Elasticsearch Server
Third Edition

Leverage Elasticsearch to create a robust, fast, and flexible
search solution with ease

PACKT *

www.EBooksWorld.ir

Elasticsearch Server Third Edition

www.EBooksWorld.ir

Table of Contents

Elasticsearch Server Third Edition

Credits
About the Authors

About the Reviewer

www.PacktPub.com

eBooks, discount offers, and more

Why subscribe?

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Getting Started with Elasticsearch Cluster

Full text searching

The Lucene glossary and architecture

Input data analysis

Indexing and querying

Scoring and query relevance

The basics of Elasticsearch

Key concepts of Elasticsearch

Index
Document

www.EBooksWorld.ir

Document type
Mappin

Key concepts of the Elasticsearch infrastructure

Nodes and clusters

Shards

Replicas
Gateway

Indexing and searching

Installing and configuring your cluster

Installing Java

Installing Elasticsearch

Running Elasticsearch

Shutting down Elasticsearch

The directory layout

Configuring Elasticsearch

The system-specific installation and configuration
Installing Elasticsearch on Linux

Installing Flasticsearch using RPM packages
Installing Elasticsearch using the DEB package

Elasticsearch configuration file localization

Configuring Elasticsearch as a system service on Linux

Elasticsearch as a system service on Windows

Manipulating data with the REST API
Understanding the REST API

Storing data in Elasticsearch

Creating a new document

Automatic identifier creation

Retrieving documents

Updating documents

Dealing with non-existing documents

Adding partial documents

www.EBooksWorld.ir

Deleting documents
Versioning
Usage example

Versioning from external systems
Searching with the URI request query

Sample data
URI search
Elasticsearch query response
Query analysis
URI query string parameters
The query
The default search field
Analyzer
The default operator property
Query explanation
The fields returned
Sorting the results
The search timeout

The results window

Limiting per-shard results

Ignoring unavailable indices

The search type

Lowercasing term expansion

Wildcard and prefix analysis

Lucene query syntax

Summary
2. Indexing Your Data

Elasticsearch indexing

Shards and replicas

Write consistency

Creating indices

www.EBooksWorld.ir

Altering automatic index creation

Settings for a newly created index

Index deletion

Mappings configuration
Type determining mechanism
Disabling the type determining mechanism
Tuning the type determining mechanism for numeric types
Tuning the type determining mechanism for dates
Index structure mapping

Type and types definition
Fields

Core types

Common attributes
String
Number
Boolean
Binary
Date
Multi fields
The IP address type

Token count type

Using analyzers
Out-of-the-box analyzers

Defining your own analyzers

Default analyzers

Different similarity models
Setting per-field similarity
Available similarity models
Configuring default similarity
Configuring BM25 similarity
Configuring DFR similarity

www.EBooksWorld.ir

Configuring IB similarity
Batch indexing to speed up your indexing process
Preparing data for bulk indexing

Indexing the data
The _all field

The source field

Additional internal fields

Introduction to segment merging
Segment merging
The need for segment merging
The merge policy
The merge scheduler
Throttling

Introduction to routing
Default indexing
Default searching
Routing

The routing parameters
Routing fields

Summary
3. Searching Your Data

Querying Elasticsearch

The example data

A simple query
Paging and result size

Returning the version value

Limiting the score

Choosing the fields that we want to return

Source filtering

Using the script fields

Passing parameters to the script fields

www.EBooksWorld.ir

Understanding the querying process
Query logic
Search type

Search execution preference

Search shards API

Basic queries

The term query

The terms query

The match all query

The type query

The exists query

The missing query

The common terms query

The match query
The Boolean match query
The phrase match query
The match phrase prefix query

The multi match query
The query string query

Running the query string query against multiple fields

The simple query string query

The identifiers query

The prefix query

The fuzzy query

The wildcard query

The range query

Regular expression query

The more like this query

Compound queries

The bool query

The dis_max query

www.EBooksWorld.ir

The boosting query

The constant_score query

The indices query
Using span queries
A span
Span term query
Span first query
Span near query
Span or query
Span not query
Span within query
Span containing query
Span multi query

Performance considerations

Choosing the right query
The use cases
Limiting results to given tags
Searching for values in a range

Boosting some of the matched documents

Ignoring lower scoring partial queries

Using Lucene query syntax in queries

Handling user queries without errors

Autocomplete using prefixes

Finding terms similar to a given one
Matching phrases

Spans, spans everywhere

Summary
4. Extending Your Querying Knowledge

Filtering your results

The context is the key

Explicit filtering with bool query

www.EBooksWorld.ir

Highlighting
Getting started with highlighting
Field configuration
Under the hood
Forcing highlighter type
Configuring HTML tags
Controlling highlighted fragments
Global and local settings
Require matching
Custom highlighting query
The Postings highlighter
Validating your queries
Using the Validate API
Sorting data
Default sorting
Selecting fields used for sorting
Sorting mode
Specifying behavior for missing fields
Dynamic criteria

Calculate scoring when sorting

Query rewrite

Prefix query as an example

Getting back to Apache Lucene

Query rewrite properties

Summary

5. Extending Your Index Structure

Indexing tree-like structures

Data structure

Analysis
Indexing data that is not flat

Data

www.EBooksWorld.ir

Objects
Arrays
Mappings
Final mappings
Sending the mappings to Elasticsearch
To be or not to be dynamic
Disabling object indexing
Using nested objects
Scoring and nested queries
Using the parent-child relationship
Index structure and data indexing
Child mappings
Parent mappings
The parent document
Child documents
Querying
Querying data in the child documents
Querying data in the parent documents

Performance considerations

Modifying your index structure with the update API

The mappings

Adding a new field to the existing index

Modifying fields of an existing index

Summary
6. Make Your Search Better

Introduction to Apache Lucene scoring

When a document is matched

Default scoring formula

Relevancy matters

Scripting capabilities of Elasticsearch

Objects available during script execution

www.EBooksWorld.ir

Script types
In file scripts
Inline scripts
Indexed scripts
Querying with scripts
Scripting with parameters
Script languages
Using other than embedded languages
Using native code
The factory implementation
Implementing the native script
The plugin definition
Installing the plugin
Running the script
Searching content in different languages
Handling languages differently
Handling multiple languages
Detecting the language of the document
Sample document
The mappings
Querying

Queries with an identified language

Queries with an unknown language
Combining queries
Influencing scores with query boosts
The boost

Adding the boost to queries

Modifying the score

Constant score query

Boosting query

The function score query

www.EBooksWorld.ir

Structure of the function query

The weight factor function

Field value factor function

The script score function

The random score function

Decay functions
When does index-time boosting make sense?
Defining boosting in the mappings
Words with the same meaning
Synonym filter
Synonyms in the mappings
Synonyms stored on the file system
Defining synonym rules
Using Apache Solr synonyms
Explicit synonyms
Equivalent synonyms
Expanding synonyms
Using WordNet synonyms

Query or index-time synonym expansion

Understanding the explain information

Understanding field analysis

Explaining the query
Summary
7. Aggregations for Data Analysis

Aggregations
General query structure

Inside the aggregations engine

Aggregation types
Metrics aggregations
Minimum, maximum, average, and sum

Missing values

www.EBooksWorld.ir

Using scripts

Field value statistics and extended statistics

Value count
Field cardinality
Percentiles

Percentile ranks

Top hits aggregation
Additional parameters
Geo bounds aggregation
Scripted metrics aggregation
Buckets aggregations
Filter aggregation
Filters aggregation
Terms aggregation
Counts are approximate
Minimum document count
Range aggregation
Keyed buckets
Date range aggregation
IPv4 range aggregation
Missing aggregation
Histogram aggregation

Date histogram aggregation
Time zones

Geo distance aggregations

Geohash grid aggregation

Global aggregation

Significant terms aggregation
Choosing significant terms

Multiple value analysis

Sampler aggregation

www.EBooksWorld.ir

Children aggregation

Nested aggregation

Reverse nested aggregation

Nesting aggregations and ordering buckets
Buckets ordering

Pipeline aggregations

Available types

Referencing other aggregations

Gaps in the data

Pipeline aggregation types
Min, max, sum, and average bucket aggregations
Cumulative sum aggregation
Bucket selector aggregation
Bucket script aggregation
Serial differencing aggregation
Derivative aggregation
Moving avg aggregation

Predicting future buckets
The models
Summary
8. Beyond Full-text Searching

Percolator
The index
Percolator preparation

Getting deeper

Controlling the size of returned results

Percolator and score calculation

Combining percolators with other functionalities

Getting the number of matching queries

Indexed document percolation

Elasticsearch spatial capabilities

www.EBooksWorld.ir

Mapping preparation for spatial searches
Example data

Additional geo_field properties
Sample queries

Distance-based sorting

Bounding box filtering

Limiting the distance
Arbitrary geo shapes

Point

Envelope

Polygon

Multipolygon

An example usage

Storing shapes in the index

Using suggesters

Available suggester types
Including suggestions

Suggester response

Term suggester

Term suggester configuration options

Additional term suggester options

Phrase suggester

Configuration

Completion suggester

Indexing data

Querying indexed completion suggester data

Custom weights
Context suggester

Context types

Using context

Using the geo location context

www.EBooksWorld.ir

The Scroll API

Problem definition

Scrolling to the rescue
Summary

9. Elasticsearch Cluster in Detail

Understanding node discovery
Discovery types

Node roles
Master node
Data node

Client node

Configuring node roles
Setting the cluster’s name
Zen discovery
Master election configuration
Configuring unicast
Fault detection ping settings

Cluster state updates control
Dealing with master unavailability

Adjusting HTTP transport settings
Disabling HTTP

HTTP port
HTTP host

The gateway and recovery modules

The gateway

Recovery control

Additional gateway recovery options

Indices recovery API

Delayed allocation

Index recovery prioritization

Templates and dynamic templates

www.EBooksWorld.ir

Templates

An example of a template
Dynamic templates

The matching pattern

Field definitions

Elasticsearch plugins
The basics
Installing plugins
Removing plugins

Elasticsearch caches
Fielddata cache
Fielddata size
Circuit breakers

Fielddata and doc values

Shard request cache
Enabling and configuring the shard request cache
Per request shard request cache disabling
Shard request cache usage monitoring

Node query cache

Indexing buffers
When caches should be avoided
The update settings API

The cluster settings API
The indices settings API

Summary
10. Administrating Your Cluster

Elasticsearch time machine
Creating a snapshot repository

Creating snapshots

Additional parameters

Restoring a snapshot

www.EBooksWorld.ir

Cleaning up — deleting old snapshots

Monitoring your cluster’s state and health

Cluster health API

Controlling information details

Additional parameters
Indices stats API

Docs

Store

Indexing, get, and search

Additional information

Nodes info API

Returned information
Nodes stats API
Cluster state API

Cluster stats API

Pending tasks API

Indices recovery API
Indices shard stores API

Indices segments API

Controlling the shard and replica allocation

Explicitly controlling allocation
Specifying node parameters

Configuration

Index creation

Excluding nodes from allocation

Requiring node attributes

Using the IP address for shard allocation

Disk-based shard allocation

Configuring disk based shard allocation

Disabling disk based shard allocation

The number of shards and replicas per node

www.EBooksWorld.ir

Allocation throttling

Cluster-wide allocation

Allocation awareness

Forcing allocation awareness
Filtering

What do include, exclude, and require mean

Manually moving shards and replicas
Moving shards
Canceling shard allocation
Forcing shard allocation
Multiple commands per HTTP request
Allowing operations on primary shards
Handling rolling restarts
Controlling cluster rebalancing
Understanding rebalance
Cluster being ready
The cluster rebalance settings
Controlling when rebalancing will be allowed

Controlling the number of shards being moved between nodes concurrently

Controlling which shards may be rebalanced
The Cat API
The basics
Using Cat API

Common arguments

The examples

Getting information about the master node

Getting information about the nodes

Retrieving recovery information for an index

Warming up
Defining a new warming query
Retrieving the defined warming queries

www.EBooksWorld.ir

Deleting a warming query
Disabling the warming up functionality
Choosing queries for warming
Index aliasing and using it to simplify your everyday work
An alias
Creating an alias
Modifying aliases
Combining commands
Retrieving aliases
Removing aliases
Filtering aliases
Aliases and routing
Zero downtime reindexing and aliases
Summary
11. Scaling by Example

Hardware

Physical servers or a cloud
CPU

RAM memory

Mass storage

The network

How many servers

Cost cutting
Preparing a single Elasticsearch node
The general preparations
Avoiding swapping

File descriptors

Virtual memory

The memory

Field data cache and breaking the circuit

Use doc values

www.EBooksWorld.ir

RAM buffer for indexing

Index refresh rate

Thread pools
Horizontal expansion
Automatically creating the replicas
Redundancy and high availability
Cost and performance flexibility
Continuous upgrades
Multiple Elasticsearch instances on a single physical machine
Preventing a shard and its replicas from being on the same node
Designated node roles for larger clusters
Query aggregator nodes
Data nodes
Master eligible nodes
Preparing the cluster for high indexing and querying throughput
Indexing related advice
Index refresh rate
Thread pools tuning

Automatic store throttling
Handling time-based data

Multiple data paths

Data distribution

Bulk indexing
RAM buffer for indexing

Advice for high query rate scenarios

Shard request cache

Think about the queries

Parallelize your queries

Field data cache and breaking the circuit

Keep size and shard size under control

Monitoring

www.EBooksWorld.ir

Elasticsearch HQ

Marvel

SPM for Elasticsearch

Summary

Index

www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch Server Third Edition

www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch Server Third Edition
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013
Second edition: February 2015
Third edition: February 2016
Production reference: 1230216
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-881-6

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

www.EBooksWorld.ir

Credits

Authors

Rafat Kuc¢

Marek Rogozinski
Reviewer

Paige Cook
Commissioning Editor
Nadeem Bagban
Acquisition Editor
Divya Poojari

Content Development Editor
Kirti Patil

Technical Editor
Utkarsha S. Kadam
Copy Editor

Alpha Singh

Project Coordinator
Nidhi Joshi
Proofreader

Safis Editing

Indexer

Rekha Nair

Graphics

Jason Monteiro
Production Coordinator
Manu Joseph

Cover Work

Manu Joseph

www.EBooksWorld.ir

www.EBooksWorld.ir

About the Authors

Rafal Kuc¢ is a software engineer, trainer, speaker and consultant. He is working as a
consultant and software engineer at Sematext Group Inc. where he concentrates on open
source technologies such as Apache Lucene, Solr, and Elasticsearch. He has more than 14
years of experience in various software domains—from banking software to e—commerce
products. He is mainly focused on Java; however, he is open to every tool and
programming language that might help him to achieve his goals easily and quickly. Rafat
is also one of the founders of the solr.pl site, where he tries to share his knowledge and
help people solve their Solr and Lucene problems. He is also a speaker at various
conferences around the world such as Lucene Eurocon, Berlin Buzzwords, ApacheCon,
Lucene/Solr Revolution, Velocity, and DevOps Days.

Rafal began his journey with Lucene in 2002; however, it wasn’t love at first sight. When
he came back to Lucene in late 2003, he revised his thoughts about the framework and
saw the potential in search technologies. Then Solr came and that was it. He started
working with Elasticsearch in the middle of 2010. At present, Lucene, Solr, Elasticsearch,
and information retrieval are his main areas of interest.

Rafal is also the author of the Solr Cookbook series, ElasticSearch Server and its second
edition, and the first and second editions of Mastering ElasticSearch, all published by
Packt Publishing.

Marek Rogozinski is a software architect and consultant with more than 10 years of
experience. His specialization concerns solutions based on open source search engines,
such as Solr and Elasticsearch, and the software stack for big data analytics including
Hadoop, Hbase, and Twitter Storm.

He is also a cofounder of the solr.pl site, which publishes information and tutorials about
Solr and Lucene libraries. He is the coauthor of ElasticSearch Server and its second
edition, and the first and second editions of Mastering ElasticSearch, all published by
Packt Publishing.

He is currently the chief technology officer and lead architect at ZenCard, a company that
processes and analyzes large quantities of payment transactions in real time, allowing
automatic and anonymous identification of retail customers on all retailer channels (m-
commerce/e-commerce/brick&mortar) and giving retailers a customer retention and
loyalty tool.

www.EBooksWorld.ir

www.EBooksWorld.ir

About the Reviewer

Paige Cook works as a software architect for Videa, part of the Cox Family of
Companies, and lives near Atlanta, Georgia. He has twenty years of experience in
software development, primarily with the Microsoft .NET Framework. His career has been
largely focused on building enterprise solutions for the media and entertainment industry.
He is especially interested in search technologies using the Apache Lucene search engine
and has experience with both Elasticsearch and Apache Solr. Apart from his work, he
enjoys DIY home projects and spending time with his wife and two daughters.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.PacktPub.com

www.EBooksWorld.ir

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

www.EBooksWorld.ir

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

www.EBooksWorld.ir

www.EBooksWorld.ir

Preface

Welcome to Elasticsearch Server, Third Edition. This is the third instalment of the book
dedicated to yet another major release of Elasticsearch—this time version 2.2. In the third
edition, we have decided to go on a similar route that we took when we wrote the second
edition of the book. We not only updated the content to match the new version of
Elasticsearch, but also restructured the book by removing and adding new sections and
chapters. We read the suggestions we got from you—the readers of the book, and we
carefully tried to incorporate the suggestions and comments received since the release of
the first and second editions.

While reading this book, you will be taken on a journey to the wonderful world of full-text
search provided by the Elasticsearch server. We will start with a general introduction to
Elasticsearch, which covers how to start and run Elasticsearch, its basic concepts, and how
to index and search your data in the most basic way. This book will also discuss the query
language, so called Query DSL, that allows you to create complicated queries and filter
returned results. In addition to all of this, you’ll see how you can use the aggregation
framework to calculate aggregated data based on the results returned by your queries. We
will implement the autocomplete functionality together and learn how to use Elasticsearch
spatial capabilities and prospective search.

Finally, this book will show you Elasticsearch’s administration API capabilities with
features such as shard placement control, cluster handling, and more, ending with a
dedicated chapter that will discuss Elasticsearch’s preparation for small and large
deployments— both ones that concentrate on indexing and also ones that concentrate on
indexing.

www.EBooksWorld.ir

What this book covers

Chapter 1, Getting Started with Elasticsearch Cluster, covers what full-text searching is,
what Apache Lucene is, what text analysis is, how to run and configure Elasticsearch, and
finally, how to index and search your data in the most basic way.

Chapter 2, Indexing Your Data, shows how indexing works, how to prepare index
structure, what data types we are allowed to use, how to speed up indexing, what segments
are, how merging works, and what routing is.

Chapter 3, Searching Your Data, introduces the full-text search capabilities of
Elasticsearch by discussing how to query it, how the querying process works, and what
types of basic and compound queries are available. In addition to this, we will show how
to use position-aware queries in Elasticsearch.

Chapter 4, Extending Your Query Knowledge, shows how to efficiently narrow down your
search results by using filters, how highlighting works, how to sort your results, and how
query rewrite works.

Chapter 5, Extending Your Index Structure, shows how to index more complex data
structures. We learn how to index tree-like data types, how to index data with relationships
between documents, and how to modify index structure.

Chapter 6, Make Your Search Better, covers Apache Lucene scoring and how to influence
it in Elasticsearch, the scripting capabilities of Elasticsearch, and its language analysis
capabilities.

Chapter 7, Aggregations for Data Analysis, introduces you to the great world of data
analysis by showing you how to use the Elasticsearch aggregation framework. We will
discuss all types of aggregations—metrics, buckets, and the new pipeline aggregations that
have been introduced in Elasticsearch.

Chapter 8, Beyond Full-text Searching, discusses non full-text search-related
functionalities such as percolator—reversed search, and the geo-spatial capabilities of
Elasticsearch. This chapter also discusses suggesters, which allow us to build a
spellchecking functionality and an efficient autocomplete mechanism, and we will show
how to handle deep-paging efficiently.

Chapter 9, Elasticsearch Cluster in Detail, discusses nodes discovery mechanism,
recovery and gateway Elasticsearch modules, templates, caches, and settings update API.

Chapter 10, Administrating Your Cluster, covers the Elasticsearch backup functionality,
rebalancing, and shards moving. In addition to this, you will learn how to use the warm up
functionality, use the Cat API, and work with aliases.

Chapter 11, Scaling by Example, is dedicated to scaling and tuning. We will start with
hardware preparations and considerations and a single Elasticsearch node-related tuning.
We will go through cluster setup and vertical scaling, ending the chapter with high
querying and indexing use cases and cluster monitoring.

www.EBooksWorld.ir

www.EBooksWorld.ir

What you need for this book

This book was written using Elasticsearch server 2.2 and all the examples and functions
should work with this. In addition to this, you’ll need a command that allows you to send
HTTP request such as curl, which is available for most operating systems. Please note that
all the examples in this book use the previously mentioned curl tool. If you want to use
another tool, please remember to format the request in an appropriate way that is
understood by the tool of your choice.

In addition to this, some chapters may require additional software, such as Elasticsearch
plugins, but when needed it has been explicitly mentioned.

www.EBooksWorld.ir

www.EBooksWorld.ir

Who this book is for

If you are a beginner to the world of full-text search and Elasticsearch, then this book is
especially for you. You will be guided through the basics of Elasticsearch and you will
learn how to use some of the advanced functionalities.

If you know Elasticsearch and you worked with it, then you may find this book interesting
as it provides a nice overview of all the functionalities with examples and descriptions.
However, you may encounter sections that you already know.

If you know the Apache Solr search engine, this book can also be used to compare some
functionalities of Apache Solr and Elasticsearch. This may give you the knowledge about
which tool is more appropriate for your use case.

If you know all the details about Elasticsearch and you know how each of the
configuration parameters work, then this is definitely not the book you are looking for.

www.EBooksWorld.ir

www.EBooksWorld.ir

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “If you
use the Linux or OS X command, the cURL package should already be available.”

A block of code is set as follows:

{
"mappings": {
Ilpostll: {
"properties": {
llidll : { IItypell : Illongll }’
"name": { "type":"string" 1},
"published": { "type":"date" },
"contents": { "type":"string" }
}
}
}
}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

{
"mappings": {
llpostll: {
"properties": {
llidll : { Iltypell : Illongll }’
"name": { "type":"string" },
"published": { "type":"date" },
"contents": { "type":"string" }
}
3
}
3

Any command-line input or output is written as follows:

curl -XPUT http://localhost:9200/users/?pretty -d '{
"mappings" : {
"user": {
"numeric_detection" : true

}
}
} 1

Note

Warnings or important notes appear in a box like this.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.EBooksWorld.ir

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

www.EBooksWorld.ir

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.EBooksWorld.ir

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you’re looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NoU,s~WN

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from
https://www.packtpub.com/sites/default/files/downloads/ElasticsearchServerThirdEdition

www.EBooksWorld.ir

https://www.packtpub.com/sites/default/files/downloads/ElasticsearchServerThirdEdition_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

www.EBooksWorld.ir

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

www.EBooksWorld.ir

mailto:questions@packtpub.com

www.EBooksWorld.ir

Chapter 1. Getting Started with
Elasticsearch Cluster

Welcome to the wonderful world of Elasticsearch—a great full text search and analytics
engine. It doesn’t matter if you are new to Elasticsearch and full text searches in general,
or if you already have some experience in this. We hope that, by reading this book, you’ll
be able to learn and extend your knowledge of Elasticsearch. As this book is also
dedicated to beginners, we decided to start with a short introduction to full text searches in
general, and after that, a brief overview of Elasticsearch.

Please remember that Elasticsearch is a rapidly changing of software. Not only are
features added, but the Elasticsearch core functionality is also constantly evolving and
changing. We try to keep up with these changes, and because of this we are giving you the
third edition of the book dedicated to Elasticsearch 2.x.

The first thing we need to do with Elasticsearch is install and configure it. With many
applications, you start with the installation and configuration and usually forget the
importance of these steps. We will try to guide you through these steps so that it becomes
easier to remember. In addition to this, we will show you the simplest way to index and
retrieve data without going into too much detail. The first chapter will take you on a quick
ride through Elasticsearch and the full text search world. By the end of this chapter, you
will have learned the following topics:

Full text searching

The basics of Apache Lucene

Performing text analysis

The basic concepts of Elasticsearch

Installing and configuring Elasticsearch

Using the Elasticsearch REST API to manipulate data
Searching using basic URI requests

www.EBooksWorld.ir

Full text searching

Back in the days when full text searching was a term known to a small percentage of
engineers, most of us used SQL databases to perform search operations. Using SQL
databases to search for the data stored in them was okay to some extent. Such a search
wasn'’t fast, especially on large amounts of data. Even now, small applications are usually
good with a standard LIKE %phrase% search in a SQL database. However, as we go deeper
and deeper, we start to see the limits of such an approach—a lack of scalability, not
enough flexibility, and a lack of language analysis. Of course, there are additional modules
that extend SQL databases with full text search capabilities, but they are still limited
compared to dedicated full text search libraries and search engines such as Elasticsearch.
Some of those reasons led to the creation of Apache Lucene (http://lucene.apache.org/), a
library written completely in Java (http://java.com/en/), which is very fast, light, and
provides language analysis for a large number of languages spoken throughout the world.

www.EBooksWorld.ir

http://lucene.apache.org/
http://java.com/en/

The Lucene glossary and architecture

Before going into the details of the analysis process, we would like to introduce you to the
glossary and overall architecture of Apache Lucene. We decided that this information is
crucial for understanding how Elasticsearch works, and even though the book is not about
Apache Lucene, knowing the foundation of the Elasticsearch analytics and indexing
engine is vital to fully understand how this great search engine works.

The basic concepts of the mentioned library are as follows:

e Document: This is the main data carrier used during indexing and searching,
comprising one or more fields that contain the data we put in and get from Lucene.

¢ Field: This a section of the document, which is built of two parts: the name and the
value.

e Term: This is a unit of search representing a word from the text.

e Token: This is an occurrence of a term in the text of the field. It consists of the term
text, start and end offsets, and a type.

Apache Lucene writes all the information to a structure called the inverted index. It is a
data structure that maps the terms in the index to the documents and not the other way
around as a relational database does in its tables. You can think of an inverted index as a
data structure where data is term-oriented rather than document-oriented. Let’s see how a
simple inverted index will look. For example, let’s assume that we have documents with
only a single field called title to be indexed, and the values of that field are as follows:

e FElasticsearch Server (document 1)
e Mastering Elasticsearch Second Edition (document 2)
e Apache Solr Cookbook Third Edition (document 3)

A very simplified visualization of the Lucene inverted index could look as follows:

Term Count Document
apache 1 <3>
cookbook i <3>
edition 2 <2>,<3>
elasticsearch 2 1 <05
mastering ik 25
second 1 <2>
server 1 <1>
solr 1 <3>
third 1 <3>

Each term points to the number of documents it is present in. For example, the term

www.EBooksWorld.ir

edition is present twice in the second and third documents. Such a structure allows for
very efficient and fast search operations in term-based queries (but not exclusively).
Because the occurrences of the term are connected to the terms themselves, Lucene can
use information about the term occurrences to perform fast and precise scoring
information by giving each document a value that represents how well each of the
returned documents matched the query.

Of course, the actual index created by Lucene is much more complicated and advanced
because of additional files that include information such as term vectors (per document
inverted index), doc values (column oriented field information), stored fields (the original
and not the analyzed value of the field), and so on. However, all you need to know for
now is how the data is organized and not what exactly is stored.

Each index is divided into multiple write-once and read-many-time structures called
segments. Each segment is a miniature Apache Lucene index on its own. When indexing,
after a single segment is written to the disk it can’t be updated, or we should rather say it
can’t be fully updated; documents can’t be removed from it, they can only be marked as
deleted in a separate file. The reason that Lucene doesn’t allow segments to be updated is
the nature of the inverted index. After the fields are analyzed and put into the inverted
index, there is no easy way of building the original document structure. When deleting,
Lucene would have to delete the information from the segment, which translates to
updating all the information within the inverted index itself.

Because of the fact that segments are write-once structures Lucene is able to merge
segments together in a process called segment merging. During indexing, if Lucene thinks
that there are too many segments falling into the same criterion, a new and bigger segment
will be created—one that will have data from the other segments. During that process,
Lucene will try to remove deleted data and get back the space needed to hold information
about those documents. Segment merging is a demanding operation both in terms of the
I/0O and CPU. What we have to remember for now is that searching with one large
segment is faster than searching with multiple smaller ones holding the same data. That’s
because, in general, searching translates to just matching the query terms to the ones that
are indexed. You can imagine how searching through multiple small segments and
merging those results will be slower than having a single segment preparing the results.

www.EBooksWorld.ir

Input data analysis

The transformation of a document that comes to Lucene and is processed and put into the
inverted index format is called indexation. One of the things Lucene has to do during this
is data analysis. You may want some of your fields to be processed by a language analyzer
so that words such as car and cars are treated as the same be your index. On the other
hand, you may want other fields to be divided only on the white space character or be only
lowercased.

Analysis is done by the analyzer, which is built of a tokenizer and zero or more token
filters, and it can also have zero or more character mappers.

A tokenizer in Lucene is used to split the text into tokens, which are basically the terms
with additional information such as its position in the original text and its length. The
results of the tokenizer’s work is called a token stream, where the tokens are put one by
one and are ready to be processed by the filters.

Apart from the tokenizer, the Lucene analyzer is built of zero or more token filters that are
used to process tokens in the token stream. Some examples of filters are as follows:

¢ Lowercase filter: Makes all the tokens lowercased

¢ Synonyms filter: Changes one token to another on the basis of synonym rules

o Language stemming filters: Responsible for reducing tokens (actually, the text part
that they provide) into their root or base forms called the stem

(https://en.wikipedia.org/wiki/Word_stem)

Filters are processed one after another, so we have almost unlimited analytical possibilities
with the addition of multiple filters, one after another.

Finally, the character mappers operate on non-analyzed text—they are used before the
tokenizer. Therefore, we can easily remove HTML tags from whole parts of text without
worrying about tokenization.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Word_stem

Indexing and querying

You may wonder how all the information we’ve described so far affects indexing and
querying when using Lucene and all the software that is built on top of it. During
indexing, Lucene will use an analyzer of your choice to process the contents of your
document; of course, different analyzers can be used for different fields, so the name field
of your document can be analyzed differently compared to the summary field. For
example, the name field may only be tokenized on whitespaces and lowercased, so that
exact matches are done and the summary field is stemmed in addition to that. We can also
decide to not analyze the fields at all—we have full control over the analysis process.

During a query, your query text can be analyzed as well. However, you can also choose
not to analyze your queries. This is crucial to remember because some Elasticsearch
queries are analyzed and some are not. For example, prefix and term queries are not
analyzed, and match queries are analyzed (we will get to that in Chapter 3, Searching Your
Data). Having queries that are analyzed and not analyzed is very useful; sometimes, you
may want to query a field that is not analyzed, while sometimes you may want to have a
full text search analysis. For example, if we search for the LightRed term and the query is
being analyzed by the standard analyzer, then the terms that would be searched are light
and red. If we use a query type that has not been analyzed, then we will explicitly search
for the LightRed term. We may not want to analyze the content of the query if we are only
interested in exact matches.

What you should remember about indexing and querying analysis is that the index should
match the query term. If they don’t match, Lucene won’t return the desired documents.
For example, if you use stemming and lowercasing during indexing, you need to ensure
that the terms in the query are also lowercased and stemmed, or your queries won’t return
any results at all. For example, let’s get back to our LightRed term that we analyzed
during indexing; we have it as two terms in the index: 1ight and red. If we run a
LightRed query against that data and don’t analyze it, we won’t get the document in the
results—the query term does not match the indexed terms. It is important to keep the
token filters in the same order during indexing and query time analysis so that the terms
resulting from such an analysis are the same.

www.EBooksWorld.ir

Scoring and query relevance

There is one additional thing that we only mentioned once till now—scoring. What is the
score of a document? The score is a result of a scoring formula that describes how well the
document matches the query. By default, Apache Lucene uses the TF/IDF (term
frequency/inverse document frequency) scoring mechanism, which is an algorithm that
calculates how relevant the document is in the context of our query. Of course, it is not the
only algorithm available, and we will mention other algorithms in the Mappings
configuration section of Chapter 2, Indexing Your Data.

Note

If you want to read more about the Apache Lucene TF/IDF scoring formula, please visit
Apache Lucene Javadocs for the TFIDF. The similarity class is available at

http://lucene.apache.org/core/5_4 0/core/org/apache/lucene/search/similarities/TFIDFSimi

www.EBooksWorld.ir

http://lucene.apache.org/core/5_4_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

www.EBooksWorld.ir

The basics of Elasticsearch

Elasticsearch is an open source search server project started by Shay Banon and published
in February 2010. During this time, the project grew into a major player in the field of
search and data analysis solutions and is widely used in many common or lesser-known
search and data analysis platforms. In addition, due to its distributed nature and real-time
search and analytics capabilities, many organizations use it as a document store.

www.EBooksWorld.ir

Key concepts of Elasticsearch

In the next few pages, we will get you through the basic concepts of Elasticsearch. You
can skip this section if you are already familiar with Elasticsearch architecture. However,
if you are not familiar with Elasticsearch, we strongly advise you to read this section. We
will refer to the key words used in this section in the rest of the book, and understanding
those concepts is crucial to fully utilize Elasticsearch.

Index

An index is the logical place where Elasticsearch stores the data. Each index can be spread
onto multiple Elasticsearch nodes and is divided into one or more smaller pieces called
shards that are physically placed on the hard drives. If you are coming from the relational
database world, you can think of an index like a table. However, the index structure is
prepared for fast and efficient full text searching and, in particular, does not store original
values. That structure is called an inverted index

(https://en.wikipedia.org/wiki/Inverted_index).

If you know MongoDB, you can think of the Elasticsearch index as a collection in
MongoDB. If you are familiar with CouchDB, you can think about an index as you would
about the CouchDB database. Elasticsearch can hold many indices located on one machine
or spread them over multiple servers. As we have already said, every index is built of one
or more shards, and each shard can have many replicas.

Document

The main entity stored in Elasticsearch is a document. A document can have multiple
fields, each having its own type and treated differently. Using the analogy to relational
databases, a document is a row of data in a database table. When you compare an
Elasticsearch document to a MongoDB document, you will see that both can have
different structures. The thing to keep in mind when it comes to Elasticsearch is that fields
that are common to multiple types in the same index need to have the same type. This
means that all the documents with a field called title need to have the same data type for it,
for example, string.

Documents consist of fields, and each field may occur several times in a single document
(such a field is called multivalued). Each field has a type (text, number, date, and so on).
The field types can also be complex—a field can contain other subdocuments or arrays.
The field type is important to Elasticsearch because type determines how various
operations such as analysis or sorting are performed. Fortunately, this can be determined
automatically (however, we still suggest using mappings; take a look at what follows).

Unlike the relational databases, documents don’t need to have a fixed structure—every
document may have a different set of fields, and in addition to this, fields don’t have to be
known during application development. Of course, one can force a document structure
with the use of schema. From the client’s point of view, a document is a JSON object (see
more about the JSON format at https://en.wikipedia.org/wiki/JSON). Each document is
stored in one index and has its own unique identifier, which can be generated

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/JSON

automatically by Elasticsearch, and document type. The thing to remember is that the
document identifier needs to be unique inside an index and should be for a given type.
This means that, in a single index, two documents can have the same unique identifier if
they are not of the same type.

Document type

In Elasticsearch, one index can store many objects serving different purposes. For
example, a blog application can store articles and comments. The document type lets us
easily differentiate between the objects in a single index. Every document can have a
different structure, but in real-world deployments, dividing documents into types
significantly helps in data manipulation. Of course, one needs to keep the limitations in
mind. That is, different document types can’t set different types for the same property. For
example, a field called title must have the same type across all document types in a given
index.

Mapping

In the section about the basics of full text searching (the Full text searching section), we
wrote about the process of analysis—the preparation of the input text for indexing and
searching done by the underlying Apache Lucene library. Every field of the document
must be properly analyzed depending on its type. For example, a different analysis chain is
required for the numeric fields (numbers shouldn’t be sorted alphabetically) and for the
text fetched from web pages (for example, the first step would require you to omit the
HTML tags as it is useless information). To be able to properly analyze at indexing and
querying time, Elasticsearch stores the information about the fields of the documents in
so-called mappings. Every document type has its own mapping, even if we don’t explicitly
define it.

www.EBooksWorld.ir

Key concepts of the Elasticsearch infrastructure

Now, we already know that Elasticsearch stores its data in one or more indices and every
index can contain documents of various types. We also know that each document has
many fields and how Elasticsearch treats these fields is defined by the mappings. But there
is more. From the beginning, Elasticsearch was created as a distributed solution that can
handle billions of documents and hundreds of search requests per second. This is due to
several important key features and concepts that we are going to describe in more detail
now.

Nodes and clusters

Elasticsearch can work as a standalone, single-search server. Nevertheless, to be able to
process large sets of data and to achieve fault tolerance and high availability, Elasticsearch
can be run on many cooperating servers. Collectively, these servers connected together are
called a cluster and each server forming a cluster is called a node.

Shards

When we have a large number of documents, we may come to a point where a single node
may not be enough—for example, because of RAM limitations, hard disk capacity,
insufficient processing power, and an inability to respond to client requests fast enough. In
such cases, an index (and the data in it) can be divided into smaller parts called shards
(where each shard is a separate Apache Lucene index). Each shard can be placed on a
different server, and thus your data can be spread among the cluster nodes. When you
query an index that is built from multiple shards, Elasticsearch sends the query to each
relevant shard and merges the result in such a way that your application doesn’t know
about the shards. In addition to this, having multiple shards can speed up indexing,
because documents end up in different shards and thus the indexing operation is
parallelized.

Replicas

In order to increase query throughput or achieve high availability, shard replicas can be
used. A replica is just an exact copy of the shard, and each shard can have zero or more
replicas. In other words, Elasticsearch can have many identical shards and one of them is
automatically chosen as a place where the operations that change the index are directed.
This special shard is called a primary shard, and the others are called replica shards. When
the primary shard is lost (for example, a server holding the shard data is unavailable), the
cluster will promote the replica to be the new primary shard.

Gateway

The cluster state is held by the gateway, which stores the cluster state and indexed data
across full cluster restarts. By default, every node has this information stored locally; it is
synchronized among nodes. We will discuss the gateway module in The gateway and
recovery modules section of Chapter 9, Elasticsearch Cluster, in detail.

www.EBooksWorld.ir

Indexing and searching

You may wonder how you can tie all the indices, shards, and replicas together in a single
environment. Theoretically, it would be very difficult to fetch data from the cluster when
you have to know where your document is: on which server, and in which shard. Even
more difficult would be searching when one query can return documents from different
shards placed on different nodes in the whole cluster. In fact, this is a complicated
problem; fortunately, we don’t have to care about this at all—it is handled automatically
by Elasticsearch. Let’s look at the following diagram:

Shard 1 Shard 2
primary primary
A

Elasticsearch Node

Forward to
leader

- Indexing request Shard 1 Shard 2
B R -~ -~~~ =~ ===~~~ ===~ 1™ replica replica

Elasticsearch Node

Elasticsearch Cluster

When you send a new document to the cluster, you specify a target index and send it to
any of the nodes. The node knows how many shards the target index has and is able to
determine which shard should be used to store your document. Elasticsearch can alter this
behavior; we will talk about this in the Introduction to routing section in Chapter 2,
Indexing Your Data. The important information that you have to remember for now is that
Elasticsearch calculates the shard in which the document should be placed using the
unique identifier of the document—this is one of the reasons each document needs a
unique identifier. After the indexing request is sent to a node, that node forwards the
document to the target node, which hosts the relevant shard.

Now, let’s look at the following diagram on searching request execution:

www.EBooksWorld.ir

————————— Scatter phase Shard 1

——— Gather phase 4
ﬁas'ticseamh Node

Shard 2

Application .
Elasticsearch Node

Elasticsearch Cluster

When you try to fetch a document by its identifier, the node you send the query to uses the
same routing algorithm to determine the shard and the node holding the document and
again forwards the request, fetches the result, and sends the result to you. On the other
hand, the querying process is a more complicated one. The node receiving the query
forwards it to all the nodes holding the shards that belong to a given index and asks for
minimum information about the documents that match the query (the identifier and score
are matched by default), unless routing is used, when the query will go directly to a single
shard only. This is called the scatter phase. After receiving this information, the aggregator
node (the node that receives the client request) sorts the results and sends a second request
to get the documents that are needed to build the results list (all the other information apart
from the document identifier and score). This is called the gather phase. After this phase is
executed, the results are returned to the client.

Now the question arises: what is the replica’s role in the previously described process?
While indexing, replicas are only used as an additional place to store the data. When
executing a query, by default, Elasticsearch will try to balance the load among the shard
and its replicas so that they are evenly stressed. Also, remember that we can change this
behavior; we will discuss this in the Understanding the querying process section in
Chapter 3, Searching Your Data.

www.EBooksWorld.ir

www.EBooksWorld.ir

Installing and configuring your cluster

Installing and running Elasticsearch even in production environments is very easy
nowadays, compared to how it was in the days of Elasticsearch 0.20.x. From a system that
is not ready to one with Elasticsearch, there are only a few steps that one needs to go. We
will explore these steps in the following section:

www.EBooksWorld.ir

Installing Java

Elasticsearch is a Java application and to use it we need to make sure that the Java SE
environment is installed properly. Elasticsearch requires Java Version 7 or later to run. You
can download it from
http://www.oracle.com/technetwork/java/javase/downloads/index.html. You can also use
OpenJDK (http://openjdk.java.net/) if you wish. You can, of course, use Java Version 7,
but it is not supported by Oracle anymore, at least without commercial support. For
example, you can’t expect new, patched versions of Java 7 to be released. Because of this,
we strongly suggest that you install Java 8, especially given that Java 9 seems to be right
around the corner with the general availability planned to be released in September 2016.

www.EBooksWorld.ir

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/

Installing Elasticsearch

To install Elasticsearch you just need to go to
https://www.elastic.co/downloads/elasticsearch, choose the last stable version of
Elasticsearch, download it, and unpack it. That’s it! The installation is complete.

Note

At the time of writing, we used a snapshot of Elasticsearch 2.2. This means that we’ve
skipped describing some properties that were marked as deprecated and are or will be
removed in the future versions of Elasticsearch.

The main interface to communicate with Elasticsearch is based on the HTTP protocol and
REST. This means that you can even use a web browser for some basic queries and
requests, but for anything more sophisticated you’ll need to use additional software, such
as the cURL command. If you use the Linux or OS X command, the cURL package should
already be available. If you use Windows, you can download the package from

http://curl.haxx.se/download.html.

www.EBooksWorld.ir

https://www.elastic.co/downloads/elasticsearch
http://curl.haxx.se/download.html

Running Elasticsearch

Let’s run our first instance that we just downloaded as the ZIP archive and unpacked. Go
to the bin directory and run the following commands depending on the OS:

e Linux or OS X: ./elasticsearch
e Windows: elasticsearch.bat

Congratulations! Now, you have your Elasticsearch instance up-and-running. During its
work, the server usually uses two port numbers: the first one for communication with the
REST API using the HTTP protocol, and the second one for the transport module used for
communication in a cluster and between the native Java client and the cluster. The default
port used for the HTTP API is 9200, so we can check search readiness by pointing the web
browser to http://127.0.0.1:9200/. The browser should show a code snippet similar to
the following:

{
"name" : "Blob",
"cluster_name" : "elasticsearch",
"version" : {
"number" : "2.2.0",
"build_hash" : "5bldd1cf5a1957682d84228a569e124fedf8e325",
"build_timestamp" : "2016-01-13T18:12:26Z",
"build_snapshot" : true,
"lucene_version" : "5.4.0"
3
"tagline" : "You Know, for Search"
3

The output is structured as a JavaScript Object Notation (JSON) object. If you are not
familiar with JSON, please take a minute and read the article available at
https://en.wikipedia.org/wiki/JSON.

Note

Elasticsearch is smart. If the default port is not available, the engine binds to the next free
port. You can find information about this on the console during booting as follows:

[2016-01-13 20:04:49,953][INFO]J[http] [Blob] publish_address
{127.0.0.1:9201}, bound_addresses {[fe80::1]:9200}, {[::1]:9200},
{127.0.0.1:9201}

Note the fragment with [http]. Elasticsearch uses a few ports for various tasks. The
interface that we are using is handled by the HTTP module.

Now, we will use the cURL program to communicate with Elasticsearch. For example, to
check the cluster health, we will use the following command:

curl -XGET http://127.0.0.1:9200/_cluster/health?pretty

The -x parameter is a definition of the HTTP request method. The default value is GET (so
in this example, we can omit this parameter). For now, do not worry about the GET value;
we will describe it in more detail later in this chapter.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/JSON

As a standard, the API returns information in a JSON object in which new line characters
are omitted. The pretty parameter added to our requests forces Elasticsearch to add a new
line character to the response, making the response more user-friendly. You can try
running the preceding query with and without the ?pretty parameter to see the difference.

