
www.EBooksWorld.ir

www.EBooksWorld.ir

Mastering	C#	Concurrency

www.EBooksWorld.ir

Table	of	Contents

Mastering	C#	Concurrency

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Instant	updates	on	new	Packt	books

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Traditional	Concurrency

What’s	the	problem?

Using	locks

Lock	statement

Monitor	class

Reader-writer	lock

Spin	lock

Thread.SpinWait

System.Threading.SpinWait

System.Threading.SpinLock

www.EBooksWorld.ir

Optimization	strategy

Lock	localization

Shared	data	minimization

Summary

2.	Lock-Free	Concurrency

Memory	model	and	compiler	optimizations

The	System.Threading.Interlocked	class

Interlocked	internals

Writing	lock-free	code

The	ABA	problem

The	lock-free	stack

The	lock-free	queue

Summary

3.	Understanding	Parallelism	Granularity

The	number	of	threads

Using	the	thread	pool

Understanding	granularity

Choosing	the	coarse-grained	or	fine-grained	approach

Summary

4.	Task	Parallel	Library	in	Depth

Task	composition

Tasks	hierarchy

Awaiting	task	completion

Task	cancellation

Checking	a	flag

Throwing	an	exception

Using	OS	wait	objects	with	WaitHandle

Cancellation	using	callbacks

Latency	and	the	coarse-grained	approach	with	TPL

Exception	handling

Using	the	Parallel	class

Parallel.Invoke

www.EBooksWorld.ir

Parallel.For	and	Parallel.Foreach

Understanding	the	task	scheduler

Summary

5.	C#	Language	Support	for	Asynchrony

Implementing	the	downloading	of	images	from	Bing

Creating	a	simple	synchronous	solution

Creating	a	parallel	solution	with	Task	Parallel	Library

Enhancing	the	code	with	C#	5.0	built-in	support	for	asynchrony

Simulating	C#	asynchronous	infrastructure	with	iterators

Is	the	async	keyword	really	needed?

Fire-and-forget	tasks

Other	useful	TPL	features

Task.Delay

Task.Yield

Implementing	a	custom	awaitable	type

Summary

6.	Using	Concurrent	Data	Structures

Standard	collections	and	synchronization	primitives

Implementing	a	cache	with	ReaderWriterLockSlim

Concurrent	collections	in	.NET

ConcurrentDictionary

Using	Lazy<T>

Implementation	details

Lock-free	operations

Fine-grained	lock	operations

Exclusive	lock	operations

Using	the	implementation	details	in	practice

ConcurrentBag<T>

ConcurrentBag	in	practice

ConcurrentQueue<T>

ConcurrentStack<T>

The	Producer/Consumer	pattern

www.EBooksWorld.ir

Custom	Producer/Consumer	pattern	implementation

The	Producer/Consumer	pattern	in	.NET	4.0+

Summary

7.	Leveraging	Parallel	Patterns

Concurrent	idioms

Process	Tasks	in	Completion	Order

Limiting	the	parallelism	degree

Setting	a	task	timeout

Asynchronous	patterns

Asynchronous	Programming	Model

Event-based	Asynchronous	Pattern

Task-based	Asynchronous	Pattern

Concurrent	patterns

Parallel	pipelines

Summary

8.	Server-side	Asynchrony

Server	applications

The	OWIN	Web	API	framework

Load	testing	and	scalability

I/O	and	CPU-bound	tasks

Deep	dive	into	asynchronous	I/O

Real	and	fake	asynchronous	I/O	operations

Synchronization	context

CPU-bound	tasks	and	queues

Summary

9.	Concurrency	in	the	User	Interface

The	importance	of	asynchrony	for	UI

UI	threads	and	message	loops

Common	problems	and	solutions

How	the	await	keyword	works

Execution	and	synchronization	contexts

Performance	issues

www.EBooksWorld.ir

Summary

10.	Troubleshooting	Parallel	Programs

How	troubleshooting	parallel	programs	is	different

Heisenbugs

Writing	tests

Load	tests

Unit	tests

Integration	tests

Debugging

Just	my	code	setting

Call	stack	window

Threads	window

Tasks	window

Parallel	stacks	window

Performance	measurement	and	profiling

The	Concurrency	Visualizer

Summary

Index

www.EBooksWorld.ir

www.EBooksWorld.ir

Mastering	C#	Concurrency

www.EBooksWorld.ir

www.EBooksWorld.ir

Mastering	C#	Concurrency
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2015

Production	reference:	1231015

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-665-0

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

www.EBooksWorld.ir

Credits
Authors

Eugene	Agafonov

Andrew	Koryavchenko

Reviewers

Tim	Gabrhel

Michael	Berantzino	Hansen

Güray	Özen

Simon	Soanes

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Zeeyan	Pinheiro

Technical	Editor

Menza	Mathew

Copy	Editors

Kausambhi	Majumdar

Alpha	Singh

Project	Coordinator

Suzanne	Coutinho

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

www.EBooksWorld.ir

www.EBooksWorld.ir

About	the	Authors
Eugene	Agafonov	leads	the	Lingvo	Live	development	department	at	ABBYY,	and	he
lives	and	works	in	Moscow.	He	has	over	15	years	of	professional	experience	in	software
development	and	has	been	working	with	C#	ever	since	it	was	in	beta	version.	He	has	been
a	Microsoft	MVP	in	ASP.NET	since	2006,	and	he	often	speaks	at	local	software
development	conferences,	such	as	DevCon	Russia,	about	cutting-edge	technologies	in
modern	web	and	server-side	application	development.	His	main	professional	interests	are
cloud-based	software	architecture,	scalability,	and	reliability.	Eugene	is	a	huge	fan	of
football	and	plays	the	guitar	with	a	local	rock	band.	You	can	reach	him	at	his	personal
blog	at	eugeneagafonov.com	or	his	Twitter	handle	at	@eugene_agafonov.

He	also	wrote	Multithreading	in	C#	5.0	Cookbook	by	Packt	Publishing.

I	would	like	to	thank	Sergey	Teplyakov,	who	is	a	super	cool	Microsoft	guy	and	has	an
ultimate	twitter	account	at	@STeplyakov,	for	helping	me	a	lot	in	writing	chapters	6	and	7,
and	his	invaluable	advice	that	allowed	me	to	make	this	book	better.

Andrew	Koryavchenko	is	a	software	developer	and	an	architect	who	lives	in	Moscow,
Russia.	He	is	one	of	the	founders	of	rsdn.ru—the	largest	Russian	software	developers’
community	portal.

His	specialty	is	ERP	systems	and	developer	tools.	He	participated	in	ReSharper	Visual
Studio	extension	development,	which	is	a	well-known	productivity	tool	for	.NET
developers.	Currently,	he	is	working	on	parsing	and	compilation	tools	for	.NET
development	and	also	supports	and	develops	the	rsdn.ru	portal.

Andrew	regularly	speaks	at	online	and	offline	events	and	conferences	dedicated	to
Microsoft	technologies,	and	he	publishes	articles	on	software	development	topics.	He	also
used	to	teach	Enterprise	Software	Development	course	in	Kuban	State	University.

Andrew	has	been	a	Microsoft	MVP	in	C#	since	2005.

www.EBooksWorld.ir

http://eugeneagafonov.com
http://www.rsdn.ru
http://www.rsdn.ru

www.EBooksWorld.ir

About	the	Reviewers
Tim	Gabrhel	is	a	senior	application	developer	at	Concurrency	Inc.,	with	a	core	focus	on
Microsoft	Azure	and	modern	.NET	technologies.	He	is	a	creator	and	maker	and	loves
being	hands-on	with	new	technologies	and	making	them	work	in	real	life.	Tim	has	been	a
consultant	for	Fortune	100	companies.	He	has	contributed	to	the	architecture	and	key
components	of	enterprise	solutions	that	have	reached	hundreds	of	thousands	of	users
around	the	world.	You	can	follow	Tim	and	his	technical	journey	at	his	blog,
http://timgabrhel.com.

Michael	Berantzino	Hansen	is	a	MCPD	.NET	Enterprise	Application	Developer
specializing	in	high	performance	and	efficient	frameworks.	He	has	been	programming
since	the	mid	80s	from	the	age	of	9.	He	started	with	Basic	and	then	moved	on	to	C++.	In
1999,	he	earned	a	bachelors	degree	in	computer	science,	economics,	and	organizational
development,	while	working	part	time	for	ground-breaking	startups.	In	2005,	he	moved	on
to	C#	as	his	preferred	platform.	Michael	excels	in	developing	complex	frameworks,
algorithms,	and	applications.	He	does	full	stack	development	using	modern	technologies.
He	recently	adopted	TypeScript	as	his	preferred	platform	for	client-side	web	development.

Michael	currently	works	as	a	chief	system	developer	in	the	SPAMfighter,	developing
complex	e-mail	analysis	platforms	responsible	for	all	enterprise	solutions	in	SPAMfighter.

Güray	Özen	has	been	working	as	a	research	fellow	in	the	programming	models	team	at
Barcelona	Supercomputing	Center	(BSC)	since	August	2013.	His	work	is	also	part	of	his
PhD	research	that	explores	compiler-based	parallelism	and	optimizations	for
heterogeneous	systems.	Besides	this,	his	current	research	interests	consist	of	the	principles
of	programming	languages	and	parallel	programming.	He	received	a	master’s	degree	in
high	performance	computing	from	the	Department	of	Computer	Architecture	at
Universitat	Politècnica	de	Catalunya	–	BarcelonaTech	in	2014.	In	2010	and	2012,	he
worked	at	one	of	the	biggest	banks	in	Turkey	as	a	C#-backed	applications	developer.	He
has	a	bachelor’s	degree	in	computer	science	engineering	from	Dokuz	Eylul	Univeristy	in
Izmir,	Turkey.

Simon	Soanes	is	a	software	developer	with	a	background	in	networking	technologies,
databases,	distributed	systems,	and	debugging.	Ever	since	the	days	of	the	C64,	he	has
enjoyed	writing	software,	playing	computer	games,	and	making	devices	communicate
with	each	other	in	creative	ways.

He’s	currently	working	in	the	south	of	England	as	a	contractor.	At	some	point,	he	became
addicted	to	solving	technical	problems	and	automating	things.

He	occasionally	writes	a	blog	at	http://www.nullify.net/.

www.EBooksWorld.ir

http://timgabrhel.com
http://www.nullify.net/

www.EBooksWorld.ir

www.PacktPub.com

www.EBooksWorld.ir

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

www.EBooksWorld.ir

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

www.EBooksWorld.ir

http://www.PacktPub.com

Instant	updates	on	new	Packt	books
Get	notified!	Find	out	when	new	books	are	published	by	following	@PacktEnterprise	on
Twitter	or	the	Packt	Enterprise	Facebook	page.

To	Mom	and	Dad—you	are	the	best	parents	on	Earth	and	I	love	you	so	much.

www.EBooksWorld.ir

www.EBooksWorld.ir

Preface
Recent	C#	and	.NET	developments	involve	implicitly	using	asynchrony	and	concurrency,
even	when	you	are	not	aware	of	them.	This	can	lead	to	further	problems	since	many
details	are	usually	hidden	inside	the	C#	language	infrastructure	and	the	.NET	base	class
library	APIs.	To	avoid	problems	and	to	be	able	to	create	robust	applications,	a	developer
has	to	know	exactly	what	is	going	on	under	the	hood	of	asynchrony	in	.NET.

Besides	this,	it	is	important	to	understand	your	goals	when	writing	a	concurrent
application.	If	it	is	running	on	the	client,	it	is	usually	a	good	thing	to	use	all	the
computational	resources	available	so	that	the	application	becomes	as	fast	as	possible.	This
involves	effective	multiple	CPU	cores	usage,	and	thus	requires	parallel	programming
skills.	However,	if	the	application	is	running	on	the	server,	it	is	more	important	that	the
server	supports	as	many	clients	as	possible,	than	the	performance	of	a	concrete	client
request	processing.	This	requires	a	programmer	to	distinguish	asynchrony	from
multithreading	and	have	an	understanding	of	scalability.

All	these	topics	will	be	covered	in	this	book,	providing	you	with	enough	information	to
achieve	a	solid	understanding	of	asynchronous	and	parallel	programming	in	C#.	We	will
start	with	basic	multithreading	concepts,	review	common	concurrent	programming
problems	and	solutions,	and	then	we	will	go	through	C#	and	.NET	support	for	writing
concurrent	applications.	Further	in	the	book,	we	will	cover	concurrent	data	structures	and
patterns,	and	we	will	review	client-side	and	server-side	concurrency	issues.	At	the	end	of
the	book,	we	will	outline	the	basic	principles	for	creating	robust	concurrent	programs.

www.EBooksWorld.ir

What	this	book	covers
Chapter	1,	Traditional	Concurrency,	covers	common	problems	with	multithreading	and
solutions	to	these	problems.	You	will	refresh	your	knowledge	about	basic	locking
techniques	and	how	to	make	locking	more	efficient.

Chapter	2,	Lock-Free	Concurrency,	goes	further	into	performance	optimization.	It	covers
various	ways	to	write	concurrent	programs	without	locking,	making	the	code	fast	and
reliable.

Chapter	3,	Understanding	Parallelism	Granularity,	explains	another	important	aspect	of
organizing	your	parallel	code—splitting	a	computational	workload	between	threads.	It
introduces	coarse-grained	and	fine-grained	approaches,	showing	their	pros	and	cons.

Chapter	4,	Task	Parallel	Library	in	Depth,	goes	into	the	details	of	Task	Parallel	Library—
a	framework	to	organize	your	concurrent	program	as	a	set	of	related	tasks.	You	will	find
the	internals	of	TPL	reviewed	and	explained.

Chapter	5,	C#	Language	Support	for	Asynchrony,	is	a	deep	dive	into	the	C#	language
infrastructure.	The	chapter	shows	exactly	how	the	async	and	await	keywords	work	and
how	you	can	write	your	own	await-compatible	code.

Chapter	6,	Using	Concurrent	Data	Structures,	covers	the	use	of	data	structures	in	a
concurrent	program	in	detail,	including	standard	.NET	concurrent	collections	and	custom
thread	safe	collections	implementations.

Chapter	7,	Leveraging	Parallel	Patterns,	reviews	programming	patterns	related	to	parallel
applications.	The	chapter	describes	different	kinds	of	patterns—historical	.NET	idioms,
useful	code	snippets,	and	a	high-level	parallel	pipeline	pattern.

Chapter	8,	Server-Side	Asynchrony,	is	a	solution	description	to	the	problem	of	using
asynchrony	on	the	server.	It	explains	why	it	is	very	important	to	distinguish	asynchrony
from	parallelism,	and	how	it	can	affect	the	scalability	and	reliability	of	your	server.

Chapter	9,	Concurrency	in	the	User	Interface,	describes	the	details	of	how	the	user
interface	is	implemented,	what	a	message	loop	is,	and	why	it	is	very	important	to	keep	the
UI	thread	nonblocked.

Chapter	10,	Troubleshooting	Parallel	Programs,	explains	how	to	find	out	what	is	wrong
with	your	parallel	program.	You	will	learn	how	to	write	unit	tests	for	an	asynchronous
code,	how	to	debug	it,	and	find	performance	bottlenecks.

www.EBooksWorld.ir

www.EBooksWorld.ir

What	you	need	for	this	book
You	will	need	Visual	Studio	2013	or	2015	to	run	the	code	samples.	For	most	of	the
chapters,	it	will	be	enough	to	use	the	free	Visual	Studio	Community	2013/2015	editions,
but	the	performance	test	samples	will	require	the	Test/Ultimate	or	Enterprise	editions.
However,	if	you	cannot	use	this,	it	is	possible	to	download	the	free	Apache	bench	tool	to
run	performance	tests	as	described	in	the	book.

www.EBooksWorld.ir

www.EBooksWorld.ir

Who	this	book	is	for
Mastering	C#	Concurrency	is	written	for	existing	C#	developers	who	have	a	knowledge	of
basic	multithreading	concepts	and	want	to	improve	their	asynchronous	and	parallel
programming	skills.	The	book	covers	different	topics,	from	basic	concepts	to	complicated
programming	patterns	and	algorithms	using	the	C#	and	.NET	ecosystems.	This	will	be
useful	to	server	and	client	developers,	because	it	covers	all	the	important	aspects	of	using
concurrency	and	asynchrony	on	both	sides.

www.EBooksWorld.ir

www.EBooksWorld.ir

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“This
happens	because	the	Add	method	of	the	List<T>	class	is	not	thread	safe,	and	the	reason	for
this	lies	in	the	implementation	details.”

A	block	of	code	is	set	as	follows:

public	void	Add(T	item)

{

				if	(_size	==	_items.Length)	EnsureCapacity(_size	+	1);

				_items[_size++]	=	item;

				_version++;

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

public	void	Add(T	item)

{

				if	(_size	==	_items.Length)	EnsureCapacity(_size	+	1);

				_items[_size++]	=	item;

				_version++;

}

Any	command-line	input	or	output	is	written	as	follows:

T2:	Add	-	[T2]:	Item	1

T1:	Add	-	[T1]:	Item	1

T2:	Add	-	[T2]:	Item	2

T2:	Add	-	[T2]:	Item	3

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Click	on	Finish	and
repeat	all	this	for	another	controller.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

www.EBooksWorld.ir

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

www.EBooksWorld.ir

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.EBooksWorld.ir

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

www.EBooksWorld.ir

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

www.EBooksWorld.ir

mailto:questions@packtpub.com

www.EBooksWorld.ir

Chapter	1.	Traditional	Concurrency
Speaking	of	concurrency,	we	have	to	start	talking	about	threads.	Ironically,	the	reason
behind	implementing	threads	was	to	isolate	programs	from	each	other.	Back	in	the	early
days	of	Windows,	versions	3.*	used	cooperative	multitasking.	This	meant	that	the
operating	system	executed	all	the	programs	on	a	single	execution	loop,	and	if	one	of	those
programs	hung,	every	other	program	and	the	operating	system	itself	would	stop
responding	as	well	and	then	it	would	be	required	to	reboot	the	machine	to	resolve	this
problem.

To	create	a	more	robust	environment,	the	OS	had	to	learn	how	to	give	every	program	its
own	piece	of	CPU,	so	if	one	program	entered	an	infinite	loop,	the	others	would	still	be
able	to	use	the	CPU	for	their	own	needs.	A	thread	is	an	implementation	of	this	concept.
The	threads	allow	implementing	preemptive	multitasking,	where	instead	of	the
application	deciding	when	to	yield	control	to	another	application,	the	OS	controls	how
much	CPU	time	to	give	to	each	application.

When	CPUs	started	to	have	multiple	cores,	it	became	more	beneficial	to	make	full	use	of
the	computational	capability	available.	The	use	of	the	threads	directly	by	applications
suddenly	became	more	worthwhile.	However,	when	exploring	multithreading	issues,	such
as	how	to	share	the	data	between	the	threads	safely,	the	set-up	time	of	the	threads
immediately	become	evident.

In	this	chapter,	we	will	consider	the	basic	concurrent	programming	pitfalls	and	the
traditional	approach	to	deal	with	them.

www.EBooksWorld.ir

What’s	the	problem?
Simply	using	multiple	threads	in	a	program	is	not	a	very	complicated	task.	If	your
program	can	be	easily	separated	into	several	independent	tasks,	then	you	just	run	them	in
different	threads,	and	these	threads	can	be	scaled	along	with	the	number	of	CPU	cores.
However,	usually	real	world	programs	require	some	interaction	between	these	threads,
such	as	exchanging	information	to	coordinate	their	work.	This	cannot	be	implemented
without	sharing	some	data,	which	requires	allocating	some	RAM	space	in	such	a	way	that
it	is	accessible	from	all	the	threads.	Dealing	with	this	shared	state	is	the	root	of	almost
every	problem	related	to	parallel	programming.

The	first	common	problem	with	shared	state	is	undefined	access	order.	If	we	have	read
and	write	access,	this	leads	to	incorrect	calculation	results.	This	situation	is	commonly
referred	to	as	a	race	condition.

Following	is	a	sample	of	a	race	condition.	We	have	a	counter,	which	is	being	changed
from	different	threads	simultaneously.	Each	thread	increments	the	counter,	then	does	some
work,	and	then	decrements	the	counter.

const	int	iterations	=	10000;

var	counter	=	0;

ThreadStart	proc	=	()	=>	{

				for	(int	i	=	0;	i	<	iterations;	i++)	{

						counter++;

						Thread.SpinWait(100);

						counter--;

				}

};

var	threads	=	Enumerable

				.Range(0,	8)

				.Select(n	=>	new	Thread(proc))

				.ToArray();

foreach	(var	thread	in	threads)

		thread.Start();

foreach	(var	thread	in	threads)

		thread.Join();

Console.WriteLine(counter);

The	expected	counter	value	is	0.	However,	when	you	run	the	program,	you	get	different
numbers	(which	is	usually	not	0,	but	it	could	be)	each	time.	The	reason	is	that
incrementing	and	decrementing	the	counter	is	not	an	atomic	operation,	but	consists	of
three	separate	steps	–	reading	the	counter	value,	incrementing	or	decrementing	this	value,
and	writing	the	result	back	into	the	counter.

Let	us	assume	that	we	have	initial	counter	value	0,	and	two	threads.	The	first	thread	reads
0,	increments	it	to	1,	and	writes	1	into	the	counter.	The	second	thread	reads	1	from	the
counter,	increments	it	to	2,	and	then	writes	2	into	the	counter.	This	seems	to	be	correct	and
is	exactly	what	we	expected.	This	scenario	is	represented	in	the	following	diagram:

www.EBooksWorld.ir

Now	the	first	thread	reads	2	from	the	counter,	and	at	the	same	time	it	decrements	it	to	1;
the	second	thread	reads	2	from	the	counter,	because	the	first	thread	hasn’t	written	1	into
the	counter	yet.	So	now,	the	first	thread	writes	1	into	the	counter,	and	the	second	thread
decrements	2	to	1	and	writes	the	value	1	into	the	counter.	As	a	result,	we	have	the	value	1,
while	we’re	expecting	0.	This	scenario	is	represented	in	the	following	diagram:

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

To	avoid	this,	we	have	to	restrict	access	to	the	counter	so	that	only	one	thread	reads	it	at	a
time,	calculates	the	result,	and	writes	it	back.	Such	a	restriction	is	called	a	lock.	However,
by	using	it	to	resolve	a	race	condition	problem,	we	create	other	possibilities	for	our
concurrent	code	to	fail.	With	such	a	restriction,	we	turn	our	parallel	process	into	a
sequential	process,	which	in	turn	means	that	our	code	runs	less	efficiently.	The	more	time
the	code	runs	inside	the	lock,	the	less	efficient	and	scalable	the	whole	program	is.	This	is
because	the	lock	held	by	one	thread	blocks	the	other	threads	from	performing	their	work,
thereby	making	the	whole	program	take	longer	to	run.	So,	we	have	to	minimize	the	lock
time	to	keep	the	other	threads	running,	instead	of	waiting	for	the	lock	to	be	released	to

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support

start	doing	their	calculations.

Another	problem	related	to	locks	is	best	illustrated	by	the	following	example.	It	shows	two
threads	using	two	resources,	A	and	B.	The	first	thread	needs	to	lock	object	A	first,	then	B,
while	the	second	thread	starts	with	locking	B	and	then	A.

const	int	count	=	10000;

var	a	=	new	object();

var	b	=	new	object();

var	thread1	=

		new	Thread(

				()	=>

				{

						for	(int	i	=	0;	i	<	count;	i++)

								lock	(a)

										lock	(b)

												Thread.SpinWait(100);

				});

var	thread2	=

		new	Thread(

				()	=>

				{

						for	(int	i	=	0;	i	<	count;	i++)

								lock	(b)

										lock	(a)

												Thread.SpinWait(100);

				});

thread1.Start();

thread2.Start();

thread1.Join();

thread2.Join();

Console.WriteLine("Done");

It	looks	like	this	code	is	alright,	but	if	you	run	it	several	times,	it	will	eventually	hang.	The
reason	for	this	lies	in	an	issue	with	the	locking	order.	If	the	first	thread	locks	A,	and	the
second	locks	B	before	the	first	thread	does,	then	the	second	thread	starts	waiting	for	the
lock	on	A	to	be	released.	However,	to	release	the	lock	on	A,	the	first	thread	needs	to	put	a
lock	on	B,	which	is	already	locked	by	the	second	thread.	Therefore,	both	the	threads	will
wait	forever	and	the	program	will	hang.

Such	a	situation	is	called	a	deadlock.	It	is	usually	quite	hard	to	diagnose	deadlocks,
because	it	is	hard	to	reproduce	one.

Note
The	best	way	to	avoid	deadlocks	is	to	take	preventive	measures	when	writing	code.	The
best	practice	is	to	avoid	complicated	lock	structures	and	nested	locks,	and	minimize	the
time	in	locks.	If	you	suspect	there	could	be	a	deadlock,	then	there	is	another	way	to
prevent	it	from	happening,	which	is	by	setting	a	timeout	for	acquiring	a	lock.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using	locks
There	are	different	types	of	locks	in	C#	and	.NET.	We	will	cover	these	later	in	the	chapter,
and	also	throughout	the	book.	Let	us	start	with	the	most	common	way	to	use	a	lock	in	C#,
which	is	a	lock	statement.

www.EBooksWorld.ir

Lock	statement
Lock	statement	in	C#	uses	a	single	argument,	which	could	be	an	instance	of	any	class.
This	instance	will	represent	the	lock	itself.

Reading	other	people’s	codes,	you	could	see	that	a	lock	uses	the	instance	of	collection	or
class,	which	contains	shared	data.	It	is	not	a	good	practice,	because	someone	else	could
use	this	object	for	locking,	and	potentially	create	a	deadlock	situation.	So,	it	is
recommended	to	use	a	special	private	synchronization	object,	the	sole	purpose	of	which	is
to	serve	as	a	concrete	lock:

//	Bad

lock(myCollection)	{

		myCollection.Add(data);

}

//	Good

lock(myCollectionLock)	{

		myCollection.Add(data);

}`

Note
It	is	dangerous	to	use	lock(this)	and	lock(typeof(MyType)).	The	basic	idea	why	it	is
bad	remains	the	same:	the	objects	you	are	locking	could	be	publicly	accessible,	and	thus
someone	else	could	acquire	a	lock	on	it	causing	a	deadlock.	However,	using	the	this
keyword	makes	the	situation	more	implicit;	if	someone	else	made	the	object	public,	it
would	be	very	hard	to	track	that	it	is	being	used	inside	a	lock.

Locking	the	type	object	is	even	worse.	In	the	current	versions	of	.NET,	the	runtime	type
objects	could	be	shared	across	application	domains	(running	in	the	same	process).	It	is
possible	because	those	objects	are	immutable.	However,	this	means	that	a	deadlock	could
be	caused,	not	only	by	another	thread,	but	also	by	ANOTHER	APPLICATION,	and	I	bet
that	you	would	hardly	understand	what’s	going	on	in	such	a	case.

Following	is	how	we	can	rewrite	the	first	example	with	race	condition	and	fix	it	using	C#
lock	statement.	Now	the	code	will	be	as	follows:

const	int	iterations	=	10000;

var	counter	=	0;

var	lockFlag	=	new	object();

ThreadStart	proc	=	()	=>	{

		for	(int	i	=	0;	i	<	iterations;	i++)

		{

				lock	(lockFlag)

						counter++;

				Thread.SpinWait(100);

				lock	(lockFlag)

						counter--;

		}

};

var	threads	=	Enumerable

		.Range(0,	8)

		.Select(n	=>	new	Thread(proc))

www.EBooksWorld.ir

		.ToArray();

foreach	(var	thread	in	threads)

		thread.Start();

foreach	(var	thread	in	threads)

		thread.Join();

Console.WriteLine(counter);

Now	this	code	works	properly,	and	the	result	is	always	0.

To	understand	what	is	happening	when	a	lock	statement	is	used	in	the	program,	let	us	look
at	the	Intermediate	Language	code,	which	is	a	result	of	compiling	C#	program.	Consider
the	following	C#	code:

static	void	Main()

{

		var	ctr	=	0;

		var	lockFlag	=	new	object();

		lock	(lockFlag)

				ctr++;

}

The	preceding	block	of	code	will	be	compiled	into	the	following:

.method	private	hidebysig	static	void		Main()	cil	managed	{

		.entrypoint

		//	Code	size							48	(0x30)

		.maxstack		2

		.locals	init	([0]	int32	ctr,

																[1]	object	lockFlag,

																[2]	bool	'<>s__LockTaken0',

																[3]	object	CS$2$0000,

																[4]	bool	CS$4$0001)

		IL_0000:		nop

		IL_0001:		ldc.i4.0

		IL_0002:		stloc.0

		IL_0003:		newobj					instance	void	[mscorlib]System.Object::.ctor()

		IL_0008:		stloc.1

		IL_0009:		ldc.i4.0

		IL_000a:		stloc.2

		.try

		{

				IL_000b:		ldloc.1

				IL_000c:		dup

				IL_000d:		stloc.3

				IL_000e:		ldloca.s			'<>s__LockTaken0'

				IL_0010:		call							void	

[mscorlib]System.Threading.Monitor::Enter(object,	bool&)

				IL_0015:		nop

				IL_0016:		ldloc.0

				IL_0017:		ldc.i4.1

				IL_0018:		add

				IL_0019:		stloc.0

				IL_001a:		leave.s				IL_002e

		}		//	end	.try

		finally

		{

				IL_001c:		ldloc.2

www.EBooksWorld.ir

				IL_001d:		ldc.i4.0

				IL_001e:		ceq

				IL_0020:		stloc.s				CS$4$0001

				IL_0022:		ldloc.s				CS$4$0001

				IL_0024:		brtrue.s			IL_002d

				IL_0026:		ldloc.3

				IL_0027:		call							void	

[mscorlib]System.Threading.Monitor::Exit(object)

				IL_002c:		nop

				IL_002d:		endfinally

		}		//	end	handler

		IL_002e:		nop

		IL_002f:		ret

}	//	end	of	method	Program::Main

This	can	be	explained	with	decompilation	to	C#.	It	will	look	like	this:

static	void	Main()

{

		var	ctr	=	0;

		var	lockFlag	=	new	object();

		bool	lockTaken	=	false;

		try

		{

				System.Threading.Monitor.Enter(lockFlag,	ref	lockTaken);

				ctr++;

		}

		finally

		{

				if	(lockTaken)

						System.Threading.Monitor.Exit(lockFlag);

		}

}

It	turns	out	that	the	lock	statement	turns	into	calling	the	Monitor.Enter	and	Monitor.Exit
methods,	wrapped	into	a	try-finally	block.	The	Enter	method	acquires	an	exclusive
lock	and	returns	a	bool	value,	indicating	that	a	lock	was	successfully	acquired.	If
something	went	wrong,	for	example	an	exception	has	been	thrown,	the	bool	value	would
be	set	to	false,	and	the	Exit	method	would	release	the	acquired	lock.

A	try-finally	block	ensures	that	the	acquired	lock	will	be	released	even	if	an	exception
occurs	inside	the	lock	statement.	If	the	Enter	method	indicates	that	we	cannot	acquire	a
lock,	then	the	Exit	method	will	not	be	executed.

www.EBooksWorld.ir

Monitor	class
The	Monitor	class	contains	other	useful	methods	that	help	us	to	write	concurrent	code.
One	of	such	methods	is	the	TryEnter	method,	which	allows	the	provision	of	a	timeout
value	to	it.	If	a	lock	could	not	be	obtained	before	the	timeout	is	expired,	the	TryEnter
method	would	return	false.	This	is	quite	an	efficient	method	to	prevent	deadlocks,	but
you	have	to	write	significantly	more	code.

Consider	the	previous	deadlock	sample	refactored	in	a	way	that	one	of	the	threads	uses
Monitor.TryEnter	instead	of	lock:

static	void	Main()

{

		const	int	count	=	10000;

		var	a	=	new	object();

		var	b	=	new	object();

		var	thread1	=	new	Thread(

				()	=>	{

						for	(int	i	=	0;	i	<	count;	i++)

								lock	(a)

						lock	(b)

						Thread.SpinWait(100);

		});

		var	thread2	=	new	Thread(()	=>	LockTimeout(a,	b,	count));

		thread1.Start();

		thread2.Start();

		thread1.Join();

		thread2.Join();

		Console.WriteLine("Done");

}

static	void	LockTimeout(object	a,	object	b,	int	count)

{

		bool	accquiredB	=	false;

		bool	accquiredA	=	false;

		const	int	waitSeconds	=	5;

		const	int	retryCount	=	3;

		for	(int	i	=	0;	i	<	count;	i++)

		{

				int	retries	=	0;

				while	(retries	<	retryCount)

				{

						try	

						{

								accquiredB	=	Monitor.TryEnter(b,	

TimeSpan.FromSeconds(waitSeconds));

								if	(accquiredB)	{

										try	{

												accquiredA	=	Monitor.TryEnter(a,	

TimeSpan.FromSeconds(waitSeconds));

												if	(accquiredA)	{

														Thread.SpinWait(100);

														break;

												}

www.EBooksWorld.ir

												else	{

														retries++;

												}

										}

										finally	{

												if	(accquiredA)	{

														Monitor.Exit(a);

												}

										}

								}

								else	{

										retries++;

								}

						}

						finally	{

								if	(accquiredB)

										Monitor.Exit(b);

						}

				}

				if	(retries	>=	retryCount)

						Console.WriteLine("could	not	obtain	locks");

		}

}

In	the	LockTimeout	method,	we	implemented	a	retry	strategy.	For	each	loop	iteration,	we
try	to	acquire	lock	B	first,	and	if	we	cannot	do	so	in	5	seconds,	we	try	again.	If	we	have
successfully	acquired	lock	B,	then	we	in	turn	try	to	acquire	lock	A,	and	if	we	wait	for	it	for
more	than	5	seconds,	we	try	again	to	acquire	both	the	locks.	This	guarantees	that	if
someone	waits	endlessly	to	acquire	a	lock	on	B,	then	this	operation	will	eventually
succeed.

If	we	do	not	succeed	acquiring	lock	B,	then	we	try	again	for	a	defined	number	of	attempts.
Then	either	we	succeed,	or	we	admit	that	we	cannot	obtain	the	needed	locks	and	go	to	the
next	iteration.

In	addition,	the	Monitor	class	can	be	used	to	orchestrate	multiple	threads	into	a	workflow
with	the	Wait,	Pulse,	and	PulseAll	methods.	When	a	main	thread	calls	the	Wait	method,
the	current	lock	is	released,	and	the	thread	is	blocked	until	some	other	thread	calls	the
Pulse	or	PulseAll	methods.	This	allows	the	coordination	the	different	threads	execution
into	some	sort	of	sequence.

A	simple	example	of	such	workflow	is	when	we	have	two	threads:	the	main	thread	and	an
additional	thread	that	performs	some	calculation.	We	would	like	to	pause	the	main	thread
until	the	second	thread	finishes	its	work,	and	then	get	back	to	the	main	thread,	and	in	turn
block	this	additional	thread	until	we	have	other	data	to	calculate.	This	can	be	illustrated	by
the	following	code:

var	arg	=	0;

var	result	=	"";

var	counter	=	0;

var	lockHandle	=	new	object();

var	calcThread	=	new	Thread(()	=>	{

		while	(true)

		lock	(lockHandle)	

www.EBooksWorld.ir

		{

				counter++;

				result	=	arg.ToString();

				Monitor.Pulse(lockHandle);

				Monitor.Wait(lockHandle);

		}

})

{

		IsBackground	=	true

};

lock	(lockHandle)	

{

		calcThread.Start();

		Thread.Sleep(100);

		Console.WriteLine("counter	=	{0},	result	=	{1}",	counter,	result);

		arg	=	123;

		Monitor.Pulse(lockHandle);

		Monitor.Wait(lockHandle);

		Console.WriteLine("counter	=	{0},	result	=	{1}",	counter,	result);

		arg	=	321;

		Monitor.Pulse(lockHandle);

		Monitor.Wait(lockHandle);

		Console.WriteLine("counter	=	{0},	result	=	{1}",	counter,	result);

}

As	a	result	of	running	this	program,	we	will	get	the	following	output:

counter	=	0,	result	=

counter	=	1,	result	=	123

counter	=	2,	result	=	321

At	first,	we	start	a	calculation	thread.	Then	we	print	the	initial	values	for	counter	and
result,	and	then	we	call	Pulse.	This	puts	the	calculation	thread	into	a	queue	called	ready
queue.	This	means	that	this	thread	is	ready	to	acquire	this	lock	as	soon	as	it	gets	released.
Then	we	call	the	Wait	method,	which	releases	the	lock	and	puts	the	main	thread	into	a
waiting	queue.	The	first	thread	in	the	ready	queue,	which	is	our	calculation	thread,
acquires	the	lock	and	starts	to	work.	After	completing	its	calculations,	the	second	thread
calls	Pulse,	which	moves	a	thread	at	the	head	of	the	waiting	queue	(which	is	our	main
thread)	into	the	ready	queue.	If	there	are	several	threads	in	the	waiting	queue,	only	the	first
one	would	go	into	the	ready	queue.	To	put	all	the	threads	into	the	ready	queue	at	once,	we
could	use	the	PulseAll	method.	So,	when	the	second	thread	calls	Wait,	our	main	thread
reacquires	the	lock,	changes	the	calculation	data,	and	repeats	the	whole	process	one	more
time.

Note
Note	that	we	can	use	the	Wait,	Pulse,	and	PulseAll	methods	only	when	the	current	thread
owns	a	lock.	The	Wait	method	could	block	indefinitely	in	case	no	other	threads	call	Pulse
or	PulseAll,	so	it	can	be	a	reason	for	a	deadlock.	To	prevent	deadlocks,	we	can	specify	a
timeout	value	to	the	Wait	method	to	be	able	to	react	in	case	we	cannot	reacquire	the	lock
for	a	certain	time	period.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reader-writer	lock
It	is	very	common	to	see	samples	of	code	where	the	shared	state	is	one	of	the	standard
.NET	collections:	List<T>	or	Dictionary<K,V>.	These	collections	are	not	thread	safe;
thus	we	need	synchronization	to	organize	concurrent	access.

There	are	special	concurrent	collections	that	can	be	used	instead	of	the	standard	list	and
dictionary	to	achieve	thread	safety.	We	will	review	them	in	Chapter	6,	Using	Concurrent
Data	Structures.	For	now,	let	us	assume	that	we	have	reasons	to	organize	concurrent
access	by	ourselves.

The	easiest	way	to	achieve	synchronization	is	to	use	the	lock	operator	when	reading	and
writing	from	these	collections.	However,	the	MSDN	documentation	states	that	if	a
collection	is	not	modified	while	being	read,	synchronization	is	not	required:

It	is	safe	to	perform	multiple	read	operations	on	a	List<T>,	but	issues	can	occur	if
the	collection	is	modified	while	it’s	being	read.

Another	important	MSDN	page	states	the	following	regarding	a	collection:

A	Dictionary<TKey,	TValue>	can	support	multiple	readers	concurrently,	as	long	as
the	collection	is	not	modified.

This	means	that	we	can	perform	the	read	operations	from	multiple	threads	if	the	collection
is	not	being	modified.	This	allows	us	to	avoid	excessive	locking,	and	minimizes
performance	overhead	and	possible	deadlocks	in	such	situations.

To	leverage	this,	there	is	a	standard	.NET	Framework	class,
System.Threading.ReaderWriterLock.	It	provides	three	types	of	locks:	to	read
something	from	a	resource,	to	write	something,	and	a	special	one	to	upgrade	the	reader
lock	to	a	writer	lock.	The	following	method	pairs	represent	these	locks:
AcquireReaderLock/ReleaseReaderLock,	AcquireWriterLock/ReleaseWriterLock,	and
UpgradeToWriterLock/DowngradeFromWriterLock,	correspondingly.	It	is	also	possible	to
provide	a	timeout	value,	after	which	the	request	to	acquire	the	lock	will	expire.	Providing
the	-1	value	means	that	a	lock	has	no	timeout.

Note
It	is	important	to	always	release	a	lock	after	acquiring	it.	Always	put	the	code	for	releasing
a	lock	into	the	finally	block	of	the	try	/	catch	statement,	otherwise	any	exception
thrown	before	releasing	this	lock	would	leave	the	ReaderWriterLock	object	in	a	locked
state,	preventing	any	further	access	to	this	lock.

A	reader	lock	puts	a	thread	in	the	blocked	state	only	when	there	is	at	least	one	writer	lock
acquired.	Otherwise,	no	real	thread	blocking	happens.	A	writer	lock	waits	until	every	other
lock	is	released,	and	then	in	turn	it	prevents	the	acquiring	of	any	other	locks,	until	it’s
released.

Upgrading	a	lock	is	useful;	when	inside	an	open	reader	lock,	we	need	to	write	something
into	a	collection.	For	example,	we	first	check	if	there	is	an	entry	with	some	key	in	the

www.EBooksWorld.ir

dictionary,	and	insert	this	entry	if	it	does	not	exist.	Acquiring	a	writer	lock	would	be
inefficient,	since	there	could	be	no	write	operation,	so	it	is	optimal	to	use	this	upgrade
scenario.

Note	that	using	any	kind	of	lock	is	still	not	as	efficient	as	a	simple	check,	and	it	makes
sense	to	use	patterns	such	as	double-checked	locking.	Consider	the	follow	code	snippet:

if(writeRequiredCondition)

{

		_rwLock.AcquireWriterLock();

		try	

		{

				if(writeRequiredCondition)

						//	do	write

		}

		finally

		{

				_rwLock.ReleaseWriterLock();

		}

}

The	ReaderWriterLock	class	has	a	nested	locks	counter,	and	it	avoids	creating	a	new	lock
when	trying	to	acquire	it	when	inside	another	lock.	In	such	a	case,	the	lock	counter	is
incremented	and	then	decremented	when	the	nested	lock	is	released.	The	real	lock	is
acquired	only	when	this	counter	is	equal	to	to	0.

Nevertheless,	this	implementation	has	some	serious	drawbacks.	First,	it	uses	thread
blocking,	which	is	quite	performance	costly,	and	besides	that,	adds	its	own	additional
overhead.	In	addition,	if	the	write	operation	is	very	short,	then	using	ReaderWriterLock
could	be	even	worse	than	simply	locking	the	collection	for	every	operation.	In	addition	to
that,	the	method	names	and	semantics	are	not	intuitive,	which	makes	reading	and
understanding	the	code	much	harder.

This	is	the	reason	why	the	new	implementation,
System.Threading.ReaderWriterLockSlim,	was	introduced	in	.NET	Framework	3.5.	It
should	always	be	used	instead	of	ReaderWriterLock	for	the	following	reasons:

It	is	more	efficient,	especially	with	short	locks.
Method	names	became	more	intuitive:	EnterReadLock/ExitReadLock,
EnterWriteLock/ExitWriteLock,	and
EnterUpgradeableReadLock/ExitUpgradeableReadLock.
If	we	try	to	acquire	a	writer	lock	inside	a	reader	lock,	it	will	be	an	upgrade	by	default.
Instead	of	using	a	timeout	value,	separate	methods	have	been	added:
TryEnterReadLock,	TryEnterWriteLock,	and	TryEnterUpgradeableReadLock,
which	make	the	code	cleaner.
Using	nested	locks	is	now	forbidden	by	default.	It	is	possible	to	allow	nested	locks	by
specifying	a	constructor	parameter,	but	using	nested	locks	is	usually	a	mistake	and
this	behavior	helps	to	explicitly	declare	how	it	is	intended	to	deal	with	them.
Internal	enhancements	help	to	improve	performance	and	avoid	deadlocks.

The	following	is	an	example	of	different	locking	strategies	for	Dictionary<K,V>	in	the
multiple	readers	/	single	writer	scenario.	First,	we	define	how	many	readers	and	writers

www.EBooksWorld.ir

we’re	going	to	have,	how	long	a	read	and	write	operation	will	take,	and	how	many	times
to	repeat	those	operations.

static	class	Program

{

		private	const	int	_readersCount	=	5;

		private	const	int	_writersCount	=	1;

		private	const	int	_readPayload	=	100;

		private	const	int	_writePayload	=	100;

		private	const	int	_count	=	100000;

Then	we	define	the	common	test	logic.	The	target	dictionary	is	being	created	along	with
the	reader	and	writer	methods.	The	method	called	Measure	uses	LINQ	to	measure	the
performance	of	concurrent	access.

private	static	readonly	Dictionary<int,	string>	_map	=	new	Dictionary<int,	

string>();

private	static	void	ReaderProc()

{

		string	val;

		_map.TryGetValue(Environment.TickCount	%	_count,	out	val);

		//	Do	some	work

		Thread.SpinWait(_readPayload);

}

private	static	void	WriterProc()

{

			var	n	=	Environment.TickCount	%	_count;

			//	Do	some	work

		Thread.SpinWait(_writePayload);

		_map[n]	=	n.ToString();

}

private	static	long	Measure(Action	reader,	Action	writer)

{

		var	threads	=	Enumerable

						.Range(0,	_readersCount)

						.Select(n	=>	new	Thread(

								()	=>	{

										for	(int	i	=	0;	i	<	_count;	i++)

												reader();

								}))

						.Concat(Enumerable

								.Range(0,	_writersCount)

								.Select(n	=>	new	Thread(

										()	=>	{

												for	(int	i	=	0;	i	<	_count;	i++)

														writer();

						})))

						.ToArray();

				_map.Clear();

				var	sw	=	Stopwatch.StartNew();

				foreach	(var	thread	in	threads)

						thread.Start();

www.EBooksWorld.ir

				foreach	(var	thread	in	threads)

							thread.Join();

					sw.Stop();

				return	sw.ElapsedMilliseconds;

		}

Then	we	use	simple	lock	to	synchronize	concurrent	access	to	the	dictionary:

		private	static	readonly	object	_simpleLockLock	=	new	object();

		private	static	void	SimpleLockReader()

		{

				lock	(_simpleLockLock)

						ReaderProc();

		}

		private	static	void	SimpleLockWriter()

		{

				lock	(_simpleLockLock)

						WriterProc();

		}

The	second	test	is	using	an	older	ReaderWriterLock	class	as	follows:

		private	static	readonly	ReaderWriterLock	_rwLock	=	new	

ReaderWriterLock();

		private	static	void	RWLockReader()	

{

				_rwLock.AcquireReaderLock(-1);

				try

				{

						ReaderProc();

				}

				finally

				{

						_rwLock.ReleaseReaderLock();

				}

		}

		private	static	void	RWLockWriter()

		{

				_rwLock.AcquireWriterLock(-1);

				try

				{

						WriterProc();

				}

				finally

				{

						_rwLock.ReleaseWriterLock();

					}

		}

Finally,	we’ll	demonstrate	the	usage	of	ReaderWriterLockSlim:

		private	static	readonly	ReaderWriterLockSlim	_rwLockSlim	=	new	

www.EBooksWorld.ir

ReaderWriterLockSlim();

		private	static	void	RWLockSlimReader()

		{

				_rwLockSlim.EnterReadLock();

				try

				{

						ReaderProc();

				}

				finally	

				{

						_rwLockSlim.ExitReadLock();

				}

		}

		private	static	void	RWLockSlimWriter()

		{

				_rwLockSlim.EnterWriteLock();

				try	

				{

						WriterProc();

				}

				finally	

				{

						_rwLockSlim.ExitWriteLock();

				}

		}

Now	we	run	all	of	these	tests,	using	one	iteration	as	a	warm	up	to	exclude	any	first	run
issues	that	could	affect	the	overall	performance:

static	void	Main()

{

		//	Warm	up

				Measure(SimpleLockReader,	SimpleLockWriter);

				//	Measure

				var	simpleLockTime	=	Measure(SimpleLockReader,	SimpleLockWriter);

				Console.WriteLine("Simple	lock:	{0}ms",	simpleLockTime);

				//	Warm	up

				Measure(RWLockReader,	RWLockWriter);

				//	Measure

				var	rwLockTime	=	Measure(RWLockReader,	RWLockWriter);

				Console.WriteLine("ReaderWriterLock:	{0}ms",	rwLockTime);

				//	Warm	up

				Measure(RWLockSlimReader,	RWLockSlimWriter);

					//	Measure

				var	rwLockSlimTime	=	Measure(RWLockSlimReader,	RWLockSlimWriter);

				Console.WriteLine("ReaderWriterLockSlim:	{0}ms",	rwLockSlimTime);

		}

}

www.EBooksWorld.ir

Executing	this	code	on	Core	i7	2600K	and	x64	OS	in	the	Release	configuration	gives	the
following	results:

Simple	lock:	367ms

ReaderWriterLock:	246ms

ReaderWriterLockSlim:	183ms

It	shows	that	ReaderWriterLockSlim	is	about	2	times	faster	than	the	usual	lock	statement.

You	can	change	the	number	of	reader	and	writer	threads,	tweak	the	lock	time,	and	see	how
the	performance	changes	in	each	case.

Note
Note	that	using	a	reader	writer	lock	on	the	collection	is	not	enough	to	provide	a	possibility
to	iterate	over	this	collection.	While	the	collection	itself	will	be	in	the	correct	state,	while
iterating,	if	any	of	the	collection	items	were	removed	or	added,	an	exception	will	be
thrown.	This	means,	that	you	need	to	put	all	the	iteration	process	inside	a	lock,	or	produce
a	new	immutable	copy	of	the	collection	and	iterate	over	this	copy.

www.EBooksWorld.ir

www.EBooksWorld.ir

Spin	lock
Using	operating	system	level	synchronization	primitives	requires	quite	a	noticeable
amount	of	resources,	because	of	the	context	switching	and	all	the	entire	corresponding
overhead.	Besides	this,	there	is	such	thing	as	lock	latency;	that	is,	the	time	required	for	a
lock	to	be	notified	about	the	state	change	of	another	lock.	This	means	that	when	the
current	lock	is	being	released,	it	takes	some	additional	time	for	another	lock	to	be
signaled.	This	is	the	reason	why	when	we	need	short	time	locks,	it	could	be	significantly
faster	to	use	a	single	thread	without	any	locks	than	to	parallelize	these	operations	using	OS
level	locking	mechanics.

To	avoid	unnecessary	context	switches	in	such	a	situation,	we	can	use	a	loop,	which
checks	the	other	locks	in	each	iteration.	Since	the	locks	should	be	very	short,	we	would
not	use	too	much	CPU,	and	we	have	a	significant	performance	boost	by	not	using	the
operating	system	resources	and	by	lowering	lock	latency	to	the	lowest	amount.

This	pattern	is	not	so	easy	to	implement,	and,	to	be	effective,	you	would	need	to	use
specific	CPU	instructions.	Fortunately,	there	is	a	standard	implementation	of	this	pattern
in	the	.NET	Framework	starting	with	version	3.5.	The	implementation	contains	the
following	methods	and	classes:

www.EBooksWorld.ir

Thread.SpinWait
Thread.SpinWait	just	spins	an	infinite	loop.	It’s	like	Thread.Sleep,	only	without	context
switching	and	using	CPU	time.	It	is	used	rarely	in	common	scenarios,	but	could	be	useful
in	some	specific	cases,	such	as	simulating	real	CPU	work.

www.EBooksWorld.ir

System.Threading.SpinWait
System.Threading.SpinWait	is	a	structure	implementing	a	loop	with	a	condition	check.	It
is	used	internally	in	spinlock	implementation.

www.EBooksWorld.ir

System.Threading.SpinLock
Here	we	will	be	discussing	about	the	spinlock	implementation	itself.

Note	that	it	is	a	structure	which	allows	to	save	on	class	instance	allocation	and	reduces	GC
overhead.

The	spinlock	can	optionally	use	a	memory	barrier	(or	a	memory	fencing	instruction)	to
notify	other	threads	that	the	lock	has	been	released.	The	default	behavior	is	to	use	a
memory	barrier,	which	prevents	memory	access	operation	reordering	by	compiler	or
hardware,	and	improves	the	fairness	of	the	lock	at	the	expense	of	performance.	The	other
case	is	faster,	but	could	lead	to	incorrect	behavior	in	some	situations.

Usually,	it’s	not	encouraged	to	use	a	spinlock	directly	unless	you	are	100%	sure	what
you’re	doing.	Make	sure	that	you	have	confirmed	the	performance	bottleneck	with	tests
and	you	know	that	your	locks	are	really	short.

The	code	inside	a	spin	lock	should	not	do	the	following:

Use	regular	locks,	or	a	code	that	uses	locks
Acquire	more	than	one	spinlock	at	a	time
Perform	dynamic	dispatched	calls	(virtual	methods,	interface	methods,	or	delegate
calls)
Call	any	third-party	code,	which	is	not	controlled	by	you
Perform	memory	allocation,	including	new	operator	usage

The	following	is	a	sample	test	for	a	spinlock:

static	class	Program

{

		private	const	int	_count	=	10000000;

		static	void	Main()

		{

				//	Warm	up

				var	map	=	new	Dictionary<double,	double>();

				var	r	=	Math.Sin(0.01);

				//	lock

				map.Clear();

				var	prm	=	0d;

				var	lockFlag	=	new	object();

				var	sw	=	Stopwatch.StartNew();

				for	(int	i	=	0;	i	<	_count;	i++)

						lock	(lockFlag)

						{

								map.Add(prm,	Math.Sin(prm));

								prm	+=	0.01;

						}

				sw.Stop();

				Console.WriteLine("Lock:	{0}ms",	sw.ElapsedMilliseconds);

				//	spinlock	with	memory	barrier

				map.Clear();

				var	spinLock	=	new	SpinLock();

www.EBooksWorld.ir

				prm	=	0;

				sw	=	Stopwatch.StartNew();

				for	(int	i	=	0;	i	<	_count;	i++)

				{

						var	gotLock	=	false;

						try

						{

								spinLock.Enter(ref	gotLock);

								map.Add(prm,	Math.Sin(prm));

								prm	+=	0.01;

						}

						finally

						{

								if	(gotLock)

										spinLock.Exit(true);

						}

				}

				sw.Stop();

				Console.WriteLine("Spinlock	with	memory	barrier:	{0}ms",	

sw.ElapsedMilliseconds);

				//	spinlock	without	memory	barrier

				map.Clear();

				prm	=	0;

				sw	=	Stopwatch.StartNew();

				for	(int	i	=	0;	i	<	_count;	i++)

				{

						var	gotLock	=	false;

						try

						{

								spinLock.Enter(ref	gotLock);

								map.Add(prm,	Math.Sin(prm));

								prm	+=	0.01;

						}

						finally

						{

								if	(gotLock)

										spinLock.Exit(false);

						}

				}

				sw.Stop();

				Console.WriteLine("Spinlock	without	memory	barrier:	{0}ms",	

sw.ElapsedMilliseconds);

		}

}

Executing	this	code	on	Core	i7	2600K	and	x64	OS	in	Release	configuration	gives	the
following	results:

Lock:	1906ms

Spinlock	with	memory	barrier:	1761ms

Spinlock	without	memory	barrier:	1731ms

Note	that	the	performance	boost	is	very	small	even	with	short	duration	locks.	Also	note
that	starting	from	.NET	Framework	3.5,	the	Monitor,	ReaderWriterLock,	and
ReaderWriterLockSlim	classes	are	implemented	with	spinlock.

www.EBooksWorld.ir

Note
The	main	disadvantage	of	spinlocks	is	intensive	CPU	usage.	The	endless	loop	consumes
energy,	while	the	blocked	thread	does	not.	However,	now	the	standard	Monitor	class	can
use	spinlock	for	a	short	time	lock	and	then	turn	to	usual	lock,	so	in	real	world	scenarios
the	difference	would	be	even	less	noticeable	than	in	this	test.

www.EBooksWorld.ir

www.EBooksWorld.ir

Optimization	strategy
Creating	parallel	algorithms	is	not	a	simple	task:	there	is	no	universal	solution	to	it.	In
every	case,	you	have	to	use	a	specific	approach	to	write	effective	code.	However,	there	are
several	simple	rules	that	work	for	most	of	the	parallel	programs.

www.EBooksWorld.ir

Lock	localization
The	first	thing	to	take	into	account	when	writing	parallel	code	is	to	lock	as	little	code	as
possible,	and	ensure	that	the	code	inside	the	lock	runs	as	fast	as	possible.	This	makes	it
less	deadlock-prone	and	scale	better	with	the	number	of	CPU	cores.	To	sum	up,	acquire
the	lock	as	late	as	possible	and	release	it	as	soon	as	possible.

