
www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch	Server	Third	Edition

www.EBooksWorld.ir

Table	of	Contents

Elasticsearch	Server	Third	Edition

Credits

About	the	Authors

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Getting	Started	with	Elasticsearch	Cluster

Full	text	searching

The	Lucene	glossary	and	architecture

Input	data	analysis

Indexing	and	querying

Scoring	and	query	relevance

The	basics	of	Elasticsearch

Key	concepts	of	Elasticsearch

Index

Document

www.EBooksWorld.ir

Document	type

Mapping

Key	concepts	of	the	Elasticsearch	infrastructure

Nodes	and	clusters

Shards

Replicas

Gateway

Indexing	and	searching

Installing	and	configuring	your	cluster

Installing	Java

Installing	Elasticsearch

Running	Elasticsearch

Shutting	down	Elasticsearch

The	directory	layout

Configuring	Elasticsearch

The	system-specific	installation	and	configuration

Installing	Elasticsearch	on	Linux

Installing	Elasticsearch	using	RPM	packages

Installing	Elasticsearch	using	the	DEB	package

Elasticsearch	configuration	file	localization

Configuring	Elasticsearch	as	a	system	service	on	Linux

Elasticsearch	as	a	system	service	on	Windows

Manipulating	data	with	the	REST	API

Understanding	the	REST	API

Storing	data	in	Elasticsearch

Creating	a	new	document

Automatic	identifier	creation

Retrieving	documents

Updating	documents

Dealing	with	non-existing	documents

Adding	partial	documents

www.EBooksWorld.ir

Deleting	documents

Versioning

Usage	example

Versioning	from	external	systems

Searching	with	the	URI	request	query

Sample	data

URI	search

Elasticsearch	query	response

Query	analysis

URI	query	string	parameters

The	query

The	default	search	field

Analyzer

The	default	operator	property

Query	explanation

The	fields	returned

Sorting	the	results

The	search	timeout

The	results	window

Limiting	per-shard	results

Ignoring	unavailable	indices

The	search	type

Lowercasing	term	expansion

Wildcard	and	prefix	analysis

Lucene	query	syntax

Summary

2.	Indexing	Your	Data

Elasticsearch	indexing

Shards	and	replicas

Write	consistency

Creating	indices

www.EBooksWorld.ir

Altering	automatic	index	creation

Settings	for	a	newly	created	index

Index	deletion

Mappings	configuration

Type	determining	mechanism

Disabling	the	type	determining	mechanism

Tuning	the	type	determining	mechanism	for	numeric	types

Tuning	the	type	determining	mechanism	for	dates

Index	structure	mapping

Type	and	types	definition

Fields

Core	types

Common	attributes

String

Number

Boolean

Binary

Date

Multi	fields

The	IP	address	type

Token	count	type

Using	analyzers

Out-of-the-box	analyzers

Defining	your	own	analyzers

Default	analyzers

Different	similarity	models

Setting	per-field	similarity

Available	similarity	models

Configuring	default	similarity

Configuring	BM25	similarity

Configuring	DFR	similarity

www.EBooksWorld.ir

Configuring	IB	similarity

Batch	indexing	to	speed	up	your	indexing	process

Preparing	data	for	bulk	indexing

Indexing	the	data

The	_all	field

The	_source	field

Additional	internal	fields

Introduction	to	segment	merging

Segment	merging

The	need	for	segment	merging

The	merge	policy

The	merge	scheduler

Throttling

Introduction	to	routing

Default	indexing

Default	searching

Routing

The	routing	parameters

Routing	fields

Summary

3.	Searching	Your	Data

Querying	Elasticsearch

The	example	data

A	simple	query

Paging	and	result	size

Returning	the	version	value

Limiting	the	score

Choosing	the	fields	that	we	want	to	return

Source	filtering

Using	the	script	fields

Passing	parameters	to	the	script	fields

www.EBooksWorld.ir

Understanding	the	querying	process

Query	logic

Search	type

Search	execution	preference

Search	shards	API

Basic	queries

The	term	query

The	terms	query

The	match	all	query

The	type	query

The	exists	query