Elasticsearch is useful in small and medium-sized applications, but it has been built with
large clusters in mind. So, now we will set up our big two-node cluster. Unpack the
Elasticsearch archive in a different directory and run the second instance. If we look at the
log, we will see the following:

[2016-01-13 20:07:58,561][INFO]J[cluster.service] [Big Man]
detected_master {Blob}{5QPhOORUQraeLHAInbR4Iw}{127.0.0.1}{127.0.0.1:9300},
added {{Blob}{5QPhGORUQraeLHAINbR4Jw}{127.0.0.1}{127.0.0.1:9300},}, reason:
zen-disco-receive(from master [{Blob}{5QPh0ORUQraeLHAInbR4Jw}{127.0.0.1}
{127.0.0.1:9300}])

This means that our second instance (named Big Man) discovered the previously running
instance (named Blob). Here, Elasticsearch automatically formed a new two-node cluster.
Starting from Elasticsearch 2.0, this will only work with nodes running on the same
physical machine—because Elasticsearch 2.0 no longer supports multicast. To allow your
cluster to form, you need to inform Elasticsearch about the nodes that should be contacted
initially using the discovery.zen.ping.unicast.hosts array in elasticsearch.yml. For
example, like this:

discovery.zen.ping.unicast.hosts: ["192.168.2.1", "192.168.2.2"]

www.EBooksWorld.ir

Shutting down Elasticsearch

Even though we expect our cluster (or node) to run flawlessly for a lifetime, we may need
to restart it or shut it down properly (for example, for maintenance). The following are the
two ways in which we can shut down Elasticsearch:

e If your node is attached to the console, just press Ctrl + C
e The second option is to kill the server process by sending the TERM signal (see the
kill command on the Linux boxes and Program Manager on Windows)

Note

The previous versions of Elasticsearch exposed a dedicated shutdown API but, in 2.0,
this option has been removed because of security reasons.

www.EBooksWorld.ir

The directory layout

Now, let’s go to the newly created directory. We should see the following directory
structure:

Directory||Description |
Bin The scripts needed to run Elasticsearch instances and for plugin management
Config |IThe directory where configuration files are located |
Lib The libraries used by Elasticsearch |
Modules |IThe plugins bundled with Elasticsearch |

After Elasticsearch starts, it will create the following directories (if they don’t exist):

Work

Directory||Description

Data The directory used by Elasticsearch to store all the data

Logs The files with information about events and errors |

Plugins [[The location to store the installed plugins |
|

The temporary files used by Elasticsearch

www.EBooksWorld.ir

Configuring Elasticsearch

One of the reasons—of course, not the only one—why Elasticsearch is gaining more and
more popularity is that getting started with Elasticsearch is quite easy. Because of the
reasonable default values and automatic settings for simple environments, we can skip the
configuration and go straight to indexing and querying (or to the next chapter of the book).
We can do all this without changing a single line in our configuration files. However, in
order to truly understand Elasticsearch, it is worth understanding some of the available
settings.

We will now explore the default directories and the layout of the files provided with the
Elasticsearch tar.gz archive. The entire configuration is located in the config
directory. We can see two files here: elasticsearch.yml (or elasticsearch.json, which
will be used if present) and logging.yml. The first file is responsible for setting the
default configuration values for the server. This is important because some of these values
can be changed at runtime and can be kept as a part of the cluster state, so the values in
this file may not be accurate. The two values that we cannot change at runtime are
cluster.name and node.name.

The cluster.name property is responsible for holding the name of our cluster. The cluster
name separates different clusters from each other. Nodes configured with the same cluster
name will try to form a cluster.

The second value is the instance (the node . name property) name. We can leave this
parameter undefined. In this case, Elasticsearch automatically chooses a unique name for
itself. Note that this name is chosen during each startup, so the name can be different on
each restart. Defining the name can helpful when referring to concrete instances by the
API or when using monitoring tools to see what is happening to a node during long
periods of time and between restarts. Think about giving descriptive names to your nodes.

Other parameters are commented well in the file, so we advise you to look through it;
don’t worry if you do not understand the explanation. We hope that everything will
become clearer after reading the next few chapters.

Note

Remember that most of the parameters that have been set in the elasticsearch.yml file
can be overwritten with the use of the Elasticsearch REST API. We will talk about this
API in The update settings API section of Chapter 9, Elasticsearch Cluster in Detail.

The second file (Logging.yml) defines how much information is written to system logs,
defines the log files, and creates new files periodically. Changes in this file are usually
required only when you need to adapt to monitoring or backup solutions or during system
debugging; however, if you want to have a more detailed logging, you need to adjust it
accordingly.

Let’s leave the configuration files for now and look at the base for all the applications—
the operating system. Tuning your operating system is one of the key points to ensure that
your Elasticsearch instance will work well. During indexing, especially when having

www.EBooksWorld.ir

many shards and replicas, Elasticsearch will create many files; so, the system cannot limit
the open file descriptors to less than 32,000. For Linux servers, this can usually be
changed in /etc/security/limits.conf and the current value can be displayed using the
ulimit command. If you end up reaching the limit, Elasticsearch will not be able to create
new files; so merging will fail, indexing may fail, and new indices will not be created.

Note

On Microsoft Windows platforms, the default limit is more than 16 million handles per
process, which should be more than enough. You can read more about file handles on the
Microsoft Windows platform at

https://blogs.technet.microsoft.com/markrussinovich/2009/09/29/pushing-the-limits-of-
windows-handles/.

The next set of settings is connected to the Java Virtual Machine (JVM) heap memory
limit for a single Elasticsearch instance. For small deployments, the default memory limit
(1,024 MB) will be sufficient, but for large ones it will not be enough. If you spot entries
that indicate outofMemoryError exceptions in a log file, set the ES_HEAP_SIZE variable to
a value greater than 1024. When choosing the right amount of memory size to be given to
the JVM, remember that, in general, no more than 50 percent of your total system memory
should be given. However, as with all the rules, there are exceptions. We will discuss this
in greater detail later, but you should always monitor your JVM heap usage and adjust it
when needed.

www.EBooksWorld.ir

https://blogs.technet.microsoft.com/markrussinovich/2009/09/29/pushing-the-limits-of-windows-handles/

The system-specific installation and configuration

Although downloading an archive with Elasticsearch and unpacking it works and is
convenient for testing, there are dedicated methods for Linux operating systems that give
you several advantages when you do production deployment. In production deployments,
the Elasticsearch service should be run automatically with a system boot; we should have
dedicated start and stop scripts, unified paths, and so on. Elasticsearch supports
installation packages for various Linux distributions that we can use. Let’s see how this
works.

Installing Elasticsearch on Linux

The other way to install Elasticsearch on a Linux operating system is to use packages such
as RPM or DEB, depending on your Linux distribution and the supported package type.
This way we can automatically adapt to system directory layout; for example,
configuration and logs will go into their standard places in the /etc/ or /var/log
directories. But this is not the only thing. When using packages, Elasticsearch will also
install startup scripts and make our life easier. What’s more, we will be able to upgrade
Elasticsearch easily by running a single command from the command line. Of course, the
mentioned packages can be found at the same URL address as we mentioned previously
when we talked about installing Elasticsearch from zip or tar.gz packages:
https://www.elastic.co/downloads/elasticsearch. Elasticsearch can also be installed from
remote repositories via standard distribution tools such as apt-get or yum.

Note

Before installing Elasticsearch, make sure that you have a proper version of Java Virtual
Machine installed.

Installing Elasticsearch using RPM packages

When using a Linux distribution that supports RPM packages such as Fedora Linux,
(https://getfedora.org/) Elasticsearch installation is very easy. After downloading the RPM
package, we just need to run the following command as root:

yum elasticsearch-2.2.0.noarch.rpm

Alternatively, you can add the remote repository and install Elasticsearch from it (this
command needs to be run as root as well):

rpm --import https://packages.elastic.co/GPG-KEY-elasticsearch

This command adds the GPG key and allows the system to verify that the fetched package
really comes from Elasticsearch developers. In the second step, we need to create the
repository definition in the /etc/yum.repos.d/elasticsearch.repo file. We need to add
the following entries to this file:

[elasticsearch-2.2]

name=Elasticsearch repository for 2.2.x packages
baseurl=http://packages.elastic.co/elasticsearch/2.x/centos
gpgcheck=1

www.EBooksWorld.ir

https://www.elastic.co/downloads/elasticsearch
https://getfedora.org/

gpgkey=http://packages.elastic.co/GPG-KEY-elasticsearch
enabled=1

Now it’s time to install the Elasticsearch server, which is as simple as running the
following command (again, don’t forget to run it as root):

yum install elasticsearch
Elasticsearch will be automatically downloaded, verified, and installed.
Installing Elasticsearch using the DEB package

When using a Linux distribution that supports DEB packages (such as Debian), installing
Elasticsearch is again very easy. After downloading the DEB package, all you need to do
is run the following command:

sudo dpkg -i elasticsearch-2.2.0.deb

It is as simple as that. Another way, which is similar to what we did with RPM packages,
is by creating a new packages source and installing Elasticsearch from the remote
repository. The first step is to add the public GPG key used for package verification. We
can do that using the following command:

wget -qO0 - https://packages.elastic.co/GPG-KEY-elasticsearch | sudo apt-key
add -

The second step is by adding the DEB package location. We need to add the following line
to the /etc/apt/sources.list file:

deb http://packages.elastic.co/elasticsearch/2.2/debian stable main

This defines the source for the Elasticsearch packages. The last step is updating the list of
remote packages and installing Elasticsearch using the following command:

sudo apt-get update && sudo apt-get install elasticsearch
Elasticsearch configuration file localization

When using packages to install Elasticsearch, the configuration files are in slightly
different directories than the default conf directory. After the installation, the
configuration files should be stored in the following location:

e /etc/sysconfig/elasticsearch or /etc/default/elasticsearch: A file with the
configuration of the Elasticsearch process as a user to run as, directories for logs, data
and memory settings

e /etc/elasticsearch/: A directory for the Elasticsearch configuration files, such as
the elasticsearch.yml file

Configuring Elasticsearch as a system service on Linux

If everything goes well, you can run Elasticsearch using the following command:

/bin/systemctl start elasticsearch.service

If you want Elasticsearch to start automatically every time the operating system starts, you

www.EBooksWorld.ir

can set up Elasticsearch as a system service by running the following command:
/bin/systemctl enable elasticsearch.service

Elasticsearch as a system service on Windows

Installing Elasticsearch as a system service on Windows is also very easy. You just need to
go to your Elasticsearch installation directory, then go to the bin subdirectory, and run the
following command:

service.bat install

You’ll be asked for permission to do so. If you allow the script to run, Elasticsearch will
be installed as a Windows service.

If you would like to see all the commands exposed by the service.bat script file, just run
the following command in the same directory as earlier:

service.bat

For example, to start Elasticsearch, we will just run the following command:

service.bat start

www.EBooksWorld.ir

www.EBooksWorld.ir

Manipulating data with the REST API

Elasticsearch exposes a very rich REST API that can be used to search through the data,
index the data, and control Elasticsearch behavior. You can imagine that using the REST
API allows you to get a single document, index or update a document, get the information
on Elasticsearch current state, create or delete indices, or force Elasticsearch to move
around shards of your indices. Of course, these are only examples that show what you can
expect from the Elasticsearch REST API. For now, we will concentrate on using the
create, retrieve, update, delete (CRUD) part of the Elasticsearch API
(https://en.wikipedia.org/wiki/Create,_read,_update_and_delete), which allows us to use

Elasticsearch in a fashion similar to how we would use any other NoSQL

(https://en.wikipedia.org/wiki/NoSQL) data store.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete)
https://en.wikipedia.org/wiki/NoSQL

Understanding the REST API

If you’ve never used an application exposing the REST API, you may be surprised how
easy it is to use such applications and remember how to use them. In REST-like
architectures, every request is directed to a concrete object indicated by a path in the
address. For example, let’s assume that our hypothetical application exposes the /books
REST end-point as a reference to the list of books. In such case, a call to /books/1 could
be a reference to a concrete book with the identifier 1. You can think of it as a data-
oriented model of an API. Of course, we can nest the paths—for example, a path such as
/books/1/chapters could return the list of chapters of our book with identifier 1 and a
path such as /books/1/chapters/6 could be a reference to the sixth chapter in that
particular book.

We talked about paths, but when using the HTTP protocol,
(https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol) we have some additional
verbs (such as POST, GET, PUT, and so on.) that we can use to define system behavior in
addition to paths. So if we would like to retrieve the book with identifier 1, we would use
the GET request method with the /books/1 path. However, we would use the PUT request
method with the same path to create a book record with the identifier or one, the POST
request method to alter the record, DELETE to remove that entry, and the HEAD request
method to get basic information about the data referenced by the path.

Now, let’s look at example HTTP requests that are sent to real Elasticsearch REST API
endpoints, so the preceding hypothetical information will be turned into something real:

GET http://localhost:9200/: This retrieves basic information about Elasticsearch, such
as the version, the name of the node that the command has been sent to, the name of the
cluster that node is connected to, the Apache Lucene version, and so on.

GET http://localhost:9200/_cluster/state/nodes/ This retrieves information about
all the nodes in the cluster, such as their identifiers, names, transport addresses with ports,
and additional node attributes for each node.

DELETE http://localhost:9200/books/book/123: This deletes a document that is
indexed in the books index, with the book type and an identifier of 123.

We now know what REST means and we can start concentrating on Elasticsearch to see
how we can store, retrieve, alter, and delete the data from its indices. If you would like to
read more about REST, please refer to

http://en.wikipedia.org/wiki/Representational state transfer.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Representational_state_transfer

Storing data in Elasticsearch

In Elasticsearch, every document is represented by three attributes—the index, the type,
and the identifier. Each document must be indexed into a single index, needs to have its
type correspond to the document structure, and is described by the identifier. These three
attributes allows us to identify any document in Elasticsearch and needs to be provided
when the document is physically written to the underlying Apache Lucene index. Having
the knowledge, we are now ready to create our first Elasticsearch document.

Creating a new document

We will start learning the Elasticsearch REST API by indexing one document. Let’s
imagine that we are building a CMS system
(http://en.wikipedia.org/wiki/Content_management_system) that will provide the
functionality of a blogging platform for our internal users. We will have different types of
documents in our indices, but the most important ones are the articles that will be
published and are readable by users.

Because we talk to Elasticsearch using JSON notation and Elasticsearch responds to us
again using JSON, our example document could look as follows:

{
Ilidll: "1",
"title": "New version of Elasticsearch released!",
"content": "Version 2.2 released today!",
"priority": 10,
"tags'": ["announce", "elasticsearch", '"release"]

}

As you can see in the preceding code snippet, the JSON document is built with a set of
fields, where each field can have a different format. In our example, we have a set of text
fields (id, title, and content), we have a number (the priority field), and an array of text
values (the tags field). We will show documents that are more complicated in the next
examples.

Note

One of the changes introduced in Elasticsearch 2.0 has been that field names can’t contain
the dot character. Such field names were possible in older versions of Elasticsearch, but
could result in serialization errors in certain cases and thus Elasticsearch creators decided
to remove that possibility.

One thing to remember is that by default Elasticsearch works as a schema-less data store.
This means that it can try to guess the type of the field in a document sent to Elasticsearch.
It will try to use numeric types for the values that are not enclosed in quotation marks and
strings for data enclosed in quotation marks. It will try to guess the date and index them in
dedicated fields and so on. This is possible because the JSON format is semi-typed.
Internally, when the first document with a new field is sent to Elasticsearch, it will be
processed and mappings will be written (we will talk more about mappings in the
Mappings configuration section of Chapter 2, Indexing Your Data).

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Content_management_system

Note

A schema-less approach and dynamic mappings can be problematic when documents
come with a slightly different structure—for example, the first document would contain
the value of the priority field without quotation marks (like the one shown in the discussed
example), while the second document would have quotation marks for the value in the
priority field. This will result in an error because Elasticsearch will try to put a text value
in the numeric field and this is not possible in Lucene. Because of this, it is advisable to
define your own mappings, which you will learn in the Mappings configuration section of
Chapter 2, Indexing Your Data.

Let’s now index our document and make it available for retrieval and searching. We will
index our articles to an index called blog under a type named article. We will also give
our document an identifier of 1, as this is our first document. To index our example
document, we will execute the following command:

curl -XPUT 'http://localhost:9200/blog/article/1' -d '{"title": "New
version of Elasticsearch released!", "content": "Version 2.2 released
today!", "priority": 10, "tags": ["announce", "elasticsearch", "release"]

3
Note a new option to the curl command, the -d parameter. The value of this option is the
text that will be used as a request payload—a request body. This way, we can send
additional information such as the document definition. Also, note that the unique
identifier is placed in the URL and not in the body. If you omit this identifier (while using
the HTTP PUT request), the indexing request will return the following error:

No handler found for uri [/blog/article] and method [PUT]

If everything worked correctly, Elasticsearch will return a JSON response informing us
about the status of the indexing operation. This response should be similar to the following
one:

{
"_index":"blog",
"_type'":"article",
Il_id " : " 1" ,
"_version":1,
"_shards":{

"total":2,
"successful":1,
"failed":0},
"created":true
}

In the preceding response, Elasticsearch included information about the status of the
operation, index, type, identifier, and version. We can also see information about the
shards that took part in the operation—all of them, the ones that were successful and the
ones that failed.

Automatic identifier creation

www.EBooksWorld.ir

In the previous example, we specified the document identifier manually when we were
sending the document to Elasticsearch. However, there are use cases when we don’t have
an identifier for our documents—for example, when handling logs as our data. In such
cases, we would like some application to create the identifier for us and Elasticsearch can
be such an application. Of course, generating document identifiers doesn’t make sense
when your document already has them, such as data in a relational database. In such cases,
you may want to update the documents; in this case, automatic identifier generation is not
the best idea. However, when we are in need of such functionality, instead of using the
HTTP puT method we can use POST and omit the identifier in the REST API path. So if we
would like Elasticsearch to generate the identifier in the previous example, we would send
a command like this:

curl -XPOST 'http://localhost:9200/blog/article/' -d '{"title": "New
version of Elasticsearch released!", "content": "Version 2.2 released
today!", "priority": 10, "tags": ["announce", "elasticsearch", "release"]

} 1
We’ve used the HTTP posT method instead of PUT and we’ve omitted the identifier. The
response produced by Elasticsearch in such a case would be as follows:

{

"_index":"blog",
"_type":"article",
"_id":"AUly-s6w2WzST_RhTvCJ",
"_version":1,
"_shards":{

"total":2,

"successful":1,

"failed":0},
"created":true

}

As you can see, the response returned by Elasticsearch is almost the same as in the
previous example, with a minor difference—the _id field is returned. Now, instead of the
1 value, we have a value of Auly-s6w2wzST_RhTvCJ, which is the identifier Elasticsearch
generated for our document.

www.EBooksWorld.ir

Retrieving documents

We now have two documents indexed into our Elasticsearch instance—one using a
explicit identifier and one using a generated identifier. Let’s now try to retrieve one of the
documents using its unique identifier. To do this, we will need information about the index
the document is indexed in, what type it has, and of course what identifier it has. For
example, to get the document from the blog index with the article type and the identifier of
1, we would run the following HTTP GET request:

curl -XGET 'localhost:9200/blog/article/1?pretty'
Note

The additional URI property called pretty tells Elasticsearch to include new line
characters and additional white spaces in response to make the output easier to read for
users.

Elasticsearch will return a response similar to the following:

{
"_index" : "blog",
"_type" : "article",
ll_idll : Il1ll’
"_version" : 1,
"found" : true,
"_source" : {
"title" : "New version of Elasticsearch released!",
"content" : "Version 2.2 released today!",
"priority" : 10,
"tags" : ["announce", "elasticsearch", '"release"]
}
}

As you can see in the preceding response, Elasticsearch returned the _source field, which
is the original document sent to Elasticsearch and a few additional fields that tell us about
the document, such as the index, type, identifier, document version, and of course
information as towhether the document was found or not (the found property).

If we try to retrieve a document that is not present in the index, such as the one with the
12345 identifier, we get a response like this:

{
"_index" : "blog",
"_type" : "article",
"_id"™ : "12345",
"found" : false

3

As you can see, this time the value of the found property was set to false and there was
no _source field because the document has not been retrieved.

www.EBooksWorld.ir

Updating documents

Updating documents in the index is a more complicated task compared to indexing. When
the document is indexed and Elasticsearch flushes the document to a disk, it creates
segments—an immutable structure that is written once and read many times. This is done
because the inverted index created by Apache Lucene is currently impossible to update (at
least most of its parts). To update a document, Elasticsearch internally first fetches the
document using the GET request, modifies its _source field, removes the old document, and
indexes a new document using the updated content. The content update is done using
scripts in Elasticsearch (we will talk more about scripting in Elasticsearch in the Scripting
capabilities of Elasticsearch section in Chapter 6, Make Your Search Better).

Note

Please note that the following document update examples require you to put the
script.inline: on property into your elasticsearch.yml configuration file. This is
needed because inline scripting is disabled in Elasticsearch for security reasons. The other
way to handle updates is to store the script content in the file in the Elasticsearch
configuration directory, but we will talk about that in the Scripting capabilities of
Elasticsearch section in Chapter 6, Make Your Search Better.

Let’s now try to update our document with identifier 1 by modifying its content field to
contain the This is the updated document sentence. To do this, we need to run a POST
HTTP request on the document path using the _update REST end-point. Our request to
modify the document would look as follows:

curl -XPOST 'http://localhost:9200/blog/article/1/_update' -d '{

"script" : "ctx._source.content = new_content",
"params" : {

"new_content" : "This is the updated document"
}

3
As you can see, we’ve sent the request to the /blog/article/1/_update REST end-point.
In the request body, we’ve provided two parameters—the update script in the script
property and the parameters of the script. The script is very simple; it takes the _source
field and modifies the content field by setting its value to the value of the new_content
parameter. The params property contains all the script parameters.

For the preceding update command execution, Elasticsearch would return the following
response:

{"_index":"blog","_type":"article","_id":"1","_version":2,"_shards":
{"total":2,"successful":1,"failed":0}}

The thing to look at in the preceding response is the _version field. Right now, the
version is 2, which means that the document has been updated (or re-indexed) once.
Basically, each update makes Elasticsearch update the _version field.

We could also update the document using the doc section and providing the changed field,

www.EBooksWorld.ir

for example:

curl -XPOST 'http://localhost:9200/blog/article/1/_update' -d '{
"doc" : {
"content" : "This is the updated document"

}
} 1

We now retrieve the document using the following command:
curl -XGET 'http://localhost:9200/blog/article/1?pretty’

And we get the following response from Elasticsearch:

{
"_index" : "blog",
"_type" : "article",
Il_idll : Il1l|’
"_version" : 2,
"found" : true,
"_source" : {
"title" : "New version of Elasticsearch released!",
"content" : "This is the updated document",
"priority" : 10,
"tags" : ["announce", "elasticsearch", '"release"]
}
}

As you can see, the document has been updated properly.

Note

The thing to remember when using the update API of Elasticsearch is that the _source
field needs to be present because this is the field that Elasticsearch uses to retrieve the
original document content from the index. By default, that field is enabled and
Elasticsearch uses it to store the original document.

Dealing with non-existing documents

The nice thing when it comes to document updates, which we would like to mention as it
can come in handy when using Elasticsearch Update API, is that we can define what
Elasticsearch should do when the document we try to update is not present.

For example, let’s try incrementing the priority field value for a non-existing document
with identifier 2:

curl -XPOST 'http://localhost:9200/blog/article/2/_update' -d '{
"script" : "ctx._source.priority += 1"

} 1
The response returned by Elasticsearch would look more or less as follows:

{"error":{"root_cause":[{"type":"document_missing_exception", "reason":"
[article][2]: document

missing", "shard":"2", "index":"blog"}], "type":"document_missing_exception",k "
reason":"[article][2]: document

www.EBooksWorld.ir

missing", "shard":"2", "index":"blog"}, "status":404}

As you can imagine, the document has not been updated because it doesn’t exist. So now,
let’s modify our request to include the upsert section in our request body that will tell
Elasticsearch what to do when the document is not present. The new command would look
as follows:

curl -XPOST 'http://localhost:9200/blog/article/2/_update' -d '{

"script" : "ctx._source.priority += 1",
"upsert" : {
"title" : "Empty document",

"priority" : 0O,
lltagsll : [llemptyll]
}
} 1
With the modified request, a new document would be indexed; if we retrieve it using the
GET API, it will look as follows:

{
"_index" : "blog",
"_type" : "article",
ll_idll : Il2l|’
"_version" : 1,
"found" : true,
"_source" : {
"title" : "Empty document",
"priority" : 0,
"tagS" : [Ilemptyll]
}
3

As you can see, the fields from the upsert section of our update request were taken by
Elasticsearch and used as document fields.

Adding partial documents

In addition to what we already wrote about the update API, Elasticsearch is also capable
of merging partial documents from the update request to already existing documents or
indexing new documents using information about the request, similar to what we saw seen
with the upsert section.

Let’s imagine that we would like to update our initial document and add a new field called
count to it (setting it to 1 initially). We would also like to index the document under the
specified identifier if the document is not present. We can do this by running the following
command:

curl -XPOST 'http://localhost:9200/blog/article/1/_update' -d '{

"dOC" : {
"count" : 1
3
"doc_as_upsert" : true

}

We specified the new field in the doc section and we said that we want the doc section to

www.EBooksWorld.ir

be treated as the upsert section when the document is not present (with the
doc_as_upsert property set to true).

If we now retrieve that document, we see the following response:

{

"_index" : "blog",
"_type" : "article",
ll_idll : |l1l|’
"_version" : 3,
"found" : true,
"_source" : {
"title" : "New version of Elasticsearch released!",
"content" : "This is the updated document",
"priority" : 10,
"tags" : ["announce", "elasticsearch", '"release"],
"count" : 1
}
}
Note

For a full reference on document updates, please refer to the official Elasticsearch
documentation on the Update API, which is available at

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-update.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-update.html

Deleting documents

Now that we know how to index documents, update them, and retrieve them, it is time to
learn about how we can delete them. Deleting a document from an Elasticsearch index is
very similar to retrieving it, but with one major difference—instead of using the HTTP GET
method, we have to use HTTP DELETE one.

For example, if we would like to delete the document indexed in the blog index under the
article type and with an identifier of 1, we would run the following command:

curl -XDELETE 'localhost:9200/blog/article/1'

The response from Elasticsearch indicates that the document has been deleted and should
look as follows:

{

"found":true,

"_index":"blog",

"_type":"article",

Il_id n : n 1" ,

"_version":4,

"_shards":{
"total":2,
"successful":1,
"failed":0

}

}

Of course, this is not the only thing when it comes to deleting. We can also remove all the
documents of a given type. For example, if we would like to delete the entire blog index,
we should just omit the identifier and the type, so the command would look like this:

curl -XDELETE 'localhost:9200/blog'

The preceding command would result in the deletion of the blog index.

www.EBooksWorld.ir

Versioning

Finally, there is one last thing that we would like to talk about when it comes to data
manipulation in Elasticsearch —the great feature of versioning. As you may have already
noticed, Elasticsearch increments the document version when it does updates to it. We can
leverage this functionality and use optimistic locking
(http://en.wikipedia.org/wiki/Optimistic_concurrency_control), and avoid conflicts and
overwrites when multiple processes or threads access the same document concurrently.
You can assume that your indexing application may want to try to update the document,
while the user would like to update the document while doing some manual work. The
question that arises is: Which document should be the correct one—the one updated by the
indexing application, the one updated by the user, or the merged document of the changes?
What if the changes are conflicting? To handle such cases, we can use versioning.

Usage example

Let’s index a new document to our blog index—one with an identifier of 10, and let’s
index its second version soon after we do that. The commands that do this look as follows:

curl -XPUT 'localhost:9200/blog/article/10' -d '{"title":"Test document"}'
curl -XPUT 'localhost:9200/blog/article/10' -d '{"title":"Updated test
document"}'

Because we’ve indexed the document with the same identifier, it should have a version 2
(you can check it using the GET request).

Now, let’s try deleting the document we’ve just indexed but let’s specify a version
property equal to 1. By doing this, we tell Elasticsearch that we are interested in deleting
the document with the provided version. Because the document is a different version now,
Elasticsearch shouldn’t allow indexing with version 1. Let’s check if what we say is true.
The command we will use to send the delete request looks as follows:

curl -XDELETE 'localhost:9200/blog/article/106?version=1'

The response generated by Elasticsearch should be similar to the following one:

{

"error" : {
"root_cause" : [{
"type" : "version_conflict_engine_exception",
"reason" : "[article][10]: version conflict, current [2], provided
(11",
"shard" : 1,
"index" : "blog"
> 1,
"type" : "version_conflict_engine_exception",
"reason" : "[article][10]: version conflict, current [2], provided
[11",
"shard" : 1,
"index" : "blog"
3

"status" : 409

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Optimistic_concurrency_control

}

As you can see, the delete operation was not successful—the versions didn’t match. If we
set the version property to 2, the delete operation would be successful:

curl -XDELETE 'localhost:9200/blog/article/10?version=2&pretty’

The response this time will look as follows:

{
"found" : true,
"_index" : "blog",
"_type" : "article",
ll_idll : "10",
"_version" : 3,
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0O
}
3

This time the delete operation has been successful because the provided version was
proper.

Versioning from external systems

The very good thing about Elasticsearch versioning capabilities is that we can provide the
version of the document that we would like Elasticsearch to use. This allows us to provide
versions from external data systems that are our primary data stores. To do this, we need
to provide an additional parameter during indexing—version_type=external and, of
course, the version itself. For example, if we would like our document to have the 12345
version, we could send a request like this:

curl -XPUT 'localhost:9200/blog/article/20?
version=12345&version_type=external' -d '{"title":"Test document"}'

The response returned by Elasticsearch is as follows:

{
"_index" : "blog",
"_type" : "article",
Il_idll : IIZOH’
"_version" : 12345,
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : ©
X}
"created" : true
}

We just need to remember that, when using version_type=external, we need to provide
the version in cases where we index the document. In cases where we would like to
change the document and use optimistic locking, we need to provide a version parameter

www.EBooksWorld.ir

equal to, or higher than, the version present in the document.

www.EBooksWorld.ir

www.EBooksWorld.ir

Searching with the URI request query

Before getting into the wonderful world of the Elasticsearch query language, we would
like to introduce you to the simple but pretty flexible URI request search, which allows us
to use a simple Elasticsearch query combined with the Lucene query language. Of course,
we will extend our search knowledge using Elasticsearch in Chapter 3, Searching Your
Data, but for now we will stick to the simplest approach.

www.EBooksWorld.ir

Sample data

For the purpose of this section of the book, we will create a simple index with two
document types. To do this, we will run the following six commands:

curl -XPOST 'localhost:9200/books/es/1' -d '{"title":"Elasticsearch
Server", "published": 2013}’

curl -XPOST 'localhost:9200/books/es/2' -d '{"title":"Elasticsearch Server
Second Edition", "published": 2014}’

curl -XPOST 'localhost:9200/books/es/3' -d '{"title":"Mastering
Elasticsearch", "published": 2013}’

curl -XPOST 'localhost:9200/books/es/4' -d '{"title":"Mastering
Elasticsearch Second Edition", "published": 2015}’

curl -XPOST 'localhost:9200/books/solr/1' -d '{"title":"Apache Solr 4
Cookbook", "published": 2012}’

curl -XPOST 'localhost:9200/books/solr/2' -d '{"title":"Solr Cookbook Third
Edition", "published": 2015}’

Running the preceding commands will create the book’s index with two types: es and
solr. The title and published fields will be indexed and thus, searchable.

www.EBooksWorld.ir

URI search

All queries in Elasticsearch are sent to the _search endpoint. You can search a single
index or multiple indices, and you can restrict your search to a given document type or
multiple types. For example, in order to search our book’s index, we will run the following
command:

curl -XGET 'localhost:9200/books/_search?pretty’

The results returned by Elasticsearch will include all the documents from our book’s index
(because no query has been specified) and should look similar to the following:

{

"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0O
X}
"hits" : {
"total" : 6,
"max_score" : 1.0,
"hits" : [{
"_index" : "books",
"_type" : IIeSIl,
Il_idll : I|2|I’
"_score" : 1.0,
"_source" : {
"title" : "Elasticsearch Server Second Edition",
"published" : 2014
}
Ao
"_index" : "books",
|l_typell : "eS",
|l_id|l : I|4|I,
"_score" : 1.0,
"_source" : {
"title" : "Mastering Elasticsearch Second Edition",
"published" : 2015
}
Ao
"_index" : "books",
|l_typell : "SOlr",
|l_id|l : I|2|I’
"_score" : 1.0,
"_source" : {
"title" : "Solr Cookbook Third Edition",
"published" : 2015
}
Ao
"_index" : "books",
|l_typell : "eS",
|l_id|l : "1",
"_score" : 1.0,

www.EBooksWorld.ir

"_source" : {
"title" : "Elasticsearch Server",
"published" : 2013

}
3 Ao
"_index" : "books",
"_type" : "SOlr",
Il_idll : II1II’
"_score" : 1.0,
"_source" : {
"title" : "Apache Solr 4 Cookbook",
"published" : 2012
3
3 Ao
"_index" : "books",
"_type" : "eS",
ll_idll : I|3|I’
"_score" : 1.0,
"_source" : {
"title" : "Mastering Elasticsearch",
"published" : 2013
}
3]
}
3

As you can see, the response has a header that tells you the total time of the query and the
shards used in the query process. In addition to this, we have documents matching the
query—the top 10 documents by default. Each document is described by the index, type,
identifier, score, and the source of the document, which is the original document sent to
Elasticsearch.

We can also run queries against many indices. For example, if we had another index called
clients, we could also run a single query against these two indices as follows:

curl -XGET 'localhost:9200/books,clients/_search?pretty’

We can also run queries against all the data in Elasticsearch by omitting the index names
completely or setting the queries to _all:

curl -XGET 'localhost:9200/_search?pretty’
curl -XGET 'localhost:9200/_all/_search?pretty'

In a similar manner, we can also choose the types we want to use during searching. For
example, if we want to search only in the es type in the book’s index, we run a command
as follows:

curl -XGET 'localhost:9200/books/es/_search?pretty'

Please remember that, in order to search for a given type, we need to specify the index or
multiple indices. Elasticsearch allows us to have quite a rich semantics when it comes to
choosing index names. If you are interested, please refer to
https://www.elastic.co/guide/en/elasticsearch/reference/current/multi-index.html; however,
there is one thing we would like to point out. When running a query against multiple

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/multi-index.html

indices, it may happen that some of them do not exist or are closed. In such cases, the
ignore_unavailable property comes in handy. When set to true, it tells Elasticsearch to
ignore unavailable or closed indices.

For example, let’s try running the following query:
curl -XGET 'localhost:9200/books,non_existing/_search?pretty'

The response would be similar to the following one:

{
"error" : {
"root_cause" : [{
"type" : "index_missing_exception",
"reason" : "no such index",
"index" : "non_existing"
1
"type" : "index_missing_exception",
"reason" : "no such index",
"index" : "non_existing"
I
"status" : 404
}

Now let’s check what will happen if we add the ignore_unavailable=true to our request
and execute the following command:

curl -XGET 'localhost:9200/books,non_existing/_search?
pretty&ignore_unavailable=true'

In this case, Elasticsearch would return the results without any error.
Elasticsearch query response

Let’s assume that we want to find all the documents in our book’s index that contain the
elasticsearch term in the title field. We can do this by running the following query:

curl -XGET 'localhost:9200/books/_search?pretty&q=title:elasticsearch'

The response returned by Elasticsearch for the preceding request will be as follows:

{

"took" : 37,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
3
"hits" : {
"total" : 4,
"max_score" : 0.625,
"hits" : [{
"_index" : "books",
|I_typell : "eS",
|I_id|l : I|1|I’
"_score" : 0.625,

www.EBooksWorld.ir

"_source" : {
"title" : "Elasticsearch Server",
"published" : 2013

}
3 Ao
"_index" : "books",
"_type" : "eS",
Il_idll : Il2|I’
"_score" : 0.5,
"_source" : {
"title" : "Elasticsearch Server Second Edition",
"published" : 2014
}
3 Ao
"_index" : "books",
ll_typell : "eS",
ll_idll : I|4|I’
"_score" : 0.5,
"_source" : {
"title" : "Mastering Elasticsearch Second Edition",
"published" : 2015
}
A
"_index" : "books",
"_type" : Ilesll,
Il_idll : I|3|I’
"_score" : 0.19178301,
"_source" : {
"title" : "Mastering Elasticsearch",
"published" : 2013
}
3]

b
}

The first section of the response gives us information about how much time the request
took (the took property is specified in milliseconds), whether it was timed out (the
timed_out property), and information about the shards that were queried during the
request execution—the number of queried shards (the total property of the _shards
object), the number of shards that returned the results successfully (the successful property
of the _shards object), and the number of failed shards (the failed property of the _shards
object). The query may also time out if it is executed for a longer period than we want.
(We can specify the maximum query execution time using the timeout parameter.) The
failed shard means that something went wrong with that shard or it was not available
during the search execution.

Of course, the mentioned information can be useful, but usually, we are interested in the
results that are returned in the hits object. We have the total number of documents returned
by the query (in the total property) and the maximum score calculated (in the max_score
property). Finally, we have the hits array that contains the returned documents. In our
case, each returned document contains its index name (the _index property), the type (the
_type property), the identifier (the _id property), the score (the _score property), and the

www.EBooksWorld.ir

_source field (usually, this is the JSON object sent for indexing.

www.EBooksWorld.ir

Query analysis

You may wonder why the query we’ve run in the previous section worked. We indexed the
Elasticsearch term and ran a query for Elasticsearch and even though they differ
(capitalization), the relevant documents were found. The reason for this is the analysis.
During indexing, the underlying Lucene library analyzes the documents and indexes the
data according to the Elasticsearch configuration. By default, Elasticsearch will tell
Lucene to index and analyze both string-based data as well as numbers. The same happens
during querying because the URI request query maps to the query_string query (which
will be discussed in Chapter 3, Searching Your Data), and this query is analyzed by
Elasticsearch.

Let’s use the indices-analyze API

(https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html). It
allows us to see how the analysis process is done. With this, we can see what happened to

one of the documents during indexing and what happened to our query phrase during
querying.

In order to see what was indexed in the title field of the Elasticsearch server phrase, we
will run the following command:

curl -XGET 'localhost:9200/books/_analyze?pretty&field=title' -d
'Elasticsearch Server'

The response will be as follows:

{
"tokens" : [{

"token" : "elasticsearch",
"start_offset" : 0,
"end_offset" : 13,
"type" : "<ALPHANUM>",
"position" : ©

A
"token" : "server",
"start_offset" : 14,
"end_offset" : 20,
"type" : "<ALPHANUM>",
"position" : 1

1]

}

You can see that Elasticsearch has divided the text into two terms—the first one has a
token value of elasticsearch and the second one has a token value of the server.

Now let’s look at how the query text was analyzed. We can do this by running the
following command:

curl -XGET 'localhost:9200/books/_analyze?pretty&field=title' -d
'elasticsearch'

The response of the request will look as follows:

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html

{
"tokens" : [{

"token" : "elasticsearch",
"start_offset" : 0O,
"end_offset" : 13,

"type" : "<ALPHANUM>",
"position" : 0O

3]
}

We can see that the word is the same as the original one that we passed to the query. We
won’t get into the Lucene query details and how the query parser constructed the query,
but in general the indexed term after the analysis was the same as the one in the query
after the analysis; so, the document matched the query and the result was returned.

www.EBooksWorld.ir

URI query string parameters

There are a few parameters that we can use to control URI query behavior, which we will
discuss now. The thing to remember is that each parameter in the query should be
concatenated with the & character, as shown in the following example:

curl -XGET 'localhost:9200/books/_search?
pretty&q=published:2013&df=title&explain=true&default_operator=AND'

Please remember to enclose the URL of the request using the ' characters because, on
Linux-based systems, the & character will be analyzed by the Linux shell.

The query

The g parameter allows us to specify the query that we want our documents to match. It
allows us to specify the query using the Lucene query syntax described in the Lucene
query syntax section later in this chapter. For example, a simple query would look like
this: g=title:elasticsearch.

The default search field

Using the df parameter, we can specify the default search field that should be used when
no field indicator is used in the q parameter. By default, the _al1l field will be used. (This
is the field that Elasticsearch uses to copy the content of all the other fields. We will
discuss this in greater depth in Chapter 2, Indexing Your Data). An example of the df
parameter value can be df=title.

Analyzer

The analyzer property allows us to define the name of the analyzer that should be used to
analyze our query. By default, our query will be analyzed by the same analyzer that was
used to analyze the field contents during indexing.

The default operator property

The default_operator property that can be set to OR or AND, allows us to specify the
default Boolean operator used for our query
(http://en.wikipedia.org/wiki/Boolean_algebra). By default, it is set to OR, which means
that a single query term match will be enough for a document to be returned. Setting this
parameter to AND for a query will result in returning the documents that match all the query
terms.

Query explanation

If we set the explain parameter to true, Elasticsearch will include additional explain
information with each document in the result—such as the shard from which the document
was fetched and the detailed information about the scoring calculation (we will talk more
about it in the Understanding the explain information section in Chapter 6, Make Your
Search Better). Also remember not to fetch the explain information during normal search
queries because it requires additional resources and adds performance degradation to the
queries. For example, a query that includes explain information could look as follows:

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Boolean_algebra

curl -XGET 'localhost:9200/books/_search?pretty&explain=true&q=title:solr'

The results returned by Elasticsearch for the preceding query would be as follows:

{

"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0O
X}
"hits" : {
"total" : 2,
"max_score" : 0.70273256,
"hits" : [{
"_shard" : 2,
"_node" : "v5iRsht9SOwWVzu-GY-YH1A",
"_index" : "books",
"_type" : "golr" ,
ll_idll : I|2|I’
"_score" : 0.70273256,
"_source" : {
"title" : "Solr Cookbook Third Edition",
"published" : 2015
I
"_explanation" : {
"value" : 0.70273256,
"description" : "weight(title:solr in 0) [PerFieldSimilarity],

result of:",
"details" : [{
"value" : 0.70273256,
"description" : "fieldweight in O, product of:",
"details" : [{
"value" : 1.0,
"description" : "tf(freg=1.0), with freq of:",
"details" : [{
"value" : 1.0,
"description" : "termFreq=1.0",
"details" : []

3]

o {
"value" : 1.4054651,

"description" : "idf(docFreg=1, maxDocs=3)",
"details" : []

o
"value" : 0.5,
"description" : "fieldNorm(doc=0)",
"details" : []

3]
3]
}

A
"_shard" : 3,

"_node" : "v5iRsht9SOwWVzu-GY-YH1A",
"_index" : "books",

www.EBooksWorld.ir

"_type" : "golr" ,
Il_idll : Il1|| ,
"_score" : 0.5,
"_source" : {
"title" : "Apache Solr 4 Cookbook",
"published" : 2012
I
"_explanation" : {
"value" : 0.5,
"description" : "weight(title:solr in 1) [PerFieldSimilarity],
result of:",
"details" : [{
"value" : 0.5,
"description" : "fieldweight in 1, product of:",
"details" : [{
"value" : 1.0,
"description" : "tf(freg=1.0), with freq of:",
"details" : [{
"value" : 1.0,
"description" : "termFreq=1.0",
"details" : []

;]
o Aq

"value" : 1.0,
"description" : "idf(docFreq=1, maxDocs=2)",
"details" : []

3 {

"value" : 0.5,
"description" : "fieldNorm(doc=1)",
"details" : []

}]
3]

3]
b
}

The fields returned

By default, for each document returned, Elasticsearch will include the index name, the
type name, the document identifier, score, and the _source field. We can modify this
behavior by adding the fields parameter and specifying a comma-separated list of field
names. The field will be retrieved from the stored fields (if they exist; we will discuss
them in Chapter 2, Indexing Your Data) or from the internal _source field. By default, the
value of the fields parameter is _source. An example is: fields=title, priority.

We can also disable the fetching of the _source field by adding the _source parameter
with its value set to false.

Sorting the results

Using the sort parameter, we can specify custom sorting. The default behavior of
Elasticsearch is to sort the returned documents in descending order of the value of the
_score field. If we want to sort our documents differently, we need to specify the sort

www.EBooksWorld.ir

parameter. For example, adding sort=published:desc will sort the documents in
descending order of published field. By adding the sort=published:asc parameter, we
will tell Elasticsearch to sort the documents on the basis of the published field in
ascending order.