Let	us	consider	the	following	situation:	for	example,	we	have	some	calculation	performed
by	method	Calc	without	any	side	effects.	We	would	like	to	call	it	with	several	different
arguments	and	store	the	results	in	a	list.	The	first	intention	is	to	write	the	code	as	follows:

for	(var	i	=	from;	i	<	from	+	count;	i++)

		lock	(_result)

				_result.Add(Calc(i));

This	code	works,	but	we	call	the	Calc	method	and	perform	the	calculation	inside	our	lock.
This	calculation	does	not	have	any	side	effects,	and	thus	requires	no	locking,	so	it	would
be	much	more	efficient	to	rewrite	the	code	as	shown	next:

for	(var	i	=	from;	i	<	from	+	count;	i++)

{

		var	calc	=	Calc(i);

		lock	(_result)

				_result.Add(calc);

}

If	the	calculation	takes	a	significant	amount	of	time,	then	this	improvement	could	make
the	code	run	several	times	faster.

www.EBooksWorld.ir

Shared	data	minimization
Another	way	of	improving	parallel	code	performance	is	by	minimizing	the	shared	data,
which	is	being	written	in	parallel.	It	is	a	common	situation	when	we	lock	over	the	whole
collection	every	time	we	write	into	it,	instead	of	thinking	and	lowering	the	amount	of
locks	and	the	data	being	locked.	Organizing	concurrent	access	and	data	storage	in	a	way
that	it	minimizes	the	number	of	locks	can	lead	to	a	significant	performance	increase.

In	the	previous	example,	we	locked	the	entire	collection	each	time,	as	described	in	the
previous	paragraph.	However,	we	really	don’t	care	about	which	worker	thread	processes
exactly	what	piece	of	information,	so	we	could	rewrite	the	previous	code	like	the
following:

var	tempRes	=	new	List<string>(count);

for	(var	i	=	from;	i	<	from	+	count;	i++)

{

		var	calc	=	Calc(i);

		tempRes.Add(calc);

}

lock	(_result)

		_result.AddRange(tempRes);

The	following	is	the	complete	comparison:

static	class	Program

{

		private	const	int	_count	=	1000000;

		private	const	int	_threadCount	=	8;

		private	static	readonly	List<string>	_result	=	new	List<string>();

		private	static	string	Calc(int	prm)	

		{

				Thread.SpinWait(100);

				return	prm.ToString();

		}

		private	static	void	SimpleLock(int	from,	int	count)	

		{

				for	(var	i	=	from;	i	<	from	+	count;	i++)

						lock	(_result)

				_result.Add(Calc(i));

		}

		private	static	void	MinimizedLock(int	from,	int	count)	

		{

				for	(var	i	=	from;	i	<	from	+	count;	i++)	

				{

						var	calc	=	Calc(i);

						lock	(_result)

						_result.Add(calc);

				}

		}

		private	static	void	MinimizedSharedData(int	from,	int	count)	

www.EBooksWorld.ir

		{

				var	tempRes	=	new	List<string>(count);

				for	(var	i	=	from;	i	<	from	+	count;	i++)

				{

						var	calc	=	Calc(i);

						tempRes.Add(calc);

				}

				lock	(_result)

						_result.AddRange(tempRes);

		}

		private	static	long	Measure(Func<int,	ThreadStart>	actionCreator)

		{

				_result.Clear();

				var	threads	=

						Enumerable

								.Range(0,	_threadCount)

								.Select(n	=>	new	Thread(actionCreator(n)))

								.ToArray();

				var	sw	=	Stopwatch.StartNew();

				foreach	(var	thread	in	threads)

						thread.Start();

				foreach	(var	thread	in	threads)

						thread.Join();

				sw.Stop();

				return	sw.ElapsedMilliseconds;

		}

		static	void	Main()

		{

				//	Warm	up

				SimpleLock(1,	1);

				MinimizedLock(1,	1);

				MinimizedSharedData(1,	1);

				const	int	part	=	_count	/	_threadCount;

				var	time	=	Measure(n	=>	()	=>	SimpleLock(n*part,	part));

				Console.WriteLine("Simple	lock:	{0}ms",	time);

				time	=	Measure(n	=>	()	=>	MinimizedLock(n	*	part,	part));

				Console.WriteLine("Minimized	lock:	{0}ms",	time);

				time	=	Measure(n	=>	()	=>	MinimizedSharedData(n	*	part,	part));

				Console.WriteLine("Minimized	shared	data:	{0}ms",	time);

		}

}

Executing	this	code	on	Core	i7	2600K	and	x64	OS	in	Release	configuration	gives	the
following	results:

Simple	lock:	806ms

Minimized	lock:	321ms

Minimized	shared	data:	165ms

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	learned	about	the	issues	with	using	shared	data	from	multiple	threads.
We	looked	through	the	different	techniques	allowing	us	to	organize	concurrent	access	to
shared	state	more	efficiently	in	different	scenarios.	We	also	established	an	understanding
about	the	performance	issues	of	using	locks,	thread	blocking,	and	context	switching.

In	the	next	chapter,	we	will	continue	to	explore	concurrent	access	to	shared	data.
However,	this	time	we	will	try	to	avoid	locks	and	make	our	parallel	program	more	robust
and	efficient.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	2.	Lock-Free	Concurrency
In	Chapter	1,	Traditional	Concurrency,	we	reviewed	thread	synchronization	with	locking
and	how	to	use	locks	effectively.	However,	there	will	be	still	performance	overhead
related	to	locking.	The	best	way	to	avoid	such	issues	is	by	not	using	locks	at	all	whenever
possible.	Algorithms	that	do	not	use	locking	are	referred	to	as	lock-free	algorithms.

Lock-free	algorithms	in	turn	are	of	different	types.	One	of	the	most	important	types	is
wait-free	algorithms.	These	algorithms	not	only	evade	the	use	of	locks,	but	also	are
guaranteed	to	not	wait	for	any	events	from	other	threads.	This	is	a	best-case	scenario	but
unfortunately,	it	is	a	rare	situation	when	we	can	avoid	waiting	for	the	other	threads	at	all.
Usually,	a	real	concurrent	program	tries	to	be	as	close	as	possible	to	wait-free,	and	this	is
what	every	developer	should	try	to	achieve.

There	is	one	more	category	of	algorithms	that	do	not	use	OS-level	thread	blocking	but	use
spin	locks.	This	allows	the	creation	of	quite	efficient	code	in	situations	when	the	code
inside	the	lock	has	to	run	very	fast.	Such	algorithms	can	be	called	lock-free	in	various
sources,	but	strictly	speaking	they	are	not	as	they	do	not	guarantee	that	the	algorithm	will
be	progressing,	since	it	is	possible	it	gets	blocked	in	various	situations.	We	will	discuss
such	situations	later	in	Chapter	10,	Troubleshooting	Parallel	Programs.

Note
Please	notice	that	a	multithreaded	program	can	be	targeted	in	different	scenarios,	and	thus
the	metrics	could	be	different.	For	example,	if	our	goal	is	to	save	the	battery	charge	of	a
laptop	or	to	save	the	CPU	workload,	locking	techniques	are	preferred	(until	some	point
when	there	will	be	too	many	blocked	threads).	However,	if	we	need	overall	performance,
then	lock-free	algorithms	are	usually	better.

www.EBooksWorld.ir

Memory	model	and	compiler	optimizations
Memory	model	and	compiler	optimizations	are	not	directly	related	to	concurrency,	but
they	are	very	important	concepts	for	anyone	who	creates	concurrent	code,	shown	as
follows:

class	Program

{

		bool	_loop	=	true;

		static	void	Main(string[]	args)

		{

				var	p	=	new	Program();

				Task.Run(()	=>

				{

						Thread.Sleep(100);

						p._loop	=	false;

				});

				while	(p._loop);

				//while	(p._loop)	{	Console.Write(".");};

				Console.WriteLine("Exited	the	loop");

		}

}

If	you	compile	this	with	the	Release	build	configuration	and	JIT	compiler	optimizations
enabled,	the	loop	will	usually	hang	on	the	x86	and	x64	architectures.	This	happens
because	JIT	optimizes	the	p._loop	read	and	does	something	like	this:

if(p._loop)

{

		while(true);

}

If	there	is	something	inside	the	while	loop,	JIT	will	probably	not	optimize	this	code	in	this
way.	Also,	we	may	use	the	volatile	keyword	with	the	Boolean	flag	like	this:

volatile	bool	_loop;

In	this	case,	JIT	will	turn	off	this	optimization	as	well.	This	is	where	we	use	a	memory
model,	and	it	gets	complicated	here.	Here	is	a	quote	from	the	C#	language	specification:

For	non-volatile	fields,	optimization	techniques	that	reorder	instructions	can	lead	to
unexpected	and	unpredictable	results	in	multi-threaded	programs	that	access	fields
without	synchronization	such	as	that	provided	by	the	lock-statement.	These
optimizations	can	be	performed	by	the	compiler,	by	the	run-time	system,	or	by
hardware.	For	volatile	fields,	such	reordering	optimizations	are	restricted:

A	read	of	a	volatile	field	is	called	a	volatile	read.	A	volatile	read	has	“acquire
semantics”;	that	is,	it	is	guaranteed	to	occur	prior	to	any	references	to	memory
that	occur	after	it	in	the	instruction	sequence.

www.EBooksWorld.ir

A	write	of	a	volatile	field	is	called	a	volatile	write.	A	volatile	write	has	“release
semantics”;	that	is,	it	is	guaranteed	to	happen	after	any	memory	references
prior	to	the	write	instruction	in	the	instruction	sequence.

As	we	can	see,	there	is	nothing	specifically	stated	here	about	compiler	optimizations,	but
in	fact	JIT	does	not	optimize	volatile	field	read	in	this	case.

So	we	can	see	a	description	in	a	specification,	but	how	does	this	really	work?	Let’s	look	at
a	volatile	read	example:

class	VolatileRead

{

		int	_x;

		volatile	int	_y;

		int	_z;

		void	Read()

		{

				int	x	=	_x;	//	1

				int	y	=	_y;	//	2	(volatile)

				int	z	=	_z;	//	3

		}

}

The	possible	reordering	options	would	be	1,	2,	3	(original);	2,	1,	3;	and	2,	3,	1.	This	can	be
imagined	as	a	one-way	fence	that	allows	the	preceding	operation	to	pass	through,	but	does
not	allow	subsequent	operations.	So	this	is	called	the	acquire	fence.

Volatile	writes	look	pretty	similar.	Consider	the	following	code	snippet:

class	VolatileWrite

{

		int	_x;

		volatile	int	_y;

		int	_z;

		void	Read()

		{

				_x	=	1;	//	1

				_y	=	2;	//	2	(volatile)

				_z	=	3;	//	3

		}

}

Possible	options	here	are	1,	2,	3	(original);	1,	3,	2;	and	3,	1,	2.	This	is	the	release	fence,
which	allows	the	reordering	of	only	subsequent	read	or	write	operations	but	does	not
allow	the	preceding	write	operation.	We	have	the	Thread.VolatileRead	and
Thread.VolatileWrite	methods	that	do	the	same	thing	explicitly.	There	is	the
Thread.MemoryBarrier	(memory	barrier)	method	as	well,	which	allows	us	to	use	a	full
fence	when	we	do	not	let	through	any	operations.

I	would	like	to	mention	that	we	are	now	on	less	certain	ground.	Different	memory	models
on	different	architectures	can	be	confusing,	and	code	without	volatile	can	perfectly	work
on	x86	and	amd64.	However,	if	you	are	using	shared	data,	please	be	aware	of	possible

www.EBooksWorld.ir

reordering	and	non-reordering	optimizations	and	choose	the	appropriate	behavior.

Note
Please	be	aware	that	making	a	field	volatile	means	that	all	the	read	and	write	operations
will	have	slightly	lower	performance	and	they	will	have	the	code	in	common,	since	some
possible	optimizations	will	be	ignored.

www.EBooksWorld.ir

www.EBooksWorld.ir

The	System.Threading.Interlocked	class
When	we	reviewed	race	conditions	in	the	previous	chapter,	we	learned	that	even	a	simple
increment	operation	consists	of	three	separate	actions.	Although	modern	CPUs	can
perform	such	operations	at	once,	it	is	necessary	to	make	them	safe	to	be	used	in	concurrent
programs.

The	.NET	Framework	contains	the	System.Threading.Interlocked	class	that	provides
access	to	several	operations	that	are	atomic,	which	means	that	they	are	uninterruptible	and
appear	to	occur	instantaneously	to	the	rest	of	the	system.	These	are	the	operations	that	the
lock-free	algorithms	are	based	on.

Let’s	revise	a	race	condition	example	and	compare	the	locking	and	Interlocked	class
operations.	First,	we	will	use	the	traditional	locking	approach:

var	counterLock	=	new	object();

var	counter	=	0;

ThreadStart	proc	=

		()	=>

		{

				for	(int	i	=	0;	i	<	count;	i++)

				{

						lock	(counterLock)

								counter++;

						Thread.SpinWait(100);

						lock	(counterLock)

								counter--;

				}

		};

var	threads	=

		Enumerable

				.Range(0,	8)

				.Select(n	=>	new	Thread(proc))

				.ToArray();

var	sw	=	Stopwatch.StartNew();

foreach	(var	thread	in	threads)

		thread.Start();

foreach	(var	thread	in	threads)

		thread.Join();

sw.Stop();

Console.WriteLine("Locks:	counter={0},	time	=	{1}ms",	counter,	

sw.ElapsedMilliseconds);

Now,	let’s	replace	locking	with	the	Interlocked	class	method	calls:

counter	=	0;

ThreadStart	proc2	=

		()	=>

		{

				for	(int	i	=	0;	i	<	count;	i++)

				{

						Interlocked.Increment(ref	counter);

						Thread.SpinWait(100);

						Interlocked.Decrement(ref	counter);

www.EBooksWorld.ir

				}

		};

threads	=

		Enumerable

				.Range(0,	8)

				.Select(n	=>	new	Thread(proc2))

				.ToArray();

sw	=	Stopwatch.StartNew();

foreach	(var	thread	in	threads)

		thread.Start();

foreach	(var	thread	in	threads)

		thread.Join();

sw.Stop();

Console.WriteLine("Lock	free:	counter={0},	time	=	{1}ms",	counter,	

sw.ElapsedMilliseconds);

As	a	result,	we	got	this	on	a	reference	computer:

Locks:	counter=0,	time	=	1892ms

Locks:	counter=0,	time	=	800ms

Just	using	atomic	operations	performed	more	than	twice	as	well	and	kept	the	program
logic	correct.

Another	tricky	part	is	64-bit	integer	calculations.	When	the	program	runs	in	the	64-bit
mode,	the	read	and	write	operations	for	64-bit	integer	numbers	are	atomic.	However,	when
running	in	the	32-bit	mode,	these	operations	become	nonatomic	and	consist	of	two	parts—
reading/writing	high	32	bits	and	low	32	bits	of	the	number.

The	Interlocked	class	contains	the	Read	method	that	can	read	a	64-bit	integer	in	the	32-
bit	mode	as	an	atomic	operation.	This	is	not	required	in	64-bit	mode,	but	if	you	compile
your	program	in	any	CPU	mode	then	you	should	use	this	method	to	guarantee	atomicity	of
reads.	There	are	the	Increment	and	Decrement	method	overloads	for	64-bit	integers	as
well,	and	there	is	the	Add	method	that	allows	us	to	have	atomic	addition	of	32-bit	and	64-
bit	integers.

Another	very	important	operation	is	the	value	exchange.	Looking	at	the	following	code	it
is	obvious	that	this	operation	is	not	atomic,	and	thus	we	must	put	this	code	inside	some
kind	of	lock	to	keep	this	operation	correct	in	a	concurrent	program:

var	tmp	=	a;

a	=	b;

b	=	tmp;

The	Interlocked	class	allows	us	to	perform	this	operation	as	atomic	with	the	Exchange
method:

b	=	Interlocked.Exchange(ref	a,	b)

There	are	several	overloads	for	this	method	that	allow	us	to	exchange	the	numeric	values
of	different	types	including	32-bit	and	64-bit	integers,	the	float	and	double	values,	object
references	(there	is	a	generic	version	of	this	method	with	the	type	parameter),	and	the
IntPtr	structures.

The	most	complicated	atomic	operation	provided	by	the	Interlocked	class	is	the

www.EBooksWorld.ir

CompareExchange	method.	It	accepts	three	arguments,	then	it	compares	the	first	argument
with	the	third;	if	they	are	equal,	it	assigns	the	second	argument	value	to	the	first	argument.
This	is	performed	by	special	instruction	on	hardware	too.	We	will	see	an	example	of	this
later	in	this	chapter	when	we	try	to	implement	a	lock-free	queue.

Note
All	the	Interlocked	class	method	calls	implicitly	generate	full	fences.

www.EBooksWorld.ir

www.EBooksWorld.ir

Interlocked	internals
To	understand	how	interlocked	internals	work	under	the	hood,	we’re	going	to	see	what
machine	code	is	being	generated	when	compiling	the	Interlocked.Increment	method.	If
we	just	run	the	program	in	debug	mode	and	look	at	the	disassembly	window,	we	will	see
the	usual	method	call.

To	see	what	is	really	going	on,	we	have	to	enable	all	optimizations:

1.	 First,	we	need	to	build	the	code	in	the	Release	mode	in	Visual	Studio.
2.	 Then,	we	have	to	go	to	Tools	|	Options	|	Debugging	|	General	and	uncheck	the

Suppress	JIT	optimization	on	module	load	option.
3.	 Finally,	add	a	System.Diagnostics.Debugger.Break()	method	call	to	pause	the

code	in	debugger.

If	everything	is	set,	you	will	see	the	following	code	in	the	disassembly	window:

Interlocked.Increment(ref	counter);

00007FFEF22B49AE		lea									rcx,[rsi+20h]

00007FFEF22B49B2		lock	add				dword	ptr	[rcx],1

Note
Please	notice	the	lock	prefix	in	the	last	line	of	the	code.	This	prefix	is	an	instruction	to	the
CPU	to	perform	an	atomic	increment	operation.	This	means	that	the	Interlocked	class	is
not	a	usual	class,	but	a	hint	to	the	JIT	compiler	to	generate	a	special	code.

www.EBooksWorld.ir

www.EBooksWorld.ir

Writing	lock-free	code
Since	we	have	a	very	limited	number	of	atomic	operations,	it	is	very	hard	to	write	lock-
free	code.	For	some	common	data	structures,	such	as	a	double	linked	list,	there	is	no	lock-
free	implementation.	Besides,	it	is	very	easy	to	make	a	mistake,	and	the	main	problem	is
that	such	code	could	work	fine	99.9	percent	of	the	time,	which	makes	debugging
enormously	confusing.

Therefore,	the	best	practice	is	to	use	standard	implementations	of	such	algorithms.	A	good
place	to	start	is	by	using	concurrent	collections	from	the
System.Collections.Concurrent	namespace	that	was	introduced	in	the	.NET
Framework	4.0.	We	will	review	them	in	detail	in	Chapter	6,	Using	Concurrent	Data
Structures.	However,	now	we	will	try	to	do	not	as	advised	and	implement	a	lock-free	stack
and	a	lock-free	queue	from	scratch.

The	cornerstone	of	the	lock-free	code	is	the	following	pattern:	read	some	data	from	the
shared	state,	calculate	a	new	value,	and	then	write	the	new	value	back,	but	only	if	the
shared	state	wasn’t	mutated	by	any	other	thread	by	that	time.	The	last	check	and	write
operation	must	be	atomic,	and	this	is	what	we	use	Interlocked.CompareExchange	for.
This	description	looks	a	bit	confusing,	but	it	can	be	illustrated	with	quite	an	easy	example.
Imagine	multiple	threads	calculating	an	integer	sum	in	parallel.	Consider	the	following
line	of	code,	for	example:

_total	+=	current;

If	we	use	this	simple	code,	we	would	get	race	condition	here	since	this	operation	is	not
atomic.	The	easiest	way	to	fix	this	is	by	using	atomic	addition	with	the	Interlocked.Add
method,	but	to	illustrate	the	CompareExchange	method	logic,	let’s	implement	the	addition
like	this:

int	beforeValue,	newValue;

do

{

		beforeValue	=	_total;

		newValue	=	beforeValue	+	current;

}

while	(beforeValue	!=	Interlocked.CompareExchange(ref	_total,	newValue,	

beforeValue))

First,	we	save	the	_total	value	in	the	beforeValue	temporary	variable.	Then,	we
calculate	a	new	value	and	store	it	in	newValue.	Finally,	we’re	trying	to	save	newValue	in
_total,	but	only	if	_total	remains	the	same	when	we	started	the	operation.	If	not,	it
means	that	the	_total	value	has	been	changed	by	another	thread	and	we	have	to	repeat	the
operation	with	the	new	value	of	_total.

www.EBooksWorld.ir

The	ABA	problem
Remember	when	we	mentioned	that	lock-free	programming	is	very	complicated?	Now,
it’s	time	to	prove	it.	Here	is	another	case	when	a	seemingly	right	concurrent	code	works
absolutely	wrong.

Imagine	that	we	have	a	lock-free	stack	implementation	with	the
Interlocked.CompareExchange	atomic	compare-and-swap	(CAS)	operation.	Let’s
assume	that	it	contains	three	items:	A	on	top,	B,	and	C.	Thread	1	calls	the	Pop	method;	it
sets	the	old	head	value	as	A	and	the	new	head	value	as	B.	However	for	some	reason,
thread	1	gets	suspended	by	the	operating	system.	Meanwhile,	thread	2	pops	item	A	from
the	stack	and	saves	it	for	later	use.	Then,	it	pushes	item	D	on	the	stack.	After	doing	this,	it
finally	pushes	item	A	back	on	top	of	the	stack,	but	this	time	A’s	next	item	is	D	and	our
stack	contains	four	items:	A	on	top,	D,	B,	and	C.

Now	the	first	thread	continues	to	run.	It	compares	whether	the	old	head	value	and	the
current	head	value	are	the	same,	and	they	are!	Therefore,	the	thread	writes	value	B	to	the
head	of	the	stack.	Now,	the	stack	is	corrupted	and	contains	two	items:	B	on	the	top	and	C.

The	described	process	can	be	illustrated	by	the	following	schema:

www.EBooksWorld.ir

So,	just	having	atomic	CAS	operations	is	not	enough.	To	make	this	code	work	right,	it’s
very	important	to	make	sure	that	we	do	not	reuse	references	in	our	code	or	allow	them	to
escape	to	our	consumers.	Thus,	when	we	push	item	A	twice,	it	should	be	different	from
the	existing	items	from	the	stack	perspective.	To	achieve	this,	it’s	enough	to	allocate	a	new
wrapper	object	each	time	something	is	being	pushed	onto	the	stack.

Here	is	a	quote	from	Wikipedia	that	describes	the	ABA	problem	very	well:

Natalie	is	waiting	in	her	car	at	a	red	traffic	light	with	her	children.	Her	children	start
fighting	with	each	other	while	waiting,	and	she	leans	back	to	scold	them.	Once	their
fighting	stops,	Natalie	checks	the	light	again	and	notices	that	it’s	still	red.	However,
while	she	was	focusing	on	her	children,	the	light	had	changed	to	green,	and	then
back	again.	Natalie	doesn’t	think	the	light	ever	changed,	but	the	people	waiting
behind	her	are	very	mad	and	honking	their	horns	now.

www.EBooksWorld.ir

The	lock-free	stack
Now,	we	are	ready	to	implement	a	lock-free	stack	data	structure.	First,	we	define	a	base
abstract	class	for	our	stack	implementation:

public	abstract	class	StackBase<T>

Then	we	have	an	inner	class	to	define	an	item	on	the	stack:

private	class	Item

{

		private	readonly	T	_data;

		private	readonly	Item	_next;

		public	Item(T	data,	Item	next)

		{

				_data	=	data;

				_next	=	next;

		}

		public	T	Data

		{

				get	{	return	_data;	}

		}

		public	Item	Next

		{

				get	{	return	_next;	}

		}

}

The	item	class	contains	user	data	and	a	reference	to	the	next	element	on	the	stack.	Now,
we’re	adding	a	stack	top	item:

private	Item	_head;

A	property	that	indicates	whether	the	stack	is	empty	is	as	follows:

public	bool	IsEmpty

{

		get	{	return	_head	==	null;	}

}

Two	abstract	methods	that	store	and	retrieve	an	item	from	the	stack:

public	abstract	void	Push(T	data);

public	abstract	bool	TryPop(out	T	data);

Now	we	have	a	base	for	different	stack	implementations	to	compare	how	they	perform.
We	start	with	a	lock-based	stack:

public	class	LockStack<T>	:	StackBase<T>

As	we	remember,	the	lock	statement	is	translated	to	the	Monitor	class	method	calls	by	the
C#	compiler.	The	monitor	class	tries	to	avoid	using	OS-level	locks	and	uses	spin	locks	to
achieve	a	performance	boost	when	a	lock	takes	a	little	time.	We’re	going	to	illustrate	this

www.EBooksWorld.ir

and	create	a	stack	that	uses	only	OS-level	locks	with	the	help	of	the
System.Threading.Mutex	class,	which	uses	the	mutex	synchronization	primitive	from	the
OS.	We	create	a	mutex	instance:

private	readonly	Mutex	_lock	=	new	Mutex();

Then,	implement	the	Push	and	Pop	methods	as	follows:

public	override	void	Push(T	data)

{

		_lock.WaitOne();

		try

		{

				_head	=	new	Item(data,	_head);

		}

		finally

		{

				_lock.ReleaseMutex();

		}

}

public	override	bool	TryPop(out	T	data)

{

		_lock.WaitOne();

		try

		{

				if	(IsEmpty)

				{

						data	=	null;

						return	false;

				}

				data	=	_head.Data;

				_head	=	_head.Next;

				return	true;

		}

		finally

		{

				_lock.ReleaseMutex();

		}

}

This	implementation	puts	a	thread	in	a	blocked	state	every	time	it	has	to	wait	for	the	lock
to	be	released.	This	is	the	worst-case	scenario,	and	we’re	going	to	see	the	test	results	that
prove	this.

Now	we	will	implement	a	concurrent	stack	with	a	monitor	and	lock	statement:

public	class	MonitorStack<T>	:	StackBase<T>	where	T:	class

{

		private	readonly	object	_lock	=	new	object();

		public	override	void	Push(T	data)

		{

				lock	(_lock)

						_head	=	new	Item(data,	_head);

		}

www.EBooksWorld.ir

		public	override	bool	TryPop(out	T	data)

		{

				lock	(_lock)

				{

						if	(IsEmpty)

						{

								data	=	null;

								return	false;

						}

						data	=	_head.Data;

						_head	=	_head.Next;

						return	true;

				}

		}

}

Then	it’s	the	lock-free	stack	implementation’s	turn:

public	class	LockFreeStack<T>	where	T:	class

Notice	that	we	had	to	add	class	constraint	to	the	generic	type	parameter.	We	do	this
because	we	cannot	atomically	exchange	values	that	are	more	than	8	bytes	in	size.	If	we
look	at	the	generic	version	of	the	Interlocked.CompareExchange	method,	we	can	make
sure	that	its	type	parameter	has	the	same	class	constraint.

Let’s	get	to	implementation:

public	void	Push(T	data)

{

		Item	item,	oldHead;

		do

		{

				oldHead	=	_head;

				item	=	new	Item(data,	oldHead);

		}	while	(oldHead	!=	Interlocked.CompareExchange(ref	_head,	item,	

oldHead));

}

This	implementation	is	quite	similar	to	a	lock-free	addition	example.	We	basically	do	the
same	thing,	only	instead	of	addition,	we’re	storing	a	new	reference	to	the	stack’s	head.

The	TryPop	method	code	is	slightly	more	complicated:

public	bool	TryPop(out	T	data)

{

		var	oldHead	=	_head;

		while	(!IsEmpty)

		{

				if	(oldHead	==	Interlocked.CompareExchange(ref	_head,	oldHead.Next,	

oldHead))

				{

						data	=	oldHead.Data;

						return	true;

				}

				oldHead	=	_head;

		}

www.EBooksWorld.ir

		data	=	null;

		return	false;

}

Here	we	have	to	notice	that	the	stack	can	be	empty;	in	this	case,	we	return	false	to
indicate	that	we	failed	to	retrieve	a	value	from	the	stack.

Also,	we	would	like	to	compare	our	code	to	the	standard	ConcurrentStack
implementation	from	System.Collections.Concurrent.	It	is	possible	to	use	an	interface
to	work	with	all	collections	in	the	same	way,	but	in	this	case,	it	is	easier	to	create	a
wrapper	class	that	contains	the	source	collection:

public	class	ConcurrentStackWrapper<T>	:	StackBase<T>

{

		private	readonly	ConcurrentStack<T>	_stack;

		public	ConcurrentStackWrapper()

		{

				_stack	=	new	ConcurrentStack<T>();

		}

		public	override	void	Push(T	data)

		{

				_stack.Push(data);

		}

		public	override	bool	TryPop(out	T	data)

		{

				return	_stack.TryPop(out	data);

		}

}

The	only	operation	left	is	to	compare	the	performances	of	our	stack	implementations:

private	static	long	Measure(StackBase<string>	stack)

{

		var	threads	=	Enumerable

				.Range(0,	_threadCount)

				.Select(

						n	=>	new	Thread(

								()	=>

								{

										for	(var	j	=	0;	j	<	_iterations;	j++)

										{

												for	(var	i	=	0;	i	<	_iterationDepth;	i++)

												{

														stack.Push(i.ToString());

												}

												string	res;

												for	(var	i	=	0;	i	<	_iterationDepth;	i++)

												{

														stack.TryPop(out	res);

												}

										}

								}))

www.EBooksWorld.ir

				.ToArray();

		var	sw	=	Stopwatch.StartNew();

		foreach	(var	thread	in	threads)

				thread.Start();

		foreach	(var	thread	in	threads)

				thread.Join();

		sw.Stop();

		if	(!stack.IsEmpty)

				throw	new	ApplicationException("Stack	must	be	empty!");

		return	sw.ElapsedMilliseconds;

}

We	run	several	threads	and	each	of	these	threads	pushes	and	pops	items	to	the	stack	in
parallel.	We	wait	for	all	the	threads	to	complete,	and	check	whether	the	stack	is	empty,
which	means	that	the	program	is	correct.	Finally,	we	measure	the	time	required	for	all	the
operations	to	complete.

The	results	can	be	different	and	greatly	depend	on	the	CPU.	This	one	is	from	a	3.4	GHz
quad	core	Intel	i7-3770	CPU:

LockStack:	6718ms

LockFreeStack:	209ms

MonitorStack:	154ms

ConcurrentStack:	121ms

This	one	is	from	a	hyper-v	virtual	machine	with	two	CPU	cores	running	on	a	2.2	GHz
quad	core	Intel	i7-4702HQ	CPU	laptop	with	power	saving	mode	enabled:

LockStack:	39497ms

LockFreeStack:	388ms

MonitorStack:	691ms

ConcurrentStack:	419ms

The	typical	results	are	as	follows:	LockStack	is	the	slowest,	the	LockFreeStack	and
MonitorStak	implementations	perform	about	the	same,	and	the	standard
ConcurrentStack	shows	the	best	results.	The	MonitorStack	implementation	works	well
because,	in	this	case,	operations	under	lock	are	very	fast,	that	is,	about	two	processor
cycles,	and	in	this	situation,	spin	wait	works	very	well.	We’ll	get	back	to	explaining	these
results	in	detail	later	in	Chapter	6,	Using	Concurrent	Data	Structures.

www.EBooksWorld.ir

The	lock-free	queue
Stack	and	queue	are	the	simplest	of	basic	data	structures.	We	have	implemented	a	lock-
free	stack,	and	we	encountered	several	tricky	problems	that	we	had	to	resolve.
Implementing	a	lock-free	concurrent	queue	is	a	more	sophisticated	task,	since	we	now
have	to	perform	several	operations	at	once.	For	example,	when	we	queue	a	new	item,	we
must	simultaneously	set	the	old	tail’s	next	item	reference	to	a	new	item	and	then	change	a
tail	reference	that	the	new	item	is	now	a	new	tail.	Unfortunately,	we	cannot	change	two
objects	as	an	atomic	operation.	So,	we	must	find	a	way	to	properly	synchronize	access	to
the	head	and	tail	without	locks:

public	class	LockFreeQueue<T>

{

We	define	a	simple	class	that	is	going	to	contain	data	in	the	queue:

protected	class	Item

{

		public	T	Data;

		public	Item	Next;

}

We	will	store	references	to	the	queue’s	tail	and	head	and	initialize	them	by	default:

private	Item	_head;

private	Item	_tail;

public	LockFreeQueue()

{

		_head	=	new	Item();

		_tail	=	_head;

}

The	first	challenge	is	to	implement	an	Enqueue	method.	What	we	can	do	is	set	tail.Next
in	the	CAS	operation,	but	let	the	tail	reference	advance	later,	maybe	by	other	threads.	This
guarantees	that	the	linked	list	of	queue	items	will	always	be	valid,	and	if	we	see	that	we
failed	to	set	a	new	tail,	just	let	this	operation	start	in	another	thread:

public	void	Enqueue(T	data)

{

Create	a	new	queue	item	and	reserve	space	for	the	local	copies	of	the	_tail	and
_tail.Next	references:

Item	item	=	new	Item();

item.Data	=	data;

Item	oldTail	=	null;

Item	oldNext	=	null;

We	repeat	the	queueing	operation	until	it	succeeds:

bool	update	=	false;

while	(!update)	{

Copy	references	to	local	variables	and	acquire	a	full	fence	so	that	the	read	and	write
www.EBooksWorld.ir

operations	will	not	be	reordered.	We	have	to	use	the	Next	field	from	the	local	copy,
because	the	actual	_tail	item	may	have	already	been	changed	between	both	the	read
operations:

oldTail	=	_tail;

oldNext	=	oldTail.Next;

Thread.MemoryBarrier();

The	tail	may	remain	the	same	as	it	was	in	the	beginning	of	the	operation:

if	(_tail	==	oldTail)

{

In	this	case,	the	next	reference	was	null,	which	means	that	no	one	changed	the	tail	since
we	copied	it	to	oldNext:

if	(oldNext	==	null)

{

Here	we	can	try	queueing	an	item,	and	this	will	be	the	success	of	the	whole	operation:

		update	=	Interlocked.CompareExchange(ref	_tail.Next,	item,	null)	==	null;

}

else

{

If	not,	it	means	that	another	thread	is	queueing	a	new	item	right	now,	so	we	should	try	to
set	the	tail	reference	to	point	to	its	next	node:

						Interlocked.CompareExchange(ref	_tail,	oldNext,	oldTail);

				}

		}

}

Here	we	have	successfully	inserted	a	new	item	to	the	end	of	the	queue,	and	now	we’re
trying	to	update	the	tail	reference.	However,	if	we	fail	it	is	okay,	since	another	thread	will
eventually	do	this	in	its	Enqueue	method	call:

		Interlocked.CompareExchange(ref	_tail,	item,	oldTail);

}

The	main	goal	of	dequeueing	properly	is	to	correctly	work	in	situations	when	we	have	not
yet	updated	the	tail	reference:

public	bool	TryDequeue(out	T	result)

{

We	will	create	a	loop	that	finishes	if	there	is	nothing	to	dequeue	or	if	we	have	dequeued	an
item	successfully:

result	=	default(T);

Item	oldNext	=	null;

bool	advanced	=	false;

while	(!advanced)

{

www.EBooksWorld.ir

We	will	make	local	copies	of	variables	that	are	needed:

Item	oldHead	=	_head;

Item	oldTail	=	_tail;

oldNext	=	oldHead.Next;

Then,	we	will	acquire	a	full	fence	to	prevent	read	and	write	reordering:

Thread.MemoryBarrier();

There	might	be	a	case	when	the	head	item	has	not	been	changed	yet:

if	(oldHead	==	_head)

{

Then,	we	will	check	whether	the	queue	is	empty:

if	(oldHead	==	oldTail)

{

In	this	case,	this	should	be	false.	If	not,	it	means	that	we	have	a	lagging	tail	and	we	need
to	update	it:

if	(oldNext	!=	null)

{

		Interlocked.CompareExchange(ref	_tail,	oldNext,	oldTail);

		continue;

}

If	we	are	here,	we	have	an	empty	queue:

		result	=	default(T);

		return	false;

}

Now	we	will	get	the	dequeueing	item	and	try	to	advance	the	head	reference:

				result	=	oldNext.Data;

				advanced	=	Interlocked.CompareExchange(

				ref	_head,	oldNext,	oldHead)	==	oldHead;

		}

}

We	will	remove	any	references	that	can	prevent	the	garbage	collector	from	doing	its	job,
and	then	we	will	exit:

				oldNext.Data	=	default(T);

				return	true;

		}

		public	bool	IsEmpty

		{

				get

				{

						return	_head	==	_tail;

				}

		}

www.EBooksWorld.ir

}

Then	we	will	write	the	following	code	to	unify	access	to	queues	and	compare	different
ways	to	synchronize	access	to	the	queue.	To	write	general	performance	measurement
code,	we	need	to	write	an	interface:

public	interface	IConcurrentQueue<T>

{

		void	Enqueue(T	data);

		bool	TryDequeue(out	T	data);

		bool	IsEmpty	{	get;	}

}

Both	LockFreeQueue	and	the	standard	ConcurrentQueue	are	already	implementing	this
interface,	and	all	we	need	to	do	is	to	create	a	wrapper	class	like	this:

class	LockFreeQueueWrapper<T>	:	LockFreeQueue<T>,	IConcurrentQueue<T>	{}

class	ConcurrentQueueWrapper<T>	:	ConcurrentQueue<T>,	IConcurrentQueue<T>	

{}

We	need	a	more	advanced	wrapper	in	the	case	of	a	non-thread-safe	Queue	collection:

class	QueueWrapper<T>	:	IConcurrentQueue<T>

{

		private	readonly	object	_syncRoot	=	new	object();

		private	readonly	Queue<T>	_queue	=	new	Queue<T>();

		public	void	Enqueue(T	data)

		{

				lock(_syncRoot)

				_queue.Enqueue(data);

		}

		public	bool	TryDequeue(out	T	data)

		{

				if	(_queue.Count	>	0)

				{

						lock	(_syncRoot)

						{

								if	(_queue.Count	>	0)

								{

										data	=	_queue.Dequeue();

										return	true;

								}

						}

				}

				data	=	default(T);

				return	false;

		}

		public	bool	IsEmpty

		{

				get	{	return	_queue.Count	==	0;	}

		}

}

www.EBooksWorld.ir

We	have	used	a	double	checked	locking	pattern	inside	the	TryDequeue	method.	At	first
glance,	it	seems	that	the	first	if	statement	is	not	doing	anything	useful,	and	we	can	just
remove	it.	If	you	do	an	experiment	and	run	the	program	without	the	first	check,	it	will	run
about	50	times	slower.	The	goal	of	the	first	check	is	to	see	whether	the	queue	is	empty	so
that	a	lock	is	not	acquired;	the	lock	and	other	threads	are	allowed	to	access	the	queue.
Making	a	lock	code	minimal	is	very	important,	and	it	is	illustrated	here	very	well.

Now	we	need	performance	measurement.	We	can	write	a	generalized	code	and	provide
our	different	queues	in	a	similar	way:

private	static	long	Measure(IConcurrentQueue<string>	queue)

{

		var	threads	=	Enumerable

		.Range(0,	_writeThreads)

		.Select(n	=>	new	Thread(()	=>

		{

				for	(int	i	=	0;	i	<	_iterations;	i++)

				{

						queue.Enqueue(i.ToString());

						Thread.SpinWait(100);

				}

		}))

		.Concat(new[]{new	Thread(()	=>

		{

				var	left	=	_iterations*_writeThreads;

				while	(left	>	0)

				{

						string	res;

						if	(queue.TryDequeue(out	res))

								left--;

				}

		})

		})

		.ToArray();

		var	sw	=	Stopwatch.StartNew();

		foreach	(var	thread	in	threads)

				thread.Start();

		foreach	(var	thread	in	threads)

				thread.Join();

		sw.Stop();

		if	(!queue.IsEmpty)

				throw	new	ApplicationException("Queue	is	not	empty!");

		return	sw.ElapsedMilliseconds;

}

The	last	thing	that	we	need	is	just	run	the	program	and	the	results	are	going	to	be	like	this:

private	const	int	_iterations	=	1000000;

private	const	int	_writeThreads	=	8;

public	static	void	Main()

{

		Console.WriteLine("Queue:	{0}ms",	Measure(new	QueueWrapper<string>()));

		Console.WriteLine("LockFreeQueue:	{0}ms",	Measure(new	

LockFreeQueueWrapper<string>()));

www.EBooksWorld.ir

		Console.WriteLine("ConcurrentQueue:	{0}ms",	Measure(new	

ConcurrentQueueWrapper<string>()));

}

The	output	is	as	follows:

Queue:	3453ms

LockFreeQueue:	1868ms

ConcurrentQueue:	1162ms

These	results	show	that	our	lock-free	queue	has	an	advantage	over	straightforward
locking,	but	the	standard	ConcurrentQueue	performs	better.	It	uses	complicated	ways	of
storing	data—a	linked	list	of	array	segments,	which	allows	us	to	organize	a	more	optimal
process	of	storing	and	reading	data.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	have	learned	how	we	can	synchronize	concurrent	access	to	shared	data
without	locking.	We	found	out	what	a	memory	model	and	atomic	operation	are	and	how
the	.NET	Framework	allows	programmers	to	use	them	in	code.	We	have	discussed	the
major	problems	related	to	lock-free	programming	and	made	sure	that	atomicity	is
necessary,	but	not	enough	to	make	the	concurrent	code	work	right.	Also,	we	have
implemented	a	lock-free	stack	and	queue	and	illustrated	the	lock-free	approach	with
concrete	examples.

In	the	next	chapter,	we	will	combine	approaches	that	we	have	learned	so	far	and	see	how
we	can	structure	a	concurrent	program	to	lower	the	performance	overhead	and	optimize	it,
depending	on	what	exactly	the	program	does.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	3.	Understanding	Parallelism
Granularity
One	of	the	most	essential	tasks	when	writing	parallel	code	is	to	divide	your	program	into
subsets	that	will	run	in	parallel	and	communicate	between	each	other.	Sometimes	the	task
naturally	divides	into	separate	pieces,	but	usually	it	is	up	to	you	to	choose	which	parts	to
make	parallel.	Should	we	use	a	small	number	of	large	tasks,	many	small	tasks,	or	maybe
large	and	small	tasks	at	the	same	time?

Theoretically	speaking,	it	does	not	matter.	In	case	of	an	ideal	computational	device,	it
would	have	no	overhead	for	creating	a	worker	thread	and	distributing	work	between	any
numbers	of	threads.	However,	on	a	real	CPU,	this	performance	overhead	is	significant	and
it	is	very	important	to	take	this	into	account.	The	right	way	to	split	your	program	into
parallel	parts	is	the	key	to	writing	effective	and	fast	programs.	In	this	chapter,	we	are
going	to	review	this	problem	in	detail.

www.EBooksWorld.ir

The	number	of	threads
One	of	the	easiest	ways	to	split	your	program	into	a	parallel	executing	part	is	using
threads.	However,	what	is	a	thread’s	cost	for	the	operating	system	and	CPU?	What	number
of	threads	is	optimal?

In	Windows	and	in	the	32-bit	mode,	the	maximum	number	of	threads	in	your	process	is
restricted	by	the	virtual	address	space	available,	which	is	two	gigabytes.	A	thread	stack’s
size	is	one	megabyte,	so	we	can	have	maximum	2,048	threads.	In	a	64-bit	OS	for	a	32-bit
process,	it	should	be	4,096.	However	in	practice,	the	address	space	will	be	fragmented	and
occupied	by	some	other	data,	and	there	are	other	reasons	why	the	maximum	number	of
threads	can	be	significantly	different.

The	best	way	to	find	out	what’s	going	on	is	to	write	a	code	that	checks	our	assumptions.
Here	we	will	print	the	current	size	of	a	handle,	giving	us	a	way	to	detect	whether	we	are	in
32-bit	or	64-bit	mode.	Then	the	code	will	start	new	threads	until	we	get	any	exception,	and
it	will	print	out	the	number	of	threads	that	we	were	able	to	start:

Console.WriteLine(IntPtr.Size);

var	cnt	=	0;

try

{

		for	(var	i	=	0;	i	<	int.MaxValue;	i++)

		{

				new	Thread(()	=>	Thread.Sleep(Timeout.Infinite)).Start();

				cnt++;

		}

}

Catch

{

		Console.WriteLine(cnt);

}

In	32-bit	mode	on	64-bit	Windows,	results	could	be	like	this:

4

1522

When	we	switch	to	64-bit	mode,	we	will	get	the	following:

8

71926

Note
Please	be	aware	that	if	we	run	this	in	64-bit	mode,	the	program	will	exhaust	system
resources	and	might	cause	the	OS	to	hang!

In	64-bit	mode,	we	have	no	tight	address	space	restrictions	anymore,	but	there	are	other
limited	resources	such	as	operating	system	handles,	kernel	memory	space,	and	more.	So,
we	do	not	know	exactly	how	many	threads	we	should	be	able	to	run.	However,	why	are
we	getting	1,522	threads	while	we	expected	to	get	about	4,000	when	we	compiled	our
program	in	32-bit	mode?

www.EBooksWorld.ir

There	are	two	reasons	behind	this:

The	first	reason	is	that	when	we	run	a	32-bit	process	on	64-bit	Windows,	a	thread
will	have	a	64-bit	stack	as	well,	and	the	actual	stack	allocation	will	be	1	MB	+	256
KB	of	the	64-bit	stack	(or	even	1	MB	on	the	Windows	versions	prior	to	Windows
Vista).
The	second	reason	is	that	our	process	is	limited	to	2	GB	of	the	address	space.	If	we
want	to	use	more,	we	have	to	specify	a	special	flag,
IMAGE_FILE_LARGE_ADDRESS_AWARE,	for	our	program,	which	is	set	using
the	/LARGEADDRESSAWARE	linker	option.	We	cannot	set	this	flag	directly	in
Visual	Studio,	but	we	are	able	to	use	a	tool	called	EditBin.exe,	which	is	included	in
Visual	Studio	installation.

To	use	this	tool,	just	open	Visual	Studio	Developer	Command	Prompt	and	run	the
following	command:

editbin	/LARGEADDRESSAWARE	path\to\your\program.exe

To	switch	off	this	flag,	use	this	syntax:

editbin	/LARGEADDRESSAWARE:NO	path\to\your\program.exe

If	you	set	this	flag	for	the	preceding	program,	you	will	see	that	we	are	able	to	create	about
3,200	threads.	Notice	that	we	can	use	the	so-called	4-gigabyte	tuning	on	32-bit	Windows,
and	using	this	along	with	the	preceding	option,	we	can	get	3GB	of	memory	for	our	32-bit
process,	which	should	give	us	about	3,000	threads.

However,	do	we	need	to	create	that	many	threads?	A	thread	is	a	quite	expensive	resource,
and	if	more	threads	are	created,	more	corresponding	work	has	to	be	performed	by	the
CPU.	Besides	this,	modern	desktop	CPUs	support	only	a	few	parallel	threads—from	2	to
12	at	the	moment.	CPUs	on	servers	have	more	cores	and	can	run	more	threads,	but	server-
side	concurrency	is	quite	different	and	will	be	reviewed	later	in	detail	in	Chapter	8,
Server-Side	Asynchrony.	Therefore,	creating	more	threads	will	not	make	a	program
effective,	but	instead	it	will	make	the	program	slower.

To	prove	this,	we	need	to	explore	a	more	complicated	program	than	just	using
Thread.SpinWait	to	simulate	CPU	load.	We	would	like	to	see	a	real	computational	task
that	will	involve	every	CPU’s	block	working	under	heavy	load.	A	task	like	this	can	be	an
implementation	of	a	ray	tracing	algorithm	to	render	several	spheres.	Here	is	a	quote	from
Wikipedia:

In	computer	graphics,	ray	tracing	is	a	technique	for	generating	an	image	by	tracing
the	path	of	light	through	pixels	in	an	image	plane	and	simulating	the	effects	of	its
encounters	with	virtual	objects.

It	is	relatively	easy	to	implement,	and	it	can	be	easily	scaled	because	the	different	parts	of
a	scene	have	no	shared	data	and	can	be	rendered	independently.	The	full	code	can	be
found	in	the	code	samples	of	this	chapter.	The	actual	rendering	code	is	placed	inside	the
RenderScene	method.	It	accepts	start	and	end	column	numbers	and	an	array	of	pixel
colors,	which	will	contain	the	results	of	a	rendering	process.

www.EBooksWorld.ir

In	the	beginning,	we	defined	the	algorithm	parameters.	In	the	sample	code,	we	will	use	the
image	dimensions	of	1920x1920	pixels:

private	const	int	_width	=	1920;

private	const	int	_height	=	1920;

This	may	not	fit	into	your	screen,	and	to	avoid	complexity,	scrolling	was	not	implemented
here.	So,	if	the	resultant	image	is	too	large,	you	can	simply	lower	its	size.	However,	the
measurements	were	taken	for	the	initial	image	size.

To	display	the	rendering	results,	we	will	call	the	ShowResult	method.	It	creates
System.Drawing.Bitmap	with	rendering	results,	creates	the	PictureBox	control	with	this
bitmap	data,	and	shows	it	in	Windows	Forms	Application:

private	static	void	ShowResult(Color[,]	data)

{

		var	bitmap	=	new	Bitmap(_width,	_height,	PixelFormat.Format32bppArgb);

		for	(var	i	=	0;	i	<	_width;	i++)

				for	(var	j	=	0;	j	<	_height;	j++)

						bitmap.SetPixel(i,	j,	data[i,	j]);

		var	pic	=	new	PictureBox	{

				Image	=	bitmap,

				Dock	=	DockStyle.Fill

		};

		var	form	=	new	Form	{

				ClientSize	=	new	Size(_width,	_height)

		};

		form.KeyDown	+=	(s,	a)	=>	form.Close();

		form.Controls.Add(pic);

		Application.Run(form);

}

Then,	we	can	run	this	code	like	this:

var	data	=	new	Color[_width,	_height];

RenderScene(data,	0,	_width);

ShowResult(data);

To	render	the	scene,	there	are	two	loops	going	through	the	X	and	Y	coordinates.	To	make
the	rendering	process	parallel,	we	can	use	the	X	coordinate	to	split	the	calculations
between	worker	threads,	so	each	thread	will	render	its	own	columns	set.	Then	we	will
increase	the	worker	threads	number	and	repeat	the	process	to	measure	performance:

for	(var	threadCnt	=	1;	threadCnt	<=	32;	threadCnt++)

{

		var	part	=	_width/threadCnt;

		var	threads	=	Enumerable.Range(0,	threadCnt)		.Select(

				n	=>	{

						var	startCol	=	n*part;

						var	endCol	=	n	==	threadCnt	-	1

								?	_width	-	(threadCnt	-	1)	*	part	-	1

								:	(n	+	1)	*	part;

								return	new	Thread(()	=>	RenderScene(data,	startCol,	endCol));

www.EBooksWorld.ir

				}).ToArray();

		var	sw	=	Stopwatch.StartNew();

		foreach	(var	thread	in	threads)

				thread.Start();

		foreach	(var	thread	in	threads)

				thread.Join();

		sw.Stop();

		Console.WriteLine("{0}	threads.	Render	time	{1}ms",	threadCnt,	

sw.ElapsedMilliseconds);

}

This	is	the	rendering	result:

This	is	the	dependency	between	the	number	of	worker	threads	and	the	overall	performance
on	a	Core	i7	2600K	CPU	and	a	64-bit	OS:

www.EBooksWorld.ir

This	chart	shows	three	main	stages.	The	first	stage	is	a	significant	performance
improvement	when	we	increase	the	thread	number	up	to	four.	An	Intel	Core	i7	2600K
CPU	has	four	physical	cores,	and	loading	all	the	cores	gives	us	almost	linear	scalability.
Then	we	can	have	a	smoother	performance	change	while	going	from	four	to	eight	threads.
This	is	due	to	the	fact	that	this	CPU	supports	hyperthreading	technology.	The	hyper-
threaded	cores	are	implemented	with	a	second	set	of	hardware	registers	in	the	same	core,
but	they	use	the	same	compute	pipeline.	Without	going	into	too	much	detail,	we	can	say
that	this	often	can	be	very	efficient	and	can	perform	almost	like	two	physical	CPU	cores.
In	this	example,	we	can	see	that	the	hyperthreading	technology	allows	the	program	to	run
faster.

The	last	stage	is	when	we	increase	the	threads	number	from	8	to	32.	The	line	goes	slightly
up	and	this	means	that	we	do	not	gain	any	advantage	and	only	lose	performance.	The	CPU
cannot	perform	faster	because	we	have	already	put	the	maximum	workload	on	it	and
creating	more	threads	only	leads	to	creating	more	work	for	running	the	threads	and	not
calculations.

Thus,	the	most	effective	option	is	using	as	many	threads	as	cores	your	CPU	has	and	as
many	logical	cores	your	operating	system	supports.	16	threads	is	a	common	number	that
will	be	enough	for	most	of	the	present	and	near	future	desktop	CPUs.	The	other	option	is
to	use	the	Environment.ProcessorCount	variable	to	know	during	runtime	how	many
cores	the	concrete	CPU	has.

Note
Please	notice	that	in	general	you	should	not	use	threads	directly.	There	are	other
possibilities	of	running	tasks	in	parallel,	and	you	should	use	threads	only	when	you	are

www.EBooksWorld.ir

100%	aware	of	the	advantages	and	disadvantages	of	other	approaches.	We’ll	review	some
of	them	later	in	this	book.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using	the	thread	pool
As	already	mentioned,	creating	a	thread	is	quite	an	expensive	operation.	In	addition	to
this,	creating	more	and	more	threads	is	not	efficient.	To	make	asynchronous	operations
easier,	in	Common	Language	Runtime	there	is	a	thread	pool,	which	is	represented	by	the
System.Threading.Threadpool	class.	Instead	of	creating	a	thread	every	time	we	need
one,	we	ask	the	thread	pool	for	a	worker	thread.	If	it	has	a	thread	available,	a	thread	pool
returns	it	to	us.	When	its	job	is	done,	it	goes	back	into	the	thread	pool	in	a	suspended	state
until	it	is	needed	again.