The	missing	query

The	common	terms	query

The	match	query

The	Boolean	match	query

The	phrase	match	query

The	match	phrase	prefix	query

The	multi	match	query

The	query	string	query

Running	the	query	string	query	against	multiple	fields

The	simple	query	string	query

The	identifiers	query

The	prefix	query

The	fuzzy	query

The	wildcard	query

The	range	query

Regular	expression	query

The	more	like	this	query

Compound	queries

The	bool	query

The	dis_max	query

www.EBooksWorld.ir

The	boosting	query

The	constant_score	query

The	indices	query

Using	span	queries

A	span

Span	term	query

Span	first	query

Span	near	query

Span	or	query

Span	not	query

Span	within	query

Span	containing	query

Span	multi	query

Performance	considerations

Choosing	the	right	query

The	use	cases

Limiting	results	to	given	tags

Searching	for	values	in	a	range

Boosting	some	of	the	matched	documents

Ignoring	lower	scoring	partial	queries

Using	Lucene	query	syntax	in	queries

Handling	user	queries	without	errors

Autocomplete	using	prefixes

Finding	terms	similar	to	a	given	one

Matching	phrases

Spans,	spans	everywhere

Summary

4.	Extending	Your	Querying	Knowledge

Filtering	your	results

The	context	is	the	key

Explicit	filtering	with	bool	query

www.EBooksWorld.ir

Highlighting

Getting	started	with	highlighting

Field	configuration

Under	the	hood

Forcing	highlighter	type

Configuring	HTML	tags

Controlling	highlighted	fragments

Global	and	local	settings

Require	matching

Custom	highlighting	query

The	Postings	highlighter

Validating	your	queries

Using	the	Validate	API

Sorting	data

Default	sorting

Selecting	fields	used	for	sorting

Sorting	mode

Specifying	behavior	for	missing	fields

Dynamic	criteria

Calculate	scoring	when	sorting

Query	rewrite

Prefix	query	as	an	example

Getting	back	to	Apache	Lucene

Query	rewrite	properties

Summary

5.	Extending	Your	Index	Structure

Indexing	tree-like	structures

Data	structure

Analysis

Indexing	data	that	is	not	flat

Data

www.EBooksWorld.ir

Objects

Arrays

Mappings

Final	mappings

Sending	the	mappings	to	Elasticsearch

To	be	or	not	to	be	dynamic

Disabling	object	indexing

Using	nested	objects

Scoring	and	nested	queries

Using	the	parent-child	relationship

Index	structure	and	data	indexing

Child	mappings

Parent	mappings

The	parent	document

Child	documents

Querying

Querying	data	in	the	child	documents

Querying	data	in	the	parent	documents

Performance	considerations

Modifying	your	index	structure	with	the	update	API

The	mappings

Adding	a	new	field	to	the	existing	index

Modifying	fields	of	an	existing	index

Summary

6.	Make	Your	Search	Better

Introduction	to	Apache	Lucene	scoring

When	a	document	is	matched

Default	scoring	formula

Relevancy	matters

Scripting	capabilities	of	Elasticsearch

Objects	available	during	script	execution

www.EBooksWorld.ir

Script	types

In	file	scripts

Inline	scripts

Indexed	scripts

Querying	with	scripts

Scripting	with	parameters

Script	languages

Using	other	than	embedded	languages

Using	native	code

The	factory	implementation

Implementing	the	native	script

The	plugin	definition

Installing	the	plugin

Running	the	script

Searching	content	in	different	languages

Handling	languages	differently

Handling	multiple	languages

Detecting	the	language	of	the	document

Sample	document

The	mappings

Querying

Queries	with	an	identified	language

Queries	with	an	unknown	language

Combining	queries

Influencing	scores	with	query	boosts

The	boost

Adding	the	boost	to	queries

Modifying	the	score

Constant	score	query

Boosting	query

The	function	score	query

www.EBooksWorld.ir

Structure	of	the	function	query

The	weight	factor	function

Field	value	factor	function

The	script	score	function

The	random	score	function

Decay	functions

When	does	index-time	boosting	make	sense?