If we specify custom sorting, Elasticsearch will omit the _score field calculation for the
documents. This may not be the desired behavior in your case. If you want to still keep a
track of the scores for each document when using a custom sort, you should add the
track_scores=true property to your query. Please note that tracking the scores when
doing custom sorting will make the query a little bit slower (you may not even notice the
difference) due to the processing power needed to calculate the score.

The search timeout

By default, Elasticsearch doesn’t have timeout for queries, but you may want your queries
to timeout after a certain amount of time (for example, 5 seconds). Elasticsearch allows
you to do this by exposing the timeout parameter. When the timeout parameter is
specified, the query will be executed up to a given timeout value and the results that were
gathered up to that point will be returned. To specify a timeout of 5 seconds, you will have
to add the timeout=5s parameter to your query.

The results window

Elasticsearch allows you to specify the results window (the range of documents in the
results list that should be returned). We have two parameters that allow us to specify the
results window size: size and from. The size parameter defaults to 10 and defines the
maximum number of results returned. The from parameter defaults to 0 and specifies from
which document the results should be returned. In order to return five documents starting
from the 11th one, we will add the following parameters to the query: size=5&from=10.

Limiting per-shard results

Elasticsearch allows us to specify the maximum number of documents that should be
fetched from each shard using terminate_after property and specifying the maximum
number of documents. For example, if we want to get no more than 100 documents from
each shard, we can add terminate_after=100 to our URI request.

Ignoring unavailable indices

When running queries against multiple indices, it is handy to tell Elasticsearch that we
don’t care about the indices that are not available. By default, Elasticsearch will throw an
error if one of the indices is not available, but we can change this by simply adding the
ignore_unavailable=true parameter to our URI request.

The search type

The URI query allows us to specify the search type using the search_type parameter,
which defaults to query_then_fetch. Two values that we can use here are:
dfs_query_then_fetch and query_then_fetch. The rest of the search types available in
older Elasticsearch versions are now deprecated or removed. We’ll learn more about

www.EBooksWorld.ir

search types in the Understanding the querying process section of Chapter 3, Searching
Your Data.

Lowercasing term expansion

Some queries, such as the prefix query, use query expansion. We will discuss this in the
Query rewrite section in Chapter 4, Extending Your Querying Knowledge. We are allowed
to define whether the expanded terms should be lowercased or not using the
lowercase_expanded_terms property. By default, the lowercase_expanded_terms
property is set to true, which means that the expanded terms will be lowercased.

Wildcard and prefix analysis

By default, wildcard queries and prefix queries are not analyzed. If we want to change this
behavior, we can set the analyze wildcard property to true.

Note

If you want to see all the parameters exposed by Elasticsearch as the URI request
parameters, please refer to the official documentation available at:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html

Lucene query syntax

We thought that it would be good to know a bit more about what syntax can be used in the
q parameter passed in the URI query. Some of the queries in Elasticsearch (such as the one
currently being discussed) support the Lucene query parser syntax—the language that
allows you to construct queries. Let’s take a look at it and discuss some basic features.

A query that we pass to Lucene is divided into terms and operators by the query parser.
Let’s start with the terms; you can distinguish them into two types—single terms and
phrases. For example, to query for a book term in the title field, we will pass the
following query:

title:book

To query for the elasticsearch book phrase in the title field, we will pass the following
query:
title:"elasticsearch book"

You may have noticed the name of the field in the beginning and in the term or the phrase
later.

As we already said, the Lucene query syntax supports operators. For example, the +
operator tells Lucene that the given part must be matched in the document, meaning that
the term we are searching for must present in the field in the document. The - operator is
the opposite, which means that such a part of the query can’t be present in the document.
A part of the query without the + or - operator will be treated as the given part of the query
that can be matched but it is not mandatory. So, if we want to find a document with the
book term in the title field and without the cat term in the description field, we send the
following query:

+title:book -description:cat

We can also group multiple terms with parentheses, as shown in the following query:

title:(crime punishment)

We can also boost parts of the query (this increases their importance for the scoring
algorithm —the higher the boost, the more important the query part is) with the A operator
and the boost value after it, as shown in the following query:

title:book”r4

These are the basics of the Lucene query language and should allow you to use
Elasticsearch and construct queries without any problems. However, if you are interested
in the Lucene query syntax and you would like to explore that in depth, please refer to the
official documentation of the query parser available at
http://lucene.apache.org/core/5_4_0/queryparser/org/apache/lucene/queryparser/classic/pac

summary.html.

www.EBooksWorld.ir

http://lucene.apache.org/core/5_4_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html

www.EBooksWorld.ir

Summary

In this chapter, we learned what full text search is and the contribution Apache Lucene
makes to this. In addition to this, we are now familiar with the basic concepts of
Elasticsearch and its top-level architecture. We used the Elasticsearch REST API not only
to index data, but also to update, retrieve, and finally delete it. We’ve learned what
versioning is and how we can use it for optimistic locking in Elasticsearch. Finally, we
searched our data using the simple URI query.

In the next chapter, we’ll focus on indexing our data. We will see how Elasticsearch
indexing works and what the role of primary shards and replicas is. We’ll see how
Elasticsearch handles data that it doesn’t know and how to create our own mappings—the
JSON structure that describes the structure of our index. We’ll also learn how to use batch
indexing to speed up the indexing process and what additional information can be stored
along with our index to help us achieve our goal. In addition, we will discuss what an
index segment is, what segment merging is, and how to tune a segment. Finally, we’ll see
how routing works in Elasticsearch and what options we have when it comes to both
indexing and querying routing.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 2. Indexing Your Data

In the previous chapter, we learned what full text search is and how Apache Lucene fits
there. We were introduced to the basic concepts of Elasticsearch and we are now familiar
with its top-level architecture, so we know how it works. We used the REST API to index
data, to update it, to delete it, and of course to retrieve it. We searched our data with the
simple URI query and we used versioning that allowed us to use optimistic locking
functionality. By the end of this chapter, you will have learned the following topics:

Basic information about Elasticsearch indexing
Adjusting Elasticsearch schema-less behavior
Creating your own mappings

Using out of the box analyzers

Configuring your own analyzers

Index data in batches

Adding additional internal information to indices
Segment merging

Routing

www.EBooksWorld.ir

Elasticsearch indexing

So far we have our Elasticsearch cluster up and running. We also know how to use
Elasticsearch REST API to index our data, we know how to retrieve it, and we also know
how to remove the data that we no longer need. We’ve also learned how to search in our
data by using the URI request search and Apache Lucene query language. However, until
now we’ve used Elasticsearch functionality that allows us not to care about indices,
shards, and data structure. This is not something that you may be used to when you are
coming from the world of SQL databases, where you need the database and the tables with
all the columns created upfront. In general, you needed to describe the data structure to be
able to put data into the database. Elasticsearch is schema-less and by default creates
indices automatically and because of that we can just install it and index data without the
need of any preparations. However, this is usually not the best situation when it comes to
production environments where you want to control the analysis of your data. Because of
that we will start with showing you how to manage your indices and then we will get you
through the world of mappings in Elasticsearch.

www.EBooksWorld.ir

Shards and replicas

In Chapter 1, Getting Started with Elasticsearch Cluster, we told you that indices in
Elasticsearch are built from one or more shards. Each of those shards contains part of the
document set and each shard is a separate Lucene index. In addition to that, each shard can
have replicas — physical copies of the primary shard itself. When we create an index, we
can tell Elasticsearch how many shards it should be built from.

Note

The default number of shards that Elasticsearch uses is 5 and each index will also contain
a single replica. The default configuration can be changed by setting the
index.number_of_shards and index.number_of_replicas properties in the
elasticsearch.yml configuration file.

When defaults are used, we will end up with five Apache Lucene indices that our
Elasticsearch index is built of and one replica for each of those. So, with five shards and
one replica, we would actually get 10 shards. This is because each shard would get its own
copy, so the total number of shards in the cluster would be 10.

Dividing indices in such a way allows us to spread the shards across the cluster. The nice
thing about that is that all the shards will be automatically spread throughout the cluster. If
we have a single node, Elasticsearch will put the five primary shards on that node and will
leave the replicas unassigned, because Elasticsearch doesn’t assign shards and their
replicas to the same node. The reason for that is simple — if a node would crash, we would
lose both the primary source of the data and all the copies. So, if you have one
Elasticsearch node, don’t worry about replicas not being assigned — it is something to be
expected. Of course when you have enough nodes for Elasticsearch to assign all the
replicas (in addition to shards), it is not good to not have them assigned and you should
look for the probable causes of that situation.

The thing to remember is that having shards and replicas is not free. First of all, each
replica needs additional disk space, exactly the same amount of space that the original
shard needs. So if we have 3 replicas for our index, we will actually need 4 times more
space. If our primary shard weighs 100GB in total, with 3 replicas we would need 400GB
— 100GB for each replica. However, this is not the only cost. Each replica is a Lucene
index on its own and Elasticsearch needs some memory to handle that. The more shards in
the cluster, the more memory is being used. And finally, having replicas means that we
will have to do indexation on each of the replica, in addition to the indexation on the
primary shard. There is a notion of shadow replicas which can copy the whole binary
index, but, in most cases, each replica will do its own indexation. The good thing about
replicas is that Elasticsearch will try to spread the query and get requests evenly between
the shards and their replicas, which means that we can scale our cluster horizontally by
using them.

So to sum up the conclusions:

e Having more shards in the index allows us to spread the index between more servers

www.EBooksWorld.ir

and parallelize the indexing operations and thus have better indexing throughput.

¢ Depending on your deployment, having more shards may increase query throughput
and lower queries latency — especially in environments that don’t have a large
number of queries per second.

e Having more shards may be slower compared to a single shard query, because
Elasticsearch needs to retrieve the data from multiple servers and combine them
together in memory, before returning the final query results.

e Having more replicas results in a more resilient cluster, because when the primary
shard is not available, its copy will take that role. Basically, having a single replica
allows us to lose one copy of a shard and still serve the whole data. Having two
replicas allows us to lose two copies of the shard and still see the whole data.

e The higher the replica count, the higher queries throughput the cluster will have.
That’s because each replica can serve the data it has independently from all the
others.

e The higher number of shards (both primary and replicas) will result in more memory
needed by Elasticsearch.

Of course, these are not the only relationships between the number of shards and replicas
in Elasticsearch. We will talk about most of them later in the book.

So, how many shards and replicas should we have for our indices? That depends. We
believe that the defaults are quite good but nothing can replace a good test. Note that the
number of replicas is not very important because you can adjust it on a live cluster after
index creation. You can remove and add them if you want and have the resources to run
them. Unfortunately, this is not true when it comes to the number of shards. Once you
have your index created, the only way to change the number of shards is to create another
index and re-index your data.

Write consistency

Elasticsearch allows us to control the write consistency to prevent writes happening when
they should not. By default, Elasticsearch indexing operation is successful when the write
is successful on the quorum on active shards — meaning 50% of the active shards plus one.
We can control this behavior by adding action.write_consitency to our
elasticsearch.yml file or by adding the consistency parameter to our index request. The
mentioned properties can take the following values:

e quorum: The default value, requiring 50% plus 1 active shards to be successful for the
index operation to succeed

e one: Requires only a single active shard to be successful for the index operation to
succeed

e all: Requires all the active shards to be successful for the index operation to succeed

www.EBooksWorld.ir

Creating indices

When we were indexing our documents in Chapter 1, Getting Started with Elasticsearch
Cluster, we didn’t care about index creation at all. We assumed that Elasticsearch will do
everything for us and actually it was true; we just used the following command:

curl -XPUT 'http://localhost:9200/blog/article/1' -d '{"title": "New
version of Elasticsearch released!", "content": "Version 1.0 released
today!", "tags": ["announce", "elasticsearch", "release"] }'

This is just fine. If such an index does not exist, Elasticsearch automatically creates the
index for us. However, there are times when we want to create indices ourselves for
various reasons. Maybe we would like to have control over which indices are created to
avoid errors or maybe we have some non default settings that we would like to use when
creating a particular index. The reasons may differ, but it’s good to know that we can
create indices without indexing documents.

The simplest way to create an index is to run a PUT HTTP request with the name of the
index we want to create. For example, to create an index called blog, we could use the
following command:

curl -XPUT http://localhost:9200/blog/

We just told Elasticsearch that we want to create the index with the name blog. If
everything goes right, you will see the following response from Elasticsearch:

{"acknowledged": true}

Altering automatic index creation

We already mentioned that automatic index creation is not the best idea in some cases. For
example, a simple typo during index creation can lead to creating hundreds of unused
indices and make cluster state information larger than it should be, putting more pressure
on Elasticsearch and the underlying JVM. Because of that, we can turn off automatic
index creation by adding a simple property to the elasticsearch.yml configuration file:

action.auto _create_index: false

Let’s stop for a while and discuss the action.auto_create_index property, because it
allows us to do more complicated things than just allowing (setting it to true) and
disabling (setting it to false) automatic index creation. The mentioned property allows us
to use patterns that specify the index names which should be allowed to be automatically
created and which should be disallowed. For example, let’s assume that we would like to
allow automatic index creation for indices starting with logs and we would like to disallow
all the others. To do something like this, we would set the action.auto_create_index
property to something as follows:

action.auto_create_index: +logs*, -*

Now if we would like to create an index called 1ogs_2015-10-01, we would succeed. To
create such an index, we would use the following command:

www.EBooksWorld.ir

curl -XPUT http://localhost:9200/1logs_2015-10-01/1log/1 -d '{"message":
"Test log message" }'

Elasticsearch would respond with:

{
"_index" : "logs_2015-10-01",
"_type" : nlogu ,
ll_idll : |l1l|’
"_version" : 1,
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0O
X}
"created" : true
}

However, suppose we now try to create the blog using the following command:

curl -XPUT http://localhost:9200/blog/article/1 -d '{"title": "Test article
title" }'

Elasticsearch would respond with an error similar to the following one:

{

"error" : {
"root_cause" : [{
"type" : "index_not_found_exception",
"reason" : "no such index",
"resource.type" : "index_expression",
"resource.id" : "blog",
"index" : "blog"
1
"type" : "index_not_found_exception",
"reason" : "no such index",
"resource.type" : "index_expression",
"resource.id" : "blog",
"index" : "blog"
I

"status" : 404
}

One thing to remember is that the order of pattern definitions matters. Elasticsearch
checks the patterns up to the first pattern that matches, so if we move -* as the first
pattern, the +1ogs* pattern won’t be used at all.

Settings for a newly created index

Manual index creation is also necessary when we want to pass non default configuration
options during index creation; for example, initial number of shards and replicas. We can
do that by including JSON payload with settings as the PUT HTTP request body. For
example, if we would like to tell Elasticsearch that our blog index should only have a
single shard and two replicas initially, the following command could be used:

curl -XPUT http://localhost:9200/blog/ -d '{

www.EBooksWorld.ir

"settings" : {
"number_of_shards" : 1,
"number_of_replicas" : 2

} 1
The preceding command will result in the creation of the blog index with one shard and
two replicas, making a total of three physical Lucene indices — called shards as we already

know. Of course there are a lot more settings that we can use, but what we did is enough
for now and we will learn about the rest throughout the book.

Index deletion

Of course, similar to how we handled documents, Elasticsearch allows us to delete indices
as well. Deleting an index is very similar to creating it, but instead of using the PUT HTTP
method, we use the DELETE one. For example, if we would like to delete our previously
created blog index, we would run the following command:

curl -XDELETE http://localhost:9200/blog

The response will be the same as the one we saw earlier when we created an index and
should look as follows:

{"acknowledged": true}

Now that we know what an index is, how to create it, and how to delete it, we are ready to
create indices with the mappings we have defined. Even though Elasticsearch is schema-—
less, there are a lot of situations where we would like to manually create the schema, to
avoid any problems with the index structure.

www.EBooksWorld.ir

www.EBooksWorld.ir

Mappings configuration

If you are used to SQL databases, you may know that before you can start inserting the
data in the database, you need to create a schema, which will describe what your data
looks like. Although Elasticsearch is a schema-less (we rather call it data driven schema)
search engine and can figure out the data structure on the fly, we think that controlling the
structure and thus defining it ourselves is a better way. The field type determining
mechanism is not going to guess the future. For example, if you first send an integer
value, such as 60, and you send a float value such as 70.23 for the same field, an error
can happen or Elasticsearch will just cut off the decimal part of the float value (which is
actually what happens). This is because Elasticsearch will first set the field type to integer
and will try to index the float value to the integer field which will cause cutting of the
decimal point in the floating point number. In the next few pages you’ll see how to create
mappings that suit your needs and match your data structure.

Note

Note that we didn’t include all the information about the available types in this chapter
and some features of Elasticsearch, such as nested type, parent-child handling, storing
geographical points, and search, are described in the following chapters of this book.

www.EBooksWorld.ir

Type determining mechanism

Before we start describing how to create mappings manually, we want to get back to the
automatic type determining algorithm used in Elasticsearch. As we already said,
Elasticsearch can try guessing the schema for our documents by looking at the JSON that
the document is built from. Because JSON is structured, that seems easy to do. For
example, strings are surrounded by quotation marks, Booleans are defined using specific
words, and numbers are just a few digits. This is a simple trick, but it usually works. For
example, let’s look at the following document:

{
"field1l": 1,
"field2": "10"
}

The preceding document has two fields. The fieldi field will be given a type number (to
be precise, that field will be given a long type). The second field, called field2 will be
given a string type, because it is surrounded by quotation marks. Of course, for some use
cases this can be the desired behavior. However, if somehow we would surround all the
data using quotation mark (which is not the best idea anyway) our index structure would
contain only string type fields.

Note

Don’t worry about the fact that you are not familiar with what are the numeric types, the
string types, and so on. We will describe them after we show you what you can do to tune
the automatic type determining mechanism in Elasticsearch.

Disabling the type determining mechanism

The first solution is to completely disable the schema-less behavior in Elasticsearch. We
can do that by adding the index.mapper .dynamic property to our index properties and
setting it to false. We can do that by running the following command to create the index:

curl -XPUT 'localhost:9200/sites' -d '{
"index.mapper.dynamic": false

} 1

By doing that we told Elasticsearch that we don’t want it to guess the type of our
documents in the site’s index and that we will provide the mappings ourselves. If we will
try indexing some example document to the site’s index, we will get the following error:

{

"error" : {
"root_cause" : [{
"type" : "type_missing_exception",
"reason" : "type[[doc, trying to auto create mapping, but dynamic
mapping is disabled]] missing",
"index" : "sites"
> 1,
"type" : "type_missing_exception",
"reason" : "type[[doc, trying to auto create mapping, but dynamic

www.EBooksWorld.ir

mapping is disabled]] missing",
"index" : "sites"

}
"status" : 4064

}

This is because we didn’t create any mappings — no schema for documents was created.
Elasticsearch couldn’t create one for us because we didn’t allow it and the indexation
command failed.

Of course this is not the only thing we can do when it comes to configuring how the type
determining mechanism works. We can also tune it or disable it for a given type on the
object level. We will talk about the second case in Chapter 5, Extending Your Index
Structure. For now, let’s look at the possibilities of tuning type determining mechanism in
Elasticsearch.

Tuning the type determining mechanism for numeric types

One of the solutions to the problems with JSON documents and type guessing is that we
are not always in control of the data. The documents that we are indexing can come from
multiple places and some systems in our environment may include quotation marks for all
the fields in the document. This can lead to problems and bad guesses. Because of that,
Elasticsearch allows us to enable more aggressive fields value checking for numeric fields
by setting the numeric_detection property to true in the mappings definition. For
example, let’s assume that we want to create an index called users and we want it to have
the user type on which we will want more aggressive numeric fields parsing. To do that,
we will use the following command:

curl -XPUT http://localhost:9200/users/?pretty -d '{
"mappings" : {
"user": {
"numeric_detection" : true

}
}
}l

Now let’s run the following command to index a single document to the users index:

curl -XPOST http://localhost:9200/users/user/1 -d '{"name": "User 1",
"age": "20"}]

Earlier, with the default settings, the age field would be set to string type. With the
numeric_detection property set to true, the type of the age field will be set to long. We
can check that by running the following command (it will retrieve the mappings for all the
types in the users index):

curl -XGET 'localhost:9200/users/_mapping?pretty'

The preceding command should result in the following response returned by Elasticsearch:

{

"users" : {
"mappings" : {

www.EBooksWorld.ir

"user" : {

"numeric_detection" : true,
"properties" : {
Ilagell : {
lltypell : lllongll
I
"name" : {
"type" : "string"
}
3

As we can see, the age field was really set to be of type long.

Tuning the type determining mechanism for dates

Another type of data that causes trouble are fields with dates. Dates can come in different
flavors, for example, 2015-10-01 11:22:33 is a proper date and so is 2015-10-
01T11:22:33+00. Because of that, Elasticsearch tries to match the fields to timestamps or
strings that match some given date format. If that matching operation is successful, the
field is treated as a date based one. If we know how our date fields look, we can help
Elasticsearch by providing a list of recognized date formats using the
dynamic_date_formats property, which allows us to specify the formats array. Let’s look
at the following command for creating an index:

curl -XPUT 'http://localhost:9200/blog/' -d '{
"mappings" : {
"article" : {
"dynamic_date_formats" : ["yyyy-MM-dd hh:mm"]
}

}
3
The preceding command will result in the creation of an index called blog with the single
type called article. We’ve also used the dynamic_date_formats property with a single
date format that will result in Elasticsearch using the date core type (refer to the Core
types section in this chapter for more information about field types) for fields matching
the defined format. Elasticsearch uses the joda-time library to define the date formats, so
visit http://joda-time.sourceforge.net/api-
release/org/joda/time/format/DateTimeFormat.html if you are interested in knowing about
them.

Note

Remember that the dynamic_date_format property accepts an array of values. That means
that we can handle several date formats simultaneously.

With the preceding index, we can now try indexing a new document using the following
command:

www.EBooksWorld.ir

http://joda-time.sourceforge.net/api-release/org/joda/time/format/DateTimeFormat.html

curl -XPUT localhost:9200/blog/article/1 -d '{"name": "Test",
"test_field":"2015-10-01 11:22"}'

Elasticsearch will of course index that document, but let’s look at the mappings created for
our index:

curl -XGET 'localhost:9200/blog/_mapping?pretty'

The response for the preceding command will be as follows:

{
"blog" : {
"mappings" : {

"article" : {
"dynamic_date_formats" : ["yyyy-MM-dd hh:mm" 7],
"properties" : {

"name" : {
"type" : "string"

I

"test_field" : {
lltypell . lldate"’
"format" : "yyyy-MM-dd hh:mm"

}

}
}
}
}
}

As we can see, the test_field field was given a date type, so our tuning works.

Unfortunately, the problem still exists if we want the Boolean type to be guessed. There is
no option to force the guessing of Boolean types from the text. In such cases, when a
change of source format is impossible, we can only define the field directly in the
mappings definition.

www.EBooksWorld.ir

Index structure mapping

Each data has its own structure — some are very simple, and some include complicated
object relations, children documents, and nested properties. In each case, we need to have
a schema in Elasticsearch called mappings that define how the data looks. Of course, we
can use the schema-less nature of Elasticsearch, but we can and we usually want to
prepare the mappings upfront, so we know how the data is handled.

For the purposes of this chapter, we will use a single type in the index. Of course,
Elasticsearch as a multitenant system allows us to have multiple types in a single index,
but we want to simplify the example, to make it easier to understand. So, for the purpose
of the next few pages, we will create an index called posts that will hold data for
documents in a post type. We also assume that the index will hold the following
information:

Unique identifier of the blog post
Name of the blog post
Publication date

Contents — text of the post itself

In Elasticsearch, mappings, as with almost all communication, are sent as JSON objects in
the request body. So, if we want to create the simplest mappings that matches our need, it
will look as follows (we stored the mappings in the posts. json file, so we can easily send
it):

{
"mappings": {
llpostll: {
"properties": {
llidll : { Iltypell : Illongll }’
"name": { "type":"string" },
"published": { "type":"date" },
"contents": { "type":"string" }
}
3
}
3

To create our posts index with the preceding mappings file, we will just run the following
command:

curl -XPOST 'http://localhost:9200/posts' -d @posts.json

Note

Note that you can store your mappings and set a file name to whatever name you like. The
curl command will just take the contents of it.

And again, if everything goes well, we see the following response:

{"acknowledged":true}

Elasticsearch reported that our index has been created. If we look at the Elasticsearch node

www.EBooksWorld.ir

— on the current master, we will see something as follows:

[2015-10-14 15:02:12,840][INFO][cluster.metadata] [Sshalla-Bal]
[posts] creating index, cause [api], templates [], shards [5]/[1], mappings
[post]

We can see that the posts index has been created, with 5 shards and 1 replica (shards
[51/[1]) and with mappings for a single post type (mappings [post]). Let’s now discuss
the contents of the posts. json file and the possibilities when it comes to mappings.

Type and types definition

The mappings definition in Elasticsearch is just another JSON object, so it needs to be
properly started and ended with curly brackets. All the mappings definitions are nested
inside a single mappings object. In our example, we had a single post type, but we can
have multiple of them. For example, if we would like to have more than a single type in
our mappings, we just need to separate them with a comma character. Let’s assume that
we would like to have an additional user type in our posts index. The mappings definition
in such case will look as follows (we stored it in the posts_with_user. json file):

{
"mappings": {
llpostll: {
"properties": {
llidll : { Iltypell : Illongll }’
"name": { "type":"string" },
"published": { "type":"date" },
"contents": { "type":"string" }
}
3
"user": {
"properties": {
llidll : { Iltypell : Illongll }’
"name": { "type":"string" }
}
3
}
3

As you can see, we can name the types with the names we want. Under each type we have
the properties object in which we store the actual name of the fields and their definition.

Fields

Each field in the mappings definition is just a name and an object describing the properties
of the field. For example, we can have a field defined as the following:

"body": { "type":"string", "store":"yes", "index":"analyzed" }

The preceding field definition starts with a name — body. After that we have an object with
three properties — the type of the field (the type property), if the original field value
should be stored (the store property), and if the field should be indexed and how (the
index property). And, of course, multiple field definitions are separated from each other
using the comma character, just like other JSON objects.

www.EBooksWorld.ir

Core types

Each field type in Elasticsearch can be given one of the provided core types. The core
types in Elasticsearch are as follows:

String

Number (integer, long, float, double)
Date

Boolean

Binary

In addition to the core types, Elasticsearch provides additional types that can handle more
complicated data — such as nested documents, object, and so on. We will talk about them
in Chapter 5, Extending Your Index Structure.

Common attributes

Before continuing with all the core type descriptions, we would like to discuss some
common attributes that you can use to describe all the types (except for the binary one):

index_name: This attribute defines the name of the field that will be stored in the
index. If this is not defined, the name will be set to the name of the object that the
field is defined with. Usually, you don’t need to set this property, but it may be useful
in some cases; for example, when you don’t have control over the name of the fields
in the JSON documents that are sent to Elasticsearch.

index: This attribute can take the values analyzed and no and, for string-based fields,
it can also be set to the additional not_analyzed value. If set to analyzed, the field
will be indexed and thus searchable. If set to no, you won’t be able to search on such
a field. The default value is analyzed. In case of string-based fields, there is an
additional option, not_analyzed. This, when set, will mean that the field will be
indexed but not analyzed. So, the field is written in the index as it was sent to
Elasticsearch and only a perfect match will be counted during a search — the query
will have to include exactly the same value as the value in the index. If we compare it
to the SQL databases world, setting the index property of a field to not_analyzed
would work just like using where field = value. Also remember that setting the
index property to no will result in the disabling inclusion of that field in
include_in_all (the include_in_all property is discussed as the last property in
the list).

store: This attribute can take the values yes and no and specifies if the original value
of the field should be written into the index. The default value is no, which means
that Elasticsearch won’t store the original value of the field and will try to use the
_source field (the JSON representing the original document that has been sent to
Elasticsearch) when you want to retrieve the field value. Stored fields are not used for
searching, however they can be used for highlighting if enabled (which may be more
efficient that loading the _source field in case it is big).

doc_values: This attribute can take the values of true and false. When set to true,
Elasticsearch will create a special on disk structure during indexation for not
tokenized fields (like not analyzed string fields, number based fields, Boolean fields,

www.EBooksWorld.ir

and date fields). This structure is highly efficient and is used by Elasticsearch for
operations that require un-inverted data, such as aggregations, sorting, or scripting.
Starting with Elasticsearch 2.0 the default value of this is true for not tokenized
fields. Setting this value to false will result in Elasticsearch using field data cache
instead of doc values, which has higher memory demand, but may be faster in some
rare situations.

e boost: This attribute defines how important the field is inside the document; the
higher the boost, the more important the values in the field are. The default value of
this attribute is 1, which means a neutral value — anything above 1 will make the field
more important, anything less than 1 will make it less important.

e null_value: This attribute specifies a value that should be written into the index in
case that field is not a part of an indexed document. The default behavior will just
omit that field.

e copy_to: This attribute specifies an array of fields to which the original value will be
copied to. This allows for different kind of analysis of the same data. For example,
you could imagine having two fields — one called title and one called title_sort,
each having the same value but processed differently. We could use copy_to to copy
the title field value to title_sort.

e include_in_all: This attribute specifies if the field should be included in the _all
field. The _all field is a special field used by Elasticsearch to allow easy searching in
the contents of the whole indexed document. Elasticsearch creates the content of the
_all field by copying all the document fields there. By default, if the _all field is
used, all the fields will be included in it.

String

String is the basic text type which allows us to store one or more characters inside it. A
sample definition of such a field is as follows:

"body" : { "type" : "string", "store" : "yes", "index" : "analyzed" }

In addition to the common attributes, the following attributes can also be set for the string-
based fields:

e term_vector: This attribute can take the values no (the default one), yes,
with_offsets, with_positions, and with_positions_offsets. It defines whether
or not to calculate the Lucene term vectors for that field. If you are using highlighting
(distinction which terms where matched in a document during the query), you will
need to calculate the term vector for the so called fast vector highlighting — a more
efficient highlighting version.

e analyzer: This attribute defines the name of the analyzer used for indexing and
searching. It defaults to the globally-defined analyzer name.

e search_analyzer: This attribute defines the name of the analyzer used for processing
the part of the query string that is sent to a particular field.

® norms.enabled: This attribute specifies whether the norms should be loaded for a
field. By default, it is set to true for analyzed fields (which means that the norms will
be loaded for such fields) and to false for non-analyzed fields. Norms are values

www.EBooksWorld.ir

inside of Lucene index that are used when calculating a score for a document —
usually not needed for not analyzed fields and used only during query time. An
example index creation command that disables norm for a single field present would
look as follows:

curl -XPOST 'localhost:9200/essb' -d '{
"mappings" : {

"book" : {
"properties" : {
"name" : {
"type" : "string",
"norms" : {
"enabled" : false
}
}
}
}
}
} 1

norms.loading: This attribute takes the values eager and lazy and defines how
Elasticsearch will load the norms. The first value means that the norms for such fields
are always loaded. The second value means that the norms will be loaded only when
needed. Norms are useful for scoring, but may require a vast amount of memory for
large data sets. Having norms loaded eagerly (property set to eager) means less work
during query time, but will lead to more memory consumption. An example index
creation command that eagerly load norms for a single field present look as follows:

curl -XPOST 'localhost:9200/essb_eager' -d '{
"mappings" : {

"book" : {
"properties" : {
"name" : {
"type" : "string",
"norms" : {
"loading" : "eager"
}
}
}
}

3
position_offset_gap: This attribute defaults to 0 and specifies the gap in the index
between instances of the given field with the same name. Setting this to a higher
value may be useful if you want position-based queries (such as phrase queries) to
match only inside a single instance of the field.

index_options: This attribute defines the indexing options for the postings list — the
structure holding the terms (we talk more about it in the Postings format section of
this chapter). The possible values are docs (only document numbers are indexed),
fregs (document numbers and term frequencies are indexed), positions (document
numbers, term frequencies, and their positions are indexed), and offsets (document

www.EBooksWorld.ir

numbers, term frequencies, their positions, and offsets are indexed). The default
value for this property is positions for analyzed fields and docs for fields that are
indexed but not analyzed.

e ignore_above: This attribute defines the maximum size of the field in characters. A
field whose size is above the specified value will be ignored by the analyzer.

Note

In one of the upcoming Elasticsearch versions, the string type may be deprecated and
may be replaced by two new types, text and keyword, to better indicate what the
string based field is representing. The text type will be used for analyzed text fields
and the keyword type will be used for not analyzed text fields. If you are interested in
the incoming changes, refer to the following GitHub issue:

https://github.com/elastic/elasticsearch/issues/12394.

Number

This is the common name for a few core types that gather all the numeric field types that
are available and waiting to be used. The following types are available in Elasticsearch
(we specify them by using the type property):

e byte: This type defines a byte value; for example, 1. It allows for values between
-128 and 127 inclusive.

e short: This type defines a short value; for example, 12. It allows for values between
-32768 and 32767 inclusive.

e integer: This type defines an integer value; for example, 134. It allows for values
between -231 and 231-1 inclusive up to Java 7 and values between 0 and 232-1 in
Java 8.

e long: This type defines a 1long value; for example, 123456789. It allows for values
between -263 and 263-1 inclusive up to Java 7 and values between 0 and 264-1 in
Java 8.

e float: This type defines a float value; for example, 12.23. For information about
the possible values, refer to https://docs.oracle.com/javase/specs/jls/se8/html/jls-
4.html#jls-4.2.3.

e double: This type defines a double value; for example, 123. 45. For information
about the possible values, refer to

https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2.3.
Note

You can learn more about the mentioned Java types at
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.

A sample definition of a field based on one of the numeric types is as follows:
"price" : { "type" : "float", "precision_step" : "4" }

In addition to the common attributes, the following ones can also be set for the numeric
fields:

www.EBooksWorld.ir

https://github.com/elastic/elasticsearch/issues/12394
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2.3
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2.3
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

e precision_step: This attribute defines the number of terms generated for each value
in the numeric field. The lower the value, the higher the number of terms generated.
For fields with a higher number of terms per value, range queries will be faster at the
cost of a slightly larger index. The default value is 16 for long and double, 8 for
integer, short, and float, and 2147483647 for byte.

e coerce: This attribute defaults to true and can take the value of true or false. It
defines if Elasticsearch should try to convert the string values to numbers for a given
field and if the decimal parts of the float value should be truncated for the integer
based fields.

e ignore_malformed: This attribute can take the value true or false (which is the
default). It should be set to true in order to omit the badly formatted values.

Boolean

The boolean core type is designed for indexing the Boolean values (true or false). A
sample definition of a field based on the boolean type is as follows:

"allowed" : { "type" : "boolean", "store": "yes" }
Binary

The binary field is a BASE64 representation of the binary data stored in the index. You
can use it to store data that is normally written in binary form, such as images. Fields
based on this type are by default stored and not indexed, so you can only retrieve them and
not perform search operations on them. The binary type only supports the index_name,
type, store, and doc_values properties. The sample field definition based on the binary
field may look like the following:

"image" : { "type" : "binary" }
Date

The date core type is designed to be used for date indexing. The date in the field allows us
to specify a format that will be recognized by Elasticsearch. It is worth noting that all the
dates are indexed in UTC and are internally indexed as long values. In addition to that, for
the date based fields, Elasticsearch accepts long values representing UTC milliseconds
since epoch regardless of the format specified for the date field.

The default date format recognized by Elasticsearch is quite universal and allows us to
provide the date and optionally the time; for example, 2012-12-24T12:10:22. A sample
definition of a field based on the date type is as follows:

"published" : { "type" : "date", "format" : "YYYY-mm-dd" }

A sample document that uses the above date field with the specified format is as follows:

{

"name" : "Sample document",
"published" : "2012-12-22"

}

In addition to the common attributes, the following ones can also be set for the fields

www.EBooksWorld.ir

based on the date type:

e format: This attribute specifies the format of the date. The default value is
dateOptionalTime. For a full list of formats, visit
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-date-
format.html.

e precision_step: This attribute defines the number of terms generated for each value
in the numeric field. Refer to the numeric core type description for more information
about this parameter.

e numeric_resolution: This attribute defines the unit of time that Elasticsearch will
use when a numeric value is passed to the date based field instead of the date
following a format. By default, Elasticsearch uses the milliseconds value, which
means that the numeric value will be treated as milliseconds since epoch. Another
value is seconds.

e ignore_malformed: This attribute can take the value true or false. The default
value is false. It should be set to true in order to omit badly formatted values.

Multi fields

There are situations where we need to have the same field analyzed differently. For
example, one for sorting, one for searching, and one for analysis with aggregations, but all
using the same field value, just indexed differently. We could of course use the previously
described field value copying, but we can also use so called multi fields. To be able to use
that feature of Elasticsearch, we need to define an additional property in our field
definition called fields. The fields is an object that can contain one or more additional
fields that will be present in our index and will have the value of the field that they are
assigned to. For example, if we would like to have aggregations done on the name field
and in addition to that search on that field, we would define it as follows:

"name": {
"type": "string",
"fields": {
"agg": { "type" : "string", "index": "not_analyzed" }
}

}

The preceding definition will create two fields — one called name and the second called
name .agg. Of course, you don’t have to specify two separate fields in the data you are
sending to Elasticsearch — a single one named name is enough. Elasticsearch will do the
rest, which means copying the value of the field to all the fields from the preceding
definition.

The IP address type

The ip field type was added to Elasticsearch to simplify the use of IPv4 addresses in a
numeric form. This field type allows us to search data that is indexed as an IP address, sort
on such data, and use range queries using IP values.

A sample definition of a field based on one of the numeric types is as follows:

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-date-format.html

"address" : { "type" : "ip" }

In addition to the common attributes, the precision_step attribute can also be set for the
ip type based fields. Refer to the numeric type description for more information about that
property.

A sample document that uses the ip based field looks as follows:

{

"name" : "Tom PC",
"address" : "192.168.2.123"

}
Token count type

The token_count field type allows us to store and index information about how many
tokens the given field has instead of storing and indexing the text provided to the field. It
accepts the same configuration options as the number type, but in addition to that, we need
to specify the analyzer which will be used to divide the field value into tokens. We do that
by using the analyzer property.

A sample definition of a field based on the token_count field type looks as follows:

"title_count" : { "type" : "token_count", "analyzer" : "standard" }

www.EBooksWorld.ir

Using analyzers

The great thing about Elasticsearch is that it leverages the analysis capabilities of Apache
Lucene. This means that for fields that are based on the string type, we can specify
which analyzer Elasticsearch should use. As you remember from the Full text searching
section of Chapter 1, Getting Started with Elasticsearch Cluster, the analyzer is a
functionality that is used to analyze data or queries in the way we want. For example,
when we divide words on the basis of whitespaces and lowercase characters, we don’t
have to worry about the users sending words that are lowercased or uppercased. This
means that Elasticsearch, elasticsearch, and El1AstlcSeaRCh will be treated as the same
word. What’s more is that Elasticsearch allows us to use not only the analyzers provided
out of the box, but also create our own configurations. We can also use different analyzers
at the time of indexing and different analyzers at the time of querying—we can choose
how we want our data to be processed at each stage of the search process. Let’s now have
a look at the analyzers provided by Elasticsearch and at Elasticsearch analysis
functionality in general.

Out-of-the-box analyzers

Elasticsearch allows us to use one of the many analyzers defined by default. The following
analyzers are available out of the box:

e standard: This analyzer is convenient for most European languages (refer to
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-standard-
analyzer.html for the full list of parameters).

e simple: This analyzer splits the provided value on non-letter characters and converts
them to lowercase.

e whitespace: This analyzer splits the provided value on the basis of whitespace
characters.

e stop: This is similar to a simple analyzer, but in addition to the functionality of the
simple analyzer, it filters the data on the basis of the provided set of stop words (refer
to https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-
analyzer.html for the full list of parameters).

e keyword: This is a very simple analyzer that just passes the provided value. You’ll
achieve the same by specifying a particular field as not_analyzed.

e pattern: This analyzer allows flexible text separation by the use of regular
expressions (refer to
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-
analyzer.html for the full list of parameters). The key point to remember when it
comes to the pattern analyzer is that the provided pattern should match the separators
of the words, not the words themselves.

e language: This analyzer is designed to work with a specific language. The full list of
languages supported by this analyzer can be found at
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-
analyzer.html.

e snowball: This is an analyzer that is similar to standard, but additionally provides the

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-standard-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-analyzer.html

stemming algorithm (refer to
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-snowball-
analyzer.html for the full list of parameters).

Note

Stemming is the process of reducing the inflected and derived words to their stem or
base form. Such a process allows for the reduction of words, for example, with cars
and car. For the mentioned words, stemmer (which is an implementation of the
stemming algorithm) will produce a single stem, car. After indexing, the documents
containing such words will be matched while using any of them. Without stemming,
the documents with the word “cars” will only be matched by a query containing the
same word. You can find more information about stemming on Wikipedia at

https://en.wikipedia.org/wiki/Stemming.
Defining your own analyzers

In addition to the analyzers mentioned previously, Elasticsearch allows us to define new
ones without the need for writing a single line of Java code. In order to do that, we need to
add an additional section to our mappings file; that is, the settings section, which holds
additional information used by Elasticsearch during index creation. The following code
snippet shows how we can define our custom settings section:

"settings" : {
"index" : {
"analysis": {
"analyzer": {
"an": {
"tokenizer": "standard",
"filter": [
"asciifolding",
"lowercase",
"ourEnglishFilter"

]
¥
iy
"filter": {
"ourEnglishFilter": {
Iltypell : Ilkstemll

We specified that we want a new analyzer named en to be present. Each analyzer is built
from a single tokenizer and multiple filters. A complete list of the default filters and
tokenizers can be found at
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html.
Our en analyzer includes the standard tokenizer and three filters: asciifolding and
lowercase, which are the ones available by default, and a custom ourEnglishFilter,
which is a filter we have defined.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-snowball-analyzer.html
https://en.wikipedia.org/wiki/Stemming
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html

To define a filter, we need to provide its name, its type (the type property), and any
number of additional parameters required by that filter type. The full list of filter types
available in Elasticsearch can be found at

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html.
Please be aware, that we won’t be discussing each filter as the list of filters is constantly

changing. If you are interested in the full filters list, please refer to the mentioned page in
the documentation.

So, the final mappings file with our custom analyzer defined will be as follows:

{
"settings" : {
"index" : {
"analysis": {
"analyzer": {
Ilenll: {

"tokenizer": "standard",
"filter": [
"asciifolding",
"lowercase",
"ourEnglishFilter"

]

}

1%

"filter": {
"ourEnglishFilter": {

"type": "kstem"

3

3

¥

}
+
"mappings" : {
"post" : {
"properties" : {
llidll : { Iltypell : Illongll },
"name": { "type" : "string", "analyzer": "en" }
}
}
}
}

If we save the preceding mappings to a file called posts_mappings.json, we can run the
following command to create the posts index:

curl -XPOST 'http://localhost:9200/posts' -d @posts_mappings.json

We can see how our analyzer works by using the Analyze API
(https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html). For
example, let’s look at the following command:

curl -XGET 'localhost:9200/posts/_analyze?pretty&field=name' -d 'robots
cars'

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html

The command asks Elasticsearch to show the content of the analysis of the given phrase
(robots cars) with the use of the analyzer defined for the post type and its name field. The
response that we will get from Elasticsearch is as follows:

{
"tokens" : [{

"token" : "robot",
"start_offset" : 0O,
"end_offset" : 6,
"type" : "<ALPHANUM>",
"position" : O

Ao

"token" : "car",
"start_offset" : 7,
"end_offset" : 11,
"type" : "<ALPHANUM>",
"position" : 1
1]
3

As you can see, the robots cars phrase was divided into two tokens. In addition to that, the
robots word was changed to robot and the cars word was changed to car.

Default analyzers

There is one more thing to say about analyzers. Elasticsearch allows us to specify the
analyzer that should be used by default if no analyzer is defined. This is done in the same
way as we configured a custom analyzer in the settings section of the mappings file, but
instead of specifying a custom name for the analyzer, a default keyword should be used.
So to make our previously defined analyzer the default, we can change the en analyzer to
the following:

{
"settings" : {
"index" : {
"analysis": {
"analyzer": {
"default": {
"tokenizer": "standard",
"filter": [
"asciifolding",
"lowercase",
"ourEnglishFilter"
]
3
I
"filter": {
"oureEnglishFilter": {
lltypell: Ilkstemll
3
¥
3
¥
}

www.EBooksWorld.ir

}

We can also choose a different default analyzer for searching and a different one for
indexing. If we would like to do that instead of using the default keyword for the analyzer
name, we should use default_search and default_index respectively.

www.EBooksWorld.ir

Different similarity models

With the release of Apache Lucene 4.0 in 2012, all the users of this great full text search
library were given the opportunity to alter the default TF/IDF-based algorithm and use a
different one (we’ve mentioned it in the Full text searching section of Chapter 1, Getting
Started with Elasticsearch Cluster). Because of that we are able to choose a similarity
model in Elasticsearch, which basically allows us to use different scoring formulas for our
documents.