There	are	two	types	of	threads	inside	the	thread	pool:	worker	threads	and	input/output
threads.	I/O	threads	are	used	for	asynchronous	I/O	processing	and	we	are	not	going	to
review	them	here.	Let’s	concentrate	on	worker	threads	instead.	This	is	what	MSDN	states
about	thread	pool	and	its	limits:

There	is	one	thread	pool	per	process.

Beginning	with	the	.NET	Framework	4,	the	default	size	of	the	thread	pool	for	a
process	depends	on	several	factors,	such	as	the	size	of	the	virtual	address	space.	A
process	can	call	the	GetMaxThreads	method	to	determine	the	number	of	threads.

The	number	of	threads	in	the	thread	pool	can	be	changed	by	using	the
SetMaxThreads	method.

Each	thread	uses	the	default	stack	size	and	runs	at	the	default	priority.

If	we	try	to	acquire	more	worker	threads	than	the	thread	pool’s	limit,	the	subsequent
requests	will	be	queued	and	will	wait	until	a	worker	thread	becomes	available.	So,	we
cannot	have	more	thread	pool	worker	threads	than	its	limit	at	a	time.

In	practice,	the	thread	pool	implementation	is	very	complicated	and	relies	on	empiric
assumptions.	Also,	it	has	been	changed	with	new	.NET	Framework	versions,	and	it	is
possible	that	it	will	be	changed	in	future,	so	we	should	not	rely	on	specific	implementation
details.

However,	the	common	logic	is	simple;	the	thread	pool	maintains	a	small	number	of
worker	threads	and	creates	more	threads	when	needed	until	the	limit	is	reached.	To	see
how	this	works,	we	can	write	a	code	that	will	create	thread	pool	worker	threads	and	see
how	many	threads	are	being	allocated	at	a	time:

for	(var	i	=	0;	i	<	_threadCount;	i++)

		ThreadPool.QueueUserWorkItem(

			s	=>

				{

						Interlocked.Increment(ref	_runCount);

						Thread.Sleep(5000);

						Interlocked.Decrement(ref	_runCount);

				});

Thread.Sleep(1000);

while	(_runCount	>	0)

{

		Console.WriteLine(_runCount);

www.EBooksWorld.ir

		Thread.Sleep(100);

}

We	enqueue	a	number	of	worker	threads,	and	each	of	them	increments	a	thread	counter,
then	waits	for	5	seconds,	and	then	decrements	the	counter,	signaling	that	its	work	is
finished.	In	the	main	thread,	we	print	out	this	counter	to	see	how	the	worker	threads	are
being	allocated.

For	the	.NET	Framework	4.5	and	a	specific	hardware,	this	code	shows	that	at	first	we
almost	immediately	have	nine	worker	threads,	then	the	counter	grows	slowly	until	35-40,
and	then	it	goes	back	to	0.	Thus,	using	the	thread	pool	with	a	large	number	of	tasks	allows
us	to	effectively	load	the	CPU	and	abstract	from	the	actual	threads	usage	specifics.

There	is	one	more	worthwhile	thing	to	mention	about	the	thread	pool	that	can	be	good	or
bad	in	different	scenarios.	There	is	one	thread	pool	per	process,	and	every	library	and
framework	that	you	use	can	potentially	work	with	the	thread	pool,	so	some	of	the	worker
threads	can	be	already	busy	with	third-party	code	tasks.	So,	if	some	library	is	not	well
written	and	occupies	many	worker	threads	or	blocks	them	with	long-running	operations,
then	your	program	will	not	be	able	to	effectively	load	the	CPU.	Also,	this	can	be	caused
by	a	third-	party	code	that	works	with	input/output	operation	incorrectly,	which	leads	to
performance	degradation	as	well.

So	if	your	program	uses	the	thread	pool	for	computation	tasks	and	the	CPU	is	not	fully
loaded,	it	is	worth	checking	how	many	worker	threads	are	there	and	what	exactly	they	are
doing.	Specifically,	this	is	extremely	important	for	server-side	concurrency,	where	server
frameworks	usually	share	the	thread	pool	with	your	code.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding	granularity
When	there	is	one	common	computational	task	inside	your	application,	it	is	quite	obvious
how	to	make	it	run	in	parallel.	The	most	effective	solution	would	be	to	divide	the	tasks	in
parts	and	run	these	parts	on	each	available	CPU	core.	Since	the	number	of	parts	will	not
be	large,	there	will	not	be	any	significant	performance	overhead.	This	way	of	dividing
your	code	into	parallel	running	tasks	is	called	coarse-grained:

There	is	one	problem	with	the	coarse-grained	approach.	The	large	tasks	can	run	at
significantly	different	times,	and	then	at	these	times,	some	of	the	CPU	cores	will	not	be
used	to	help	compute	the	other	tasks.	One	more	possibility	is	that	these	tasks	can	block	the
CPU	cores	while	waiting	for	some	signals	from	other	threads	or	input/output	operation	to
complete.	In	this	case,	the	CPU	time	would	be	wasted.

To	be	more	effective,	we	will	have	to	split	these	tasks	into	more	parts.	If	the	number	of
parts	will	be	less,	then	we	will	still	have	the	problem	of	some	tasks	running	much	faster
than	others	do	and	some	of	CPU	cores	will	be	unavailable	for	further	computations.	So,
we	have	to	split	the	tasks	into	many	small	pieces	until	we	can	say	that	blocking	one	task	is
not	important	because	the	CPU	can	switch	to	another	task	at	once.	This	approach	is	called
fine-grained:

www.EBooksWorld.ir

How	can	we	implement	such	a	program?	We	have	to	divide	our	computation	into	very
small	tasks	and	minimize	the	overhead	for	each	task	since	there	will	be	many	of	them,	and
we	do	not	want	to	waste	CPU	time	to	support	these	tasks’	infrastructure	instead	of	doing
computation.	Then	we	have	to	find	a	way	to	run	these	tasks	effectively.

It	is	very	complicated	to	write	a	general	algorithm	to	divide	many	different	computation
tasks	into	several	worker	threads.	Fortunately,	such	frameworks	already	exist	and	one	of
them	is	included	in	the	.NET	Framework.	It	is	called	Task	Parallel	Library	(TPL).	We
will	discuss	TPL	in	detail	in	Chapter	4,	Task	Parallel	Library	in	Depth.

Now,	we	will	use	TPL	to	write	a	fine-grained	parallel	program.	We	simulate	that	the	tasks
are	different	by	running	SpinWait	with	different	number	of	cycles.	Then	we	split	our	tasks
into	differently-sized	pieces	and	calculate	the	number	of	iterations	per	millisecond	that	we
were	able	to	run.

The	sample	code	will	be	as	follows:

		var	random	=	new	Random();

		var	taskSizes	=

				Enumerable

						.Range(0,	_totalSize)

						.Select(n	=>	random.NextDouble())

						.ToArray();

		for	(var	workSize	=	256;	workSize	>	0;	workSize	-=	4)

		{

www.EBooksWorld.ir

				var	total	=	0;

				var	tasks	=	new	List<Task>();

				var	i	=	0;

				while	(total	<	_totalSize)

				{

						var	currentSize	=	(int)(taskSizes[i]*workSize)	+	1;

						tasks.Add(

								new	Task(

										()	=>

										{

												Thread.SpinWait(currentSize*_sizeElementaryDelay);

										}));

						i++;

						total	+=	currentSize;

				}

				var	sw	=	Stopwatch.StartNew();

				foreach	(var	task	in	tasks)

						task.Start();

				Task.WaitAll(tasks.ToArray());

				sw.Stop();

				Console.WriteLine(

						"Work	size	{0},

						Task	count	{1},	Effectiveness	{2:####}	works/ms",

						workSize,	tasks.Count,

						((double)total	*	_sizeElementaryDelay)/sw.ElapsedMilliseconds);

		}

}

The	fundamental	entity	in	TPL	is	the	System.Threading.Task	class,	which	represents	a
basic	task	that	has	to	be	run.	To	compare	the	performance	of	large	tasks	versus	small	tasks,
we	will	go	through	the	following	process:

We	prepare	an	array	of	random	task	sizes	to	create	a	unique	set	of	tasks	for	each	time
we	run	the	program.
Then	we	split	the	total	work	into	a	small	number	of	large	tasks,	run	the	measurement,
and	then	repeat	the	whole	process	once	again	by	splitting	the	work	into	smaller	tasks
and	making	the	total	number	of	tasks	larger.
Each	measurement	involves	starting	Stopwatch,	running	all	tasks,	waiting	for	all	the
tasks	to	complete	with	the	Task.WaitAll	method,	and	then	measuring	how	much
time	it	took	to	complete	all	the	tasks.

Here	is	sample	chart	illustrating	the	results	of	running	this	code:

www.EBooksWorld.ir

This	chart	shows	that	when	we	reduce	task	size,	we	increase	performance	until	some
point.	Then	the	task	size	becomes	small	enough	to	achieve	full	CPU	workload.	Making
tasks	smaller	becomes	ineffective	due	to	an	overall	task	overhead	increase.

This	was	a	synthetic	test.	In	practice,	everything	will	depend	on	a	program’s	nature.	If	it	is
possible	to	vary	the	task	size	for	your	program,	and	if	performance	is	crucial,	you	can	run
several	tests	and	find	out	the	best	parameters	experimentally.

www.EBooksWorld.ir

www.EBooksWorld.ir

Choosing	the	coarse-grained	or	fine-grained
approach
Fine-grained	parallelism	granularity	allows	us	to	run	heterogeneous	computational	tasks
effectively.	Besides	this,	the	fine-grained	approach	makes	the	splitting	of	your	program
into	tasks	easier,	especially	if	these	tasks	are	related	to	each	other	and,	for	example,	latter
tasks	use	some	computation	results	of	former	tasks.	However,	we	will	have	to	trade	off
some	performance,	since	the	CPU	has	to	be	used	to	manage	all	these	tasks	as	well.

To	find	out	how	fine-grained	granularity	can	affect	performance	for	a	real	task,	let’s
implement	a	ray	tracing	algorithm	using	TPL	and	compare	it	to	the	results	that	we	got	in
the	beginning	using	an	optimal	number	of	threads.	To	implement	the	fine-grained	program
version,	we	will	just	create	a	task	for	each	image	column	and	start	it	immediately.	The
implementation	code	is	as	follows:

var	tasks	=	new	List<Task>();

var	fineSw	=	Stopwatch.StartNew();

for	(var	i	=	0;	i	<	_width;	i++)

{

		var	col	=	i;	//	Create	separate	variable	for	closure

		tasks.Add(Task.Factory.StartNew(()	=>	RenderScene(data,	col,	col)));

}

Task.WaitAll(tasks.ToArray());

fineSw.Stop();

Console.WriteLine("Fine	grained	{0}ms",	fineSw.ElapsedMilliseconds);

Executing	this	code	in	coarse-grained	mode	takes	about	150	milliseconds	on	the	specific
hardware.	A	fine-grained	mode	takes	about	160	milliseconds.	At	first	glance,	the
difference	is	insignificant.	However,	it	is	still	noticeable,	even	after	knowing	that	the	TPL
code	is	very	well	optimized.	So,	if	performance	is	very	important,	it	is	possible	to	try
implementing	parallelism	granularity	by	yourself.	However	before	this,	you	must	be
absolutely	sure	that	the	bottleneck	is	granularity	and	the	results	of	the	tests	conducted
approve	this.

If	not,	just	use	TPL	and	fine-grained	approach,	which	is	easy	to	code	and	still	provides
good	performance.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	have	reviewed	a	problem	of	parallel	computations	granularity.	We	have
tried	different	ways	to	split	our	program	into	concurrently	executing	pieces	and	saw	the
performance	impact	in	each	case.	Also,	we’ve	implemented	a	real	computation	task	of
rendering	spheres	with	a	ray	tracing	algorithm	and	learned	to	parallelize	it	with	threads
and	Task	Parallel	Library.

In	the	next	chapter,	we	will	continue	to	learn	Task	Parallel	Library.	We	shall	review	this
framework	in	detail	and	clarify	every	aspect	of	using	it	including	how	the	tasks	are	being
run,	how	we	combine	tasks	together,	and	how	to	handle	exceptions	and	timeouts.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	4.	Task	Parallel	Library	in	Depth
In	the	previous	chapter,	we	have	already	used	TPL	to	simplify	the	writing	of	some	fine-
grained	parallel	code.	The	code	looked	quite	clear;	however,	TPL	is	a	quite	complicated
framework	with	a	high	level	of	abstraction,	and	it	deserves	a	detailed	review.

Most	code	samples	that	we	have	seen	so	far	were	quite	simple	in	terms	of	composition.
We	took	a	computational	problem,	split	it	into	several	independent	parts,	and	ran	these
parts	on	different	worker	threads.	When	all	the	parts	are	completed,	we	get	their	results
and	combine	them	into	a	final	calculation	result.	However,	most	real-world	programs
usually	have	a	complex	structure.	We	need	to	get	input	data,	and	then	there	are	program
stages	that	depend	on	each	other;	to	continue	the	calculations,	we	have	to	get	results	from
previous	stages.	These	stages	can	take	different	durations	to	complete	and	require	different
approaches	for	parallelization.

It	is	possible	to	write	this	logic	based	on	worker	threads	and	synchronization	primitives.
However,	with	many	parts	and	dependencies,	such	code	will	become	too	large	and
verbose.	To	make	the	programming	easier,	we	can	take	advantage	of	different	parallel
programming	model	implementations	that	abstract	threads	and	synchronization
mechanics	and	offer	some	kind	of	a	higher-level	API	that	is	much	easier	to	use.	This	is	the
parallel	programming	model	definition	from	Wikipedia:

In	computer	software,	a	parallel	programming	model	is	a	model	for	writing	parallel
programs	which	can	be	compiled	and	executed.	The	value	of	a	programming	model
can	be	judged	on	its	generality:	how	well	a	range	of	different	problems	can	be
expressed	for	a	variety	of	different	architectures,	and	its	performance:	how	efficiently
they	execute.	The	implementation	of	a	programming	model	can	take	several	forms
such	as	libraries	invoked	from	traditional	sequential	languages,	language	extensions,
or	complete	new	execution	models.

One	such	model	is	task-based	parallelism.	Its	main	concept	is	a	task,	which	is	just	a
piece	of	synchronously	executing	code.	If	one	task	depends	on	another	task’s	result,	we
can	provide	such	information	to	the	framework.	The	final	part	is	the	task	scheduler.	It
knows	about	the	current	environment	and	can	execute	tasks	on	an	optimal	number	of
threads,	taking	into	account	the	information	about	dependencies	between	the	tasks.	The
program	code	transforms	into	defining	tasks	and	their	dependencies,	which	is	much
cleaner	than	raw	threads	or	thread	pool	usage.

Let	us	reconsider	a	code	sample	from	the	previous	chapter:

for	(var	i	=	0;	i	<	_width;	i++)

{

		var	col	=	i;	//	Create	separate	variable	for	closure

		tasks.Add(Task.Factory.StartNew(()	=>	RenderScene(data,	col,	col)));

}

Task.WaitAll(tasks.ToArray());

Here,	we	have	used	a	loop	to	iterate	through	all	the	columns	of	our	scene,	and	then	we
split	calculations	to	create	a	separate	task	for	each	column.	To	create	such	tasks,	we	use
the	System.Threading.Task	class.	The	StartNew	method	creates	a	new	Task	instance	and

www.EBooksWorld.ir

starts	the	task	at	once.	When	we	have	completed	creating	all	the	tasks,	we	will	use	the
Task.WaitAll	static	method	to	wait	until	all	the	tasks	complete	their	jobs.

www.EBooksWorld.ir

Task	composition
Let’s	consider	a	situation	where,	before	running	a	task	(let’s	call	the	task,	task	B),	we	will
need	a	result	from	the	calculation	of	a	previous	task,	task	A.	Such	dependency	between
tasks	is	usually	called	future	or	promise.	This	means	that,	when	we	run	task	A,	we	do	not
know	its	result	before	the	calculations	are	complete.	So	we	state	(make	a	promise)	that,	at
some	point	in	the	future,	we	will	run	task	B	as	soon	as	we	get	the	result	from	task	A.

Why	do	we	need	to	declare	dependencies	in	a	specific	way?	We	can	always	create
dependent	tasks	as	follows:

var	taskA	=	new	Task<string>(

		()	=>

		{

				Console.WriteLine("Task	A	started");

				Thread.Sleep(1000);

				Console.WriteLine("Task	A	complete");

				return	"A";

		});

taskA.Start();

var	taskB	=	new	Task(

		()	=>

		{

				Console.WriteLine("Task	B	started");

				Console.WriteLine("Task	A	result	is	{0}",	taskA.Result);

		});

taskB.Start();

taskB.Wait();

The	result	is	this:

Task	A	started

Task	B	started

Task	A	complete

Task	A	result	is	A

First,	we	create	a	new	task	A	instance	and	use	a	thread	pool	worker	thread	to	execute	the
code	inside	this	task.

Note
By	default,	Task	Parallel	Library	uses	.NET	as	the	thread	pool	to	run	task	code.	However,
it	is	possible	to	use	other	ways	to	run	tasks,	and	the	part	of	TPL	that	is	responsible	for
running	tasks	is	called	the	task	scheduler.	We	will	review	task	schedulers	later	in	this
chapter.

The	output	displays	Task	A	started	and	simulates	some	calculations	using	the
Thread.Sleep	method.	At	the	same	time,	we	will	create	a	new	task	B	instance,	which	uses
another	thread	pool	worker	thread	to	run.	It	outputs	Task	B	started	to	the	console	and
then	blocks	until	task	A	completes.	Then,	task	A	signals	its	completion	by	printing	Task	A
complete	and	returns	the	“A”	string	as	a	result.	Task	B	gets	a	signal	that	task	A	is
completed	and	prints	the	result	as	Task	A	result	is	A.

So,	it	seems	that	we	have	successfully	created	two	dependent	tasks.	Unfortunately,	this

www.EBooksWorld.ir

code	will	be	quite	ineffective	and	hard	to	maintain.	Imagine	that	we	need	more
dependencies.	This	code	will	in	turn	create	many	tasks	that	will	use	other	tasks’	results,
and	to	understand	dependencies,	a	reader	will	have	to	analyze	each	task’s	code.	Besides
this,	when	task	A	runs,	task	B	blocks	the	thread	pool	thread.	It	means	that	we	have	just
wasted	one	worker	thread	that	is	doing	nothing	and	cannot	be	used	to	serve	some	other
job.	If	we	create	many	tasks,	we	will	soon	take	over	all	the	worker	threads	from	a	thread
pool,	and	this	is	a	very	bad	practice	that	leads	to	scalability	and	performance	problems.

Nevertheless,	it	is	obvious	that	there	is	no	sense	in	running	tasks	A	and	B	in	parallel,	since
B	needs	A	to	complete.	To	run	this	code	synchronously,	we	can	merge	the	code	from	A
and	B,	but	this	would	break	up	program	logic	and	lead	us	back	to	the	coarse-grained
approach.

Another	way	is	to	analyze	dependencies	between	tasks	and	use	thread	pool	worker	threads
more	efficiently.	For	example,	do	not	schedule	task	B	code	execution	until	task	A	code
finishes	and	returns	its	result.	All	we	need	to	do	is	to	declare	a	dependency	between	tasks
explicitly,	so	TPL	will	know	what	tasks	to	run	first	and	what	to	delay.	This	is	exactly	what
the	Task.ContiueWith	method	does.	We	use	this	method	on	an	initial	task,	and	this
returns	another	task	(usually	called	a	continuation	task)	that	will	be	executed	after	the
former	task	completes:

var	taskA	=	new	Task<string>(

		()	=>

		{

				Console.WriteLine("Task	A	started");

				Thread.Sleep(1000);

				Console.WriteLine("Task	A	complete");

				return	"A";

		});

taskA

		.ContinueWith(

				task	=>

				{

						Console.WriteLine("Task	B	started");

						Console.WriteLine("Task	A	result	is	{0}",	task.Result);

				});

taskA.Start();

taskA.Wait();

We	created	a	task	A	instance	similar	to	the	previous	example.	However,	instead	of	creating
a	new	task,	we	used	the	ContinueWith	method	on	the	task	A	instance	that	allows	us	to
provide	a	code	that	will	be	run	when	task	A	completes.	We	have	access	to	the	task	A
instance	via	the	task	parameter	of	the	lambda	expression.	Now	the	TPL	task	scheduler
will	place	a	continuation	task	code	on	a	thread	pool	only	after	task	A	runs	to	completion.

The	result	of	this	code	will	be	as	follows:

Task	A	started

Task	A	complete

Task	B	started

Task	A	result	is	A

Notice	that	the	order	of	messages	is	different	than	the	previous	result.	Now	task	B	is

www.EBooksWorld.ir

started	after	task	A	completes.

This	can	be	a	disadvantage	if	the	latter	task	performs	some	work	that	can	be	run	in
parallel.	In	this	case,	running	task	B	after	A	will	be	inefficient,	since	it	is	actually	a
synchronous	code	execution.	However,	TPL	is	about	task	composition	and	it	simply
means	that	we	can	split	task	B	into	two	tasks;	one	will	run	in	parallel	with	task	A	and	the
other	will	be	placed	in	a	continuation	task:

var	taskA	=	new	Task<string>(

		()	=>

		{

				Console.WriteLine("Task	A	started");

				Thread.Sleep(1000);

				Console.WriteLine("Task	A	complete");

				return	"A";

		});

taskA.Start();

var	taskB1	=	new	Task(()	=>	Console.WriteLine("Task	B1	started"));

taskB1.Start();

taskA.ContinueWith(tsk	=>	Console.WriteLine("Task	A	result	is	{0}",	

tsk.Result));

taskA.Wait();

If	we	run	this	code,	the	results	will	show	that	task	A	and	B1	run	in	parallel;	B1	can	even
be	run	before	A,	since	it	does	not	really	matter	in	terms	of	program	logic	in	what	order
independent	tasks	are	scheduled	to	run.

There	are	more	complicated	ways	of	composing	tasks.	For	example,	when	a	task	needs
results	from	multiple	tasks,	the	ContinueWith	method	allows	us	to	follow	only	one	task,
and	we	need	task	B2	to	get	the	results	from	A	and	B1:

However,	there	is	a	TaskFactory	class	that	can	be	accessed	through	the	Task.Factory
static	property.	It	contains	many	useful	things	to	create	and	schedule	tasks,	but	what	we
need	now	is	its	ContinueWhenAll	method.

The	implementation	of	the	multiple	dependency	schema	is	as	follows:

var	taskA	=	new	Task<string>(

www.EBooksWorld.ir

		()	=>

		{

				Console.WriteLine("Task	A	started");

				Thread.Sleep(1000);

				Console.WriteLine("Task	A	complete");

				return	"A";

		});

taskA.Start();

var	taskB1	=	new	Task<string>(

		()	=>

		{

				Console.WriteLine("Task	B1	started");

				Thread.Sleep(500);

				Console.WriteLine("Task	B1	complete");

				return	"B";

		});

taskB1.Start();

Task

		.Factory

		.ContinueWhenAll(

				new	[]{taskA,	taskB1},

				tasks	=>	Console.WriteLine("Task	A	result	is	{0},	Task	B	result	is	

{1}",	tasks[0].Result,	tasks[1].Result));

taskA.Wait();

The	ContinueWhenAll	method	accepts	an	array	of	tasks	as	its	first	parameter	and	a	lambda
expression	as	the	second.	The	lambda	expression	tasks	parameter	is	the	tasks	array	that
we	have	just	provided.	Instead	of	using	this,	it	is	possible	to	create	a	closure	and	access	the
taskB1	and	taskA	variables	in	the	lambda	body,	but	this	would	create	unnecessary
dependencies	in	the	code,	which	is	generally	a	bad	practice.

Note
This	is	often	referred	to	as	code	coupling.	When	the	code	has	many	dependencies,	it	is
called	high	coupling;	in	this	case,	the	code	is	hard	to	maintain,	since	any	change	can
affect	the	other	parts.	Low	coupling	means	that	this	part	of	the	code	does	not	depend	on
other	parts,	so	it	can	be	changed	and	maintained	easily	without	breaking	the	other	code,
and	other	changes	will	most	likely	not	break	this	part	of	the	program.

The	results	will	be	as	follows:

Task	A	started

Task	B1	started

Task	B1	complete

Task	A	complete

Task	A	result	is	A,	Task	B	result	is	B

This	shows	that	tasks	A	and	B1	run	independently	in	parallel,	and	the	final	code	gets	the
results	from	both	the	tasks.	We	successfully	described	dependencies	in	a	declarative	way,
and	the	TPL	infrastructure	ensured	the	correctness	of	the	execution	order	and	program
logic.

www.EBooksWorld.ir

It	is	worth	mentioning	another	TaskFactory	class	method,	the	ContinueWhenAny	method,
which	is	quite	similar	to	ContinueWhenAll.	It	creates	a	task	that	starts	when	any	of	the
provided	tasks	in	the	array	complete.	This	is	useful	for	having	several	alternative	ways	to
achieve	the	result,	and	we	use	the	one	that	completes	faster	than	the	others.

www.EBooksWorld.ir

www.EBooksWorld.ir

Tasks	hierarchy
We	mentioned	before	that	the	task	scheduler	needs	explicitly	defined	dependencies
between	tasks	to	run	them	effectively	and	in	the	correct	order.	However,	besides	this,	there
is	a	way	to	achieve	implicit	dependency	definition;	when	we	create	one	task	inside
another,	a	special	parent-child	dependency	is	created	for	these	tasks.	By	default,	this	does
not	affect	how	these	tasks	will	be	executed,	but	there	is	a	way	to	make	this	dependency
really	important.

We	can	create	a	task	with	the	TaskFactory.CreateNew	method	by	providing	a	special
TaskCreationOptions.AttachedToParent	parameter.	This	changes	the	usual	task
behavior,	and	the	important	differences	are	as	follows:

The	parent	task	will	not	complete	until	every	child	task	completes.
If	the	case	child	tasks	cause	any	exceptions,	they	will	be	translated	to	the	parent	task.
The	parent	task	status	depends	on	its	child	tasks.	If	any	child	task	fails,	the	parent
task	will	have	the	TaskStatus.Faulted	status	as	well.

To	illustrate	this,	we	can	compare	the	behavior	of	the	default	task	and	the	task	attached	to
the	parent.	Here,	we	will	create	a	child	task	without	specifying	the	task	creation	options:

Task

		.Factory

		.StartNew(

				()	=>

				{

						Console.WriteLine("Parent	started");

						Task

								.Factory

								.StartNew(

										()	=>

										{

												Console.WriteLine("Child	started");

												Thread.Sleep(100);

												Console.WriteLine("Child	complete");

										});

				})

		.Wait();

Console.WriteLine("Parent	complete");

As	a	result	we	get	the	following:

Parent	started

Child	started

Parent	complete

It	is	important	that	the	parent	task	has	completed	before	the	child	task,	and	since	we
waited	only	for	the	parent	task,	the	main	thread	exited	and	the	child	task	did	not	complete
at	all.

Now	we	add	the	AttachedToParent	option	in	the	same	code,	changing	only	the	child	task
as	follows:

Task

www.EBooksWorld.ir

		.Factory

		.StartNew(

				()	=>

				{

						Console.WriteLine("Child	started");

						Thread.Sleep(100);

						Console.WriteLine("Child	complete");

				},

				TaskCreationOptions.AttachedToParent);

Run	this	again	to	get	the	following:

Parent	started

Child	started

Child	complete

Parent	complete

Here,	we	can	see	that	the	parent	task	waits	until	the	child	task	finishes	and	only	then
changes	its	status	to	TaskStatus.RanToCompletion.

www.EBooksWorld.ir

www.EBooksWorld.ir

Awaiting	task	completion
There	are	different	ways	to	wait	until	the	TPL	task	completes.	In	the	previous	code,	we
used	the	Task.Wait	method.	This	method	blocks	the	current	thread	until	this	task
completes.	If	the	task	gives	a	result,	the	same	effect	can	be	achieved	when	the
Task.Result	instance	property	is	queried.	This	is	a	basic	way	to	coordinate	tasks	in	the
program.

When	we	needed	to	wait	for	multiple	tasks,	we	used	the	Task.WaitAll	static	method.	If
we	keep	aside	the	optimization	and	exception	handling	code,	this	method	will	be
implemented	using	the	following	logic:

var	waitedOnTaskList	=	new	List<Task>(tasks.Length);

for	(int	i	=	tasks.Length	-	1;	i	>=	0;	i--)

{

		Task	task	=	tasks[i];

		if	(!taskIsCompleted)

				waitedOnTaskList.Add(task);

}

if	(waitedOnTaskList	!=	null)

{

		WaitHandle[]	waitHandles	=	new	WaitHandle[waitedOnTaskList.Count];

		for	(var	i	=	0;	i	<	waitHandles.Length;	i++)

				waitHandles[i]	=	waitedOnTaskList[i].CompletedEvent.WaitHandle;

		WaitAll(waitHandles);

}

We	have	defined	a	list	of	tasks	that	are	not	completed	yet	and	then	attached	an	array	of
handles	to	the	OS-specific	objects	that	can	be	used	to	wait	for	each	task	to	be	completed.
Then	we	wait	on	these	objects	until	all	underlying	tasks	are	completed.

As	in	the	previous	case,	along	with	WaitAll,	the	Task	type	defines	the	WaitAny	static
method.	It	waits	until	any	task	in	the	array	is	completed.	It	can	be	used	to	track	the
progress	of	task	completion	or	to	choose	the	fastest	way	to	get	results	from	the	several
alternatives.

www.EBooksWorld.ir

www.EBooksWorld.ir

Task	cancellation
A	task	represents	a	common	asynchronous	operation.	This	means	that	we	don’t	know
when	it	completes.	Sometimes,	it	is	clear	that	we	do	not	need	this	task	anymore.	For
example,	if	the	operation	takes	too	long	to	complete,	or	the	user	clicks	on	the	Cancel
button.	In	this	case,	we	need	to	stop	the	task.

One	of	the	lower-level	ways	to	stop	a	thread	is	by	calling	its	Abort	method.	Before	going
on,	I	would	like	to	emphasize	the	importance	of	not	using	this.

Note
Never	ever	use	Thread.Abort!

Thread.Abort	raises	a	very	special	exception	called	ThreadAbortException	on	a	thread
that	is	being	aborted.	This	exception	can	happen	at	more	or	less	any	point	in	your	program
and	cannot	be	stopped	by	the	usual	exception	handling.	We	can	write	a	code	with	catch
block	and	the	code	inside	this	block	will	work,	but	as	soon	as	the	catch	block	ends,	the
same	exception	will	be	raised	again.	But—surprise—if	we	call	the
Thread.CurrentThread.ResetAbort	method	inside	the	catch	block,	the	thread	abort
request	will	be	canceled.	This	means	that	calling	Thread.Abort	does	not	guarantee	that
the	thread	will	be	actually	aborted.

Another	aspect	of	using	this	method	is	that	it	affects	only	the	managed	code.	If	your	thread
is	waiting	for	unmanaged	code	to	complete,	which	is	almost	every	I/O	operation,	the
thread	will	not	be	aborted	until	this	operation	ends.	If	the	operation	never	completes,	the
code	will	never	return	and	your	program	will	hang.

Also,	due	to	the	.NET	CLR	constructing	type	algorithm	specifics,	this	exception	can	break
your	program.	If	there	is	an	exception	inside	a	static	constructor	of	some	type,	this
exception	gets	cached,	and	all	further	attempts	to	use	this	type	will	lead	to	throwing	this
exception.	So	if	we	call	Thread.Abort	and	raise	this	exception	while	the	target	thread	was
executing	any	static	constructor,	we	will	get	ThreadAbortException	when	any	thread	tries
to	access	the	type	that	failed	to	be	created	on	the	previous	thread.

If	this	is	not	enough,	there	is	one	more	illustration	of	how	evil	this	exception	is.	Imagine
the	code	that	is	usually	written	for	working	with	files:

using	(FileStream	fs	=	File.Open(fileName,	...))

{

		...do	stuff	with	data	file…

}

The	preceding	code	is	the	shorter	version	of	the	following	code:

FileStream	fs	=	File.Open(fileName,	...);

try

{

		...do	stuff	with	data	file…

}

finally

{

		IDisposable	disposable	=	fs;

www.EBooksWorld.ir

		disposable.Dispose();

}

Since	ThreadAbortException	can	emerge	at	any	point,	it	can	happen	inside	the	finally
block.	If	it	happens	there,	the	code	in	this	block	will	not	run	to	completion	and	the	file	will
remain	opened.	In	this	case,	the	FileStream	class	implements	a	disposable	pattern	and	is
likely	to	be	closed	while	its	finalizer	method	is	called	when	garbage	collection	occurs.
However,	it	is	clear	that	leaving	the	file	open	for	an	undefined	time	is	not	a	good	thing	and
other	code	is	not	always	correctly	written.

Therefore,	Thread.Abort	must	be	avoided	in	all	circumstances.	Instead	of	using	this,	we
should	write	the	code	while	being	aware	of	the	cancellation	possibility.	It	is	important	that
this	cancellation	must	not	depend	on	any	concrete	ways	of	running	the	operation	itself,
since	TPL	abstracts	away	task	execution	mechanics,	allowing	us	to	write	custom	task
schedulers	and	use	them	with	standard	TPL	code.

Fortunately,	the	.NET	Framework	contains	a	Cancellation	API,	and	this	is	what	we	should
use	to	implement	cancellation	in	our	code.	TPL	uses	this	API	as	well,	which	makes	it
easier	to	write	cancellation	code	for	TPL-based	programs.

The	Cancellation	API	is	based	on	two	main	types—the
System.Threading.CancellationToken	structure	and	the
System.Threading.CancellationTokenSource	class.	The	cancellation	token	contains
methods	and	properties	that	we	can	use	to	handle	the	cancellation	request,	and	the
cancellation	token	source	allows	us	to	create	cancellation	tokens	and	initiate	cancellation
requests.

A	typical	situation	is	when	we	have	two	parts	of	a	code.	The	first	part	is	the	code	that
creates,	combines,	and	runs	tasks.	This	code	can	interact	with	the	program	UI	and	handles
situations	when	we	need	to	cancel	some	of	the	running	tasks.	Usually,	this	part	is
responsible	for	creating	CancellationTokenSource,	constructing	cancellation	token
instances,	and	providing	them	to	each	task	that	can	be	cancelled.	Then,	when	the
cancellation	process	is	being	initiated,	we	call	the	Cancel	or	CancelAfter	methods	on
each	cancellation	token	needed.

The	second	part	of	code	lives	inside	tasks	and	uses	cancellation	token	instances	to	get
cancellation	signals.	There	are	several	common	approaches	to	implementing	the
cancellation	itself.	They	are	covered	in	the	following	sections.

www.EBooksWorld.ir

Checking	a	flag
If	the	code	inside	a	task	is	quite	easy,	for	example,	it	is	a	loop	with	short	iterations,	then
the	easiest	way	to	stop	the	operation	is	to	check	some	flag	variable	inside	this	loop	and
exit	if	the	flag	is	set.

The	first	part	of	the	code	creates	a	task,	provides	it	with	a	cancellation	token,	and	then
initiates	a	cancellation	process.	Finally,	we	measure	the	time	of	the	task	cancellation
process	as	follows:

private	static	void	RunTest(Action<CancellationToken>	action,	string	name)

{

		var	cancelSource	=	new	CancellationTokenSource();

		var	cancelToken	=	cancelSource.Token;

		var	task	=	Task

						.Factory

						.StartNew(()	=>	action(cancelToken),	cancelToken);

		//	Wait	for	starting	task

		while	(task.Status	!=	TaskStatus.Running)	{	}

		var	sw	=	Stopwatch.StartNew();

		cancelSource.Cancel();

		while	(!task.IsCompleted)	{}

		sw.Stop();

		Console.WriteLine("{0}	task	cancelled	in	{1}	ms",	name,	

sw.ElapsedMilliseconds);

}

Notice	that	we	are	providing	a	cancellation	token	not	only	to	our	task,	but	also	to	the
StartNew	method	as	well.	The	reason	for	this	is	that	TPL	is	aware	of	cancellation	tokens
as	well	and	can	cancel	the	task	even	if	it	has	not	started	yet	and	our	code	is	not	able	to
handle	cancellation.

Also,	we	use	a	loop	instead	of	calling	the	Wait	method.	The	Wait	method	has	an	overload
accepting	the	cancellation	token	instance.	If	we	call	the	Cancel	method	from	the	token,
the	Wait	method	will	return	the	execution	at	once.	This	is	a	built-in	cancellation
mechanism	in	TPL,	but	we	need	custom	cancellation	now,	so	we	emulate	waiting	with
task	status	checking	inside	the	loop.	First,	we	wait	until	the	task	actually	starts,	and	then
we	initiate	cancellation	and	wait	until	the	task	completes.

Finally,	we	stop	the	timer	and	print	out	the	results.

The	code	for	the	task	runs	an	infinite	loop,	waits,	and	checks	whether	a	cancellation	is
requested:

RunTest(tok	=>

{

		while	(true)

		{

				Thread.Sleep(100);

				if	(tok.IsCancellationRequested)

						break;

		}

www.EBooksWorld.ir

},	"CheckFlag");

The	result	can	be	like	this:

CheckFlag	task	got	cancelled	in	103	ms

This	means	that	the	cancellation	happened	in	the	first	loop	iteration	as	soon	as	the	task
code	checked	the	flag.

www.EBooksWorld.ir

Throwing	an	exception
If	the	code	inside	the	task	is	complicated,	it	is	difficult	to	check	the	flag	in	every	part	of
the	code.	There	can	be	many	loops	inside	many	methods,	and	if	we	get	results	from	a
method	that	can	be	cancelled,	we	need	to	provide	additional	information	to	distinguish
whether	this	method	was	cancelled	or	successfully	ran	to	completion.	In	this	case,	it	is
much	easier	to	use	another	cancellation	technique—throwing	a	special	cancellation
exception.

If	we	use	the	CancellationToken.ThrowIfCancellationRequested	method	on	our	token,
then	it	will	throw	OperationCanceledException	when	cancellation	is	requested.	This
exception	will	stop	code	execution	inside	the	task,	bubble	up	to	the	TPL	infrastructure	that
will	handle	it,	and	set	task	status	to	TaskState.Canceled.

Instead	of	checking	the	flag,	we	instruct	the	token	to	raise	OperationCanceledException
when	receiving	a	cancellation	request:

RunTest(tok	=>

{

		while	(true)

		{

				Thread.Sleep(100);

				tok.ThrowIfCancellationRequested();

		}

},	"ThrowException");

The	changes	are	minimal,	and	the	result	should	be	the	same:

ThrowException	task	got	cancelled	in	109	ms

As	soon	as	we	get	to	the	ThrowIfCancellationRequested	method,	the	call	operation	gets
cancelled	with	an	exception.

www.EBooksWorld.ir

Using	OS	wait	objects	with	WaitHandle
The	next	option	is	useful	when	the	code	inside	a	task	is	waiting	on	an	OS	synchronization
primitive	for	a	significant	time.	Here,	we	can	use	CancellationToken.WaitHandle	to
include	in	the	waiting	process	and	react	immediately	when	cancellation	is	requested.

This	is	usually	combined	with	one	of	the	previously	described	techniques—we	just	stop
waiting	and	proceed	with	the	cancellation.

This	is	how	it	looks:

RunTest(tok	=>

{

		var	evt	=	new	ManualResetEvent(false);

		while	(true)

		{

				WaitHandle.WaitAny(new[]	{	evt,	tok.WaitHandle	},	100);

				tok.ThrowIfCancellationRequested();

		}

},	"WaitHandle");

In	this	example,	we	have	created	a	ManualResetEvent	instance	to	wait	on	it	instead	of
using	Thread.Sleep.	However,	we	have	used	WaitHandle.WaitAny	to	include	the
cancellation	token	in	the	waiting	process.	So,	here	we	wait	for	the	event	or	token	to	be
signaled	using	the	100	ms	timeout	value	and	then	continue	running	the	loop.

Now	the	result	should	be	different	as	follows:

WaitHandle	task	got	cancelled	in	0	ms

Since	we	are	able	to	proceed	with	the	cancellation	as	soon	as	the	token	gets	signaled,	it
happens	almost	immediately.

www.EBooksWorld.ir

Cancellation	using	callbacks
It	is	good	when	you	control	all	the	code,	and	it	is	possible	to	change	every	piece	of	the
code	to	implement	cancellation	properly.	However,	the	most	common	situation	is	when
you	use	some	external	code	inside	your	task	and	you	do	not	control	this	code.	Imagine	if
this	is	connected	via	a	slow	network	to	some	server	and	this	fetches	data.	You	press	the
Cancel	button,	but	the	operation	will	not	complete	until	it	finishes	the	I/O	operation.	This
is	not	a	very	good	user	experience	and	can	be	a	key	reason	for	the	user	to	choose	a
different	software.

Of	course,	we	can	write	similar	code	from	scratch.	However,	usually	we	do	not	need	to,
since	almost	every	third-party	code	such	as	this	provides	something,	such	as	the	Close	or
Dispose	methods,	allowing	us	to	interrupt	communication	and	release	allocated	resources.
The	problem	is	that	these	methods	can	be	very	different	in	every	third-party	framework.

Fortunately,	the	cancellation	API	provides	us	with	a	possibility	to	register	any	cancellation
code	as	a	callback	and	run	this	callback	as	soon	as	a	cancellation	is	requested.	To	illustrate
this	approach,	we	can	write	a	client/server	application	and	implement	a	callback
cancellation.

The	server	part	is	relatively	simple.	We	just	need	to	allow	inbound	connection	and
simulate	a	slow	response:

const	int	port	=	8083;

new	Thread(()	=>

{

		var	listener	=	new	TcpListener(IPAddress.Any,	port);

		listener.Start();

		while	(true)

				using	(var	client	=	listener.AcceptTcpClient())

				using	(var	stream	=	client.GetStream())

				using	(var	writer	=	new	StreamWriter(stream))

				{

						Thread.Sleep(100);

						writer.WriteLine("OK");

				}

		})	{IsBackground	=	true}

		.Start();

This	server	will	listen	for	incoming	connections	on	port	8083;	when	the	connection	is
established,	it	waits	for	100ms	and	responds	with	an	OK	string.

Inside	our	task,	we	are	going	to	connect	to	this	server	via	the	TcpClient	class	and	then
cancel	the	connection	as	soon	as	possible:

RunTest(tok	=>

{

		while	(true)

		{

				using	(var	client	=	new	TcpClient())

				{

						client.Connect("localhost",	port);

						using	(var	stream	=	client.GetStream())

						using	(var	reader	=	new	StreamReader(stream))

www.EBooksWorld.ir

						Console.WriteLine(reader.ReadLine());

				}

				tok.ThrowIfCancellationRequested();

		}

},	"Callback");

This	sample	prints	the	following	result:

OK

Callback	task	got	cancelled	in	109	ms

This	code	connects	to	the	server	and	waits	for	the	server	to	respond;	only	after	getting	the
response	do	we	proceed	with	the	cancellation.

According	to	the	documentation,	the	TcpClient	class	includes	the	Close	method.	This
method	interrupts	work	and	closes	the	TCP	connection	if	it	has	been	already	opened.	All
we	need	to	do	is	to	call	this	method	when	a	cancellation	is	requested:

RunTest(tok	=>

{

		while	(true)

		{

				using	(var	client	=	new	TcpClient())

				using	(tok.Register(client.Close))

				{

						client.Connect("localhost",	port);

						using	(var	stream	=	client.GetStream())

						using	(var	reader	=	new	StreamReader(stream))

						Console.WriteLine(reader.ReadLine());

				}

				tok.ThrowIfCancellationRequested();

		}

},	"Callback");

The	difference	is	just	adding	a	single	line	of	code.	We	call	the
CancellationToken.Register	method	that	accepts	the	callback	that	will	be	called	in	the
case	of	cancellation	and	returns	the	CancellationTokenRegistration	structure.	It
implements	IDisposable	and	calling	the	Dispose	method	on	it	will	deregister	the
callback,	so	it	will	not	be	called	if	the	cancellation	happens	afterwards.

So	in	the	sample	code,	we	would	like	to	run	client.Close	when	the	cancellation	happens
but	only	inside	the	inner	using	block.	If	the	cancellation	happens	somewhere	else,	we	do
not	need	to	run	this	callback.	As	a	result,	we	will	get	something	like	this:

Callback	task	got	cancelled	in	3	ms

Now	it	is	clear	that	we	do	not	wait	for	the	server	to	respond	and	cancel	the	operation
almost	immediately.	We	managed	to	make	the	users	happy	without	rewriting	TcpClient
from	scratch	with	the	help	of	the	cancellation	API.

www.EBooksWorld.ir

www.EBooksWorld.ir

Latency	and	the	coarse-grained	approach
with	TPL
Raw	performance,	or	the	number	of	calculations	per	second	that	our	program	is	able	to
perform,	is	not	always	a	most	important	goal	to	achieve.	Sometimes	it	is	even	more
important	to	stay	responsive	and	interact	with	the	user	as	fast	as	possible.	Unfortunately,	it
is	not	easy	to	achieve	both	these	advantages	at	the	same	time;	there	are	situations	when	we
need	to	choose	our	primary	goal.

To	simulate	such	a	situation,	let’s	create	a	combination	of	coarse-grained	computational
tasks	that	takes	a	long	time	to	complete	and	runs	in	the	background,	and	a	number	of
short-lived	tasks	representing	user	interaction.	We	would	like	these	short	tasks	to	run	as
fast	as	possible	with	low	latency.	Now	we	write	a	code	to	test	how	these	long-running
tasks	can	affect	latency:

for	(var	longThreadCount	=	0;	longThreadCount	<	24;	longThreadCount++)

{

		//	Create	coarse	grained	tasks

		var	longThreads	=	new	List<Task>();

		for	(var	i	=	0;	i	<	longThreadCount;	i++)

				longThreads.Add(

						Task.Factory.StartNew(

								()	=>	Thread.Sleep(1000)));

		//	Measure	latency

		var	sw	=	Stopwatch.StartNew();

		for	(var	i	=	0;	i	<	_measureCount;	i++)

				Task

						.Factory

						.StartNew(()	=>	Thread.SpinWait(100))

						.Wait();

		sw.Stop();

		Console.WriteLine("Long	running	threads	{0}.	Average	latency	{1:0.###}	

ms",	longThreadCount,	(double)sw.ElapsedMilliseconds	/	_measureCount);

		Task.WaitAll(longThreads.ToArray());

}

We	have	created	up	to	24	long	running	threads	inside	the	loop,	and	in	each	iteration,	we
measured	up	an	average	latency	of	running	a	short	task.	Finally,	we	wait	for	all	tasks	to
complete	and	print	out	results.	This	is	how	the	result	data	looks	on	a	chart:

www.EBooksWorld.ir

We	can	see	that	we	have	a	very	low	latency	until	eight	long	running	tasks,	and	then	it
dramatically	increases	up	to	4-5	times.	The	reason	is,	as	usual,	complex,	but	the	main
reason	is	that	the	CPU	in	this	case	supports	up	to	eight	simultaneously	running	threads.
While	long-running	tasks	occupied	fewer	threads	than	this	limit,	the	remaining	threads	can
be	used	to	execute	short-lived	tasks.	As	soon	as	there	are	no	free	threads	remaining,	short
tasks	have	to	compete	for	thread	pool	worker	threads	and	share	CPU	time	with	the	long-
running	tasks,	and	thus	the	short	tasks	become	much	slower.

To	make	short	tasks	faster	again,	we	can	isolate	long	tasks	from	the	thread	pool	that	runs
the	short	tasks.	If	the	short	tasks	have	priority	in	getting	resources,	then	they	will	run
faster,	and	the	long-running	tasks	will	run	a	bit	slower,	but	the	short-task	latency	will	be
much	better.

TPL	has	an	option	to	specify	that	a	task	is	long-running	and	should	be	treated	in	a	special
way:

Task.Factory.StartNew(

		()	=>	Thread.Sleep(1000),

		TaskCreationOptions.LongRunning)

In	.NET	4.5,	the	default	task	scheduler	runs	such	tasks	on	separate	threads	that	are	not
thread	pool	threads.	This	is	what	the	reference	implementation	of	the
ThreadPoolTaskScheduler	method	of	QueueTask	looks	like:

protected	internal	override	void	QueueTask(Task	task)

{

		if	((task.Options	&	TaskCreationOptions.LongRunning)	!=	

TaskCreationOptions.None)

		{

www.EBooksWorld.ir

				new	Thread(s_longRunningThreadWork)	{	IsBackground	=	true	

}.Start(task);

		}

		else

		{

				bool	forceGlobal	=	(task.Options	&	TaskCreationOptions.PreferFairness)	

!=	TaskCreationOptions.None;

				ThreadPool.UnsafeQueueCustomWorkItem(task,	forceGlobal);

		}

}

However,	in	general,	we	do	not	know	how	such	tasks	will	be	treated,	and	the	way	of
running	such	tasks	is	totally	up	to	the	current	task	scheduler	implementation.

Adding	new	results	to	the	chart	gives	us	this:

It	seems	that	we	successfully	resolved	latency	issue.	Of	course,	the	long-running	tasks	will
be	slightly	slower,	but	this	is	what	we	wanted	to	achieve.

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception	handling
Another	important	aspect	of	TPL	is	working	with	exceptions.	Just	as	the	normal	code	that
we	write	can	generate	an	exception,	so	can	the	code	inside	a	TPL	task.	Since	every	task
has	its	own	stack,	we	cannot	work	with	exceptions	in	the	usual	way.	TPL	has	several
options	that	allow	us	to	work	with	exceptions	in	a	parallel	program.

The	easiest	option	is	to	check	the	task	status.	If	an	exception	has	been	raised	inside	the
task,	it	will	have	the	Status	property	set	to	TaskStatus.Faulted.	The	exception	will	be
available	through	the	Task.Exception	property:

var	task	=	Task.Factory.StartNew(()	=>

{

		throw	new	ApplicationException("Test	exception");

});

while	(!task.IsCompleted)	{}

Console.WriteLine("Status	=	{0}",	task.Status);

Console.WriteLine(task.Exception);

This	code	prints	the	following:

Status	=	Faulted

System.AggregateException:	One	or	more	errors	occurred.	--->	

System.ApplicationException:	Test	exception

...

The	original	exception	that	has	been	thrown	in	the	code	became	wrapped	in	an
AggregateException	instance.	The	reason	is	that	there	can	be	many	exceptions	from	child
tasks	that	run	in	parallel.	In	the	aggregate	exception	instance,	there	is	the
InnerExceptions	property	that	will	contain	all	the	wrapped	exceptions.

To	wait	for	the	task	completion,	we	have	used	a	loop	instead	of	the	Task.Wait	method.
When	a	task	completes	with	an	exception,	this	method	will	rethrow	the	exception	on	the
thread	that	has	called	Wait.	If	we	replace	the	while	loop	with	the	task.Wait()	method
call	and	run	the	code	again,	we	will	see	an	unhandled	exception:

Unhandled	Exception:	System.AggregateException:	One	or	more	errors	

occurred.	--->	System.ApplicationException:	Test	exception

...

The	same	behavior	will	happen	when	we	use	the	Task.Result	property	or	the
Task.WaitAll/WaitAny	static	methods.

When	reviewing	parent-child	relations	between	tasks,	we	have	stated	that,	if	we	create	a
child	task	with	TaskCreationOptions.AttachedToParent,	then	its	exceptions	will
automatically	be	propagated	to	the	parent	task.	To	check	the	exception	behavior,	we	can
quickly	create	two	nested	tasks	and	throw	an	exception	from	the	child	task:

Task.Factory.StartNew(()	=>

{

		Task.Factory.StartNew(()	=>

www.EBooksWorld.ir

		{

				throw	new	ApplicationException("Test	exception");

		},	TaskCreationOptions.AttachedToParent);

})

.Wait();

This	will	print	the	following:

Unhandled	Exception:	System.AggregateException:	One	or	more	errors	

occurred.	--->	System.AggregateException:	One	or	more	errors	occurred.	--->	

System.ApplicationException:	Test	exception

...

As	we	expected,	the	parent	task	completed	with	the	exception	that	bubbled	from	its	child
task.	However,	now	we	have	an	aggregate	exception	that	contains	another	aggregate
exception,	which	in	turn	contains	the	initial	exception	from	the	child	task.	The	exception
hierarchy	repeats	the	task	relationship,	which	is	not	always	a	good	thing.

We	may	put	the	previous	code	in	a	try	block	and	write	a	catch	block	to	print	the	inner
exceptions	as	follows:

catch	(AggregateException	ae)

{

		foreach	(Exception	e	in	ae.InnerExceptions)

		{

				Console.WriteLine("{0}:	{1}",	e.GetType(),	e.Message);

		}

}

The	results	of	the	preceding	code	can	be	surprising:

System.AggregateException:	One	or	more	errors	occurred.

Since	it	is	a	hierarchy,	we	need	to	check	inner	exceptions	inside	each	aggregate	exception
that	we	get.	Since	the	aggregate	exception	is	only	a	container	for	a	real	exception,	we
actually	need	to	collect	only	the	other	exceptions.	Fortunately,	there	is	a	way	to	flatten	the
exception	hierarchy	into	a	simple	collection	of	initial	exceptions.	To	check	this,	let’s	create
a	complex	task	structure	and	see	what	is	inside	the	top-level	exception:

var	t	=	Task.Factory.StartNew(()	=>

{

		Task.Factory.StartNew(

		()	=>

		{

				Task.Factory.StartNew(

				()	=>

				{

						throw	new	ApplicationException("And	we	need	to	go	deeper");

				},	TaskCreationOptions.AttachedToParent);

				throw	new	ApplicationException("Test	exception");

		},	TaskCreationOptions.AttachedToParent);

		Task.Factory.StartNew(()	=>

		{

				throw	new	ApplicationException("Test	sibling	exception");

www.EBooksWorld.ir

		},

		TaskCreationOptions.AttachedToParent);

});

try

{

		t.Wait();

}

catch	(AggregateException	ae)

{

		foreach	(Exception	e	in	ae.Flatten().InnerExceptions)

		{

				Console.WriteLine("{0}:	{1}",	e.GetType(),	e.Message);

		}

}

As	a	result,	we	will	get	a	list	of	all	the	initial	exceptions:

System.ApplicationException:	Test	sibling	exception

System.ApplicationException:	Test	exception

System.ApplicationException:	And	we	need	to	go	deeper

One	of	the	cancellation	options	that	we	have	reviewed	so	far	was	throwing	a	special	kind
of	exception,	OperationCanceledException.	TPL	treats	this	exception	in	a	special	way.
The	task	status	will	be	TaskStatus.Canceled	instead	of	Faulted,	and	the	Exception
property	will	be	empty:

var	cancelSource	=	new	CancellationTokenSource();

var	token	=	cancelSource.Token;

var	task	=

		Task

				.Factory

				.StartNew(

						()	=>

						{

								while	(true)

										token.ThrowIfCancellationRequested();

						},

						token);

while	(task.Status	!=	TaskStatus.Running)	{}

cancelSource.Cancel();

while	(!task.IsCompleted)	{}

Console.WriteLine("Status	=	{0},	IsCanceled	=	{1}",	task.Status,	

task.IsCanceled);

Console.WriteLine(task.Exception);

The	result	shows	that	a	cancellation	exception	in	this	case	is	being	treated	differently:

Status	=	Canceled,	IsCanceled	=	True

Note
Please	notice	that	if	we	do	not	pass	a	token	instance	as	the	last	parameter	of	the	StartNew
method,	the	cancellation	exception	will	be	treated	like	a	regular	exception.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using	the	Parallel	class
TPL	provides	a	reach	API	to	compose	a	parallel	program.	However,	it	is	quite	verbose,
and	if	we	write	a	simple	code,	there	are	easier	way	to	parallelize	it.	For	common	tasks
such	as	running	some	code	in	parallel	and	parallelizing	the	for	and	foreach	loops,	there	is
a	Parallel	class	that	provides	a	simple	and	easy	to	use	API.

www.EBooksWorld.ir

Parallel.Invoke
This	method	executes	actions	in	parallel	if	the	CPU	has	multiple	cores	and	supports
multiple	threads.	If	the	CPU	has	only	one	core,	actions	will	be	executed	synchronously.
This	method	blocks	the	calling	thread	until	all	the	actions	are	completed:

Parallel.Invoke(

		()	=>	Console.WriteLine("Action	1"),

		()	=>

		{

				Thread.SpinWait(10000);

				Console.WriteLine("Action	2");

		},

		()	=>	Console.WriteLine("Action	3"));

Console.WriteLine("End");

After	running	the	preceding	lines	of	code,	we	get	the	following	output:

Action	1

Action	3

Action	2

End

We	can	provide	the	ParallelOptions	class	instance	to	this	method	to	configure	additional
options	such	as	limiting	the	parallelism	degree,	specifying	a	cancellation	token,	and	using
a	specific	implementation	of	the	task	scheduler	to	run	tasks	on	it.