Defining	boosting	in	the	mappings

Words	with	the	same	meaning

Synonym	filter

Synonyms	in	the	mappings

Synonyms	stored	on	the	file	system

Defining	synonym	rules

Using	Apache	Solr	synonyms

Explicit	synonyms

Equivalent	synonyms

Expanding	synonyms

Using	WordNet	synonyms

Query	or	index-time	synonym	expansion

Understanding	the	explain	information

Understanding	field	analysis

Explaining	the	query

Summary

7.	Aggregations	for	Data	Analysis

Aggregations

General	query	structure

Inside	the	aggregations	engine

Aggregation	types

Metrics	aggregations

Minimum,	maximum,	average,	and	sum

Missing	values

www.EBooksWorld.ir

Using	scripts

Field	value	statistics	and	extended	statistics

Value	count

Field	cardinality

Percentiles

Percentile	ranks

Top	hits	aggregation

Additional	parameters

Geo	bounds	aggregation

Scripted	metrics	aggregation

Buckets	aggregations

Filter	aggregation

Filters	aggregation

Terms	aggregation

Counts	are	approximate

Minimum	document	count

Range	aggregation

Keyed	buckets

Date	range	aggregation

IPv4	range	aggregation

Missing	aggregation

Histogram	aggregation

Date	histogram	aggregation

Time	zones

Geo	distance	aggregations

Geohash	grid	aggregation

Global	aggregation

Significant	terms	aggregation

Choosing	significant	terms

Multiple	value	analysis

Sampler	aggregation

www.EBooksWorld.ir

Children	aggregation

Nested	aggregation

Reverse	nested	aggregation

Nesting	aggregations	and	ordering	buckets

Buckets	ordering

Pipeline	aggregations

Available	types

Referencing	other	aggregations

Gaps	in	the	data

Pipeline	aggregation	types

Min,	max,	sum,	and	average	bucket	aggregations

Cumulative	sum	aggregation

Bucket	selector	aggregation

Bucket	script	aggregation

Serial	differencing	aggregation

Derivative	aggregation

Moving	avg	aggregation

Predicting	future	buckets

The	models

Summary

8.	Beyond	Full-text	Searching

Percolator

The	index

Percolator	preparation

Getting	deeper

Controlling	the	size	of	returned	results

Percolator	and	score	calculation

Combining	percolators	with	other	functionalities

Getting	the	number	of	matching	queries

Indexed	document	percolation

Elasticsearch	spatial	capabilities

www.EBooksWorld.ir

Mapping	preparation	for	spatial	searches

Example	data

Additional	geo_field	properties

Sample	queries

Distance-based	sorting

Bounding	box	filtering

Limiting	the	distance

Arbitrary	geo	shapes

Point

Envelope

Polygon

Multipolygon

An	example	usage

Storing	shapes	in	the	index

Using	suggesters

Available	suggester	types

Including	suggestions

Suggester	response

Term	suggester

Term	suggester	configuration	options

Additional	term	suggester	options

Phrase	suggester

Configuration

Completion	suggester

Indexing	data

Querying	indexed	completion	suggester	data

Custom	weights

Context	suggester

Context	types

Using	context

Using	the	geo	location	context

www.EBooksWorld.ir

The	Scroll	API

Problem	definition

Scrolling	to	the	rescue

Summary

9.	Elasticsearch	Cluster	in	Detail

Understanding	node	discovery

Discovery	types

Node	roles

Master	node

Data	node

Client	node

Configuring	node	roles

Setting	the	cluster’s	name

Zen	discovery

Master	election	configuration

Configuring	unicast

Fault	detection	ping	settings

Cluster	state	updates	control

Dealing	with	master	unavailability

Adjusting	HTTP	transport	settings

Disabling	HTTP

HTTP	port

HTTP	host

The	gateway	and	recovery	modules

The	gateway

Recovery	control

Additional	gateway	recovery	options

Indices	recovery	API

Delayed	allocation

Index	recovery	prioritization