Note

Note that the similarity models topic ranges from intermediate to advanced and in most
cases the TF/IDF based algorithm will be sufficient for your use case. However, we
decided to have it described in the book, so you know that you have the possibility of
changing the scoring algorithm behavior if needed.

Setting per-field similarity

Since Elasticsearch 0.90, we are allowed to set a different similarity for each of the fields
that we have in our mappings file. For example, let’s assume that we have the following
simple mappings that we use in order to index the blog posts:

{
"mappings" : {
"post" : {
"properties" : {
llidll : { lltypell : lllongll },
"name" : { "type" : "string" },
"contents" : { "type" : "string" }
3
3
}
}

To do this, we will use the BM25 similarity model for the name field and the contents
field. In order to do that, we need to extend our field definitions and add the similarity
property with the value of the chosen similarity name. Our changed mappings will look
like the following:

{
"mappings" : {
"post" : {
"properties" : {
llidll : { lltypell : lllongll }’
"name" : { "type" : "string", "similarity" : "BM25" },
"contents" : { "type" : "string", "similarity" : "BM25" }
¥
¥
}
}

And that’s all, nothing more is needed. After the above change, Apache Lucene will use
the BM25 similarity to calculate the score factor for the name and the contents fields.

www.EBooksWorld.ir

Available similarity models

There are at least five new similarity models available. For most of the use cases, apart
from the default one, you may find the following models useful:

e Okapi BM25 model: This similarity model is based on a probabilistic model that
estimates the probability of finding a document for a given query. In order to use this
similarity in Elasticsearch, you need to use the BM25 name. Okapi BM25 similarity
is said perform best when dealing with short text documents where term repetitions
are especially hurtful to the overall document score. To use this similarity, one needs
to set the similarity property for a field to BM25. This similarity is defined out of the
box and doesn’t need additional properties to be set.

¢ Divergence from randomness model: This similarity model is based on the
probabilistic model of the same name. In order to use this similarity in Elasticsearch,
you need to use the DFR name. It is said that the divergence from randomness
similarity model performs well on text that is similar to natural language.

¢ Information-based model: This is the last model of the newly introduced similarity
models and is very similar to the divergence from randomness model. In order to use
this similarity in Elasticsearch, you need to use the IB name. Similar to the DFR
similarity, it is said that the information-based model performs well on data similar to
natural language text.

The two other similarity models currently available are LM Dirichlet similarity (to use it,
set the type property to LMDirichlet) and LM Jelinek Mercer similarity (to use it, set the
type property to LMJelinekMercer). You can find more about these similarity models in
Apache Lucene Javadocs, Mastering Elasticsearch Second Edition, published by
Packt Publishing or in official documentation of Elasticsearch available at
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-

similarity.html.

Configuring default similarity

The default similarity allows us to provide an additional discount_overlaps property. It
allows us to control if the tokens on the same positions in the token stream (with position
increment of 0) are omitted during score calculation. By default, it is set to true, which
means that the tokens on the same positions are omitted; if you want them to be counted,
you can set that property to false. For example, the following command shows how to
create an index with the discount_overlaps property changed for the default similarity:

curl -XPUT 'localhost:9200/test_similarity' -d '{
"settings" : {
"similarity" : {
"altered_default": {
"type" : "default",
"discount_overlaps" : false

}
}
Iy
"mappings": {
"doc": {

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html

"properties": {
"name": { "type" : "string", "similarity": "altered_default" }

b
b
}
}l

Configuring BM25 similarity

Even though we don’t need to configure the BM25 similarity, we can provide some
additional options to tune its behavior. The BM25 similarity allows us to provide the
discount_overlaps property similar to the default similarity and two additional
properties: k1 and b. The k1 property specifies the term frequency normalization factor
and the b property value determines to what degree the document length will normalize
the term frequency values.

Configuring DFR similarity

In case of the DFR similarity, we can configure the basic_model property (which can take
the value be, d, g, if, in, p, or ine), the after_effect property (with values of no, b, or
1), and the normalization property (which can be no, h1, h2, h3, or z). If we choose a
normalization value other than no, we need to set the normalization factor.

Depending on the chosen normalization value, we should use normalization.hi.c (the
float value) for h1 normalization, normalization.h2.c (the float value) for h2
normalization, normalization.h3.c (the float value) for h3 normalization, and
normalization.z.z (the float value) for z normalization. For example, the following is
how the example similarity configuration will look (we put this into the settings section of
our mappings file):
"similarity" : {
"esserverbook_dfr_similarity" : {
"type" : "DFR",

"basic_model" : "g",
"after_effect" : "1",
"normalization" : "h2",
"normalization.h2.c" : "2.0"

b
}

Configuring IB similarity

In case of IB similarity, we have the following parameters through which we can
configure the distribution property (which can take the value of 11 or sp1) and the lambda
property (which can take the value of df or tff). In addition to that, we can choose the
normalization factor, which is the same as for the DFR similarity, so we’ll omit describing
it a second time. The following is how the example IB similarity configuration will look
(we put this into the settings section of our mappings file):

"similarity" : {
"esserverbook_ib_similarity" : {
thpeﬂ : "IB",
"distribution™ : "11",

www.EBooksWorld.ir

"lambda" : "df",
"normalization" : "Zz",
"normalization.z.z" : "©.25"

www.EBooksWorld.ir

www.EBooksWorld.ir

Batch indexing to speed up your indexing
process

In Chapter 1, Getting Started with Elasticsearch Cluster, we saw how to index a particular
document into Elasticsearch. It required opening an HTTP connection, sending the
document, and closing the connection. Of course, we were not responsible for most of that
as we used the curl command, but in the background this is what happened. However,
sending the documents one by one is not efficient. Because of that, it is now time to find
out how to index a large number of documents in a more convenient and efficient way
than doing so one by one.

www.EBooksWorld.ir

Preparing data for bulk indexing

Elasticsearch allows us to merge many requests into one package. This package can be
sent as a single request. What’s more, we are not limited to having a single type of request
in the so called bulk — we can mix different types of operations together, which include:

¢ Adding or replacing the existing documents in the index (index)
e Removing documents from the index (delete)

¢ Adding new documents into the index when there is no other definition of the
document in the index (create)

e Modifying the documents or creating new ones if the document doesn’t exist
(update)

The format of the request was chosen for processing efficiency. It assumes that every line
of the request contains a JSON object with the description of the operation followed by the
second line with a document — another JSON object itself. We can treat the first line as a
kind of information line and the second as the data line. The exception to this rule is the
delete operation, which contains only the information line, because the document is not
needed. Let’s look at the following example:

{ "index": { "_index": "addr", "_type": "contact", "_id": 1 }}
{ "name": "Fyodor Dostoevsky'", '"country": "RU" }

{ "create": { "_index": "addr", "_type": "contact", "_id": 2 }}
{ "name": "Erich Maria Remarque", "country": "DE" }

{ "create": { "_index": "addr", "_type": "contact", "_id": 2 }}
{ "name": "Joseph Heller", "country": "USs" }

{ "delete": { "_index": "addr", "_type": "contact", "_id": 4 }}
{ "delete": { "_index": "addr", "_type": "contact", "_id": 1 }}

It is very important that every document or action description is placed in one line (ended
by a newline character). This means that the document cannot be pretty-printed. There is a
default limitation on the size of the bulk indexing file, which is set to 100 megabytes and
can be changed by specifying the http.max_content_length property in the Elasticsearch
configuration file. This lets us avoid issues with possible request timeouts and memory
problems when dealing with requests that are too large.

Note

Note that with a single batch indexing file, we can load the data into many indices and
documents in the bulk request can have different types.

www.EBooksWorld.ir

Indexing the data

In order to execute the bulk request, Elasticsearch provides the bulk endpoint. This can
be used as /_bulk or with an index name as /index_name/_bulk or even with a type and
index name as /index_name/type_name/_bulk. The second and third forms define the
default values for the index name and the type name. We can omit these properties in the
information line of our request and Elasticsearch will use the default values from the URI.
It is also worth knowing that the default URI values can be overwritten by the values in
the information lines.

Assuming we’ve stored our data in the documents. json file, we can run the following
command to send this data to Elasticsearch:

curl -XPOST 'localhost:9200/_bulk?pretty' --data-binary @documents.json

The ?pretty parameter is of course not necessary. We’ve used this parameter only for the
ease of analyzing the response of the preceding command. What is important, in this case,
is using curl with the - -data-binary parameter instead of using -d. This is because the
standard -d parameter ignores new line characters, which, as we said earlier, are important
for parsing the bulk request content by Elasticsearch. Now let’s look at the response
returned by Elasticsearch:

{
"took" : 469,
"errors" : true,
"items" : [{
"index" : {
"_index" : "addr",
"_type" : "contact",
|l_id|l : "1",
"_version" : 1,
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : ©
I
"status" : 201
3
Ao
"create" : {
"_index" : "addr",
"_type" : "contact",
|l_id|l : I|2|I’
"_version" : 1,
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : ©
I
"status" : 201
3
Ao
"create" : {

www.EBooksWorld.ir

"_index" : "addr",

"_type" : "contact",
Il_idll : Il2|I’
"status" : 409,
"error" : {
"type" : "document_already_exists_exception",
"reason" : "[contact][2]: document already exists",
"Shard" : I|2|I,
"index" : "addr"
3
3
o {
"delete" : {
"_index" : "addr",
"_type" : "contact",
Il_idll : I|4|I’
"_version" : 1,
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : O
+s
"status" : 404,
"found" : false
3
A
"delete" : {
"_index" : "addr",
"_type" : "contact",
|l_id|l : I|1|I’
"_version" : 2,
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
s
"status" : 200,
"found" : true
3
1]

}

As we can see, every result is a part of the items array. Let’s briefly compare these results
with our input data. The first two commands, named index and create, were executed
without any problems. The third operation failed because we wanted to create a record
with an identifier that already existed in the index. The next two operations were
deletions. Both succeeded. Note that the first of them tried to delete a nonexistent
document; as you can see, this wasn’t a problem for Elasticsearch — the thing worth noting
though is that for the nonexisting document we saw a status of 404, which in the HTTP
response code means not found (http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html). As you can see, Elasticsearch returns information about each operation, so
for large bulk requests the response can be massive.

www.EBooksWorld.ir

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

The _all field

The _all field is used by Elasticsearch to store data from all the other fields in a single
field for ease of searching. This kind of field may be useful when we want to implement a
simple search feature and we want to search all the data (or only the fields we copy to the
_all field), but we don’t want to think about the field names and things like that. By
default, the _al1l field is enabled and contains all the data from all the fields from the
document. However, this field makes the index a bit bigger and that is not always needed.

For example, when you input a search phrase into a search box in the library catalog site,
you expect that you can search using the author’s name, the ISBN number, and the words
that the book title contains, but searching for the number of pages or the cover type
usually does not make sense. We can either disable the _all field completely or exclude
the copying of certain fields to it. In order not to include a certain field in the _al1l field,
we use the include_in_all property, which was discussed earlier in this chapter. To
completely turn off the _all field functionality, we modify our mappings file as follows:

{
"book" : {
ll_allll : {
"enabled" : false
1y
"properties" : {
}
}
}

In addition to the enabled property, the _all field supports the following ones:

® store
® term_vector
® analyzer

For information about the preceding properties, refer to the Mappings configuration
section in this chapter.

www.EBooksWorld.ir

The _source field

The _source field allows us to store the original JSON document that was sent to
Elasticsearch during indexation. By default, the _source field is turned on as some of the
Elasticsearch functionalities depend on it (for example, the partial update feature). In
addition to that, the _source field can be used as the source of data for the highlighting
functionality if a field is not stored. However, if we don’t need such a functionality, we
can disable the _source field as it causes some storage overhead. In order to do that, we
need to set the _source object’s enabled property to false, as follows:

{
"book" : {
"_source" : {
"enabled" : false
3
"properties" : {
3
}
}

We can also tell Elasticsearch which fields we want to exclude from the _source field and
which fields we want to include. We do that by adding the includes and excludes
properties to the _source field definition. For example, if we want to exclude all the fields
in the author path from the _source field, our mappings will look as follows:

{
"book" : {
"_source" : {
"excludes" : ["author.*"]
I
"properties" : {
b
¥
}

www.EBooksWorld.ir

Additional internal fields

There are additional fields that are internally used by Elasticsearch, but which we can’t
configure. Those fields are:

e _id: This field is used to hold the identifier of the document inside the index and type

e _uid: This field is used to hold the unique identifier of the document in the index and
is built of _id and _type (this allows to have documents with the same identifier with
different types inside the same index)

e _type: This field is the type name for the document

e _field_names: This field is the list of fields existing in the document

www.EBooksWorld.ir

www.EBooksWorld.ir

Introduction to segment merging

In the Full text searching section of Chapter 1, Getting Started with Elasticsearch Cluster,
we mentioned segments and their immutability. We wrote that the Lucene library, and thus
Elasticsearch, writes data to certain structures that are written once and never change. This
allows for some simplification, but also introduces the need for additional work. One such
example is deletion. Because segment, cannot be altered, information about deletions must
be stored alongside and dynamically applied during search. This is done by filtering
deleted documents from the returned result set. The other example is the inability to
modify the documents (however, some modifications are possible, such as modifying
numeric doc values). Of course, one can say that Elasticsearch supports document updates
(refer to the Manipulating data with the REST API section of Chapter 1, Getting Started
with Elasticsearch Cluster). However, under the hood, the old document is marked as
deleted and the one with the updated contents is indexed.

As time passes and you continue to index or delete your data, more and more segments are
created. Depending on how often you modify the index, Lucene creates segments with
various numbers of documents - thus, segments have different sizes. Because of that, the
search performance may be lower and your index may be larger than it should be — it still
contains the deleted documents. The equation is simple - the more segments your index
has, the slower the search speed is. This is when segment merging comes into play. We
don’t want to describe this process in detail; in the current Elasticsearch version, this part
of the engine was simplified but it is still a rather advanced topic. We decided to mention
merging because we think that it is handy to know where to look for the cause of troubles
connected with too many open files, suspicious CPU usage, expanding indices, or
searching and indexing speed degrading with time.

www.EBooksWorld.ir

Segment merging

Segment merging is the process during which the underlying Lucene library takes several
segments and creates a new segment based on the information found in them. The
resulting segment has all the documents stored in the original segments except the ones
that were marked for deletion. After the merge operation, the source segments are deleted
from the disk. Because segment merging is rather costly in terms of CPU and I/O usage, it
is crucial to appropriately control when and how often this process is invoked.

www.EBooksWorld.ir

The need for segment merging

You may ask yourself why you have to bother with segment merging. First of all, the more
segments the index is built from, the slower the search will be and the more memory
Lucene will use. The second is the disk space and resources, such as file descriptors, used
by the index. If you delete many documents from your index then, until the merge
happens, those documents are only marked as deleted and not deleted physically. So, it
may happen that most of the documents that use our CPU and memory don’t exist!
Fortunately, Elasticsearch uses reasonable defaults for segment merging and it is very
probable that no changes are necessary.

www.EBooksWorld.ir

The merge policy

The merge policy defines when the merging process should be performed. Elasticsearch
merges segments of approximately similar sizes, taking into account the maximum
number of segments allowed per tier. The algorithm of merging can find segments with
the lowest cost of merge and the most impact on the resulting segment.

The basic properties of the tiered merge policy are as follows:

e index.merge.policy.expunge_deletes_allowed: This property tells Elasticsearch
to merge segments with percentage of the deleted documents higher than this value,
defaults to 10.

e index.merge.policy.floor_segment: This property defaults to 2mb and tells
Elasticsearch to treat smaller segments as ones with size equal to the value of this
property. It prevents flushing of tiny segments to avoid their high number.

e index.merge.policy.max_merge_at_once: In this property, the maximum number of
segments to be merged at once defaults to 16.

e index.merge.policy.max_merge_at_once_explicit: In this property, the maximum
number of segments merged at once during expunge deletes or optimize operations
defaults to 10.

e index.merge.policy.max_merged_segment: In this property, the maximum size of
segment that can be produced during normal merging defaults to 5gb.

e index.merge.policy.segments_per_tier: This property defaults to 160 and roughly
defines the number of segments. Smaller values mean more merging but fewer
segments, which results in higher search speed but lower indexing speed and more
I/0O pressure. Higher values of the property will result in higher segments count, thus
slower search speed but higher indexing speed.

e index.merge.policy.reclaim_deletes_weight — This property tells Elasticsearch
how important it is to choose segments with many deleted documents. It defaults to
2.0.

For example, to update merge policy settings of already created index we could run a
command like this:

curl -XPUT 'localhost:9200/essb/_settings' -d '{
"index.merge.policy.max_merged_segment" : "10gb"

3
To get deeper into segment merging, refer to our book Mastering Elasticsearch Second
Edition, published by Packt Publishing. You can also find more information about the
tiered merge policy at
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-

merge.html.
Note

Up to the 2.0 version of Elasticsearch, we were able to choose between three merge
policies: tiered, log_byte_size, and log_doc. The currently used merge policy is based

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-merge.html

on the tiered merge policy and we are forced to use it.

www.EBooksWorld.ir

The merge scheduler

The merge scheduler tells Elasticsearch how the merge process should occur. The current
implementation is based on a concurrent merge scheduler that is started in a separate
thread and uses the defined number of threads doing merges in parallel. Elasticsearch
allows you to set the number of threads that can be used for simultaneous merging by
using the index.merge.scheduler.max_thread_count property.

www.EBooksWorld.ir

Throttling

As we have already mentioned, merging may be expensive when it comes to server
resources. The merge process usually works in parallel to other operations, so theoretically
it shouldn’t have too much influence. In practice, the number of disk input/output
operations can be so large as to significantly affect the overall performance. In such cases,
throttling is something that may help. In fact, this feature can be used for limiting the
speed of the merge, but it may also be used for all the operations using the data store.
Throttling can be set in the Elasticsearch configuration file (the elasticsearch.yml file)
or dynamically by using the settings API (refer to the The update settings API section of
Chapter 9, Elasticsearch Cluster, for detail). There are two settings that adjust throttling:
type and value.

To set the throttling type, set the indices.store.throttle.type property, which allows
us to use the following values:

¢ none: This value defines that no throttling is on
¢ merge: This value defines that throttling affects only the merge process
e all: This value defines that throttling is used for all the data store activities

The second property, indices.store.throttle.max_bytes_per_sec, describes how
much the throttling limits the I/O operations. As its name suggests, it tells us how many
bytes can be processed per second. For example, let’s look at the following configuration:

indices.store.throttle.type: merge
indices.store.throttle.max_bytes_per_sec: 10mb

In this example, we limit the merge operations to 10 megabytes per second. By default,
Elasticsearch uses the merge throttling type with the max_bytes_per_sec property set to
20mb. This means that all the merge operations are limited to 20 megabytes per second.

www.EBooksWorld.ir

www.EBooksWorld.ir

Introduction to routing

By default, Elasticsearch will try to distribute your documents evenly among all the shards
of the index. However, that’s not always the desired situation. In order to retrieve the
documents, Elasticsearch must query all the shards and merge the results. What if we
could divide our data on some basis (for example, the client identifier) and use that
information to put data with the same properties in the same place in the cluster.
Elasticsearch allows us to do that by exposing a powerful document and query distribution
control mechanism routing. In short, it allows us to choose a shard to be used to index or
search the data.

www.EBooksWorld.ir

Default indexing

During indexing operations, when you send a document for indexing, Elasticsearch looks
at its identifier to choose the shard in which the document should be indexed. By default,
Elasticsearch calculates the hash value of the document’s identifier and, on the basis of
that, it puts the document in one of the available primary shards. Then, those documents
are redistributed to the replicas. The following diagram shows a simple illustration of how
indexing works by default:

Node Four MNode Five Node Six

Elasticsearch Cluster

www.EBooksWorld.ir

Default searching

Searching is a bit different from indexing, because in most situations you need to query all
the shards to get the data you are interested in (we will talk about that in Chapter 3,
Searching Your Data), at least in the initial scatter phase of the query. Imagine a situation
when you have the following mappings describing your index:

{
"mappings" : {
"post" : {
"properties" : {

Ilidll : { Iltypell : IIlongll },
"name" : { "type" : "string" },
"contents" : { "type" : "string" },
"userId" : { "type" : "long" }

+}

}}

As you can see, our index consists of four fields: the identifier (the id field), name of the
document (the name field), contents of the document (the contents field), and the identifier
of the user to which the documents belong (the userld field). To get all the documents for
a particular user, one with userld equal to 12, you can run the following query:

curl -XGET 'http://localhost:9200/posts/_search?q=userId:12'

Depending on the search type (we will talk more about it in Chapter 3, Searching Your
Data), Elasticsearch will run your query. It usually means that it will first query all the
nodes for the identifiers and score of the matching documents and then it will send an
internal query again, but only to the relevant shards (the ones containing the needed
documents) to get the documents needed to build the response.

A very simplified view of how the default searching works during its initial phase is
shown in the following illustration:

www.EBooksWorld.ir

Node Four Node Five Node Six

Elasticsearch Cluster

What if we could put all the documents for a single user into a single shard and query on
that shard? Wouldn’t that be wise for performance? Yes, that is handy and that is what
routing allows you do to.

www.EBooksWorld.ir

Routing

Routing can control which shard your documents and queries will be forwarded to. By
now, you will probably have guessed that we can specify the routing value both during
indexing and during querying and, in fact, if you decide to specify explicit routing values,
you’ll probably want to do that during indexing and searching.

In our case, we will use the userId value to set routing during indexing and the same
value will be used during searching. Because we will use the same routing value for all the
documents for a single user, the same hash value will be calculated and thus all the
documents for that particular user will be placed in the same shard. Using the same value
during search will result in searching a single shard instead of the whole index.

There is one thing you should remember when using routing when searching. When
searching, you should add a query part that will limit the returned documents to the ones
for the given user. Routing is not enough. This is because you’ll probably have more
distinct routing values than the number of shards your index will be built with. For
example, you can have 10 shards building your index, but at the same time have hundreds
of users. It is physically impossible to dedicate a single shard to only a single user. It is
usually not good from a scaling point for view as well. Because of that, a few distinct
values can point to the same shard — in our case data of a few users will be placed in the
same shard. Because of that, we need a query part that will limit the data to a particular
user identifier, such as a term query.

The following diagram shows a very simple illustration of how searching works with a
provided custom routing value:

www.EBooksWorld.ir

User

MNode Three

Node Four Node Five

Elasticsearch Cluster

As you can see, Elasticsearch will send our query to a single shard. Now let’s look at how
we can specify the routing values.

www.EBooksWorld.ir

The routing parameters

The idea is very simple. The endpoint used for all the operations connected with fetching
or storing documents in Elasticsearch allows us to use additional parameter called routing.
You can add it to your HTTP or set it by using the client library of your choice.

So, in order to index a sample document to the previously shown index, we will use the
following command:

curl -XPUT 'http://localhost:9200/posts/post/1?routing=12' -d '{
llidll: |l1ll’
"name": "Test document",
"contents": "Test document",
"userId": "12"

} 1
If we now get back to our previous query fetching our user’s data and we modify it to use
routing, it would look as follows:

curl -XGET 'http://localhost:9200/posts/_search?routing=12&q=userId:12'

As you can see, the same routing value was used during indexing and querying. This is
possible in most cases when routing is used. We know which user data we are indexing
and we will probably know which user is searching for the data. In our case, our
imaginary user was given the identifier of 12 and we used that value during indexing and
searching.

Note that during searching you can specify multiple routing values separated by commas.
For example, if we want the preceding query to be additionally routed by the value of the
section parameter (if it existed) and we also want to filter by this parameter, our query will
look like the following:

curl -XGET 'http://localhost:9200/posts/_search?
routing=12, 6654&q=userId:12+AND+section: 6654’

Of course, the preceding command can match multiple shards now as the values given to
routing can point to multiple shards. Because of that you need to provide only a single
routing value during indexation (Elasticsearch needs to be pointed to a single shard or
indexation will fail). You can of course query multiple shards at the same time and
because of that multiple routing values can be provided during searching.

Note

Remember that routing is not the only thing that is required to get results for a given user.
That’s because usually we have few shards that have unique routing values. This means
that we will have data from multiple users in a single shard. So, when using routing, you
should also narrow down your results to the ones for a given user. You’ll learn more about
how you can do that in Chapter 3, Searching Your Data.

www.EBooksWorld.ir

Routing fields

Specifying the routing value with each request is critical when using an index operation.
Without it, Elasticsearch uses the default way of determining where the document should
be stored — it uses the hash value of the document identifier. This may lead to a situation
where one document exists in many versions on different shards. A similar situation may
occur when fetching the document. When a document is stored with a given routing value,
we may hit the wrong shard and the document may be not found.

In fact, Elasticsearch allows us to change the default behavior and forces us to use routing
when querying a given index. To do that, we need to add the following section to our type
definition:
"_routing" : {
"required" : true
}

The preceding definition means that the routing value needs to be provided (the
"required": true property); without it, an index request will fail.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we’ve learned a lot when it comes to indexation and data handling in
Elasticsearch. We started with basic information about Elasticsearch and we proceeded to
tuning the schema-less behavior in Elasticsearch. We learned how to configure our
mappings, use out of the box language analysis capabilities of Elasticsearch, and create
our own mappings. We looked at batch indexing to speed up indexation and we added
additional internal information to the documents in our indices. Finally, we looked at
segment merging and routing.

In the next chapter, we will fully concentrate on searching and the extensive query
language of Elasticsearch. We will start with how to query Elasticsearch and how the
Elasticsearch query process works. We will learn about all the basic queries and
compound queries to be able to use them in our applications. Finally, we will see which
query should be chosen for the given use case.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 3. Searching Your Data

In the previous chapter, we dived into Elasticsearch indexing. We learned a lot when it
comes to data handling. We saw how to tune Elasticsearch schema-less mechanism and we
now know how to create our own mappings. We also saw the core types of Elasticsearch
and we used analyzers — both the one that comes out of the box with Elasticsearch and the
one we defined ourselves. We used bulk indexing and we added additional internal
information to our indices. Finally, we learned what segment merging is, how we can fine
tune it, and how to use routing in Elasticsearch and what it gives us. This chapter is fully
dedicated to querying. By the end of this chapter, you will have learned the following
topics:

How to query Elasticsearch

What happens internally when queries are run

What are the basic queries in Elasticsearch

What are the compound queries in Elasticsearch that allow us to group other queries
How to use position aware queries — span queries

How to choose the right query for the job

www.EBooksWorld.ir

Querying Elasticsearch

So far, when we havesearched our data, we used the REST API and a simple query or the
GET request. Similarly, when we were changing the index, we also used the REST API and
sent the JSON-structured data to Elasticsearch. Regardless of the type of operation we
wanted to perform, whether it was a mapping change or document indexation, we used
JSON structured request body to inform Elasticsearch about the operation details.

A similar situation happens when we want to send more than a simple query to
Elasticsearch, we structure it using the JSON objects and send it to Elasticsearch in the
request body. This is called the query DSL. In a broader view, Elasticsearch supports two
kinds of queries: basic ones and compound ones. Basic queries, such as the term query,
are used for querying the actual data. We will cover these in the Basic queries section of
this chapter. The second type of query is the compound query, such as the bool query,
which can combine multiple queries. We will cover these in the Compound queries section
of this chapter.

However, this is not the whole picture. In addition to these two types of queries, certain
queries can have filters that are used to narrow down your results with certain criteria.
Filter queries don’t affect scoring and are usually very efficient and easily cached.

To make it even more complicated, queries can contain other queries (don’t worry; we will
try to explain all this!). Furthermore, some queries can contain filters and others can
contain both queries and filters. Although this is not everything, we will stick with this
working explanation for now. We will go over this in greater detail in the Compound
queries section in this chapter and the Filtering your results section in Chapter 4,
Extending Your Querying Knowledge.

www.EBooksWorld.ir

The example data
If not stated otherwise, the following mappings will be used for the rest of the chapter:

{

"book" : {
"properties" : {

"author" : {
Iltypell : "String"

I

"characters" : {
Iltypell : "String"

I

"copies" : {
lltypell : ”long",
"ignore_malformed" : false

I

"otitle" : {
lltypell . llstringll

I

"tags" . {
lltypell : ”String",
"index" : "not_analyzed"

I

"title" : {
lltypell : llstringll

I

Ilyearll : {
lltypell : lllongH,
"ignore_malformed" : false,
"index" : "analyzed"

I

"available" : {
"type" : "boolean"

3

3
}

}

The preceding mappings represent a simple library and were used to create the library
index. One thing to remember is that Elasticsearch will analyze the string based fields if
we don’t configure it differently.

The preceding mappings were stored in the mapping. json file and, in order to create the
mentioned library index, we can use the following commands:

curl -XPOST 'localhost:9200/library'
curl -XPUT 'localhost:9200/1library/book/_mapping' -d @mapping.json

We also used the following sample data as the example ones for this chapter:

{ "index": {"_index": "library", "_type": "book", "_id": "1"}}

{ "title": "All Quiet on the Western Front","otitle": "Im Westen nichts
Neues", "author": "Erich Maria Remarque", "year": 1929, "characters": ["Paul
Baumer", "Albert Kropp", "Haie Westhus", "Fredrich Miller", "Stanislaus

www.EBooksWorld.ir

Katczinsky", "Tjaden"],"tags": ["novel"],'"copies": 1, "available": true,
"section" : 3}

{ "index": {"_index": "library", "_type": "book", "_id": "2"}}

{ "title": "Catch-22","author": "Joseph Heller", "year": 1961, "characters":
["John Yossarian'", "Captain Aardvark", "Chaplain Tappman", "Colonel
Cathcart", "Doctor Daneeka"],'"tags": ["novel"], "copies": 6, "available"
false, '"section" : 1}

{ "index": {"_index": "library", "_type": "book", "_id": "3"}}

{ "title": "The Complete Sherlock Holmes", "author": "Arthur Conan

Doyle", "year": 1936, "characters": ["Sherlock Holmes","Dr. Watson", "G.

Lestrade"],"tags": [], "copies": 0, "available" : false, "section" : 12}
{ "index": {"_index": "library", "_type": "book", "_id": "4"}}

{ "title": "Crime and Punishment",6 "otitle": "MNpecTynnéHue un

Haka3aHue", "author": "Fyodor Dostoevsky", "year'": 1886, '"characters":

["Raskolnikov", "Sofia Semyonovna Marmeladova"], "tags": [],"copies": O,
"available" : true}

We stored our sample data in the documents. json file and we use the following command
to index it:

curl -s -XPOST 'localhost:9200/_bulk' --data-binary @documents.json

This command runs bulk indexing. You can learn more about it in the Batch indexing to
speed up your indexing process section in Chapter 2, Indexing Your Data.

www.EBooksWorld.ir

A simple query

The simplest way to query Elasticsearch is to use the URI request query. We already
discussed it in the Searching with the URI request query section of Chapter 1, Getting
Started with Elasticsearch Cluster. For example, to search for the word crime in the title
field, you could send a query using the following command:

curl -XGET 'localhost:9200/l1library/book/_search?q=title:crimeé&pretty'

This is a very simple, but limited, way of submitting queries to Elasticsearch. If we look
from the point of view of the Elasticsearch query DSL, the preceding query is a
query_string query. It searches for the documents that have the term crime in the title
field and can be rewritten as follows:

{
"query" : {
"query_string" : { "query" : "title:crime" }
}

}

Sending a query using the query DSL is a bit different, but still not rocket science. We
send the GET (POST is also accepted in case your tool or library doesn’t allow sending
request body in HTTP GET requests) HTTP request to the _search REST endpoint as
earlier and include the query in the request body. Let’s take a look at the following
command:

curl -XGET 'localhost:9200/library/book/_search?pretty' -d '{
"query" : {
"query_string" : { "query" : "title:crime" }
}

} 1
As you can see, we used the request body (the -d switch) to send the whole JSON-
structured query to Elasticsearch. The pretty request parameter tells Elasticsearch to

structure the response in such a way that we humans can read it more easily. In response to
the preceding command, we get the following output:

{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
Iy
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
|I_typell : llbookH’
|I_id|l : I|4|I’
"_score" : 0.5,

www.EBooksWorld.ir

_source" : {

"title" : "Crime and Punishment",
"otitle" : "MpecTynnéHne n Haka3zaHue",
"author" : "Fyodor Dostoevsky",
"year" : 1886,
"characters" : ["Raskolnikov", "Sofia Semyonovna Marmeladova"],
"tagS" : [],
"copies" : 0O,
"available" : true
}
3]

Nice! We got our first search results with the query DSL.

www.EBooksWorld.ir

Paging and result size

Elasticsearch allows us to control how many results we want to get (at most) and from
which result we want to start. The following are the two additional properties that can be
set in the request body:

e from: This property specifies the document that we want to have our results from. Its
default value is 0, which means that we want to get our results from the first
document.

e size: This property specifies the maximum number of documents we want as the
result of a single query (which defaults to 10). For example, if we are only interested
in aggregations results and don’t care about the documents returned by the query, we
can set this parameter to o.

If we want our query to get documents starting from the tenth item on the list and fetch 20
documents, we send the following query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"from" : 9,
"size" : 20,
"query" : {
"query_string" : { "query" : "title:crime" }
}
} 1
Tip

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password
Hover the mouse pointer on the SUPPORT tab at the top

Click on Code Downloads & Errata

Enter the name of the book in the Search box

Select the book for which you’re looking to download the code files
Choose from the drop-down menu where you purchased this book from
Click on Code Download

Once the file is downloaded, make sure that you unzip or extract the folder using the latest
version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support

Returning the version value

In addition to all the information returned, Elasticsearch can return the version of the
document (we mentioned about versioning in Chapter 1, Getting Started with
Elasticsearch Cluster. To do this, we need to add the version property with the value of
true to the top level of our JSON object. So, the final query, which requests the version
information, will look as follows:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"version" : true,
llqueryll : {
"query_string" : { "query" : "title:crime" }
}' :
After running the preceding query, we get the following results:
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
3
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
|l_typell : IIbOOkH’
|l_id|l : I|4|I,
"_version" : 1,
"_score" : 0.5,
"_source" : {
"title" : "Crime and Punishment",
"otitle" : '"MpecTynnéHne n HakazaHwue'",
"author" : "Fyodor Dostoevsky",
"year" : 1886,
"characters" : ["Raskolnikov", "Sofia Semyonovna Marmeladova"],
"tagS" : [],
"copies" : O,
"available" : true
3
;]
}
}

As you can see, the _version section is present for the single hit we got.

www.EBooksWorld.ir

Limiting the score

For nonstandard use cases, Elasticsearch provides a feature that lets us filter the results on
the basis of a minimum score value that the document must have to be considered a match.
In order to use this feature, we must provide the min_score value at the top level of our
JSON object with the value of the minimum score. For example, if we want our query to
only return documents with a score higher than 0. 75, we send the following query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"min_score" : 0.75,
"query" : {
"query_string" : { "query" : "title:crime" }
}

} 1
We get the following response after running the preceding query:

{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
}
"hits" : {
"total" : O,
"max_score" : null,
"hits" : []
}
}

If you look at the previous examples, the score of our document was 0.5, which is lower
than 0. 75, and thus we didn’t get any documents in response.

Limiting the score usually doesn’t make much sense because comparing scores between
the queries is quite hard. However, maybe in your case, this functionality will be needed.

www.EBooksWorld.ir

Choosing the fields that we want to return

With the use of the fields array in the request body, Elasticsearch allows us to define
which fields to include in the response. Remember that you can only return these fields if
they are marked as stored in the mappings used to create the index, or if the _source field
was used (Elasticsearch uses the _source field to provide the stored values and the
_source field is turned on by default).

So, for example, to return only the title and the year fields in the results (for each
document), send the following query to Elasticsearch:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"fields" : ["title", "year"],

llqueryll : {
"query_string" : { "query" : "title:crime" }
}
} 1
In response, we get the following output:
{
"took" : 5,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
X}
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
Il_typell : IlbookH’
Il_idll : I|4|I,
"_score" : 0.5,
"fields" : {
"title" : ["Crime and Punishment"],
"year" : [1886]
}
+]
}
}

As you can see, everything worked as we wanted to. There are four things we would like
to share with you at this point, which are as follows:

e If we don’t define the fields array, it will use the default value and return the _source
field if available.

o If we use the _source field and request a field that is not stored, then that field will
be extracted from the _source field (however, this requires additional processing).

e If we want to return all the stored fields, we just pass an asterisk (*) as the field name.

e From a performance point of view, it’s better to return the _source field instead of

www.EBooksWorld.ir

multiple stored fields. This is because getting multiple stored fields may be slower
compared to retrieving a single _source field.

www.EBooksWorld.ir

Source filtering

In addition to choosing which fields are returned, Elasticsearch allows us to use so-called

source filtering. This functionality allows us to control which fields are returned from the
_source field. Elasticsearch exposes several ways to do this. The simplest source filtering
allows us to decide whether a document should be returned or not. Consider the following

query:
curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"_source" : false,
"query" : {
"query_string" : { "query" : "title:crime" }
}
} 1

The result retuned by Elasticsearch should be similar to the following one:

{

"took" : 12,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
X}
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
Il_typell : IIbOOkH’
Il_idll : I|4|I,
" _score" : 0.5
3]
}

}

Note that the response is limited to base information about a document and the _source
field was not included. If you use Elasticsearch as a second source of data and content of
the document is served from SQL database or cache, the document identifier is all you
need.

The second way is similar to that described in the preceding fields, although we define
which fields should be returned in the document source itself. Let’s see that using the
following example query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"_source" : ["title", "otitle"],
"query" : {
"query_string" : { "query" : "title:crime" }

}
} 1
We wanted to get the title and the otitle document fields in the returned _source field.

www.EBooksWorld.ir

Elasticsearch extracted those values from the original _source value and included the
_source field only with the requested fields. The whole response returned by
Elasticsearch looked as follows:

{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
iy
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
"_type" : "bOOk",
Il_idll : I|4|I’
"_score" : 0.5,
"_source" : {
"otitle" : "MpecTynnéHuve n HakasaHue",
"title" : "Crime and Punishment"
3
+]
}
}

We can also use an asterisk to select which fields should be returned in the _source field;
for example, title* will return values for the title field and for title1e (if we have
such field in our data). If we have documents with nested parts, we can use notation with a
dot; for example, title.* to select all the fields nested under the title object.

Finally, we can also specify explicitly which fields we want to include and which to
exclude from the _source field. We can include fields using the include property and we
can exclude fields using the exclude property (both of them are arrays of values). For
example, if we want the returned _source field to include all the fields starting with the
letter t but not the title field, we will run the following query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"_source" : {
"include" : ["t*"],
"exclude" : ["title"]
}
"query" : {
"query_string" : { "query" : "title:crime" }
}

} 1

www.EBooksWorld.ir

Using the script fields

Elasticsearch allows us to use script-evaluated values that will be returned with the result
documents (we will discuss Elasticsearch scripting capabilities in greater detail in the
Scripting capabilities of Elasticsearch section in Chapter 6, Make Your Search Better). To
use the script fields functionality, we add the script_fields section to our JSON query
object and an object with a name of our choice for each scripted value that we want to
return. For example, to return a value named correctYear, which is calculated as the year
field minus 1800, we run the following query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"script_fields" : {

"correctYear" : {
"script" : "doc[\"year\"].value - 1800"
}
}
"query" : {
"query_string" : { "query" : "title:crime" }
}
} 1
Note

By default, Elasticsearch doesn’t allow us to use dynamic scripting. If you tried the
preceding query, you probably got an error with information stating that the scripts of type
[inline] with operation [search] and language [groovy] are disabled. To make this
example work, you should add the script.inline: on property to the
elasticsearch.yml file. However, this exposes a security threat. Make sure to read the
Scripting capabilities of Elasticsearch section in Chapter 6, Make Your Search Better, to
learn about the consequences.

Using the doc notation, like we did in the preceding example, allows us to catch the results
returned and speed up script execution at the cost of higher memory consumption. We also
get limited to single-valued and single term fields. If we care about memory usage, or if
we are using more complicated field values, we can always use the _source field. The
same query using the _source field looks as follows:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"script_fields" : {

"correctYear" : {
"script" : "_source.year - 1800"
}
}
"query" : {
"query_string" : { "query" : "title:crime" }
}

} 1
The following response is returned by Elasticsearch with dynamic scripting enabled:

{
"took" : 76,

www.EBooksWorld.ir

"timed_out" : false,

"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
X}
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
"_type" : "bOOk",
Il_idll : II4II’
"_score" : 0.5,
"fields" : {
"correctYear" : [86]
}
3]
}
3

As you can see, we got the calculated correctYear field in response.

Passing parameters to the script fields

Let’s take a look at one more feature of the script fields - the passing of additional
parameters. Instead of having the value 1800 in the equation, we can use a variable name
and pass its value in the params section. If we do this, our query will look as follows:

curl -XGET 'localhost:9200/library/book/_search?pretty' -d '{
"script_fields" : {

"correctYear" : {
"script" : "_source.year - paramYear",
"params" : {
"paramYear" : 1800
}
}
}
"query" : {
"query_string" : { "query" : "title:crime" }

}
} 1
As you can see, we added the paramYear variable as part of the scripted equation and
provided its value in the params section. This allows Elasticsearch to execute the same
script with different parameter values in a slightly more efficient way.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding the querying process

After reading the previous section, we now know how querying works in Elasticsearch.
You know that Elasticsearch, in most cases, needs to scatter the query across multiple
nodes, get the results, merge them, fetch the relevant documents from one or more shards,
and return the final results to the client requesting the documents. What we didn’t talk
about are two additional things that define how queries behave: search type and query
execution preference. We will now concentrate on these functionalities of Elasticsearch.

www.EBooksWorld.ir

Query logic

Elasticsearch is a distributed search engine and so all functionality provided must be
distributed in its nature. It is exactly the same with querying. Because we would like to
discuss some more advanced topics on how to control the query process, we first need to
know how it works.

Let’s now get back to how querying works. We started the theory in the first chapter and
we would like to get back to it. By default, if we don’t alter anything, the query process
will consist of two phases: the scatter and the gather phase. The aggregator node (the one
that receives the request) will run the scatter phase first. During that phase, the query is
distributed to all the shards that our index is built from (of course if routing is not used).
For example, if it is built of 5 shards and 1 replica then 5 physical shards will be queried
(we don’t need to query a shard and its replica as they contain the same data). Each of the
queried shards will only return the document identifier and the score of the document. The
node that sent the scatter query will wait for all the shards to complete their task, gather
the results, and sort them appropriately (in this case, from top scoring to the lowest scoring
ones).

After that, a new request will be sent to build the search results. However, now only to
those shards that held the documents to build the response. In most cases, Elasticsearch
won’t send the request to all the shards but to its subset. That’s because we usually don’t
get the complete result of the query but only a portion of it. This phase is called the gather
phase. After all the documents are gathered, the final response is built and returned as the
query result. This is the basic and default Elasticsearch behavior but we can change it.

www.EBooksWorld.ir

Search type

Elasticsearch allows us to choose how we want our query to be processed internally. We
can do that by specifying the search type. There are different situations where different
search types are appropriate: sometimes one can care only about the performance while
sometimes query relevance is the most important factor. You should remember that each
shard is a small Lucene index and, in order to return more relevant results, some
information, such as frequencies, needs to be transferred between the shards. To control
how the queries are executed, we can pass the search_type request parameter and set it to
one of the following values:

e query_then_fetch: In the first step, the query is executed to get the information
needed to sort and rank the documents. This step is executed against all the shards.
Then only the relevant shards are queried for the actual content of the documents.
This is the search type used by default if no search type is provided with the query
and this is the query type we described previously.

e dfs_query_then_fetch: This is similar to query_then_fetch. However, it contains
an additional query phase comparing to query_then_fetch which calculates
distributed term frequencies.

There are also two deprecated search types: count and scan. The first one is deprecated
starting from Elasticsearch 2.0 and the second one starting with Elasticsearch 2.1. The first
search type used to provide benefits where only aggregations or the number of documents
was relevant, but now it is enough to add size equal to 0 to your queries. The scan request
was used for scrolling functionality.