The	straightforward	implementation	of	this	method	will	be	as	follows:

var	tasks	=	new	List<Task>();

foreach	(var	action	in	actions)

{

		tasks.Add(Task.Factory.StartNew(action));

}

Task.WaitAll(tasks.ToArray());

However,	the	real	implementation,	besides	cancellation,	correctness	checks,	and	exception
handling,	is	still	very	different.	This	is	due	to	code	performance	optimization.	The	usual
task	scheduler	is	written	assuming	that	we	do	not	know	how	many	tasks	we	are	going	to
run.	In	this	specific	case,	this	is	a	defined	value.	If	it	is	less	than	or	equal	to
SMALL_ACTIONCOUNT_LIMIT	(that	is	10	in	the	current	.NET	Framework	version	4.5),	then
the	algorithm	is	similar	to	our	implementation.

In	the	case	of	more	tasks,	it	becomes	more	complicated.	First,	we	create	an	empty	special
task	called	replicable	task.	This	task	is	treated	in	a	special	way	by	a	task	scheduler.	The
implementation	code	is	as	follows:

var	actionIndex	=	0;

var	rootTask	=

		new	ReplicableTask(

				()	=>

				{

						int	myIndex;

www.EBooksWorld.ir

						while	((myIndex	=	InterLocked.Increment(ref	actionIndex))	<=	

actions.Length)

								body(myIndex-1);

				});

rootTask.RunSynchronously();

rootTask.Wait();

Here,	we	have	the	actionIndex	local	variable	that	is	used	by	the	task	code	inside	the
lambda	expression.	This	creates	a	closure,	and	the	C#	compiler	generates	a	helper	class
instance	and	puts	the	actionIndex	variable	inside	this	class	as	a	field.	Thus,	if	we	create
more	copies	of	this	task,	they	all	will	share	a	single	actionIndex	variable.	At	the	same
time,	the	myIndex	variable	will	be	different	for	each	copy	of	this	task.

So	a	scheduling	algorithm	can	create	as	many	copies	of	this	task	as	needed,	and	still	it	is
guaranteed	that	every	action	will	be	executed	at	least	once	or	only	one	time.	This	allows
scheduling	mechanisms	to	work	efficiently.	First,	we	create	as	many	copies	of	the	threads
as	the	CPU	support.	Then,	if	tasks	run	longer	than	a	certain	amount	of	time,	the	scheduler
will	create	more	copies	to	prevent	CPU	cores	from	idling.	This	makes	the	tasks	run
slightly	slower,	but	we	know	that	our	tasks	are	long-running	and	this	will	not	be	important
for	overall	performance.

This	algorithm	also	ensures	that,	even	when	we	have	many	actions	to	be	run,	the	real
number	of	tasks	that	are	to	be	executed	in	parallel	will	be	low	and	close	to	the	number	of
threads	that	the	CPU	supports.

www.EBooksWorld.ir

Parallel.For	and	Parallel.Foreach
These	methods	are	useful	to	create	parallel	loops.	They	use	the	same	strategy	as
Parallel.Invoke,	since	it	is	very	effective	when	having	a	large	number	of	iterations	to
run	in	parallel.	Parallel.Foreach	offers	even	more	control,	allowing	us	to	use	a	custom
task	partitioning	algorithm	with	the	Partitioner<T>	and	OrderablePartitioner<T>
abstract	class	implementations.

To	see	the	default	parallelization	strategy,	let’s	run	this	code:

private	static	void	Calc(int	iterations)

{

		var	taskIds	=	new	HashSet<int>();

		var	sum	=	0;

		Parallel.For(

				0,

				iterations,

				i	=>

				{

						Thread.SpinWait(1000000);

						lock	(taskIds)

								taskIds.Add(Task.CurrentId.Value);

				});

		Console.WriteLine("{0}	iterations,	{1}	tasks",	iterations,	

taskIds.Count);

}

We	simply	call	the	Parallel.For	method	with	a	different	number	of	iterations	and	count
how	many	unique	task	ids	we’ve	got.

On	a	machine	with	Core	i7-2600K	CPU,	we	will	get	these	values:

1	iteration,	1	tasks

4	iterations,	4	tasks

8	iterations,	8	tasks

12	iterations,	8	tasks

16	iterations,	8	tasks

32	iterations,	9	tasks

64	iterations,	9	tasks

The	CPU	supports	eight	concurrent	threads,	and	the	algorithm	chose	eight	tasks	to	run	in
parallel	until	32	iterations,	when	one	additional	task	is	added	to	prevent	possible	CPU
idling;	this	makes	the	code	more	efficient.

www.EBooksWorld.ir

Understanding	the	task	scheduler
The	task	scheduler	manages	and	executes	TPL	tasks.	First,	we	will	review	a	default	task
scheduler	algorithm,	and	then	we	will	learn	how	to	create	a	custom	task	scheduler	and	use
it	with	TPL	to	run	tasks	on	it.

The	default	task	scheduler	is	based	on	the	.NET	thread	pool	and	uses	its	global	queue	to
run	top-level	tasks	that	are	not	created	in	the	context	of	another	task.	However,	if	we
create	a	nested	or	child	task,	it	is	put	on	a	local	queue	that	is	created	on	a	worker	thread
that	runs	the	parent	task.	When	this	worker	thread	gets	ready	to	run	a	task,	it	first	looks	for
work	items	on	the	local	queue	that	is	accessed	in	LIFO	order.	Using	local	queue	reduces
contention	since	we	do	not	access	any	shared	data;	thus,	there	is	no	need	for	any
synchronization.

If	the	local	queue	is	empty,	the	worker	thread	looks	into	a	global	queue.	If	this	queue	is
empty,	then	to	prevent	idling	the	thread	is	going	to	look	at	other	threads’	local	queues.	If
the	thread	finds	a	work	item	here	after	running	some	heuristics	to	decide	if	taking	this
work	item	will	be	efficient,	the	thread	steals	this	work	item	from	another	thread’s	local
queue.	The	stealing	happens	in	FIFO	order	for	efficiency	reasons.

This	way	TPL	tries	to	improve	performance	by	lowering	contention	and	using	CPU	cache
more	effectively,	and	at	the	same	time,	by	load	balancing	between	worker	threads	with	a
work-stealing	algorithm.

The	default	scheduler	works	well,	but	in	some	cases,	we	need	to	replace	it	with	another.
Imagine	a	WPF	application	that	has	a	button	clicked	event	handler	with	the	following
code:

var	t	=	Task.Factory.StartNew(()	=>

{

		Console.WriteLine("Id:	{0},	Is	threadpool	thread:	{1}",

				Thread.CurrentThread.ManagedThreadId,

				Thread.CurrentThread.IsThreadPoolThread);

		Thread.Sleep(TimeSpan.FromSeconds(1));

		_label.Content	=	new	TextBlock	{Text	=	"Hello	from	TPL	task"};

},

CancellationToken.None,

TaskCreationOptions.None,

TaskScheduler.Default);

while	(t.Status	!=	TaskStatus.RanToCompletion	&&	t.Status	!=	

TaskStatus.Faulted)

{

		//	run	message	loop

		Application.Current.Dispatcher.Invoke(

				DispatcherPriority.Background,	new	Action(delegate	{	}));

}

if	(null	!=	t.Exception)

{

		var	innerException	=	t.Exception.Flatten().InnerException;

		Console.WriteLine("{0}:	{1}",	innerException.GetType(),	

www.EBooksWorld.ir

innerException.Message);

}

If	we	run	this	code,	we	will	see	the	following:

Id:	4,	Is	threadpool	thread:	True

System.InvalidOperationException:	The	calling	thread	must	be	STA,	because	

many	UI	components	require	this.

The	reason	is	that	we	tried	to	access	the	UI	control	from	a	thread	pool	worker	thread,
which	is	forbidden.	To	make	this	code	work,	we	have	to	use	a	task	scheduler	that	will	put
this	task	on	a	UI	thread:

var	t	=	Task.Factory.StartNew(()	=>

{

				Console.WriteLine("Id:	{0},	Is	threadpool	thread:	{1}",

						Thread.CurrentThread.ManagedThreadId,

						Thread.CurrentThread.IsThreadPoolThread);

				Thread.Sleep(TimeSpan.FromSeconds(1));

				_label.Content	=	new	TextBlock	{Text	=	"Hello	from	TPL	task"};

		},

		CancellationToken.None,

		TaskCreationOptions.None,

TaskScheduler.FromCurrentSynchronizationContext());

The	output	will	be	different,	and	the	program	will	run	successfully,	changing	the	label
value:

Id:	1,	Is	threadpool	thread:	False

The	UI	and	asynchrony	is	a	very	large	and	complicated	topic.	We	will	get	back	to	this	later
in	this	book.

Last	but	not	the	least	is	implementing	a	custom	task	scheduler.	We	need	to	inherit	this
from	the	TaskScheduler	class	and	implement	several	abstract	members:

public	class	SynchronousTaskScheduler:	TaskScheduler

{

		//	we	do	not	schedule	tasks,	we	run	them	synchronously

		protected	override	IEnumerable<Task>	GetScheduledTasks()

		{

				return	Enumerable.Empty<Task>();

		}

		//	run	the	task	synchronously	on	the	current	thread

		protected	override	void	QueueTask(Task	task)

		{

				TryExecuteTask(task);

		}

		//	the	same	thing	–	just	run	the	task	on	current	thread

		protected	override	bool	TryExecuteTaskInline(

				Task	task,	bool	taskWasPreviouslyQueued)

		{

				return	TryExecuteTask(task);

		}

www.EBooksWorld.ir

		//	maximum	concurrency	level	is	1,	because	only	one	task	runs	at	//a	time

		public	override	int	MaximumConcurrencyLevel

		{

				get	{	return	1;	}

		}

}

Of	course,	real-world	task	schedulers	are	much	more	complicated	than	this	one,	but	this
works	too.	Let’s	use	this	with	the	previous	code:

var	t	=	Task.Factory.StartNew(()	=>

{

		Console.WriteLine("Id:	{0},	Is	threadpool	thread:	{1}",

				Thread.CurrentThread.ManagedThreadId,

				Thread.CurrentThread.IsThreadPoolThread);

		Thread.Sleep(TimeSpan.FromSeconds(1));

		_label.Content	=	new	TextBlock	{Text	=	"Hello	from	TPL	task"};

		},

		CancellationToken.None,

		TaskCreationOptions.None,

		new	SynchronousTaskScheduler());

The	code	will	work	fine	and	we	will	get	the	same	results.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	have	reviewed	Task	Parallel	Library	in	detail.	We	have	studied	its
architecture	and	composition	blocks.	We	have	learned	about	exception	handling	and	task
cancellation	in	detail.	We	examined	performance	and	latency	issues	by	finding	out	the	best
way	of	writing	code	to	achieve	good	results.	Using	the	Parallel	class	API	allowed	us	to
quickly	create	parallel	programs,	and	deep-diving	into	TPL	task	scheduling	allowed	us	to
write	a	custom	task	scheduler	and	customize	TPL	task	execution.

In	the	next	chapter,	we	will	learn	how	the	C#	language	supports	asynchrony.	We	will
understand	its	new	keywords,	async	and	await,	and	understand	how	we	can	use	Task
Parallel	Library	with	the	new	C#	syntax.	Also,	we	will	review	in	detail	how	exactly	new
language	features	work	and	create	our	own	custom	code	that	will	be	compatible	with	the
await	statement.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	5.	C#	Language	Support	for
Asynchrony
The	Task	Parallel	Library	makes	it	possible	to	combine	asynchronous	tasks	and	set
dependencies	between	them.	In	the	previous	chapter,	we	reviewed	this	topic	in	detail.
However	to	get	a	clear	understanding	in	this	chapter,	we	will	use	this	approach	to	solve	a
real	problem—downloading	images	from	Bing	(the	search	engine).	Also,	we	will	do	the
following:

Implement	standard	synchronous	approach
Use	Task	Parallel	Library	to	create	an	asynchronous	version	of	the	program
Use	C#	5.0	built-in	asynchrony	support	to	make	the	code	easier	to	read	and	maintain
Simulate	C#	asynchronous	infrastructure	with	the	help	of	iterators
Learn	about	other	useful	features	of	Task	Parallel	Library
Make	any	C#	type	compatible	with	built-in	asynchronous	keywords

www.EBooksWorld.ir

Implementing	the	downloading	of	images
from	Bing
Everyday	Bing.com	publishes	its	background	image	that	can	be	used	as	desktop
wallpaper.	There	is	an	XML	API	to	get	information	about	these	pictures	that	can	be	found
at	http://www.bing.com/hpimagearchive.aspx.

www.EBooksWorld.ir

http://Bing.com
http://www.bing.com/hpimagearchive.aspx

Creating	a	simple	synchronous	solution
Let’s	try	to	write	a	program	to	download	the	last	eight	images	from	this	site.	We	will	start
by	defining	objects	to	store	image	information.	This	is	where	a	thumbnail	image	and	its
description	will	be	stored:

using	System.Drawing;

public	class	WallpaperInfo

{

		private	readonly	Image	_thumbnail;

		private	readonly	string	_description;

		public	WallpaperInfo(Image	thumbnail,	string	description)

		{

				_thumbnail	=	thumbnail;

				_description	=	description;

		}

	

		public	Image	Thumbnail

		{

				get	{	return	_thumbnail;	}

		}

	

		public	string	Description

		{

				get	{	return	_description;	}

		}

}

The	next	container	type	is	for	all	the	downloaded	pictures	and	the	time	required	to
download	and	make	the	thumbnail	images	from	the	original	pictures:

public	class	WallpapersInfo

{

		private	readonly	long	_milliseconds;

		private	readonly	WallpaperInfo[]	_wallpapers;

		public	WallpapersInfo(long	milliseconds,	WallpaperInfo[]	wallpapers)

		{

				_milliseconds	=	milliseconds;

				_wallpapers	=	wallpapers;

		}

		public	long	Milliseconds

		{

				get	{	return	_milliseconds;	}

		}

		public	WallpaperInfo[]	Wallpapers

		{

				get	{	return	_wallpapers;	}

		}

}

Now	we	need	to	create	a	loader	class	to	download	images	from	Bing.	We	need	to	define	a
www.EBooksWorld.ir

Loader	static	class	and	follow	with	an	implementation.	Let’s	create	a	method	that	will
make	a	thumbnail	image	from	the	source	image	stream:

private	static	Image	GetThumbnail(Stream	imageStream)

{

		using	(imageStream)

		{

				var	fullBitmap	=	Image.FromStream(imageStream);

				return	new	Bitmap(fullBitmap,	192,	108);

		}

}

To	communicate	via	the	HTTP	protocol,	it	is	recommended	to	use	the
System.Net.HttpClient	type	from	the	System.Net.dll	assembly.	Let’s	create	the
following	extension	methods	that	will	allow	us	to	use	the	POST	HTTP	method	to
download	an	image	and	get	an	opened	stream:

private	static	Stream	DownloadData(this	HttpClient	client,	string	uri)

{

		var	response	=	client.PostAsync(

				uri,	new	StringContent(string.Empty)).Result;

		return	response.Content.ReadAsStreamAsync().Result;

}

private	static	Task<Stream>	DownloadDataAsync(this	HttpClient	client,	

string	uri){

		Task<HttpResponseMessage>	responseTask	=	client.PostAsync(uri,	new	

StringContent(string.Empty));

		return	responseTask.ContinueWith(task	=>	

task.Result.Content.ReadAsStreamAsync()).Unwrap();

}

To	create	the	easiest	implementation	possible,	we	will	implement	downloading	without
any	asynchrony.	Here,	we	will	define	HTTP	endpoints	for	the	Bing	API:

private	const	string	_catalogUri	=	

"http://www.bing.com/hpimagearchive.aspx?format=xml&idx=0&n=8&mbl=1&mkt=en-

ww";

private	const	string	_imageUri	=	"http://bing.com{0}_1920x1080.jpg";

Then,	we	will	start	measuring	the	time	required	to	finish	downloading	and	download	an
XML	catalog	that	has	information	about	the	images	that	we	need:

var	sw	=	Stopwatch.StartNew();

var	client	=	new	HttpClient();

var	catalogXmlString	=	client.DownloadString(_catalogUri);

Next,	the	XML	string	will	be	parsed	to	an	XML	document:

var	xDoc	=	XDocument.Parse(catalogXmlString);

Now	using	LINQ	to	XML,	we	will	query	the	information	needed	from	the	document	and
run	the	download	process	for	each	image:

www.EBooksWorld.ir

var	wallpapers	=	xDoc

		.Root

		.Elements("image")

		.Select(e	=>

				new

				{

						Desc	=	e.Element("copyright").Value,

						Url	=	e.Element("urlBase").Value

				})

		.Select(item	=>

				new

				{

						item.Desc,

						FullImageData	=	client.DownloadData(

								string.Format(_imageUri,	item.Url))

				})

		.Select(item	=>

				new	WallpaperInfo(

						GetThumbnail(item.FullImageData),

						item.Desc))

		.ToArray();

sw.Stop();

The	first	Select	method	call	extracts	the	image	URL	and	description	from	each	image
XML	element	that	is	a	direct	child	of	root	element.	This	information	is	contained	inside
the	urlBase	and	copyright	XML	elements	inside	the	image	element.	The	second	one
downloads	an	image	from	the	Bing	site.	The	last	Select	method	creates	a	thumbnail
image	and	stores	all	the	information	needed	inside	the	WallPaperInfo	class	instance.

To	display	the	results,	we	need	to	create	a	user	interface.	Windows	Forms	is	a	simple	and
fast	way	to	implement	the	technology,	so	we	can	use	it	to	show	the	results	to	the	user.
There	is	a	button	that	runs	the	download,	a	panel	to	show	the	downloaded	pictures,	and	a
label	that	will	show	the	time	required	to	finish	downloading.

Here	is	the	implementation	code.	This	includes	a	calculation	of	the	top	co-ordinate	for
each	element,	a	code	to	display	the	images	and	start	the	download	process:

private	int	GetItemTop(int	height,	int	index)

{

		return	index	*	(height	+	8)	+	8;

}

	

private	void	RefreshContent(WallpapersInfo	info)

{

		_resultPanel.Controls.Clear();

		_resultPanel.Controls.AddRange(

		info.Wallpapers.SelectMany((wallpaper,	i)	=>	new	Control[]

		{

				new	PictureBox

				{

						Left	=	4,

						Image	=	wallpaper.Thumbnail,

						AutoSize	=	true,

						Top	=	GetItemTop(wallpaper.Thumbnail.Height,	i)

www.EBooksWorld.ir

				},

				new	Label

				{

						Left	=	wallpaper.Thumbnail.Width	+	8,

						Top	=	GetItemTop(wallpaper.Thumbnail.Height,	i),

						Text	=	wallpaper.Description,

						AutoSize	=	true

				}

		}).ToArray());

		_timeLabel.Text	=	string.Format(

				"Time:	{0}ms",	info.Milliseconds);

}

private	void	_loadSyncBtn_Click(object	sender,	System.EventArgs	e)

{

		var	info	=	Loader.SyncLoad();

		RefreshContent(info);

}

The	result	looks	as	follows:

www.EBooksWorld.ir

So	the	time	to	download	all	these	images	should	be	about	several	seconds	if	the	Internet
connection	is	broadband.	Can	we	do	this	faster?	We	certainly	can!	Now	we	will	download
and	process	the	images	one	by	one,	but	we	totally	can	process	each	image	in	parallel.

www.EBooksWorld.ir

Creating	a	parallel	solution	with	Task	Parallel	Library
In	the	previous	chapter,	we	reviewed	Task	Parallel	Library	and	the	relationships	between
tasks.	The	code	naturally	splits	into	several	stages:

Load	images	catalog	XML	from	Bing
Parse	the	XML	document	and	get	the	information	needed	about	the	images
Load	each	image’s	data	from	Bing
Create	a	thumbnail	image	for	each	image	downloaded

The	process	can	be	visualized	with	the	dependency	chart:

HttpClient	has	naturally	asynchronous	API,	so	we	only	need	to	combine	everything
together	with	the	help	of	a	Task.ContinueWith	method:

public	static	Task<WallpapersInfo>	TaskLoad()

{

		var	sw	=	Stopwatch.StartNew();

		var	downloadBingXmlTask	=	new	HttpClient().GetStringAsync(

				_catalogUri);

		var	parseXmlTask	=	downloadBingXmlTask.ContinueWith(task	=>

		{

				var	xmlDocument	=	XDocument.Parse(task.Result);

				return	xmlDocument.Root

						.Elements("image")

						.Select(e	=>

								new

								{

										Description	=	e.Element("copyright").Value,

										Url	=	e.Element("urlBase").Value

www.EBooksWorld.ir

								});

		});

		var	downloadImagesTask	=	parseXmlTask.ContinueWith(

				task	=>	Task.WhenAll(

						task.Result.Select(item	=>	new	HttpClient()

								.DownloadDataAsync(string.Format(_imageUri,	item.Url))

								.ContinueWith(downloadTask	=>	new	WallpaperInfo(

										GetThumbnail(downloadTask.Result),	item.Description)))))

								.Unwrap();

		return	downloadImagesTask.ContinueWith(task	=>

		{

				sw.Stop();

				return	new	WallpapersInfo(sw.ElapsedMilliseconds,	task.Result);

		});

}

The	code	has	some	interesting	moments.	The	first	task	is	created	by	the	HttpClient
instance,	and	it	completes	when	the	download	process	succeeds.	Now	we	will	attach	a
subsequent	task,	which	will	use	the	XML	string	downloaded	by	the	previous	task,	and
then	we	will	create	an	XML	document	from	this	string	and	extract	the	information	needed.

Now	this	is	becoming	more	complicated.	We	want	to	create	a	task	to	download	each
image	and	continue	until	all	these	tasks	complete	successfully.	So	we	will	use	the	LINQ
Select	method	to	run	downloads	for	each	image	that	was	defined	in	the	XML	catalog,	and
after	the	download	process	completes,	we	will	create	a	thumbnail	image	and	store	the
information	in	the	WallpaperInfo	instance.	This	creates
IEnumerable<Task<WallpaperInfo>>	as	a	result,	and	to	wait	for	all	these	tasks	to
complete,	we	will	use	the	Task.WhenAll	method.	However,	this	is	a	task	that	is	inside	a
continuation	task,	and	the	result	is	going	to	be	of	the	Task<Task<WallpaperInfo[]>>
type.	To	get	the	inner	task,	we	will	use	the	Unwrap	method,	which	has	the	following
syntax:

public	static	Task	Unwrap(this	Task<Task>	task)

This	can	be	used	on	any	Task<Task>	instance	and	will	create	a	proxy	task	that	represents
an	entire	asynchronous	operation	properly.

The	last	task	is	to	stop	the	timer	and	return	the	downloaded	images	and	is	quite
straightforward.	We	have	to	add	another	button	to	the	UI	to	run	this	implementation.
Notice	the	implementation	of	the	button	click	handler:

private	void	_loadTaskBtn_Click(object	sender,	System.EventArgs	e)

{

		var	info	=	Loader.TaskLoad();

		info.ContinueWith(task	=>	RefreshContent(task.Result),

				CancellationToken.None,

				TaskContinuationOptions.None,

				TaskScheduler.FromCurrentSynchronizationContext());

}

Since	the	TaskLoad	method	is	asynchronous,	it	returns	immediately.	To	display	the	results,

www.EBooksWorld.ir

we	have	to	define	a	continuation	task.	However,	from	the	previous	chapter	you	already
know	that	the	default	task	scheduler	will	run	a	task	code	on	a	thread	pool	worker	thread.
To	work	with	UI	controls,	we	have	to	run	the	code	on	the	UI	thread,	and	we	use	a	task
scheduler	that	captures	the	current	synchronization	context	and	runs	the	continuation	task
on	this.	We	will	cover	synchronization	context	and	the	related	infrastructure	later	in
Chapter	8,	Server-Side	Asynchrony,	and	Chapter	9,	Concurrency	in	the	User	Interface,
where	server-side	and	client-side	asynchrony	will	be	reviewed	in	detail.

Let’s	name	the	button	as	Load	using	TPL	and	test	the	results.	If	your	Internet	connection
is	fast,	this	implementation	will	download	the	images	in	parallel	much	faster	compared	to
the	previous	sequential	download	process.

If	we	look	back	at	the	code,	we	will	see	that	it	is	quite	hard	to	understand	what	it	actually
does.	We	can	see	how	one	task	depends	on	the	other,	but	the	original	goal	is	unclear
despite	the	code	being	very	compact	and	easy.	Imagine	what	will	happen	if	we	try	to	add
exception	handling	here.	We	would	have	to	append	an	additional	continuation	task	with
exception	handling	to	each	task.	This	will	be	much	harder	to	read	and	understand.	In	a
real-world	program,	it	will	be	a	challenging	task	to	keep	in	mind	these	tasks	composition
and	support	a	code	written	in	such	a	paradigm.

www.EBooksWorld.ir

Enhancing	the	code	with	C#	5.0	built-in	support	for
asynchrony
Fortunately,	C#	5.0	introduced	the	async	and	await	keywords	that	are	intended	to	make
asynchronous	code	look	synchronous,	and	thus,	makes	reading	of	code	and	understanding
the	program	flow	easier.	However,	this	is	another	abstraction	and	it	hides	many	things	that
happen	under	the	hood	from	the	programmer,	which	in	several	situations	is	not	a	good
thing.	The	potential	pitfalls	and	solutions	will	be	covered	later	in	this	book,	but	now	let’s
rewrite	the	previous	code	using	new	C#	5.0	features:

public	static	async	Task<WallpapersInfo>	AsyncLoad()

{

		var	sw	=	Stopwatch.StartNew();

		var	client	=	new	HttpClient();

		var	catalogXmlString	=	await	client.GetStringAsync(_catalogUri);

		var	xDoc	=	XDocument.Parse(catalogXmlString);

		var	wallpapersTask	=	xDoc

				.Root

				.Elements("image")

				.Select(e	=>	

						new

						{

								Description	=	e.Element("copyright").Value,

								Url	=	e.Element("urlBase").Value

						})

				.Select(async	item	=>

						new

						{

								item.Description,

								FullImageData	=	await	client.DownloadDataAsync(

										string.Format(_imageUri,	item.Url))

						});

		var	wallpapersItems	=	await	Task.WhenAll(wallpapersTask);

		var	wallpapers	=	wallpapersItems.Select(

				item	=>	new	WallpaperInfo(

						GetThumbnail(item.FullImageData),	item.Description));

		sw.Stop();

		return	new	WallpapersInfo(sw.ElapsedMilliseconds,	

				wallpapers.ToArray());

}

Now	the	code	looks	almost	like	the	first	synchronous	implementation.	The	AsyncLoad
method	has	a	async	modifier	and	a	Task<T>	return	value,	and	such	methods	must	always
return	Task	or	be	declared	as	void—this	is	enforced	by	the	compiler.	However,	in	the
method’s	code,	the	type	that	is	returned	is	just	T.	This	is	strange	at	first,	but	the	method’s
return	value	will	be	eventually	turned	into	Task<T>	by	the	C#	5.0	compiler.	The	async
modifier	is	necessary	to	use	await	inside	the	method.	In	the	further	code,	there	is	await

www.EBooksWorld.ir

inside	a	lambda	expression,	and	we	need	to	mark	this	lambda	as	async	as	well.

So	what	is	going	on	when	we	use	await	inside	our	code?	It	does	not	always	mean	that	the
call	is	actually	asynchronous.	It	can	happen	that	by	the	time	we	call	the	method,	the	result
is	already	available,	so	we	just	get	the	result	and	proceed	further.	However,	the	most
common	case	is	when	we	make	an	asynchronous	call.	In	this	case,	we	start,	for	example,
by	downloading	a	XML	string	from	Bing	via	HTTP	and	immediately	return	a	task	that	is	a
continuation	task	and	contains	the	rest	of	the	code	after	the	line	with	await.

To	run	this,	we	need	to	add	another	button	named	Load	using	async.	We	are	going	to	use
await	in	the	button	click	event	handler	as	well,	so	we	need	to	mark	it	with	the	async
modifier:

private	async	void	_loadAsyncBtn_Click(object	sender,	System.EventArgs	e)

{

		var	info	=	await	Loader.AsyncLoad();

		RefreshContent(info);

}

Now	if	the	code	after	await	is	being	run	in	a	continuation	task,	why	is	there	no
multithreaded	access	exception?	The	RefreshContent	method	runs	in	another	task,	but	the
C#	compiler	is	aware	of	the	synchronization	context	and	generates	a	code	that	executes
the	continuation	task	on	the	UI	thread.	The	result	should	be	as	fast	as	a	TPL
implementation	but	the	code	is	much	cleaner	and	easy	to	follow.

Last	but	not	least,	is	the	possibility	to	put	asynchronous	method	calls	inside	a	try	block.
The	C#	compiler	generates	a	code	that	will	propagate	the	exception	into	the	current
context	and	unwrap	the	AggregateException	instance	to	get	the	original	exception	from
it.

Note
In	C#	5.0,	it	was	impossible	to	use	await	inside	catch	and	finally	blocks,	but	C#	6.0
introduced	a	new	async/await	infrastructure	and	this	limitation	was	removed.

www.EBooksWorld.ir

Simulating	C#	asynchronous	infrastructure	with	iterators
To	dig	into	the	implementation	details,	it	makes	sense	to	look	at	the	decompiled	code	of
the	AsyncLoad	method:

public	static	Task<WallpapersInfo>	AsyncLoad()

{

		Loader.<AsyncLoad>d__21	stateMachine;

		stateMachine.<>t__builder	=	

AsyncTaskMethodBuilder<WallpapersInfo>.Create();

		stateMachine.<>1__state	=	-1;

		stateMachine

				.<>t__builder

				.Start<Loader.<AsyncLoad>d__21>(ref	stateMachine);

		return	stateMachine.<>t__builder.Task;

}

The	method	body	was	replaced	by	a	compiler-generated	code	that	creates	a	special	kind	of
state	machine.	We	will	not	review	the	further	implementation	details	here,	because	it	is
quite	complicated	and	is	subject	to	changes	from	version	to	version.	However,	what’s
going	on	is	that	the	code	gets	divided	into	separate	pieces	at	each	line	where	await	is
present,	and	each	piece	becomes	a	separate	state	in	the	generated	state	machine.	Then,	a
special	System.Runtime.CompilerServices.AsyncTaskMethodBuilder	structure	creates
Task	that	represents	the	generated	state	machine	workflow.

This	state	machine	is	quite	similar	to	the	one	that	is	generated	for	the	iterator	methods	that
leverage	the	yield	keyword.	In	C#	6.0,	the	same	universal	code	gets	generated	for	the
code	containing	yield	and	await.	To	illustrate	the	general	principles	behind	the	generated
code,	we	can	use	iterator	methods	to	implement	another	version	of	asynchronous	images
download	from	Bing.

Therefore,	we	can	turn	an	asynchronous	method	into	an	iterator	method	that	returns	the
IEnumerable<Task>	instance.	We	replace	each	await	with	yield	return	making	each
iteration	to	be	returned	as	Task.	To	run	such	a	method,	we	need	to	execute	each	task	and
return	the	final	result.	This	code	can	be	considered	as	an	analogue	of
AsyncTaskMethodBuilder:

private	static	Task<TResult>	ExecuteIterator<TResult>(

		Func<Action<TResult>,IEnumerable<Task>>	iteratorGetter)

{

		return	Task.Run(()	=>

		{

				var	result	=	default(TResult);

				foreach	(var	task	in	iteratorGetter(res	=>	result	=	res))

						task.Wait();

				return	result;

		});

www.EBooksWorld.ir

}

We	iterate	through	each	task	and	await	its	completion.	Since	we	cannot	use	the	out	and
ref	parameters	in	iterator	methods,	we	use	a	lambda	expression	to	return	the	result	from
each	task.	To	make	the	code	easier	to	understand,	we	have	created	a	new	container	task
and	used	the	foreach	loop;	however,	to	be	closer	to	the	original	implementation,	we
should	get	the	first	task	and	use	the	ContinueWith	method	providing	the	next	task	to	it	and
continue	until	the	last	task.	In	this	case,	we	will	end	up	having	one	final	task	representing
an	entire	sequence	of	asynchronous	operations,	but	the	code	will	become	more
complicated	as	well.

Since	it	is	not	possible	to	use	the	yield	keyword	inside	a	lambda	expressions	in	the	current
C#	versions,	we	will	implement	image	download	and	thumbnail	generation	as	a	separate
method:

private	static	IEnumerable<Task>	GetImageIterator(

		string	url,

		string	desc,

		Action<WallpaperInfo>	resultSetter)

{

		var	loadTask	=	new	HttpClient().DownloadDataAsync(

				string.Format(_imageUri,	url));

		yield	return	loadTask;

		var	thumbTask	=	Task.FromResult(GetThumbnail(loadTask.Result));

		yield	return	thumbTask;

		resultSetter(new	WallpaperInfo(thumbTask.Result,	desc));

}

It	looks	like	a	common	C#	async	code	with	yield	return	used	instead	of	the	await
keyword	and	resultSetter	used	instead	of	return.	Notice	the	Task.FromResult	method
that	we	used	to	get	Task	from	the	synchronous	GetThumbnail	method.	We	can	use
Task.Run	and	put	this	operation	on	a	separate	worker	thread,	but	it	will	be	an	ineffective
solution.	Task.FromResult	allows	us	to	get	Task	that	is	already	completed	and	has	a
result.	If	you	use	await	with	such	task,	it	will	be	translated	into	a	synchronous	call.

The	main	code	can	be	rewritten	in	the	same	way:

private	static	IEnumerable<Task>	GetWallpapersIterator(

		Action<WallpaperInfo[]>	resultSetter)

{

		var	catalogTask	=	new	HttpClient().GetStringAsync(_catalogUri);

		yield	return	catalogTask;

		var	xDoc	=	XDocument.Parse(catalogTask.Result);

		var	imagesTask	=	Task.WhenAll(xDoc

				.Root

				.Elements("image")

				.Select(e	=>	new	

				{

						Description	=	e.Element("copyright").Value,

www.EBooksWorld.ir

						Url	=	e.Element("urlBase").Value

				})

				.Select(item	=>	ExecuteIterator<WallpaperInfo>(

						resSetter	=>	GetImageIterator(

								item.Url,	item.Description,	resSetter))));

yield	return	imagesTask;

		resultSetter(imagesTask.Result);

}

This	combines	everything	together:

public	static	WallpapersInfo	IteratorLoad()

{

		var	sw	=	Stopwatch.StartNew();

		var	wallpapers	=	ExecuteIterator<WallpaperInfo[]>(GetWallpapersIterator)

						.Result;

		sw.Stop();

		return	new	WallpapersInfo(sw.ElapsedMilliseconds,	wallpapers);

}

To	run	this,	we	will	create	one	more	button	called	Load	using	iterator.	The	button	click
handler	just	runs	the	IteratorLoad	method	and	then	refreshes	the	UI.	This	also	works
with	about	the	same	speed	as	other	asynchronous	implementations.

This	example	can	help	us	to	understand	the	logic	behind	the	C#	code	generation	for
asynchronous	methods	used	with	await.	Of	course,	the	real	code	is	much	more
complicated,	but	the	principles	behind	it	remain	the	same.

www.EBooksWorld.ir

www.EBooksWorld.ir

Is	the	async	keyword	really	needed?
It	is	a	common	question	about	why	do	we	need	to	mark	methods	as	async.	We	have
already	mentioned	iterator	methods	in	C#	and	the	yield	keyword.	This	is	very	similar	to
async/await,	and	yet	we	do	not	need	to	mark	iterator	methods	with	any	modifier.	The	C#
compiler	is	able	to	determine	that	it	is	an	iterator	method	when	it	meets	the	yield	return
or	yield	break	operators	inside	such	a	method.	So	the	question	is,	why	is	it	not	the	same
with	await	and	the	asynchronous	methods?

The	reason	is	that	asynchrony	support	was	introduced	in	the	latest	C#	version,	and	it	is
very	important	not	to	break	any	legacy	code	while	changing	the	language.	Imagine	if	any
code	used	await	as	a	name	for	a	field	or	variable.	If	C#	developers	make	await	a	keyword
without	any	conditions,	this	old	code	will	break	and	stop	compiling.	The	current	approach
guarantees	that	if	we	do	not	mark	a	method	with	async,	the	old	code	will	continue	to
work.

www.EBooksWorld.ir

www.EBooksWorld.ir

Fire-and-forget	tasks
Besides	Task	and	Task<T>,	we	can	declare	an	asynchronous	method	as	void.	It	is	useful	in
the	case	of	top-level	event	handlers,	for	example,	the	button	click	or	text	changed	handlers
in	the	UI.	An	event	handler	that	returns	a	value	is	possible,	but	is	very	inconvenient	to	use
and	does	not	make	much	sense.

So	allowing	async	void	methods	makes	it	possible	to	use	await	inside	such	event
handlers:

private	async	void	button1_Click(object	sender,	EventArgs	e)

{

		await	SomeAsyncStuff();

}

It	seems	that	nothing	bad	is	happening,	and	the	C#	compiler	generates	almost	the	same
code	as	for	the	Task	returning	method,	but	there	is	an	important	catch	related	to	exceptions
handling.

When	an	asynchronous	method	returns	Task,	exceptions	are	connected	to	this	task	and	can
be	handled	both	by	TPL	and	the	try/catch	block	in	case	await	is	used.	However,	if	we
have	a	async	void	method,	we	have	no	Task	to	attach	the	exceptions	to	and	those
exceptions	just	get	posted	to	the	current	synchronization	context.	These	exceptions	can	be
observed	using	AppDomain.UnhandledException	or	similar	events	in	a	GUI	application,
but	this	is	very	easy	to	miss	and	not	a	good	practice.

The	other	problem	is	that	we	cannot	use	a	void	returning	asynchronous	method	with
await,	since	there	is	no	return	value	that	can	be	used	to	await	on	it.	We	cannot	compose
such	a	method	with	other	asynchronous	tasks	and	participate	in	the	program	workflow.	It
is	basically	a	fire-and-forget	operation	that	we	start,	and	then	we	have	no	way	to	control
how	it	will	proceed	(if	we	did	not	write	the	code	for	this	explicitly).

Another	problem	is	void	returning	async	lambda	expression.	It	is	very	hard	to	notice	that
lambda	returns	void,	and	all	problems	related	to	usual	methods	are	related	to	lambda
expression	as	well.	Imagine	that	we	want	to	run	some	operation	in	parallel.	From	the
previous	chapter	we	learned	that	to	achieve	this,	we	can	use	the	Parallel.ForEach
method.	To	download	some	news	in	parallel,	we	can	write	a	code	like	this:

Parallel.ForEach(Enumerable.Range(1,10),	async	i	=>

{

		var	news	=	await	newsClient.GetTopNews(i);

		newsCollection.Add(news);

});

However,	this	will	not	work,	because	the	second	parameter	of	the	ForEach	method	is
Action<T>,	which	is	a	void	returning	delegate.	Thus,	we	will	spawn	10	download
processes,	but	since	we	cannot	wait	for	completion,	we	abandon	all	asynchronous
operations	that	we	just	started	and	ignore	the	results.

A	general	rule	of	thumb	is	to	avoid	using	async	void	methods.	If	this	is	inevitable	and
there	is	an	event	handler,	then	always	wrap	the	inner	await	method	calls	in	try/catch
blocks	and	provide	exception	handling.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Other	useful	TPL	features
Task	Parallel	Library	has	a	large	codebase	and	some	useful	features	such	as	Task.Unwrap
or	Task.FromResult	that	are	not	very	well	known	to	developers.	We	have	still	not
mentioned	two	more	extremely	useful	methods	yet.	They	are	covered	in	the	following
sections.

www.EBooksWorld.ir

Task.Delay
Often,	it	is	required	to	wait	for	a	certain	amount	of	time	in	the	code.	One	of	the	traditional
ways	to	wait	is	using	the	Thread.Sleep	method.	The	problem	is	that	Thread.Sleep	blocks
the	current	thread,	and	it	is	not	asynchronous.

Another	disadvantage	is	that	we	cannot	cancel	waiting	if	something	has	happened.	To
implement	a	solution	for	this,	we	will	have	to	use	system	synchronization	primitives	such
as	an	event,	but	this	is	not	very	easy	to	code.	To	keep	the	code	simple,	we	can	use	the
Task.Delay	method:

//	Do	something

await	Task.Delay(1000);

//	Do	something

This	method	can	be	canceled	with	a	help	of	the	CancellationToken	infrastructure	and
uses	system	timer	under	the	hood,	so	this	kind	of	waiting	is	truly	asynchronous.

www.EBooksWorld.ir

Task.Yield
Sometimes	we	need	a	part	of	the	code	to	be	guaranteed	to	run	asynchronously.	For
example,	we	need	to	keep	the	UI	responsive,	or	maybe	we	would	like	to	implement	a	fine-
grained	scenario.	Anyway,	as	we	already	know	that	using	await	does	not	mean	that	the
call	will	be	asynchronous.	If	we	want	to	return	control	immediately	and	run	the	rest	of	the
code	as	a	continuation	task,	we	can	use	the	Task.Yield	method:

//	Do	something

await	Task.Yield();

//	Do	something

Task.Yield	just	causes	a	continuation	to	be	posted	on	the	current	synchronization	context,
or	if	the	synchronization	context	is	not	available,	a	continuation	will	be	posted	on	a	thread
pool	worker	thread.

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing	a	custom	awaitable	type
Until	now	we	have	only	used	Task	with	the	await	operator.	However,	it	is	not	the	only
type	that	is	compatible	with	await.	Actually,	the	await	operator	can	be	used	with	every
type	that	contains	the	GetAwaiter	method	with	no	parameters	and	the	return	type	that	does
the	following:

Implements	the	INotifyCompletion	interface
Contains	the	IsCompleted	boolean	property
Has	the	GetResult	method	with	no	parameters

This	method	can	even	be	an	extension	method,	so	it	is	possible	to	extend	the	existing	types
and	add	the	await	compatibility	to	them.	In	this	example,	we	will	create	such	a	method	for
the	Uri	type.	This	method	will	download	content	as	a	string	via	HTTP	from	the	address
provided	in	the	Uri	instance:

private	static	TaskAwaiter<string>	GetAwaiter(this	Uri	url)

{

		return	new	HttpClient().GetStringAsync(url).GetAwaiter();

}

var	content	=	await	new	Uri("http://google.com");

Console.WriteLine(content.Substring(0,	10));

If	we	run	this,	we	will	see	the	first	10	characters	of	the	Google	website	content.

As	you	may	notice,	here	we	used	the	Task	type	indirectly,	returning	the	already	provided
awaiter	method	for	the	Task	type.	We	can	implement	an	awaiter	method	manually	from
scratch,	but	it	really	does	not	make	any	sense.	To	understand	how	this	works	it	will	be
enough	to	create	a	custom	wrapper	around	an	already	existing	TaskAwaiter:

struct	DownloadAwaiter	:	INotifyCompletion

{

		private	readonly	TaskAwaiter<string>	_awaiter;

		public	DownloadAwaiter(Uri	uri)

		{

				Console.WriteLine("Start	downloading	from	{0}",	uri);

				var	task	=	new	HttpClient().GetStringAsync(uri);

				_awaiter	=	task.GetAwaiter();

				Task.GetAwaiter().OnCompleted(()	=>	Console.WriteLine("download	

completed"));

		}

		public	bool	IsCompleted

		{

				get	{	return	_awaiter.IsCompleted;	}

		}

	

		public	void	OnCompleted(Action	continuation)

		{

				_awaiter.OnCompleted(continuation);

		}

	

www.EBooksWorld.ir

		public	string	GetResult()

		{

				return	_awaiter.GetResult();

		}

}

With	this	code,	we	have	customized	asynchronous	execution	that	provides	diagnostic
information	to	the	console.	To	get	rid	of	TaskAwaiter,	it	will	be	enough	to	change	the
OnCompleted	method	with	custom	code	that	will	execute	some	operation	and	then	a
continuation	provided	in	this	method.

To	use	this	custom	awaiter,	we	need	to	change	GetAwaiter	accordingly:

private	static	DownloadAwaiter	GetAwaiter(this	Uri	uri)

{

		return	new	DownloadAwaiter(uri);

}

If	we	run	this,	we	will	see	additional	information	on	the	console.	This	can	be	useful	for
diagnostics	and	debugging.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	looked	at	the	C#	language	infrastructure	that	supports	asynchronous
calls.	We	covered	the	new	C#	keywords,	async	and	await,	and	how	we	can	use	Task
Parallel	Library	with	the	new	C#	syntax.	We	learned	how	C#	generates	code	and	creates	a
state	machine	that	represents	an	asynchronous	operation,	and	we	implemented	an
analogue	solution	with	the	help	of	iterator	methods	and	the	yield	keyword.	Besides	this,
we	studied	additional	Task	Parallel	Library	features	and	looked	at	how	we	can	use	await
with	any	custom	type.

In	the	next	chapter,	we	will	learn	about	data	structures	that	are	built	for	concurrency	and
common	algorithms	that	rely	on	them.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	6.	Using	Concurrent	Data	Structures
Choosing	an	appropriate	data	structure	for	your	concurrent	algorithm	is	a	crucial	step.	We
have	already	learned	from	the	previous	chapters	that	it	is	not	usually	possible	to	use	just
any	.NET	object	as	a	shared	data	in	a	multithreaded	program.	We	can	assume	that	most	of
the	common	types	in	.NET	are	implemented	in	such	a	way	that	their	static	members	are
thread-safe,	while	their	instance	members	are	not.	However,	only	those	objects	that	are
specifically	designed	to	be	thread-safe	can	be	used	as	they	are	in	a	multithreaded
environment.

Therefore,	if	we	need	multiple	threads	to	add	some	item	to	a	collection,	we	cannot	just	call
the	Add	method	of	a	shared	instance	of	the	List<T>	type.	It	will	lead	to	unpredictable
results,	and	most	probably	the	program	will	end	up	throwing	a	weird	exception.

Thus,	in	this	situation,	there	are	two	general	ways	to	follow:	either	we	implement
synchronized	access	to	the	standard	collection	ourselves	with	the	help	of	existing
synchronization	primitives,	or	we	can	use	existing	concurrent	collections	from	the
System.Collections.Concurrent	namespace.

In	this	chapter,	we	are	going	to	dig	into	the	details	of	using	data	structures	in	concurrent
applications	and	review	advantages	and	disadvantages	of	each	option.

www.EBooksWorld.ir

Standard	collections	and	synchronization
primitives
To	highlight	what	problems	can	appear	when	we	use	nonthread	safe	collections	in	a
concurrent	program,	let’s	write	a	simple	program	that	will	use	the	Parallel.Foreach	class
to	copy	a	collection	and	double	its	elements:

var	source	=	Enumerable.Range(1,	42000).ToList();

var	destination	=	new	List<int>();

												

Parallel.ForEach(source,	n	=>	destination.Add(n	*	2));

	

Assert.AreEqual(source.Count,	destination.Count);

If	we	run	this	code,	we	will	almost	certainly	get	the	AggregateException	exception	with
the	ArgumentException	instance	wrapped	inside	it.

This	happens	because	the	Add	method	of	the	List<T>	class	is	not	thread	safe,	and	the
reason	for	this	lies	in	the	implementation	details:

public	void	Add(T	item)

{

				if	(_size	==	_items.Length)	EnsureCapacity(_size	+	1);

				_items[_size++]	=	item;

				_version++;

}

In	case	the	concurrent	threads	access	this	method	when	the	_size	==	items.Length	–	1
condition	is	true,	the	ArgumentException	exception	will	almost	certainly	occur.	The
implementation	will	cause	the	collection	to	have	an	inconsistent	state;	a	race	condition
will	lead	the	inner	array	new	size	to	be	less	than	needed.

To	avoid	a	race	condition,	we	can	implement	some	sort	of	synchronization	for	shared
collection	access	using	the	lock	statement:

object	syncRoot	=	new	object();

var	source	=	Enumerable.Range(1,	42000).ToList();

var	destination	=	new	List<int>();

	

Parallel.ForEach(source,

				n	=>

				{

								lock	(syncRoot)

								{

												destination.Add(n	*	2);

								}

				});

	

Assert.AreEqual(source.Count,	destination.Count);

This	code	will	run	without	errors.	However,	its	efficiency	will	be	less	than	doing	the	same
job	from	a	single	thread.	Instead	of	doing	calculations,	a	thread	will	be	waiting	for	a
shared	resource	(in	this	case,	it	is	the	destination	variable)	access.	This	situation	is

www.EBooksWorld.ir

called	thread	contention,	and	it	can	significantly	decrease	your	program	performance.

To	use	all	the	available	CPU	cores	effectively,	we	always	have	to	try	to	reduce	contention
as	much	as	possible.	In	some	cases,	it	is	possible	to	use	special	synchronization	primitives
or	lock-free	algorithms,	or	use	thread	local	computations,	which	are	merged	at	the	end	of
parallel	calculations	to	get	the	final	result.

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing	a	cache	with
ReaderWriterLockSlim
Caching	is	a	common	technique	that	is	being	used	in	many	applications	to	increase
performance	and	efficiency.	Usually,	reading	from	a	cache	occurs	more	often	than	writing
operation,	and	the	number	of	cache	readers	is	higher	that	the	number	of	writers.

In	this	particular	case,	there	is	no	sense	in	using	an	exclusive	lock	preventing	other	threads
from	reading	another	cache	value.	There	is	a	built-in	synchronization	object	that	has
exactly	this	behavior,	and	it	is	called	ReaderWriterLockSlim.

Note
There	are	several	classes	in	the	.NET	Framework	inside	the	System.Threading
namespace,	whose	names	end	with	Slim.	It	is	usually	more	efficient	and	lightweight	to
implement	the	corresponding	classes	without	Slim	at	the	end	of	their	names.	In	most
cases,	you	should	prefer	the	Slim	versions	over	original	ones,	unless	you	are	100%	sure
why	you	need	non-slim	objects.	This	rule	works	with	the	ReaderWriterLock	and
ReaderWriterLockSlim	classes	as	well—always	prefer	a	Slim	object,	because	it	has	major
efficiency	and	corrective	improvements.

Cache	can	be	used	differently	in	the	application,	but	the	most	common	approach	is	using
cache	aside	pattern.	The	client	is	unaware	of	caching;	if	there	is	a	long-running	operation
and	no	result	of	this	operation	can	be	found	in	the	cache,	we	perform	the	operation	and
save	the	result	into	the	cache.	If	there	is	a	result	in	the	cache,	we	do	not	start	a	long-
running	operation	but	use	the	cached	value	instead.

A	simple	code	of	a	cache	provider	that	contains	one	long-running	operation	and
implements	cache	aside	pattern	will	look	as	follows:

public	class	CustomProvider

{

				private	readonly	Dictionary<string,	OperationResult>	_cache	=	
								new	Dictionary<string,	OperationResult>();

				private	readonly	ReaderWriterLockSlim	_rwLockSlim	=	

								new	ReaderWriterLockSlim();

	

				public	OperationResult	RunOperationOrGetFromCache(

								string	operationId)

				{

								_rwLockSlim.EnterReadLock();

								try

								{

												OperationResult	result;

												if	(_cache.TryGetValue(operationId,	out	result))

																return	result;

								}

								finally

								{

												_rwLockSlim.ExitReadLock();

								}

www.EBooksWorld.ir

	

								_rwLockSlim.EnterWriteLock();

	

								try

								{

												OperationResult	result;

												if	(_cache.TryGetValue(operationId,	out	result))

																return	result;

	

												result	=	RunLongRunningOperation(operationId);

												_cache.Add(operationId,	result);

												return	result;

								}

								finally

								{

												_rwLockSlim.ExitReadLock();

								}

				}

	

				private	OperationResult	RunLongRunningOperation(

								string	operationId)

				{

								//	Running	real	long-running	operation

								//	...

				}

}

Note
It	is	very	important	to	always	implement	a	cache	invalidation	strategy,	which	is	missing	in
this	demo	code	as	it	is	not	relevant	to	the	topic	of	the	chapter.	However,	in	real-world
scenarios,	you	have	to	pay	attention	to	this	to	avoid	memory	leaks.	The	simple
invalidation	strategy	can	be	setting	a	cache	item	lifetime	explicitly	or	using	weak
references	so	that	garbage	collection	will	invalidate	the	cache.

This	sample	demonstrates	a	CustomProvider	class,	which	contains	only	one
RunOperationOrGetFromCache	public	method.	This	method	accepts	an	operation	identifier
and	returns	the	operation	result	as	an	OperationResult	object.	To	implement	correct
cache	parallel	reading,	in	the	beginning	we	acquire	a	reader	lock	and	then	check	that	there
is	a	result	in	the	cache.	If	not,	we	acquire	a	writer	lock	and	then	check	that	there	is	an
operation	value	inside	the	cache,	which	can	appear	while	we	are	acquiring	the	lock.	If
there	is	still	nothing	in	the	cache,	we	will	run	the	long-running	operation,	put	its	result	into
the	cache,	and	return	it	to	the	client.

If	we	don’t	perform	this	check,	we	can	get	ArgumentException	when	trying	to	add	an	item
with	the	same	key	to	the	dictionary	twice,	and	as	a	result	we	do	unnecessary	work.

Tip
However,	as	it	usually	happens	in	concurrent	programming,	this	approach	can	be	non-
effective	in	different	situations.	Using	ReaderWriterLockSlim	for	implementing
dictionary-based	caching	almost	always	lead	to	worse	performance	than	simply	using	a
common	statement,	lock	(syncRoot).	The	problem	is	that	acquiring	reader	lock	is	not	a
very	fast	operation.	A	ReaderWriterLockSlim	object	has	to	ensure	that	acquiring	a	writer

www.EBooksWorld.ir

lock	is	not	possible	while	being	inside	a	reader	block,	and	this	requires	the	use	of	some
synchronization	logic,	which	is	costly.	If	a	long	running	operation	is	really	long	running,
this	overhead	is	not	significant.	However,	in	our	case,	reading	a	value	from	Dictionary	is
a	very	fast	operation,	and	in	this	situation,	locking	the	overhead	becomes	noticeable.	Since
a	lock	statement	uses	spin-wait	optimization	for	short	running	operations,	it	will	be	more
effective	in	this	particular	case.