Templates	and	dynamic	templates

www.EBooksWorld.ir

Templates

An	example	of	a	template

Dynamic	templates

The	matching	pattern

Field	definitions

Elasticsearch	plugins

The	basics

Installing	plugins

Removing	plugins

Elasticsearch	caches

Fielddata	cache

Fielddata	size

Circuit	breakers

Fielddata	and	doc	values

Shard	request	cache

Enabling	and	configuring	the	shard	request	cache

Per	request	shard	request	cache	disabling

Shard	request	cache	usage	monitoring

Node	query	cache

Indexing	buffers

When	caches	should	be	avoided

The	update	settings	API

The	cluster	settings	API

The	indices	settings	API

Summary

10.	Administrating	Your	Cluster

Elasticsearch	time	machine

Creating	a	snapshot	repository

Creating	snapshots

Additional	parameters

Restoring	a	snapshot

www.EBooksWorld.ir

Cleaning	up	–	deleting	old	snapshots

Monitoring	your	cluster’s	state	and	health

Cluster	health	API

Controlling	information	details

Additional	parameters

Indices	stats	API

Docs

Store

Indexing,	get,	and	search

Additional	information

Nodes	info	API

Returned	information

Nodes	stats	API

Cluster	state	API

Cluster	stats	API

Pending	tasks	API

Indices	recovery	API

Indices	shard	stores	API

Indices	segments	API

Controlling	the	shard	and	replica	allocation

Explicitly	controlling	allocation

Specifying	node	parameters

Configuration

Index	creation

Excluding	nodes	from	allocation

Requiring	node	attributes

Using	the	IP	address	for	shard	allocation

Disk-based	shard	allocation

Configuring	disk	based	shard	allocation

Disabling	disk	based	shard	allocation

The	number	of	shards	and	replicas	per	node

www.EBooksWorld.ir

Allocation	throttling

Cluster-wide	allocation

Allocation	awareness

Forcing	allocation	awareness

Filtering

What	do	include,	exclude,	and	require	mean

Manually	moving	shards	and	replicas

Moving	shards

Canceling	shard	allocation

Forcing	shard	allocation

Multiple	commands	per	HTTP	request

Allowing	operations	on	primary	shards

Handling	rolling	restarts

Controlling	cluster	rebalancing

Understanding	rebalance

Cluster	being	ready

The	cluster	rebalance	settings

Controlling	when	rebalancing	will	be	allowed

Controlling	the	number	of	shards	being	moved	between	nodes	concurrently

Controlling	which	shards	may	be	rebalanced

The	Cat	API

The	basics

Using	Cat	API

Common	arguments

The	examples

Getting	information	about	the	master	node

Getting	information	about	the	nodes

Retrieving	recovery	information	for	an	index

Warming	up

Defining	a	new	warming	query

Retrieving	the	defined	warming	queries

www.EBooksWorld.ir

Deleting	a	warming	query

Disabling	the	warming	up	functionality

Choosing	queries	for	warming

Index	aliasing	and	using	it	to	simplify	your	everyday	work

An	alias

Creating	an	alias

Modifying	aliases

Combining	commands

Retrieving	aliases

Removing	aliases

Filtering	aliases

Aliases	and	routing

Zero	downtime	reindexing	and	aliases

Summary

11.	Scaling	by	Example

Hardware

Physical	servers	or	a	cloud

CPU

RAM	memory

Mass	storage

The	network

How	many	servers

Cost	cutting

Preparing	a	single	Elasticsearch	node

The	general	preparations

Avoiding	swapping

File	descriptors

Virtual	memory

The	memory

Field	data	cache	and	breaking	the	circuit

Use	doc	values

www.EBooksWorld.ir

RAM	buffer	for	indexing

Index	refresh	rate

Thread	pools

Horizontal	expansion

Automatically	creating	the	replicas

Redundancy	and	high	availability

Cost	and	performance	flexibility

Continuous	upgrades

Multiple	Elasticsearch	instances	on	a	single	physical	machine