So if we would like to use the simplest search type, we would run the following command:

curl -XGET 'localhost:9200/1library/book/_search?
pretty&search_type=query_then_fetch' -d '{

"query" : {
"term" : { "title" : "crime" }

}
} 1

www.EBooksWorld.ir

Search execution preference

In addition to the possibility of controlling how the query is executed, we can also control
on which shards to execute the query. By default, Elasticsearch uses shards and replicas on
any node in a round robin manner — so that each shard is queried a similar number of
times. The default behavior is the proper method of shard execution preference for most
use cases. But there may be times when we want to change the default behavior. For
example, you may want the search to only be executed on the primary shards. To do that,
we can set the preference request parameter to one of the following values:

e primary: The operation will be only executed on the primary shards, so the replicas
won’t be used. This can be useful when we need to use the latest information from
the index but our data is not replicated right away.

e _primary_first: The operation will be executed on the primary shards if they are
available. If not, it will be executed on the other shards.

e replica: The operation will be executed only on the replica shards.

e replica_first: This operation is similar to _primary_first, but uses replica
shards. The operation will be executed on the replica shards if possible and on the
primary shards if the replicas are not available.

e _local: The operation will be executed on the shards available on the node which the
request was sent from and, if such shards are not present, the request will be
forwarded to the appropriate nodes.

e _only_node:node_id: This operation will be executed on the node with the provided
node identifier.

e _only_nodes:nodes_spec: This operation will be executed on the nodes that are
defined in nodes_spec. This can be an IP address, a name, a name or IP address using
wildcards, and so on. For example, if nodes_spec is set to 192.168.1.*, the
operation will be run on the nodes with IP addresses starting with 192.168.1.

e _prefer_node:node_id: Elasticsearch will try to execute the operation on the node
with the provided identifier. However, if the node is not available, it will be executed
on the nodes that are available.

e _shards:1,2: Elasticsearch will execute the operation on the shards with the given
identifiers; in this case, on shards with identifiers 1 and 2. The _shards parameter
can be combined with other preferences, but the shards identifiers need to be
provided first. For example, _shards:1,2;_local.

e Custom value: Any custom, string value may be passed. Requests with the same
values provided will be executed on the same shards.

For example, if we would like to execute a query only on the local shards, we would run
the following command:

curl -XGET 'localhost:9200/library/_search?pretty&preference=_local' -d '{
"query" : {
"term" : { "title" : "crime" }

}
} 1

www.EBooksWorld.ir

Search shards API

When discussing the search preference, we would also like to mention the search shards
API exposed by Elasticsearch. This API allows us to check which shards the query will be
executed on. In order to use this API, run a request against the search_shards rest end
point. For example, to see how the query will be executed, we run the following
command:

curl -XGET 'localhost:9200/library/_search_shards?pretty' -d
"{"query":"match_all":{}}'

The response to the preceding command will be as follows:

{
"nodes" : {
"my@DcA_MTImm4NE3cG3ZIg" : {
"name" : "Cloud 9",
"transport_address" : "127.0.0.1:9300",
"attributes" : { }
}
3
"shards" : [[{
"state" : "STARTED",
"primary" : true,
"node" : "myO®DcA_MTImm4NE3cG3ZIg",
"relocating_node" : null,
"shard" : 0,
"index" : "library",
"version" : 4,
"allocation_id" : {
"id" : "9ayLDbL1RVSyJRYIJkuAxg"
}
Y1 LA
"state" : "STARTED",
"primary" : true,
"node" : "my®DcA_MTImm4NE3cG3ZIg",
"relocating_node" : null,
"shard" : 1,
"index" : "library",
"version" : 4,
"allocation_id" : {
"id" : "wfpvtaLER-KVyOsuD46Yqg"
}
Y1, 0 A
"state" : "STARTED",
"primary" : true,
"node" : "myODcA_MTImm4NE3cG3ZIg",
"relocating_node" : null,
"shard" : 2,
"index" : "library",
"version" : 4,
"allocation_id" : {
"id" : "zrLPWhCOSTmjlb8TY5rYQA"
}
Y10 A

www.EBooksWorld.ir

"state" : "STARTED",

"primary" : true,
"node" : "myODcA_MTImm4NE3cG3ZIg",
"relocating_node" : null,
"shard" : 3,
"index" : "library",
"version" : 4,
"allocation_id" : {
"id" : "efnvY7YcSz6X8X8USacA7g"
}
L PR
"state" : "STARTED",
"primary" : true,
"node" : "myODcA_MTImm4NE3cG3ZIg",
"relocating_node" : null,
"shard" : 4,
"index" : "library",
"version" : 4,
"allocation_id" : {
"id" : "XJHW2J63QUKdh3bK3T2nzA"
}
1]

}

As you can see, in the response returned by Elasticsearch, we have the information about
the shards that will be used during the query process. Of course, with the search shards
API, we can use additional parameters that control the querying process. These properties
are routing, preference, and local. We are already familiar with the first two. The
local parameter is a Boolean (values true or false), one that allows us to tell
Elasticsearch to use the cluster state information stored on the local node (setting local
to true) instead of the one from the master node (setting local to false). This allows us
to diagnose problems with cluster state synchronization.

www.EBooksWorld.ir

www.EBooksWorld.ir

Basic queries

Elasticsearch has extensive search and data analysis capabilities that are exposed in forms
of different queries, filters, aggregates, and so on. In this section, we will concentrate on
the basic queries provided by Elasticsearch. By basic queries we mean the ones that don’t
combine the other queries together but run on their own.

www.EBooksWorld.ir

The term query

The term query is one of the simplest queries in Elasticsearch. It just matches the
document that has a term in a given field - the exact, not analyzed term. The simplest term
query is as follows:

{
"query" : {
"term" : {
"title" : "crime"
}
}
3

It will match the documents that have the term crime in the title field. Remember that the
term query is not analyzed, so you need to provide the exact term that will match the term
in the indexed document. Note that in our input data, we have the title field with the
value of Crime and Punishment (upper cased), but we are searching for crime, because the
Crime terms becomes crime after analysis during indexing.

In addition to the term we want to find, we can also include the boost attribute to our term
query, which will affect the importance of the given term. We will talk more about boosts
in the Introduction to Apache Lucene scoring section of Chapter 6, Make Your Search
Better. For now, we just need to remember that it changes the importance of the given part
of the query.

For example, to change our previous query and give our term query a boost of 10.0, send
the following query:

{
uqueryu : {
"term" : {
"title" : {
"value" : "crime",
"boost" : 10.0
}
}
}
}

As you can see, the query changed a bit. Instead of a simple term value, we nested a new
JSON object which contains the value property and the boost property. The value of the
value property should contain the term we are interested in and the boost property is the
boost value we want to use.

www.EBooksWorld.ir

The terms query

The terms query is an extension to the term query. It allows us to match documents that
have certain terms in their contents instead of a single term. The term query allowed us to
match a single, not analyzed term and the terms query allows us to match multiple of
those. For example, let’s say that we want to get all the documents that have the terms
novel or book in the tags field. To achieve this, we will run the following query:

{

"query" : {
"terms" : {
"tags" : ["novel", "book"]
}
}

}

The preceding query returns all the documents that have one or both of the searched terms
in the tags field. This is a key point to remember — the terms query will find documents
having any of the provided terms.

www.EBooksWorld.ir

The match all query

The match all query is one of the simplest queries available in Elasticsearch. It allows us
to match all of the documents in the index. If we want to get all the documents from our
index, we just run the following query:

{
"query" : {
"match_all" : {}

}
}
We can also include boost in the query, which will be given to all the documents matched
by it. For example, if we want to add a boost of 2.0 to all the documents in our match all
query, we will send the following query to Elasticsearch:

{
"query" : {
"match_all" : {
"boost" : 2.0

}
3
}

www.EBooksWorld.ir

The type query

A very simple query that allows us to find all the documents with a certain type. For
example, if we would like to search for all the documents with the book type in our library
index, we will run the following query:

{
"query" : {
lltypell : {
"value" : "book"
}
}
}

www.EBooksWorld.ir

The exists query

A query that allows us to find all the documents that have a value in the defined field. For
example, to find the documents that have a value in the tags field, we will run the
following query:

{
"query" : {
"exists" : {
"field" : "tags"
}
}
3

www.EBooksWorld.ir

The missing query

Opposite to the exists query, the missing query returns the documents that have a null
value or no value at all in a given field. For example, to find all the documents that don’t
have a value in the tags field, we will run the following query:

{
"query" : {
"missing" : {
"field" : "tags"
}
}
3

www.EBooksWorld.ir

The common terms query

The common terms query is a modern Elasticsearch solution for improving query
relevance and precision with common words when we are not using stop words
(http://en.wikipedia.org/wiki/Stop_words). For example, a crime and punishment query
results in three term queries and each of them have a cost in terms of performance.
However, the and term is a very common one and its impact on the document score will be
very low. The solution is the common terms query which divides the query into two
groups. The first group is the one with important terms, which are the ones that have lower
frequency. The second group is the one with less important terms, which are the ones with
high frequency. The first query is executed first and Elasticsearch calculates the score for
all of the terms from the first group. This way the low frequency terms, which are usually
the ones that have more importance, are always taken into consideration. Then
Elasticsearch executes the second query for the second group of terms, but calculates the
score only for the documents matched for the first query. This way the score is only
calculated for the relevant documents and thus higher performance can be achieved.

An example of the common terms query is as follows:

{
uqueryn . {
"common" : {
"title" : {
"query" : "crime and punishment",
"cutoff_frequency" : 0.001
}
}
}
}

The query can take the following parameters:

e query: The actual query contents.

e cutoff_frequency: The percentage (0.001 means 0.1%) or an absolute value (when
property is set to a value equal to or larger than 1). High and low frequency groups
are constructed using this value. Setting this parameter to 0.001 means that the low
frequency terms group will be constructed for terms having a frequency of 0.1% and
lower.

e low_freq_operator: This can be set to or or and, but defaults to or. It specifies the
Boolean operator used for constructing queries in the low frequency term group. If
we want all the terms to be present in a document for it to be considered a match, we
should set this parameter to and.

e high_freq_operator: This can be set to or or and, but defaults to or. It specifies the
Boolean operator used for constructing queries in the high frequency term group. If
we want all the terms to be present in a document for it to be considered a match, we
should set this parameter to and.

e minimum_should_match: Instead of using low_freq_operator and
high_freq_operator, we can use minimum_should_match. Just like with the other

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Stop_words

queries, it allows us to specify the minimum number of terms that should be found in
a document for it to be considered a match. We can also specify high_freq and
low_freq inside the minimum_should_match object, which allows us to define the
different number of terms that need to be matched for the high and low frequency
terms.

boost: The boost given to the score of the documents.

analyzer: The name of the analyzer that will be used to analyze the query text,
which defaults to the default analyzer.

disable_coord: Defaults to false and allows us to enable or disable the score factor
computation that is based on the fraction of all the query terms that a document
contains. Set it to true for less precise scoring, but slightly faster queries.

Note

Unlike the term and terms queries, the common terms query is analyzed by
Elasticsearch.

www.EBooksWorld.ir

The match query

The match query takes the values given in the query parameter, analyzes it, and constructs
the appropriate query out of it. When using a match query, Elasticsearch will choose the
proper analyzer for the field we choose, so you can be sure that the terms passed to the
match query will be processed by the same analyzer that was used during indexing.
Remember that the match query (and the multi_match query) doesn’t support Lucene
query syntax; however, it perfectly fits as a query handler for your search box. The
simplest match (and the default) query will look like the following:

{
nqueryn : {
"match" : {
"title" : "crime and punishment"
}
}
}

The preceding query will match all the documents that have the terms crime, and, or
punishment in the title field. However, the previous query is only the simplest one; there
are multiple types of match query which we will discuss now.

The Boolean match query

The Boolean match query is a query which analyzes the provided text and makes a
Boolean query out of it. This is also the default type for the match query. There are a few
parameters which allow us to control the behavior of the Boolean match queries:

e operator: This parameter can take the value of or or and, and controls which
Boolean operator is used to connect the created Boolean clauses. The default value is
or. If we want all the terms in our query to be matched, we should use the and
Boolean operator.

e analyzer: This specifies the name of the analyzer that will be used to analyze the
query text and defaults to the default analyzer.

e fuzziness: Providing the value of this parameter allows us to construct fuzzy
queries. The value of this parameter can vary. For numeric fields, it should be set to
numeric value; for date based field, it can be set to millisecond or time value, such
as 2h; and for text fields, it can be set to 0, 1, or 2 (the edit distance in the
Levenshtein algorithm — https://en.wikipedia.org/wiki/l.evenshtein distance), AUTO
(which allows Elasticsearch to control how fuzzy queries are constructed and which
is a preferred value). Finally, for text fields, it can also be set to values from 0.0 to
1.0, which results in edit distance being calculated as term length minus 1.0
multiplied by the provided fuzziness value. In general, the higher the fuzziness, the
more difference between terms will be allowed.

e prefix_length: This allows control over the behavior of the fuzzy query. For more
information on the value of this parameter, refer to the The fuzzy query section in this
chapter.

e max_expansions: This allows control over the behavior of the fuzzy query. For more

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Levenshtein_distance

information on the value of this parameter, refer to the The fuzzy query section in this
chapter.

e zero_terms_query: This allows us to specify the behavior of the query, when all the
terms are removed by the analyzer (for example, because of stop words). It can be set
to none or all, with none as the default. When set to none, no documents will be
returned when the analyzer removes all the query terms. If set it to all, all the
documents will be returned.

e cutoff_frequency: It allows dividing the query into two groups: one with high
frequency terms and one with low frequency terms. Refer to the description of the
common terms query to see how this parameter can be used.

e lenient: When set to true (by default it is false), it allows us to ignore the
exceptions caused by data incompatibility, such as trying to query numeric fields
using string value.

The parameters should be wrapped in the name of the field we are running the query
against. So if we want to run a sample Boolean match query against the title field, we
send a query as follows:

{
"query" : {
"match" : {
"title" : {
"query" : "crime and punishment",
"operator" : "and"
}
}
}
}
The phrase match query

A phrase match query is similar to the Boolean query, but, instead of constructing the
Boolean clauses from the analyzed text, it constructs the phrase query. You may wonder
what phrase is when it comes to Lucene and Elasticsearch — well, it is two or more terms
positioned one after another in an order. The following parameters are available:

e slop: An integer value that defines how many unknown words can be put between
the terms in the text query for a match to be considered a phrase. The default value
of this parameter is 0, which means that no additional words are allowed.

e analyzer: This specifies the name of the analyzer that will be used to analyze the
query text and defaults to the default analyzer.

A sample phrase match query against the title field looks like the following code:

{

"query" : {
"match_phrase" : {
"title" : {
"query" : "crime punishment",
"slop" : 1
3

www.EBooksWorld.ir

by
3
}

Note that we removed the and term from our query, but because the slop is set to 1, it will
still match our document because we allowed one term to be present between our terms.

The match phrase prefix query

The last type of the match query is the match phrase prefix query. This query is almost
the same as the phrase match query, but in addition, it allows prefix matches on the last
term in the query text. Also, in addition to the parameters exposed by the match phrase
query, it exposes an additional one — the max_expansions parameter, which controls how
many prefixes the last term will be rewritten to. Our example query changed to the
match_phrase_prefix query will look as follows:

{
uqueryu : {
"match_phrase_prefix" : {
"title" : {
"query" : "crime punishm",
"slop" : 1,
"max_expansions" : 20
3
}
}
}

Note that we didn’t provide the full crime and punishment phrase, but only crime
punishm and still the query would match our document. This is because we used the
match_phrase_prefix query combined with slop set to 1.

www.EBooksWorld.ir

The multi match query

It is the same as the match query, but instead of running against a single field, it can be run
against multiple fields with the use of the fields parameter. Of course, all the parameters
you use with the match query can be used with the multi match query. So if we would
like to modify our match query to be run against the title and otitle fields, we will run
the following query:

{
"query" : {
"multi_match" : {
"query" : "crime punishment",
"fields" : ["titlen10", "otitle"]
}
}
}

As shown in the preceding example, the nice thing about the multi match query is that
the fields defined in it support boosting, so we can increase or decrease the importance of
matches on certain fields.

However, this is not the only difference when it comes to comparison with the match
query. We can also control how the query is run internally by using the type property and
setting it to one of the following values:

e best_fields: This is the default behavior, which finds documents having matches in
any field from the defined ones, but setting the document score to the score of the
best matching field. The most useful type when searching for multiple words and
wanting to boost documents that have those words in the same field.

e most_fields: This value finds documents that match any field and sets the score of
the document to the combined score from all the matched fields.

e cross_fields: This value treats the query as if all the terms were in one, big field,
thus returning documents matching any field.

e phrase: This value uses the match_phrase query on each field and sets the score of
the document to the score combined from all the fields.

e phrase_prefix: This value uses the match_phrase_prefix query on each field and
sets the score of the document to the score combined from all the fields.

In addition to the parameters mentioned in the match query and type, the multi match
query exposes some additional ones allowing more control over its behavior:

e tie_breaker: This allows us to specify the balance between the minimum and the
maximum scoring query items and the value can be from 0.0 to 1.0. When used, the
score of the document is equal to the best scoring element plus the tie_breaker
multiplied by the score of all the other matching fields in the document. So, when set
to 0.0, Elasticsearch will only use the score of the most scoring matching element.
You can read more about it in The dis_max query section in this chapter.

www.EBooksWorld.ir

The query string query

In comparison to the other queries available, the query string query supports full
Apache Lucene query syntax, which we discussed earlier in the Lucene query syntax
section of Chapter 1, Getting Started with Elasticsearch Cluster. It uses a query parser to
construct an actual query using the provided text. An example query string query will look
like the following code:

{
uqueryn : {
"query_string" : {
"query" : "title:crimen1l0 +title:punishment -otitle:cat +author:
(+Fyodor +dostoevsky)",
"default_field" : "title"
}
}
}

Because we are familiar with the basics of the Lucene query syntax, we can discuss how
the preceding query works. As you can see, we wanted to get the documents that may
have the term crime in the title field and such documents should be boosted with the value
of 10. Next, we wanted only the documents that have the term punishment in the title field
and we didn’t want documents with the term cat in the otitle field. Finally, we told
Lucene that we only wanted the documents that had the fyodor and dostoevsky terms in
the author field.

Similar to most of the queries in Elasticsearch, the query string query provides quite a
few parameters that allow us to control the query behavior and the list of parameters for
this query is rather extensive:

e query: This specifies the query text.

e default_field: This specifies the default field the query will be executed against. It
defaults to the index.query.default_field property, which is by default set to
_all.

e default_operator: This specifies the default logical operator (or or and) used when
no operator is specified. The default value of this parameter is or.

e analyzer: This specifies the name of the analyzer used to analyze the query provided
in the query parameter.

e allow_leading_wildcard: This specifies if a wildcard character is allowed as the
first character of a term. It defaults to true.

e lowercase_expand_terms: This specifies if the terms that are a result of query
rewrite should be lowercased. It defaults to true, which means that the rewritten
terms will be lowercased.

e enable_position_increments: This specifies if position increments should be
turned on in the result query. It defaults to true.

e fuzzy max_expansions: This specifies the maximum number of terms into which
fuzzy query will be expanded, if fuzzy query is used. It defaults to 50.

e fuzzy_ prefix_length: This specifies the prefix length for the generated fuzzy

www.EBooksWorld.ir

queries and defaults to 0. To learn more about it, look at the fuzzy query description.

e phrase_slop: This specifies the phrase slop and defaults to 6. To learn more about it,
look at the phrase match query description.

e boost: This specifies the boost value which will be used and defaults to 1. 0.

e analyze wildcard: This specifies if the terms generated by the wildcard query
should be analyzed. It defaults to false, which means that those terms won’t be
analyzed.

e auto_generate_phrase_queries: specifies if the phrase queries will be
automatically generated from the query. It defaults to false, which means that the
phrase queries won’t be automatically generated.

e minimum_should_match: This controls how many of the generated Boolean should
clauses should be matched against a document for the document to be considered a
hit. The value can be provided as a percentage; for example, 50%, which would mean
that at least 50 percent of the given terms should match. It can also be provided as an
integer value, such as 2, which means that at least 2 terms must match.

e fuzziness: This controls the behavior of the generated fuzzy query. Refer to the
match query description for more information.

e max_determined_states: This defaults to 10000 and sets the number of states that
the automaton can have for handling regular expression queries. It is used to disallow
very expensive queries using regular expressions.

e locale: This sets the locale that should be used for the conversion of string values.
By default, it is set to ROOT.

e time_zone: This sets the time zone that should be used by range queries that are run
on date based fields.

e lenient: This can take the value of true or false. If set to true, format-based
failures will be ignored. By default, it is set to false.

Note that Elasticsearch can rewrite the query string query and, because of that,
Elasticsearch allows us to pass additional parameters that control the rewrite method.
However, for more details about this process, go to the Understanding the querying
process section in this chapter.

Running the query string query against multiple fields

It is possible to run the query string query against multiple fields. In order to do that,
one needs to provide the fields parameter in the query body, which should hold the array
of the field names. There are two methods of running the query string query against
multiple fields: the default method uses the Boolean query to make queries and the other
method can use the dis_max query.

In order to use the dis_max query, one should add the use_dis_max property in the query
body and set it to true. An example query will look like the following code:

{
"query" : {
"query_string" : {
"query" : "crime punishment",

"fields" : ["title", "otitle"],

www.EBooksWorld.ir

"use _dis_max" : true

3
}
b

www.EBooksWorld.ir

The simple query string query

The simple query string query uses one of the newest query parsers in Lucene - the
SimpleQueryParser
(https://lucene.apache.org/core/5_4_0/queryparser/org/apache/lucene/queryparser/simple/S
Similar to the query string query, it accepts Lucene query syntax as the query; however,
unlike it, it never throws an exception when a parsing error happens. Instead of throwing
an exception, it discards the invalid parts of the query and runs the rest.

An example simple query string query will look like the following code:

{
"query" : {
"simple_query_string" : {
"query" : "crime punishment",
"default_operator" : "or"
}
}
}

The query supports parameters such as query, fields, default_operator, analyzer,
lowercase_expanded_terms, locale, lenient, and minimum_should_match, and can also
be run against multiple fields using the fields property.

www.EBooksWorld.ir

https://lucene.apache.org/core/5_4_0/queryparser/org/apache/lucene/queryparser/simple/SimpleQueryParser.html

The identifiers query

This is a simple query that filters the returned documents to only those with the provided
identifiers. It works on the internal _uid field, so it doesn’t require the _id field to be
enabled. The simplest version of such a query will look like the following:

{
"query" : {
"ids" : {
llvaluesll : [|I1I|’ l|2|l, I|3II]
}
}
}

This query will only return those documents that have one of the identifiers present in the
values array. We can complicate the identifiers query a bit and also limit the documents
on the basis of their type. For example, if we want to only include documents from the
book types, we will send the following query:

{
"query" : {
"ids" : {
lltypell : llbookll ,
"V&lueS" : ["1", l|2||, ll3ll]
}
}
}

As you can see, we’ve added the type property to our query and we’ve set its value to the
type we are interested in.

www.EBooksWorld.ir

The prefix query

This query is similar to the term query in its configuration and to the multi term query
when looking into its logic. The prefix query allows us to match documents that have the
value in a certain field that starts with a given prefix. For example, if we want to find all
the documents that have values starting with cri in the title field, we will run the
following query:

{
"query" : {
"prefix" : {
"title" : "cri"
}
}
}

Similar to the term query, you can also include the boost attribute to your prefix query
which will affect the importance of the given prefix. For example, if we would like to
change our previous query and give our query a boost of 3.0, we will send the following

query:

{
"query" : {
"prefix" : {
"title" : {
"value" : "cri",
"boost" : 3.0
3
}
}
3
Note

Note that the prefix query is rewritten by Elasticsearch and because of that Elasticsearch
allows us to pass an additional parameter, that is, controlling the rewrite method.
However, for more details about that process, refer to the Understanding the querying
process section in this chapter.

www.EBooksWorld.ir

The fuzzy query

The fuzzy query allows us to find documents that have values similar to the ones we’ve
provided in the query. The similarity of terms is calculated on the basis of the edit distance
algorithm. The edit distance is calculated on the basis of terms we provide in the query
and against the searched documents. This query can be expensive when it comes to CPU
resources, but can help us when we need fuzzy matching; for example, when users make
spelling mistakes. In our example, let’s assume that instead of crime, our user enters the
crme word into the search box and we would like to run the simplest form of fuzzy query.
Such a query will look like this:

{
"query" : {
"fuzzy" : {
"title" : "crme"
}
}
}
The response for such a query will be as follows:
{
"took" : 81,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
I
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
|l_typell : IlbooklI’
|l_id|l : I|4|I’
"_score" : 0.5,
"_source" : {
"title" : "Crime and Punishment",
"otitle" : '"MpecTynnéHne n HakazaHwue'",
"author" : "Fyodor Dostoevsky",
"year" : 1886,
"characters" : ["Raskolnikov", "Sofia Semyonovna Marmeladova"],
"tagS" : [],
"copies" : O,
"available" : true
¥
;]
}
}

Even though we made a typo, Elasticsearch managed to find the documents we were
interested in.

www.EBooksWorld.ir

We can control the fuzzy query behavior by using the following parameters:

e value: This specifies the actual query.

e boost: This specifies the boost value for the query. It defaults to 1. 0.

e fuzziness: This controls the behavior of the generated fuzzy query. Refer to the
match query description for more information.

e prefix_length: This is the length of the common prefix of the differencing terms. It
defaults to o.

e max_expansions: This specifies the maximum number of terms the query will be
expanded to. The default value is unbounded.

The parameters should be wrapped in the name of the field we are running the query
against. So if we would like to modify the previous query and add additional parameters,
the query will look like the following code:

{
"query" : {
"fuzzy" : {

"title" : {
"value" : "crme",
"fuzziness" : 2

}

}
}
}

www.EBooksWorld.ir

The wildcard query

A query that allows us to use * and ? wildcards in the values we search. Apart from that,
the wildcard query is very similar to the term query in case of its body. To send a query
that would match all the documents with the value of the cr?me term (? matching any
character) we would send the following query:

{
"query" : {
"wildcard" : {
"title" : "cr?me"
}
3
3

It will match the documents that have all the terms matching cr?me in the title field.
However, you can also include the boost attribute to your wildcard query which will
affect the importance of each term that matches the given value. For example, if we would
like to change our previous query and give our term query a boost of 20.0, we will send
the following query:

{

"query" : {
"wildcard" : {
"title" : {

"value" : "cr?me",
"boost" : 20.0
}
}
}
3
Note

Note that wildcard queries are not very performance oriented queries and should be
avoided if possible; especially avoid leading wildcards (terms starting with wildcards).
The wildcard query is rewritten by Elasticsearch and because of that Elasticsearch allows
us to pass an additional parameter, that is, controlling the rewrite method. For more details
about this process, refer to the Understanding the querying process section in this chapter.
Also remember that the wildcard query is not analyzed.

www.EBooksWorld.ir

The range query

A query that allows us to find documents that have a field value within a certain range and
which works for numerical fields as well as for string-based fields and date based fields
(just maps to a different Apache Lucene query). The range query should be run against a
single field and the query parameters should be wrapped in the field name. The following
parameters are supported:

e gte: The query will match documents with the value greater than or equal to the one
provided with this parameter

e gt: The query will match documents with the value greater than the one provided
with this parameter

e 1te: The query will match documents with the value lower than or equal to the one
provided with this parameter

e 1t: The query will match documents with the value lower than the one provided with
this parameter

So for example, if we want to find all the books that have the value from 17600 to 1900 in
the year field, we will run the following query:

{
"query" : {
"range" : {
"year" : {
"gte" : 1700,
"lte" : 1900
}
}
3
3

www.EBooksWorld.ir

Regular expression query

Regular expression query allows us to use regular expressions as the query text.
Remember that the performance of such queries depends on the chosen regular expression.
If our regular expression would match many terms, the query will be slow. The general
rule is that the more terms matched by the regular expression, the slower the query will be.

An example regular expression query looks like this:

{
"query" : {
"regexp" : {
"title" : {
"value" : "cr.m[ae]",
"boost" : 10.0
}
}
}
}

The preceding query will result in Elasticsearch rewriting the query. The rewritten query
will have the number of term queries depending on the content of our index matching the
given regular expression. The boost parameter seen in the query specifies the boost value
for the generated queries.

The full regular expression syntax accepted by Elasticsearch can be found at

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-
query.html#regexp-syntax.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-query.html#regexp-syntax

The more like this query

One of the queries that got a major rework in Elasticsearch 2.0, the more like this query
allows us to retrieve documents that are similar (or not similar) to the provided text or to
the documents that were provided.

The more like this query allows us to get documents that are similar to the provided text.
Elasticsearch supports a few parameters to define how the more like this query should
work:

fields: An array of fields that the query should be run against. It defaults to the _all
field.

like: This parameter comes in two flavors: it allows us to provide a text which the
returned documents should be similar to or an array of documents that the returning
document should be similar to.

unlike: This is similar to the 1ike parameter, but it allows us to define text or
documents that our returning document should not be similar to.

min_term_freq: The minimum term frequency (for the terms in the documents)
below which terms will be ignored. It defaults to 2.

max_query_terms: The maximum number of terms that will be included in any
generated query. It defaults to 25. The higher value may mean higher precision, but
lower performance.

stop_words: An array of words that will be ignored when comparing documents and
the query. It is empty by default.

min_doc_freq: The minimum number of documents in which the term has to be
present in order not to be ignored. It defaults to 5, which means that a term needs to
be present in at least five documents.

max_doc_freq: The maximum number of documents in which the term may be
present in order not to be ignored. By default, it is unbounded (set to 0).
min_word_len: The minimum length of a single word below which a word will be
ignored. It defaults to o.

max_word_len: The maximum length of a single word above which it will be ignored.
It defaults to unbounded (which means setting the value to 0).

boost_terms: The boost value that will be used when boosting each term. It defaults
to 0.

boost: The boost value that will be used when boosting the query. It defaults to 1.
include: This specifies if the input documents should be included in the results
returned by the query. It defaults to false, which means that the input documents
won’t be included.

minimum_should_match: This controls the number of terms that need to be matched
in the resulting documents. By default, it is set to 30%.

analyzer: The name of the analyzer that will be used to analyze the text we
provided.

An example for a more like this query looks like this:

www.EBooksWorld.ir

{

"query" : {
"more_like_this" : {
"fields" : ["title", "otitle"],
"like" : "crime and punishment",
"min_term_freq" : 1,
"min_doc_freq" : 1
}
}

}

As we said earlier, the 1ike property can also be used to show which documents the
results should be similar to. For example, the following is the query that will use the 1ike
property to point to a given document (note that the following query won’t return
documents on our example data):

{
uqueryu : {
"more_like_this" : {
"fields" : ["title", "otitle"],
"min_term_freq" : 1,
"min_doc_freq" : 1,
"like" : [
{
"_index" : "library",
|l_typell : "bOOk",
|l_id|l : I|4|I
}
]

}
b
}

We can also mix the documents and text together:

{
Ilqueryll : {
"more_like_this" : {
"fields" : ["title", "otitle"],
"min_term_freq" : 1,
"min_doc_freq" : 1,
"like" : [
{
"_index" : "library",
|l_typell : llbookH’
|l_id|l : I|4|I
I

"crime and punishment"

]

[y

www.EBooksWorld.ir

www.EBooksWorld.ir

Compound queries

In the Basic queries section of this chapter, we discussed the simplest queries exposed by
Elasticsearch. We also talked about the position aware queries called span queries in the
Span queries section. However, the simple ones and the span queries are not the only
queries that Elasticsearch provides. The compound queries, as we call them, allow us to
connect multiple queries together or alter the behavior of other queries. You may wonder
if you need such functionality. Your deployment may not need it, but anything apart from
a simple query will probably require compound queries. For example, combining a simple
term query with a match_phrase query to get better search results may be a good
candidate for compound queries usage.

www.EBooksWorld.ir

The bool query

The bool query allows us to wrap a virtually unbounded number of queries and connect
them with a logical value using one of the following sections:

e should: The query wrapped into this section may or may not match. The number of
should sections that have to match is controlled by the minimum_should_match
parameter

e must: The query wrapped into this section must match in order for the document to
be returned.

e must_not: The query when wrapped into this section must not match in order for the
document to be returned.

Each of the preceding mentioned sections can be present multiple times in a single bool
query. This allows us to build very complex queries that have multiple levels of nesting
(you can include the bool query in another bool query). Remember that the score of the
resulting document will be calculated by taking a sum of all the wrapped queries that the
document matched.

In addition to the preceding sections, we can add the following parameters to the query
body to control its behavior:

e filter: This allows us to specify the part of the query that should be used as a filter.
You can read more about filters in the Filtering your results section in Chapter 4,
Extending Your Querying Knowledge.

e boost: This specifies the boost used in the query, defaulting to 1. 0. The higher the
boost, the higher the score of the matching document.

e minimum_should_match: This describes the minimum number of should clauses that
have to match in order for the checked document to be counted as a match. For
example, it can be an integer value such as 2 or a percentage value such as 75%. For
more information, refer to
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-minimum-
should-match.html.

e disable_coord: A Boolean parameter (defaults to false), which allows us to enable
or disable the score factor computation that is based on the fraction of all the query
terms that a document contains. We should set it to true for less precise scoring, but
slightly faster queries.

Imagine that we want to find all the documents that have the term crime in the title field.
In addition, the documents may or may not have a range of 1900 to 2000 in the year field
and may not have the nothing term in the otitle field. Such a query made with the bool
query will look as follows:

{
"query" : {
"bool" : {
"must" : {
"term" : {
"title" : "crime"

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-minimum-should-match.html

}

I
"should" : {
"range" : {
"year" : {
"from" : 1900,
"to" : 2000
3
3
3
"must_not" : {
"term" : {
"otitle" : "nothing"
3
3
3
}
3
Note

Note that the must, should, and must_not sections can contain a single query or an array
of queries.

www.EBooksWorld.ir

The dis_max query

The dis_max query is very useful as it generates a union of documents returned by all the
sub queries and returns it as the result. The good thing about this query is the fact that we
can control how the lower scoring sub queries affect the final score of the documents. For
the dis_max query, we specify the queries using the queries property (query or an array
of queries) and the tie breaker, with the tie_breaker property. We can also include
additional boost by specifying the boost parameter.

The final document score is calculated as the sum of scores of the maximum scoring query
and the sum of scores returned from the rest of the queries, multiplied by the value of the
tie parameter. So, the tie_breaker parameter allows us to control how the lower scoring
queries affect the final score. If we set the tie_breaker parameter to 1.0, we get the exact
sum, while setting the tie parameter to 0.1 results in only 10 percent of the scores (of all
the scores apart from the maximum scoring query) being added to the final score.

An example of the dis_max query is as follows:

{
uqueryu : {

"dis_max" : {
"tie_breaker" : 0.99,
"boost" : 10.0,
"queries" : [

{
"match" : {
"title" : "crime"
}
3

{
"match" : {

"author" : "fyodor"

As you can see, we included the tie_breaker and boost parameters. In addition to that,
we specified the queries parameter that holds the array of queries that will be run and
used to generate the union of documents for results.

www.EBooksWorld.ir

The boosting query

The boosting query wraps around two queries and lowers the score of the documents
returned by one of the queries. There are three sections of the boosting query that need to
be defined: the positive section that holds the query whose document score will be left
unchanged, the negative section whose resulting documents will have their score
lowered, and the negative_boost section that holds the boost value that will be used to
lower the second section’s query score. The advantage of the boosting query is that the
results of both the queries (the negative and the positive ones) will be present in the
results, although the scores of some queries will be lowered. For comparison, if we were
to use the bool query with the must_not section, we wouldn’t get the results for such a

query.

Let’s assume that we want to have the results of a simple term query for the term crime in
the title field and want the score of such documents to not be changed. However, we
also want to have the documents that range from 1800 to 1900 in the year field, and the
scores of documents returned by such a query to have an additional boost of .5. Such a
query will look like the following:

{
"query" : {
"boosting" : {
"positive" : {
"term" : {
"title" : "crime"
3
3
"negative" : {
"range" : {
"year" : {
"from" : 1800,
"to" : 1900
}
3
iy
"negative_boost" : 0.5
3
}
3

www.EBooksWorld.ir

The constant_score query

The constant_score query wraps another query and returns a constant score for each
document returned by the wrapped query. We specify the score that should be given to the
documents by using the boost property, which defaults to 1. 0. It allows us to strictly
control the score value assigned for a document matched by a query. For example, if we
want to have a score of 2.0 for all the documents that have the term crime in the title
field, we send the following query to Elasticsearch:

{
"query" : {
"constant_score" : {
"query" : {
"term" : {
"title" : "crime"
3
I
"boost" : 2.0
}
}
3

www.EBooksWorld.ir

The indices query

The indices query is useful when executing a query against multiple indices. It allows us
to provide an array of indices (the indices property) and two queries, one that will be
executed if we query the index from the list (the query property) and the second that will
be executed on all the other indices (the no_match_query property). For example, assume
we have an alias named books, holding two indices: library and users. What we want to do
is use this alias. However, we want to run different queries depending on which index is
used for searching. An example query following this logic will look as follows:

{
"query" : {
"indices" : {
"indices" : ["library"],
"query" : {
"term" : {
"title" : "crime"

}
+
"no_match_query" : {
"term" : {
"user" : "crime"

In the preceding query, the query described in the query property was run against the
library index and the query defined in the no_match_query section was run against all the
other indices present in the cluster, which for our hypothetical alias means the users index.

The no_match_query property can also have a string value instead of a query. This string
value can either be all or none, but it defaults to all. If the no_match_query property is set
to all, the documents from the indices that don’t match will be returned. Setting the
no_match_query property to none will result in no documents from the indices that don’t
match the query from that section.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using span queries

Elasticsearch leverages Lucene span queries, which allow us to make queries when some
tokens or phrases are near other tokens or phrases. Basically, we can call them position
aware queries. When using the standard non span queries, we are not able to make queries
that are position aware; to some extent, the phrase queries allow that, but only to some
extent. So, for Elasticsearch and the underlying Lucene, it doesn’t matter if the term is in
the beginning of the sentence or at the end or near another term. When using span queries,
it does matter.

The following span queries are exposed in Elasticsearch:

span term query

span first query

span near query

span or query

span not query

span within query
span containing query
span multi query

Before we continue with the description, let’s index a document to a completely new index
that we will use to show how span queries work. To do this, we use the following
command:

curl -XPUT 'localhost:9200/spans/book/1' -d '{

"title" : "Test book",

"author" : "Test author",

"description" : "The world breaks everyone, and afterward, some are strong
at the broken places"

} 1

www.EBooksWorld.ir

A span

A span, in our context, is a starting and ending token position in a field. For example, in
our case, the world breaks everyone could be a single span, a wor1ld can be a single span
too. As you may know, during analysis, Lucene, in addition to token, includes some
additional parameters, such as position in the token stream. Position information combined
with the terms allows us to construct spans using Elasticsearch span queries (which are
mapped to Lucene span queries). In the next few pages, we will learn how to construct
spans using different span queries and how to control which documents are matched.

www.EBooksWorld.ir

Span term query

The span_term query is a builder for the other span queries. A span_term query is a query
similar to the already discussed term query. On its own, it works just like the mentioned
term query — it matches a term. Its definition is simple and looks as follows (we omitted
some parts of the queries on purpose, because we will discuss it later):

{
"query" : {

"span_term" : {
"description" : {
"value" : "world",
"boost" : 5.0

by
b
}
}

As you can see, it is very similar to the standard term query. The above query is run
against the description field and we want to have the documents that have the world term
returned. We also specified the boost, which is also allowed.

One thing to remember is that the span_term query, similar to the standard term query, is
not analyzed.

www.EBooksWorld.ir

Span first query

The span first query allows us to match documents that have matches only in the first
positions of the field. In order to define a span first query, we need to nest inside of it any
other span query; for example, a span term query we already know. So, let’s find the
document that has the term wor1d in the first two positions in the description field. We
do that by sending the following query:

{
"query" : {
"span_first" : {
"match" : {
"span_term" : { "description" : "world" }
I
"end" : 2
}
}
}

In the results, we will get the document that we had indexed in the beginning of this
section. In the match section of the span first query, we should include at least a single
span query that should be matched at the maximum position specified by the end
parameter.

So, to understand everything well, if we set the end parameter to 1, we shouldn’t get our
document with the previous query. So, let’s check it by sending the following query:

{
"query" : {
"span_first" : {
"match" : {
"span_term" : { "description" : "world" }
3
"end" : 1
}
}
}

The response to the preceding query will be as follows:

{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
Iy
"hits" : {
"total" : O,
"max_score" : null,
"hits" : []
}
}

www.EBooksWorld.ir

So it is working as expected. This is because the first term in our index will be the term
the and not the term wor1d which we searched for.

www.EBooksWorld.ir

Span near query

The span near query allows us to match documents that have other spans near each other
and we can call this query a compound query as it wraps another span query. For example,
if we want to find documents that have the term wor1ld near the term everyone, we will
run the following query:

{
"query" : {
"span_near" : {
"clauses" : [
{ "span_term" : { "description" : "world" } 1},
{ "span_term" : { "description" : "everyone" } }
1
"slop" : O,
"in_order" : true
}
}
}

As you can see, we specify our queries in the clauses section of the span near query. It is
an array of other span queries. The slop parameter defines the allowed number of terms
between the spans. The in_order parameter can be used to limit the matches only to those
documents that match our queries in the same order that they were defined in. So, in our
case, we will get documents that have world everyone, but not everyone world in the
description field.

So let’s get back to our query, right now it would return o results. If you look at our
example document, you will notice that between the terms world and everyone, an
additional term is present and we set the slop parameter to 0 (slop was discussed during
the phrase query description). If we increase it to 1, we will get our result. To test it, let’s
send the following query:

{
Ilqueryll : {
"span_near" : {
"clauses" : [
{ "span_term" : { "description" : "world" } 1},
{ "span_term" : { "description" : "everyone" } }
1,
"slop" : 1,
"in_order" : true
}
}
}

The results returned by Elasticsearch are as follows:

{
"took" : 6,
"timed_out" : false,
"_shards" : {
"total" : 5,

www.EBooksWorld.ir

"successful" : 5,
"failed" : 0O
X}
"hits" : {
"total" : 1,
"max_score" : 0.10848885,
"hits" : [{
"_index" : "spans",
"_type" : "bOOk",
Il_idll : II1II’
"_score" : 0.10848885,
"_source" : {
"title" : "Test book",
"author" : "Test author",
"description" : "The world breaks everyone, and afterward, some are
strong at the broken places"
}
3]
}
}

As we can see, the altered query successfully returned our indexed document.

www.EBooksWorld.ir

Span or query

The span or query allows us to wrap other span queries and aggregate matches of all
those that we’ve wrapped. Similar to the span_near query, the span_or query uses the
array of clauses to specify other span queries. For example, if we want to get the
documents that have the term wor1d in the first two positions of the description field, or
the ones that have the term wor1d not further than a single position from the term
everyone, we will send the following query to Elasticsearch:

{
nqueryu . {
"span_or" : {
"clauses" : [
{
"span_first" : {
"match" : {
"span_term" : { "description" : "world" }
I
"end" : 2
}
Iy
{
"span_near" : {
"clauses" : [
{ "span_term" : { "description" : "world" } },
{ "span_term" : { "description" : "everyone" } }
1,
"slop" : 1,
"in_order" : true

The result of the preceding query will return our indexed document.

www.EBooksWorld.ir

Span not query

The span not query allows us to specify two sections of queries. The first is the include
section which specifies which span queries should be matched and the second section is
the exclude one which specifies the span queries which shouldn’t be overlapping the first
ones. To keep it simple, if a query from the exclude one matches the same span (or a part
of it) as the query from the include section, such a document won’t be returned as a match
for such a span not query. Each of these sections can contain multiple span queries.

So, to illustrate that query, let’s make a query that will return all the documents that have
the span constructed from a single term and which have the term breaks in the
description field. Let’s also exclude the documents that have a span which matches the
terms world and everyone at the maximum of a single position from each other, when
such a span overlaps the one defined in the first span query.

{
Ilqueryll . {
"span_not" : {
"include" : {
"span_term" : { "description" : "breaks" }
3
"exclude" : {
"span_near" : {
"clauses" : [
{ "span_term" : { "description" : "world" } },
{ "span_term" : { "description" : "everyone" } }
1
"slop" : 1

The following is the result:

{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
3
"hits" : {
"total" : O,
"max_score" : null,
"hits" : []
}
}

As you would have noticed, the result of the query is as we would have expected. Our
document wasn’t found because the span query from the exclude section was overlapping

www.EBooksWorld.ir

the span from the include section.

www.EBooksWorld.ir

Span within query

The span_within query allows us to find documents that have a span enclosed in another

span. We define two sections in the span_within query: the little and the big. The 1ittle

section defines a span query that needs to be enclosed by the span query defined using the
big section.