The	previous	tip	works	for	choosing	a	data	structure	as	well.	In	simple	cases,
implementing	general	locking	over	nonthread	safe	object	could	work	better	than	a
specialized	universal	thread	safe	data	structure.	However,	when	concurrent	program	logic
becomes	more	complicated,	it	is	a	good	idea	to	go	for	standard	concurrent	data	structures.

www.EBooksWorld.ir

www.EBooksWorld.ir

Concurrent	collections	in	.NET
Since	the	first	.NET	Framework	version,	most	of	the	collections	in	the
System.Collections	namespace	contained	the	Synchronized	factory	method	that	creates
a	thread	safe	wrapper	over	the	collection	instance,	which	ensures	thread	safety:

var	source	=	Enumerable.Range(1,	42000).ToList();

var	destination	=	ArrayList.Synchronized(new	List<int>());

	

Parallel.ForEach(source,

				n	=>

				{

								destination.Add(n);

				});

	

Assert.AreEqual(source.Count,	destination.Count);

The	synchronized	collection	wrapper	can	be	used	in	a	concurrent	environment,	but	its
efficiency	is	low,	since	it	uses	simple	locking	ensuring	exclusive	collection	access	for
every	operation.	This	approach	is	called	coarse-grained	locking	and	it	is	described	in
Chapter	3,	Understanding	Parallelism	Granularity.	It	does	not	scale	well	with	an	increase
in	the	number	of	clients	and	the	amount	of	data	inside	the	collection.

A	complicated,	but	an	efficient,	approach	is	to	use	fine-grained	locking,	so	we	can
provide	an	exclusive	access	only	to	the	parts	of	the	collection	that	are	in	use.	For	example,
if	the	underlying	data	storage	is	an	array,	we	can	create	multiple	locks	that	will	cover	the
corresponding	array	parts.	This	approach	requires	determining	the	required	lock	first,	but
it	will	also	allow	a	non-blocking	access	to	the	different	parts	of	the	array.	This	will	use
locks	only	when	there	is	a	concurrent	access	to	the	same	data.	In	certain	scenarios,	the
performance	difference	will	be	huge.

Note
PLINQ	uses	exactly	the	same	approach	for	parallel	collections	processing.	There	is	a
special	mechanism	called	partitioning,	which	splits	a	collection	in	multiple	segments.
Each	segment	gets	processed	on	a	separate	thread.	A	standard	partitioner	implementation
resides	inside	the	System.Collections.Concurrent.Partitioner	type.

With	the	.NET	Framework	4.0	release,	a	new	set	of	concurrent	collections	are	available
for	.NET	developers.	These	collections	are	specifically	designed	for	high	load	concurrent
access	and	use	lock-free	and	fine-grained	approaches	internally.	These	collections	are
available	in	the	System.Collections.Concurrent	namespace:

Concurrent	Collection System.Collections.Generic	analogue

ConcurrentDictionary<TKey,	TValue> Dictionary<TKey,	TValue>

ConcurrentBag<T> None

ConcurrentQueue<T> Queue<T>

www.EBooksWorld.ir

ConcurrentStack<T> Stack<T>

Each	of	these	concurrent	collections	are	suitable	for	different	work	scenarios.	Further,	we
will	go	through	all	of	these	data	structures	and	review	the	implementation	details	and	the
best-suited	work	scenario.

www.EBooksWorld.ir

www.EBooksWorld.ir

ConcurrentDictionary
We	can	improve	the	implementation	of	CustomProvider	using
ConcurrentDictionary<TKey,	TValue>	to	handle	the	synchronization:

public	class	CustomProvider

{

				private	readonly	

								ConcurrentDictionary<string,	OperationResult>	_cache	=	

												new	ConcurrentDictionary<string,	OperationResult>();

	

				public	OperationResult	RunOperationOrGetFromCache(

								string	operationId)

				{

								return	_cache.GetOrAdd(operationId,	

												id	=>	RunLongRunningOperation(id));

				}

	

				private	OperationResult	RunLongRunningOperation(

								string	operationId)

				{

								//	Running	real	long-running	operation

								//	...

								Console.WriteLine("Running	long-running	operation");

								return	OperationResult.Create(operationId);

				}

}

The	code	became	much	simpler.	We	just	used	the	GetOrAdd	method	and	it	does	exactly
what	we	need;	if	there	is	an	element	in	the	dictionary,	it	just	returns	its	value	or	runs	a
provided	delegate,	gets	the	result	value,	and	stores	it	in	the	dictionary.

Every	concurrent	collection	implements	a	corresponding	generic	interface.	For	example,
ConcurrentDictionary<TKey,	TValue>	implements	the	standard	IDictionary<TKey,
TValue>	interface.	However	besides	this,	it	introduces	new	methods	because	it	is	not
enough	to	introduce	the	thread	safe	version	of	each	method.	Consider	this	example:

private	readonly	IDictionary<string,	OperationResult>	_cache	=

				new	ConcurrentDictionary<string,	OperationResult>();

	

public	OperationResult	RunOperationOrGetFromCache(

				string	operationId)

{

				OperationResult	result;

				

				if	(_cache.TryGetValue(operationId,	out	result))

				{

								return	result;

				}

												

				result	=	RunLongRunningOperation(operationId);

				_cache.Add(operationId,	result);

				return	result;

}

www.EBooksWorld.ir

This	code	will	not	work	correctly	in	a	multithreaded	environment.	Both	the	TryGetValue
and	Add	operations	are	thread	safe,	but	a	sequence	of	two	operations	without	additional
synchronization	can	cause	a	race	condition,	and	in	this	example,	it	is	possible	to	get	an
exception	thrown	from	the	Add	method	while	trying	to	add	an	element	when	it	has	already
been	added	to	the	dictionary	by	another	thread.

It	is	clear	that	in	this	situation,	just	having	the	IDictionary<TKey,	TValue>
implementation	is	not	enough.	One	of	the	possible	solutions	is	to	replace	_cache.Add	with
the	_cache.TryAdd	method,	but	this	will	require	us	to	get	back	to	using	a	concrete	class:

private	readonly

				ConcurrentDictionary<string,	OperationResult>	_cache	=

								new	ConcurrentDictionary<string,	OperationResult>();

	

public	OperationResult	RunOperationOrGetFromCache(

				string	operationId)

{

				OperationResult	result;

				if	(_cache.TryGetValue(operationId,	out	result))

				{

								return	result;

				}

												

				result	=	RunLongRunningOperation(operationId);

				_cache.TryAdd(operationId,	result);

				return	result;

}

While	this	solution	is	also	far	from	perfect,	we	can	already	see	why	concurrent	collections
changed	the	common	API	and	introduced	a	set	of	new	methods.	Usually,	these	new
methods	represent	atomic	operations	that	consist	of	several	steps	and	each	step	performs	a
specific	action	internally:	GetOrAdd,	AddOrUpdate,	and	so	on.

Now	let’s	review	one	more	important	aspect	of	this	implementation.	If	we	look	at	the	code
thoroughly,	we	can	see	that	despite	there	being	no	errors	in	the	concurrent	environment	it
is	possible	that	the	RunLongRunningOperation	method	can	be	called	twice.	Thus,	only	the
first	result	will	be	stored	in	the	dictionary	and	the	latter	method	call	result	will	be	wasted.
This	is	also	important	because	the	GetOrAdd	method	of	the
ConcurrentDictionary<TKey,	TValue>	class	is	implemented	in	a	very	similar	way.

This	means	that	using	RunOperationOrGetFromCache	in	a	concurrent	environment	will
result	in	calling	a	long	running	operation	multiple	times	per	one	value.	If	this	turns	out	to
be	costly,	similar	to	transmitting	a	large	volume	of	data	via	the	network	or	performing
CPU	intensive	long	time	calculations,	this	is	definitely	not	a	good	approach.

www.EBooksWorld.ir

Using	Lazy<T>
Since	AddOrGet	is	implemented	in	a	way	that	every	call	to	this	method	with	the	same	key
will	result	in	getting	the	same	value,	we	can	use	a	little	trick	to	prevent	the	long	running
operation	from	running	multiple	times:

private	readonly	

				ConcurrentDictionary<string,	Lazy<OperationResult>>	_cache	=

								new	ConcurrentDictionary<string,	Lazy<OperationResult>>();

	

public	OperationResult	RunOperationOrGetFromCache(

				string	operationId)

{

				return	_cache.GetOrAdd(operationId,	

								id	=>	new	Lazy<OperationResult>(

										()	=>	RunLongRunningOperation(id))).Value;

}

In	this	example,	we	wrap	the	RunLongRunningOperation	method	call	into	a	special	object
—Lazy<OperationResult>.	This	class	is	a	part	of	the	.NET	Framework	Base	Class
Library	(BCL)	that	ensures	that	the	provided	delegate	will	be	executed	only	once	and	only
when	its	Value	property	is	accessed	by	an	external	code.

We	can	look	at	the	GetOrAdd	method	implementation	details	to	fully	understand	what	is
happening	under	the	hood:

//	ConcurrentDictionary<TKey,	TValue>	implementation

public	TValue	GetOrAdd(TKey	key,	Func<TKey,	TValue>	valueFactory)

{

				TValue	resultingValue;

				if	(TryGetValue(key,	out	resultingValue))

				{

								return	resultingValue;

				}

												

				TryAddInternal(key,	valueFactory(key),	false,	true,	

								out	resultingValue);

				return	resultingValue;

}

	

///	<summary>

///	Shared	internal	implementation	for	inserts	and	updates.

///	If	key	exists,	we	always	return	false;

///	and	if	updateIfExists	==	true	we	

///	force	update	with	value;

///	If	key	doesn't	exist,	we	always	add	value	and	return	true;

///	</summary>

private	bool	TryAddInternal(TKey	key,	TValue	value,	

				bool	updateIfExists,	bool	acquireLock,

				out	TValue	resultingValue)

{

				//	...	The	implementation	details

}

www.EBooksWorld.ir

Note
.NET	Framework	Core	is	now	open	source	and	can	be	found	on	GitHub	in	the
Microsoft/dotnet	repository.	However,	there	is	a	more	convenient	way	to	learn	the	.NET
source	code—a	referencesource.microsoft.com	web	site.	This	resource	was	specifically
created	for	learning	the	internals	of	.NET	and	provides	a	comfortable	search	and
navigation	using	the	code	semantics,	not	just	a	simple	text	search.	For	example,	if	you	are
looking	for	all	the	cases	of	the	System.String.Substring(System.Int32)	method	usage,
you	will	not	get	any	other	Substring	method	overloads.

We	can	see	that	if	there	is	no	cached	operation	result	in	the	dictionary,	we	immediately
call	valueFactory(key)	(this	is	where	multiple	RunLongRunningOperation	calls	happen),
and	the	returned	result	goes	to	the	TryAddInternal	method.	Even	the	comments	to	this
method	state	that	if	a	key	exists	and	the	updateIfExists	parameter	equals	to	false,	we
will	use	the	old	value	that	has	been	already	stored	in	the	dictionary.

Using	Lazy<OperationResult>	instead	of	OperationResult	leads	to	a	situation	where
we	call	only	the	Lazy<T>	object	constructor	multiple	times,	while	a	long	running
operation	will	be	executed	only	once	when	the	first	GetOrAdd	method	call	completes.

www.EBooksWorld.ir

Implementation	details
ConcurrentDictionary	is	in	fact	a	usual	hash	table	that	contains	an	array	of	buckets
protected	by	an	array	of	locks.	The	number	of	locks	can	be	defined	by	the	user	and
theoretically,	allows	many	threads	to	access	the	dictionary	without	any	contention	if	they
all	use	different	locks	and	thus,	the	different	parts	of	data	in	the	dictionary.

A	ConcurrentDictionary	inner	structure	scheme	looks	like	this:

The	entire	ConcurrentDictionary	state	is	placed	in	a	separate	Tables	class	instance	in
the	m_tables	field.	This	makes	it	possible	to	have	an	atomic	state	change	operation	for	the
dictionary	with	the	help	of	the	compare-and-swap	(CAS)	operations.

The	Tables	class	contains	the	following	most	important	fields:

m_buckets:	This	is	an	array	of	buckets;	each	of	the	buckets	contains	a	singly-linked
list	of	nodes	with	dictionary	data.
m_locks:	This	is	an	array	of	locks;	each	lock	provides	synchronized	access	to	one	or
more	buckets.
m_countPerLock:	This	is	an	array	of	counters;	each	counter	contains	a	total	number
of	nodes	that	are	protected	by	the	corresponding	lock.	For	example,	if	we	look	at	the
previous	scheme,	where	the	first	lock	protects	the	first	two	buckets,	the
m_countPerLock[0]	element	will	contain	the	value	of	5.
m_comparer:	This	is	an	IEqualityComparer<TKey>	object	that	contains	the	logic	for
calculating	the	hash	value	of	a	key	object.

The	ConcurrentDictionary	class	in	turn	contains	three	large	operations	groups:

Lock-free	operations:	This	kind	of	operation	can	be	run	in	parallel	from	multiple
threads	without	any	contention
Fine-grained	lock	operations:	As	it	has	been	already	explained,	these	operations	can
be	concurrently	executed	without	any	contention	if	they	manipulate	the	different
parts	of	data	inside	the	dictionary
Exclusive	lock	operations:	These	operations	can	run	only	on	a	single	thread	and
require	a	full	collection	lock	to	ensure	thread	safety

Lock-free	operations

www.EBooksWorld.ir

These	operations	do	not	require	any	lock	and	can	be	used	safely	from	multiple	threads.
This	is	the	list	of	the	corresponding	methods:

ContainsKey

TryGetValue

Read	access	by	dictionary	indexer
GetEnumerator

The	first	three	operations	are	based	on	the	TryGetValue	method.	This	contains	the
following	steps:

1.	 Get	the	key	object	hash	code	using	current	comparer.
2.	 Get	the	bucket	number	by	the	key	hash	with	the	help	of	the	GetBucketAndLockNo

method.	The	lock	number	is	not	used	at	the	moment.
3.	 Iterate	over	the	current	bucket	node	list	to	find	the	corresponding	value:

public	bool	TryGetValue(TKey	key,	out	TValue	value)

{

				int	bucketNo,	lockNoUnused;

				Tables	tables	=	m_tables;

				GetBucketAndLockNo(

								tables.m_comparer.GetHashCode(key),	out	bucketNo,	out	

lockNoUnused,	

								tables.m_buckets.Length,	tables.m_locks.Length);

				//	The	Volatile.Read	ensures	that	the	load	of	the	

				//	fields	of	'n'	doesn't	move	before	the	load	from	buckets[i].

				Node	n	=	Volatile.Read<Node>(ref	tables.m_buckets[bucketNo]);

				//	Iterate	over	Nodes	to	find	entry	with	a	corresponding	key

				...

}

The	GetEnumerator	method	implementation	is	quite	straightforward:

public	IEnumerator<KeyValuePair<TKey,	TValue>>	GetEnumerator()

{

				Node[]	buckets	=	m_tables.m_buckets;

				for	(int	i	=	0;	i	<	buckets.Length;	i++)

				{

								//	The	Volatile.Read	ensures	that	

								//	the	load	of	the	fields	of	'current'	

								//	doesn't	move	before	the	load	from	buckets[i].

								Node	current	=	Volatile.Read<Node>(ref	buckets[i]);

								while	(current	!=	null)

								{

												yield	return	new	KeyValuePair<TKey,	TValue>(

															current.m_key,	current.m_value);

												current	=	current.m_next;

								}

www.EBooksWorld.ir

				}

}

As	we	can	see,	the	GetEnumerator	method	does	not	create	a	copy	of	buckets	contents,	and
this	allows	multiple	threads	to	change	the	dictionary	data	while	another	thread	iterates
over	these	elements.	Notice	the	Volatile.Read	construct	that	creates	an	acquire-fence	and
ensures	that	no	reads	or	writes	can	be	reordered	before	the	load	from	buckets[i].

Fine-grained	lock	operations
These	operations	usually	work	with	a	single	element	inside	the	dictionary.	These	methods
use	the	fine-grained	locking	approach:

TryAdd

TryRemove

TryUpdate

write	access	by	a	dictionary	indexer
GetOrAdd

AddOrUpdate

These	operations	internally	use	the	GetBucketAndLockNo	method,	which	returns	the
bucket	and	the	lock	numbers.	The	implementation	usually	contains	the	following	steps:

1.	 Get	the	key	object	hash	code.
2.	 Get	the	bucket	and	the	lock	numbers.
3.	 Acquire	the	lock.
4.	 Change	the	current	bucket—delete	or	change	some	element	inside.
5.	 Release	the	acquired	lock.

Most	of	the	operations	in	the	preceding	list	use	the	TryAddInternal	method	internally.
Let’s	review	the	simplified	code	of	this	method:

private	bool	TryAddInternal(TKey	key,	TValue	value,	

				out	TValue	resultingValue)

{

				while	(true)

				{

								bool	resizeDesired	=	false;

								var	tables	=	m_tables;

								int	bucketNo,	lockNo;

								int	hashcode	=	tables.m_comparer.GetHashCode(key);

	

								GetBucketAndLockNo(hashcode,	out	bucketNo,	out	lockNo);

	

								try

								{

												Monitor.Enter(tables.m_locks[lockNo]);

	

												//	If	the	table	just	got	resized,	we	may	not	be	holding	

												//	the	right	lock,	and	must	retry.

												//	This	should	be	a	rare	occurence.

												if	(tables	!=	m_tables)

												{

www.EBooksWorld.ir

																continue;

												}

	

												//	Looping	through	Nodes	in	the	bucket.

												//	If	existing	Node	was	found

												//	the	method	returns	false,	otherwise	

												//	new	Node	would	be	added

												for	(Node	node	=	tables.m_buckets[bucketNo];	

																					node	!=	null;	node	=	node.m_next)

												{

																//	...

												}

	

												//	If	the	number	of	elements	guarded	by	this	lock	has	

												//	exceeded	the	budget,	resize	the	bucket	table.

												//	It	is	also	possible	that	GrowTable	will	increase	

												//	the	budget	but	won't	resize	the	bucket	table.

												//	That	happens	if	the	bucket	table	is	found	to	be	

												//	poorly	utilized	due	to	a	bad	hash	function.

												if	(tables.m_countPerLock[lockNo]	>	m_budget)

												{

																resizeDesired	=	true;

												}

								}

								finally

								{

												Monitor.Exit(tables.m_locks[lockNo]);

								}

	

								//	Resize	table	if	needed.

								//	This	method	should	be	called	outside	the	lock

								//	to	prevent	a	deadlocks.

								if	(resizeDesired)

								{

												GrowTable(tables,	tables.m_comparer);

								}

	

								resultingValue	=	value;

								return	true;

				}

}

It	is	clear	that	this	code	implements	all	the	preceding	steps—we	get	the	key	hash,	the
bucket,	and	the	lock	number	and	proceed	to	the	element	needed.	However,	there	are	a
couple	of	important	points	to	pay	attention	to:

Using	the	while	loop	to	work	around	the	situation	where	another	thread	has	changed
the	collection	and	its	m_tables	field.	In	this	case,	we	just	retry	until	we	succeed	and
the	old	and	new	m_tables	values	remain	equal.
When	node	count	per	one	lock	exceeds	some	threshold	value	(m_budget),	the	hash
table	rebalancing	occurs	inside	the	GrowTable	method.	This	requires	an	exclusive
lock	for	the	dictionary	to	be	acquired.

Exclusive	lock	operations

www.EBooksWorld.ir

There	are	more	operations	that	are	required	to	get	an	exclusive	lock	as	the	GrowTable
does.	It	is	very	important	to	know	these	operations	and	avoid	using	them	in	a
multithreaded	environment	if	possible.	Here	is	the	operations	list:

Clear

ToArray

CopyTo

Count

IsEmpty

GetKeys

GetValues

We	remember	that	trying	to	work	with	multiple	locks	can	easily	lead	to	deadlocks	in	a
concurrent	program.	Fortunately,	the	concurrent	dictionary	contains	the	AcquireLocks
method	that	can	safely	acquire	multiple	locks	always	in	the	same	order	that	prevents
deadlocks.	This	method	is	used	internally	from	the	AcquireAllLocks	method,	which
safely	acquires	all	the	locks	in	the	dictionary.

Every	operation	listed	previously	uses	the	same	algorithm;	first,	it	calls	AcquireAllLocks
to	prevent	concurrent	changes	to	the	dictionary,	then	it	modifies	the	m_table	instance	and
changes	the	dictionary	state.	For	example,	here	is	how	the	Count	property	is	implemented:

public	int	Count

{

				get

				{

								int	count	=	0;

	

								try

								{

												//	Acquire	all	locks

												AcquireAllLocks();

	

												//	Compute	the	count,	we	allow	overflow

												for	(int	i	=	0;	i	<	m_tables.m_countPerLock.Length;	i++)

												{

																count	+=	m_tables.m_countPerLock[i];

												}

	

								}

								finally

								{

												//	Release	locks	that	have	been	acquired	earlier

												ReleaseLocks();

								}

	

								return	count;

				}

}

www.EBooksWorld.ir

Using	the	implementation	details	in	practice
Knowing	the	principles	of	how	the	concurrent	dictionary	is	implemented	can	help	you	in
some	practical	situations.

A	better	understanding	of	concurrent	dictionary	constructor	parameters,	for	example,
concurrencyLevel,	will	help	to	tune	up	your	data	structure	for	the	concrete	task.	On	one
hand,	the	more	locks	we	create,	the	more	threads	can	potentially	work	with	the	dictionary
without	locking,	which	is	a	good	thing.	On	the	other	hand,	creating	more	locks	creates
more	performance	overhead,	and	we	cannot	explicitly	set	a	lock	control	or	a	bucket,	so
this	can	lead	to	decline	of	performance.	Knowing	these	details	will	help	us	to	study	the
program	under	a	profiler	to	find	the	best	solution	for	our	concrete	case.

Another	important	implementation	aspect	is	the	dictionary	buckets	containing	singly-
linked	lists.	Adding	an	element	to	such	a	list	is	an	O(N)	operation	and	this	can	be	a
problem	when	storing	hundreds	of	thousands	of	small	items	in	the	dictionary.

Since	the	Count,	ToArray,	and	IsEmpty	operations	require	exclusive	locking,	in	some
cases	using	corresponding	LINQ	alternatives	such	as	Enumerable.Count(),
Enumerable.ToArray(),	and	Enumerable.Any()	will	be	much	more	efficient	in	situations
where	the	dictionary	often	gets	concurrently	updated.

www.EBooksWorld.ir

www.EBooksWorld.ir

ConcurrentBag<T>
ConcurrentBag<T>	is	one	of	the	simplest	concurrent	collections.	It	is	intended	to	store	any
general-purpose	data.	The	main	feature	of	this	collection	is	how	it	stores	the	data;	the	Add
method	appends	an	item	to	a	doubly-linked	list	that	is	stored	in	the	current	thread’s	local
storage.	This	makes	the	appending	operation	very	efficient,	since	there	is	no	contention.
Getting	an	item	from	the	collection	with	the	TryTake	or	TryPeek	methods	is	also	quite
efficient.	First,	we	look	for	the	item	in	the	local	list,	but	if	it	is	empty,	we	look	for	items	in
other	threads’	local	lists.

This	approach	is	called	work	stealing	and	works	well	when	each	thread	contains	more	or
less	the	same	number	of	data	and	uses	the	same	number	of	append	and	take	operations.

Let’s	review	an	example	of	using	the	ConcurrentBag<T>	data	structure:

var	bag	=	new	ConcurrentBag<string>();

	

var	task1	=	Run(()	=>

{

				AddAndPrint(bag,	"[T1]:	Item	1");

				AddAndPrint(bag,	"[T1]:	Item	2");

				AddAndPrint(bag,	"[T1]:	Item	3");

	

				Thread.Sleep(2000);

				TakeAndPrint(bag);

				TakeAndPrint(bag);

},	threadName:	"T1");

	

var	task2	=	Run(()	=>

{

				AddAndPrint(bag,	"[T2]:	Item	1");

				AddAndPrint(bag,	"[T2]:	Item	2");

				AddAndPrint(bag,	"[T2]:	Item	3");

	

				Thread.Sleep(1000);

				TakeAndPrint(bag);

				TakeAndPrint(bag);

				TakeAndPrint(bag);

				TakeAndPrint(bag);

},	threadName:	"T2");

	

Task.WaitAll(task1,	task2);

The	AddAndPrint,	TakeAndPrint	and	Run	methods	help	to	create	a	thread	with	a	given
name	and	allows	us	to	append	and	remove	elements	from	the	ConcurrentBag<T>	object,
while	printing	the	element	value	to	the	console:

private	static	Task	Run(Action	action,	string	threadName)

{

				var	tcs	=	new	TaskCompletionSource<object>();

				var	thread	=	new	Thread(()	=>

				{

								action();

								tcs.SetResult(null);

www.EBooksWorld.ir

				});

				thread.Name	=	threadName;

				thread.Start();

	

				return	tcs.Task;

}

	

private	static	void	AddAndPrint(ConcurrentBag<string>	bag,	

				string	value)

{

				Console.WriteLine("{0}:	Add	-	{1}",	

								Thread.CurrentThread.Name,	value);

				bag.Add(value);

}

	

private	static	void	TakeAndPrint(ConcurrentBag<string>	bag)

{

				string	value;

				if	(bag.TryTake(out	value))

				{

								Console.WriteLine("{0}:	Take	-	{1}",	

												Thread.CurrentThread.Name,	value);

				}

}

Here	we	created	two	tasks,	and	each	task	sets	two	elements	to	the	queue.	Then	it	waits	for
some	time	and	starts	to	process	the	appended	elements.	The	inner	storage	structure	of	the
ConcurrentBag	object	will	look	like	this	when	the	appending	of	the	elements	is	finished:

ConcurentBag<T>,	as	we	have	already	mentioned,	contains	several	doubly-linked	lists,

www.EBooksWorld.ir

one	list	for	each	thread.	Adding	an	item	leads	to	appending	it	to	the	end	of	the	local	list,
but	getting	items	from	the	concurrent	bag	is	slightly	more	complicated:

T2:	Add	-	[T2]:	Item	1

T1:	Add	-	[T1]:	Item	1

T2:	Add	-	[T2]:	Item	2

T2:	Add	-	[T2]:	Item	3

T1:	Add	-	[T1]:	Item	2

T1:	Add	-	[T1]:	Item	3

T2:	Take	-	[T2]:	Item	3

T2:	Take	-	[T2]:	Item	2

T2:	Take	-	[T2]:	Item	1

T2:	Take	-	[T1]:	Item	1

T1:	Take	-	[T1]:	Item	3

T1:	Take	-	[T1]:	Item	2

We	append	items	to	the	collection	from	two	threads,	and	this	explains	an	addition	order
that	was	demonstrated	previously.	The	most	interesting	thing	is	how	items	are	removed
from	ConcurrentBag.	In	our	case,	the	second	thread	starts	getting	the	items	from	the
collection.	First,	it	gets	the	elements	that	were	added	by	this	thread,	but	in	the	reverse
order	(from	the	end	of	the	doubly-linked	list).	When	the	local	list	becomes	empty,	it	tries
to	“steal”	work	from	another	thread,	but	this	time	it	gets	items	from	the	beginning	of	the
underlying	list.

www.EBooksWorld.ir

ConcurrentBag	in	practice
The	implementation	details	of	the	ConcurentBag<T>	data	structure	makes	it	useful	only	in
very	specific	scenarios.	Reading	and	writing	objects	has	to	happen	on	the	same	thread	to
minimize	contention.	It	makes	this	collection	not	very	useful	in	most	common	situations,
since	usually	different	threads	append	and	read	data	from	a	collection.

A	good	practical	scenario	for	ConcurentBag<T>	is	an	object	pool.	It	is	usually
implemented	in	a	way	that	when	some	object,	which	is	significantly	expensive	to	create,
does	not	get	cleaned	up	by	the	garbage	collector,	it	goes	to	some	object	storage	and	is
easily	accessed	when	needed.	Since	usually	such	operations	happen	on	a	single	thread,	this
will	make	a	perfect	condition	to	use	this	kind	of	concurrent	collection.

Another	similar	example	is	a	thread	pool	implementation.	If	we	look	closely	at	the
DefaultTaskScheduler	implementation	from	Task	Parallel	Library,	we	can	see	that	it	has
the	same	behavior	as	the	concurrent	bag.	This	task	scheduler	does	not	use	a	global	task
list;	instead,	it	creates	a	number	of	local	task	lists	for	each	worker	thread.	If	some	task
creates	a	child	task	(without	providing	the	PreferFairness	option),	it	will	be	appended	to
the	local	task	list.	This	helps	to	reduce	contention	and	has	a	higher	probability	of	finding
the	required	data	in	the	CPU	cache.	Also	it	uses	work	stealing	in	case	the	local	task	list	is
empty.

However,	even	if	the	concurrent	bag	perfectly	fits	in	your	scenario,	it	is	a	good	idea	to	try
to	use	other	data	structures	and	measure	and	compare	the	performance	of	each
implementation.	The	synthetic	tests	(they	can	be	found	in	the	code	samples	of	this	chapter)
show	that	the	ConcurrentBag<T>	performance	is	not	impressive,	and	maybe	choosing
ConcurrentQueue<T>	or	ConcurrentStack<T>	will	be	a	better	solution.	Even	in	perfect
conditions	when	the	same	thread	appends	and	retrieves	data,	a	concurrent	bag	is	about
three	times	slower	than	a	concurrent	queue.

www.EBooksWorld.ir

www.EBooksWorld.ir

ConcurrentQueue<T>
ConcurrentQueue<T>	is	a	concurrent	version	of	the	Queue<T>	class.	It	contains	three	basic
methods:	Enqueue	appends	an	item	to	the	queue,	TryDequeue	retrieves	an	item	from	the
queue	if	it	is	possible,	and	TryPeek	gets	the	first	element	in	the	queue	without	removing	it
from	the	queue.	The	last	two	methods	return	false	if	the	queue	is	empty.

Now	let’s	see	a	sample	code	for	ConcurrentQueue<T>:

var	queue	=	new	ConcurrentQueue<string>();

	

var	task1	=	Run(()	=>

{

				AddAndPrint(queue,	"[T1]:	Item	1");

				AddAndPrint(queue,	"[T1]:	Item	2");

				AddAndPrint(queue,	"[T1]:	Item	3");

	

				Thread.Sleep(2000);

				TakeAndPrint(queue);

				TakeAndPrint(queue);

},	threadName:	"T1");

	

var	task2	=	Run(()	=>

{

				AddAndPrint(queue,	"[T2]:	Item	1");

				AddAndPrint(queue,	"[T2]:	Item	2");

				AddAndPrint(queue,	"[T2]:	Item	3");

	

				Thread.Sleep(1000);

				TakeAndPrint(queue);

				TakeAndPrint(queue);

				TakeAndPrint(queue);

				TakeAndPrint(queue);

},	threadName:	"T2");

	

Task.WaitAll(task1,	task2);

In	this	example,	we	do	the	same	with	the	ConcurrentBag<T>	code.	We	create	two	named
threads;	each	thread	appends	three	items	to	the	queue.	Then	after	some	pause,	threads	start
to	retrieve	the	elements	from	the	queue:

T1:	Add	-	[T1]:	Item	1

T2:	Add	-	[T2]:	Item	1

T2:	Add	-	[T2]:	Item	2

T2:	Add	-	[T2]:	Item	3

T1:	Add	-	[T1]:	Item	2

T1:	Add	-	[T1]:	Item	3

T2:	Dequeue	-	[T1]:	Item	1

T2:	Dequeue	-	[T2]:	Item	1

T2:	Dequeue	-	[T2]:	Item	2

T2:	Dequeue	-	[T2]:	Item	3

T1:	Dequeue	-	[T1]:	Item	2

T1:	Dequeue	-	[T1]:	Item	3

Concurrent	queue	is	a	FIFO	(First	In,	First	Out)	collection,	but	since	this	is	a

www.EBooksWorld.ir

multithreaded	environment,	the	order	of	appending	and	removing	elements	is	not	strictly
sequential.

The	ConcurrentQueue<T>	class	is	implemented	on	a	singly-linked	list	of	ring	buffers	(or
segments).	This	allows	this	collection	to	be	lock-free	that	makes	it	very	attractive	to	use
this	in	high	load	concurrent	applications.

In	the	beginning,	a	concurrent	queue	creates	one	segment	that	is	referenced	by	two	inner
fields:	m_head	and	m_tail	(the	first	and	the	last	segments	reference	correspondingly).	The
segment	size	is	32	bytes,	and	each	segment	contains	two	references:	Low	and	High.	Low
references	an	element	position	in	the	buffer	that	can	be	removed	by	calling	the	Dequeue
method,	and	High	references	the	last	item	in	the	buffer	that	has	been	added	by	using	the
Enqueue	method.

Here	is	how	the	queue	will	look	internally	after	appending	six	elements	and	then	removing
two	of	them:

If	we	find	out	during	the	process	of	appending	an	element	to	the	queue	that	the	segment	is
full,	then	one	more	segment	is	created	and	attached	to	the	end	of	the	segment	list.	Only	the
first	and	the	last	segments	can	be	partially	full,	every	other	segment	must	be	completely
full.

If	we	append	80	elements	and	then	remove	four,	we	will	see	something	like	this:

The	overall	queue	size	will	be	32	–	4	+	32	+	16	=	76.	The	queue	will	contain	three
segments,	and	the	first	and	the	last	segments	will	be	partially	filled.

www.EBooksWorld.ir

www.EBooksWorld.ir

ConcurrentStack<T>
The	ConcurrentStack<T>	data	structure	is	a	concurrent	version	of	a	standard	Stack<T>
collection.	It	contains	three	main	methods:	Push,	TryPop,	and	TryPeek,	to	append,	retrieve
and	get	the	item	from	the	collection	by	FILO	(First	In,	Last	Out)	principle.

ConcurrentStack<T>	is	implemented	as	a	singly-linked	lock-free	list,	which	makes	it	less
interesting	in	terms	of	reviewing	the	implementation	details.	Nevertheless,	it	is	still	useful
to	know,	and	if	we	have	to	choose	a	concurrent	data	structure	for	a	scenario	where
elements	processing	order	is	not	important,	it	is	preferable	to	use	a	concurrent	queue	since
it	has	less	performance	overhead.	Appending	elements	to	the	concurrent	stack	always
leads	to	additional	memory	allocation,	which	can	be	a	significant	drawback	in	certain
scenarios.

www.EBooksWorld.ir

www.EBooksWorld.ir

The	Producer/Consumer	pattern
The	Producer/Consumer	pattern	is	one	of	the	most	widely	used	parallel	programming
patterns.	The	most	natural	approach	is	to	organize	your	application	for	processing	work
items	on	another	thread.	In	this	case,	we	get	two	application	parts—one	puts	new	work	to
be	processed	and	the	other	checks	for	new	work	and	performs	element	processing.	The
standard	.NET	Framework	thread	pool	is	a	good	example;	one	thread	puts	a	work	item	in	a
processing	queue	by	calling	the	Task.Run	function	of	the
ThreadPool.QueueUserWorkItem	methods,	and	the	infrastructure	finds	other	threads	to
process	these	tasks.

Note
The	other	parallel	programming	patterns	will	be	reviewed	in	the	next	chapter.	The
Producer/Consumer	pattern	is	very	tightly	related	to	concurrent	data	structures,	and	it	is
more	naturally	described	along	with	them.

Another	classic	example	is	a	user	interface	programming.	To	create	responsive	and	fast
UI,	a	UI	thread	has	to	offload	as	much	work	as	possible	to	other	threads.	Therefore,	it
posts	tasks	to	a	queue,	and	some	background	threads	process	these	tasks	and	provide	the
result	back	to	UI.

The	same	approach	is	used	in	server-side	programming.	To	effectively	process	client
requests,	they	are	queued	first,	and	only	then	does	the	server	infrastructure	assign	a	worker
thread	to	process	the	user	request.

www.EBooksWorld.ir

Custom	Producer/Consumer	pattern	implementation
Let’s	try	to	implement	the	Producer/Consumer	pattern	with	the	help	of	the	standard
Queue<T>	class.	Before	we	can	get	to	the	programming,	we	have	to	think	about	the
requirements:

What	should	a	consumer	do	when	calling	the	Take	method	while	the	current	queue
does	not	contain	any	elements?
What	should	a	producer	do	when	calling	the	Add	method	as	the	collection	size	has
reached	some	threshold	value?

If	we	look	at	the	standard	concurrent	collections	implementation,	it	makes	sense	to	replace
the	Take	method	with	TryTake,	and	this	will	return	false	if	the	queue	is	empty.	Instead	of
the	Add	method,	we	can	implement	TryAdd	that	will	return	false	when	the	queue	is	full.
Unfortunately,	it	is	not	the	best	design	for	a	Producer/Consumer	queue.

A	more	natural	approach	would	be	to	make	the	Take	method	block	the	current	thread
when	the	underlying	queue	is	empty	and	return	the	result	as	soon	as	any	producer	thread
adds	an	item	to	the	queue;	such	a	queue	is	called	a	blocking	queue.	The	same	with	the
Add	method—just	block	when	the	queue	is	full	and	put	an	item	as	soon	as	there	is	a	place
for	an	item	in	the	queue.	This	approach	helps	us	to	handle	a	situation	when	there	are	too
many	producers	or	they	just	create	more	items	that	consumers	can	handle.	This	kind	of
queue	is	called	a	bounded	queue.

A	simple	BoundedBlockingQueue	implementation	will	look	like	this:

public	class	BoundedBlockingQueue<T>

{

				private	readonly	Queue<T>	_queue	=	new	Queue<T>();	

								

				private	readonly	SemaphoreSlim	_nonEmptyQueueSemaphore	=	

								new	SemaphoreSlim(0,	int.MaxValue);

	

	

				private	readonly	SemaphoreSlim	_nonFullQueueSemaphore;

	

				public	BoundedBlockingQueue(int	boundedCapacity)

				{

								_nonFullQueueSemaphore	=	new	SemaphoreSlim(

												boundedCapacity);

				}

	

				public	void	Add(T	value)

				{

								_nonFullQueueSemaphore.Wait();

	

								lock	(_queue)	_queue.Enqueue(value);

								_nonEmptyQueueSemaphore.Release();

				}

	

				public	T	Take()

				{

								_nonEmptyQueueSemaphore.Wait();

								T	result;

www.EBooksWorld.ir

								lock	(_queue)

								{

												Debug.Assert(_queue.Count	!=	0);

												result	=	_queue.Dequeue();

								}

	

								_nonFullQueueSemaphore.Release();

								return	result;

				}

}

This	implementation	uses	a	simple	queue	and	two	semaphores
—_nonFullQueueSemaphore	and	_nonEmptyQueueSemaphore.	We	use	the	first	one	to
block	producers	when	the	queue	is	full;	the	second	blocks	consumers	when	the	queue	is
empty.	When	the	Add	method	is	called;	we	call	Wait	on	_nonFullQueueSemaphore.	It	will
return	control	when	the	queue	is	not	full,	and	then	we	can	add	another	semaphore	counter
to	unblock	consumer	threads.	The	Take	method	works	exactly	like	this,	but	in	a	reverse
order—we	wait	on	the	_nonEmptyQueueSemaphore	semaphore	until	we	have	anything	in
the	queue,	and	then	we	remove	the	appeared	element	from	the	queue	and	increase	the
other	semaphore	counter.

Tip
In	the	production	code,	we	will	have	to	implement	IDisposable	to	support	deterministic
resources	releasing,	proper	exception	handling,	and	cancellation	policy	by	providing	the
CancellationToken	instance	to	the	Add	and	Take	methods.	However,	in	this	example,	it	is
not	relevant	to	the	topic	and	this	logic	is	omitted	to	keep	the	remaining	code	clean	and
simple.

In	some	cases,	the	Producer/Consumer	queue	can	be	used	to	process	a	fixed	(or	at	least	a
finite)	number	of	elements.	In	this	case,	we	need	to	be	able	to	notify	the	consumers	that
items	appending	is	over:

public	class	BoundedBlockingQueue<T>

{

				private	readonly	Queue<T>	_queue	=	new	Queue<T>();	

								

				private	readonly	SemaphoreSlim	_nonEmptyQueueSemaphore	=	

								new	SemaphoreSlim(0,	int.MaxValue);

	

				private	readonly	

								CancellationTokenSource	_consumersCancellationTokenSource	=

												new	CancellationTokenSource();

	

				private	readonly	SemaphoreSlim	_nonFullQueueSemaphore;

	

				public	BoundedBlockingQueue(int	boundedCapacity)

				{

								_nonFullQueueSemaphore	=	new	SemaphoreSlim(boundedCapacity);

				}

	

				public	void	CompleteAdding()

				{

								//	Notify	all	the	consumers	that	completion	is	finished

www.EBooksWorld.ir

								_consumersCancellationTokenSource.Cancel();

				}

	

				public	void	Add(T	value)

				{

								_nonFullQueueSemaphore.Wait();

	

								lock	(_queue)	_queue.Enqueue(value);

								_nonEmptyQueueSemaphore.Release();

				}

	

				public	T	Take()

				{

								T	item;

								if	(!TryTake(out	item))

								{

												throw	new	InvalidOperationException();

								}

	

								return	item;

				}

	

				public	IEnumerable<T>	Consume()

				{

								T	element;

								

								while(TryTake(out	element))

								{

												yield	return	element;

								}

				}

	

				private	bool	TryTake(out	T	result)

				{

								result	=	default(T);

	

								if	(!_nonEmptyQueueSemaphore.Wait(0))

								{

												try

												{

																_nonEmptyQueueSemaphore.Wait(

																			_consumersCancellationTokenSource.Token);

												}

												catch	(OperationCanceledException	e)

												{

																//	Breaking	the	loop	only	when	cancellation	

																//	was	requested	by	CompleteAdding

																if	(e.CancellationToken	==	

																								_consumersCancellationTokenSource.Token)

																{

																				return	false;

																}

	

																//	Propagate	original	exception

																throw;

												}

www.EBooksWorld.ir

								}

								

								lock	(_queue)

								{

												result	=	_queue.Dequeue();

								}

	

								_nonFullQueueSemaphore.Release();

								return	true;

				}

}

Here	we	see	new	CompleteAdding	and	Consume	methods.	The	first	one	is	intended	to	be
used	from	producer’s	code	to	signal	that	we	have	finished	appending	items	to	the	queue.
The	Consume	method	can	be	used	by	consumers	to	process	all	the	items	until	the	queue	is
empty	and	item	appending	is	complete.

We	have	also	implemented	a	cooperative	cancellation	here	with	the	help	of	the
CancellationTokenSource	and	CancellationToken	objects.	The	CompleteAdding
method	sets	the	flag	that	indicates	that	no	additional	elements	will	be	added	to	the
collection.	The	TryTake	method	uses	this	flag	and	standard	semaphore	cancellation	logic
to	break	the	loop	when	cancellation	is	requested.

We	can	use	our	brand	new	collection	in	the	following	way:

var	queue	=	new	BoundedBlockingQueue<string>(3);

	

var	t1	=	Task.Run(()	=>

{

				AddAndPrint(queue,	"1");

				AddAndPrint(queue,	"2");

				AddAndPrint(queue,	"3");

				AddAndPrint(queue,	"4");

				AddAndPrint(queue,	"5");

	

				queue.CompleteAdding();

				Console.WriteLine("[{0}]:	finished	producing	elements",

								Thread.CurrentThread.ManagedThreadId);

	

});

	

var	t2	=	Task.Run(()	=>

{

				foreach	(var	element	in	queue.Consume())

				{

								Print(element);

				}

																

				Console.WriteLine("[{0}]:	Processing	finished.",

								Thread.CurrentThread.ManagedThreadId);

});

	

var	t3	=	Task.Run(()	=>

{

				foreach	(var	element	in	queue.Consume())

www.EBooksWorld.ir

				{

								Print(element);

				}

																

				Console.WriteLine("[{0}]:	Processing	finished.",

								Thread.CurrentThread.ManagedThreadId);

});

	

Task.WaitAll(t1,	t2,	t3);

In	this	code,	we	used	one	producer	thread	that	appends	items	to	the	queue,	and	two
consumer	threads.	The	result	will	be	the	following:

[4]:	Added	1

[9]:	Took	1

[8]:	Took	2

[4]:	Added	2

[4]:	Added	3

[4]:	Added	4

[4]:	Added	5

[9]:	Took	3

[9]:	Took	5

[4]:	finished	producing	elements

[8]:	Took	4

[9]:	Processing	finished.

[8]:	Processing	finished.

www.EBooksWorld.ir

www.EBooksWorld.ir

The	Producer/Consumer	pattern	in	.NET
4.0+
Since	.NET	Framework	4.0,	there	has	been	a	standard	BlockingCollection<T>	class,	so
we	should	prefer	using	this	to	create	our	own	implementations	such	as
BoundedBlockingQueue<T>.	It	contains	all	the	required	operations	and	allows	us	to	choose
different	element	storage	strategies	using	different	concurrent	collections.

In	spite	of	BlockingCollection<T>	implementing	the	ICollection<T>	interface,	it	is	just
a	wrapper	over	any	general	concurrent	collection	that	implements
IProducerConsumerCollection<T>.	The	Blocking	part	of	the	collection	name	means	that
the	Take	method	blocks	until	new	elements	appear	in	the	collection.	A	more	accurate
name	for	this	collection	would	be	BoundedBlockingProducerConsumer<T>,	since	it	also
blocks	the	Add	method	when	the	maximum	underlying	collection	capacity	is	reached.

Let’s	use	BlockingCollection<T>	to	create	a	custom	Producer/Consumer	implementation
that	allows	us	to	create	a	specific	number	of	consumer	threads:

public	class	CustomProducerConsumer<T>	:	IDisposable

{

				private	readonly	Action<T>	_consumeItem;

				private	readonly	BlockingCollection<T>	_blockingCollection;

				private	readonly	Task[]	_workers;

	

				public	CustomProducerConsumer(Action<T>	consumeItem,	

								int	degreeOfParallelism,	

								int	capacity	=	1024)

				{

								_consumeItem	=	consumeItem;

												

								_blockingCollection	=	new	BlockingCollection<T>(capacity);

												

								_workers	=	Enumerable.Range(1,	degreeOfParallelism)

												.Select(_	=>	Task.Factory.StartNew(Worker,	

																	TaskCreationOptions.LongRunning))

												.ToArray();

				}

	

				public	void	Process(T	item)

				{

								_blockingCollection.Add(item);

				}

	

				public	void	CompleteProcessing()

				{

								_blockingCollection.CompleteAdding();

				}

	

				public	void	Dispose()

				{

								//	Unblock	all	workers	even	if	the	client

								//	didn't	call	CompleteProcessing

www.EBooksWorld.ir

								if	(!_blockingCollection.IsAddingCompleted)

								{

												_blockingCollection.CompleteAdding();

								}

	

								Task.WaitAll(_workers);

	

								_blockingCollection.Dispose();

				}

				private	void	Worker()

				{

								foreach	(var	item	in	

												_blockingCollection.GetConsumingEnumerable())

								{

												_consumeItem(item);

								}

				}

The	constructor	of	CustomProducerConsumer<T>	accepts	as	a	parameter	an	Action<T>
delegate	that	represents	the	consumer,	queue	size,	and	required	parallelism	degree.	Then,
we	create	the	required	number	of	worker	threads	by	creating	the	Task	objects	with	the
TaskCreationOptions.LongRunning	option.	The	process	method	is	intended	to	append
new	elements,	and	the	CompleteProcessing	method	signals	that	there	will	be	no	more
elements	appended	to	the	queue:

Action<string>	processor	=	element	=>

{

				Console.WriteLine("[{0}]:	Processing	element	'{1}'",

								Thread.CurrentThread.ManagedThreadId,	element);

};

	

var	producerConcumer	=	new	CustomProducerConsumer<string>(

			processor,	Environment.ProcessorCount);

for	(int	i	=	0;	i	<	5;	i++)

{

				string	item	=	"Item	"	+	(i	+	1);

				Console.WriteLine("[{0}]:	Adding	element	'{1}'",

								Thread.CurrentThread.ManagedThreadId,	item);

	

				producerConcumer.Process("Item	"	+	(i	+	1));

}

	

Console.WriteLine("[{0}]:	Complete	adding	new	elements",

				Thread.CurrentThread.ManagedThreadId);

	

producerConcumer.CompleteProcessing();

//	Dispose	will	block	till	all	operations	gets	completed

producerConcumer.Dispose();

If	we	run	this	code,	we	will	get	the	following	result:

[5]:	Adding	element	'Item	1'

[5]:	Adding	element	'Item	2'

www.EBooksWorld.ir

[5]:	Adding	element	'Item	3'

[9]:	Processing	element	'Item	1'

[8]:	Processing	element	'Item	2'

[5]:	Adding	element	'Item	4'

[5]:	Adding	element	'Item	5'

[5]:	Complete	adding	new	elements

[9]:	Processing	element	'Item	5'

[10]:	Processing	element	'Item	3'

[11]:	Processing	element	'Item	4'

The	result	shows	that	there	is	one	producer	thread	that	appends	elements	to	the	collection,
and	four	different	consumer	threads	that	process	these	elements	until	the	producer	thread
stops	appending	items.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	have	learned	about	different	concurrent	data	structures,	their
advantages	and	disadvantages,	and	we	have	understood	that	choosing	an	appropriate
concurrent	data	structure	is	a	complicated	and	responsible	task.	The	right	choice	is	defined
by	many	criteria	such	as	availability,	complexity,	resource	consumption,	versatility,
performance,	and	many	others.

Similar	to	software	development,	in	general	there	is	no	single	and	proper	universal
solution	appropriate	for	all	usage	scenarios.	In	some	cases,	it	is	better	to	use	regular
collections	with	exclusive	locking.	Some	other	cases	will	require	developing	our	own
specific	concurrent	data	structures	from	scratch,	since	a	universal	standard	collection	will
not	fit	in	the	high	performance	requirements.	A	rule	of	thumb	is	to	try	to	implement	the
easiest	solution	and	then	measure	the	performance	and	check	where	the	performance
bottleneck	of	your	application	is.

In	the	next	chapter,	we	will	consider	different	concurrent	and	asynchronous	programming
patterns	that	can	help	in	structuring	your	parallel	program	for	simplicity	and	efficiency
and	allow	you	to	quickly	implement	well-known	concurrent	algorithms.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	7.	Leveraging	Parallel	Patterns
There	are	many	programming	rules,	tricks,	and	typical	patterns	related	to	concurrent
programming	that	have	been	developed	to	address	concrete	problems	that	often	happen	in
practice.	In	this	chapter,	we	will	go	through	several	kinds	of	concurrent	programming
patterns—low-level	patterns	(concurrent	idioms),	.NET-specific	patterns	for	asynchronous
programming	(Asynchronous	Programming	Patterns),	and	high-level	concurrent
application	building	blocks	(Concurrent	Design	Patterns).	Let’s	review	them	one	by	one.

www.EBooksWorld.ir

Concurrent	idioms
The	.NET	Framework	platform	contains	some	high-level	components	that	make
concurrent	applications	programming	much	easier.	In	Chapter	6,	Using	Concurrent	Data
Structures,	we	reviewed	concurrent	collections	and	data	structures,	and	in	Chapter	4,	Task
Parallel	Library	in	Depth,	and	Chapter	5,	C#	Language	Support	for	Asynchrony,	we
looked	at	Task	Parallel	Library	and	the	C#	language	async/await	infrastructure.

Here,	we	will	see	how	TPL	and	C#	can	improve	your	programming	experience.

www.EBooksWorld.ir

Process	Tasks	in	Completion	Order
As	an	example	task,	let’s	consider	leveraging	a	weather	information	from	a	service	for
each	provided	city,	processing	the	information,	and	printing	it	to	the	console.	The	simple
implementation	will	be	like	this:

public	async	Task	UpdateWeather()

{

		var	cities	=	new	List<string>	{	"Los	Angeles",	"Seattle",	"New	York"	};

		var	tasks	=

				from	city	in	cities

				select	new	{	City	=	city,	WeatherTask	=	GetWeatherForAsync(city)	};

		foreach	(var	entry	in	tasks)

		{

				var	weather	=	await	entry.WeatherTask;

				ProcessWeather(entry.City,	weather);

		}

}

private	Task<Weather>	GetWeatherForAsync(string	city)

{

		Console.WriteLine("Getting	the	weather	for	'{0}'",	city);

		return	WeatherService.GetWeatherAsync(city);

}

private	void	ProcessWeather(string	city,	Weather	weather)

{

		Console.WriteLine("[{2}]:	Processing	weather	for	'{0}':	'{1}'",

				city,	weather,	DateTime.Now.ToLongTimeString());

}

In	this	code,	we	used	a	LINQ	query	to	get	the	weather	data	for	each	city.	The	program	will
work	well,	but	there	is	a	problem	in	this	code;	we	call	the	weather	info	service	one	by	one
and	a	new	request	gets	issued	only	after	the	preceding	request	has	been	completed.	We	can
use	a	workaround	by	calling	the	ToList	method	on	the	query,	but	we	will	get	the	results	in
their	starting	order	and	not	by	task	completion.

The	solution	is	to	use	the	Process	Tasks	in	Completion	Order	idiom.	The	implementation
is	based	on	the	Task.WhenAny	method:

var	cities	=	new	List<string>	{	"Los	Angeles",	"Seattle",	"New	York"	};

var	tasks	=	cities.Select(async	city	=>

{

		return	new	{City	=	city,	Weather	=	await	GetWeatherForAsync(city)};

}).ToList();

while	(tasks.Count	!=	0)

{

		var	completedTask	=	await	Task.WhenAny(tasks);

		tasks.Remove(completedTask);

www.EBooksWorld.ir

		var	result	=	completedTask.Result;

		ProcessWeather(result.City,	result.Weather);

}

Here,	we	called	the	weather	information	service	for	all	the	cities	in	parallel,	and	then
inside	the	while	loop	we	used	the	Task.WhenAny	method	to	get	the	first	completed	task.
The	task	gets	processed	and	removed	from	the	running	task	list.	As	required	in	this
example,	tasks	are	being	processed	in	completion	order.

However,	the	code	looks	more	complicated	than	the	first	sample.	To	get	the	code
structured,	we	can	create	a	generic	OrderByCompletion	implementation	for	the	tasks
collection:

public	static	IEnumerable<Task<T>>	OrderByCompletion<T>(

		this	IEnumerable<Task<T>>	taskSequence)

{

				var	tasks	=	taskSequence.ToList();

				while	(tasks.Count	!=	0)

				{

						var	tcs	=	new	TaskCompletionSource<T>();

						//	Getting	the	first	finished	task

						Task.WhenAny(tasks).ContinueWith((Task<Task<T>>	tsk)	=>	{

								tasks.Remove(tsk.Result);

								tcs.FromTask(tsk.Result);

						});

						yield	return	tcs.Task;

		}

}

Note
Nevertheless,	this	implementation	has	a	serious	pitfall.	Since	the	Task.WhenAny	method
creates	a	continuation	task	for	each	running	task	and	we	are	calling	it	inside	the	loop,	we
can	conclude	that	this	OrderByCompletion	method	implementation	has	a	time	complexity
of	O(n2).	To	improve	the	performance,	we	can	register	a	continuation	for	each	task	that
will	use	the	TaskCompletionSource	array	to	store	each	task’s	result.

