93
 one-to-one relationship 83
remote validation 158, 160, 163, 164
repositories
 about 194, 196
 assignment, solution 196, 197
 improving, with query object pattern 194
 list query object support 198, 201
 query object pattern, incorporating into 198
 single query object support 201, 205
 solution, with queries assignment 205
Required field validation
 about 112
 incorporating, in blogging system models 118
reverse engineering
 on database 42
Row-Level Security (RLS)

www.EBooksWorld.ir

 about 338, 340
 block predicate 342
 filter predicate 341

S
scaffolding 26
server-side validation 144, 146
services (.NET Core DI)
 appsettings.json, setting 47
 ConfigureServices method, refactoring 46
 context, registering in 21, 45
 OnConfiguring() method, refactoring 46
shared multi-tenant model 347
single navigation property
 about 77, 78
 identifying 100
SQL query
 executing, without DBSet 184
 executing, without POCO 184
SQL Server 2017
 URL, for downloading 325
SQL Server Management Studio (SSMS)
 about 42
 reference link 42
standalone model 344
stored procedure (SP) 167

T
tags support
 adding, in blogging system 220
timestamp-based concurrency tokens
 about 272
 configuring, through data annotation 273, 277,

280

 configuring, through Fluent API 280

transaction scope
 limitation 237
transactions
 anonymous posts list, adding 246
 comments list feature 248
 comments list feature, adding with external

databaseTransactions 250
 creating 228, 229, 231
 individual blog post, adding 246
 leveraging, between multiple technologies 245
 recent posts feature, adding to blogging system

245

U
Url field validation
 about 127
 incorporating, in blogging system models 130
 pattern 127
user-specific custom resolution 284

V
Variant Generic Interfaces 206
View components
 reference link 246
Visual Studio Code
 about 10
 URL, for downloading 10
Visual Studio for Mac
 about 9
 URL, for downloading 10
Visual Studio
 about 8
 URL 9
volume
 returning 304

www.EBooksWorld.ir

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Dedication
	Table of Contents
	Preface
	Chapter 1: Kickstart - Introduction to Entity Framework Core
	Prerequisites
	Creating a new project
	The Start page
	The File menu
	Structuring the web app

	Installing Entity Framework
	Data models
	[Post entity]
	Post entity

	Database context
	Registering the context in services (.NET Core DI)
	Creating and seeding databases
	CRUD operations
	Summary

	Chapter 2: The Other Way Around – Database First Approach
	Preparing the database
	Blog entity script
	Post entity script

	Creating new project
	Installing Entity Framework

	Reverse engineering the database
	Configuring data context
	Working with the Blog entity
	Working with the Post entity

	Registering context in services (.NET Core DI)
	Refactoring the OnConfiguring() method
	Refactoring the ConfigureServices method
	The appsettings.json setting

	Performing CRUD operations
	Creating controller action
	Edit controller action
	The Delete view

	Summary

	Chapter 3: Relationships – Terminology and Conventions
	Understanding relationship terms
	Data models
	Blog entity
	The Post entity

	Principal entity
	Principal key
	Dependent entity
	Foreign key
	Navigation property
	Collection navigation property
	Reference navigation property
	Inverse navigation property

	Conventions in a relationship
	Fully-defined relationships
	Fully-defined relationships - under the hood

	No foreign key property
	No foreign key property - under the hood

	Single navigation property
	Foreign key
	Inverse property

	Summary

	Chapter 4: Building Relationships – Understanding Mapping
	Relationships
	The one-to-one relationship
	Building one-to-one relationships using the Fluent API

	The one-to-many relationship
	The many-to-many relationship
	Building many-to-many relationship using the Fluent API

	Fluent API
	Identifying navigation property and inverse navigation
	Identifying the single navigation property
	Relationship-building techniques
	Building relationship using a foreign key
	Building relationships using a principal key
	Building relationships using the IsRequired method

	Cascade delete
	Data migration issue with EF Core 2.0

	Summary

	Chapter 5: Know the Validation – Explore Inbuilt Validations
	Diving into built-in validations
	Required field validation
	Incorporating the Required validation in blogging system models

	EmailAddress field validation
	Incorporating EmailAddress validation in blogging system models

	Compare field validation
	Incorporating the Compare validation in blogging system models

	Url field validation
	Incorporating Url validation in blogging system models

	MinLength field validation
	MaxLength field validation
	RegularExpression field validation
	Summary

	Chapter 6: Save Yourself – Hack Proof Your Entities
	Client-side validation
	Validating data without client-side scripting
	Server-side validation
	Manual validation

	Custom validation
	Creating client-side logic for custom validation

	Remote validation
	Summary

	Chapter 7: Going Raw – Leveraging SQL Queries in LINQ
	Basic raw SQL queries
	Building parameterized queries
	Composing with LINQ
	Executing SQL query without a DBSet or POCO
	Summary

	Chapter 8: Query Is All We Need – Query Object Pattern
	Introduction to query objects
	Improving repositories with the query object pattern
	Introduction to repositories
	Solution to the repository assignment

	Incorporating the query object pattern into repositories
	List query object support in the repository
	Single query object support in the repository
	Solution to the repository with the queries assignment

	Composing queries with commands
	Solution to the command queries assignment

	Enhancing queries with expression trees
	Solution to the expression trees assignment

	Summary

	Chapter 9: Fail Safe Mechanism – Transactions
	Default behavior of a transaction
	Adding tags support in the blogging system
	Leveraging default transaction behavior

	Creating a simple transaction
	Creating a cross-context transaction
	File upload support to the blogging system
	Limitations to the transaction scope
	Custom transaction scope support
	Adding date picker support to the blogging system

	Leveraging transactions between multiple technologies
	Recent posts support to the blogging system
	Anonymous posts list and individual blog post
	Listing comments
	Adding comments using external database transactions

	Summary

	Chapter 10: Make It Real – Handling Concurrencies
	Handling concurrency in EF
	Understanding the concurrency conflicts
	Optimistic concurrency
	Pessimistic concurrency

	Introducing concurrency tokens
	Non-timestamp based concurrency tokens
	Configuring non-timestamp tokens through data annotation
	Configuring non-timestamp tokens through Fluent API

	Timestamp-based concurrency tokens
	Configuring timestamp tokens through data annotation
	Configuring timestamp tokens through Fluent API

	Handling concurrency conflicts
	Applying optimistic concurrency
	Database wins
	Client wins
	User-specific custom resolution

	Applying pessimistic concurrency

	Summary

	Chapter 11: Performance – It's All About Execution Time
	The AsNoTracking() method
	How does tracking work?
	No-tracking queries
	Projections

	Detecting changes
	Asynchronous operations
	Transactions leveraging asynchronous operations

	Unnecessary volume returned
	The N+1 Select problem
	More data than required
	Mismatched data types
	Missing indexes
	Summary

	Chapter 12: Isolation – Building a Multi-Tenant Database
	Authentication in the blogging system
	Row-Level Security
	Filter predicate
	Block predicate

	Multi-tenancy
	Standalone
	Database-per-tenant
	Shared multi-tenant
	Dive into multi-tenancy
	Blocking cross-tenant write operation

	Summary

	Index