For example, if we would like to find a document that has the term wor1d near the term
breaks and those terms should be inside a span that is bound by the terms wor1d and
afterward not more than 10terms from each other, the query that does that will look as
follows:

{
nqueryu . {
"span_within" : {
"little" : {
"span_near" : {
"clauses" : [
{ "span_term" : { "description" : "world" } },
{ "span_term" : { "description" : "breaks" } }
1
"slop" : O,
"in_order" : false
}
3
Ilbigll : {
"span_near" : {
"clauses" : [
{ "span_term" : { "description" : "world" } },
{ "span_term" : { "description" : "afterward" } }
1
"slop" : 10,
"in_order" : false

www.EBooksWorld.ir

Span containing query

The span_contaning query can be seen as the opposite of the span_within query we just
discussed. It allows us to match spans that overlap other spans. Again, we use two sections
with the span queries: the little and the big. The 1ittle section defines a span query that
needs to be enclosed by the span query defined using the big section.

We can use the same example. If we would like to find a document that has the term wor1d
near the term breaks, and those terms should be inside a span that is bound by the terms
world and afterward not more than 10 terms from each other, the query that does that
will look as follows:

{
nqueryu . {
"span_containing" : {
"little" : {
"span_near" : {
"clauses" : [
{ "span_term"
{ "span_term"
1
"slop" : O,
"in_order" : false
3
3
llbigll : {
"span_near" : {
"clauses" : [
{ "span_term" : { "description" : "world" } },
{ "span_term" : { "description" : "afterward" } }
1
"slop" : 10,
"in_order" : false

"description" : "world" } },
"description" : "breaks" } }

A

www.EBooksWorld.ir

Span multi query

The last type of span query that Elasticsearch supports is the span_multi query. It allows
us to wrap any multi term query that we’ve discussed (the term query, the range query, the
wildcard query, the regex query, the fuzzy query, or the prefix query) as a span query.

For example, if we want to find documents that have the term starting with the prefix wor
in the first two positions in the description field, we can do that by sending the following

query:

{
"query" : {
"span_multi" : {
"match" : {
"prefix" : {
"description" : { "value" : "wor" }

There is one thing to remember — the multi term query that we want to use needs to be
enclosed in the match section of the span_multi query.

www.EBooksWorld.ir

Performance considerations

A few words at the end of discussing span queries. Remember that they are costlier when
it comes to processing power, because not only do the terms have to be matched but also
positions have to be calculated and checked. This means that Lucene and thus
Elasticsearch will need more CPU cycles to calculate all the needed information to find
matching documents. You can expect span queries to be slower than the queries that don’t
take positions into account.

www.EBooksWorld.ir

www.EBooksWorld.ir

Choosing the right query

By now we’ve seen what queries are available in Elasticsearch, both the simple ones and
the ones that can group other queries as well. Before continuing with more complicated
topics, we would like to discuss which of the queries should be used for which use case.
Of course, one could dedicate the whole book to showing different queries use cases, so
we will only show a few of them to help you see what you can expect and which query to

use.

www.EBooksWorld.ir

The use cases

As you already know which queries can be used to find which data, what we would like to
show you are example use cases using the data we indexed in Chapter 2, Indexing Your
Data. To do this, we will start with a few guiding lines on how to chose the query and then
we will show you example use cases and discuss why those queries could be used.

Limiting results to given tags

One of the simplest examples of querying Elasticsearch is the search for exact terms. By
exact we mean character to character comparison of a term that is indexed and written into
Lucene inverted index. To run such a query, we can use the term query provided by
Elasticsearch. This is because its content is not analyzed by Elasticsearch. For example,
let’s assume that we would like to search for all the books with the value novel in the tags
field, which as we know from the mappings is not analyzed. To do that, we would run the
following command:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{
"query" : {
"term" : {
"tags" : "novel"

(IR

} 1

www.EBooksWorld.ir

Searching for values in a range

One of the simplest queries that can be run is a query matching documents in a given
range of values. Usually such queries are a part of a larger query or a filter. For example, a
query that would return books with the number of copies from 1 to 3 inclusive, would look
as follows:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"range" : {
"copies" : {
"gte" : 1,
"lte" : 3
}
}
}

} 1

Boosting some of the matched documents

There are many common examples of using the bool query. For example, very simple
ones like finding documents having a list of terms. What we would like to show you is
how to use the bool query to boost some of the documents. For example, if we want to

find all the documents that have one or more copy and have the ones that are published
after 1950, we will run the following query:

curl -XGET 'localhost:9200/library/_search?pretty' -d '{

"query" : {
"bool" : {
"must" : [
{
"range" : {
"copies" : {
"gte" : 1
}
}
}
1,
"should" : [
{
"range" : {
"year" : {
"gt" : 1950
}
}
}
]
}
}

} 1
Ignoring lower scoring partial queries

The dis_max query, as we discussed, allows us to control how influential the lower scoring

www.EBooksWorld.ir

partial queries are. For example, if we would only want to assign the score of the highest
scoring partial query for the documents matching crime punishment in the title field or
raskolnikov in the characters field, we would run the following query:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"fields" : ["_id", "_score"],
||query|| : {
"dis_max" : {
"tie_breaker" : 0.0,
"queries" : [
{
"match" : {
"title" : "crime punishment"
}
}
{
"match" : {
"characters" : "raskolnikov"
}
}
1
}
}
} 1
The result for the preceding query will look as follows:
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
X}
"hits" : {
"total" : 1,
"max_score" : 0.70710677,
"hits" : [{
"_index" : "library",
|l_typell : llbookH’
|l_id|l : I|4|I’
"_score" : 0.70710677
+]
}
}

Now let’s see the score of the partial queries alone. To do that, we will run the partial
queries using the following commands:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"fields" : ["_id", "_score"],
"query" : {

"match" : {

"title" : "crime punishment"
}

www.EBooksWorld.ir

}
} 1

The response for the preceding query is as follows:

{

"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
iy
"hits" : {
"total" : 1,
"max_score" : 0.70710677,
"hits" : [{
"_index" : "library",
"_type" : "bOOk",
ll_idll : I|4|I’
"_score" : 0.70710677
3]
}

b
The following is the next command:

curl -XGET 'localhost:9200/library/_search?pretty' -d '{

"fields" : ["_id", "_score"],
"query“ : {
"match" : {
"characters" : "raskolnikov"
}
}
} 1
The response is as follows:
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
Iy
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
|l_typell : llbookH’
|l_id|l : I|4|I’
"_score" : 0.5
3]
}
}

www.EBooksWorld.ir

As you can see, the score of the document returned by our dis_max query is equal to the
score of the highest scoring partial query (the first partial query). That is because we set
the tie_breaker property to 0.0.

Using Lucene query syntax in queries

Having a simple search syntax is very useful for users and we already have such — the
Lucene query syntax. Using the query_string query is an example where we can leverage
that by allowing the users to type in queries with additional control characters. For
example, if we would like to find books having the terms crime and punishment in their
title and the fyodor dostoevsky phrase in the author field, and not being published
between 2000 (exclusive) and 2015 (inclusive), we would use the following command:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {

"query_string" : {

"query" : "+title:crime +title:punishment +author:\"fyodor dostoevsky\"
-copies: {2000 TO 2015]"

}

}
} 1
As you can see, we used the Lucene query syntax to pass all the matching requirements
and we let the query parser construct the appropriate query.

Handling user queries without errors

Using the query_string query is very handy, but it is not error tolerant. If our user
provides incorrect Lucene syntax, the query will return an error. Because of that,
Elasticsearch exposes a second query that supports analysis and full Lucene query syntax
—the simple_query_string query. Using such a query allows us to run the user queries
and not care about the parsing errors at all. For example, let’s look at the following query:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"query_string" : {
"query" : "+crime +punishment \"",
"default_field" : "title"
}
}
} 1
The response will contain:
{
"error" : {
"root_cause" : [{
"type" : "query_parsing_exception",
"reason" : "Failed to parse query [+crime +punishment \"]",
"index" : "library",
"line" : 6,
"col" : 3
> 1,
"type" : "search_phase_execution_exception",

www.EBooksWorld.ir

"reason" : "all shards failed",

"phase" : nqueryu ,
"grouped" : true,
"failed_shards" : [{
"shard" : 0,
"index" : "library",
"node" : "7jznWO7BRrqjG-alJ7ikKeaQ",
"reason" : {
"type" : "query_parsing_exception",
"reason" : "Failed to parse query [+crime +punishment \"]",
"index" : "library",
"line" : 6,
"col" : 3,
"caused_by" : {
"type" : "parse_exception",
"reason" : "Cannot parse '+crime +punishment \"': Lexical error

at line 1, column 21. Encountered: <EOF> after : \"\"",
"caused_by" : {

"type" : "token_mgr_error",
"reason" : '"Lexical error at line 1, column 21.
Encountered: <EOF> after : \"\""
}
3
}
3]

i
"status" : 400
}

This means that the query was not properly constructed and a parse error happened. That’s
why the simple_query_string query was introduced. It uses a query parser that tries to
handle user mistakes and tries to guess how the query should look. Our query using that
parser will look as follows:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"simple_query_string" : {
"query" : "+crime +punishment \"",

"fields" : ["title"]
}
}
} 1
If you run the preceding query, you will see that the proper document is returned by
Elasticsearch even though the query is not properly constructed.

Autocomplete using prefixes

A very common use case is to provide autocomplete functionality on the indexed data. As
we know, the prefix query is not analyzed and works on the basis of terms indexed in the
field. So the actual functionality depends on which tokens are produced during indexing.
For example, let’s assume that we would like to provide autocomplete functionality on any
token in the title field and the user provided wes prefix. A query that would match such a
requirement looks as follows:

www.EBooksWorld.ir

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{
"query" : {
"prefix" : {
"title" : "wes"

}
}
} 1

Finding terms similar to a given one

A very simple example is using the fuzzy query to find documents having a term similar
to a given one. For example, if we want to find all the documents having a value similar to
crimea, we will run the following query:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"fuzzy" : {
"title" : {
"value" : "crimea",
"fuzziness" : 2,
"max_expansions" : 50
}
}
}
} 1
Matching phrases

The simplest position aware query, the phrase query allows us to find documents not with
a term but terms positioned one after another — ones that form a phrase. For example, a
query that would only match documents that have the westen nichts neues phrase in the
otitle field would look as follows:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"match_phrase" : {
"otitle" : "westen nichts neues"
}
}
} 1

Spans, spans everywhere

The last use case we would like to discuss is a more complicated example of position
aware queries called span queries. Imagine that we would like to run a query to find
documents that have the western front phrase not more than three positions after the
term quiet and all that just after the all term? This can be done with span queries and the
following command shows how such query will look:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{
"query": {
"span_near": {
"clauses": [

{

"span_term": {

www.EBooksWorld.ir

"title": "all"

}
3
{
"span_near": {
"clauses": [
{
"span_term": {
"title": "quiet"
}
1
{
"span_near": {
"clauses": [
{
"span_term": {
"title": "western"
}
}
{
"span_term": {
"title": "front"
}
}
1,
"slop": o0,
"in_order": true
}
}
1,
"slop": 3,
"in_order": true
}
}
1,
"slop": 0,
"in_order": true
}
}
}l

Note that the span queries are not analyzed. We can see that by looking at the response of

the Explain API. To see that response, we should run the same request body (our query) to
the /1library/book/1/_explain REST end-point. The interesting part of the output looks

as follows:

"description" : "weight(spanNear([title:all, spanNear([title:quiet,
spanNear([title:western, title:front], 0, true)], 3, true)], 0, true) in 0)
[PerFieldSimilarity], result of:",

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

This chapter has been all about the querying process. We started by looking at how to
query Elasticsearch and what Elasticsearch does when it needs to handle the query. We
also learned about the basic and compound queries, so we are now able to use both simple
queries as well as the ones that group multiple small queries together. Finally, we
discussed how to choose the right query for a given use case.

In the next chapter, we will extend our query knowledge. We will start with filtering our
queries and move to highlighting possibilities and a way to validate our queries using
Elasticsearch API. We will discuss sorting of search results and query rewrite which will
show us what happens to some queries in Elasticsearch internals.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 4. Extending Your Querying
Knowledge

In the previous chapter, we dived into Elasticsearch querying capabilities. We discussed
how to query Elasticsearch in detail and we learned how Elasticsearch querying works.
We now know the basic and compound queries of this great search engine and what are
the configuration options for each query type. We also got to know when to use our
queries and we discussed a few use cases and which queries can be used to handle them.
This chapter is dedicated to extending our querying knowledge. By the end of this chapter,
you will have learned the following topics:

What filtering is and how to use it

What highlighting is and how to use it

What are the highlighter types and what benefits they bring
How to validate your queries

How to sort your query results

What query rewrite is and how to control it

www.EBooksWorld.ir

Filtering your results

In the previous chapter, we talked about various types of queries. The common part was
that we always wanted to get the best results first. This is the main difference from the
standard database approach where every document matches the query or not. In the
database world, we do not ask how good the document is; our only interest lies in the
results returned. When talking about full text search engines this is different — we are
interested not only in the results, we are also interested in their quality. The reason is
obvious, we are searching in unstructured data, using text fields that use language
analysis, stemming, and so on. Because of that, the initial results of our queries, in most
cases, give results that are far from optimal. This is why when we talk about searching, we
talk about precision and document recall.

On the other hand, sometimes we want to limit the whole subset of documents to a chosen
part. For example, in a library, we may want to search only the available books, the rest
being unimportant. Sometimes the score, busily calculated for the given fields, only
interferes with the overall score and has no meaning in terms of accuracy. In such cases,
filters should be used to limit the results of the query, but not interfere with the calculated
score.

Prior to Elasticsearch 2.0, filters were independent entities from queries. In practice,
almost every query had its own counterpart in filters. There was the term query and the
term filter, the bool query and the bool filter, the range query and the range filter, and so
on. From the user point of view, the most important difference between the queries and the
filters was scoring. The filter didn’t calculate score, which resulted in the filter being
easily cached and more efficient. But this difference was very inconvenient for users. With
the release of Elasticsearch 2.0 and its usage of Lucene 5.3, filter queries were deprecated
along with some types of queries that allowed us to use filters. Let’s discuss how filtering
works now and what we can do to achieve the same or better performance as before in
Elasticsearch 2.0.

www.EBooksWorld.ir

The context is the key

In Elasticsearch 2.0, queries can calculate score or omit it by choosing more efficient way
of execution. This behavior, in many cases, is done automatically based on the context
where the query is used. This is about the queries that include filter sections, which
remove the documents based on some criteria. These documents are unnecessary in the
returned results and should be skipped as quickly as possible without affecting the overall
score. Thanks to this, after discarding some documents we can focus only on the rest of
the documents, calculating their scores, and sorting them before returning. The example of
this case can be the must_not clause of a Boolean query. The document that matches the
must_not clause will be removed from the returned result set, so calculating the score for
the documents matched by this part of the bool query would be an additional,
unnecessary, and performance ineffective work.

The best thing about all the changes is that we don’t need to care about if we want to use
filtering or not. Elasticsearch and the underlying Apache Lucene library take care of
choosing the right execution method for us.

www.EBooksWorld.ir

Explicit filtering with bool query

As we mentioned in the Compound queries section in Chapter 3, Searching Your Data, the
bool query in Elasticsearch 2.0 allows us to add a filter explicitly by adding the filter
section and including a query in that section. This is very convenient if we want to have a
part of the query that needs to match, but we are not interested in the score for those
documents.

Let’s look at the following query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"query" : {
"term" : {
"available" : true
}
}

} 1
We see a simple query that should return all the books in our library available for

borrowing, which means the documents with the available field set to true. Now let’s
compare it with the following query:

curl -XGET 'localhost:9200/library/book/_search?pretty' -d '{

"query" : {
"bool" : {
"must" : {
"match_all" : { }
1
"filter" : {
"term" : {
"available" : true
}
}
}
}
}l

This query returns all the books, but it also contains the filter section, which tells
Elasticsearch that we are only interested in the available books. The query will return the
same results as the previous query we’ve seen, of course when looking only at the number
of documents and which documents are returned. The difference is the score. For our
example data, both the queries return two books. The results returned for the first query
look as follows:

{

"took" : 2,

"timed_out" : false,

"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©

iy

"hits" : {

www.EBooksWorld.ir

"total" : 2,

"max_score" : 1.0,
"hits" : [{
"_index" : "library",
Il_typell : "bOOk",
Il_idll : II4II’
"_score" : 1.0,
"_source" : {
"title" : "Crime and Punishment",
"otitle" : "MpecTynnéHme n HakazaHwue'",
"author" : "Fyodor Dostoevsky",
"year" : 1886,
"characters" : ["Raskolnikov", "Sofia Semyonovna Marmeladova"],
"tagS" : [],
"copies" : 0O,
"available" : true
}
Ao
"_index" : "library",
"_type" : "bOOk",
Il_idll : I|1|I’
"_score" : 0.30685282,
"_source" : {
"title" : "All Quiet on the Western Front",
"otitle" : "Im Westen nichts Neues",
"author" : "Erich Maria Remarque",
"year" : 1929,
"characters" : ["Paul Baumer'", "Albert Kropp", "Haie Westhus",
"Fredrich Miuller", "Stanislaus Katczinsky", "Tjaden"],

"tags" : ["novel"],

"copies" : 1,
"available" : true,
"section" : 3
}
3]
}
}
The results for the second query look as follows:
{
"took" 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
X}
"hitS" {
"total" : 2,
"max_score" : 1.0,
"hits" : [{
"_index" : "library",
|l_typell : llbookH’
|l_id|l : I|4|I’
"_score" : 1.0,

www.EBooksWorld.ir

_source" : {

"title" : "Crime and Punishment",
"otitle" : "MpecTynnéHne n Haka3zaHue",
"author" : "Fyodor Dostoevsky",
"year" : 1886,
"characters" : ["Raskolnikov", "Sofia Semyonovna Marmeladova"],
"tagS" : [],
"copies" : 0O,
"available" : true

}

o {

"_index" : "library",

Il_typell : IIbOOkH’

Il_idll : II1II’

"_score" : 1.0,

"_source" : {
"title" : "All Quiet on the Western Front",
"otitle" : "Im Westen nichts Neues",
"author" : "Erich Maria Remarque",
"year" : 1929,
"characters" : ["Paul Baumer", "Albert Kropp", "Haie Westhus",

"Fredrich Miller", "Stanislaus Katczinsky", "Tjaden"],

"tags" : ["novel"],
"copies" : 1,
"available" : true, "section" : 3

3

+]

}
}

If you look at the score for the documents in each query, you’ll notice the difference. In
the simple term query, Elasticsearch (the Lucene library, in fact) has a score of 1.0 for the
first document and a score of 0.30685282 for the second one. This is not a perfect solution
because the availability check is more or less binary and we don’t want it to interfere with
the score. That’s why the second query is better in this case. With the bool query and
filtering, the score for the filter element is not calculated and the score for both the
documents is the same, that is 1.0.

www.EBooksWorld.ir

www.EBooksWorld.ir

Highlighting

You have probably heard of highlighting or seen it. You may not even know that you are
actually using highlighting when you are using the bigger and smaller public search
engines on the World Wide Web (WWW). When we talk about highlighting in context of
full text search, we usually mean showing which words or phrases from the query were
matched in the resulting documents. For example, if we use Google and search for the
word lucene, we would see that word bolded in the search results:

GD SIE lucene

Web Images Vidaos Books Maps Muore =

About 1,880,000 results (0.28 seconds)

Apache Lucene - Apache Lucene Core
hitps:Vlucene.apache.org/corel -

Decumentation - Apache Download Mirrors - Download - 4.10.3

Apache Lucene - Welcome to Apache Lucene
hitps:Vlucene.apache.orgl =

Saarch tools

Apache LucenaTM is a high-performance, full-featured text search engine library writien
entirely in Java. It is a technology suitable for nearly any application that ...

Search engine library with many features including fast indexing, ranked saarching,
boolean, phrase, and span gqueries, date-range searching, and extension ...

+ I

It is even more visible on the Microsoft Bing search engine:

> bing lucene
Siet Web Dorezy Widen Mapy ‘Wisdomosc Ekaplon|
WY RIKL: 714 000 Zawwd wadlug jaryka - Zawed wadhug regionu =

Lucene - Official Site Prestiumacz tg strong

lucene.apache.org =

The Apache Lucens TM project develops open-source search software, including
Lucene Core, our fagship sub-project, provides Java-based indexing and search ...

Apache Lucene - Apache Lucene Core Preetiumacs lg strane
lucane. apachs Orgicong =

antirely in Jawa. It is a technology suitatéa for nearly any application that .,

Lucena - Wikipedia, the free encyclopedia Prestumacz i sirong
en.wikipediaorgfasikiLucene =

Apache Lucene is a [nee open source information relrieval softhware library, orginally
writien in Java by Doug Cutting. It is supported by the Apache Software ...

Histony - Featuras and commaon use - Lucene-based projects - Users

Apache Lucene TM g a high-perfiormance, ful-eatured text saarch enginea library writien

Powiazane wyszukiwania
Apache Lucers

In this chapter, we will see how to use Elasticsearch highlighting capabilities to enhance

our application with highlighted results.

www.EBooksWorld.ir

Getting started with highlighting

There is no better way of showing how highlighting works other than making a query and
looking at the results returned by Elasticsearch. So let’s do that. We assume that we would
like to highlight the terms that are matched in the title field of our documents to increase
the search experience of our users. By now you know the example data from top to
bottom, so let’s again reuse the same data set. We want to match the term crime in the
title field and we want to get highlighting results. One of the simplest queries that can
achieve this looks as follows:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"query" : {

"match" : {
"title" : "crime"
}
3
"highlight" : {
"fields" : {
"title" : {}
}
}
} 1
The response for the preceding query is as follows:
{
"took" : 16,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
3
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
|l_typell : IlbooklI’
|l_id|l : I|4|I’
"_score" : 0.5,
"_source" : {
"title" : "Crime and Punishment",
"otitle" : "MpecTynnéHne n HakazaHwue'",
"author" : "Fyodor Dostoevsky",
"year" : 1886,
"characters" : ["Raskolnikov", "Sofia Semyonovna Marmeladova"],
"tagS" : [],
"copies" : 0O,
"available" : true
I
"highlight" : {
"title" : ["Crime and Punishment"]
3

www.EBooksWorld.ir

3]
3
}

As you can see, apart from the standard information about the documents that matched the
query, we got a new section called highlight. Elasticsearch used the HTML tag as

the beginning of the highlighting section and its closing counterpart to close the
highlighted section. This is the default behavior of Elasticsearch, but we will learn how to

change that.

www.EBooksWorld.ir

Field configuration

In order to perform highlighting, the original content of the field needs to be present. We
have to set the fields we will use for highlighting. This is done by either marking a field to
be stored or using the _source field with those fields included. If the field is set to be
stored in the mappings, the stored version will be used, otherwise Elasticsearch will try to
use the _source field and extract the field that needs to be highlighted.

www.EBooksWorld.ir

Under the hood

Elasticsearch uses Apache Lucene under the hood and highlighting is one of the features
of that library. Lucene provides three types of highlighting implementation: the standard
one, which we just used; the second one called FastvectorHighlighter
(https://lucene.apache.org/core/5_4_0/highlighter/org/apache/lucene/search/vectorhighlight

which needs term vectors and positions to be able to work; and the third one called
PostingsHighlighter

(http://lucene.apache.org/core/5_4_0/highlighter/org/apache/lucene/search/postingshighligi
Elasticsearch chooses the right highlighter implementation automatically. If the field is
configured with the term_vector property set to with_positions_offsets,
FastVectorHighlighter will be used. If the field is configured with the index_options
property set to offsets, PostingsHighlighter will be used. Otherwise, the standard
highlighter will be used by Elasticsearch.

Which highlighter to use depends on your data, your queries, and the needed performance.
The standard highlighter is a general use case one. However, if you want to highlight
fields with lots of data, FastVvectorHighlighter is the recommended one. The thing to
remember about it is that it requires term vectors to be present and that will make your
index slightly larger. Finally, the fastest highlighter, that is also recommended for natural
language highlighting, is PostingsHighlighter. However, the thing to remember is that
PostingsHighlighter doesn’t support complex queries such as the
match_phrase_prefix query and in such cases highlighting won’t be returned.

Forcing highlighter type

While Elasticsearch chooses the highlighter type for us, we can also enforce the
highlighting type if we really want to. To do that, we need to set the type property to one
of the following values:

e plain: When this value is set, Elasticsearch will use the standard highlighter

e fvh: When this value is set, Elasticsearch will try using FastVectorHighlighter. It
will require term vectors to be turned on for the field used for highlighting.

e postings: When this value is set, Elasticsearch will try using PostingsHighlighter.
It will require offsets to be turned on for the field used for highlighting

For example, to use the standard highlighter, we will run the following query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"query" : {
"term" : {
"title" : "crime"
}
1
"highlight" : {
"fields" : {
"title" : { "type" : "plain" }
}

}
} 1

www.EBooksWorld.ir

https://lucene.apache.org/core/5_4_0/highlighter/org/apache/lucene/search/vectorhighlight/FastVectorHighlighter.html
http://lucene.apache.org/core/5_4_0/highlighter/org/apache/lucene/search/postingshighlight/PostingsHighlighter.html

Configuring HTML tags

The default behavior of highlighting mechanism may not be suited for everyone — not all
of us would like to have the and tags to be used for highlighting. Because of
that, Elasticsearch allows us to change the default behavior and change the tags that are
used for that purpose. To do that, we should set the pre_tags and post_tags properties to
the code snippets we want the highlighting to start from and end at; for example, by
and . The pre_tags and post_tags properties are arrays and because of that we can
provide more than a single opening and closing tag and Elasticsearch will use each of the
defined tags to highlight different words. For example, if we want to use as the
opening tag and as the closing tag, our query will look like this:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"query" : {
"term" : {
"title" : "crime"

}
1
"highlight" : {
llpre_tagsll : [|lll]’
"post_tags" : [""],
"fields" : {
"title" : {}
}
}
}l

The result returned by Elasticsearch to the preceding query will be as follows:

{

"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
I
"hits" : {
"total" : 1,
"max_score" : 0.5,
"hits" : [{
"_index" : "library",
|l_typell : llbookH’
|l_id|l : I|4|I’
"_score" : 0.5,
"_source" : {
"title" : "Crime and Punishment",
"otitle" : "MpecTynnéHne n HakazaHwue'",
"author" : "Fyodor Dostoevsky",
"year" : 1886,
"characters" : ["Raskolnikov", "Sofia Semyonovna Marmeladova"],
"tagS" : [],
"copies" : O,

www.EBooksWorld.ir

"available" : true

iy
"highlight" : {
"title" : ["Crime and Punishment"]

3]
3
}

As you can see, the term Crime in the title field was surrounded by the tags of our
choice.

www.EBooksWorld.ir

Controlling highlighted fragments

Elasticsearch allows us to control the number of highlighted fragments returned and their
sizes by exposing two properties. The first one is number_of_fragments, which defines
the number of fragments returned by Elasticsearch (defaults to 5). Setting this property to
0 causes the whole field to be returned, which can be handy for short fields but expensive
for longer fields. The second property is fragment_size which lets us specify the
maximum length of the highlighted fragments in characters and defaults to 100.

An example query using these properties will look as follows:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"query" : {

"term" : {
"title" : "crime"
}
3
"highlight" : {
"fields" : {
"title" : { "fragment_size" : 200, "number_of_fragments" : 0 }
}
}
}l

www.EBooksWorld.ir

Global and local settings

The highlighting properties we discussed previously can be set both on a global basis and
per field basis. The global ones will be used for all the fields that don’t overwrite them and
should be placed on the same level as the fields section of your highlighting, for
example, like this:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"query" : {
"term" : {
"title" : "crime"
}
}

"highlight" : {
llpre_tagsll . [|lll]’
"post_tags" : [""],

"fields" : {
"title" : {3}
}
}
} 1
You can also set the properties for each field. For example, if we would like to keep the
default behavior for all the fields except our title field, we would do the following:

curl -XGET 'localhost:9200/library/book/_search?pretty' -d '{
"query“ : {
"term" : {
"title" : "crime"
}
3
"highlight" : {
"fields" : {
"title" : { "pre_tags" : [""], "post_tags" : [""] }
}
}
} 1
As you can see, instead of placing the properties on the same level as the fields section,
we placed it inside the empty JSON object that specifies the title field behavior. Of

course, each field can be configured using different properties.

www.EBooksWorld.ir

Require matching

Sometimes there may be a need (especially when using multiple highlighted fields) to
show only the fields that matched our query. In order to have such behavior, we need to set
the require_field_match property to true. Setting this property to false will cause all
the terms to be highlighted even if a field didn’t match the query.

To see how that works, let’s create a new index called users and let’s index a single
document there. We will do that by sending the following command:

curl -XPUT 'http://localhost:9200/users/user/1' -d '{
"name" : "Test user",
"description" : "Test document"

}l
So, let’s assume we want to highlight the hits in both of the preceding fields. Our
command sending the query to our new index will look like this:

curl -XGET 'localhost:9200/users/_search?pretty' -d '{

"query" : {
"term" : {
"name" : "test"
}

1

"highlight" : {
"fields" : {

"name" : { "pre_tags" : [""], "post_tags" : [""] 1},
"description" : { "pre_tags" : [""], "post_tags" : [""] }

}
}
}l
The result of the preceding query will be as follows:
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : O
3
"hits" : {
"total" : 1,
"max_score" : 0.19178301,
"hits" : [{
"_index" : "users",
"_type" : HuserH’
H_id" : H1H’
"_score" : 0.19178301,
"_source":{
"name" : "Test user",
"description" : "Test document"
Iy

"highlight" : {

www.EBooksWorld.ir

"name" : ["Test user"]

3]
b
}

Note that we only got highlighting on the name field. This is because our query matched
only that field. Let’s see what will happen if we set the require_field_match property to
false and use a command similar to the following one:

curl -XGET 'localhost:9200/users/_search?pretty' -d '{

"query" : {
"term" : {
"name" : "test"
}
},
"highlight" : {
"require_field_match" : false,
"fields" : {

"name" : { "pre_tags" : [""], "post_tags" : [""] },
"description" : { "pre_tags" : [""], "post_tags" : [""] }

}
}
} 1
Now let’s look at the modified query results:
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
I
"hits" : {
"total" : 1,
"max_score" : 0.19178301,
"hits" : [{
"_index" : "users",
|l_typell : "User",
|l_id|l : I|1|I’
"_score" : 0.19178301,
"_source":{
"name" : "Test user",
"description" : "Test document"
I
"highlight" : {
"name" : ["Test user"],
"description" : ["Test document"]
¥
;]
}

}

As you can see, Elasticsearch returned highlighting in both the fields now.

www.EBooksWorld.ir

Custom highlighting query

There are use cases where your queries are complicated and not really suitable for
highlighting, but you still want to use highlighting functionality. In such cases,
Elasticsearch allows us to highlight results on the basis of a different query provided using
the highlight_query property. An example of using a different highlighting query looks

as follows:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
nqueryu . {
"term" : {
"title" : "crime"
}
3,
"highlight" : {
"fields" : {
"title" : {
"highlight_query" : {
"term" : {
"title" : "punishment"

}
}
}
}
} 1
The preceding query will result in highlighting the term punishment in the title field,
instead of the crime one.

www.EBooksWorld.ir

The Postings highlighter

It is time to talk about the third available highlighter. It was added in Elasticsearch 0.90.6
and is slightly different from the previous ones. PostingsHighlighter is automatically
used when the field definition has index_options set to offsets. To illustrate how
PostingsHighlighter works, we will create a simple index with proper configuration that
allows that highlighter to work. We will do that by using the following commands:

curl -XPUT 'localhost:9200/hl_test'
curl -XPOST 'localhost:9200/hl_test/doc/_mapping' -d '{

"doc" : {
"properties" : {
"contents" : {
"type" : "string",
"fields" : {
"ps" : { "type" : "string", "index_options" : "offsets" }
}
}
}
}
}l

If everything goes well, we should have a new index and the mappings. The mappings
have two fields defined: one named contents and the second one named contents.ps. In
this second case, we turned on the offsets by using the index_options property. This
means that Elasticsearch will use the standard highlighter for the contents field and the
postings highlighter for the contents. ps field.

To see the difference, we will index a single document with a fragment from Wikipedia
describing the history of Birmingham. We do that by running the following command:

curl -XPUT localhost:9200/hl_test/doc/1 -d '{

"contents" : "Birmingham''s early history is that of a remote and
marginal area. The main centres of population, power and wealth in the pre-
industrial English Midlands lay in the fertile and accessible river valleys
of the Trent, the Severn and the Avon. The area of modern Birmingham lay in
between, on the upland Birmingham Plateau and within the densely wooded and
sparsely populated Forest of Arden."

}l
The last step is to send a query using both the highlighters. We can do it in a single request
by using the following command:

curl 'localhost:9200/hl_test/_search?pretty' -d '({

"query": {
"term": {
"contents.ps": "modern"

}
3

"highlight": {
"require_field_match" : false,
"fields": {

"contents": {},

"contents.ps" : {}

www.EBooksWorld.ir

}
}
} 1

If everything goes well, you will find the following snippet in the response returned by
Elasticsearch:

"highlight" : {

"contents" : [" valleys of the Trent, the Severn and the Avon. The area
of modern Birmingham lay in between, on the upland"],
"contents.ps" : ["The area of modern Birmingham lay in between,

on the upland Birmingham Plateau and within the densely wooded and sparsely
populated Forest of Arden."]

}

As you see, both the highlighters found the occurrence of the desired word. The difference
is that the postings highlighter returns the smarter snippet — it checks for the sentence
boundaries.

Let’s try one more query:

curl 'localhost:9200/hl_test/_search?pretty' -d '{
uqueryu: {
"match_phrase": {
"contents.ps": "centres of"
}
3
"highlight": {
"require_field_match" : false,
"fields": {
"contents": {},
"contents.ps": {}
}
}
} 1
We searched for the phrase centres of. As you may expect, the results for the two
highlighters will differ. For the standard highlighter, run on the contents field, we will

find the following phrase in the response:

"Birminghams early history is that of a remote and marginal area. The main
centres o0f population"

As you can clearly see, the standard highlighter divided the given phrase and highlighted
individual terms. Also, not all occurrences of the terms centres and of were highlighted,
but only the ones that formed the phrase.

On the other hand, the PostingsHighlighter returned the following highlighted
fragment:

"Birminghams early history is that of a remote and marginal
area.", "The main centres of population, power and wealth
in the pre-industrial English Midlands lay in the fertile and accessible
river valleys of the Trent, the Severn and the Avon.", "The area
of modern Birmingham lay in between, on the upland Birmingham
Plateau and within the densely wooded and sparsely populated Forest

www.EBooksWorld.ir

of Arden."

This is the significant difference. The PostingsHighlighter highlighted all the terms
matching the query and not only those that formed the phrase, and returned whole
sentences. This is a very nice feature, especially when you want to display the highlighting
results for the user in the UI of your application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Validating your queries

There are times when you are not in total control of the queries that you send to
Elasticsearch. The queries can be generated from multiple criteria making them a monster
or even worse. They can be generated by some kind of a wizard which makes it hard to
troubleshoot and find the part that is faulty and making the query fail. Because of such use
cases, Elasticsearch exposes the Validate API, which helps us validate our queries and
diagnose potential problems.

www.EBooksWorld.ir

Using the Validate API

The usage of the Validate API is very simple. Instead of sending the query to the _search
REST endpoint, we send it to the _validate/query one. And that’s it. Let’s look at the
following command:

curl -XGET 'localhost:9200/l1library/_validate/query?pretty' --data-binary '{
"query" : {
"bool" : {
"must" : {
"term" : {
"title" : "crime"
}

}
"should" : {

"range : {
"year" : {
"from" : 1900,
"to" : 2000

}
}
Y

"must_not" : {
"term" : {
"otitle" : "nothing"
}
}
}
}
} 1
A similar query was already used in this book in Chapter 3, Searching Your Data. The
preceding command will tell Elasticsearch to validate it and return the information about
its validity. The response of Elasticsearch to the preceding command will be similar to the

following one:

{
"valid" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"failed" : ©
}
}

Look at the valid attribute. It is set to false. Something went wrong. Let’s execute the
query validation once again with the explain parameter added in the query:

curl -XGET 'localhost:9200/l1library/_validate/query?pretty&explain' --data-

binary '{
"query" : {
"bool" : {
"must" : {
"term" : {

www.EBooksWorld.ir

"title" : "crime"

}

}
"should" : {

"range : {
"year" : {
"from" : 1900,
"to" : 2000

}
}
3

"must_not" : {
"term" : {
"otitle" : "nothing"

}
}
}
}
} 1

Now the result returned from Elasticsearch is more verbose:

{

"valid" : false,
"_shards" : {

"total" : 1,

"successful" : 1,

"failed" : ©

3
"explanations" : [{

"index" : "library",

"valid" : false,

"error" : "[library] QueryParsingException[Failed to parse]; nested:
JsonParseException[Illegal unquoted character ((CTRL-CHAR, code 10)): has
to be escaped using backslash to be included in name\n at [Source:
org.elasticsearch.transport.netty.ChannelBufferStreamInput@1110d090; line:
10, column: 18]];; com.fasterxml.jackson.core.JsonParseException: Illegal
unquoted character ((CTRL-CHAR, code 10)): has to be escaped using
backslash to be included in name\n at [Source:
org.elasticsearch.transport.netty.ChannelBufferStreamInput@1110d090; line:
10, column: 18]"

3]
}

Now everything is clear. In our example, we have improperly quoted the range attribute.

Note

You may wonder why in our curl query we used the - -data-binary parameter. This
parameter properly preserves the new line character when sending a query to
Elasticsearch. This means that the line and the column number remain intact and it’s easier
to find errors. In the other cases, the -d parameter is more convenient because it’s shorter.

The Validate API can also detect other errors, for example, incorrect format of a number
or other mapping-related issues. Unfortunately, for our application, it is not easy to detect
what the problem is because of a lack of structure in the error messages.

www.EBooksWorld.ir

The Validate API supports most of the parameters that are supported by standard
Elasticsearch queries, which include: explain, ignore_unavailable, allow_no_indices,
expand_wildcards, operation_threading, analyzer, analyze_wildcard,
default_operator, df, lenient, lowercase_expanded_terms, and rewrite.

www.EBooksWorld.ir

www.EBooksWorld.ir

Sorting data

So far we’ve run our queries and got the results in the order determined by the score of
each document. However, it is not enough for all the use cases. It is really handy to be able
to sort our results on the basis of the field values. For example, when you are searching
logs or time-based data in general, you probably want to have the most recent data first. In
addition to that, Elasticsearch allows us to control how the document such be sorted not
only using field values, but also using more sophisticated sorting like ones that use scripts
or sorting on fields that have multiple values. We will cover all that in this section.

www.EBooksWorld.ir

Default sorting

Let’s look at the following query that returns all the books with at least one of the
specified words:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"query" : {
"terms" : {
"title" : ["crime", "front", "punishment"]
}

}
} 1

Under the hood, we can imagine that Elasticsearch sees the preceding query as follows:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"query" : {
"terms" : {
"title" : ["crime", "front", "punishment"]
}
3
"sort" : { "_score" : "desc" }

Look at the highlighted section in the preceding query. This is the default sorting used by
Elasticsearch. For better visibility, we can change the formatting slightly and show the
highlighted fragment as follows:

"sort" : [
{ "_score" : "desc" }

]

The preceding section defines how the documents should be sorted in the results list. In
this case, Elasticsearch will show the documents with the highest score on top of the
results list. The simplest modification is to reverse the ordering by changing the sort
section to the following one:

"sort" : [

{ "_score" : "asc" }

]

www.EBooksWorld.ir

Selecting fields used for sorting

Default sorting is boring, isn’t it? So, let’s change it to sort on the basis of the values of the
fields present in the documents. Let’s choose the title field, which means that the sort
section of our query will look as follows:

"sort" : [

{ "title" : "asc" }
]
Unfortunately, this doesn’t work as expected. Although Elasticsearch sorted the
documents, the ordering is somewhat strange. Look closely at the response. With every
document, Elasticsearch returns information about the sorting; for example, for the crime
and Punishment book, the returned document looks like the following code:

{

"_index" : "library",

"_type" : "bOOk",

Il_idll : I|4|I’

"_score" : null,

"_source" : {
"title" : "Crime and Punishment",
"otitle" : "MpecTynnéHuve n HakasaHue",
"author" : "Fyodor Dostoevsky",
"year" : 1886,
"characters" : ["Raskolnikov'", "Sofia Semyonovna Marmeladova"],
"tagS" : [],
"copies" : 0,
"available" : true

I

"sort" : ["punishment"]

}

If you compare the title field and the returned sorting information, everything should be
clear. Elasticsearch, during the analysis process, splits the field into several tokens. Since
sorting is done using a single token, Elasticsearch chooses one of the produced tokens. It
does the best that it can by sorting these tokens alphabetically and choosing the first one.
This is the reason why, in the sorting value, we find only a single word instead of the
whole content of the title field. If you would like to see how Elasticsearch behaves when
using different fields for sorting, you can try fields such as copies:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"query" : {
"terms" : {
"title" : ["crime", "front", "punishment"]
}
3
"sort" : [
{ "copies" : "asc" }
1

} 1
In general, it is a good idea to have a not analyzed field for sorting. We can use fields with

www.EBooksWorld.ir

multiple values for sorting, but, in most cases, it doesn’t make much sense and has limited
usage.

As an example of using two different fields, one for sorting and another for searching, let’s
change our title field. The changed title field definition will look as follows:

"title" : {
"type": "string",
"fields": {
"sort": { "type" : "string", "index": "not_analyzed" }
}

}

After changing the title field in the mappings (we’ve used the same mappings as in
Chapter 3, Searching Your Data) and re-indexing the data, we can try sorting the
title.sort field and see whether it works. To do this, we will need to send the following

query:

{
"query" : {
"match_all" : { }
X}

"sort" : [
{"title.sort" : "asc" }

]
}

Now, it works properly. As you can see, we used the new field, the title.sort one. We
set it as not to be analyzed, so there is a single token for that field in the index of
Elasticsearch.

Sorting mode

In the response from Elasticsearch, every document contains information about the value
used for sorting. For example, let’s look at one of the documents returned by the query in
which we used the title field for sorting:

{

"_index" : "library",

|l_typell : "bOOk",

|l_id|l : I|1|I’

"_score" : null,

"_source" : {
"title" : "All Quiet on the Western Front",
"otitle" : "Im Westen nichts Neues",
"author" : "Erich Maria Remarque",
"year" : 1929,
"characters" : ["Paul Baumer", "Albert Kropp", "Haie Westhus",

"Fredrich Midller", "Stanislaus Katczinsky", "Tjaden"],

"tags" : ["novel"],
"copies" : 1,
"available" : true,
"section" : 3

I

"sort" : ["all"]

www.EBooksWorld.ir

}

The sorting used in the query to get the preceding document, was as follows:

"sort" : [
{ "title" : "asc" }
]

However, because we are sorting on an analyzed field, which contains more than a single
value, the sorting definition is in fact equivalent to the longer form, which looks as
follows:

"sort" : [
{ "title" : { "order" : "asc", "mode" : "min" }
1
mode defines which token should be used for comparison when sorting on a field which
has more than one value. The available values we can choose from are:

e min: Sorting will use the lowest value (or the first alphabetical value on the text based
fields)

e max: Sorting will use the highest value (or the last alphabetical value on the text based
fields)

e avg: Sorting will use the average value

e median: Sorting will use the median value

e sum: Sorting will use the sum of all the values in the field

Note

The modes such as median, avg, and sum are useful for numerical multivalued fields,
but don’t make much sense when it comes to text based fields.

Note that sort, in request and response, is given as an array. This suggests that we can use
several different orderings. Elasticsearch will use the next element in the sorting definition
list to determine ordering between the documents that have the same value of the previous
sorting clause. So, if we have the same value in the title field, the documents will be
sorted by the next field that we specify. For example, if we would like to get the
documents that have the most copies and then sort by the title, we will run the following

query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"query" : {

"terms" : {
"title" : ["crime", "front", "punishment"]
}
}
"sort" : [
{ "copies" : "desc" }, { "title" : "asc" }
1

} 1

www.EBooksWorld.ir

Specifying behavior for missing fields

What about when some of the documents that match the query don’t have the field we
want to sort on? By default, documents without the given field are returned first in the
case of ascending order and last in the case of descending order. However, sometimes this
is not exactly what we want to achieve.