It	is	very	comfortable	to	use	the	newly	implemented	OrderByCompletion	method:

var	cities	=	new	List<string>	{	"Los	Angeles",	"Seattle",	"New	York"	};

var	tasks	=	cities.Select(async	city	=>

{

		return	new	{City	=	city,	Weather	=	await	GetWeatherForAsync(city)};

});

foreach	(var	task	in	tasks.OrderByCompletion())

{

		var	taskResult	=	await	task;

www.EBooksWorld.ir

		//	taskResult	is	an	object	of	anonymous	type	with	City	and

		//	WeatherTask

				ProcessWeather(taskResult.City,	taskResult.Weather);

}

Now	it	is	possible	to	use	the	plain	old	foreach	loop	similarly	to	the	first	implementation,
but	the	task	processing	happens	by	completion	and	not	by	start	order.	The	results	will
demonstrate	this	processing	behavior:

[12:54:35	PM]:	Getting	the	weather	for	'Los	Angeles'

[12:54:35	PM]:	Getting	the	weather	for	'Seattle'

[12:54:35	PM]:	Getting	the	weather	for	'New	York'

[12:54:36	PM]:	Processing	weather	for	'Seattle':	'Temp:	7C'

Got	the	weather	for	'Los	Angeles'

[12:54:39	PM]:	Processing	weather	for	'Los	Angeles':	'Temp:	6C'

Got	the	weather	for	'New	York'

[12:54:40	PM]:	Processing	weather	for	'New	York':	'Temp:	8C'

www.EBooksWorld.ir

Limiting	the	parallelism	degree
To	use	computer	resources	effectively,	we	need	to	be	able	to	specify	the	number	of
simultaneously	running	operations.	Besides	this,	the	optimal	parallel	operations	number	is
related	to	their	nature.	If	these	operations	are	long-running	and	CPU-bound,	it	makes
sense	to	use	the	number	of	hardware-supported	threads	to	limit	the	parallelism	degree.

However,	if	they	are	IO-bound,	there	is	no	clear	limit.	It	depends	on	many	factors	related
to	the	kind	of	IO	that	is	happening	and	the	corresponding	hardware	characteristics.	It	may
be	HDD	random	read	speed,	or	network	throughput	and	latency,	or	in	the	case	of	remote
service	calls,	the	performance	of	this	service,	and	so	on.	Creating	a	general	solution	in	this
case	is	very	hard	and	can	be	more	complicated	than	creating	our	own	implementation	of	a
thread	pool,	which	does	the	same	for	CPU-bound	tasks.

However,	for	starters,	we	can	just	run	multiple	parallel	operations	and	limit	the	parallelism
degree	with	a	certain	number.	Let’s	pretend	that	we	did	experiments	with	our	weather	info
service	and	found	out	by	measurements	that	the	most	effective	option	is	to	run	only	two
simultaneous	requests	to	this	service.

One	of	the	ways	of	implementing	such	a	limit	is	by	creating	a	ForEachAsync	extension
method	that	accept	a	degreeOfParallelism	parameter:

public	static	IEnumerable<Task<TTask>>

		ForEachAsync<TItem,	TTask>(

				this	IEnumerable<TItem>	source,

				Func<TItem,	Task<TTask>>	selector,

				int	degreeOfParallelism)

				{

				//	We	need	to	know	all	the	items	in	the	source

				//	before	starting	tasks

				var	tasks	=	source.ToList();

				int	completedTask	=	-1;

				//	Creating	an	array	of	TaskCompletionSource	that	would	hold

				//	the	results	for	each	operations

				var	taskCompletions	=	new	TaskCompletionSource<TTask>[tasks.Count];

				for(int	n	=	0;	n	<	taskCompletions.Length;	n++)

								taskCompletions[n]	=	new	TaskCompletionSource<TTask>();

				//	Partitioner	would	do	all	grunt	work	for	us	and	split

				//	the	source	into	appropriate	number	of	chunks

				//	for	parallel	processing

				foreach	(var	partition	in	Partitioner.Create(tasks).

								GetPartitions(degreeOfParallelism))	{

								var	p	=	partition;

								//	Loosing	sync	context	and	starting	asynchronous

								//	computation	for	each	partition

				Task.Run(async	()	=>

				{

						while	(p.MoveNext())

www.EBooksWorld.ir

						{

												var	task	=	selector(p.Current);

												//	Don't	want	to	use	empty	catch	.

												//	This	trick	just	swallows	an	exception

												await	task.ContinueWith(_	=>	{	});

												int	finishedTaskIndex	=	Interlocked.Increment(

														ref	completedTask);

														taskCompletions[finishedTaskIndex]

													.FromTask(task);

						}

				});

		}

		return	taskCompletions.Select(tcs	=>	tcs.Task);

}

There	are	several	options	that	we	can	choose	to	implement	a	limit	on	the	degree	of
parallelism.	For	example,	we	can	use	semaphores	or	other	synchronization	primitives.
However,	we	can	choose	more	comfortable	options	to	use	Task	Parallel	Library	and	its
Partitioner	type	to	get	a	set	of	partitions	with	the	Partitioner.CreatePartitioner
method	call.	Each	of	these	partitions	represents	something	like	an	iterator	that	can	be	used
in	parallel	with	other	partitions.	To	store	the	completed	tasks,	we	will	use	an	array	of
TaskCompletionSource	objects,	which	will	hold	the	results	in	completion	order.

The	way	of	using	this	method	is	shown	in	the	following	example:

var	cities	=	new	List<string>	{	"Los	Angeles",	"Seattle",	"New	York",	"San	

Francisco"	};

var	tasks	=	cities.ForEachAsync(async	city	=>

{

		return	new	{	City	=	city,	Weather	=	await	GetWeatherForAsync(city)	};

},	2);

foreach	(var	task	in	tasks)

{

		var	taskResult	=	await	task;

		ProcessWeather(taskResult.City,	taskResult.Weather);

}

These	are	the	results:

[1:22:09	PM]:	Getting	the	weather	for	'Los	Angeles'

[1:22:09	PM]:	Getting	the	weather	for	'Seattle'

Here	the	parallelism	limit	started	to	work.	We	will	not	run	more	tasks	until	one	of	them	is
completed:

[1:22:10	PM]:	Processing	weather	for	'Los	Angeles':	'Temp:	6C'

The	first	task	has	finished;	now	we	can	run	one	more	task:

www.EBooksWorld.ir

[1:22:10	PM]:	Getting	the	weather	for	'New	York'

This	task	is	completed	at	once:

[1:22:15	PM]:	Processing	weather	for	'New	York':	'Temp:	8C'

Here,	we	run	one	more	task:

[1:22:15	PM]:	Getting	the	weather	for	'San	Francisco'

Now	the	second	task	is	completed:

[1:22:16	PM]:	Processing	weather	for	'Seattle':	'Temp:	7C'

Here	goes	the	last	task:

[1:22:20	PM]:	Processing	weather	for	'San	Francisco':	'Temp:	4C'

This	is	the	illustration	of	the	previous	process:

Here	we	have	two	partitions;	each	of	these	runs	a	set	of	tasks.	The	second	partition	is	able
to	run	only	one	task,	because	it	runs	for	a	long	time.	The	first	partition	managed	to	run
three	tasks.	The	number	of	partitions	limits	the	degree	of	parallelism.

www.EBooksWorld.ir

Setting	a	task	timeout
Operation	cancellation	support	is	built	into	the	Task	Parallel	Library;	many	.NET
Framework	classes,	as	well	as	third-party	code,	support	it	and	allow	us	to	provide	a
cancellation	mechanism	in	case	an	operation	timeout	happens.	Some	of	these	classes	make
programming	easier	and	allow	you	to	provide	just	a	timeout	value	for	the	operation.

However,	not	all	code	has	this	potential.	Besides	this,	we	often	operate	with	a	task	that	has
been	already	started	and	we	cannot	configure	the	timeout	value	in	the	operation.	It	is	a
very	common	problem	and	there	is	a	solution	for	this:

public	static	async	Task<T>	WithTimeout<T>(this	Task<T>	task,

		TimeSpan	timeout)

		{

		//	Cover	two	corner	cases:	when	task	is	completed	and	when

		//	timeout	is	infinite

if	(task.IsCompleted	||	timeout	==	Timeout.InfiniteTimeSpan)

{

				return	await	task;

		}

		var	cts	=	new	CancellationTokenSource();

		if	(await	Task.WhenAny(task,	Task.Delay(timeout,	cts.Token))	==	task)

		{

				cts.Cancel();

				return	await	task;

		}

		//	Observe	potential	exception	from	the	original	task

		task.ContinueWith(_	=>	{	},	

TaskContinuationOptions.ExecuteSynchronously);

		throw	new	TimeoutException();

}

Now	we	can	use	the	WithTimeout	method	on	any	task	to	set	the	timeout	value	for	the
operation.	We	can	use	this	method	like	this:

try

{

		Weather	weather	=	await

				WeatherService.GetWeatherAsync("New	York").

				WithTimeout(TimeSpan.FromSeconds(2));

		ProcessWeather(weather);

}

catch	(TimeoutException)

{

		Console.WriteLine("Task	was	timed	out!");

}

The	implementation	looks	simple,	but	there	are	a	couple	of	important	nuances:

In	the	beginning,	we	check	for	situations	where	the	task	has	been	completed	already,

www.EBooksWorld.ir

or	we	have	an	infinite	timeout	value.	In	this	case,	it	is	enough	to	use	the	C#	await
statement	to	get	the	task	result	in	a	safe	manner.
If	the	task	completes	before	the	timeout,	we	cancel	the	corresponding	Task.Delay
timer	task.	This	looks	like	a	slight	optimization,	but	it	can	have	a	noticeable	impact
on	the	application	performance.
We	try	to	observe	the	provided	task	exception,	which	is	a	very	important	thing	to	do.
If	we	do	not	do	so,	we	could	easily	cause
TaskScheduler.TaskUnobservedException	to	be	raised.	In	.NET	4.5+,	it	will	not
ruin	your	application	at	once,	but	it	should	be	avoided	anyway.

www.EBooksWorld.ir

www.EBooksWorld.ir

Asynchronous	patterns
Since	releasing	the	first	version	of	C#	and	the	.NET	Framework,	there	has	been	built-in
support	for	running	asynchronous	operations.	Unfortunately,	this	infrastructure	was	quite
complicated	and	hard	to	use,	and	this	caused	the	next	platform	versions	to	include	new
ways	(patterns)	of	writing	asynchronous	code	that	enhanced	asynchronous	programming
experience.

Here,	we	will	review	three	asynchronous	programming	patterns	starting	from	the	oldest:

APM:	Asynchronous	Programming	Model	(introduced	in	the	.NET	Framework	1.0)
EAP:	Event-Based	Asynchronous	Pattern	(released	with	the	.NET	Framework	2.0)
TAP:	Task-Based	Asynchronous	Pattern	(appeared	with	the	.NET	Framework	4.0)

The	first	two	patterns	are	usually	considered	as	legacy	code	and	should	be	used	only	in
support	scenarios	where	there	is	no	possibility	to	use	the	task	infrastructure	from	Task
Parallel	Library.

www.EBooksWorld.ir

Asynchronous	Programming	Model
The	Asynchronous	Programming	Model	(APM)	structure	is	as	follows:

//	Synchronous	operation

public	Result	Operation(int	input,	ref	int	inOut,	out	int	output);

//	First	method	that	denotes	beginning	of	the	asynchronous

//operation

public	IAsyncResult	BeginOperation(int	input,	ref	int	inOut,	out	int	

output,	AsyncCallback	callback,	object	state);

//	Second	method	that	should	be	called	when	the	operation	is

//completed

public	Result	EndOperation(ref	int	inOut,	out	int	output,	IAsyncResult	

asyncResult);

This	pattern	is	structured	in	the	following	way:	an	asynchronous	operation	splits	into	two
methods—BeginOperationName/EndOperationName,	where	the	OperationName	part	is	an
actual	name	of	this	operation.	The	BeginOperationName	method	accepts	input	parameters,
starts	an	asynchronous	operation,	and	returns	some	kind	of	operation	state	that	is
represented	by	an	object	implementing	IAsyncResult	interface.	Usually,	it	also	accepts	an
additional	operation	context—the	state	parameter,	and	a	callback	that	will	be	called	when
the	operation	completes.

To	get	the	operation	result	and	operation	exception	handling,	we	need	to	call	the
EndOperationName	method.	If	the	operation	is	already	complete,	this	method	will
immediately	return	the	result	or	throw	an	exception.	If	the	operation	is	still	running,	this
method	call	will	be	blocked	until	the	operation	completes.

IAsyncResult	provides	a	WaitHandle	instance	that	can	be	used	to	determine	whether	the
operation	has	been	completed,	or	whether	the	operation	has	completed	synchronously.

As	an	example	of	using	the	APM	pattern,	let’s	implement	the	weather	information	service
call	and	explain	the	code	step	by	step:

public	class	WeatherService

{

		private	readonly	Func<string,	Weather>	_getWeatherFunc;

		public	WeatherService()

		{

				_getWeatherFunc	=	GetWeather;

			}

		public	Weather	GetWeather(string	city)

		{

				//	Original	synchronous	implementation

		}

		public	IAsyncResult	BeginGetWeather(string	city,	AsyncCallback	callback,	

object	state)	{

				return	_getWeatherFunc.BeginInvoke(city,	callback,	state);

		}

		public	Weather	EndGetWeather(IAsyncResult	asyncResult)

www.EBooksWorld.ir

		{

				return	_getWeatherFunc.EndInvoke(asyncResult);

		}

}

Here,	in	this	example,	we	simulated	an	asynchronous	operation	with	an	asynchronous
delegate	invocation.	The	real	APM	implementation	including	remote	service	call	details	is
too	complicated,	and	it	does	not	make	sense	to	illustrate	the	APM	pattern.

Then,	we	will	write	a	client	with	APM:

var	weatherServce	=	new	WeatherService();

//	Pseudo	asynchronous	call

string	newYork	=	"New	York";

IAsyncResult	ar1	=	weatherServce.BeginGetWeather(newYork,	callback:	null,	

state:	null);

ar1.AsyncWaitHandle.WaitOne();

Weather	weather1	=	weatherServce.EndGetWeather(ar1);

ProcessWeather(newYork,	weather1);

//	Real	asynchronous	version

string	seattle	=	"Seattle";

weatherServce.BeginGetWeather(seattle,	callback:	(IAsyncResult	asyncResult)	

=>

		{

				var	context	=	(Tuple<string,	WeatherService>)asyncResult.AsyncState;

				try

				{

						Weather	weather	=	context.Item2.EndGetWeather(asyncResult);

						ProcessWeather(context.Item1,	weather);

				}

								catch	(Exception	e)

				{

						HandleWeatherError(e);

				}

		},

		state:	Tuple.Create(seattle,	weatherServce));

The	first	piece	of	code	shows	how	we	can	call	an	asynchronous	operation	in	the	APM
paradigm.	We	started	with	the	BeginGetWeather	method	call,	then	immediately	called
ar1.WaitHandle.WaitOne.	We	can	simply	call	weatherService.EndGetWeather	instead
and	get	the	same	result.

Then	we	used	a	real	asynchronous	operation	call.	We	have	used	both	the	last	input
parameters	of	the	BeginGetWeather	method—callback	and	state.	Notice	that	there	is	no
context	capture—the	context	gets	into	asynchronous	operation	through	a	state	parameter.

The	APM	pattern	has	the	following	features:

Low-level	pattern:	This	was	introduced	in	the	first	.NET	Framework	version	and	is
used	for	many	asynchronous	operations	in	the	Base	Class	Library.
Low	performance	overhead:	The	callback	method	is	called	on	the	same	thread
where	the	asynchronous	operation	completed.	No	additional	operations	for

www.EBooksWorld.ir

synchronization	context	capturing	occurs.

Besides,	it	is	very	hard	to	combine	several	asynchronous	operations,	so	one	depends
on	another.

Coupling	between	the	asynchronous	operation	provider	and	its	consumers:
Asynchronous	operation	is	not	a	first-class	object.	It	is	not	possible	to	initiate	the
operation,	then	to	pass	it	somehow	to	the	other	code	and	handle	it	there.	A	class	that
provides	an	asynchronous	operation	and	its	client	classes	have	a	tight	connection.
This,	as	well,	makes	unit	testing	for	such	operations	very	hard,	since	it	is	very	hard	to
create	a	mock	asynchronous	operation.

The	APM	can	be	used	in	the	following	scenario—only	for	legacy	code	support.	Task-
based	asynchronous	patterns	can	do	everything	APM	can	do.	Also	they	have	a	low
performance	overhead,	but	are	modern	and	easy	to	use—especially	with	the	C#
async/await	statements.

www.EBooksWorld.ir

Event-based	Asynchronous	Pattern
An	Event-based	Asynchronous	Pattern	(EAP)	structure	is	as	follows:

//	Synchronous	operation

public	Result	Operation(int	input,	ref	int	inOut,	out	int	output);

//	Raised	when	the	Operation	finished	(successfuly,	with	exception	or	was	

cannelled)

public	event	EventHandler<OperationCompletedEventArgs>	OperationCompleted;

//	Report	execution	progress

public	event	EventHandler<ProgressChangedEventArgs>	

OperationProgressChanged;

//	Method	that	starts	asynchronous	execution

public	void	OperationAsync(int	input,	ref	int	inOut);

//	Method	that	starts	asynchronous	execution	and	gets	additional	user	

defined	state

public	void	OperationAsync(int	input,	ref	int	inOut,	object	userState);

//	Cancel	pending	operation

public	void	CancelAsync(object	state);

public	class	OperationCompletedEventArgs:	AsyncCompletedEventArgs

{

				public	OperationCompletedEventArgs(

								Exception	error,	bool	cancelled,	object	userState)

								:	base(error,	cancelled,	userState)

				{

				}

				public	Result	Result	{	get;	internal	set;	}

				public	int	InOut	{	get;	internal	set;	}

				public	int	Output	{	get;	internal	set;	}

}

EAP	was	implemented	in	.NET	Framework	2.0	and	was	designed	to	be	used	in	application
UI	components.	Most	of	the	.NET	types	that	implement	this	pattern	inherit	the
System.ComponentModel.Component	class	as	well	and	can	be	easily	used	with	Windows
Forms	or	WPF	design-time	editor.

The	main	idea	behind	EAP	is	to	use	events	for	notification	about	asynchronous	operation
completion.	We	start	the	operation	with	the	OperationNameAsync	method,	and	the
completion	event	name	is	usually	OperationNameCompleted.	Besides	this,	there	are	other
events,	for	example	the	OperationProgressChanged	event	that	allows	us	to	track	the
operation’s	execution	progress.

An	important	feature	of	this	pattern	is	that	these	events	use	the	same	synchronization
context	where	the	asynchronous	operation	has	been	started.	If	we	use	the	UI	thread	to	run
this	operation,	then	it	is	possible	to	use	UI	controls	from	the	event	handlers	method	of	the
component	that	implements	EAP,	which	makes	the	code	clean	and	comfortable	to	write.

Let’s	implement	a	weather	information	service	with	EAP:
www.EBooksWorld.ir

public	class	WeatherService

{

		private	bool	_isOperationRunning	=	false;

		private	readonly	SendOrPostCallback	_operationFinished;

		public	WeatherService()

		{

				//	This	delegate	should	be	called	

				//	in	captured	sync	context

				_operationFinished	=	ProcessOperationFinished;

		}

		public	Weather	GetWeather(string	city)

		{

				//	Original	synchronous	implementation

		}

		public	event	EventHandler<GetWeatherCompletedEventArgs>	

				GetWeatherCompleted;

		public	void	GetWeatherAsync(string	city,	object	userState)

		{

				if	(_isOperationRunning)

						throw	new	InvalidOperationException();

			_isOperationRunning	=	true;

			AsyncOperation	operation	=	AsyncOperationManager

				.CreateOperation(userState);

				//	Running	GetWeather	asynchronously

				ThreadPool.QueueUserWorkItem(state	=>

				{

						GetWeatherCompletedEventArgs	args	=	null;

						try

						{

								var	weather	=	GetWeather(city);

								args	=	new	GetWeatherCompletedEventArgs(weather,	state);

						}

						catch	(Exception	e)

						{

										args	=	new	GetWeatherCompletedEventArgs(e,	state);

								}

								//	Using	AsyncOperation	that	will	marshal	control

								//	flow	to	the	synchronization	context	that	was

								//	captured	at	the	beginning	of	this	method.

								operation.PostOperationCompleted(_operationFinished,	args);

						},	userState);

		}

		private	void	ProcessOperationFinished(object	state)

		{

				//	Mark	that	current	operation	is	completed

www.EBooksWorld.ir

				_isOperationRunning	=	false;

				var	args	=	(GetWeatherCompletedEventArgs)state;

				var	handler	=	GetWeatherCompleted;

						if	(handler	!=	null)

								handler(this,	args);

		}

}

The	GetWeatherAsync	method	contains	the	main	pattern	logic.	First,	we	created	the
AsyncOperation	object,	where	we	captured	the	current	synchronization	context	with
SynchronizationContext.Current.	Then,	we	used	the	ThreadPool.QueueUserWorkItem
method	to	run	the	GetWeather	operation	asynchronously	on	a	thread	pool.	Then	we	used
operation.PostOperationCompleted	to	post	a	notification	about	operation	completion	on
the	captured	synchronization	context.	This	will	allow	event	subscribers	to	handle	the
GetWeatherCompleted	event	safely	and	will	make	it	possible	to	use	UI	controls	without
using	the	Control.Invoke	and	Dispatcher.BeginInvoke	mechanics.

Now	let’s	look	at	how	to	use	the	service	with	EAP:

var	weatherService	=	new	WeatherService();

var	city	=	"New	York";

//	Start	asynchronous	operation

weatherService.GetWeatherAsync(city,	userState:	null);

//	If	current	method	is	running	in	UI	thread

//	following	event	handler	would	be	executed	in	the	UI	thread

weatherService.GetWeatherCompleted	+=	(sender,	args)	=>	{

		Weather	result	=	args.Result;

		ProcessWeather(city,	result);

};

The	EAP	features	are	as	follows:

High-level	pattern:	EAP	allows	us	to	consume	asynchronous	operations	with	ease	as
well	as	start	new	ones
High	overhead:	Since	operation	completion	events	always	get	posted	to	the	captured
synchronization	context,	this	pattern	is	not	intended	to	be	used	from	low-level
components	that	do	intensive	IO	operations
Intended	for	UI	components:	Since	EAP	was	designed	for	a	very	specific	scenario
(UI	components),	it	might	not	be	the	best	choice	to	program	some	other	features
Complicated	implementation:	While	this	is	definitely	easier	than	APM,	it	is	still
hard	to	program	real-world	scenarios	with	operation	progress	and	cancellation
Coupling	between	asynchronous	operation	provider	and	its	consumers:	Similar
to	the	previous	pattern,	this	one	also	creates	tight	coupling	between	the	operation
class	and	client	classes

EAP	can	used	in	the	following	scenario—legacy	code	support.	Nevertheless,	if	you	write
a	new	code	you	should	not	use	EAP.	Task-based	async	pattern	has	everything	that	EAP
has,	but	it	also	has	language	level	support,	loose	coupling,	and	a	lot	of	other	useful
features.

www.EBooksWorld.ir

Task-based	Asynchronous	Pattern
Task	Parallel	Library	has	been	existing	since	the	.NET	Framework	4.0	release,	and	it
introduced	a	new	asynchronous	programming	pattern—Task-based	Asynchronous
Pattern	(TAP).	This	pattern	consists	of	the	following	methods:

//	Synchronous	operation

public	Result	Operation(int	input,	ref	int	inOut,	out	int	output);

//	Asynchronous	version

public	Task<WrappedResult>	OperationAsync(int	input,	int	inOut);

//	Custom	result	that	wraps	in/out	and	out	parameters

public	class	WrappedResult

{

		public	Result	Result	{	get;	internal	set;	}

		public	int	InOut	{	get;	internal	set;	}

		public	int	Output	{	get;	internal	set;	}

}

Similar	to	EAP,	TAP	uses	the	same	naming	scheme.	Operations	are	named
OperationNameAsync	by	adding	the	Async	suffix	to	the	synchronous	implementation
name.	However,	the	main	idea	behind	TAP	is	to	use	a	special	Task	object	that	represents
an	asynchronous	operation	without	any	return	value,	and	Task<T>	for	those	that	return
results	of	the	T	type.	Since	we	can	access	the	result	only	through	the	Task.Result	property,
every	input	and	output	parameter	must	be	a	part	of	the	return	value.

The	following	is	one	more	weather	information	service	implementation:

public	class	WeatherService

{

		public	Weather	GetWeather(string	city)

		{

				//	Original	synchronous	implementation

		}

		public	Task<Weather>	GetWeatherAsync(string	city)

		{

				return	Task.Run(()	=>	GetWeather(city));

		}

}

The	easiest	implementation	that	seems	to	be	obvious	is	to	wrap	a	synchronous	method	into
a	task	with	the	help	of	the	Task.Run	method.	However,	this	approach	should	not	be	used
in	real-world	applications,	unless	you	are	completely	sure	about	what	is	going	on.

Note
This	antipattern	is	called	“async	over	sync”	and	using	this	will	lead	to	scalability	and
performance	problems	in	your	application.	Most	of	the	truly	asynchronous	operations	in
the	.NET	Framework	are	IO-bound,	and	thus	do	not	require	using	additional	threads.	This
topic	will	be	reviewed	in	detail	in	Chapter	8,	Server-Side	Asynchrony.

Let’s	look	at	the	following	code:

public	async	Task	ProcessWeatherFromWeatherService()

www.EBooksWorld.ir

{

		var	weatherService	=	new	WeatherService();

		string	city	=	"San	Francisco";

		//	If	this	method	was	called	in	the	UI	thread,

		//	"awaiter"	will	capture	synchronization	context

		//	and	ProcessWeather	method	would	be	called	in	the	UI	thread	as

		//	well

		Weather	weather	=	await	weatherService.GetWeatherAsync(city);

		ProcessWeather(city,	weather);

}

Task-based	Asynchronous	Pattern	is	now	the	most	popular	and	most	convenient	way	to
develop	asynchronous	applications.	It	can	be	characterized	by	the	following:

Low	overhead:	Tasks	have	low	overhead	and	can	be	used	in	high-load	scenarios.
High-level:	Task	is	a	high	level	abstraction	that	provides	a	convenient	API	to
combine	asynchronous	operations,	to	capture	or	not	capture	the	current
synchronization	context	if	needed,	convert	older	APM	and	EAP	patterns	to	TAP,	and
many	other	features.
Comfortable	to	use:	This	pattern	is	easy	to	use	by	developers,	but	at	the	same	time,
it	has	a	rich	API	and	more	features	than	the	previous	two.
Language	support	in	C#/VB:	C#	and	VB.NET	has	built-in	async/await	statements
that	make	asynchronous	programming	much	easier.	This	infrastructure	is	based	on
the	Task	and	Task<T>	types.

Note
As	we	saw	in	Chapter	5,	C#	Language	Support	for	Asynchrony,	await	can	be	used
with	any	type	that	has	its	own	method	or	an	extension	method	called	GetAwaiter
without	parameters,	which	returns	the	object	that	implements	the
INotifyCompletion	interface	and	contains	the	IsCompleted	Boolean	property	and
the	GetResult	method	with	no	parameters.

Task	and	Task<T>	are	first-class	objects:	Unlike	previous	patterns,	a	task	instance
is	self-sufficient.	It	can	be	passed	as	a	parameter	to	other	methods	or	can	be	stored	in
a	variable	or	instance	field.	If	you	have	access	to	the	task	instance,	you	will	have	full
control	over	the	corresponding	asynchronous	operation.	We	do	not	need	to	use	the
asynchronous	operation	class	a	second	time	to	finish	the	operation.	We	can	test	such
operations	and	return	an	already	completed	task	from	a	mock	method.
Getting	rid	of	side	effects:	Using	the	Task<T>	class	encourages	the	avoidance	of
side	effects	in	the	program,	which	is	very	important	to	reduce	contention	and	improve
scalability.

www.EBooksWorld.ir

www.EBooksWorld.ir

Concurrent	patterns
We	have	already	reviewed	some	of	these	patterns	earlier	in	this	book.	For	example,	in
Chapter	4,	Task	Parallel	Library	in	Depth,	we	studied	Parallel.Invoke	and
Parallel.Foreach,	which	actually	is	an	implementation	of	the	fork/join	pattern.	In
Chapter	6,	Using	Concurrent	Data	Structures,	we	reviewed	a	Producer/Consumer
pattern	implementation.	However,	there	is	a	very	important	scenario	that	we	have	not	seen
yet.	It	is	called	a	parallel	pipeline.

www.EBooksWorld.ir

Parallel	pipelines
Usually	a	complex	parallel	computation	can	be	considered	as	several	stages	combined	into
some	sort	of	a	pipeline.	The	latter	stage	needs	the	results	of	the	former,	and	this	prevents
these	stages	from	running	in	parallel.	However,	the	calculations	inside	each	stage	can	be
independent,	which	allows	us	to	parallelize	each	stage	itself.	Besides	this,	we	can
simultaneously	run	all	the	stages,	assuming	that	we	can	process	stage	results	one	by	one,
so	we	do	not	have	to	wait	until	each	stage	computes	all	the	results	before	proceeding	to	the
next	stage.	Instead	of	this,	we	get	an	item	from	a	previous	stage	as	soon	as	it	is	ready	and
pass	it	along	to	the	next	stage,	and	so	on	and	so	forth,	until	the	final	stage.	This	way	of
organizing	parallel	computations	is	known	as	parallel	pipeline,	which	is	a	special	case	of
a	Producer/Consumer	pattern.	It	allows	us	to	achieve	almost	parallel	processing	of	stage
computations,	shifted	by	the	time	that	is	required	to	get	the	first	stage	result.

The	following	code	shows	how	to	implement	a	parallel	pipeline	using	a	standard
BlockingCollection	data	structure:

private	const	int	ParallelismDegree	=	4;

private	const	int	Count	=	1;

static	void	Main(string[]	args){

		var	cts	=	new	CancellationTokenSource();

		Task.Run(()	=>	{

				if	(Console.ReadKey().KeyChar	==	'c')	{

						cts.Cancel();

				}

		});

		var	sourceArrays	=	new	BlockingCollection<string>[ParallelismDegree];

		for	(int	i	=	0;	i	<	sourceArrays.Length;	i++)	{

				sourceArrays[i]	=	new	BlockingCollection<string>(Count);

		}

		var	getWeatherStep	=	new	PipelineWorkerAsync<string,	Weather>	(

				sourceArrays,

				city	=>	WeatherService.GetWeatherAsync(city),

				cts.Token,

				"Get	Weather",

				Count

);

		var	convertTempStep	=	new	PipelineWorkerAsync<Weather,	Tuple<string,	

decimal>>	(

				getWeatherStep.Output,

				weather	=>	Task.FromResult(Tuple.Create(weather.City,	

weather.TemperatureCelcius	*	(decimal)9/5	+	32)),

				cts.Token,

				"Convert	Temperature",

				Count

);

		var	printInfoStep	=	new	PipelineWorkerAsync<Tuple<string,	decimal>,	

string>	(

www.EBooksWorld.ir

				convertTempStep.Output,

				t	=>	Console.WriteLine("The	temperature	in	{0}	is	{1}F	on	thread	id	

{2}",	t.Item1,	t.Item2,	Thread.CurrentThread.ManagedThreadId),

								cts.Token,

								"Print	Information"

);

		try	{

				Parallel.Invoke(

						()	=>	{

								Parallel.ForEach(

										new[]	{"Seattle",	"New	York",	"Los	Angeles",	"San	Francisco"},

												(city,	state)	=>	{

														if	(cts.Token.IsCancellationRequested)	{

																state.Stop();

														}

														AddCityToSourceCollection(sourceArrays,	city,	cts.Token);

												});

												foreach	(var	arr	in	sourceArrays)	{

														arr.CompleteAdding();

												}

										},

								()	=>	getWeatherStep.RunAsync().GetAwaiter().GetResult(),

								()	=>	convertTempStep.RunAsync().GetAwaiter().GetResult(),

								()	=>	printInfoStep.RunAsync().GetAwaiter().GetResult()

);

		}

		catch	(AggregateException	ae)	{

				foreach	(var	ex	in	ae.InnerExceptions)

						Console.WriteLine(ex.Message	+	ex.StackTrace);

		}

		if	(cts.Token.IsCancellationRequested)	{

				Console.WriteLine("Operation	has	been	canceled!	Press	ENTER	to	exit.");

		}

		else	{

				Console.WriteLine("Press	ENTER	to	exit.");

		}

		Console.ReadLine();

}

static	void	AddCityToSourceCollection

		BlockingCollection<string>[]	cities,	string	city,

		CancellationToken	token)	{

				BlockingCollection<string>.TryAddToAny(cities,	city,	50,	token);

		Console.WriteLine("Added	{0}	to	fetch	weather	on	thread	id	{1}",	city,	

Thread.CurrentThread.ManagedThreadId);

		Thread.Sleep(TimeSpan.FromMilliseconds(100));

}

At	the	beginning	of	the	preceding	code,	we	are	implementing	a	cancellation	operation	for
the	pipeline	by	running	a	separate	task	that	is	listening	for	the	C	key	press.	When	the	user
presses	the	C	button,	the	task	runs	cts.Cancel	that	signals	a	cancellation	operation	to	the
shared	cancellation	token.	This	token	goes	into	all	the	further	operations	and	is	able	to

www.EBooksWorld.ir

cancel	the	entire	parallel	pipeline	at	once.

Now,	we	define	the	pipeline	behavior.	First,	we	set	the	parallelism	degree	for	our	parallel
pipeline.	In	the	following	example,	we	will	create	four	blocking	collections	for	one
element	each.	It	will	cause	four	elements	to	be	processed	in	parallel.	If	we	need	to	change
this,	we	can	use	two	collections	for	two	elements,	and	so	on.

Next,	we	will	define	pipeline	steps.	The	first	step	is	responsible	for	getting	weather
information	for	each	city	that	appears	in	the	source	collection.	Then	the	next	step	will
convert	the	temperature	from	Celsius	to	Fahrenheit.	The	final	step	will	print	out	the
weather	information	to	the	console.

All	we	need	to	do	now	is	run	the	entire	pipeline.	We	will	use	the	Parallel.Invoke
statement	to	run	all	the	pipeline	stages	in	parallel,	and	in	the	first	stage,	we	will	use
Parallel.Foreach	to	fill	in	the	cities	collection	in	parallel	as	well:

class	PipelineWorkerAsync<TInput,	TOutput>

{

		Func<TInput,	Task<TOutput>>	_processorAsync	=	null;

		Action<TInput>	_outputProcessor	=	null;

		BlockingCollection<TInput>[]	_input;

		CancellationToken	_token;

		private	int	_count;

		public	PipelineWorkerAsync(

				BlockingCollection<TInput>[]	input,

				Func<TInput,	Task<TOutput>>	processorAsync,

				CancellationToken	token,

				string	name,

				int	count)

				{

						_input	=	input;

						_count	=	count;

						_processorAsync	=	processorAsync;

						_token	=	token;

						Output	=	new	BlockingCollection<TOutput>[_input.Length];

						for	(int	i	=	0;	i	<	Output.Length;	i++)

								Output[i]	=	null	==	input[i]	?	null:	new	BlockingCollection	

<TOutput>(Count);

						Name	=	name;

		}

		public	PipelineWorkerAsync(

				BlockingCollection<TInput>[]	input,

				Action<TInput>	renderer,

				CancellationToken	token,

				string	name)	{

						_input	=	input;

						_outputProcessor	=	renderer;

						_token	=	token;

						Name	=	name;

						Output	=	null;

				}

www.EBooksWorld.ir

				public	BlockingCollection<TOutput>[]

								Output	{	get;	private	set;	}

				public	string	Name	{	get;	private	set;	}

				public	async	Task	RunAsync()	{

						Console.WriteLine("{0}	is	running",	this.Name);

						List<Task>	tasks	=	new	List<Task>();

						foreach	(var	bc	in	_input)	{

								var	local	=	bc;

								var	t	=	Task.Run(new	Func<Task>(async	()	=>	{

										TInput	receivedItem;

										while	(!local.IsCompleted	&&	!_token.IsCancellationRequested)	{

												var	ok	=	local.TryTake(out	receivedItem,	50,	_token);

												if	(ok)	{

														if	(Output	!=	null)	{

																TOutput	outputItem	=	await	_processorAsync(receivedItem);

																BlockingCollection<TOutput>.AddToAny(Output,	outputItem);

																Console.WriteLine("{0}	sent	{1}	to	next,	on	thread	id	

{2}",Name,	outputItem,	Thread.CurrentThread.ManagedThreadId);

																Thread.Sleep(TimeSpan.FromMilliseconds(100));

														}

														else	{

																_outputProcessor(receivedItem);

														}

												}

												else	{

														Thread.Sleep(TimeSpan.FromMilliseconds(50));

												}

										}

								}),

								_token);

								tasks.Add(t);

						}

						await	Task.WhenAll(tasks);

						if	(Output	!=	null)	{

								foreach	(var	bc	in	Output)	bc.CompleteAdding();

						}

				}

}

The	pipeline	step	logic	is	defined	inside	the	PipelineWorkerAsync	class.	We	have	created
the	worker	instance,	providing	it	with	the	input	collections	and	a	transformation	function
that	gets	an	initial	value	and	calculates	the	result.	Then	we	ran	collection	processing	in
parallel.	While	we	processed	each	collection,	we	passed	calculation	results	to	the	output
collections	of	the	next	step	in	our	pipeline.	This	happens	until	the	final	step	has	been
reached,	which	just	prints	results	to	the	console.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	have	considered	the	different	kinds	of	asynchronous	programming
patterns—from	the	smallest	ones	such	as	a	task	with	timeout	to	the	large	multipurpose
parallel	pipeline	pattern.	We	have	reviewed	the	history	of	asynchronous	programming	in
the	.NET	Framework	and	C#,	and	went	step	by	step	through	all	existing	patterns	including
APM,	EAP,	and	TAP.

In	the	next	chapter,	we	will	cover	a	very	important	topic	of	server-side	asynchronous
programming.	We	will	learn	about	scalability,	performance	metrics,	details	of	IO-bound
and	CPU-bound	asynchronous	operations,	and	how	the	slightest	mistake	can	ruin	your
backend.	Also,	we	will	learn	a	couple	of	tricks	that	will	allow	us	to	detect	possible
scalability	problems	and	avoid	them.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	8.	Server-side	Asynchrony
In	this	chapter,	we	will	show	how	a	server	application	is	different	from	other	applications,
what	scalability	is,	and	how	it	is	important.	We	will	look	at	the	.NET	HTTP	API	server
application	framework,	learn	to	use	Visual	Studio	to	create	load	tests,	dig	into
asynchronous	I/O	details,	and	review	important	nuances	such	as	synchronization	context.
Finally,	we	will	suggest	an	architectural	pattern	for	a	server	application	to	run	long
operations	and	remain	scalable	and	performant.

www.EBooksWorld.ir

Server	applications
A	server	application	can	be	defined	as	an	application	that	accepts	requests,	processes
them,	and	sends	the	corresponding	responses	to	the	client.	Communication	happens	via
some	transport	protocols,	and	usually,	but	not	necessarily,	the	client	and	server
applications	are	situated	on	different	physical	computers.	The	computer	that	runs	the
server	application	is	usually	referred	to	as	the	server.

There	are	many	types	of	server	applications.	For	example,	a	Remote	Desktop	Services
software	that	allows	us	to	open	remote	session	to	a	Windows	machine	is	a	server
application.	Each	user	connection	consumes	a	lot	of	server	resources,	but	in	this	particular
scenario,	this	is	inevitable.	This	server	application	does	not	need	to	support	hundreds	or
thousands	of	simultaneous	users	and	is	intended	to	be	like	this.	However,	if	we	imagine	a
website	that	allows	only	a	few	users	to	browse	it	simultaneously,	it	would	be	definitely	a
failure.

On	the	other	hand,	it	is	OK	when	a	website	user	gets	notifications	from	the	server	with	a
delay	of	2-3	seconds,	but	if	we	try	to	work	with	a	remote	desktop	connection	that	shows
updates	from	the	server	with	such	a	delay,	it	would	be	very	uncomfortable.	There	are
different	metrics	that	characterize	a	server	application,	and	in	different	scenarios	different
metrics	are	important.	One	of	the	most	important	server	application	characteristics	is
scalability.	Here	is	how	this	term	is	defined	in	Wikipedia:

Scalability	is	the	ability	of	a	system,	network,	or	process	to	handle	a	growing	amount
of	work	in	a	capable	manner	or	its	ability	to	be	enlarged	to	accommodate	that
growth.

Imagine	that	we	have	a	website	and	it	handles	a	certain	number	of	concurrent	users.	To
handle	more	users,	we	can	try	to	add	more	memory	and	maybe	install	a	new	CPU	with
more	cores	to	the	server.	If	this	allows	us	to	achieve	this	goal,	we	can	say	that	the
application	is	able	to	scale	vertically.	If	we	can	install	more	servers	and	make	our
application	run	on	multiple	machines	and	handle	more	users,	this	kind	of	scalability	is
called	horizontal	scalability.	The	following	diagram	shows	the	vertical	and	horizontal
scalability:

www.EBooksWorld.ir

It	may	seem	that	every	server	application	should	scale	in	both	ways,	but	usually	this	is	not
what	happens.	This	topic	is	very	interesting	and	vast,	and	it	is	worth	writing	another	book
on	this.	Let’s	state	that	most	general-purpose	server	applications	nowadays	are	web
applications	and	services,	so	later	we	will	review	the	ASP.NET	web	platform	and
specifically	the	OWIN	Web	API	framework.

www.EBooksWorld.ir

www.EBooksWorld.ir

The	OWIN	Web	API	framework
In	this	chapter,	we	will	concentrate	on	the	ASP.NET	platform.	At	the	time	of	writing	this
book,	ASP.NET	5	was	not	released.	However,	the	OWIN	project	existed,	and	the	code
looked	almost	the	same	as	in	ASP.NET	5.	So	this	was	used	to	write	the	sample	server
applications.	When	ASP.NET	5	will	be	released,	it	will	be	easy	to	convert	this	code	to	the
new	platform.	We	will	not	go	into	the	details	of	OWIN;	it	is	an	acronym	for	Open	Web
Interface	for	.NET,	and	basically,	it	is	a	way	to	compose	application	components	with
each	other.	It	is	a	part	of	the	ASP.NET	ecosystem,	and	all	we	need	to	know	for	now	is	that
with	OWIN	we	can	write	HTTP	services.

When	we	use	ASP.NET,	we	see	a	typical	HTTP	application	platform.	First,	there	is	an
HTTP	host	that	accepts	incoming	connections	from	clients.	It	can	be	a	full	Internet
Information	Services	web	server,	or	it	can	be	a	simple	HTTP	listener	hosted	in	a	usual
.NET	process.	After	the	incoming	HTTP	request	is	processed	by	the	HTTP	host,	it	goes	to
the	ASP.NET	infrastructure.	It	gets	a	worker	thread	from	the	.NET	thread	pool	and	starts
request	data	processing	on	this	thread.

First,	it	tries	to	define	what	code	will	be	handling	this	request	by	matching	the	request
URL	to	existing	routes.	A	route	describes	how	URL	parts	correlate	to	web	application
code	parts.	A	logical	set	of	server	code	is	called	a	controller.	In	the	OWIN	Web	API
framework,	a	controller	contains	a	number	of	actions—methods	that	handle	different
HTTP	requests	usually	by	HTTP	verbs	(or	by	other	rules	that	can	be	set	in	routes).	Before
all	this	becomes	too	complicated,	let’s	look	at	the	code.	In	the	samples	directory,	it	is
located	in	the	Chapter	8	solution	folder	in	the	AsyncServer	project.	To	leverage	OWIN,
we	need	to	install	the	Microsoft.AspNet.WebApi.OwinSelfHost	NuGet	package.	The
first	part	is	the	entry	code	for	the	entire	OWIN	application:

public	class	Startup

{

		public	void	Configuration(IAppBuilder	appBuilder)

		{

				var	config	=	new	HttpConfiguration();

				config.Routes.MapHttpRoute(

						"DefaultApi",

						"api/{controller}/{id}",

						new	{id	=	RouteParameter.Optional});

				appBuilder.UseWebApi(config);

		}

}

Here	we	have	configured	our	OWIN	application	by	providing	a	default	route.	It	will	match
URLs	such	as	http://hostname/api/somename/5	to	a	class	called	SomenameController
that	contains	the	Get	method	(if	the	request	verb	was	HTTP	GET)	and	will	call	this
method	providing	a	parameter	id	=	5	into	it.	The	last	line	instructs	OWIN	to	use	a	Web
API	component	in	the	application.

Now	let’s	look	at	the	controller:

public	class	BadAsyncController	:	ApiController

www.EBooksWorld.ir

{

		private	readonly	AsyncLib	_client;

		public	BadAsyncController()

		{

				_client	=	new	AsyncLib();

		}

		public	async	Task<HttpResponseMessage>	Get()

		{

				var	sw	=	Stopwatch.StartNew();

				string	value	=	await	_client.BadMethodAsync();

				sw.Stop();

				var	timespan	=	sw.Elapsed;

				return	Request.CreateResponse(HttpStatusCode.OK,

						new

						{

						Message	=	value,

						Time	=	timespan

				});

		}

}

Here,	we	see	the	Get	method	code,	which	calls	a	library’s	asynchronous	method	and
measures	the	time	it	took	to	complete.	Then	it	returns	an	anonymous	object	containing	the
response	data.	It	will	be	serialized	to	the	JSON	format	by	default.

We	will	define	another	controller,	which	will	be	different	only	with	respect	to	an
asynchronous	library’s	method	name	that	it	calls:

public	class	GoodAsyncController	:	ApiController

{

		private	readonly	AsyncLib	_client;

		public	GoodAsyncController()

		{

				_client	=	new	AsyncLib();

		}

		public	async	Task<HttpResponseMessage>	Get()

		{

				var	sw	=	Stopwatch.StartNew();

				string	value	=	await	_client.GoodMethodAsync();

				sw.Stop();

				var	timespan	=	sw.Elapsed;

				return	Request.CreateResponse(HttpStatusCode.OK,

				new

				{

						Message	=	value,

						Time	=	timespan

				});

		}

}

Here	we	have	called	GoodMethodAsync.	We	will	describe	both	controllers	later,	but	now
we	need	to	run	the	application.	We	need	to	create	an	application	host:

www.EBooksWorld.ir

class	Program

{

		static	void	Main(string[]	args)

		{

				string	baseAddress	=	"http://localhost:9000/";

				using	(WebApp.Start<Startup>(url:	baseAddress))

				{

						HttpClient	client	=	new	HttpClient();

						var	response	=	client.GetAsync(baseAddress	+	"api/GoodAsync").Result;

						Console.WriteLine(response);

						Console.WriteLine(response.Content.ReadAsStringAsync().Result);

						Console.WriteLine();

						response	=	client.GetAsync(baseAddress	+	"api/BadAsync").Result;

						Console.WriteLine(response);

						Console.WriteLine(response.Content.ReadAsStringAsync().Result);

						Console.ReadLine();

				}

		}

}

This	code	starts	a	web	application	on	a	localhost	on	port	9000.	If	this	port	is	already	taken,
there	will	be	an	exception.	In	this	case,	just	change	the	port	number.	After	the	application
starts,	we	will	issue	two	HTTP	requests	and	see	the	results	on	the	console	window.	Both
requests	should	complete	without	any	issues	and	show	that	it	took	two	seconds	for	them	to
complete.	You	can	use	a	regular	web	browser	to	open	http://localhost:9000	and	see
the	results.	Internet	Explorer	is	not	very	good	with	JSON,	but	Google	Chrome	will	show
you	a	JSON	result	with	good	formatting.	Besides	this,	there	is	a	very	useful	Google
Chrome	extension	called	Postman.	This	can	issue	different	HTTP	requests	and	is	very
comfortable	to	use;	it	is	shown	in	the	following	screenshot:

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Load	testing	and	scalability
We	see	that	both	the	controllers	have	behaved	the	same	so	far.	However,	what	about
scalability?	To	check	how	well	the	application	scales,	we	need	to	have	many	requests	from
many	users.	We	will	be	able	to	do	this	with	the	help	of	different	tools.	First,	we	can	use
Visual	Studio,	but	it	requires	the	Ultimate	edition	(or	the	Enterprise	edition	for	Visual
Studio	2015)	where	web	test	tools	are	available.	If	you	have	it,	then	you	can	create	a	new
project	and	choose	the	Web	Performance	and	Load	Test	project	from	the	test	category.
In	the	samples	folder,	there	is	an	already	created	test	project	that	is	called
AsyncServerTests.	Now	we	need	to	create	Web	Performance	Test.	After	creating,	it	will
run	in	the	browser	and	try	to	record	your	test.	You	can	record	it	from	the	browser	or	stop
the	recording	and	add	a	new	request	as	shown	in	the	following	screenshot;	then	in
Properties	provide	a	full	URL	to	see	what	have	we	tested	so	far:

Next,	we	need	to	create	a	load	test.	When	we	add	a	new	load	test,	it	will	show	a	wizard
with	different	options.	We	need	to	choose	a	constant	load	pattern	and	set	the	number	of
users	to	1000.	Then,	in	the	test	mix,	we	have	to	pick	a	web	test	that	we	have	just	created.
Finally,	in	the	run	settings	set	the	warm-up	duration	to	15	seconds,	and	set	duration	time	to
2	minutes.	Click	on	Finish	and	repeat	all	this	for	another	controller.	When	everything	is
set,	let’s	run	a	load	test	for	GoodAsyncController.	The	output	is	as	shown	in	the	following
screenshot:

www.EBooksWorld.ir

These	data	show	that	for	1000	users	per	second,	the	average	response	time	was	still	about
two	seconds.	This	is	a	very	good	result	and	shows	that	GoodAsyncController	scales	well
and	is	able	to	handle	many	concurrent	requests.	To	compare	this	to	BadAsyncController,
we	need	to	create	a	web	and	load	test	for	this,	and	then	run	the	load	test.

Before	doing	so,	if	we	do	not	have	the	Visual	Studio	Ultimate	edition,	it	is	still	possible	to
load	test	our	web	application.	The	easiest	way	is	to	use	the	Apache	bench	command	line
tool.	It	is	included	in	the	Apache	web	server	installation,	but	if	you	do	not	need	it,	you	can
download	xampp	(a	preconfigured	Apache	distributive)	that	has	a	portable	installation
option.	This	means	that	you	can	download	a	zip	archive	from	the	xampp	site,	and	then
extract	it	to	somewhere	in	your	file	system.	You	will	find	the	ab.exe	tool	in	the
xampp\apache\bin	folder.	It	has	many	parameters,	but	we	can	use	just	two	of	them—the
number	of	concurrent	requests	and	the	time	for	the	benchmark.	Here	we	have	issued	1,000
concurrent	requests	for	2	minutes	to	our	GoodAsyncController:

ab	-c	1000	-t	120	http://localhost:9000/api/GoodAsync

The	output	shown	will	be	the	same—the	average	request	time	will	be	around	2	seconds.

Now	let’s	see	the	performance	test	results	for	BadAsyncController.	The	following
screenshot	shows	the	performance	test	results:

www.EBooksWorld.ir

Here	the	picture	is	different.	We	see	that	the	average	request	time	is	more	than	ten	times
higher	than	in	the	previous	test.	Obviously,	this	code	does	not	scale	as	well	as
GoodAsyncController	does.	Since	the	codes	inside	the	controllers	are	identical,	and	the
only	difference	is	the	asynchronous	library	method	that	was	called,	it	makes	sense	to	look
into	this	library	and	see	what	is	going	on:

public	class	AsyncLib

{

		public	async	Task<string>	GoodMethodAsync()

		{

				await	Task.Delay(TimeSpan.FromSeconds(2));

				return	"Good	async	library	method	result";

		}

		public	async	Task<string>	BadMethodAsync()

		{

				Thread.Sleep(TimeSpan.FromSeconds(2));

				return	"Bad	async	library	method	result";

		}

}

The	code	is	actually	very	simple.	Both	the	methods	wait	for	two	seconds,	and	then	return
string	results.	However,	we	can	see	that	Thread.Sleep	is	obviously	the	reason	behind	bad
scalability.	In	the	diagram,	you	can	see	what	is	going	on	when	we	use	BadMethodAsync	in
our	web	application:

www.EBooksWorld.ir

Each	worker	thread	starts	running	our	code	and	waits	two	seconds	doing	nothing.	Then,
they	return	the	response.	As	we	may	recall	from	the	previous	chapters,	thread	pool	worker
threads	are	a	limited	resource,	and	when	we	start	issuing	1,000	concurrent	requests	in	a
short	time,	all	the	worker	threads	become	occupied	running	Thread.Sleep.	At	the	same
time,	GoodAsyncController	behaves	differently.	This	can	be	seen	in	the	following
diagram:

Task.Delay	uses	a	timer	object	under	the	hood.	This	allows	an	ASP.NET	worker	thread	to
start	a	wait	operation,	and	then	to	return	to	the	application	pool	and	process	some	other

www.EBooksWorld.ir

requests.	When	two	seconds	pass,	the	timer	posts	a	continuation	callback	to	an	available
ASP.NET	thread	pool	worker	thread.	This	allows	the	application	to	process	more	user
requests,	since	worker	threads	are	not	blocked.	So,	this	timer	object	helps	our	application
to	remain	fast	and	scalable.

www.EBooksWorld.ir

www.EBooksWorld.ir

I/O	and	CPU-bound	tasks
If	we	consider	any	CPU-intensive	work	that	our	server	application	can	run	instead	of
Thread.Sleep,	we	will	find	that	this	application	will	suffer	from	the	same	problem.
Worker	threads	will	become	busy	quite	quickly,	and	there	is	not	much	that	we	can	do
about	this.	We	can	try	to	change	our	application	logic	to	work	around	this	problem,	and	we
will	get	back	to	this	problem	at	the	end	of	the	chapter.

However,	besides	CPU-bound	operations,	there	are	tasks	related	to	input/output	processes,
such	as	reading	or	writing	a	file,	issuing	a	network	request,	or	even	performing	a	query
against	a	database.	These	operations	usually	take	much	more	time	compared	to	CPU-
bound	work,	and	potentially	they	should	be	more	problematic	to	our	server	application.
I/O-bound	work	can	take	seconds.	So	does	this	mean	that	our	worker	threads	will	be
locked	for	a	longer	time	and	the	application	will	fail	to	scale?

Fortunately,	there	is	one	more	component	of	the	I/O-bound	operation.	When	we	mention	a
file	or	network	request,	we	know	that	there	are	physical	devices	such	as	disks	and	network
cards	that	actually	execute	these	operations.	These	devices	have	controllers,	and	a
controller	in	this	context	means	a	micro-computer	with	its	own	CPU.	To	perform	an	I/O-
bound	task,	we	do	not	need	to	waste	the	main	CPU’s	time,	it	is	enough	to	give	all	the
required	data	to	the	I/O	device	controller,	and	it	will	perform	the	I/O	operation	and	return
the	results	with	the	help	of	a	device	driver.

To	communicate	with	the	I/O	devices,	Windows	uses	a	special	object	called	I/O
Completion	Port	(or	IOCP).	It	behaves	pretty	much	like	a	timer,	but	the	signals	are
coming	from	the	I/O	devices	and	not	from	the	internal	clock.	This	means	that,	while	an
I/O	operation	is	in	progress,	we	can	reuse	the	ASP.NET	worker	thread	to	serve	other
requests,	and	thus	achieve	good	scalability.	The	following	diagram	depicts	the	processes
graphically:

www.EBooksWorld.ir

Notice	a	new	entity	called	the	I/O	thread	in	the	preceding	diagram.	There	is	a	separate
smaller	pool	of	I/O	threads	inside	this	.NET	thread	pool.	The	I/O	threads	are	not	different
from	the	usual	worker	threads,	but	they	are	being	used	only	to	execute	continuation
callbacks	for	asynchronous	I/O	operations.	If	we	use	general	worker	threads	for	this
purpose,	it	can	happen	that	there	are	no	worker	threads	available	and	we	cannot	complete
the	I/O	operation,	which	in	turn	will	lead	to	deadlocks.	Using	a	separate	thread	pool	will
help	to	prevent	this,	but	we	also	need	to	be	very	careful	not	to	cause	I/O	threads	starvation.
Look	at	the	following	example.

Here	we	will	create	an	HTTP	GET	request	for	the	Google	site.	As	we	have	already
learned,	when	we	use	await,	all	the	code	following	the	line	with	await	gets	wrapped	in	a
continuation	callback	and	is	called	when	the	asynchronous	operation	completes.	Here	we
will	use	Thread.Sleep	to	see	which	threads	will	get	busy:

private	static	async	Task<string>	IssueHttpRequest()

{

		var	str	=	await	new	HttpClient().GetStringAsync("http://google.com");

		Thread.Sleep(5000);

		return	str;

}

Then,	we	need	to	get	information	about	what	is	happening	with	thread	pool	threads.
Fortunately,	a	.NET	thread	pool	has	a	set	of	static	methods	that	allow	us	to	get	some
information	about	worker	and	I/O	threads	in	a	thread	pool:

private	static	void	PrintThreadCounts()

{

		int	ioThreads;

		int	maxIoThreads;

		int	workerThreads;

		int	maxWorkerThreads;

		ThreadPool.GetMaxThreads(out	maxWorkerThreads,	out	maxIoThreads);

		ThreadPool.GetAvailableThreads(out	workerThreads,	out	ioThreads);

		Console.WriteLine(

				"Worker	threads:	{0},	I/O	threads:	{1},	Total	threads:	{2}",

				maxWorkerThreads	-	workerThreads,

				maxIoThreads	-	ioThreads,

				Process.GetCurrentProcess().Threads.Count

);

}

In	the	Main	method,	we	will	run	many	asynchronous	I/O	tasks;	while	iterating	through	all
these	tasks	to	complete	in	each	second,	we	will	print	out	information	about	thread	pool
threads:

private	static	void	Main(string[]	args)

{

		var	tasks	=	new	List<Task<string>>();

		for	(var	i	=	0;	i	<	100;	i++)

		{

				tasks.Add(Task.Run(()	=>

www.EBooksWorld.ir

				{

						//	Thread.Sleep(5000);

						return	IssueHttpRequest();

				}));

		}

		var	allComplete	=	Task.WhenAll(tasks);

		while	(allComplete.Status	!=	TaskStatus.RanToCompletion)

		{

				Thread.Sleep(1000);

				PrintThreadCounts();

		}

		Console.WriteLine(tasks[0].Result.Substring(0,	160));

}

If	we	run	this	code	(among	the	other	samples	for	Chapter	8;	this	one	is	called
IOThreadsTest),	it	will	show	that	the	I/O	thread	number	will	slowly	increase	until	some
point	and	go	back	to	zero.	To	prove	that	the	I/O	operation	really	happens,	the	last	lines
will	be	the	beginning	of	the	Google	web	page	HTML	content.	If	we	now	comment	out	the
first	Thread.Sleep	call	and	uncomment	it	in	the	Main	method,	the	situation	will	be
different.	We	will	block	worker	threads,	and	the	I/O	thread	number	will	remain	low.

www.EBooksWorld.ir

www.EBooksWorld.ir

Deep	dive	into	asynchronous	I/O
Usually,	there	is	no	need	to	use	Win32	API	to	start	an	asynchronous	I/O	operation.	The
.NET	base	class	library	has	many	APIs	that	are	comfortable	to	use,	and	leverage
asynchronous	I/O.	The	following	code	is	not	intended	to	be	used	in	a	production	software,
it	just	shows	how	such	an	API	can	be	written	in	case	you	do	not	have	it	in	the	.NET
Framework.

First,	we	need	to	allow	an	unsafe	code	in	our	project.	The	setting	is	inside	the	project
properties	of	the	Build	section	as	shown	in	the	following	screenshot:

Here,	we	need	to	define	many	data	structures	for	the	API	function	calls.	The	fully	working
code	can	be	found	in	the	BindHandle	sample	project.	In	this	book,	we	will	skip	the
unimportant	details.

First,	we	need	to	use	P/Invoke	for	two	Windows	API	functions:

[DllImport("kernel32.dll",	SetLastError	=	true,	CharSet	=	CharSet.Auto)]

public	static	extern	SafeFileHandle	CreateFile(

			string	lpFileName,

			EFileAccess	dwDesiredAccess,

			EFileShare	dwShareMode,

			IntPtr	lpSecurityAttributes,

			ECreationDisposition	dwCreationDisposition,

			EFileAttributes	dwFlagsAndAttributes,

			SafeFileHandle	hTemplateFile);

[DllImport("kernel32.dll",	SetLastError	=	true)]

unsafe	internal	static	extern	int	ReadFile(

		SafeFileHandle	handle,

		byte*	bytes,

		int	numBytesToRead,

www.EBooksWorld.ir

		IntPtr	numBytesRead_mustBeZero,

		NativeOverlapped*	overlapped);

Then,	we	create	a	file	and	write	some	text	in	it	in	the	usual	way:

using	(var	sw	=	File.CreateText("test.txt"))

{

		sw.WriteLine("Test!");

}

Here,	we	are	opening	this	file	for	asynchronous	reading.	Notice
EFileAttributes.Overlapped	in	the	method	parameters.	If	we	want	an	asynchronous	I/O
operation,	we	must	specify	this	flag:

SafeFileHandle	handle	=	CreateFile(

		"test.txt",

		EFileAccess.FILE_GENERIC_READ,

		EFileShare.Read	|	EFileShare.Write	|	EFileShare.Delete,

		(IntPtr)null,

		ECreationDisposition.OpenExisting,

		EFileAttributes.Overlapped,

		new	SafeFileHandle(IntPtr.Zero,	false));

Now	we	bind	the	file	handle	to	a	.NET	thread	pool.	It	maintains	an	I/O	completion	port,
and	this	handle	will	be	attached	to	the	port:

if	(!ThreadPool.BindHandle(handle))

{

		Console.WriteLine("Failed	to	bind	handle	to	the	threadpool.");

		return;

}

We	need	to	prepare	a	buffer	for	the	file	that	is	going	to	be	read.	The	following	code	checks
whether	the	buffer	is	empty:

byte[]	bytes	=	new	byte[0x8000];

Console.WriteLine("First	byte	in	buffer:	{0}",	bytes[0]);

Now,	we	need	to	prepare	a	callback	that	will	be	executed	after	the	asynchronous	operation
completes.	If	everything	is	fine,	we	will	get	file	content	from	the	buffer	and	print	it	to	the
console.	We	must	clean	up	the	resources	after	the	operation	completion:

IOCompletionCallback	iocomplete	=	delegate(uint	errorCode,	uint	numBytes,	

NativeOverlapped*	nativeOverlapped)

		{

				try

				{

						if	(errorCode	!=	0	&&	numBytes	!=	0)

						{

								Console.WriteLine("Error	{0}	when	reading	file.",	errorCode);

						}

						Console.WriteLine("Read	{0}	bytes.",	numBytes);

						Console.WriteLine(

								Encoding.UTF8.GetChars(

										new	ArraySegment<byte>(bytes,0,	(int)numBytes).ToArray()));

				}

www.EBooksWorld.ir

				finally

				{

						Overlapped.Unpack(nativeOverlapped);

						Overlapped.Free(nativeOverlapped);

				}

		};

Here,	we	have	prepared	a	data	structure	to	be	passed	to	the	asynchronous	operation	start.
We	have	to	pin	our	buffer’s	address	to	memory,	so	the	pointer	will	be	valid:

Overlapped	overlapped	=	new	Overlapped();

NativeOverlapped*	pOverlapped	=	overlapped.Pack(iocomplete,	bytes);

pOverlapped->OffsetLow	=	0;

fixed	(byte*	p	=	bytes)

{

		//	Here	we	start	asynchronously	reading	the	file.

		//	When	the	operation	will	complete,	ioComplete

		//	callback	will	be	called

		int	r	=	ReadFile(handle,	p,	bytes.Length,	IntPtr.Zero,	pOverlapped);

		if	(r	==	0)

		{

				r	=	Marshal.GetLastWin32Error();

				if	(r	!=	ERROR_IO_PENDING)

				{

						Console.WriteLine("Failed	to	read	file.	LastError	is	{0}",	

Marshal.GetLastWin32Error());

						Overlapped.Unpack(pOverlapped);

						Overlapped.Free(pOverlapped);

						return;

				}

		}

}

When	we	run	this	code,	we	will	see	that	the	file	content	has	been	successfully	read.

www.EBooksWorld.ir

www.EBooksWorld.ir

Real	and	fake	asynchronous	I/O	operations
So	far,	an	asynchronous	I/O	seems	to	be	a	good	thing	for	server	applications.
Unfortunately,	there	is	quite	unexpected	underwater	stone	that	is	very	hard	to	find.	Let’s
look	at	the	following	code.	It	happens	that	the	FileStream	instance	has	the	IsAsync
property,	indicating	that	the	underlying	I/O	operation	is	asynchronous.	We	will	start	a	few
asynchronous	writes	and	check	whether	they	are	really	asynchronous:

private	const	int	BUFFER_SIZE	=	4096;

private	static	async	Task	ProcessAsynchronousIO()

{

		using	(var	stream	=	new	FileStream("test1.txt",	FileMode.Create,	

FileAccess.ReadWrite,	FileShare.None,	BUFFER_SIZE))

		{

				Console.WriteLine("1.	Uses	I/O	Threads:	{0}",	stream.IsAsync);

				var	buffer	=	Encoding.UTF8.GetBytes(CreateFileContent());

				var	t	=	stream.WriteAsync(buffer,	0,	buffer.Length);

				await	t;

		}

		using	(var	stream	=	new	FileStream("test2.txt",	FileMode.Create,	

FileAccess.ReadWrite,	FileShare.None,	BUFFER_SIZE,	

FileOptions.Asynchronous))

		{

				Console.WriteLine("2.	Uses	I/O	Threads:	{0}",	stream.IsAsync);

				var	buffer	=	Encoding.UTF8.GetBytes(CreateFileContent());

				var	t	=	stream.WriteAsync(buffer,	0,	buffer.Length);

				await	t;

		}

		using	(var	stream	=	File.Create("test3.txt",	BUFFER_SIZE,	

FileOptions.Asynchronous))

		using	(var	sw	=	new	StreamWriter(stream))

		{

				Console.WriteLine("3.	Uses	I/O	Threads:	{0}",	stream.IsAsync);

				await	sw.WriteAsync(CreateFileContent());

		}

		using	(var	sw	=	new	StreamWriter("test4.txt",	append:	true))

		{

				Console.WriteLine("4.	Uses	I/O	Threads:	{0}",	((FileStream)	

sw.BaseStream).IsAsync);

				await	sw.WriteAsync(CreateFileContent());

		}

		Console.WriteLine("Deleting	files…");

		var	deleteTasks	=	new	Task[4];

		for	(var	i	=	0;	i	<	4;	i++)

www.EBooksWorld.ir

		{

				var	fileName	=	string.Format("test{0}.txt",	i	+	1);

				deleteTasks[i]	=	SimulateAsynchronousDelete(fileName);

		}

		await	Task.WhenAll(deleteTasks);

		Console.WriteLine("Deleting	complete.");

}

private	static	string	CreateFileContent()

{

		var	sb	=	new	StringBuilder();

		for	(var	i	=	0;	i	<	100000;	i++)

		{

				sb.AppendFormat("{0}",	new	Random(i).Next(0,	99999));

				sb.AppendLine();

		}

		return	sb.ToString();

}

private	static	Task	SimulateAsynchronousDelete(string	fileName)

{

		//	No	delete	async	in	API

		return	Task.Run(()	=>	File.Delete(fileName));

}

private	static	void	Main(string[]	args)

{

		var	t	=	ProcessAsynchronousIO();

		t.GetAwaiter().GetResult();

}

When	we	run	the	code,	we	will	see	that	only	the	numbers	two	and	three	writes	are
asynchronous.	However,	we	have	used	the	await	statement	and	call	WriteAsync	in	all
cases.	What	is	going	on?	The	answer	is	that	if	we	do	not	specify	the	correct	options	for	the
file	API	we	use,	the	file	will	provide	us	with	the	wrong	kind	of	asynchrony	that	uses
worker	threads	for	the	I/O	process	and	thus	is	not	scalable.

This	problem	can	be	illustrated	by	the	SimulateAsynchronousDelete	method.	There	is	no
asynchronous	delete	function	in	the	Win32	API,	so	it	just	starts	a	new	task	where	the
synchronous	delete	is	being	performed.	This	practice	is	called	async	over	sync	and	should
be	avoided.	Do	not	write	your	libraries	like	this.	If	there	is	no	asynchronous	API	for	some
operation,	do	not	make	it	look	asynchronous.	In	the	following	diagram,	we	can	see	why	it
is	a	bad	practice	for	a	server	application:

www.EBooksWorld.ir

This	workflow	is	even	worse	than	the	usual	synchronous	code,	because	there	is	an
additional	performance	overhead	related	to	running	this	part	of	the	operation	on	a	different
worker	thread.	We	end	up	wasting	worker	thread	for	the	entire	time	of	the	I/O	operation
anyway,	and	this	is	fake	asynchronous	I/O.	It	is	actually	a	CPU-bound	operation	that	will
affect	the	scalability	and	performance	of	your	application.

So	if	we	have	the	source	code	of	a	library,	we	can	make	sure	that	it	leverages	a	truly
asynchronous	I/O.	However,	a	source	code	is	not	always	available,	and	even	if	it	is
available,	it	can	often	be	puzzling	and	complicated.	To	make	sure	that	our	asynchrony	is
right,	we	can	use	a	tool	that	shows	the	API	calls	from	the	application,	and	we	will	be	able
to	see	whether	an	I/O	completion	port	has	been	used.

There	is	a	program	called	API	Monitor.	It	can	be	easily	found	in	any	search	engine,	is	free
to	use,	and	easy	to	install.	There	are	two	versions	of	this	program:	32-bit	and	64-bit,	so
you	have	to	pay	attention	to	which	version	is	appropriate	for	your	application.

From	the	start,	we	will	need	to	set	up	a	filter	to	see	only	the	required	function	calls.	For
our	sample	code,	it	is	enough	to	monitor	two	functions,	CreateFileW	and
CreateIoCompletionPort.	The	filter	is	shown	in	the	following	screenshot:

www.EBooksWorld.ir

Then	we	need	to	run	our	application	under	API	Monitor.	To	start	monitoring,	press	Ctrl	+
M	or	use	the	File	|	Monitor	New	Process…	menu	option.	The	start	dialog	will	appear	as
follows:

www.EBooksWorld.ir

When	you	press	OK,	the	application	will	start	and	then	you	will	see	a	report	as	follows:

You	can	see	that	to	write	the	test2.txt	file,	the	FILE_FLAG_OVERLAPPED	flag	was
provided	to	the	CreateFileW	function,	meaning	that	we	are	using	the	I/O	completion	port.
The	CreateFileW	function	returned	the	0x234	file	handle,	which	was	bound	to	the	I/O
completion	port	by	calling	the	CreateIoCompletionPort	function.	The	first	and	the	last
file	writes	are	not	using	the	completion	port	and	thus	are	not	really	asynchronous.

www.EBooksWorld.ir

www.EBooksWorld.ir

Synchronization	context
Another	very	important	concept	is	synchronization	context.	We	will	review
synchronization	context	and	other	kinds	of	context	in	detail	in	the	next	chapter,	but	for
now	let’s	start	with	a	demonstration.	This	sample	is	called	IISSynchronizationContext.
This	time	we	need	to	host	our	application	in	an	IIS	web	server,	so	we	will	use	the
Microsoft.Owin.Host.SystemWeb	NuGet	package,	and	create	an	empty	ASP.NET
application.	First,	we	will	configure	our	application	and	define	a	default	route:

public	class	Startup

{

		public	void	Configuration(IAppBuilder	appBuilder)

		{

				var	config	=	new	HttpConfiguration();

				config.Routes.MapHttpRoute(

						"DefaultApi",	"api/{controller}/{action}/{id}",	new	{	id	=	

RouteParameter.Optional}

);

				appBuilder.UseWebApi(config);

		}

}

Then	we	will	create	a	controller	with	two	methods.	One	of	them	tries	to	get	asynchronous
operation	results	synchronously,	and	the	other	uses	await	and	asynchronous	execution:

public	class	HomeController	:	ApiController

{

		[HttpGet]

		public	int	Sync()

		{

				var	lib	=	new	AsyncLib();

				return	lib.CountCharactersAsync(new	Uri("http://google.com")).Result;

		}

		[HttpGet]

		public	async	Task<int>	Async()

		{

				var	lib	=	new	AsyncLib();

				return	await	lib.CountCharactersAsync(new	Uri("http://google.com"));

		}

}

Here	we	have	defined	our	asynchronous	operation	as	downloading	content	from	a	given
URL	and	returning	its	length	in	characters:

public	class	AsyncLib

{

		public	async	Task<int>	CountCharactersAsync(Uri	uri)

		{

				using	(var	client	=	new	HttpClient())

				{

www.EBooksWorld.ir

						var	content	=	await	client.GetStringAsync(uri)

//			.ConfigureAwait(continueOnCapturedContext:	false);

						return	content.Length;

				}

		}

}

When	we	run	this	code	in	Visual	Studio,	a	default	web	browser	should	start	and	open	the
web	application	URL.	In	the	sample	code,	both	actions	can	be	reached	via
http://localhost:5098/api/Home/Async	and	http://localhost:5098/api/Home/Sync
respectively.	The	Async	version	works	fine,	while	the	Sync	code	hangs	forever.

This	can	be	fixed	if	we	uncomment	the	ConfigureAwait	line	in	the	AsyncLib	class.	If	you
run	a	new	code,	the	Sync	version	will	also	work.	To	understand	the	reasons	for	this,	we
need	to	get	back	to	the	synchronization	context	concept.	A	synchronization	context
represents	an	environment	that	has	some	data	associated	to	it,	and	an	ability	to	run	a
delegate	using	this	environment.	In	ASP.NET,	when	using	a	IIS	web	server	there	is	a
special	synchronization	context	that	keeps	the	current	culture	and	user	identity.

Now	when	we	use	await	by	default,	if	we	use	await	with	the	Task<T>	instance,	we	will
get	a	special	TaskAwaiter<T>	structure	that	is	used	by	the	C#	compiler	in	the	generated
state	machine	code.	To	run	a	continuation	callback,	C#	ends	up	calling	the
UnsafeOnCompleted	method:

public	struct	TaskAwaiter<TResult>	:	ICriticalNotifyCompletion

{

		private	readonly	Task<TResult>	m_task;

		internal	TaskAwaiter(Task<TResult>	task)

		{

				Contract.Requires(task	!=	null,	"Constructing	an	awaiter	requires	a	

task	to	await.");

				m_task	=	task;

		}

		public	void	UnsafeOnCompleted(Action	continuation)

		{

				TaskAwaiter.OnCompletedInternal(m_task,	continuation,	

continueOnCapturedContext:true,	flowExecutionContext:false);

		}

}

So	this	code	tries	to	post	a	continuation	callback	to	the	current	synchronization	context.
However	when	we	run	this	code	synchronously,	we	will	get	a	classic	deadlock	situation:

The	code	blocks	the	current	synchronization	context	until	the	operation	completes
The	operation	completes	and	posts	the	continuation	callback	to	the	current
synchronization	context
However,	it	is	blocked	until	we	get	a	result	and	cannot	run	this	continuation	callback,
and	thus	cannot	get	a	result
All	this	leads	to	a	deadlock

To	prevent	this,	we	can	use	the	ConfigureAwait(continueOnCapturedContext:	false)

www.EBooksWorld.ir

method.	It	returns	a	special	ConfiguredTaskAwaitable	type	instance,	which	in	turn
returns	ConfiguredTaskAwaiter	to	the	C#	compiler-generated	code.	In	this	case,	we	use
UnsafeOnCompleted	as	well,	but	this	time	it	is	specifically	configured	not	to	capture	the
current	synchronization	context,	and	the	continuation	callback	gets	posted	to	a	default	task
scheduler,	which	is	likely	to	be	a	thread	pool	worker	thread:

public	struct	ConfiguredTaskAwaiter	:	ICriticalNotifyCompletion

{

		private	readonly	Task<TResult>	m_task;

		private	readonly	bool	m_continueOnCapturedContext;

		internal	ConfiguredTaskAwaiter(Task<TResult>	task,	bool	

continueOnCapturedContext)

		{

				Contract.Requires(task	!=	null,	"Constructing	an	awaiter	requires	a	

task	to	await.");

				m_task	=	task;

				m_continueOnCapturedContext	=	continueOnCapturedContext;

		}

		public	void	UnsafeOnCompleted(Action	continuation)

		{

				OnCompletedInternal(m_task,	continuation,	m_continueOnCapturedContext,	

flowExecutionContext:false);

		}

}

This	means	that	when	you	write	a	library	with	async	methods	that	have	the	await
statements	inside	and	if	you	are	sure	that	your	continuation	code	does	not	need	the	current
synchronization	context,	always	use	.ConfigureAwait(false)	to	prevent	such	situations.
Also	vice	versa;	if	you	have	to	work	with	asynchronous	operations	synchronously	in
ASP.NET,	it	is	very	dangerous	to	use	the	Task.Result	property	and	block	the	current
thread.	You	should	use	Task.ContinueWith	along	with	the	corresponding	options	to	get
the	result	without	await.

www.EBooksWorld.ir

www.EBooksWorld.ir

CPU-bound	tasks	and	queues
So	far,	we	have	reviewed	many	special	details	about	I/O-bound	tasks,	but	what	about
CPU-bound	work?	Technically,	the	most	efficient	way	will	be	to	run	such	work
synchronously	and	scale	horizontally	by	adding	more	and	more	servers	to	be	able	to
handle	increasing	load.	Nevertheless,	it	can	happen	that	this	CPU-bound	work	is	not	the
only	responsibility	of	a	server	application.	In	this	case,	we	can	find	a	way	to	get	this	to
work	out	of	the	web	application,	allowing	it	to	run	fast;	now	the	CPU-bound	part	can	be
scaled	separately	and	does	not	affect	the	rest	of	this	application.

This	is	how	cloud	applications	work.	Usually,	if	there	is	a	long	running	operation,	a	web
application	registers	it	into	some	data	store,	returns	a	unique	identifier	of	this	operation	to
the	client,	and	posts	this	operation	to	a	special	queue.	Then	there	is	a	separate	pool	of
worker	processes	that	monitor	this	queue,	get	tasks	from	them,	process	them,	and	write
results	to	a	data	store.	When	the	client	arrives	next	time,	the	web	application	checks
whether	the	task	has	been	already	completed	by	any	worker	and	if	it	has,	the	application
returns	the	result	to	the	client.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	have	learned	about	server	applications	and	how	they	are	different.	We
have	looked	at	scalability	and	understood	why	it	is	very	important	for	a	server	application
to	be	able	to	scale	well.	We	have	created	an	OWIN	Web	API	application	and	learned	to
host	it	in	an	IIS	web	server	and	in	a	separate	process.	We	have	used	Visual	Studio	to	create
load	tests	for	our	server	application,	checked	what	happens	when	we	use	good	and	poorly
written	asynchronous	code,	and	leveraged	the	Apache	bench	command	line	tool	to	run
benchmarks	without	Visual	Studio.

We	also	have	reviewed	in	detail	what	an	I/O	thread	and	an	I/O	completion	port	are,	and
found	out	reasons	why	using	an	asynchronous	I/O	is	the	key	to	building	scalable	server
applications.	To	check	whether	a	third-party	code	uses	real	asynchronous	I/O,	we	have
found	a	tool	that	shows	Win32	API	calls.	In	conclusion,	we	have	learned	about
synchronization	context	and	how	we	can	configure	continuation	tasks	to	be	run	on	a
default	task	scheduler.	Finally,	we	have	discussed	how	to	enhance	the	scalability	of	a
server	application	that	has	long-running	CPU-bound	tasks.

In	the	next	chapter,	we	will	review	client	applications,	and	specifically	the	user	interface
part,	in	detail.	We	will	learn	about	modern	user	interface	technologies,	how	to	keep	the	UI
fast	and	responsive,	and	how	to	avoid	common	pitfalls	and	mistakes	with	asynchrony	on
the	client	side.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	9.	Concurrency	in	the	User	Interface
In	this	chapter,	we	will	review	the	aspects	of	using	asynchrony	in	client	applications.	We
will	learn	about	how	a	Windows	application	works	and	define	what	an	UI	thread	and
message	loop	is.	While	going	through	the	details	of	execution	and	synchronization
contexts,	we	will	dig	into	a	C#	compiler-generated	code	and	see	how	it	is	related	to	the	use
of	the	await	keyword	in	your	program.

www.EBooksWorld.ir

The	importance	of	asynchrony	for	UI
While	a	server	application	in	general	has	to	be	scalable	before	everything	else,	a	client
application	is	different.	It	is	usually	intended	to	run	for	one	user	on	one	computer,	and	thus
the	user	expects	it	to	run	fast	and	not	cause	troubles	for	the	other	applications	running	in
the	system.	While	the	second	part	is	usually	handled	by	the	operating	system,	the
application’s	performance	in	getting	things	done	and	reacting	to	user	input	is	crucial	for	a
positive	user	experience.	Imagine	if	you	run	an	application	and	it	hangs	for	a	few	minutes
after	you	click	on	a	button.	A	good	application	remains	responsive	and	indicates	that	you
have	just	started	a	long-running	operation	that	is	still	running	and	is	going	to	complete
soon.	Meanwhile,	you	can	do	something	else—click	on	other	buttons	and	perform	some
other	tasks.	When	the	task	is	completed,	you	can	get	back	to	it	and	see	the	result.

However,	achieving	just	this	is	often	not	enough.	If	you	use	some	application	and	it	reacts
to	your	input	even	with	a	slight	delay,	it	will	be	still	very	annoying.	It	is	human	nature	to
expect	an	immediate	reaction,	and	even	small	delays	can	cause	irritation	and	anger.	This
requires	a	program	to	offload	work	from	the	UI	as	much	as	possible,	and	for	this	we	have
to	learn	how	the	UI	works	and	the	UI	threading	architecture.	Later	in	this	chapter,	we	will
go	deeper	into	the	details.

The	last	aspect	is	not	relevant	to	this	chapter,	but	is	still	very	important.	While	a	server
application	has	to	consume	as	few	resources	per	user	as	possible,	if	your	program	needs
computational	power	then	it	has	to	be	able	to	use	the	necessary	resources.	For	instance,	if
a	user’s	computer	has	four	core	CPUs	with	hyperthreading	technology,	then	the
application	has	to	be	able	to	use	all	the	logical	cores	to	get	the	result	as	soon	as	possible.
This	is	where	this	book’s	content	will	be	very	useful,	especially	Chapter	7,	Leveraging
Parallel	Patterns,	which	provides	you	with	concurrent	programming	patterns.

www.EBooksWorld.ir

www.EBooksWorld.ir

UI	threads	and	message	loops
Modern	UI	framework	and	programming	languages	not	only	make	client	application
development	much	easier	than	before,	but	they	also	raise	a	level	of	abstraction	and	hide
important	implementation	details.	To	understand	how	the	UI	works,	we	should	look	at	the
lower-level	code.

The	following	is	the	code	of	a	simple	win32	program,	which	is	written	in	C.	If	your	Visual
Studio	does	not	have	C/C++	project	support	installed,	it	is	not	a	problem.	This	code	is
needed	just	to	illustrate	how	a	Windows	application	works,	and	we’ll	break	it	into	parts
and	examine	each	part	in	detail.	First,	let’s	look	at	the	full	program	code	listing:

#include	<windows.h>

const	char	_szClassName[]	=	"ConcurrencyInUIWindowClass";

LRESULT	CALLBACK	WndProc(HWND	hwnd,	UINT	msg,	WPARAM	wParam,	LPARAM	lParam)

{

		switch	(msg)

		{

		case	WM_CLOSE:

				DestroyWindow(hwnd);

				break;

		case	WM_DESTROY:

				PostQuitMessage(0);

				break;

		default:

				return	DefWindowProc(hwnd,	msg,	wParam,	lParam);

		}

		return	0;

}

int	WINAPI	WinMain(HINSTANCE	hInstance,	HINSTANCE	hPrevInstance,	LPSTR	

lpCmdLine,	int	nCmdShow)

{

		WNDCLASSEX	wc;

		HWND	hwnd;

		MSG	msg;

		//	Creating	the	Window	class

		wc.cbSize	=	sizeof(WNDCLASSEX);//	size	of	the	instance

		wc.style	=	0;																//	class	styles,	not	important	here

		wc.lpfnWndProc	=	WndProc;				//	the	pointer	to	Window	procedure

		wc.cbClsExtra	=	0;											//	extra	data	for	this	class

		wc.cbWndExtra	=	0;											//	extra	data	for	this	Window

		wc.hInstance	=	hInstance;				//	application	instance	handle

		wc.hIcon	=	LoadIcon(NULL,	IDI_APPLICATION);//	standard	large//	icon

		wc.hCursor	=	LoadCursor(NULL,	IDC_ARROW);		//	standard	arrow//	cursor

		wc.hbrBackground	=	(HBRUSH)(COLOR_WINDOW	+	1);//	background//	brush

		wc.lpszMenuName	=	NULL;										//	name	of	menu	resource

		wc.lpszClassName	=	_szClassName;	//	Window	class	name

		wc.hIconSm	=	LoadIcon(NULL,	IDI_APPLICATION);	//	standard	small//icon

www.EBooksWorld.ir

		if	(!RegisterClassEx(&wc))

		{

				MessageBox(NULL,	"Window	class	registration	failed!",

	"Error!",	MB_ICONEXCLAMATION	|	MB_OK);

				return	0;

		}

		hwnd	=	CreateWindowEx(

				WS_EX_CLIENTEDGE,

				_szClassName,

				"UI	Concurrency",

				WS_OVERLAPPEDWINDOW,

				CW_USEDEFAULT,	CW_USEDEFAULT,	480,	240,

				NULL,	NULL,	hInstance,	NULL);

		if	(hwnd	==	NULL)

		{

				MessageBox(NULL,	"Window	creation	failed!",

				"Error!",	MB_ICONEXCLAMATION	|	MB_OK);

				return	0;

		}

		ShowWindow(hwnd,	nCmdShow);

		UpdateWindow(hwnd);

		while	(GetMessage(&msg,	NULL,	0,	0)	>	0)

		{

				TranslateMessage(&msg);

				DispatchMessage(&msg);

		}

		return	msg.wParam;

}

The	entry	point	is	the	WinMain	method,	which	is	a	general	entrance	point	for	all	Windows
applications.	This	is	what	will	be	called	when	the	application	starts.	This	method	is	quite
big,	but	basically	it	consists	of	four	main	steps.

The	first	step	is	to	create	the	Window	class	instance,	and	provide	it	with	the	data	required.
The	most	important	part	here	is	the	pointer	to	the	Window	procedure.	In	our	case,	it	is	the
WndProc	method,	and	it	will	be	used	later	to	process	messages	from	the	operating	system.
Also,	we	need	a	unique	string	name	for	our	Window	class	to	use	it	to	create	a	window	in
our	application.

The	second	step	begins	where	the	RegisterClassEx	method	is	called.	We	register	the
Window	class	and	immediately	use	its	name	to	create	the	main	application	window	using
the	CreateWindowEx	function	call.	This	call	returns	a	handle	that	is	needed	for	almost
every	operation	related	to	this	window.	Then	we	display	the	application	window	on	the
screen	using	the	ShowWindow	and	UpdateWindow	methods.

The	third	step	is	very	important	and	even	highlighted	in	the	code	listing.	This	is	what	is
usually	called	the	message	loop	or	the	message	pump.	This	cycle	calls	the	GetMessage
method	that	gets	the	first	message	from	the	message	queue.	This	queue	is	created	when	a

www.EBooksWorld.ir

thread	creates	at	least	one	window	and	thus	becomes	the	UI	thread.	If	the	message	queue
is	empty,	the	GetMessage	method	call	gets	blocked	until	any	messages	appear	and	it
dequeues	the	first	message.	The	operating	system	puts	messages	such	as	a	key	press	or	a
mouse	click	on	this	queue,	and	then	this	message	gets	some	preprocessing	by	the
TranslateMessage	function.	Then	DispatchMessage	sends	this	message	to	the	Window
procedure	that	is	appointed	to	the	Window	class	that	we	have	used	to	create	the	main
application	window.	In	our	case	it	is	the	WndProc	method,	and	it	is	responsible	for	reacting
to	the	operating	system	and	the	application	events.	When	the	GetMessage	method	returns	a
result	that	is	less	than	zero,	the	message	loop	stops	and	the	application	exits.

So	the	final	step,	that	is	step	four,	is	the	message	processing	inside	WndProc.	This	has	four
parameters:	hwnd	is	the	Window	handle	and	allows	you	to	interact	with	the	window,	msg	is
the	message	id,	and	wParam	and	lParam	contain	specific	data	for	each	system	message.	In
our	Window	procedure,	we	handle	the	WM_CLOSE	and	WM_DESTROY	messages	explicitly	to
show	an	example	of	message	handling,	and	by	default,	we	pass	all	messages	to	a	standard
message	handler.	If	we	run	the	application,	we	will	see	that	it	shows	the	empty	application
window	with	the	custom	title.

Now	let’s	add	the	code	to	show	a	simple	button	click	handler	that	will	start	an
asynchronous	operation.	This	code	replaces	the	WndProc	definition	from	the	preceding
code	listing:

const	UINT	IDC_START_BUTTON	=	101;

const	UINT	WM_ASYNC_TASK_COMPLETED	=	WM_USER	+	0;

DWORD	WINAPI	SimulateAsyncOperation(LPVOID	lpHwnd)

{

		//	pretending	that	this	is	an	async	operation

		//	posts	the	message	to	the	UI	message	loop

		//	from	other	thread

		HWND	hwnd	=	*((HWND	*)lpHwnd);

		Sleep(10000);

		SendMessage(hwnd,	WM_ASYNC_TASK_COMPLETED,	NULL,	NULL);

		return	0;

}

LRESULT	CALLBACK	WndProc(HWND	hwnd,	UINT	msg,	WPARAM	wParam,	LPARAM	lParam)

{

		switch	(msg)

		{

		case	WM_CREATE:

				{

						HGDIOBJ	hfDefault	=	GetStockObject(DEFAULT_GUI_FONT);

						HWND	hWndButton	=	CreateWindowEx(NULL,

								"BUTTON",

								"OK",

								WS_TABSTOP	|	WS_VISIBLE	|

								WS_CHILD	|	BS_DEFPUSHBUTTON,

								50,

								80,

								100,

								24,

								hwnd,

www.EBooksWorld.ir

								(HMENU)IDC_START_BUTTON,

								GetModuleHandle(NULL),

								NULL);

						SendMessage(hWndButton,

								WM_SETFONT,

								(WPARAM)hfDefault,

								MAKELPARAM(FALSE,	0));

				}

				break;

		case	WM_COMMAND:

				switch	(LOWORD(wParam))

				{

						case	IDC_START_BUTTON:

								{

										HANDLE	threadHandle	=	CreateThread(NULL,	0,

												SimulateAsyncOperation,

												&hwnd,	0,	NULL);

										//	we	do	not	need	the	handle,	so	just	close	it

										CloseHandle(threadHandle);

										MessageBox(hwnd,

												"Start	button	pressed",

												"Information",

												MB_ICONINFORMATION);

								}

								break;

				}

				break;

		case	WM_ASYNC_TASK_COMPLETED:

				MessageBox(hwnd,

						"Operation	completed",

						"Information",

						MB_ICONINFORMATION);

				break;

		case	WM_CLOSE:

				//	sends	WM_DESTROY

				DestroyWindow(hwnd);

				break;

		case	WM_DESTROY:

//	Window	cleanup	here

				PostQuitMessage(0);

				break;

		default:

				return	DefWindowProc(hwnd,	msg,	wParam,	lParam);

		}

		return	0;

}

In	the	beginning,	we	have	created	identifiers	for	a	button	and	a	custom	message.	The
details	are	not	relevant	here;	they	are	just	some	numeric	identifiers.	The	next	part	is	an
asynchronous	operation	code	inside	the	SimulateAsyncOperation	method.	It	just	blocks
the	current	thread	for	5	seconds	and	then	sends	a	custom	message	to	the	Window	handle
that	it	gets	through	the	input	parameter.

The	remaining	code	is	placed	inside	message	handlers	in	the	WndProc	Window	procedure.
www.EBooksWorld.ir

The	first	important	place	is	the	WM_CREATE	message	handler.	Here	we	created	a	button,	and
set	the	button	text	font	to	a	default	system	font.	The	other	details	are	not	important	here;
just	notice	the	use	of	IDC_START_BUTTON	inside	the	CreateWindowEx	method	call.	This
identifier	will	be	used	later	in	the	message	that	the	operating	system	will	send	when	this
button	is	clicked.	This	message	will	be	processed	by	the	WM_COMMAND	message	handler.
The	sending	element	identifier	is	passed	in	a	low-order	word	of	the	wParam	value.	In	the
case	of	our	button	click,	this	value	will	be	IDC_START_BUTTON.	We	can	think	of	this	like
the	common	Button_Click	handler	in	higher-level	frameworks	such	as	Windows	Forms
or	WPF.	Inside	this	button	click	handler,	we	have	created	a	separate	thread	that	will	run
the	SimulateAsyncOperation	method.	Then	the	simplest	solution	is	to	show	a	modal
message	box	showing	that	the	operation	has	been	started.

The	last,	but	not	the	least,	step	is	how	we	run	continuation	code	after	the	asynchronous
operation	completes.	The	operation	sends	a	custom	message,	and	we	handle	it	with	the
WM_ASYNC_TASK_COMPLETED	message	handler.	It	simply	shows	a	message	box	informing
about	that	the	operation	has	been	completed.	The	operation	takes	10	seconds	to	complete,
so	you	can	close	the	first	message	box	and	drag	around	the	application	window	to	make
sure	that	it	stays	responsive.

Of	course,	if	we	run	SimulateAsyncOperation	on	the	UI	thread,	it	will	freeze.	Simply
replace	the	button	click	handler	code	with	this	to	make	sure	this	really	happens:

case	IDC_START_BUTTON:

{

				MessageBox(hwnd,

						"Start	button	pressed",

						"Information",

						MB_ICONINFORMATION);

				SimulateAsyncOperation(&hwnd);

		}

		break;

Now	if	we	run	the	code	with	these	changes,	the	application	window	will	stop	responding
for	10	seconds	after	we	press	the	button	and	close	the	modal	dialog.	This	perfectly
illustrates	what	we	are	trying	to	achieve;	do	all	the	work	on	the	other	threads,	leave	the	UI
thread	just	to	handle	messages	as	fast	as	possible,	and	you	will	get	a	great	and	responsive
UI	in	your	application.

However,	in	modern	UI	programming,	the	abstraction	level	is	very	high,	and	usually	you
cannot	be	sure	if	some	code	runs	on	the	UI	thread	or	not	just	by	looking	at	it.	Consider	this
C#	code	that	can	be	a	part	of	any	WPF	application:

private	static	async	void	Click(object	sender,	EventArgs	e)

{

		MessageBox.Show("Starting	asynchronous	operation….");

		await	SomeOperationAsync();

		MessageBox.Show("Asynchronous	operation	complete!");

}

This	is	a	button	click	handler	that	logically	does	the	same	thing	as	the	previous	code—
www.EBooksWorld.ir

shows	a	dialog,	runs	an	asynchronous	operation,	and	notifies	us	with	message	boxes	about
the	start	and	end	of	the	operation.	It	is	much	simpler	than	the	native	Win32	application
window	procedure	message	handling	code.	However,	we	pay	the	price	by	not	knowing	the
details,	and	by	just	looking	at	this	piece	of	code,	we	cannot	say	anything	about	what
thread	will	run	which	part	of	this	code.

www.EBooksWorld.ir

www.EBooksWorld.ir

Common	problems	and	solutions
To	see	what	can	happen	if	we	do	not	control	how	exactly	the	code	correlates	to	threads,
let’s	start	with	a	simple	WPF	application	that	has	three	different	buttons.	In	this	particular
case,	it	is	not	relevant	how	the	WPF	application	gets	created	and	how	we	compose	UI
controls,	so	we	are	going	to	concentrate	on	the	code	inside	the	button	click	handlers.	All
the	code	for	this	sample	is	located	in	the	AsyncInUI	project	in	the	samples	for	Chapter	9.
Besides	this,	we	will	not	use	async	and	await	yet,	because	they	will	create	one	more
abstraction	level	and	thus	make	the	code	harder	to	understand.

The	first	button	tries	to	call	a	Task	returning	method	synchronously:

private	static	void	SyncClick(object	sender,	EventArgs	e)

{

				_label.Content	=	string.Empty;

				try

				{

								string	result	=	TaskMethod().Result;

								_label.Content	=	result;

				}

				catch	(Exception	ex)

				{

								_label.Content	=	ex.Message;

				}

}

Without	knowing	exactly	what	TaskMethod	is,	it	is	impossible	to	predict	how	this	program
will	behave.	For	now,	we	will	experiment	and	only	then	look	at	its	code	and	see	what
happened.	If	we	run	the	application	and	click	on	the	Start	synchronous	operation	button,
besides	an	unresponsive	UI,	we	will	get	a	weird	error	message:

One	or	more	errors	occurred

From	Chapter	5,	C#	Language	Support	for	Asynchrony,	we	already	know	that	this	is	a
message	from	the	AggregateException	instance.	The	easiest	way	to	get	the	real	exception
message	is	by	getting	the	Task	result	through	the	GetAwaiter	method	call.	The	new	line	of
code	will	be:

string	result	=	TaskMethod().GetAwaiter().GetResult();

This	time	the	UI	gets	blocked	again,	but	we	get	the	actual	error	message:

The	calling	thread	cannot	access	this	object	because	a	different	thread	

owns	it.

This	message	tells	us	that	we	are	trying	to	access	a	UI	control	from	a	non-UI	thread,
which	is	not	allowed.	Now	is	the	time	to	dig	into	the	TaskMethod	code:

private	static	Task<string>	TaskMethod()

{

				return	TaskMethod(TaskScheduler.Default);

}

www.EBooksWorld.ir

private	static	Task<string>	TaskMethod(TaskScheduler	scheduler)

{

		Task	delay	=	Task.Delay(TimeSpan.FromSeconds(5));

		return	delay.ContinueWith(t	=>

		{

				string	str	=	string.Format(

						"Task	is	running	on	a	thread	id	{0}.	Is	thread	pool	thread:	{1}",	

Thread.CurrentThread.ManagedThreadId,	

Thread.CurrentThread.IsThreadPoolThread);

				_label.Content	=	str;

				return	str;

		},

		scheduler);

}

So	we	can	see	that	we	have	created	a	timer	task	and	then	set	up	a	continuation	task	using
the	default	task	scheduler,	which	tries	to	set	the	label	text.	Since	the	default	task	scheduler
posts	the	task	code	to	the	thread	pool,	we	get	a	multithreaded	access	error.

We	have	already	covered	task	schedulers	earlier	in	the	book,	and	we	know	that	we	can	get
one	for	the	current	synchronization	context.	For	now,	let’s	say	that	this	will	allow	us	to
post	the	code	to	the	UI	thread,	and	this	would	resolve	the	issue	that	we	have.	It	seems	that
if	we	modify	the	code	to	use	a	proper	task	scheduler,	we	will	get	the	required	result:

string	result	=	TaskMethod(

TaskScheduler.FromCurrentSynchronizationContext()).Result;

Unfortunately,	if	we	run	the	modified	program	and	press	the	button,	the	application	will
hang.	The	reason	for	this	will	become	clear	when	we	get	back	to	the	WndProc	Window
procedure	source	code.	We	will	make	a	blocking	call	to	TaskMethod	from	the	button	click
handler,	waiting	for	the	asynchronous	operation	to	complete.	However,	the	button	click
handler	runs	on	the	UI	thread,	so	this	stops	the	message	loop	from	spinning	and	therefore,
we	will	never	get	a	message	from	the	asynchronous	operation	because	the	message	loop
cannot	process	the	message	as	it	is	stopped.	It	is	a	classic	deadlock	situation	and	shows
that	using	synchronous	calls	on	tasks	on	the	UI	thread	is	quite	dangerous.

Nevertheless,	we	can	make	this	code	work.	WPF	allows	us	to	run	the	message	loop
manually:

public	static	class	TaskExtensions

{

		public	static	T	WaitWithNestedMessageLoop<T>(this	Task<T>	task)

		{

				var	nested	=	new	DispatcherFrame();

				task.ContinueWith(_	=>	nested.Continue	=	false,	TaskScheduler.Default);

				Dispatcher.PushFrame(nested);

				return	task.Result;

		}

}

This	code	creates	a	nested	message	loop.	This	means	that	the	main	message	loop	pauses,
this	one	starts	to	process	messages	until	we	stop	it,	and	then	the	main	loop	gets	back	in

www.EBooksWorld.ir

control.	So	first,	we	created	the	nested	message	loop.	Then	we	set	up	a	continuation	task
that	is	going	to	run	on	a	thread	pool	worker	thread.	This	task	will	stop	the	nested	message
loop	when	the	initial	task	completes.

Finally,	we	started	the	nested	message	loop.	The	PushFrame	method	call	is	blocked	until
someone	sets	the	Continue	property	on	the	message	loop	to	false.	The	nested	message
loop	will	process	system	events	and	allow	the	UI	to	stay	responsive	while	we	wait	for	the
initial	task	to	complete.	When	this	completes,	the	continuation	task	stops	the	nested
message	loop	by	setting	its	Continue	property	to	false,	and	then	we	will	get	the	task
result	(which	will	not	block	now,	because	the	task	has	been	completed)	and	return	it.

Now,	let’s	change	the	code	and	run	it:

string	result	=	TaskMethod(

TaskScheduler.FromCurrentSynchronizationContext())

.WaitWithNestedMessageLoop();

The	UI	stays	responsive,	and	we	get	a	message	about	the	code	that	works	while	a	label
control	runs	on	the	UI	thread,	which	is	exactly	what	we	wanted	to	achieve.

An	asynchronous	code,	however,	will	work	fine,	because	it	does	not	block	the	UI	thread
and	the	message	loop.	To	prove	this,	let’s	try	to	run	asynchronous	operations	on	the	thread
pool	and	on	the	UI	thread:

private	static	void	AsyncClick(object	sender,	EventArgs	e)

{

		_label.Content	=	string.Empty;

		Mouse.OverrideCursor	=	Cursors.Wait;

		Task<string>	task	=	TaskMethod();

		task.ContinueWith(t	=>

				{

							_label.Content	=	t.Exception.InnerException.Message;

							Mouse.OverrideCursor	=	null;

				},

				CancellationToken.None,

				TaskContinuationOptions.OnlyOnFaulted,

				TaskScheduler.FromCurrentSynchronizationContext()

);

}

private	static	void	AsyncOkClick(object	sender,	EventArgs	e)

{

		_label.Content	=	string.Empty;

		Mouse.OverrideCursor	=	Cursors.Wait;

		Task<string>	task	=	TaskMethod(

				TaskScheduler.FromCurrentSynchronizationContext());

		task.ContinueWith(t	=>	Mouse.OverrideCursor	=	null,

				CancellationToken.None,

				TaskContinuationOptions.None,

				TaskScheduler.FromCurrentSynchronizationContext());

}

Since	we	did	not	want	to	use	await	here,	we	have	to	set	up	continuation	tasks	to	output

www.EBooksWorld.ir

the	result.	In	the	AsyncClick	method,	we	know	that	the	asynchronous	call	is	going	to	fail,
so	we	set	up	an	error	handling	continuation	task	using	the	UI	thread	task	scheduler.	In	the
second	case,	everything	is	going	to	be	fine,	so	the	continuation	task	will	show	a	success
message.	Running	the	program	and	clicking	on	the	second	and	third	buttons	proves	our
assumptions.

www.EBooksWorld.ir

www.EBooksWorld.ir

How	the	await	keyword	works
Now	let’s	write	a	button	click	handler	using	await	and	see	what	has	changed:

private	static	async	void	Click(object	sender,	EventArgs	e)

{

		_label.Content	=	"Starting	asynchronous	operation….";

		await	SomeOperationAsync();

		_label.Content	=	"Asynchronous	operation	complete!";

}

Once	again,	without	knowing	exactly	what	SomeOperationAsync	is,	it	is	still	impossible	to
know	how	this	code	is	going	to	behave.	Imagine	the	simplest	asynchronous	method
implementation:

static	Task	SomeOperationAsync()

{

		return	Task.Delay(TimeSpan.FromSeconds(5));

}

In	this	case,	the	program	will	run	successfully,	which	means	that	the	continuation	code
runs	on	the	UI	thread.	To	find	out	how	this	happens,	we	need	to	review	two	important
abstractions:	execution	and	synchronization	contexts.

www.EBooksWorld.ir

Execution	and	synchronization	contexts
An	execution	context	contains	all	the	data	related	to	the	current	environment	in	which	a
thread	is	running.	Usually,	there	is	no	need	to	use	this	directly;	it	is	used	by	the	framework
to	contain	the	thread’s	local	information	such	as	security	information.	When	needed,	it	is
possible	to	restore	this	information	to	another	thread.	the	C#	infrastructure	captures	the
execution	context	and	flows	it	into	a	continuation	code	by	default.

Here	is	an	example	of	the	code	generated	by	the	C#	compiler	to	perform	an	asynchronous
method	call	with	await:

public	AsyncVoidMethodBuilder	<>t__builder;

...

TaskAwaiter	awaiter	=	Program.SomeOperationAsync().GetAwaiter();

...

//	in	case	the	operation	is	not	completed	yet

this.<>__builder.AwaitUnsafeOnCompleted(ref	awaiter,	ref	this);

So	if	we	look	at	the	AsyncVoidMethodBuilder.AwaitUnsafeOnCompleted	method,	it	will
contain	the	following	code:

[SecuritySafeCritical]

public	void	AwaitUnsafeOnCompleted<TAwaiter,	TStateMachine>(

		ref	TAwaiter	awaiter,	ref	TStateMachine	stateMachine)

where	TAwaiter	:	ICriticalNotifyCompletion

where	TStateMachine	:	IAsyncStateMachine

{

		try

		{

				var	continuation	=	m_coreState

				.GetCompletionAction(ref	this,	ref	stateMachine);

				Contract.Assert(continuation	!=	null,

				"GetCompletionAction	should	always	return	a	valid	action.");

				awaiter.UnsafeOnCompleted(continuation);

		}

		catch	(Exception	e)

		{

				AsyncMethodBuilderCore.ThrowAsync(e,	targetContext:	null);

		}

}

Now,	we	get	a	continuation	delegate	by	calling	the	GetCompletionAction	method:

internal	Action	GetCompletionAction<TMethodBuilder,	TStateMachine>(

		ref	TMethodBuilder	builder,	ref	TStateMachine	stateMachine)

		where	TMethodBuilder	:	IAsyncMethodBuilder

		where	TStateMachine	:	IAsyncStateMachine

		{

		...

				//	The	builder	needs	to	flow	ExecutionContext,	so	capture	it.

				var	capturedContext	=	ExecutionContext.FastCapture();

www.EBooksWorld.ir

		...

}

So,	we	capture	the	current	synchronization	context	and	use	it	to	run	a	continuation	code.

Synchronization	context	is	another	concept	that	abstracts	away	the	implementation
details	of	some	environment	that	is	able	to	run	the	code.	It	can	be	a	Windows	Forms
environment	that	runs	a	delegate	with	the	help	of	the	Control.BeginInvoke	method,	a
WPF	environment	that	can	run	the	code	using	the	Dispatcher	object,	or	just	any	other
framework	that	needs	such	an	environment	to	run	the	code.

Let’s	look	at	the	preceding	code,	specifically	at	the
awaiter.UnsafeOnCompleted(continuation)	part.	The	C#	async	infrastructure	uses	the
TaskAwaiter	type	for	the	awaiter	variable,	which	has	the	following	UnsafeOnCompleted
method:

[SecurityCritical]

public	void	UnsafeOnCompleted(Action	continuation)

{

		TaskAwaiter.OnCompletedInternal(m_task,

				continuation,

				continueOnCapturedContext:true,

				flowExecutionContext:false);

}

You	can	see	that	we	captured	the	current	synchronization	context.	However,	notice	that	the
flowExecutionContext	parameter	is	set	to	false.	This	only	means	that	the	execution
context	flow	happens	in	another	place	in	the	code;	here	we	are	only	capturing	the	current
synchronization	context.

Well,	now	we	understand	how	the	C#	asynchronous	infrastructure	makes	the	current
execution	and	synchronization	contexts	run	a	continuation	code.	Is	it	possible	to	change
this	behavior?	The	answer	is	yes,	it	is	possible.	To	stop	capturing	the	current
synchronization	context,	we	can	use	the	special	ConfigureAwait	method	on	the	Task
instance:

private	static	async	void	Click(object	sender,	EventArgs	e)

{

		_label.Content	=	"Starting	asynchronous	operation….";

		await	SomeOperationAsync()

		.ConfigureAwait(continueOnCapturedContext:	false);

		_label.Content	=	"Asynchronous	operation	complete!";

}

Using	the	ConfigureAwait	method	will	lead	to	another	awaiter	type,
ConfiguredTaskAwaiter.	This	will	be	used	by	the	C#	asynchronous	infrastructure.	It
implements	UnsafeOnCompleted	slightly	differently:

[SecurityCritical]

public	void	UnsafeOnCompleted(Action	continuation)

{

		TaskAwaiter.OnCompletedInternal(m_task,

				continuation,

www.EBooksWorld.ir

				m_continueOnCapturedContext,

				flowExecutionContext:	false);

}

We	can	see	that	providing	false	to	the	ConfigureAwait	method	will	cause	the
synchronization	context	to	not	be	captured.	If	we	run	the	modified	application	and	press
the	button,	we	will	get	a	multithreaded	UI	control	access	exception.

www.EBooksWorld.ir

www.EBooksWorld.ir

Performance	issues
So	far,	we	have	only	observed	problems	related	to	multithreaded	access	to	the	UI	controls.
By	default,	the	C#	await	statement	will	use	the	current	synchronization	and	execution
contexts	and	post	the	continuation	code	to	the	appropriate	environment.	Is	there	any	use
for	the	ConfigureAwait	method?	Why	should	we	ever	try	to	change	the	default	behavior?
To	answer	this	question,	consider	the	following	application.	This	time	we	will	review	the
whole	code	including	the	one	that	assembles	the	application:

private	static	Label	_label;

[STAThread]

static	void	Main(string[]	args)

{

		var	app	=	new	Application();

		var	win	=	new	Window();

		var	panel	=	new	StackPanel();

		var	button	=	new	Button();

		_label	=	new	Label();

		_label.FontSize	=	32;

		_label.Height	=	200;

		button.Height	=	100;

		button.FontSize	=	32;

		button.Content	=	"Start	asynchronous	operations";

		button.Click	+=	Click;

		panel.Children.Add(_label);

		panel.Children.Add(button);

		win.Content	=	panel;

		app.Run(win);

		Console.ReadLine();

}

A	thread	where	we	create	the	UI	controls	must	be	a	Single-Threaded	Apartment	thread,
or	STA.	This	term	comes	from	Component	Object	Model	(COM)	and	is	basically	required
for	the	UI	message	loop	to	be	able	to	interact	with	COM	components.	Many	OS
components,	such	as	system	dialogs,	use	this	technology.	To	make	things	easier,	just
remember	that	the	UI	thread	in	.NET	and	Windows	must	be	marked	by	the	STAThread
attribute.