When we use sorting on numeric fields, we can change the default Elasticsearch behavior
for documents with missing fields. For example, let’s take a look at the following query:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"query" : {
"match_all" : { }

3
"sort" : [
{
"section" : {
"order" : "asc",
"missing" : "_last"
}
}
1
}l

Note the extended form of the sort section of our query. We’ve added the missing
parameter to it. By setting the missing parameter to _last, Elasticsearch will place the
documents without the given field at the bottom of the results list. Setting the missing
parameter to _first will result in Elasticsearch placing documents without the given field
at the top of the results list. It is worth mentioning that besides the _last and _first
values, Elasticsearch also allows us to use any number. In such a case, a document without
a defined field will be treated as the document with this given value.

www.EBooksWorld.ir

Dynamic criteria

As we mentioned in the previous section, Elasticsearch allows us to sort using fields that
have multiple values. We can control how the comparison is made using scripts. We do
that by showing Elasticsearch how to calculate the value that should be used for sorting.
Let’s assume that we want to sort by the first value indexed in the tags field. Let’s take a
look at the following example query (note that running the following query requires the
script.inline property set to on in the elasticsearch.yml file):

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"query" : {
"match_all" : { }

3
"sort" : {
"_script" : {
"script" : "doc[\"tags\"].values.size() > 0 ? doc[\"tags\"].values[0O]
: \"\u19999\"",
"type" : "string",
"order" : "asc"
}
}
}l

In the preceding example, we replaced every nonexistent value with the Unicode code of a
character that should be low enough in the list. The main idea of this code is to check if
our array contains at least a single element. If it does, then the first value from the array is
returned. If the array is empty, we return the Unicode character that should be placed at
the bottom of the results list. Besides the script parameter, this option of sorting requires
us to specify the order (ascending, in our case) and type parameters that will be used for
the comparison (we return string from our script).

www.EBooksWorld.ir

Calculate scoring when sorting

By default, Elasticsearch assumes that when you use sorting, the score is completely
unimportant. Usually it is a good assumption; why do additional computations when the
importance of the documents is given by the sorting formula. Sometimes, however, you
want to know how good the document is in relation to the current query, even if the
documents are presented in a different order. This is when the track_scores parameter
should be used and set to true. An example query using it looks as follows:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

"query" : {
"match_all" : { }

},
"track_scores" : true,
"sort" : [
{ "title" : { "order" : "asc" }}
1

} 1
The preceding query calculates the score for every document. In fact, in our example, the

score is boring and is always equal to 1.0 because of the match_all query which treats all
the documents as equal.

www.EBooksWorld.ir

www.EBooksWorld.ir

Query rewrite

When debugging your queries, it is very valuable to know how all the queries are
executed. Because of that, we decided to include the section on how query rewrite works
in Elasticsearch, why it is used, and how to control it. If you have ever used queries, such
as the prefix query and the wildcard query, basically any query that is said to be
multiterm (a query that is built of multiple terms), you’ve used query rewriting even
though you may not have known about it. Elasticsearch does rewrite for performance
reasons. The rewrite process is about changing the original, expensive query into a set of
queries that are far less expensive from an Apache Lucene point of view, thus speeding up
the query execution.

www.EBooksWorld.ir

Prefix query as an example

The best way to illustrate how the rewrite process is done internally is to look at an
example and see which terms are used instead of the original query term. We will index
three documents to our library_ it index by using the following commands:

curl -XPOST 'localhost:9200/library_it/book/1' -d '{"title": "Solr 4
Cookbook"}'

curl -XPOST 'localhost:9200/library_it/book/2' -d '{"title": "Solr 3.1
Cookbook"}'

curl -XPOST 'localhost:9200/library_it/book/3' -d '{"title": "Mastering
Elasticsearch"}'

What we would like is to find all the documents that start with the letter s. Simple as that,
we run the following query against our library_it index:

curl -XGET 'localhost:9200/library_it/_search?pretty' -d '{

"query" : {
"prefix" : {
"title" : {
|Iprefixll : llsll’
"rewrite" : "constant_score_boolean"
}
}
}

} 1
We’ve used a simple prefix query; we’ve said that we would like to find all the
documents with the letter s in the title field. We’ve also used the rewrite property to

specify the query rewrite method, but let’s skip it for now as we will discuss the possible
values of this parameter in the later part of this section.

As the response to the previous query, we get the following:

{
"took" : 13,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
X}
"hits" : {
"total" : 2,
"max_score" : 1.0,
"hits" : [{
"_index" : "library_it",
|l_typell : llbookH’
|l_id|l : I|2|I’
"_score" : 1.0,
"_source" : {
"title" : "Solr 3.1 Cookbook"
}
3 Ao
"_index" : "library_it",

www.EBooksWorld.ir

Il_typell : "bOOk",

Il_idll : II1II’
"_score" : 1.0,
"_source" : {
"title" : "Solr 4 Cookbook"
}
3]

}
}
As you can see, in response we got the two documents that had the contents of the title
field starting with the desired character. We didn’t specify the mappings explicitly, so we
relied on Elasticsearch’s ability to choose the mapping type for us. As we already know,
for the text field, Elasticsearch uses the default analyzer. This means that the terms in our
documents will be lowercased and, because of that, we used the lowercased letter in our
prefix query (remember that the prefix query is not analyzed).

www.EBooksWorld.ir

Getting back to Apache Lucene

Now let’s take a step back and look at Apache Lucene again. If you recall what Lucene
inverted index is built from, you can tell that it contains a term, count, and document
pointer (if you don’t recall, refer to the Full text searching section in Chapter 1, Getting
Started with Elasticsearch Cluster). So, let’s see how the simplified view of the index may
look for the preceding data we’ve put to the 1ibrary it index:

Term Count Documents
1 il <2>
3 i | <2>
4 i <]>
cookbook 2 <i»<d>
elasticsearch 1 <3>
mastering 1 L
solr 2 <1><2>

What you see in the column with the Term text is quite important. If you look at
Elasticsearch and Apache Lucene internals, you can see that our prefix query was
rewritten to the following Lucene query:

ConstantScore(title:solr)

We can check the portions of the rewrite using the Elasticsearch API. First of all, we can
use the Explain API by running the following command:

curl -XGET 'localhost:9200/l1library_it/book/1/_explain?pretty' -d '{

"query" : {
"prefix" : {
"title" : {
Ilprefixll : llsll’
"rewrite" : "constant_score_boolean"
}
}
}
} 1
The result will be as follows:
{
"_index" : "library_it",
ll_typell : llbooklI’
ll_idll : Illll’
"matched" : true,
"explanation" : {

www.EBooksWorld.ir

"value" : 1.0,
"description" : "sum of:",
"details" : [{
"value" : 1.0,
"description" : "ConstantScore(title:solr), product of:",
"details" : [{
"value" : 1.0,
"description" : "boost",
"details" : []
3 A{
"value" : 1.0,
"description" : "queryNorm",
"details" : []

¥l
o q

"value" : 0.0,
"description" : "match on required clause, product of:",
"details" : [{
"value" : 0.0,
"description" : "# clause",
"details" : []
3 Aq
"value" : 1.0,
"description" : "_type:book, product of:",
"details" : [{
"value" : 1.0,
"description" : "boost",
"details" : []
[Nt
"value" : 1.0,
"description" : "queryNorm",
"details" : []
+]
;]
3]
}
}

We can see that Elasticsearch used a constant score query with the term solr against the
title field.

www.EBooksWorld.ir

Query rewrite properties

We can control how the queries are rewritten internally. To do that, we place the rewrite
parameter inside the JSON object responsible for the actual query. For example:

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{

}
} 1

"query" : {
"prefix" : {

Iltitlell : “S",

"rewrite" : "constant_score_boolean"
}

The rewrite property can take the following values:

scoring_boolean: This rewrite method translates each generated term into a Boolean
should clause in the Boolean query. This rewrite method causes the score to be
calculated for each document. Because of that, this method may be CPU demanding.
Please also note that, for queries that have many terms, it may exceed the Boolean
query limit, which is set to 1024. The default Boolean query limit can be changed by
setting the index.query.bool.max_clause_count property in the
elasticsearch.yml file. However, remember that the more Boolean queries
produced, the lower the query performance may be.

constant_score: This rewrite method chooses constant_score_boolean or
constant_score_filter depending on the query and taking performance into
consideration. This is also the default behavior when the rewrite property is not set at
all.

constant_score_boolean: This rewrite method is similar to the scoring_boolean
rewrite method described previously, but less CPU demanding because the scoring is
not computed and, instead of that, each term receives a score equal to the query boost
(one by default, and which can be set using the boost property). Because this rewrite
method also results in Boolean should clauses being created, similar to the
scoring_boolean rewrite method, this method can also hit the maximum Boolean
clauses limit.

top_terms_N: A rewrite method that translates each generated term into a Boolean
should clause in a Boolean query and keeps the scores as computed by the query.
However, unlike the scoring_boolean rewrite method, it only keeps an N number of
top scoring terms to avoid hitting the maximum Boolean clauses limit and increase
the final query performance.

top_terms_blended_freqs_N: A rewrite method that translates each term into a
Boolean query and treat the terms as if they had the same term frequency.
top_terms_boost_N: A rewrite method similar to the top_terms_N one, but the
scores are not computed. Instead, the documents are given a score equal to the value
of the boost property (one by default).

For example, if we would like our example query to use top_terms_N with N equal to 2,
our query would look like this:

www.EBooksWorld.ir

curl -XGET 'localhost:9200/l1library/book/_search?pretty' -d '{
"query" : {

"prefix" : {

"title" : {

"prefiX" :“S",

"rewrite" : "top_terms_2"
}

}
}
} 1

If you look at the results returned by Elasticsearch, you’ll notice that, unlike our initial
query, the documents were given a score different than the default 1.0:

{

"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0O
X}
"hits" : {
"total" : 1,
"max_score" : 0.15342641,
"hits" : [{
"_index" : "library",
"_type" : "bOOk",
Il_idll : I|3|I’
"_score" : 0.15342641,
"_source" : {
"title" : "The Complete Sherlock Holmes",
"author" : "Arthur Conan Doyle",
"year" : 1936,
"characters" : ["Sherlock Holmes", "Dr. Watson", "G. Lestrade"],
"tagS" : [],
"copies" : O,
"available" : false,
"section" : 12
}
3]
}

}

The score is different than the default 1.0 because we’ve used the top_terms_N rewrite
type and this type of query rewrite keeps the score for N top scoring terms.

Before we finish the Query rewrite section of this chapter, we should ask ourselves one
last question: when to use which rewrite type? The answer to this question greatly depends
on your use case, but, to summarize, if you can live with lower precision and relevancy
(but higher performance), you can go for the top N rewrite method. If you need high
precision and thus more relevant queries (but lower performance), choose the Boolean
approach.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

The chapter you just finished was again focused on querying. We used filters and saw
what highlighting is and how to use it. We learned what are the highlighter types and how
they can help us. We validated our queries and we learned how Elasticsearch can help us
when it comes to sorting our results. Finally, we discussed query rewriting, what that
brings us, and how we can control it.

In the next chapter, we will get back to indexation topic. We will discuss indexing
complex JSON objects such as tree-like structures and indexing data that is not flat. We
will prepare Elasticsearch to handle relationships between documents and we will use the
Elasticsearch API to update the structure of our indices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 5. Extending Your Index
Structure

We started the previous chapter by learning how to deal with revised filtering in
Elasticsearch 2.x and what to expect from it now. We also explored highlighting and how
it can help us in improving the users’ search experience. We discovered query validation in
Elasticsearch and learned the ways of data sorting in Elasticsearch. Finally, we discussed
query rewriting and how that affects our queries. By the end of this chapter, you will have
learned the following topics:

Indexing tree-like structures

Indexing data that is not flat

Handling document relationships by using nested object and parent—child features
Modifying index structure by using Elasticsearch API

www.EBooksWorld.ir

Indexing tree-like structures

Trees are everywhere. If you develop an e-commerce shop application, your products will
probably be described with the use of categories. The thing about categories is that in most
cases they are hierarchical. There are top categories, such as electronics, music, books,
and so on. Each of the top level categories can have numerous children categories, such as
fiction and science, and those can get even deeper into science fiction, romance, and so on.
If you look at the file system, the files and directories are arranged in tree-like structures
as well. This book can also be represented as a tree: chapters contain topics and topics are
divided into subtopics. So the data around us is arranged into tree-like structures and as
you can imagine, Elasticsearch is capable of indexing tree-like structures so that we can
represent the data in an easier manner. Let’s check how we can navigate through this type
of data using path_analyzer.

www.EBooksWorld.ir

Data structure

To begin with, let’s create a simple index structure by using the following command:

curl -XPUT 'localhost:9200/path?pretty' -d '{
"settings" : {

"index" : {
"analysis" : {
"analyzer" : {
"path_analyzer" : { "tokenizer" : "path_hierarchy" }
}
}
}

}
"mappings" : {
"category" : {

"properties" : {
"category" : {
Iltypell : Ilstring"’
"fields" : {
"name" : { "type" : "string", "index" : "not_analyzed" },
"path" : { "type" : "string", "analyzer" : "path_analyzer",
"store" : true }
3
3
3
3
}
}l

As you can see, we have a single type created — the category type. We will use it to store
and index the information about the location of our document in the tree structure. The
idea is simple — we can show the location of the document as a path, in the exact same
manner as the files and directories are presented on your hard disk drive. For example, in
an automotive shop, we can have /cars/passenger/sport, /cars/passenger/camper, Or
/cars/delivery_truck/. However, to achieve that, we need to index this path in two
different ways. First of all, we will use an not analyzed field called name, to store and
index paths name in its original form. We will also use a field called path, which will use
the path_analyzer analyzer which we’ve defined to process the path so it is easier to
search.

www.EBooksWorld.ir

Analysis

Now, let’s see what Elasticsearch will do with the category path during the analysis
process. To see this, we will use the following command line, which uses the analysis API
discussed in the Understanding the explain information section of Chapter 6, Make Your
Search Better:

curl -XGET 'localhost:9200/path/_analyze?field=category.path&pretty' -d
'/cars/passenger/sport'

The following results will be returned by Elasticsearch:

{
"tokens" : [{

"token" : "/cars",
"start_offset" : 0O,
"end_offset" : 5,
Iltypell : "WOI"d",
"position" : O

o {
"token" : "/cars/passenger",
"start_offset" : 0,
"end_offset" : 15,
lltypell : "word",
"position" : 0O

A
"token" : "/cars/passenger/sport",
"start_offset" : 0,
"end_offset" : 21,
lltypell : nwordn,
"position" : ©

1]

3

As we can see, our category path /cars/passenger/sport was processed by Elasticsearch
and divided into three tokens. Thanks to this, we can simply find every document that
belongs to a given category or its subcategories using the term filter. For the example to be
complete, let’s index a simple document by using the following command:

curl -XPUT 'localhost:9200/path/category/1' -d '{ "category"
"/cars/passenger/sport" }'

An example of using filters is as follows:

curl -XGET 'localhost:9200/path/_search?pretty' -d '{

"query" : {
"bool" : {
"filter" : {
"term" : {
"category.path" : "/cars"
¥
3
b
}

www.EBooksWorld.ir

Note that we also have the original value indexed in the category.name field. This is
handy when we want to find documents from a particular path, ignoring the documents
that are deeper in the hierarchy.

www.EBooksWorld.ir

www.EBooksWorld.ir

Indexing data that is not flat

Not all data is flat like the examples we have used in the book until now. Most of the data
you will encounter will have some structure and nested objects inside the root JSON
object. Of course, if we are building our system that Elasticsearch will be a part of and we
are in control of all the pieces of it, we can create a structure that is convenient for
Elasticsearch. But even in such cases, flat data is not always an option. Thankfully,
Elasticsearch allows us to index data that is not flat and this section will show us how to
do that.

www.EBooksWorld.ir

Data

Let’s assume that we have the following data (we store it in the file called
structured_data.json):

{
"author" : {
"name" : {
"firstName" : "Fyodor",
"lastName" : "Dostoevsky"
}
I
"isbn" : "123456789",
"englishTitle" : "Crime and Punishment",
"year" : 1886,
"characters" : [
{
"name" : "Raskolnikov"
I
{
"name" : "Sofia"
3
1
"copies" : 0
}

As you can see the data is not flat — it contains arrays and nested objects. If we want to
create mappings and use the knowledge that we’ve got so far, we will have to flatten the
data. However, as we already said, Elasticsearch allows some degree of structure and we
should be able to create mappings that will work for the preceding example.

www.EBooksWorld.ir

Objects

The preceding example data shows the structured JSON file. As you can see in the
example, our root object has some additional, simple properties, such as englishTitle, isbn,
year, and copies. These will be indexed as normal fields in the index and we already know
how to deal with them (we discussed that in the Mappings configuration section of
Chapter 2, Indexing Your Data). In addition to that, it has the characters array type and the
author object. The author object has another object nested within it — the name object,
which has two properties: firstName and lastName. So as you can see, we can have
multiple nested objects inside each other.

www.EBooksWorld.ir

Arrays

We have already used array type data, but we didn’t talk about it. By default, all the fields
in Lucene and thus in Elasticsearch are multivalued, which means that they can store
multiple values. In order to send such fields to indexing to Elasticsearch, we use the JSON
array type, which is nested within the opening and closing square brackets []. As you can
see in the preceding example, we used the array type for the characters of our book.

www.EBooksWorld.ir

Mappings

Let’s now look at how our mappings would look like for the book object we showed
earlier. We already said that to index arrays we don’t need anything special. So, in our
case, to index the characters data we will need to add fields definition similar to the
following one:

"characters" : {

"properties" : {

"name" : {"type" : "string"}
}

}

Nothing strange! We just nest the properties section inside the arrays name (which is
characters in our case) and we define the fields there. As the result of the preceding
mappings, we will get the characters.name multivalued field in the index.

We do similar thing for our author object. We call the section with the same name as it is
present in the data. We have the author object, but it also has the name object nested in it,
so we do the same — we just nest another object inside it. So, our mappings for the author
field would look as follows:

"author" : {
"properties" : {
"name" : {
"properties" : {
"firstName" : {"type" : "string"},
"lastName" : {"type" : "string"}

b
b
}
}

The firstName and lastName fields appear in the index as author.name.firstName and
author.name.lastName.

The rest of the fields are simple core types, so I’ll skip discussing them as they were
already discussed in the Mappings configuration section of Chapter 2, Indexing Your
Data.

Final mappings

So our final mappings file, that we’ve called structured_mapping.json, looks like the
following:

{
"book" : {
"properties" : {
"author" : {
"type" : "object",
"properties" : {
"name" : {
"type" : "object",

www.EBooksWorld.ir

"properties" : {

"firstName" : {"type" : "string"},
"lastName" : {"type" : "string"}
3
3
3
3
"isbn" : {"type" : "string"},
"englishTitle" : {"type" : "string"},
"year" : {"type" : "integer"},
"characters" : {
"properties" : {
"name" : {"type" : "string"}
3
iy
"copies" : {"type" : "integer"}
}
3

}
Sending the mappings to Elasticsearch

Now that we have our mappings done, we would like to test if all the work we did actually
works. This time we will use a slightly different technique of creating an index and putting
the mappings. First, let’s create the library index with the following command (you need
to delete the library index if you already have it):

curl -XPUT 'localhost:9200/library'
Now, let’s send our mappings for the book type:

curl -XPUT 'localhost:9200/l1library/book/_mapping' -d
@structured_mapping.json

Now we can index our example data:

curl -XPOST 'localhost:9200/1library/book/1' -d @structured_data.json

www.EBooksWorld.ir

To be or not to be dynamic

As we already know, Elasticsearch is schema-less, which means that it can index data
without the need of creating the mappings upfront. What Elasticsearch will do in the
background when a new field is encountered in the data is a mapping update — it will try to
guess the field type and add it to the mappings. The dynamic behavior of Elasticsearch is
turned on by default, but there may be situations where you may want to turn it off for
some parts of your index. In order to do that, one should add the dynamic property to the
given field and set it to false. This should be done on the same level of nesting as the
type property for the object, which shouldn’t be dynamic. For example, if we want our
author and name objects to not be dynamic, we should modify the relevant part of the
mappings file so that it looks as follows:

"author" : {
Iltypell : "ObjeCt",
"dynamic" : false,
"properties" : {
"name" : {
Iltypell : llobjectll,
"dynamic" : false,
"properties" : {
"firstName" : {"type" : "string", "index" : "analyzed"},
"lastName" : {"type" : "string", "index" : "analyzed"}
}
}
}

}

However, remember that in order to add new fields for such objects, we would have to
update the mappings.

Note

You can also turn off the dynamic mappings functionality by adding the
index.mapper.dynamic property to your elasticsearch.yml configuration file and
setting it to false.

www.EBooksWorld.ir

Disabling object indexing

There is one additional thing that we would like to mention when it comes to objects
handling — we can disable indexing a particular object by using the enabled property and
setting it to false. There may be various reasons for that, such as not wanting a field to be
indexed or not wanting a whole JSON object to be indexed. For example, if we want to
omit an object called information from our author object, we will have the author object
definition look as follows:

"author" : {
ntypell : "ObjeCt",
"properties" : {
"name" : {
utypeu : HObjECt",
"dynamic" : false,
"properties" : {
"firstName" : {"type" : "string", "index" : "analyzed"},
"lastName" : {"type" : "string", "index" : "analyzed"},
"information" : {"type" : "object", "enabled" : false}
}
}
}

}

The dynamic parameter can also be set to strict. This means that new fields won’t be
added into the document when they appear and the indexing of such document will fail.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using nested objects

Nested objects can come in handy in certain situations. Basically, with nested objects
Elasticsearch allows us to connect multiple documents together — one main document and
multiple dependent ones. The main document and the nested ones are indexed together
and they are placed in the same segment of the index (actually, in the same block inside
the segment, near each other), which guarantees the best performance we can get for such
a data structure. The same goes for changing the document; unless you are using the
update API, you need to index the parent document and all the other nested ones at the
same time.

Note

If you would like to read more about how nested objects work on the Apache Lucene
level, there is a very good blog post written by Mike McCandless at

http://blog.mikemccandless.com/2012/01/searching-relational-content-with.html.
Now let’s get on with our example use case. Imagine that we have a shop with clothes and

we store the size and color of each t-shirt. Our standard, non-nested mappings will look
like this (stored in cloth. json):

{
"cloth" : {
"properties" : {
"name" : {"type" : "string"},
"size" : {"type" : "string", "index" : "not_analyzed"},
"color" : {"type" : "string", "index" : "not_analyzed"}
}
}
}

To create the shop index without cloth mapping, we run the following commands:

curl -XPOST 'localhost:9200/shop'
curl -XPUT 'localhost:9200/shop/cloth/_mapping' -d @cloth.json

Now imagine that we have a t-shirt in our shop that we only have in XXL size in red and
in XL size in black. So our example document indexation command will look as follows:

curl -XPOST 'localhost:9200/shop/cloth/1' -d '{

"name" : "Test shirt",

"Size" : [IIXXLII’ IIXLII]’

"color" : ["red", "black"]
} 1
However, there is a problem with such a data structure. What if one of our clients searches
our shop in order to find the XXL t-shirt in black? Let’s check that by running the
following query (we assume that we’ve used our mappings to create the index and we’ve

indexed our example document):

curl -XGET 'localhost:9200/shop/cloth/_search?pretty=true' -d '{
"query" : {

www.EBooksWorld.ir

http://blog.mikemccandless.com/2012/01/searching-relational-content-with.html

"bool" : {

"must" : [
{
"term" : { "size" : "XXL" }
3
{
"term" : { "color" : "black" }
}
]
}
}
} 1
We should get no results, right? But in fact Elasticsearch returned the following document:
{
(..)
"hits" : {
"total" : 1,
"max_score" : 0.4339554,
"hits" : [{
"_index" : "shop",
"_type" : "cloth" ,
Il_idll : I|1|I ,
"_score" : 0.4339554,
"_source" : {
"name" : "Test shirt",
"Size" : ["XXL", IIXLII]’
"color" : ["red", "black"]
}
3]
}
}

This is because the document was matched — we have the values we are searching for in
the size field and in the color field. Of course, this is not what we would like to get.

So, let’s modify our mappings to use the nested objects to separate color and size to
different nested documents. The final mapping looks as follows (we store these mappings
in the cloth_nested. json file):

{
"cloth" : {
"properties" : {
"name" : {"type" : "string", "index" : "analyzed"},
"variation" : {
"type" : "nested",
"properties" : {
"size" : {"type" : "string", "index" : "not_analyzed"},
"color" : {"type" : "string", "index" : "not_analyzed"}
by
¥
¥
¥
}

www.EBooksWorld.ir

Now, we will create a second index called shop_nested using our modified mappings by
running the following commands:

curl -XPOST 'localhost:9200/shop_nested'
curl -XPUT 'localhost:9200/shop_nested/cloth/_mapping' -d
@cloth_nested. json

As you can see, we’ve introduced a new object inside our cloth type — variation one,
which is a nested one (the type property set to nested). It basically says that we will want
to index the nested documents. Now, let’s modify our document. We will add the variation
object to it and that object will store the objects with two properties — size and color. So
the index command for our modified example product will look like the following:

curl -XPOST 'localhost:9200/shop_nested/cloth/1' -d '{

"name" : "Test shirt",

"variation" : [

{ "size" : "XXL", "color" : "red" },
{ "size" : "XL", "color" : "black" }
]

} 1

We’ve structured the document so that each size and its matching color is a separate
document. However, if you run our previous query, it won’t return any documents. This is
because in order to query for nested documents, we need to use a specialized query. So
now our query looks as follows:

curl -XGET 'localhost:9200/shop_nested/cloth/_search?pretty=true' -d '{

uqueryu : {
"nested" : {
"path" : "variation",
llquer—yll : {
"bool" : {
"must" : [
{ "term" : { "variation.size" : "XXL" } 1},
{ "term" : { "variation.color" : "black" } }
]
3
3
}
}

} 1
And now, the preceding query will not return the indexed document, because we don’t
have a nested document that has the size equal to XXL and color black.

Let’s get back to the query for a second to discuss it briefly. As you can see, we used the
nested query in order to search in the nested documents. The path property specifies the
name of the nested object (yes, we can have multiple of them). We just included a standard
query section under the nested type. Also note that we specified the full path for the field
names in the nested objects, which is handy when you have multilevel nesting, which is
also possible.

www.EBooksWorld.ir

Scoring and nested queries

There is one additional property when it comes to handling nested documents during
query. In addition to the path property, there is the score_mode property, which allows us
to define how the scoring is calculated from the nested queries. Elasticsearch allows us to
set the score_mode property to one of the following values:

e avg: This is the default value. Using it for the score_mode property will result in
Elasticsearch taking the average value calculated from the scores of the defined
nested queries. Calculated average will be included in the score of the main query.

e sum: Using this value for the score_mode property will result in Elasticsearch taking a
sum of the scores for each nested query and including it in the score of the main
query.

e min: Using this value for the score_mode property will result in Elasticsearch taking
the score of the minimum scoring nested query and including it in the score of the
main query.

¢ max: Using this value for the score_mode property will result in Elasticsearch taking
the score of the maximum scoring nested query and including it in the score of the
main query.

¢ none: Using this value for the score_mode property will result in no score being taken
from the nested query.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using the parent-child relationship

In the previous section, we discussed using Elasticsearch to index the nested documents
along with the parent one. However, even though the nested documents are indexed as
separate documents in the index, we can’t change a single nested document (unless we use
the update API). Elasticsearch allows us to have a real parent-child relationship and we
will look at it in the following section.

www.EBooksWorld.ir

Index structure and data indexing

Let’s use the same example that we used when discussing the nested documents — the
hypothetical cloth store. What we would like to have is the ability to update the sizes and
colors without the need to index the whole parent document after each change. We will see
how to achieve that using Elasticsearch parent-child functionality.

Child mappings

First we have to create a child index definition. To create child mappings, we need to add
the _parent property with the name of the parent type, which will be cloth in our case. In
the children documents, we want to have the size and the color of the cloth. So, the
command that will create the shop index and the variation type will look as follows:

curl -XPOST 'localhost:9200/shop'
curl -XPUT 'localhost:9200/shop/variation/_mapping' -d '{

"variation" : {
"_parent" : { "type" : "cloth" },
"properties" : {
"size" : { "type" : "string", "index" : "not_analyzed" },
"color" : { "type" : "string", "index" : "not_analyzed" }
}
}

} 1
And that’s all. You don’t need to specify which field will be used to connect the child
documents to the parent ones. By default, Elasticsearch will use the documents’ unique

identifier for that. If you remember from the previous chapters, the information about a
unique identifier is present in the index by default.

Parent mappings

The only field we need to have in our parent document is name. We don’t need anything
more than that. So, in order to create our cloth type in the shop index, we will run the
following commands:

curl -XPUT 'localhost:9200/shop/cloth/_mapping' -d '{

"cloth" : {
"properties" : {
"name" : { "type" : "string" }
}
}

} 1
The parent document

Now we are going to index our parent document. As we want to store the information
about the size and the color in the child documents, the only thing we need to have in the
parent documents is the name. Of course, there is one thing to remember — our parent
documents need to be of type cloth, because of the _parent property value in the child
mappings. The indexing command for our parent document is very simple and looks as
follows:

www.EBooksWorld.ir

curl -XPOST 'localhost:9200/shop/cloth/1' -d '{
"name" : "Test shirt"

} 1
If you look at the preceding command, you’ll notice that our document will be given the
identifier 1.

Child documents

To index the child documents, we need to provide information about the parent document
with the use of the parent request parameter. The value of the parent parameter should
point to the identifier of the parent document. So, to index two child documents to our
parent document, we need to run the following command lines:

curl -XPOST 'localhost:9200/shop/variation/1000?parent=1"' -d '{

"color" : "red",
"size" : "XXL"
} 1
curl -XPOST 'localhost:9200/shop/variation/1001?parent=1"' -d '{
"color" : "black",
"Size" . llXLll
} 1

And that’s all. We’ve indexed two additional documents, which are of our variation type,
but we’ve specified that our documents have a parent, the document with an identifier of
1.

www.EBooksWorld.ir

Querying

We’ve indexed our data and now we need to use appropriate queries to match the
documents with the data stored in their children. This is because, by default, Elasticsearch
searches on the documents without looking at the parent-child relations. For example, the

following query will match all three documents that we’ve indexed (two children and one
parent):

curl -XGET 'localhost:9200/shop/_search?q=*&pretty'

This is not what we would like to achieve, at least in most cases. Usually, we are
interested in parent documents that have children matching the query. Of course
Elasticsearch provides such functionalities with specialized types of queries.

Note

The thing to remember though is that, when running queries against parents, the children
documents won’t be returned, and vice versa.

Querying data in the child documents

Imagine that we want to get clothes that are of the XXL size and are red. As you recall, the
size and the color of the cloth are indexed in the child documents, so we need a
specialized has_child query, to check which parent documents have children with the
desired size and color. So an example query that matches our requirement looks as
follows:

curl -XGET 'localhost:9200/shop/_search?pretty' -d '{

uqueryu : {
"has_child" : {
"type" : "variation",
|lquer—yll : {
"bool" : {
"must" : [
{ "term" : { "size" : "XXL" } },
{ "term" : { "color" : "red" } }
]
3
}
3
}

3
The query is quite simple; it is of the has_child type, which tells Elasticsearch that we
want to search in the child documents. In order to specify which type of children we are
interested in, we specify the type property with the name of the child type. The query is
provided using the query property. We’ve used a standard bool query, which we’ve
already discussed. The result of the query will contain only those parent documents that
have children matching our bool query. In our case, the single document returned looks as
follows:

{

www.EBooksWorld.ir

"took" : 16,

"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
X}
"hits" : {
"total" : 1,
"max_score" : 1.0,
"hits" : [{
"_index" : "shop",
"_type" : "Cloth",
Il_idll : II1II’
"_score" : 1.0,
"_source" : {
"name" : "Test shirt"
}
3]
}

}

The has_child query allows us to provide additional parameters to control its behavior.
Every parent document found may be connected with one or more child documents. This
means that every child document can influence the resulting score. By default, the query
doesn’t care about the children documents, how many of them matched, and what is their
content — it only matters if they match the query or not. This can be changed by using the
score_mode parameter, which controls the score calculation of the has_child query. The
values this parameter can take are:

none: The default one, the score generated by the relation is 1.0
min: The score is taken from the lowest scored child

max: The score is taken from the highest scored child

sum: The score is calculated as the sum of the child scores

avg: The score is taken as the average of the child scores

Let’s see an example:

curl -XGET 'localhost:9200/shop/_search?pretty' -d '{

llqueryll : {
"has_child" : {
"type" : "variation",
"score_mode" : "sum",
llqueryll : {
"bool" : {
"must" : [
{ "term" : { "size" : "XXL" } },
{ "term" : { "color" : "red" } }
1
}
}
}
}

www.EBooksWorld.ir

We used sum as score_mode which results in children contributing to the final score of the
parent document — the contribution is the sum of scores of every child document matching
the query.

And finally, we can limit the number of children documents that need to be matched; we
can specify both the maximum number of the children documents allowed to be matched
(the max_children property) and the minimum number of children documents (the
min_children property) that need to be matched. The query illustrating the usage of these
parameters is as follows:

curl -XGET 'localhost:9200/shop/_search?pretty' -d '{

"query" : {
"has_child" : {
"type" : "variation",
"min_children" : 1,
"max_children" : 3,
"query" : {
"bool" : {
"must" : [
{ "term" : { "size" : "XXL" } },
{ "term" : { "color" : "red" } }
1
}
}
}
}

} 1
Querying data in the parent documents

Sometimes, we are not interested in the parent documents but in the children documents.
If you would like to return the child documents that matches a given data in the parent
document, Elasticsearch has a query for us — the has_parent query. It is similar to the
has_child query; however, instead of the type property, we specify the parent_type
property with the value of the parent document type. For example, the following query
will return both the child documents that we’ve indexed, but not the parent document:

curl -XGET 'localhost:9200/shop/_search?pretty' -d '{

"query" : {
"has_parent" : {
"parent_type" : "cloth",
"query" : {
"term" : { "name" : "test" }
}
}
}

} 1
The response from Elasticsearch will be similar to the following one:

{
"took" : 3,
"timed_out" : false,
"_shards" : {

www.EBooksWorld.ir

"total" : 5,

"successful" : 5,
"failed" : ©
iy
"hits" : {
"total" : 2,
"max_score" : 1.0,
"hits" : [{
"_index" : "shop",
"_type" : "variation",
Il_idll : "1000",
"_score" : 1.0,
"_routing" : "1",
Il_parentll : I|1|I’
"_source" : {
"color" : "red",
"size" : "XXL"
3
3+ {
"_index" : "shop",
"_type" : "variation",
ll_idll : "1001",
"_score" : 1.0,
Il_routingll : Il1l|’
Il_parentll : I|1|I’
"_source" : {
"color" : "black",
"Size" : llXLII
3
+]
}
3

Similar to the has_child query, the has_parent query also gives us the possibility of
tuning the score calculation of the query. In this case, score_mode has only two options:
none, the default one where the score calculated by the query is equal to 1.0, and score,
which calculates the score of the document on the basis of the parent document contents.
An example that uses score_mode in the has_parent query looks as follows:

curl -XGET 'localhost:9200/shop/_search?pretty' -d '{

"query" : {
"has_parent" : {
"parent_type" : "cloth",
"score_mode" : "score",
"query" : {
"term" : { "name" : "test" }
}
}
}

} 1
The one difference with the previous example is score_mode. If you check the results of
these queries, you’ll notice only a single difference. The score of all the documents from

the first example is 1.0, while the score for the results returned by the preceding query is
equal to 0.8784157. In this case, all the documents found have the same score, because

www.EBooksWorld.ir

they have a common parent document.

www.EBooksWorld.ir

Performance considerations

When using Elasticsearch parent-child functionality, you have to be aware of the
performance impact that it has. The first thing you need to remember is that the parent and
the child documents need to be stored in the same shard in order for the queries to work. If
you happen to have a high number of children for a single parent, you may end up with
shards not having a similar number of documents. Because of that, your query
performance can be lower on one of the nodes, resulting in the whole query being slower.
Also, remember that parent-child queries will be slower than ones that run against the
documents that don’t have a relationship between them. There is a way of speeding up
joins for the parent-child queries at the cost of memory by eagerly loading the so called
global ordinals; however, we will discuss that method in the Elasticsearch caches section
of Chapter 9, Elasticsearch Cluster in Detail.

Finally, the first query will preload and cache the document identifiers using the doc
values. This takes time. In order to improve the performance of initial queries that use the
parent-child relationship, Warmer API can be used. You can find more information about
how to add warming queries to Elasticsearch in the Warming up section of Chapter 10,
Administrating Your Cluster.

www.EBooksWorld.ir

www.EBooksWorld.ir

Modifying your index structure with the
update API

In the previous chapters, we discussed how to create index mappings and index the data.
But what if you already have the mappings created, and data indexed, but you want to
modify the structure of the index? Of course one could say that we could just create a new
index with new mappings, but that is not always a possibility, especially in a production
environment. This is possible to some extent. For example, by default, if we index a
document with a new field, Elasticsearch will add that field to the index structure. Let’s
now look at how to modify the index structure manually.

Note

For situations where mapping changes are needed and they are not possible because of
conflicts with the current index structure, it is very good to use aliases — both read and
write ones. We will discuss aliasing in the Index aliasing section of Chapter 10,
Administrating Your Cluster.

www.EBooksWorld.ir

The mappings

Let’s assume that we have the following mappings for our users index stored in the
user . json file:

{
"user" : {
"properties" : {
"name" : {"type" : "string"}
}
3
3

As you can see, it is very simple. It just has a single property that will hold the user name.
Now let’s create an index called users and let’s use the preceding mappings to create our
type. To do that, we will run the following commands:

curl -XPOST 'localhost:9200/users'
curl -XPUT 'localhost:9200/users/user/_mapping' -d @user.json

If everything goes well, we will have our index (called users) and type (called user)
created. So now let’s try to add a new field to the mappings.

Adding a new field to the existing index

In order to illustrate how to add a new field to our mappings, we assume that we want to
add a phone number to the data stored for each user. In order to do that, we need to send
an HTTP PUT command to the /index_name/type_name/_mapping REST end point with
the proper body that will include our new field. For example, to add the mentioned phone
field, we will run the following command:

curl -XPUT 'http://localhost:9200/users/user/_mapping' -d '{

"user" : {

"properties" : {

"phone" : {"type" : "string", index : "not_analyzed"}
}
}

} 1
Similar to the previous command we ran, if everything goes well, we should have a new
field added to our index structure.

Note

Of course, Elasticsearch won’t reindex our data or populate the newly added field
automatically. It will just alter the mappings held by the master node and populate the
mappings to all the other nodes in the cluster and that’s all. Data reindexation must be
done by us or the application that indexes the data in our environment. Until then, the old
documents won’t have the newly added field. This is crucial to remember. If you don’t
have the original documents, you can use the _source field to get the original data from
Elasticsearch and index them once again.

To ensure everything is okay, we can run the GET HTTP request to the _mapping REST end

www.EBooksWorld.ir

point and Elasticsearch will return the appropriate mappings. An example command to get
the mappings for our user type in the users index will look as follows:

curl -XGET 'localhost:9200/users/user/_mapping?pretty'’
Modifying fields of an existing index

Our users index structure contains two fields: name and phone. Let’s imagine that we
indexed some data but after a while we decided that we want to search on the phone field
and we would like to change its index property from not_analyzed to analyzed. Because
we already know how to alter the index structure, we will run the following command:

curl -XPUT 'http://localhost:9200/users/user/_mapping?pretty' -d '{
"user" : {
"properties" : {
"phone" : {"type" : "string", "store" : "yes", "index" : "analyzed"}
}
}
} 1

What Elasticsearch will return is a response indicating an error, which looks as follows:

{

"error" : {
"root_cause" : [{
"type" : "illegal_argument_exception",
"reason" : "Mapper for [phone] conflicts with existing mapping in

other types:\n[mapper [phone] has different [index] values, mapper [phone]
has different [store] values, mapper [phone] has different [omit_norms]
values, cannot change from disable to enabled, mapper [phone] has different
[analyzer]]"

> 1y
"type" : "illegal_argument_exception",
"reason" : "Mapper for [phone] conflicts with existing mapping in other

types:\n[mapper [phone] has different [index] values, mapper [phone] has
different [store] values, mapper [phone] has different [omit_norms] values,
cannot change from disable to enabled, mapper [phone] has different
[analyzer]]"

+
"status" : 400

}

This is because we can’t change a field that was set to be not_analyzed to one that is
analyzed. And not only that, in most cases you won’t be able to update the fields
mapping. This is a good thing, because if we would be allowed to change such settings,
we would confuse Elasticsearch and Lucene. Imagine that we already have many
documents with the phone field set to not_analyzed and we are allowed to change the
mappings to analyzed. Elasticsearch wouldn’t change the data that was already indexed,
but the queries that are analyzed would be processed with a different logic and thus you
wouldn’t be able to properly find your data.

However, to give you some examples of what is prohibited and what is not, we decided to
mention some of the operations for both the cases. For example, the following
modification can be safely made:

www.EBooksWorld.ir

¢ Adding a new type definition
¢ Adding a new field
¢ Adding a new analyzer

The following modifications are prohibited or will not work:

Enabling norms for a field

Changing a field to be stored or not stored

Changing the type of the field (for example, from text to numeric)
Changing a stored field to not stored and vice versa

Changing the value of indexed property

Changing the analyzer of an already indexed document

Remember that the preceding mentioned examples of allowed and not allowed updates do
not mention all the possibilities of update API usage and you have to try for yourself if the
update you are trying to do will work.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

The chapter you just finished reading concentrated on indexing operations and handling
data that is not flat or have relationships between the documents. We started with indexing
tree-like structures and objects in Elasticsearch. We also used nested objects and learned
when they can be used. We also used parent-child functionality and we learned how this
approach is different compared to nested documents. Finally, we modified our indices
structure with a call of an API and learned when this is possible.

In the next chapter, we will get back to querying related topics. We will learn how Lucene
scoring works, how to use scripts in Elasticsearch, and how to handle multilingual data.
We will affect scoring using boosts and we will use synonyms to improve users’ search
results. Finally, we will look at what we can do to see how our documents were scored.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 6. Make Your Search Better

In the previous chapter, we were focused on indexing operations; we learned how to
handle the structured data. We started with indexing tree-like structures and JSON objects.
We used nested objects and indexed documents using parent-child functionality. Finally, at
the end of the chapter, we used Elasticsearch API to modify our indices structures. By the
end of this chapter, you will have learned the following topics:

Understanding how Apache Lucene scoring works
Using scripting

Handling multilingual data

Using boosting to affect document scoring

Using synonyms

Understanding how your documents were scored

www.EBooksWorld.ir

Introduction to Apache Lucene scoring

When talking about queries and their relevance, we can’t omit the information about the
scoring and where it comes from. But what is a score? The score is a property that
describes the relevance of a document in the context of a query. In the following section,
we will talk about the default Apache Lucene scoring mechanism — the TF/IDF algorithm
and how it affects the returned document.

Note

The TF/IDF is not the only available algorithm exposed by Elasticsearch. For more
information about the available models, refer to the Available similarity models section in
Chapter 2, Indexing Your Data. You can also refer to the books Mastering Elasticsearch
and Mastering Elasticsearch Second Edition published by Packt Publishing.

www.EBooksWorld.ir

When a document is matched

When a document is returned by Lucene, it means that it matched the query we sent to it.
In most cases, each of the resulting documents in the response is given a score. The higher
the score, the more relevant the document is from the search engine’s point of view, of
course, in the context of a given query. This means that the score factor calculated for the
same document on two different queries will be different. Because of that, comparing
scores between queries usually doesn’t make much sense. However, let’s get back to the
scoring. To calculate the score property for a document, multiple factors are taken into
account:

document boost: The boost value given for a document during indexing.

field boost: The boost value given for a field during querying and indexing.

coord: The coordination factor that is based on the number of terms the document
has. It is responsible for giving more value to the documents that contain more search
terms compared to the other documents.

inverse document frequency: The term based factor that tells the scoring formula
how rarefor score property calculation:inverse document frequency” the given term
is. The higher the inverse document frequency the less common the term is.

length norm: The field based factor for normalization based on the number of terms
the given field contains. The longer the field, the smaller boost this factor will give. It
basically means that the shorter documents will be favored.

term frequency: The term based factor describing how many times the given term
occurs in a document. The higher the term frequency, the higher the score of the
document will be.

query norm: The query based normalization factor that is calculated as the sum of the
squared weight of each of the query terms. Query norm is used to allow score
comparison between queries, which we said is not always easy or possible.

www.EBooksWorld.ir

Default scoring formula

The practical formula for the TF/IDF algorithm looks as follows:

score(q.d)= coord (q.d)* queryNorm(q)* > (;,f'(r ind)*idf (t)" *boost(t)*norm (f-rf]]

fing

To adjust your query relevance, you don’t need to remember the details of the equation,
but it is very important to know how it works — to at least be aware that there is an
equation you can analyze. We can see that the score factor for the document is a function
of query q and document d. There are also two factors that are not dependent directly on
query terms: coord and queryNorm. These two elements of the formula are multiplied by
the sum calculated for each term in the query. The sum on the other hand is calculated by
multiplying the term frequency for the given term, its inverse document frequency, term
boost, and the norm, which is the length norm we discussed previously.