Then,	we	create	several	UI	controls,	compose	them	in	the	object	model,	and	finally
app.Run(win)	shows	the	application	window	and	starts	its	message	loop:

async	static	void	Click(object	sender,	EventArgs	e)

{

		_label.Content	=	"Calculating…";

		TimeSpan	resultWithContext	=	await	Test();

		TimeSpan	resultNoContext	=	await	TestNoContext();

		var	sb	=	new	StringBuilder();

		sb.AppendLine(string.Format("With	the	context:	{0}",	resultWithContext));

		sb.AppendLine(string.Format("Without	the	context:	{0}",	

resultNoContext));

		sb.AppendLine(string.Format("Ratio:	{0:0.00}",

www.EBooksWorld.ir

				resultWithContext.TotalMilliseconds	/	

resultNoContext.TotalMilliseconds));

		_label.Content	=	sb.ToString();

}

The	button	click	handler	does	a	very	simple	job.	It	runs	two	asynchronous	operations,	gets
their	results,	and	then	outputs	these	results	to	the	label	control	on	the	main	application
window.	Since	we	use	the	await	statement,	we	can	work	with	the	UI	controls	from	the
latter	code.

Now	to	the	most	important	part	of	this	sample—asynchronous	performance	tests:

async	static	Task<TimeSpan>	Test()

{

		const	int	iterationsNumber	=	100000;

		var	sw	=	new	Stopwatch();

		sw.Start();

		for	(int	i	=	0;	i	<	iterationsNumber;	i++)

		{

				var	t	=	Task.Run(()	=>	{	});

				await	t;

		}

		sw.Stop();

		return	sw.Elapsed;

}

async	static	Task<TimeSpan>	TestNoContext()

{

		const	int	iterationsNumber	=	100000;

		var	sw	=	new	Stopwatch();

		sw.Start();

		for	(int	i	=	0;	i	<	iterationsNumber;	i++)

		{

				var	t	=	Task.Run(()	=>	{	});

				await	t.ConfigureAwait(continueOnCapturedContext:	false);

		}

		sw.Stop();

		return	sw.Elapsed;

}

Both	tests	do	almost	the	same	thing.	For	a	large	number	of	iterations,	they	create	a	task,
wait	for	its	completion,	and	finally	return	the	whole	amount	of	time	taken	by	the	test	to
run.	These	two	test	codes	are	different	only	with	respect	to	the	ConfigureAwait	method
usage	in	the	second	test	code.	However,	this	subtle	difference	produces	a	huge
performance	effect.

If	we	run	the	program	and	press	the	button,	we	will	see	quite	a	noticeable	difference
between	test	performances.	On	a	reference	machine,	the	first	test	is	about	ten	times	slower
than	the	second	one.	However,	if	you	run	the	application	again	and	then,	after	pressing	the
button,	you	start	resizing	or	dragging	the	application	window,	you	will	notice	that	the	first
test	becomes	even	slower.	I	managed	to	make	it	twelve	times	slower	than	the	second	test.

The	answer	is	simple:	the	first	test	uses	the	UI	thread	to	run	a	continuation	code	for	each
of	the	one	hundred	thousand	iterations,	thus	posting	the	same	number	of	messages	on	the

www.EBooksWorld.ir

UI	message	loop.	When	we	resize	or	drag	the	main	application	window,	we	produce	other
messages	in	the	UI	that	make	the	message	loop	run	slower,	and	the	test	becomes	slower	as
well.	This	is	definitely	not	a	good	practice	and	should	be	controlled	using	the
ConfigureAwait	method	call.

The	second	test	uses	the	thread	pool	worker	threads	to	post	its	continuation	code.	Since
the	thread	pool	is	very	well	optimized	for	small,	short-running	tasks,	we	get	good
performance	here.

Note
If	you	write	a	library	code,	always	be	careful	to	avoid	the	synchronization	context.	If	your
continuation	code	does	not	require	this,	always	use	ConfigureAwait	to	turn	off	the
synchronization	context	flow.

After	running	the	preceding	code	snippet,	we	get	the	following	output:

Imagine	that	the	first	test	is	a	third-party	code	and	cannot	be	modified.	Can	we	do
anything	about	this?	People	often	try	to	use	ConfigureAwait	as	in	the	following	example:

async	static	void	Click(object	sender,	EventArgs	e)

{

		_label.Content	=	"Calculating…";

		var	dispatcher	=	Dispatcher.CurrentDispatcher;

		TimeSpan	resultWithContext	=	await	Test().ConfigureAwait(false);

		TimeSpan	resultNoContext	=	await	TestNoContext();

		var	sb	=	new	StringBuilder();

		sb.AppendLine(string.Format("With	the	context:	{0}",	resultWithContext));

		sb.AppendLine(string.Format("Without	the	context:	{0}",	

resultNoContext));

		sb.AppendLine(string.Format("Ratio:	{0:0.00}",

				resultWithContext.TotalMilliseconds	/	

www.EBooksWorld.ir

resultNoContext.TotalMilliseconds));

		dispatcher.Invoke(()	=>

		{

				_label.Content	=	sb.ToString();

		});

}

Here	we	had	to	slightly	modify	the	code	to	be	able	to	work	with	the	UI	control	from	the
thread	pool	worker	thread.	Be	aware	that	if	we	use	the
Dispatcher.CurrentDispatcher.Invoke	method	to	set	the	label	text,	the	code	will	fail
because	all	the	highlighted	code	runs	in	a	continuation	of	the	first	await	statement,	and
thus	runs	on	the	thread	pool.	So,	here	we	have	to	get	a	dispatcher	reference	before	running
the	asynchronous	code.

However,	nothing	has	changed	for	the	Test	method	itself.	It	still	captures	the	current
context	and	uses	the	UI	thread	to	run	all	the	iterations.	To	be	able	to	fix	the	first	test,	we
have	to	switch	the	synchronization	context	to	the	thread	pool	before	we	run	this	test.	A
simple	workaround	will	look	like	this:

async	static	void	Click(object	sender,	EventArgs	e)

{

		_label.Content	=	"Calculating…";

		var	dispatcher	=	Dispatcher.CurrentDispatcher;

		await	Task.Delay(1).ConfigureAwait(false);

		TimeSpan	resultWithContext	=	await	Test();

		TimeSpan	resultNoContext	=	await	TestNoContext();

		var	sb	=	new	StringBuilder();

		sb.AppendLine(string.Format("With	the	context:	{0}",	resultWithContext));

		sb.AppendLine(string.Format("Without	the	context:	{0}",	

resultNoContext));

		sb.AppendLine(string.Format("Ratio:	{0:0.00}",

				resultWithContext.TotalMilliseconds	/	

resultNoContext.TotalMilliseconds));

		dispatcher.Invoke(()	=>

		{

				_label.Content	=	sb.ToString();

		});

}

Now	the	first	test	is	inside	the	continuation	code,	which	runs	on	the	thread	pool	worker
thread,	and	it	uses	the	thread	pool	synchronization	context.	If	we	run	the	application,	we
will	see	that	both	tests	perform	more	or	less	equally.

This	trick	can	be	very	useful	when	dealing	with	poorly	written	third-party	libraries.
Unfortunately,	usually	such	problems	are	very	hard	to	notice	at	first	glance,	and	you	find
them	accidentally	in	the	profiler	while	looking	for	the	roots	of	some	other	problems.

After	running	the	preceding	code	snippet,	we	get	the	following	output:

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	have	seen	the	implementation	details	of	traditional	Windows
application	UIs	that	are	usually	hidden	by	the	programming	platform	and	high-level	UI
frameworks.	We	have	learned	about	what	the	UI	thread	and	message	loop	are,	and	why
they	are	very	important	to	keep	the	UI	thread	running	and	not	blocking	it	with	long-
running	code.	Then	we	learned	about	the	common	problems	of	asynchrony	in	the	UI,	and
how	to	avoid	deadlocks	and	multithreaded	access	to	the	UI	controls’	exceptions.

One	of	the	most	important	topics	covered	in	this	chapter	was	the	C#	asynchronous
infrastructure	internals,	showing	how	the	await	statement	works,	and	how	we	can
improve	application	performance	by	choosing	not	to	keep	the	current	synchronization
context.

In	the	next	chapter,	we	will	look	at	troubleshooting	concurrent	programs	in	greater	detail.
We	will	know	about	many	exciting	features	of	Visual	Studio	for	profiling	and	debugging
parallel	programs	and	find	out	how	to	catch	more	errors	in	the	development	stage	with	the
help	of	unit	and	functional	tests.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	10.	Troubleshooting	Parallel
Programs
This	chapter	is	dedicated	to	parallel	program	debugging	specifics.	We	will	review	how
concurrent	code	is	different,	what	additional	problems	we	usually	get,	and	what	can	be
done	to	find	and	fix	bugs	effectively	in	multithreaded	applications.

www.EBooksWorld.ir

How	troubleshooting	parallel	programs	is
different
A	concurrent	program	like	any	usual	program	can	contain	programming	errors	that	could
lead	to	incorrect	results.	However,	concurrency	usually	leads	programs	to	become	more
complicated,	causing	errors	to	be	trickier	and	harder	to	find.	As	mentioned	in	Chapter	1,
Traditional	Concurrency,	there	are	typical	problems	related	to	concurrent	shared	state
access—race	conditions	and	deadlocks,	but	there	are	many	other	kinds	of	problems
specific	to	concurrent	programs.	While	we	will	not	try	to	describe	every	kind	of	problem
in	detail,	since	it	will	take	another	book	to	do	that,	we	will	instead	describe	several
techniques	that	allow	us	to	detect	and	fix	problems	over	the	different	stages	of	working
with	concurrent	programs.

www.EBooksWorld.ir

Heisenbugs
This	is	one	more	problem	type,	not	strictly	related	to	concurrent	programming,	but	much
more	common	with	it,	usually	referred	to	as	heisenbug.	This	term	is	defined	in	Wikipedia
as	follows:

In	computer	programming	jargon,	a	heisenbug	is	a	software	bug	that	seems	to
disappear	or	alter	its	behaviour	when	one	attempts	to	study	it.	The	term	is	a	pun	on
the	name	of	Werner	Heisenberg,	the	physicist	who	first	asserted	the	observer	effect	of
quantum	mechanics,	which	states	that	the	act	of	observing	a	system	inevitably	alters
its	state.

These	problems	are	usually	extremely	hard	to	reproduce	and	debug,	since	they	usually
appear	in	some	special	conditions	such	as	high	user	load,	or	some	specific	events	timing,
and	more.	This	is	the	kind	of	bug	which	you	will	inevitably	meet	while	developing
concurrent	applications.

Besides	what	we	have	mentioned	so	far,	concurrent	programs	can	have	problems	related	to
infrastructure,	such	as	synchronization	contexts	and	UI,	performance	problems,	or	any
other	kind	of	problems,	which	are	not	related	to	concurrency	and	multithreading	at	all.

To	make	your	program	less	error-prone,	you	have	to	use	a	combined	approach	that	allows
the	finding	and	elimination	of	bugs	in	the	different	stages	of	developing	your	application
from	writing	code	to	analyzing	logs	of	production	deployment.	There	are	three	main
stages	that	are	crucial	to	create	robust	and	performant	applications:

Writing	tests:	This	is	a	very	important	step	that	can	dramatically	reduce	bugs	in	your
code.	With	these	tests,	it	is	possible	to	detect	problems	right	after	writing	the	code,	or
after	deploying	your	application	into	a	test	environment.
Debugging:	Visual	Studio	has	specific	features	and	tools	to	make	debugging
concurrent	applications	easier.
Performance	measurement	and	profiling:	This	is	one	more	very	important	step
that	can	help	to	detect	whether	your	program	spends	too	much	time	switching
between	threads	or	blocking	them	instead	of	doing	its	job.

www.EBooksWorld.ir

www.EBooksWorld.ir

Writing	tests
Tests	allow	us	to	detect	errors	at	the	very	early	stages	of	development.	They	require
significant	investment	in	terms	of	time	and	effort,	but	in	return	they	save	a	lot	of	time	that
could	be	later	spent	in	debugging	the	application,	which	is	always	much	harder.	There	are
different	kinds	of	tests	that	can	help	to	detect	different	problems	in	the	application.

www.EBooksWorld.ir

Load	tests
If	your	application	has	to	deal	with	multiple	concurrent	users,	it	is	likely	that	with	the
increase	in	the	number	of	users,	you	will	experience	problems	that	cannot	be	revealed	in
normal	conditions.	Simulating	a	large	user	load	and	further	log	analysis,	or	studying
profiling	results	is	always	a	good	idea	and	a	powerful	tool	to	detect	potential	pitfalls.

In	Chapter	8,	Server-Side	Asynchrony,	we	reviewed	a	couple	of	ways	to	organize	a	load
test.	To	simulate	really	large	user	activity,	it	could	be	not	enough	to	use	a	single	machine.
It	is	possible	to	use	Visual	Studio	Online	to	run	a	load	test	using	the	power	of	Microsoft
Azure	to	run	several	virtual	machines	and	use	them	all	to	create	a	test	load	for	your
application.	You	will	need	a	Visual	Studio	Online	account,	and	you	will	need	to	set	a
special	flag	in	your	test	settings	file:

www.EBooksWorld.ir

Unit	tests
With	unit	tests,	we	can	perform	tests	on	small	isolated	parts	of	our	code.	For	example,	if
we	have	an	AsyncCounter	class	that	contains	some	concurrent	counter	calculations.	The
first	method	contains	a	race	condition,	which	leads	to	incorrect	counter	value	calculation:

public	async	Task<int>	CountWithRaceConditionAsync()

{

		const	int	iterations	=	10000;

		var	counter	=	0;

		Action	count	=

				()	=>

				{

						for	(int	i	=	0;	i	<	iterations;	i++)

						{

								counter++;

								Thread.SpinWait(100);

								counter--;

						}

				};

		var	tasks	=

				Enumerable

						.Range(0,	8)

						.Select(n	=>	Task.Run(count))

						.ToArray();

		await	Task.WhenAll(tasks);

		return	counter;

}

The	second	method	is	implemented	using	the	Interlocked	operations,	and	thus	does	not
have	problems	with	race	conditions:

public	async	Task<int>	CountWithInterlockedAsync()

{

		const	int	iterations	=	10000;

		var	counter	=	0;

		Action	count	=

				()	=>

				{

						for	(int	i	=	0;	i	<	iterations;	i++)

						{

								Interlocked.Increment(ref	counter);

								Thread.SpinWait(100);

								Interlocked.Decrement(ref	counter);

						}

				};

		var	tasks	=

				Enumerable

						.Range(0,	8)

						.Select(n	=>	Task.Run(count))

						.ToArray();

		await	Task.WhenAll(tasks);

www.EBooksWorld.ir

		return	counter;

}

However,	the	first	method	can	sometimes	produce	correct	results,	so	an	incorrect
implementation	can	make	its	way	into	a	production	code.	To	prevent	this	from	happening,
let’s	write	a	test	that	runs	calculations	and	checks	their	results.	To	write	tests,	we	will	use
the	standard	Visual	Studio	unit	test	project	and	the	Visual	Studio	Unit	Testing	Framework.
The	test	to	check	these	counters	looks	like	this:

[TestClass]

public	class	CounterTests

{

		[TestMethod]

		public	async	Task	TestCounterWithRaceCondition()

		{

				var	counter	=	new	AsyncCounter();

				int	count	=	await	counter.CountWithRaceConditionAsync();

				Assert.AreEqual(0,	count);

		}

		[TestMethod]

		public	async	Task	TestCounterWitInterlocked()

		{

				var	counter	=	new	AsyncCounter();

				int	count	=	await	counter.CountWithInterlockedAsync();

				Assert.AreEqual(0,	count);

		}

}

Notice	that	the	test	methods	are	marked	as	async	and	returned	as	Task.	This	allows	us	to
use	await	inside	tests,	and	this	is	supported	in	all	the	major	modern	unit	testing
frameworks.	The	TestClass	attribute	informs	the	unit	testing	framework	that	this	class
contains	unit	tests,	and	TestMethod	marks	a	single	test.

To	run	tests,	we	navigate	to	the	Test	|	Run	|	All	Tests…	menu	option.	Then	you	will	see
the	Test	Explorer	window	that	shows	the	unit	test	results.	The	race	condition	unit	test	will
fail,	because	we	expect	it	to	return	0,	but	due	to	the	race	condition	it	usually	returns	some
other	number.	The	other	test	will	succeed:

www.EBooksWorld.ir

Now	let’s	try	to	write	a	test	that	will	detect	deadlocks.

First,	we	will	prepare	another	asynchronous	library,	AsyncLib,	that	contains	two	methods.
The	first	method	just	waits	for	one	second	and	completes	successfully.	The	second	one
contains	a	code	that	intentionally	simulates	deadlock:

public	class	AsyncLib

{

		public	async	Task	GoodMethodAsync()

		{

				await	Task.Delay(TimeSpan.FromSeconds(1));

		}

		public	async	Task	DeadlockMethodAsync()

		{

				var	lock1	=	new	object();

				var	lock2	=	new	object();

				Task	task1	=	Task.Run(()	=>

				{

						lock	(lock1)

						{

								Thread.Sleep(200);

								lock	(lock2)

								{

								}

						}

				});

				Task	task2	=	Task.Run(()	=>

				{

						lock	(lock2)

						{

								Thread.Sleep(200);

								lock	(lock1)

								{

www.EBooksWorld.ir

								}

						}

				});

				await	Task.WhenAll(task1,	task2);

		}

}

To	detect	a	deadlock,	we	can	only	check	whether	an	asynchronous	method	call	completes
before	a	certain	timeout.	We	can	add	an	extension	method	to	Task	that	will	help	us	to	set
the	expected	execution	timeout	value	in	milliseconds.	After	the	timeout	expires,	we	will
get	TimeoutException	if	the	task	is	not	completed:

public	static	class	TaskExtensions

{

		public	static	async	Task	TimeoutAfter(this	Task	task,

				int	millisecondsTimeout)

		{

				if	(task	==	await	Task.WhenAny(task,

						Task.Delay(millisecondsTimeout)))

				{

						await	task;

				}

				else

				{

						throw	new	TimeoutException();

				}

		}

}

The	unit	test	code	will	be	very	easy—we’ll	just	add	a	TimeoutAfter	method	call	to	each
asynchronous	function:

[TestClass]

public	class	LockTests

{

		[TestMethod]

		public	async	Task	TestGoodAsync()

		{

				var	lib	=	new	AsyncLib();

				await	lib.GoodMethodAsync().TimeoutAfter(2000);

		}

		[TestMethod]

		public	async	Task	TestDeadlockAsync()

		{

				var	lib	=	new	AsyncLib();

				await	lib.DeadlockMethodAsync().TimeoutAfter(2000);

		}

}

As	a	result	of	running	this	test,	we	will	see	that	we	have	detected	a	deadlock:

www.EBooksWorld.ir

Visual	Studio	has	an	option	to	run	unit	tests	after	each	build.	This	will	make	the	build
process	slightly	longer,	but	we	will	see	that	unit	test	fails	are	similar	to	compilation	errors.
This	is	very	comfortable	and	helps	to	identify	a	problem	as	soon	as	we	write	the	code.	The
Visual	Studio	2013	Ultimate	edition	has	a	feature	called	CodeLens	that	will	show	unit	test
errors	right	beside	the	code	related	to	the	test:

www.EBooksWorld.ir

www.EBooksWorld.ir

Integration	tests
A	unit	test	is	a	very	powerful	concept	that	can	increase	product	quality	and	can	be	used	to
find	many	bugs	as	soon	as	they	appear	in	the	code.	However,	when	your	application
becomes	more	and	more	complicated,	testing	separate	small	components	is	not	enough.
Many	problems	appear	when	we	use	these	components	together,	and	while	two
asynchronous	methods	can	run	well	separately,	they	can	cause	a	deadlock	while	running
simultaneously.	This	is	why	it	is	very	important	to	write	higher-level	tests	for	your
application	that	run	the	application’s	business	logic	altogether.	Such	tests	are	called
integration	tests	because	we	check	how	the	application	components	work	together.

To	illustrate	this	approach,	we	will	take	a	slightly	changed	code	from	Chapter	8,	Server-
Side	Asynchrony.	This	is	an	OWIN	Web	API	application,	and	we	will	test	this	with	an
HTTP	API	controller:

public	class	HomeController	:	ApiController

{

		[HttpGet]

		public	int	Sync()

		{

				var	lib	=	new	AsyncHttp();

				return	lib.CountCharactersAsync(new	Uri("http://google.com")).Result;

		}

		[HttpGet]

		public	async	Task<int>	Async()

		{

				var	lib	=	new	AsyncHttp();

				return	await	lib.CountCharactersAsync(new	Uri("http://google.com"));

		}

}

This	controller	looks	very	simple.	However,	in	a	real	application,	controllers	are	usually
the	places	that	contain	application	logic,	and	controller	actions	call	several	application
components	and	use	the	results	to	provide	the	client	with	the	data	needed.	Here	it	is	shown
how	to	write	an	integration	test	for	such	a	controller,	so	you	can	use	this	approach	with
your	code.

Referring	to	Chapter	8,	Server-Side	Asynchrony,	we	remember	that	this	controller	has	a
problem.	A	synchronous	call	to	an	asynchronous	method	could	result	in	a	deadlock.	So
let’s	write	a	test	that	will	look	for	a	deadlock	here.	First,	we	will	need	to	modify	the
TimeoutAfter	extension	method	to	deal	with	the	parameterized	Task<T>	type.	The	easiest
approach	is	to	use	the	reactive	extensions	NuGet	package.	We	will	need	to	reference	the
Reactive	Extensions	–	Core	Library	package.	Then,	we	can	write	the	following	code:

public	static	Task<T>	TimeoutAfter<T>(this	Task<T>	task,

		int	millisecondsTimeout)

{

		return	task.ToObservable().Timeout(

				TimeSpan.FromMilliseconds(millisecondsTimeout)).ToTask();

www.EBooksWorld.ir

}

Then,	we’re	going	to	write	the	test.	First	of	all,	we	need	to	reference	the	OWIN	Web	API
NuGet	package.	Then	we	need	to	add	one	more	package,	Microsoft.Owin.Testing,	that
hosts	the	whole	OWIN	application	in	memory.	Then	we	will	use	the	new
ClassInitialize	and	ClassCleanup	attributes	to	create	a	test	server	and	get	rid	of	it
when	the	tests	complete:

[TestClass]

public	class	ServerInMemoryTests

{

		private	static	TestServer	_server;

		private	static	HttpClient	_client;

		[ClassInitialize]

		public	static	void	ClassInit(TestContext	context)

		{

				_server	=	TestServer.Create<Startup>();

				_client	=	_server.HttpClient;

		}

		[TestMethod]

		public	async	Task	TestSyncAction()

		{

				var	response	=	await	_client.GetAsync("/api/Home/Sync")

.TimeoutAfter(2000);

				var	result	=	await	response.Content.ReadAsAsync<int>();

				Assert.IsTrue(result	>	0);

		}

		[TestMethod]

		public	async	Task	TestAsyncAction()

		{

				var	response	=	await	_client.GetAsync("/api/Home/Async")

.TimeoutAfter(2000);

				var	result	=	await	response.Content.ReadAsAsync<int>();

				Assert.IsTrue(result	>	0);

		}

		[ClassCleanup]

		public	static	void	ClassCleanup()

		{

				_server.Dispose();

		}

}

This	test	establishes	the	OWIN	pipeline	in	memory	and	uses	a	regular	HttpClient	class	to
simulate	http	calls	to	HomeController	by	expecting	to	get	a	greater	than	zero	number.

However,	when	we	run	this	test,	we	are	going	to	find	out	that	everything	is	fine	and	no
deadlock	will	be	found:

www.EBooksWorld.ir

The	reason	why	there	is	no	deadlock	here	is	that	the	deadlock	was	related	to	the
synchronization	context	in	the	ASP.NET	environment,	and	this	test	used	in-memory
hosting.	However,	we	can	detect	here	any	application	component’s	interaction	issues,	and
this	kind	of	test	is	also	good	to	run	after	each	build	in	Visual	Studio.

To	detect	infrastructure	issues,	we	have	to	test	the	application	by	running	it	in	the	same
environment	that	will	be	used	in	production.	Fortunately,	this	is	quite	easy	to	do.	Instead
of	creating	an	in-memory	host,	we	just	need	to	run	our	application	and	slightly	modify	the
test	code	to	use	a	real	http	interaction:

[TestClass]public	class	ServerHttpTests

{

		private	static	HttpClient	_client;

		[ClassInitialize]

		public	static	void	ClassInit(TestContext	context)

		{

				_client	=	new	HttpClient();

				_client.BaseAddress	=	new	Uri("http://localhost:1845/");

		}

		[TestMethod]

		public	async	Task	TestSyncAction()

		{

				var	response	=	await	_client.GetAsync("/api/Home/Sync")

.TimeoutAfter(2000);

				var	result	=	await	response.Content.ReadAsAsync<int>();

				Assert.IsTrue(result	>	0);

		}

		[TestMethod]

		public	async	Task	TestAsyncAction()

		{

				var	response	=	await	_client.GetAsync("/api/Home/Async")

.TimeoutAfter(2000);

www.EBooksWorld.ir

				var	result	=	await	response.Content.ReadAsAsync<int>();

				Assert.IsTrue(result	>	0);

		}

		[ClassCleanup]

		public	static	void	ClassCleanup()

		{

				_client.Dispose();

		}

}

Notice	that	the	test	code	remains	the	same.	We	have	only	changed	the	HttpClient
instance.	Here	we	just	point	it	to	our	application	URL,	and	this	is	all	that	we	have
changed.	Now	the	test	detects	a	deadlock	where	we	expected	it	to	occur:

This	kind	of	test	is	not	intended	to	be	run	along	with	the	built-in	Visual	Studio.	The	proper
place	to	run	these	tests	is	your	continuous	integration	process,	when	you	create	a	new
build	on	your	build	server,	deploy	the	application	into	a	test	environment,	configure	it	and
pre-populate	data	storage	with	some	test	data,	and	then	run	a	test	suite	on	this	application
instance.

Tip
The	testing	stage	is	very	important,	because	it	is	much	harder	to	find	problems	in	the
debugging	or	profiling	stage.	Investing	in	tests	can	help	to	save	a	lot	of	further	efforts	to
find	out	what	is	wrong	with	the	application,	and	greatly	reduce	the	number	of	problems
that	get	into	the	production	environment.

www.EBooksWorld.ir

www.EBooksWorld.ir

Debugging
Debugging	as	a	very	extensive	topic	and	there	are	several	books	about	debugging	.NET
applications	techniques.	Here	we	will	review	how	we	can	start	debugging	with	Visual
Studio,	and	what	tools	can	help	us	to	debug	concurrent	applications.

www.EBooksWorld.ir

Just	my	code	setting
There	is	a	very	important	setting	located	in	the	Debug,	Options	and	Settings…	menu
called	Enable	Just	My	Code:

When	this	setting	is	enabled,	Visual	Studio	tries	to	hide	additional	information	such	as
compiler-generated	code	and	does	not	show	this	in	debugging	windows,	concentrating
only	on	the	information	related	to	your	code.	This	seems	comfortable,	but	do	not	forget
that	you	can	always	turn	it	off	and	study	the	whole	picture	in	case	you	need	to	dig	into	the
infrastructure	code.

www.EBooksWorld.ir

Call	stack	window
One	of	the	easiest	debugging	tools	in	Visual	Studio	is	the	call	stack	window.	An
asynchronous	method	call	usually	consists	of	two	parts—begin	and	end	operation.	If	you
have	a	breakpoint	inside	an	asynchronous	method	body,	it	is	not	easy	to	find	out	where
this	operation	has	been	initiated.	Fortunately,	if	you	have	the	latest	Visual	Studio	2013
installed	at	least	on	Windows	8.1	or	Windows	2012R2,	the	call	stack	window	will	show
you	a	full	call	stack	including	the	asynchronous	operation	starting	point.

We	may	run	this	code	under	the	debugger,	as	follows:

class	Program

{

		static	void	Main(string[]	args)

		{

				StartAsyncOperation().GetAwaiter().GetResult();

		}

		public	static	async	Task	StartAsyncOperation()

		{

				Console.WriteLine("Starting	async	operation");

				await	AsyncOperation();

				Console.WriteLine("After	finishing	async	operation");

		}

		public	static	async	Task	AsyncOperation()

		{

				Console.WriteLine("Inside	async	operation");

				await	Task.Delay(TimeSpan.FromSeconds(1));

				Console.WriteLine("Async	operation	complete!");

		}

}

In	this	case,	we	will	see	in	the	call	stack	window	that	the	operation	has	been	initiated	in
the	StartAsyncOperation	method:

www.EBooksWorld.ir

www.EBooksWorld.ir

Threads	window
Another	useful	Visual	Studio	debugging	feature	is	the	Threads	window.	It	shows	the
current	threads	in	the	application	and	allows	us	to	suspend	and	resume	any	thread	with
corresponding	buttons	and	filter	threads	by	marking	them	with	flags	and	pressing	the
double	flag	button:

www.EBooksWorld.ir

Tasks	window
With	the	Tasks	window,	it	is	possible	to	review	incomplete	TPL	tasks	and	see	the	different
information	about	them:

The	Tasks	window	has	deadlock	diagnostics	that	inform	us	about	tasks	that	are
deadlocked.	To	see	it	in	action,	we	have	to	run	the	following	code	until	a	deadlock	occurs
and	then	press	the	break	button	on	the	debugger	toolbar:

class	Program

{

		static	void	Main(string[]	args)

		{

				DeadlockMethodAsync().GetAwaiter().GetResult();

		}

		public	static	async	Task	DeadlockMethodAsync()

		{

				var	lock1	=	new	object();

				var	lock2	=	new	object();

				Task	task1	=	Task.Run(()	=>

				{

						lock	(lock1)

						{

								Thread.Sleep(200);

www.EBooksWorld.ir

								lock	(lock2)

								{

								}

						}

				});

				Task	task2	=	Task.Run(()	=>

				{

						lock	(lock2)

						{

								Thread.Sleep(200);

								Debugger.Break();

								lock	(lock1)

								{

								}

						}

				});

				Debugger.Break();

				//	here	you	can	open	Tasks	window	in	Visual	Studio

				await	Task.WhenAll(task1,	task2);

		}

}

www.EBooksWorld.ir

Parallel	stacks	window
To	visualize	an	asynchronous	program	flow,	we	can	use	the	Parallel	Stacks	window.	Let’s
run	a	simple	parallel	foreach	loop:

class	Program

{

		static	void	Main(string[]	args)

		{

				ParallelForEach().GetAwaiter().GetResult();

		}

		public	static	async	Task	ParallelForEach()

		{

				Parallel.ForEach(Enumerable.Range(0,	32),	i	=>

				{

						Console.WriteLine(i);

						if	(i	==	24)

						{

								Debugger.Break();

						}

						Thread.Sleep(new	Random(i).Next(100,	500));

				});

		}

}

This	screenshot	has	been	made	on	a	virtual	machine	with	six	core	CPUs.	We	see	that	one
of	the	tasks	was	scheduled	to	run	on	the	main	thread:

www.EBooksWorld.ir

If	we	turn	off	the	Enable	Just	My	Code	setting,	we	will	see	more	details	about	how	the
concurrent	program	is	organized.

www.EBooksWorld.ir

www.EBooksWorld.ir

Performance	measurement	and	profiling
There	is	a	profiler	in	Visual	Studio	that	can	be	used	to	visualize	concurrency	in	your
application	and	see	what	is	going	on.	Depending	on	the	Visual	Studio	version,	its	behavior
is	different.	In	Visual	Studio	2010,	you	would	just	run	a	profiler	session	collecting
concurrency	data	and	get	the	required	result.	In	Visual	Studio	2012,	there	was	a	separate
menu	option	called	Concurrency	Visualizer	and	this	is	the	most	comfortable	way	to	look
at	concurrency	processes	in	your	application.

In	Visual	Studio	2013,	there	is	no	Concurrency	Visualizer	option	by	default,	and	you	can
still	use	the	regular	profiler	to	collect	the	basic	concurrency	information.	However,	you
can	install	Concurrency	Visualizer	separately.

www.EBooksWorld.ir

The	Concurrency	Visualizer
The	Concurrency	Visualizer	is	available	for	Visual	Studio	2013	as	a	separate	extension.
You	can	install	it	in	Visual	Studio:

After	the	installation,	you	will	get	a	Concurrency	Visualizer	menu	option	under	the
Analyze	menu	in	Visual	Studio:

Concurrency	Visualizer	provides	a	lot	of	useful	information.	To	illustrate	this,	let’s
compare	the	parallelism	granularity	test	from	Chapter	3,	Understanding	Parallelism
Granularity,	and	I/O	threads	from	Chapter	8,	Server-Side	Asynchrony.	The	first	program
under	Concurrency	Visualizer	will	look	like	this:

www.EBooksWorld.ir

It	can	be	clearly	seen	that	the	program	consumes	a	lot	of	CPU	resources.	Now	if	we
visualize	I/O	threads,	we	will	see	that	it	consumes	almost	no	CPU	resources:

We	can	see	more	details	if	we	go	to	the	Threads	tab	inside	the	report.	The	granularity
program	shows	a	significant	CPU	load,	as	shown	here:

www.EBooksWorld.ir

However,	the	I/O	threads	report	indicates	that	about	half	of	the	program	time	threads	are
in	the	blocked	state:

There	is	a	lot	of	data	in	this	report,	and	if	you	run	a	profiler	session	to	collect	concurrency
information,	you	can	get	even	more	details.	But	this	is	just	the	starting	point	where	you
can	see	what	is	going	on	in	the	program,	and	depending	on	the	information	received	in	the
report,	you	can	further	investigate	why	the	program	does	not	use	all	the	CPU
computational	power,	or	why	it	spends	a	lot	of	time	in	synchronization	process.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	learned	about	the	different	stages	of	application	development	where	we
can	detect	and	fix	problems	in	concurrent	applications.	We	reviewed	different	testing
techniques	that	help	to	prevent	bugs	from	getting	into	the	application	code.	We	learned	to
use	asynchronous	unit	tests,	host	an	OWIN	Web	API	application	in	memory,	test	HTTP
API	controllers,	and	also	adapt	these	tests	to	run	on	the	real	http	application	hosted	on	a
web	server	in	a	test	environment.

We	have	reviewed	different	debugging	tools	included	in	Visual	Studio.	These	tools	help	us
to	visualize	the	concurrent	program	workflow,	show	information	about	currently	running
TPL	tasks,	detect	deadlocks,	allow	us	to	pause	and	resume	threads,	see	the	details	of	each
thread,	and	help	us	to	use	asynchronous	call	stacks	in	a	comfortable	way,	so	it	is	clear
where	the	current	asynchronous	operation	has	been	started.

We	also	installed	a	Concurrency	Visualizer	extension	in	Visual	Studio	2013	and	used	it	to
find	out	what	is	going	on	in	the	concurrent	application,	how	much	time	the	application
spends	synchronizing,	blocking	threads,	and	doing	CPU-bound	work.

www.EBooksWorld.ir

Index
A

ABA	problem
about	/	The	ABA	problem

acquire	fence
about	/	Memory	model	and	compiler	optimizations

async	/	Unit	tests
async/await	infrastructure

about	/	Concurrent	idioms
async/await	statements	/	Asynchronous	Programming	Model
asynchronous	I/O

about	/	Deep	dive	into	asynchronous	I/O
asynchronous	patterns

about	/	Asynchronous	patterns
Asynchronous	Programming	Model	(APM)	/	Asynchronous	Programming
Model
Event-based	Asynchronous	Pattern	(EAP)	/	Event-based	Asynchronous	Pattern
Task-based	Asynchronous	Pattern	(TAP)	/	Task-based	Asynchronous	Pattern

Asynchronous	Programming	Model	(APM)
about	/	Asynchronous	Programming	Model
features	/	Asynchronous	Programming	Model

asynchrony,	for	UI
importance	/	The	importance	of	asynchrony	for	UI

async	keyword
about	/	Is	the	async	keyword	really	needed?

async	over	sync	/	Real	and	fake	asynchronous	I/O	operations
atomic

about	/	The	System.Threading.Interlocked	class
await	/	Unit	tests
awaiting	task	completion

about	/	Awaiting	task	completion
await	keyword

working	/	How	the	await	keyword	works
await	statement	/	Setting	a	task	timeout

www.EBooksWorld.ir

B
Bing

downloading	of	images,	implementing	from	/	Implementing	the	downloading	of
images	from	Bing
URL	/	Implementing	the	downloading	of	images	from	Bing

blocking	queue	/	Custom	Producer/Consumer	pattern	implementation
bounded	queue	/	Custom	Producer/Consumer	pattern	implementation

www.EBooksWorld.ir

C
C#	5.0	built-in	support,	for	asynchrony

code,	enhancing	with	/	Enhancing	the	code	with	C#	5.0	built-in	support	for
asynchrony

C#	asynchronous	infrastructure
simulating,	with	iterators	/	Simulating	C#	asynchronous	infrastructure	with
iterators

cache
implementing,	with	ReaderWriterLockSlim	/	Implementing	a	cache	with
ReaderWriterLockSlim

cache	aside	pattern	/	Implementing	a	cache	with	ReaderWriterLockSlim
callbacks

used,	for	task	cancellation	/	Cancellation	using	callbacks
class	constraint

about	/	The	lock-free	stack
coarse-grained	approach

about	/	Understanding	granularity
selecting	/	Choosing	the	coarse-grained	or	fine-grained	approach

coarse-grained	approach,	with	TPL
about	/	Latency	and	the	coarse-grained	approach	with	TPL

coarse-grained	locking	/	Concurrent	collections	in	.NET
code	coupling

about	/	Task	composition
common	problems

about	/	Common	problems	and	solutions
solutions	/	Common	problems	and	solutions

compare-and-swap	(CAS)	/	Implementation	details
compare	and	swap	(CAS)

about	/	The	ABA	problem
compiler	optimizations

about	/	Memory	model	and	compiler	optimizations
Component	Object	Model	(COM)	/	Performance	issues
Concurrency	Visualizer

about	/	The	Concurrency	Visualizer
ConcurrentBag<T>

about	/	ConcurrentBag<T>
using	/	ConcurrentBag	in	practice

ConcurrentDictionary
about	/	ConcurrentDictionary
Lazy<T>	/	Using	Lazy<T>
details,	implementing	/	Implementation	details
implementation	details,	using	/	Using	the	implementation	details	in	practice

ConcurrentDictionary	class
lock-free	operations	/	Implementation	details,	Lock-free	operations
fine-grained	lock	operations	/	Implementation	details,	Fine-grained	lock

www.EBooksWorld.ir

operations
exclusive	lock	operations	/	Implementation	details,	Exclusive	lock	operations

concurrent	idioms
about	/	Concurrent	idioms
Process	Tasks,	in	Completion	Order	/	Process	Tasks	in	Completion	Order
parallelism	degree,	limiting	/	Limiting	the	parallelism	degree
task	timeout,	setting	/	Setting	a	task	timeout

concurrent	patterns
about	/	Concurrent	patterns

ConcurrentQueue<T>
about	/	ConcurrentQueue<T>

ConcurrentStack<T>
about	/	ConcurrentStack<T>

continuation	task
about	/	Task	composition

CPU-bound	tasks	and	queues
about	/	CPU-bound	tasks	and	queues

custom	awaitable	type
implementing	/	Implementing	a	custom	awaitable	type

CustomProvider	class	/	Implementing	a	cache	with	ReaderWriterLockSlim

www.EBooksWorld.ir

D
deadlock

about	/	What’s	the	problem?
debugging

about	/	Debugging
Enable	Just	My	Code	setting	/	Just	my	code	setting
call	stack	window	/	Call	stack	window
threads	window	/	Threads	window
Tasks	window	/	Tasks	window
parallel	stacks	window	/	Parallel	stacks	window

double	checked	locking	pattern
about	/	The	lock-free	queue

downloading	of	images,	implementing	from	Bing
about	/	Implementing	the	downloading	of	images	from	Bing
simple	synchronous	solution,	creating	/	Creating	a	simple	synchronous	solution
parallel	solution,	creating	with	Task	Parallel	Library	/	Creating	a	parallel
solution	with	Task	Parallel	Library
code,	enhancing	with	C#	5.0	built-in	support	/	Enhancing	the	code	with	C#	5.0
built-in	support	for	asynchrony
C#	asynchronous	infrastructure,	simulating	with	iterators	/	Simulating	C#
asynchronous	infrastructure	with	iterators

www.EBooksWorld.ir

E
EditBin.exe	tool	/	The	number	of	threads
Enqueue	method	/	ConcurrentQueue<T>
Event-based	Asynchronous	Pattern	(EAP)

about	/	Event-based	Asynchronous	Pattern
features	/	Event-based	Asynchronous	Pattern

exception	handling
about	/	Exception	handling

exclusive	lock	operations	/	Exclusive	lock	operations
execution	context	/	Execution	and	synchronization	contexts

www.EBooksWorld.ir

F
fake	asynchronous	I/O	operations

about	/	Real	and	fake	asynchronous	I/O	operations
features,	Asynchronous	Programming	Model	(APM)

low-level	pattern	/	Asynchronous	Programming	Model
low	performance	overhead	/	Asynchronous	Programming	Model
complicated	implementation	/	Asynchronous	Programming	Model
coupling,	between	asynchronous	operation	provider	and	consumer	/
Asynchronous	Programming	Model

features,	Event-based	Asynchronous	Pattern	(EAP)
high-level	pattern	/	Event-based	Asynchronous	Pattern
high	overhead	/	Event-based	Asynchronous	Pattern
intended	for	UI	components	/	Event-based	Asynchronous	Pattern
complicated	implementation	/	Event-based	Asynchronous	Pattern
couping,	between	asynchronous	operation	provider	and	consumers	/	Event-
based	Asynchronous	Pattern

features,	Task-based	Asynchronous	Pattern	(TAP)
low	overhead	/	Task-based	Asynchronous	Pattern
high-level	/	Task-based	Asynchronous	Pattern
comfortable	to	use	/	Task-based	Asynchronous	Pattern
language	support,	in	C#/VB	/	Task-based	Asynchronous	Pattern
Task	and	Task<T>	are	first-class	objects	/	Task-based	Asynchronous	Pattern
avoidance,	of	side	effects	/	Task-based	Asynchronous	Pattern

fine-grained	approach
about	/	Understanding	granularity
selecting	/	Choosing	the	coarse-grained	or	fine-grained	approach

fine-grained	lock	operations	/	Fine-grained	lock	operations
fire-and-forget	tasks

about	/	Fire-and-forget	tasks
foreach	loop	/	Process	Tasks	in	Completion	Order
fork/join	pattern

about	/	Concurrent	patterns
future

about	/	Task	composition

www.EBooksWorld.ir

G
4-gigabyte	tuning	/	The	number	of	threads
granularity

about	/	Understanding	granularity

www.EBooksWorld.ir

H
heisenbugs

about	/	Heisenbugs
high	coupling

about	/	Task	composition
Hyper-Threading	technology	/	The	number	of	threads
hyperthreading	technology	/	The	importance	of	asynchrony	for	UI

www.EBooksWorld.ir

I
I/O	and	CPU-bound	tasks	/	I/O	and	CPU-bound	tasks
I/O	Completion	Port	(IOCP)	/	I/O	and	CPU-bound	tasks
input/output	threads	/	Using	the	thread	pool
integration	tests

about	/	Integration	tests
interlocked	internals

working	/	Interlocked	internals

www.EBooksWorld.ir

L
latency	approach,	with	TPL

about	/	Latency	and	the	coarse-grained	approach	with	TPL
legacy	code	support	scenario	/	Event-based	Asynchronous	Pattern
load	testing	/	Load	testing	and	scalability
lock-free	code

writing	/	Writing	lock-free	code
lock-free	operations	/	Lock-free	operations
lock-free	queue

about	/	The	lock-free	queue
lock-free	stack

about	/	The	lock-free	stack
lock	localization

about	/	Lock	localization
locks

using	/	Using	locks
lock	statement

about	/	Lock	statement
/	Standard	collections	and	synchronization	primitives
low	coupling

about	/	Task	composition

www.EBooksWorld.ir

M
memory	barrier

about	/	System.Threading.SpinLock,	Memory	model	and	compiler	optimizations
memory	model

about	/	Memory	model	and	compiler	optimizations
message	loop	/	UI	threads	and	message	loops
message	pump	/	UI	threads	and	message	loops
Monitor	class

about	/	Monitor	class
mutex	synchronization	primitive

about	/	The	lock-free	stack

www.EBooksWorld.ir

N
.NET

concurrent	collections	/	Concurrent	collections	in	.NET
.NET	4.0+

Producer/Consumer	pattern	/	The	Producer/Consumer	pattern	in	.NET	4.0+

www.EBooksWorld.ir

O
only	for	legacy	code	support	scenario	/	Asynchronous	Programming	Model
optimization	strategy

about	/	Optimization	strategy
lock	localization	/	Lock	localization
shared	data	minimization	/	Shared	data	minimization

OS	wait	objects
using,	with	WaitHandle	/	Using	OS	wait	objects	with	WaitHandle

OWIN	Web	API	framework
about	/	The	OWIN	Web	API	framework

www.EBooksWorld.ir

P
Parallel	class

using	/	Using	the	Parallel	class
Parallel.Invoke	method	/	Parallel.Invoke
Parallel.For	method	/	Parallel.For	and	Parallel.Foreach
Parallel.Foreach	method	/	Parallel.For	and	Parallel.Foreach

parallel	pipeline
about	/	Concurrent	patterns
implementing	/	Parallel	pipelines

parallel	programs
troubleshooting	/	How	troubleshooting	parallel	programs	is	different
heisenbugs	/	Heisenbugs

parallel	solution
creating,	with	Task	Parallel	Library	/	Creating	a	parallel	solution	with	Task
Parallel	Library

performance	issues	/	Performance	issues
performance	measurement

about	/	Performance	measurement	and	profiling
PLINQ	/	Concurrent	collections	in	.NET
producer/consumer	pattern

about	/	Concurrent	patterns
Producer/Consumer	pattern

about	/	The	Producer/Consumer	pattern
implementing	/	Custom	Producer/Consumer	pattern	implementation
in	.NET	4.0+	/	The	Producer/Consumer	pattern	in	.NET	4.0+

profiling
about	/	Performance	measurement	and	profiling

promise
about	/	Task	composition

www.EBooksWorld.ir

R
race	condition

about	/	What’s	the	problem?
sample	/	What’s	the	problem?

/	Unit	tests
reader	writer	lock

about	/	Reader-writer	lock
ReaderWriterLockSlim

used,	for	implementing	cache	/	Implementing	a	cache	with
ReaderWriterLockSlim

ready	queue
about	/	Monitor	class

real	asynchronous	I/O	operations
about	/	Real	and	fake	asynchronous	I/O	operations

release	fence
about	/	Memory	model	and	compiler	optimizations

replicable	task	/	Parallel.Invoke
robust	and	performant	applications

creating,	stages	/	Heisenbugs
RunLongRunningOperation	method	/	ConcurrentDictionary

www.EBooksWorld.ir

S
scalability	/	Server	applications,	Load	testing	and	scalability
server	application

about	/	Server	applications
types	/	Server	applications
scalability	/	Server	applications
scale	vertically	/	Server	applications
horizontal	scalability	/	Server	applications

shared	data	minimization
about	/	Shared	data	minimization

simple	synchronous	solution
creating	/	Creating	a	simple	synchronous	solution

Single-Threaded	Apartment	(STA)	/	Performance	issues
spin	lock

about	/	Spin	lock
Thread.SpinWait	/	Thread.SpinWait
System.Threading.SpinWait	/	System.Threading.SpinWait
System.Threading.SpinLock	/	System.Threading.SpinLock

standard	collections	/	Standard	collections	and	synchronization	primitives
synchronization	context

about	/	Synchronization	context
synchronization	contexts	/	Execution	and	synchronization	contexts
synchronization	primitives	/	Standard	collections	and	synchronization	primitives
System.Threading.Interlocked	class

about	/	The	System.Threading.Interlocked	class
System.Threading.SpinLock

about	/	System.Threading.SpinLock
System.Threading.SpinWait

about	/	System.Threading.SpinWait
System.Threading.Task	class	/	Understanding	granularity

www.EBooksWorld.ir

T
Tables	class

m_buckets	/	Implementation	details
m_locks	/	Implementation	details
m_countPerLock	/	Implementation	details
m_comparer	/	Implementation	details

Task-based	Asynchronous	Pattern	(TAP)
about	/	Task-based	Asynchronous	Pattern
features	/	Task-based	Asynchronous	Pattern

task	cancellation
about	/	Task	cancellation
flag,	checking	/	Checking	a	flag
exception,	throwing	/	Throwing	an	exception
OS	wait	objects,	using	with	WaitHandle	/	Using	OS	wait	objects	with
WaitHandle
with	callbacks	/	Cancellation	using	callbacks

task	composition
about	/	Task	composition

Task	Parallel	Library
parallel	solution,	creating	with	/	Creating	a	parallel	solution	with	Task	Parallel
Library

Task	Parallel	Library	(TPL)
about	/	Understanding	granularity

Task	Parallel	Library,	features
about	/	Other	useful	TPL	features
Task.Delay	/	Task.Delay
Task.Yield	/	Task.Yield

task	scheduler
about	/	Task	composition,	Understanding	the	task	scheduler

tasks	hierarchy
about	/	Tasks	hierarchy

tests
writing	/	Writing	tests
load	tests	/	Load	tests
unit	tests	/	Unit	tests

Thread.SpinWait
about	/	Thread.SpinWait

thread	contention	/	Standard	collections	and	synchronization	primitives
thread	pool

using	/	Using	the	thread	pool
threads

overview	/	The	number	of	threads

www.EBooksWorld.ir

U
UI	thread	/	UI	threads	and	message	loops

www.EBooksWorld.ir

V
volatile

about	/	Memory	model	and	compiler	optimizations
volatile	keyword

about	/	Memory	model	and	compiler	optimizations
volatile	read

about	/	Memory	model	and	compiler	optimizations
volatile	write

about	/	Memory	model	and	compiler	optimizations

www.EBooksWorld.ir

W
WaitHandle

OS	wait	objects,	using	with	/	Using	OS	wait	objects	with	WaitHandle
waiting	queue

about	/	Monitor	class
while	loop	/	Fine-grained	lock	operations,	Process	Tasks	in	Completion	Order
Windows	Forms

about	/	Creating	a	simple	synchronous	solution
worker	threads	/	Using	the	thread	pool
work	stealing	/	ConcurrentBag<T>

www.EBooksWorld.ir

X
xampp

about	/	Load	testing	and	scalability

www.EBooksWorld.ir

	Mastering C# Concurrency
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Instant updates on new Packt books
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Traditional Concurrency
	What's the problem?
	Using locks
	Lock statement
	Monitor class
	Reader-writer lock
	Spin lock
	Thread.SpinWait
	System.Threading.SpinWait
	System.Threading.SpinLock
	Optimization strategy
	Lock localization
	Shared data minimization
	Summary
	2. Lock-Free Concurrency
	Memory model and compiler optimizations
	The System.Threading.Interlocked class
	Interlocked internals
	Writing lock-free code
	The ABA problem
	The lock-free stack
	The lock-free queue
	Summary
	3. Understanding Parallelism Granularity
	The number of threads
	Using the thread pool
	Understanding granularity
	Choosing the coarse-grained or fine-grained approach
	Summary
	4. Task Parallel Library in Depth
	Task composition
	Tasks hierarchy
	Awaiting task completion
	Task cancellation
	Checking a flag
	Throwing an exception
	Using OS wait objects with WaitHandle
	Cancellation using callbacks
	Latency and the coarse-grained approach with TPL
	Exception handling
	Using the Parallel class
	Parallel.Invoke
	Parallel.For and Parallel.Foreach
	Understanding the task scheduler
	Summary
	5. C# Language Support for Asynchrony
	Implementing the downloading of images from Bing
	Creating a simple synchronous solution
	Creating a parallel solution with Task Parallel Library
	Enhancing the code with C# 5.0 built-in support for asynchrony
	Simulating C# asynchronous infrastructure with iterators
	Is the async keyword really needed?
	Fire-and-forget tasks
	Other useful TPL features
	Task.Delay
	Task.Yield
	Implementing a custom awaitable type
	Summary
	6. Using Concurrent Data Structures
	Standard collections and synchronization primitives
	Implementing a cache with ReaderWriterLockSlim
	Concurrent collections in .NET
	ConcurrentDictionary
	Using Lazy<T>
	Implementation details
	Lock-free operations
	Fine-grained lock operations
	Exclusive lock operations
	Using the implementation details in practice
	ConcurrentBag<T>
	ConcurrentBag in practice
	ConcurrentQueue<T>
	ConcurrentStack<T>
	The Producer/Consumer pattern
	Custom Producer/Consumer pattern implementation
	The Producer/Consumer pattern in .NET 4.0+
	Summary
	7. Leveraging Parallel Patterns
	Concurrent idioms
	Process Tasks in Completion Order
	Limiting the parallelism degree
	Setting a task timeout
	Asynchronous patterns
	Asynchronous Programming Model
	Event-based Asynchronous Pattern
	Task-based Asynchronous Pattern
	Concurrent patterns
	Parallel pipelines
	Summary
	8. Server-side Asynchrony
	Server applications
	The OWIN Web API framework
	Load testing and scalability
	I/O and CPU-bound tasks
	Deep dive into asynchronous I/O
	Real and fake asynchronous I/O operations
	Synchronization context
	CPU-bound tasks and queues
	Summary
	9. Concurrency in the User Interface
	The importance of asynchrony for UI
	UI threads and message loops
	Common problems and solutions
	How the await keyword works
	Execution and synchronization contexts
	Performance issues
	Summary
	10. Troubleshooting Parallel Programs
	How troubleshooting parallel programs is different
	Heisenbugs
	Writing tests
	Load tests
	Unit tests
	Integration tests
	Debugging
	Just my code setting
	Call stack window
	Threads window
	Tasks window
	Parallel stacks window
	Performance measurement and profiling
	The Concurrency Visualizer
	Summary
	Index