Note

Note that the preceding formula is a practical one. You can find more information about
the conceptual formula in Lucene Javadocs at

http://lucene.apache.org/core/5_4 0/core/org/apache/lucene/search/similarities/TFIDFSimi

The good thing about the preceding rules is that you don’t need to remember all of that.
What you should be aware of is what matters when it comes to the document score.
Basically, there are a few rules which come from the preceding mentioned equation:

e The rarer the matched term is, the higher the score the document will have

e The shorter the document fields are (the less terms they have), the higher the score
the document will have

e The higher the boost for the fields is, the higher the score the document will have

As we can see, Lucene gives a higher score for the documents that have many query terms
matched and have shorter fields (less terms indexed) that were used for matching, and it
also favors rarer terms instead of the common ones (of course, the ones that matched).

www.EBooksWorld.ir

http://lucene.apache.org/core/5_4_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

Relevancy matters

In most cases, we want to get the best matching documents. However, the most relevant
documents don’t always mean the same as the best matches. Some use cases define very
strict rules on why a given document should be higher on the results list. For example, one
could say that, in addition to the document being a perfect match in terms of TF/IDF
similarity, we have paying customers to consider. Depending on the customer plan, we
want to give more importance to such documents. In such cases, we could want the
documents for the customers that pay the most to be on top of the search results. Of
course, this is not relevant in TF/IDF.

The other example is yellow pages, where customers pay for more information describing
the document. Such large documents may not be the most relevant ones according to
TF/IDF, so you may want to adjust the scoring if you are working with such data.

These are very simple examples and Elasticsearch queries can become really complicated.
We will talk about such queries in the Influencing scores with query boosts section in this
chapter.

When working on search relevance, you should always remember that it is not a onetime
process. Your data will change with time and your queries will need to be adjusted. In
most cases, tuning the query relevancy will be constant work. You will need to react to
your business rules and needs, to how the users behave, and so on. It is very important to
remember that this process is not a single time one about which you can forget.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scripting capabilities of Elasticsearch

Elasticsearch has a few functionalities where scripts can be used. You’ve already seen
examples such as updating documents and searching. We will also use the scripting
capabilities of Elasticsearch when we discuss aggregations. Even though scripts seem to
be a rather advanced topic, we will look at the possibilities offered by Elasticsearch. That’s
because scripts are priceless in certain situations.

Elasticsearch can use several languages for scripting. When not explicitly declared, it
assumes that Groovy (www.groovy-lang.org/) is used. Other languages available out of the
box are Lucene expression language and Mustache (https://mustache.github.io/). Of
course we can use plugins, which will make Elasticsearch understand additional scripting
languages, such as JavaScript, MVEL, and Python. The thing worth mentioning is that
independent from the scripting language that we choose, Elasticsearch exposes objects
that we can use in our scripts. Let’s start by briefly looking at what type of information we
are allowed to use in our scripts.

www.EBooksWorld.ir

http://www.groovy-lang.org/
https://mustache.github.io/

Objects available during script execution

During different operations, Elasticsearch allows us to use different objects in our scripts.
To develop a script that fits our use case, we should be familiar with these objects.

For example, during a search operation, the following objects are available:

e _doc (also available as doc): This is an instance of the
org.elasticsearch.search.lookup.LeafDocLookup object. It gives us access to the
current document found with the calculated score and field values.

e _source: This is an instance of the
org.elasticsearch.search.lookup.SourceLookup object. It provides access to the
source of the current document and the values defined in the source.

e _fields: This is an instance of the
org.elasticsearch.search.lookup.LeafFieldsLookup object. It can be used to
access the values of the document fields.

On the other hand, during a document update operation, the preceding mentioned
variables are not accessible. Elasticsearch exposes only the ctx object with the _source
property, which provides access to the document currently processed in the update
request.

As we have previously seen, several methods are mentioned in the context of document
fields and their values. Let’s now look at examples of how to get the value for a particular
field using the previously mentioned object available during the search operation. In the
brackets after the script piece, you can see what Elasticsearch will return for one of our
example documents from the library index (we will use the document with identifier 4):

e doc.title.value (and)
e source.title (crime and punishment)
e fields.title.value (null)

A bit confusing, isn’t it? During indexing, the original document is by default stored in the
_source field. Of course, by default, all the fields are present in that _source field. In
addition to that, the document is parsed and every field may be stored in an index if it is
marked as stored (that is, if the store property is set to true; otherwise, by default, the
fields are not stored). Finally, the field value may be configured as indexed. This means
that the field value is analyzed and placed in the index. To sum up, one field may land in
Elasticsearch index in the following ways:

e As a part of the _source document
e As a stored and unparsed original value
¢ As an indexed value that is processed by an analyzer

In scripts, we have access to all these field representations. The only exception is the
update operation, which, as we’ve mentioned before, gives us only access to document
_source as part of the ctx variable. You may wonder which version you should use. Well,
if you want access to the processed form, the answer will be simple — use the _doc object.
What about _source and _fields? In most cases, _source is a good choice. It is usually

www.EBooksWorld.ir

fast and needs less disk operations than reading the original field values from the index.
This is especially true when you need to read the values of multiple fields in your scripts;
fetching a single _source field is faster than fetching multiple independent fields from the
index.

www.EBooksWorld.ir

Script types

Elasticsearch allows us to use scripts in three different ways:

¢ Inline scripts: The source of the script is directly defined in the query

¢ In file scripts: The source is defined in the external file placed in the Elasticsearch
config/scripts directory

e As a document in the dedicated index: The source of the script is defined as a
document in a special index available by using the /_scripts API end-point

Choosing the way to define scripts depends on several factors. If you have scripts which
you will use in many different queries, the file or the dedicated index seem to be the best
solutions. The scripts in file is probably less convenient, but it is preferred from the
security point of view; they can’t be overwritten and injected into your query causing a
security breach.

In file scripts

This is the only way to allow dynamic scripting if we don’t want to enable query dynamic
scripting in Elasticsearch. The idea is that every script used by the queries is defined in its
own file placed in the config/scripts directory. We will now look at this method of using
scripts. Let’s create an example file called tag_sort.groovy and let’s place it in the
config/scripts directory of our Elasticsearch instance (or instances if we run a cluster).
The content of the mentioned file should look like this:

_doc.tags.values.size() > 0 ? _doc.tags.values[0] : '\ul19999'

After few seconds, Elasticsearch will automatically load a new file. You should see
something like the following in the Elasticsearch logs:

[2015-08-30 13:14:33,005][INFO]J[script] [Alex Wilder]
compiling script file [/Users/negativ/Developer/ES/es-
current/config/scripts/tag_sort.groovy]

Note

If you have multi-node cluster, you have to make sure that the script is available on every
node.

Now we are ready to use this script in our queries. You may remember that we used
exactly the same script in the Sorting data section in Chapter 4, Extending Your Querying
Knowledge. Now the modified query that uses our script stored in the file looks as
follows:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"match_all" : { }

}
"sort" : {
"_script" : {
"script" : {
"file" : "tag_sort"

www.EBooksWorld.ir

},
"type" : "string",
"order" : "asc"

}
}
} 1

We will return to this, but first, the next possible way of defining inline scripts.

Inline scripts

Inline scripts are a more convenient way of using scripts, especially for constantly
changing queries and for ad-hoc queries. The main drawback of such an approach is
security. If we allow users to run any kind of query, including scripts, we can expose our
Elasticsearch instance to attackers. Such attacks can execute arbitrary code on the server
running Elasticsearch with rights equal to the ones given to the user running Elasticsearch.
In the worst case scenario, the attacker could use security holes to gain super user rights.
This is the reason why inline scripts are disabled by default. After careful consideration,
you can enable them by adding:

script.inline: on
Add the preceding command line to the elasticsearch.yml file.

After allowing the inline script to be executed, we can run a query that looks as follows:

curl -XGET 'localhost:9200/library/_search?pretty' -d '{

"query" : {
"match_all" : { }
}

"sort" : {
"_script" : {
"script" : {
"inline" : "_doc.tags.values.size() > 0 ? _doc.tags.values[0]
\"\u19999\""

}
"type" : "string",
"order" : "asc"

}
}
} 1

Indexed scripts

The last option for defining scripts is storing them in the dedicated Elasticsearch index.
For the same security reasons, dynamic execution of the indexed scripts is by default
disabled. To enable the indexed scripts, we have to add a similar configuration option to
the one we added to be able to use the inline scripts. We need to add the following line to
the elasticsearch.yml file:

script.indexed: on

After adding the preceding property to all the nodes and restarting the cluster, we will be
ready to start using the indexed scripts. Elasticsearch provides an additional, dedicated

www.EBooksWorld.ir

endpoint for this purpose. Let’s store our script:

curl -XPOST 'localhost:9200/_scripts/groovy/tag_sort' -d '{
"script" : "_doc.tags.values.size() > 0 ? _doc.tags.values[0]
\"\u19999\""

3
The script is ready, but let’s discuss what we just did. We sent an HTTP POST request to
the special _scripts REST end-point. We also specified the language of the script
(groovy in our case) and the name of the script (tag_sort). The body of the request is the
script itself.

We can now move on to the query, which looks as follows:
curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"match_all" : { }

},
"sort" : {
"_script" : {
"script" : {
"id" : "tag_sort"
}
"type" : "string",
"order" : "asc"
}
}

} 1
As we see, the query is practically identical to the query used with the script defined in a

file. The only difference is that we provided the identifier of the script using the id
parameter instead of providing the file name.

www.EBooksWorld.ir

Querying with scripts

If we look at any request made to Elasticsearch that uses scripts, we will notice some
similar properties, which are as follows:

script: This property wraps the script definition.

inline: This property holds the code of the script itself.

id: This property defines the identifier of the indexed script.

file: The filename of the script without the extension.

lang: This property defines the language of the script. If it is omitted, Elasticsearch
assumes groovy.

params: This object contains the parameters and their values. Every defined
parameter can be used inside the script by specifying that parameter’s name. The
parameters allow us to write cleaner code which will be executed in a more efficient
manner. Scripts using the parameters are executed faster than code with embedded
constants because of caching.

www.EBooksWorld.ir

Scripting with parameters

As our scripts become more and more complicated, the need for creating multiple, almost
identical scripts can appear. These scripts usually differ in the values used, with the logic
behind them being exactly the same. In our simple example, we used a hardcoded value
used to mark documents with empty tags list. Let’s change this to allow definition of the
hardcoded value. Let’s use in file script definition and create a
tag_sort_with_param.groovy file with the following contents:

_doc.tags.values.size() > 0 ? _doc.tags.values[0] : tvalue

The only change we’ve made is the introduction of the parameter named tvalue, which
can be set in the query in the following way:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"match_all" : { }

}
"sort" : {
"_script" : {
"script" : {
"file" : "tag_sort_with_param",
"params" : {
"tvalue" : "000"
}
3
lltypell : llstringll’
"order" : "asc"
}
}
}l

The params section defines all the script parameters. In our simple example, we’ve only
used a single parameter, but of course we can have multiple parameters in a single query.

www.EBooksWorld.ir

Script languages

As we already said, the default language for scripting is Groovy. However, we are not
limited to only a single scripting language when using Elasticsearch. In fact, if you would
like to, you can even use Java to write your scripts. In addition to that, the community
behind Elasticsearch provides additional languages support as plugins. So if you are
willing to install plugins, you can extend the list of scripting languages that Elasticsearch
supports even further. You may wonder why you would even consider using a scripting
language other than the default Groovy. The first reason is your own preferences. If you
are a python enthusiast, you are probably now thinking about how to use python for your
Elasticsearch scripts. The other reason could be security. When we talked about the inline
scripts, we told you that they are turned off by default. This is not exactly true for all the
scripting languages available out of the box. The inline scripts are disabled by default
when using Groovy, but you can use Lucene expressions and Mustache without any
issues. This is because those languages are sandboxed, which means that the security
sensitive functions are turned off. And of course, the last factor when choosing a language
is performance. Theoretically, the native scripts (in Java) should have better performance
than others, but you should remember that the difference can be insignificant. You should
always consider the cost of development and measure performance.

www.EBooksWorld.ir

Using other than embedded languages

Using Groovy for scripting is a simple and sufficient solution for most use cases.
However, you may have a different preference and you may like to use something
different, such as JavaScript, Python, or Mvel. Before using other languages, we must
install an appropriate plugin. You can read more details about plugins in the Elasticsearch
plugins section of Chapter 9, Elasticsearch Cluster. For now, we’ll just run the following
command from the Elasticsearch directory:

bin/plugin install lang-javascript

The preceding command will install a plugin that will allow the usage of JavaScript as the
scripting language. The only change we should make in the request is to add the additional
information about the language we are using for scripting and, of course, modify the script
itself to correctly use the new language. Look at the following example:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"match_all" : { }
}

"sort" : {
"_script" : {
"script" : {
"inline" : "_doc.tags.values.length > 0 ? _doc.tags.values[0]
:\"\u19999\"; ",
"lang" : "javascript"
3
"type" : "string",
"order" : "asc"
}
}
} 1
As you can see, we’ve used JavaScript for scripting instead of the default Groovy. The
lang parameter informs Elasticsearch about the language being used.

www.EBooksWorld.ir

Using native code

In case the scripts are too slow or you don’t like scripting languages, Elasticsearch allows
you to write Java classes and use them instead of scripts. There are two possible ways of
adding native scripts: adding classes defining scripts to Elasticsearch classpath or adding
script as a functionality provided by a plugin. We will describe this second solution as it is
more elegant.

The factory implementation

We need to implement at least two classes to create a new native script. The first one is a
factory for our script. For now, let’s focus on it. The following sample code illustrates the
factory for our script:

package pl.solr.elasticsearch.examples.scripts;
import java.util.Map;

import org.elasticsearch.common.Nullable;
import org.elasticsearch.script.ExecutableScript;
import org.elasticsearch.script.NativeScriptFactory;

public class HashCodeSortNativeScriptFactory implements NativeScriptFactory

{

@Override
public ExecutableScript newScript(@Nullable Map<String, Object> params)

return new HashCodeSortScript(params);

}

@Override

public boolean needsScores() {
return false;

}

}

The essential parts are highlighted in the code snippet. This class should implement the
org.elasticsearch.script.NativeScriptFactory class. The interface forces us to
implement two methods. The newScript () method takes the parameters defined in the
API call and returns an instance of our script. Finally, needsScores() informs
Elasticsearch if we want to use scoring and whether it should be calculated.

Implementing the native script

Now let’s look at the implementation of our script. The idea is simple — our script will be
used for sorting. Documents will be ordered by the hashCode() value of the chosen field.
The documents without a value in the defined field will be first on the results list. We
know the logic doesn’t make too much sense, but it is good for presentation as it is simple.
The source code for our native script looks as follows:

www.EBooksWorld.ir

package pl.solr.elasticsearch.examples.scripts;
import java.util.Map;
import org.elasticsearch.script.AbstractSearchScript;

public class HashCodeSortScript extends AbstractSearchScript {
private String field = '"name";

public HashCodeSortScript(Map<String, Object> params) {

if (params !'= null && params.containsKey("field")) {
this.field = params.get("field").toString();
}
}
@Override

public Object run() {
Object value = source().get(field);
if (value != null) {
return value.hashCode();

}

return 0,

3
}

First of all, our class inherits from the
org.elasticsearch.script.AbstractSearchScript class and implements the run()
method. This is where we get the appropriate values from the current document, process it
according to our strange logic, and return the result. You may notice the source() call. It
is exactly the same _source parameter that we used when dealing with non-native scripts.
The doc() and fields() methods are also available and they follow the same logic we
described earlier.

The thing worth looking at is how we’ve used the parameters. We assume that a user can
put the field parameter, telling us which document field will be used for manipulation.
We also provide a default value for this parameter.

The plugin definition

We said that we will install our script as a part of a plugin. This is why we need additional
files. The first file is the plugin initialization class where we tell Elasticsearch about our
new script:

package pl.solr.elasticsearch.examples.scripts;

import org.elasticsearch.plugins.Plugin;
import org.elasticsearch.script.ScriptModule;

public class ScriptPlugin extends Plugin {
@Override
public String description() {

return "The example of native sort script";

www.EBooksWorld.ir

}

@Override
public String name() {

return "naive-sort-plugin";
}

public void onModule(final ScriptModule module) {
module.registerScript("native_sort",
HashCodeSortNativeScriptFactory.class);

¥
}

The implementation is easy. The description() and name () methods are only for
information, so let’s focus on the onModule () method. In our case, we need access to the
script module — Elasticsearch service with scripts and scripting languages. This is why we
define onModule () with one ScriptModule argument. Thanks to Elasticsearch magic, we
can use this module and register our script so it can be found by the engine. We have used
the registerScript() method, which takes the script name and the previously defined
factory class.

The second needed file is a plugin descriptor file: plugin-descriptor.properties. It
defines the constants used by the Elasticsearch plugin subsystem. Without more thinking,
let’s look at the contents of this file:

jvm=true
classname=pl.solr.elasticsearch.examples.scripts.ScriptPlugin
elasticsearch.version=2.2.0

version=0.0.1-SNAPSHOT

name=native_script

description=Example Native Scripts

java.version=1.7

The appropriate lines have the following meaning:

e jvm: tells Elasticsearch that our file contains Java code

e classname: describes the main class with plugin definition

e elasticsearch.version and java.version: tells us about the Elasticsearch version
that is supported by the plugin and the Java version that is needed

e name and description: Informative name and short description of our plugin

And that’s it. We have all the files needed to run our script. Please note that you can have
more than a single script packed as a single plugin.

Installing the plugin

Now it’s time to install our native script embedded in the plugin. After packing the
compiled classes as a JAR archive, we should put it in the Elasticsearch plugins/native-
script directory. The native-script part is a root directory for our plugin and you may
name it as you wish. In this directory you also need the prepared plugin-
descriptor.properties file. This makes our plugin visible to Elasicsearch.

www.EBooksWorld.ir

Running the script

After restarting Elasticsearch (or the whole cluster if you run more than a single node), we
can start sending the queries that use our native script. For example, we will send a query
that uses our previously indexed data from the library index. This example query looks
as follows:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"match_all" : { }

}
"sort" : {
"_script" : {
"script" : {
"script" : "native_sort",
"lang" : "native",
"params" : {
"field" : "otitle"
}
}
lltypell . "Stl’ing",
"order" : "asc"
}
}
}l

Note the params part of the query. In this call, we want to sort on the otitle field. We
provide the script name native_sort and the script language native. This is required. If
everything goes well, we should see our results sorted by our custom sort logic. If we look
at the response from Elasticsearch, we will see that the documents without the otitle
field are at the first few positions of the results list and their sort value is 0.

www.EBooksWorld.ir

www.EBooksWorld.ir

Searching content in different languages

Until now, when discussing language analysis, we’ve talked mostly about theory. We
didn’t see an example regarding language analysis, handling multiple languages that our
data can consist of, and so on. Now this will change, as this section is dedicated to
information about how we can handle data in multiple languages.

www.EBooksWorld.ir

Handling languages differently

As you already know, Elasticsearch allows us to choose different analyzers for our data.
We can have our data divided on the basis of whitespaces, or have them lowercased, and
so on. This can usually be done regardless of the language —the same tokenization on the
basis of whitespaces will work for English, German, and Polish, although it won’t work
for Chinese. However, what if you want to find documents that contain words such as cat
and cats by only sending the word cat to Elasticsearch? This is where language analysis
comes into play with stemming algorithms for different languages, which allow the
analyzed words to be reduced to their root forms. And now the worst part — we can’t use
one general stemming algorithm for all the languages in the world; we have to choose one
appropriate language. The following sections in the chapter will help you with some parts
of the language analysis process.

www.EBooksWorld.ir

Handling multiple languages

There are a few ways of handling multiple languages in Elasticsearch and all of them have
some pros and cons. We won’t be discussing everything, but just for the purpose of giving
you an idea, a few of those methods are as follows:

e Storing documents in different languages as different types
e Storing documents in different languages in separate indices
e Storing language data in different fields of a single document

For the purpose of the book, we will focus on a single method — the one that allows storing
documents in different languages in a single index. We will focus on a problem where we
have a single type of document, but each document may come from anywhere in the world
and thus can be written in multiple languages. Also, we would like to enable our users to
use all the analysis capabilities, such as stemming and stop words for different languages,
not only for English.

Note

Note that the stemming algorithms perform differently for different languages, both in
terms of analysis performance and the resulting terms. For example, English stemmers are
very good, but you can run into issues with European languages, such as German.

www.EBooksWorld.ir

Detecting the language of the document

Before we continue with showing you how to solve our problem with handling multiple
languages in Elasticsearch, we would like to tell you about one additional thing, that is
language detection. There are situations where you just don’t know what language your
document or query are in. In such cases, language detection libraries may be a good
choice, especially when using Java as your programming language of choice. Some of the
libraries are as follows:

e Apache Tika (http://tika.apache.org/)
e Language detection (https://github.com/shuyo/language-detection)

The language detection library claims to have over 99 percent precision for 53 languages;
that’s a lot if you ask us.

You should remember, though, that data language detection will be more precise for
longer text. Because the text of queries is usually short, you can expect to have some
degree of error during query language identification.

www.EBooksWorld.ir

http://tika.apache.org/
https://www.github.com/shuyo/language-detection

Sample document

Let’s start with introducing a sample document, which is as follows:

{

"title" : "First test document",
"content" : "This is a test document"

}

As you can see, the document is pretty simple; it contains the following two fields:

e title: This field holds the title of the document
e content: This field holds the actual content of the document

This document is quite simple, but, from the search point of view, the information about
document language is missing. What we should do is enrich the document by adding the
needed information. We can do that by using one of the previously mentioned libraries,
which will try to detect the language.

After we have the language detected, we inform Elasticsearch which analyzer should be
used and modify the document to directly show the language of each field. Each of the
fields would have to be analyzed by a language analyzer dedicated to the detected
language.

Note

A full list of these language analyzers can be found at

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-
analyzer.html).

If a document is written in a language that we are not supporting, we will just fall back to
some default field with the default analyzer. For example, our processed and prepared for
indexing document could look like this:

{

"title_english" : "First test document",
"content_english" : "This is a test document"

}

The thing is that all this processing we’ve mentioned would have to be done outside of
Elasticsearch or in some kind of custom plugin that would implement the mentioned logic.

Note

In the previous versions of Elasticsearch, there was a possibility of choosing an analyzer
based on the value of an additional field, which contained the analyzer name. This was a
more convenient and elegant way but introduced some uncertainty about the field
contents. You always had to deliver a proper analyzer when using the given field or
strange things happened. The Elasticsearch team made the difficult decision and removed
this feature.

There is also a simpler way: we can take our first document and index it in several ways
independently from input language. Let’s focus on this solution.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-analyzer.html

The mappings

To handle our solution, which will process the document using several defined languages,
we need new mappings. Let’s look at the mappings we’ve created to index our documents
(we’ve stored them in the mappings. json file):

{
"mappings" : {
"doc" : {
"properties" : {
"title" : {
Iltypell : "String",
"index" : "analyzed",
"fields" : {
"english" : {
Iltypell : "String",
"index" : "analyzed",
"analyzer" : "english"
iy
"russian" : {
Iltypell : "String",
"index" : "analyzed",
"analyzer" : "russian"
Iy
"german" : {
Iltypell : "String",
"index" : "analyzed",
"analyzer" : '"german"
3
}
3
"content" : {
Iltypell : "String",
"index" : "analyzed",
"fields" : {
"english" : {
Iltypell : "String",
"index" : "analyzed",
"analyzer" : "english"
Xt
"russian" : {
Iltypell : "String",
"index" : "analyzed",
"analyzer" : "russian"
+
"german" : {
Iltypell : "String",
"index" : "analyzed",
"analyzer" : "german"
3
3
3
}
3
}

www.EBooksWorld.ir

}

In the preceding mappings, we’ve shown the definition for the title and content fields
(if you are not familiar with any aspect of mappings definition, refer to the Mappings
configuration section of Chapter 2, Indexing Your Data). We have used the multifield
feature of Elasticsearch: each field can be indexed in several ways using various language
analyzers (in our example, those analyzers are: English, Russian, and German).

In addition, the base field uses the default analyzer, which we may use at query time when
the language is unknown. So, each field will actually have four fields — the default one and
three language oriented fields.

In order to create a sample index called docs that uses our mappings, we will use the
following command:

curl -XPUT 'localhost:9200/docs' -d @mappings.json

www.EBooksWorld.ir

Querying

Now let’s see how we can query our data to use the newly created language fields. We can
divide the querying situation into two different cases. Of course, to start querying we need
documents. Let’s index our example document by running the following command:

curl -XPOST 'localhost:9200/docs/doc/1' -d '{"title" : "First test
document", "content" : "This is a test document"}'

Queries with an identified language

The first case is when we have our query language identified. Let’s assume that the
identified language is English. In such cases, our query is as follows:

curl 'localhost:9200/docs/_search?pretty' -d '{

"query" : {
"match" : {
"content.english" : "documents"
}
}

}
The thing to put emphasis on in the preceding query is the field used for querying and the
query type. The field used is content.english, which also indicates which analyzer we
want to use. We used that field because we had identified our language before running the
query. Thanks to this, the English analyzer can find our document even if we have the

singular form of the word in the document. The response returned by Elasticsearch will be
as follows:

{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : ©
X}
"hits" : {
"total" : 1,
"max_score" : 0.19178301,
"hits" : [{
"_index" : "docs",
|l_typell : "dOC",
|l_id|l : I|1|I’
"_score" : 0.19178301,
"_source": {
"title" : "First test document",
"content" : "This is a test document"
}
3]
}
}

The thing to note is also the query type — the match query. We used the match query

www.EBooksWorld.ir

because it analyzes its body with the analyzer used by the field that it is run against. We
need that to properly match the data in the query and the data in the index.

Queries with an unknown language

Now let’s look at the second situation — handling queries when we couldn’t identify the
language of the query. In such cases, we can’t use the field name pointing to one of the
languages, such as content.german. In such a case, we use the default field which uses
the default analyzer and we send the query to the content field instead. The query will look
as follows:

curl 'localhost:9200/docs/_search?pretty' -d '{

"query" : {
"match" : {
"content" : "documents"
}
}

} 1
However, we didn’t get any results this time because the default analyzer can’t deal with a
singular form of a word when we are searching with a plural form.

www.EBooksWorld.ir

Combining queries

To additionally boost the documents that perfectly match with our default analyzer, we can
combine the two preceding queries with the bool query. Such a combined query will look
as follows:

curl -XGET 'localhost:9200/docs/_search?pretty=true ' -d '{

"query" : {
"bool" : {
"minimum_should_match" : 1,
"should" : [

{

"match" : {
"content.english" : "documents"
}

}
{

"match" : {
"content" : "documents"

} 1

For the document to be returned, at least one of the defined queries must match. If they
both match, the document will have a higher score value and will be placed higher in the
results.

There is one additional advantage of the preceding combined query. If our language
analyzer doesn’t find a document (for example, when the analysis is different from the one
used during indexing), the second query has a chance to find the terms that are tokenized
only by whitespace characters and lowercase.

www.EBooksWorld.ir

www.EBooksWorld.ir

Influencing scores with query boosts

In the beginning of this chapter, we learned what scoring is and how Elasticsearch uses the
scoring formula. When an application grows, the need for improving the quality of search
also increases - we call it search experience. We need to gain knowledge about what is
more important to the user and we see how the users use the searches functionality. This
leads to various conclusions; for example, we see that some parts of the documents are
more important than others or that particular queries emphasize one field at the cost of
others. We need to include such information in our data and queries so that both sides of
the scoring equation are closer to our business needs. This is where boosting can be used.

www.EBooksWorld.ir

The boost

Boost is an additional value used in the process of scoring. We already know it can be
applied to:

¢ Query: When used, we inform the search engine that the given query is a part of a
complex query and is more significant than the other parts.

e Document: When used during indexing, we tell Elasticsearch that a document is
more important than the others in the index. For example, when indexing blog posts,
we are probably more interested in the posts themselves than ping backs or
comments.

Values assigned by us to a query or a document are not the only factors used when we
calculate the resulting score and we know that. We will now look at a few examples of
query boosting.

www.EBooksWorld.ir

Adding the boost to queries

Let’s imagine that our index has two documents and we’ve used the following commands
to index them:

curl -XPOST 'localhost:9200/messages/email/1' -d '{

llidll : 1’
"to" : "John Smith",
"from" : "David Jones",
"subject" : "Top secret!"
}l
curl -XPOST 'localhost:9200/messages/email/2' -d '{
llidll . 2’
"to" : "David Jones",
"from" : "John Smith",
"subject" : "John, read this document"
}l

This data is trivial, but it should describe our problem very well. Now let’s assume we
have the following query:

curl -XGET 'localhost:9200/messages/_search?pretty' -d '{
"query" : {
"query_string" : {
llqueryll : |lj0hn"’
"use_dis_max" : false

}

}
3
In this case, Elasticsearch will create a query to the _all field and will find documents
that contain the desired words. We also said that we don’t want the disjunction query to
be used by specifying the use_dis_max parameter to false (if you don’t remember what a
disjunction query is, refer to the The dis_max query section in Chapter 3, Searching Your
Data). As we can easily guess, both our records will be returned. The record with
identifier equal to 2 will be first because the word John occurs two times — once in the
from field and once in the subject field. Let’s check this out in the following result:

"hits" : {
"total" : 2,
"max_score" : 0.13561106,
"hits" : [{
"_index" : "messages",
"_type" : "email",
|l_id|l : I|2|I’
"_score" : 0.13561106,
"_source" : {
"id" : 2,
"to" : "David Jones",
"from" : "John Smith",
"subject" : "John, read this document"
3
A

www.EBooksWorld.ir

_index" : "messages",

Il_typell : "email",
Il_idll : II1II’
"_score" : 0.11506981,
"_source" : {
"idgn 1,
"to" : "John Smith",
"from" : "David Jones",
"subject" : "Top secret!"
}
+]

}

Is everything all right? Technically, yes. But we think that the second document (the one
with identifier 1) should be positioned as the first one in the result list, because when
searching for something, the most important factor (in many cases) is matching people
rather than the subject of the message. You can disagree, but this is exactly why full-text
searching relevance is a difficult topic; sometimes it is hard to tell which ordering is better
for a particular case. What can we do? First, let’s rewrite our query to implicitly inform
Elasticsearch what fields should be used for searching:

curl -XGET 'localhost:9200/messages/_search?pretty' -d '({
"query" : {
"query_string" : {
"fields" : ["from", "to", "subject"],
Ilqueryll : lljohnll’
"use_dis_max" : false

}

}
3
This is not exactly the same query as the previous one. If we run it, we will get the same
results (in our case). However, if you look carefully, you will notice differences in scoring.
In the previous example, Elasticsearch only used one field, that is the default _al1 field.
The query that we are using now is using three fields for matching. This means that
several factors, such as field lengths, are changed. Anyway, this is not so important in our
case. Elasticsearch under the hood generates a complex query made of three queries — one
to each field. Of course, the score contributed by each query depends on the number of
terms found in this field and the length of this field.

Let’s introduce some differences between the fields and their importance. Compare the
following query to the last one:

curl -XGET 'localhost:9200/messages/_search?pretty' -d '{
"query" : {
"query_string" : {
"fields" : ["fromn5", "tonN10", "subject"],
llqueryll : lljohnll’
"use_dis_max" : false
}
}
} 1

www.EBooksWorld.ir

Look at the highlighted parts (25 and A10). By using that notation (the » character
followed by a number), we can inform Elasticsearch how important a given field is. We
see that the most important field is the to field (because of the highest boost value). Next
we have the from field, which is less important. The subject field has the default value for
boost, which is 1.0 and is the least important field when it comes to score calculation.
Always remember that this value is only one of the various factors. You may be
wondering why we choose 5 and not 1000 or 1.23. Well, this value depends on the effect
we want to achieve, what query we have, and, most importantly, what data we have in our
index. Typically, when data changes in the meaningful parts, we should probably check
and tune our relevance once again.

In the end, let’s look at a similar example, but using the bool query:

curl -XGET 'localhost:9200/messages/_search?pretty' -d '{

"query" : {

"bool" : {
"should" : [
{ "term" : { "from": { "value" : "john", "boost" : 5 }}},
{ "term" : { "to": { "value" : "john", "boost" : 10 }}},
{ "term" : { "subject": { "value" : "john" }}}
]

}

}

3
The preceding query will yield the same results, which means that the first document on
the results list will be the one with the identifier 1, but the scores will be slightly different.
This is because the Lucene queries made from the last two examples are slightly different
and thus the scores are different.

www.EBooksWorld.ir

Modifying the score

The preceding example shows how to affect the result list by boosting particular query
components — the fields. Another technique is to run a query and affect the score of the
matched documents. In the following sections, we will summarize the possibilities offered
by Elasticsearch. In the examples, we will use our library data that we have already used
in the previous chapters.

Constant score query

A constant_score query allows us to take any query and explicitly set the value that
should be used as the score that will be given for each matching document by using the
boost parameter.

At first, this query doesn’t seem to be practical. But when we think about building
complex queries, this query allows us to set how many documents matching this query can
affect the total score. Look at the following example:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"constant_score" : {
"query": {
"query_string" : {
"query" : "available:false author:heller"
}
}
}
}

3
In our data, we have two documents with the available field set to false. One of these
documents has an additional value in the author field. If we use a different query, the
document with an additional value in the author field (a book with identifier 2) would be
given a higher score, but, thanks to the constant score query, Elasticsearch will ignore that
information during scoring. Both documents will be given a score equal to 1.0.

Boosting query

The next type of query that can be used with boosting is the boosting query. The idea is to
allow us to define a part of query which will cause matched documents to have their
scores lowered. The following example returns all the available books (available field set
to true), but the books written by E. M. Remarque will have a negative boost of 0.1
(which means about ten times lower score):

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{

"query" : {
"boosting" : {
"positive" : {
"term" : {
"available" : true
}
+

www.EBooksWorld.ir

"negative" : {

"match" : {
"author" : "remarque"
}
3}
"negative_boost" : 0.1

}
}
} 1

The function score query

Till now we’ve seen two examples of queries that allowed us to alter the score of the
returned documents. The third example we wanted to talk about, the function_score
query, is way more complicated than the previously discussed queries. The
function_score query is very useful when the score calculation is more complicated than
giving a single boost to all the documents; boosting more recent documents is an example
of a perfect use case for the function_score query.

Structure of the function query

The structure of the function query is quite simple and looks as follows:

{
"query" : {
"function_score" : {
"query" : { ... },
"functions" : [
{
"filter" : { ... },
"FUNCTION" : { ... }
}
] ' n "

"boost_mode" : el ",

"score_mode" : e,

"max_boost" : e,

"min_score" : e ",
llboostll . n "

¥
¥
}
In general, the function score query can use a query, one of several functions, and
additional parameters. Each function can have a filter defined to filter the results on which
it will be applied. If no filter is given for a function, it will be applied to all the documents.

The logic behind the function score query is quite simple. First of all, the functions are
matched against the documents and the score is calculated based on score_mode. After
that, the query score for the document is combined with the score calculated for the
functions and combined together on the basis of boost_mode.

Let’s now discuss the parameters:

e Boost mode: The boost_mode parameter allows us to define how the score computed
by the function queries will be combined with the score of the query. The following

www.EBooksWorld.ir

values are allowed:

e}

e}

e}

multiply: The default behavior, which results in the query score being
multiplied by the score computed from the functions

replace: The query score will be totally ignored and the document score will be
equal to the score calculated by the functions

sum: The document score will be calculated as the sum of the query and the
function scores

avg: The score of the document will be an average of the query score and the
function score

max: The document will be given a maximum of query score and function score
min: The document will be given a minimum of query score and function score

e Score mode: The score_mode parameter defines how the score computed by the
functions are combined together. The following score_mode parameter values are
defined:

e}

e}

e}

multiply: The default behavior which results in the scores returned by the
functions being multiplied

sum: The scores returned by the defined functions are summed

avg: The score returned by the functions is an average of all the scores of the
matching functions

first: The score of the first function with a filter matching the document is
returned

max: The maximum score of the functions is returned

min: The minimum score of the functions is returned

There is one thing to remember — we can limit the maximum calculated score value by
using the max_boost parameter in the function score query. By default, that parameter is
set to Float .MAX_VALUE, which means the maximum float value.

The boost parameter allows us to set a query wide boost for the documents.

Of course, there is one thing we should remember — the score calculated doesn’t affect
which documents matched the query. Because of that, the min_score property has been
introduced. It allows us to define the minimum score of the documents. Documents that
have a score lower than the min_score property will be excluded from the results.

What we haven’t talked about yet are the function scores that we can include in the
functions section of our query. The currently available functions are:

weight factor
field value factor
script score
random

decay

The weight factor function

The weight factor function allows us to multiply the score of the document by a given

www.EBooksWorld.ir

value. The value of the weight parameter is not normalized and is taken as is. An example
using the weight function, where we multiply the score of the document by 20, looks as
follows:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{
"query" : {
"function_score" : {
"query" : {
"term" : {
"available" : true

}
3

"functions" : [
{ "weight" : 20 }
]
}
}
} 1

Field value factor function

The field_value_factor function allows us to influence the score of the document by
using a value of the field in that document. For example, to multiply the score of the
document by the value of the year field, we run the following query:

curl -XGET 'localhost:9200/library/_search?pretty' -d '{

"query" : {
"function_score" : {

"query" : {
"term" : {
"available" : true

}
3

"functions" : [

{

"field_value_factor" : {
"field" : "year",
"missing" : 1

} 1
In addition to choosing the field whose value should be used, we can also control the
behavior of the field value factor function by using the following properties:

e factor: The multiplication factor that will be used along with the field value. It
defaults to 1.

e modifier: The modifier that will be applied to the field value. It defaults to none. It
can take the value of 1log, 1logip, 1og2p, 1n, 1nip, 1n2p, square, sqrt, and
reciprocal.

e missing: The value that should be used when a document doesn’t have any value in

www.EBooksWorld.ir

the field specified in the field property.
The script score function

The script_score function allows us to use a script to calculate the score that will be
used as the score returned by a function (and thus will fall into behavior defined by the
boost_mode parameter). An example of script_score usage is as follows (for the
following example to work, inline scripting needs to be allowed, which means adding the
script.inline property and setting it to on in elasticsearch.yml):

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{
"query" : {
"function_score" : {
"query" : {
"term" : {
"available" : true

}
3

"functions" : [

{
"script_score" : {
"script" : {
"inline" : "_score * _source.copies * parameter1l",
"params" : {
"parameter1l" : 12

} 1
The random score function

By using the random_score function, we can generate a pseudo random score, by
specifying a seed. In order to simulate randomness, we should specify a new seed every
time. The random number will be generated by using the _uid field and the provided seed.
If a seed is not provided, the current timestamp will be used. An example of using this is
as follows:

curl -XGET 'localhost:9200/l1library/_search?pretty' -d '{
"query" : {
"function_score" : {
"query" : {
"term" : {
"available" : true
}
3
"functions" : [
{
"random_score" : {
"seed" : 12345

}

www.EBooksWorld.ir

}
]
}
}
} 1

Decay functions

In addition to the earlier mentioned scoring functions, Elasticsearch exposes additional
ones, called the decay functions. The difference from the previously described functions is
that the score given by those functions lowers with distance. The distance is calculated on
the basis of a single valued numeric field (such as a date, a geographical point, or a
standard numeric field). The simplest example that comes to mind is boosting documents
on the basis of distance from a given point or boosting on the basis of document date.

For example, let’s assume that we have a point field that stores the location and we want
our document’s score to be affected by the distance from a point where the user stands (for
example, our user sends a query from a mobile device). Assuming the user is at 52, 21,
we could send the following query:

{
"query" : {
"function_score" : {

"query" : {
"term" : {
"available" : true

¥
iy

"functions" : [

{
"linear" : {
"point" : {
"origin" : "b52, 21",
"scale" : "1km",
"offset" : 0,
"decay" : 0.2

In the preceding example, the linear is the name of the decay function. The value will
decay linearly when using it. The other possible values are gauss and exp. We’ve chosen
the linear decay function because of the fact that it sets the score to ® when the field value
exceeds the given origin value twice. This is useful when you want to lower the value of
the documents that are too far away.

Note

Note that the geographical searching capabilities of Elasticsearch will be discussed in the
Geo section of Chapter 8, Beyond Full-text Searching.

www.EBooksWorld.ir

Now let’s discuss the rest of the query structure. The point is the name of the field we
want to use for score calculation. If the document doesn’t have a value in the defined field,
it will be given a value of 1 for the time of calculation.

In addition to that, we’ve provided additional parameters. The origin and scale are
required. The origin parameter is the central point from which the calculation will be done
and the scale is the rate of decay. By default, the offset is set to 0. If defined, the decay
function will only compute a score for the documents with value greater than the value of
this parameter. The decay parameter tells Elasticsearch how much the score should be
lowered and is set to 0.5 by default. In our case, we’ve said that, at the distance of 1
kilometer, the score should be reduced by 20% (0.2).

Note

We expect the function_score query to be modified and extended with the next versions
of Elasticsearch (just as it was with Elasticsearch version 1.x). We suggest following the
official documentation and the page dedicated to the function_score query at
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-

query.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html

www.EBooksWorld.ir

When does index-time boosting make
sense?

In the previous section, we discussed boosting queries. This kind of approach to handling
differences in the weight of documents is very handy, powerful, and easy to use. It is also
sufficient in most situations. However, there are cases when a more convenient way of
documents boosting is index-time boosting. One of such use case is the situation when we
know which documents are important during the indexing phase. In such a case, we can
prepare the document boost and include it as part of the document. We gain a boost that is
independent from a query at the cost of reindexing the documents when the boost value is
changed (because we need to apply the changed boost). In addition to that, the
performance gets slightly better because some parts needed in the boosting process are
already calculated at index time, which can matter when your indices have a large number
of documents. Information about the boost is stored as a part of the normalization factor
and because of that it is important to keep the norms turned on. This means that we can’t
set norms.enabled to false because we won’t be able to use index time boosting.

www.EBooksWorld.ir

Defining boosting in the mappings

It is also possible to directly define the field’s boost in our mappings. This will result in
Elasticsearch giving a boost for all the documents having a value in such a field. Of
course, that will also happen during indexing time. The following example illustrates that:

{
"mappings" : {
"book" : {
"properties" : {
"title" : { "type" : "string" },
"author" : { "type" : "string", "boost" : 10.0 }
}
3
}
}

Thanks to the preceding boost, all queries will favor values found in the field named
author. This also applies to queries using the _all field, because Elasticsearch will apply
the boost to values copied between the fields.

www.EBooksWorld.ir

www.EBooksWorld.ir

Words with the same meaning

You may have heard about synonyms, words that have the same or similar meaning.
Sometimes you would want to have some words matched when one of those words is
entered into the search box. Let’s recall our sample data from Chapter 3, Searching Your
Data. There was a book called crime and punishment. What if we want that book to not
only be matched when the words crime or punishment are used, but also when using the
words such as criminality and abuse. At first glance, this may not sound like good
behavior, but sometimes this is really needed, especially in use cases where there are
multiple words meaning the same (like in medicine). To handle such use cases, we will
use synonyms.

www.EBooksWorld.ir

Synonym filter

Synonyms in Elasticsearch are handled on the analysis level — at both index and query
time, by a dedicated synonyms filter. To use the synonym filter, we need to define our own
analyzer. For example, let’s define an analyzer that will be called synonym and will use
the whitespace tokenizer and a single filter called synonym. Our filter’s type property
needs to be set to synonym, which tells Elasticsearch that this filter is a synonym filter.

In addition to that, we want to ignore case, so that the uppercased and lowercased
synonyms are treated equally (set the ignore_case property to true). To define our
custom synonym analyzer that uses a synonym filter when creating a new index, we would
use the following command:

curl -XPOST 'localhost:9200/test' -d '{

"index" : {
"analysis" : {
"analyzer" : {

"synonym" : {
"tokenizer" : "whitespace",
"filter" : [

"synonym"
1
}
3
"filter" : {
"synonym" : {
Iltypell : "Synonym",
"ignore_case" : true,
"synonyms" : [
"crime => criminality"
1
}
}
}
}
}l

Synonyms in the mappings

In the definition you’ve just seen, we’ve specified the synonym rule in the mappings we
send to Elasticsearch. To do that, we needed to add the synonyms property, which is an
array of synonym rules. For example, the following part of the mappings definition
defines a single synonym rule:

"synonyms" : [
"crime => criminality"

]

The prece