Preventing	a	shard	and	its	replicas	from	being	on	the	same	node

Designated	node	roles	for	larger	clusters

Query	aggregator	nodes

Data	nodes

Master	eligible	nodes

Preparing	the	cluster	for	high	indexing	and	querying	throughput

Indexing	related	advice

Index	refresh	rate

Thread	pools	tuning

Automatic	store	throttling

Handling	time-based	data

Multiple	data	paths

Data	distribution

Bulk	indexing

RAM	buffer	for	indexing

Advice	for	high	query	rate	scenarios

Shard	request	cache

Think	about	the	queries

Parallelize	your	queries

Field	data	cache	and	breaking	the	circuit

Keep	size	and	shard	size	under	control

Monitoring

www.EBooksWorld.ir

Elasticsearch	HQ

Marvel

SPM	for	Elasticsearch

Summary

Index

www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch	Server	Third	Edition

www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch	Server	Third	Edition
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2013

Second	edition:	February	2015

Third	edition:	February	2016

Production	reference:	1230216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-881-6

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

www.EBooksWorld.ir

Credits
Authors

Rafał	Kuć

Marek	Rogoziński

Reviewer

Paige	Cook

Commissioning	Editor

Nadeem	Bagban

Acquisition	Editor

Divya	Poojari

Content	Development	Editor

Kirti	Patil

Technical	Editor

Utkarsha	S.	Kadam

Copy	Editor

Alpha	Singh

Project	Coordinator

Nidhi	Joshi

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Graphics

Jason	Monteiro

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

www.EBooksWorld.ir

www.EBooksWorld.ir

About	the	Authors
Rafał	Kuć	is	a	software	engineer,	trainer,	speaker	and	consultant.	He	is	working	as	a
consultant	and	software	engineer	at	Sematext	Group	Inc.	where	he	concentrates	on	open
source	technologies	such	as	Apache	Lucene,	Solr,	and	Elasticsearch.	He	has	more	than	14
years	of	experience	in	various	software	domains—from	banking	software	to	e–commerce
products.	He	is	mainly	focused	on	Java;	however,	he	is	open	to	every	tool	and
programming	language	that	might	help	him	to	achieve	his	goals	easily	and	quickly.	Rafał
is	also	one	of	the	founders	of	the	solr.pl	site,	where	he	tries	to	share	his	knowledge	and
help	people	solve	their	Solr	and	Lucene	problems.	He	is	also	a	speaker	at	various
conferences	around	the	world	such	as	Lucene	Eurocon,	Berlin	Buzzwords,	ApacheCon,
Lucene/Solr	Revolution,	Velocity,	and	DevOps	Days.

Rafał	began	his	journey	with	Lucene	in	2002;	however,	it	wasn’t	love	at	first	sight.	When
he	came	back	to	Lucene	in	late	2003,	he	revised	his	thoughts	about	the	framework	and
saw	the	potential	in	search	technologies.	Then	Solr	came	and	that	was	it.	He	started
working	with	Elasticsearch	in	the	middle	of	2010.	At	present,	Lucene,	Solr,	Elasticsearch,
and	information	retrieval	are	his	main	areas	of	interest.

Rafał	is	also	the	author	of	the	Solr	Cookbook	series,	ElasticSearch	Server	and	its	second
edition,	and	the	first	and	second	editions	of	Mastering	ElasticSearch,	all	published	by
Packt	Publishing.

Marek	Rogoziński	is	a	software	architect	and	consultant	with	more	than	10	years	of
experience.	His	specialization	concerns	solutions	based	on	open	source	search	engines,
such	as	Solr	and	Elasticsearch,	and	the	software	stack	for	big	data	analytics	including
Hadoop,	Hbase,	and	Twitter	Storm.

He	is	also	a	cofounder	of	the	solr.pl	site,	which	publishes	information	and	tutorials	about
Solr	and	Lucene	libraries.	He	is	the	coauthor	of	ElasticSearch	Server	and	its	second
edition,	and	the	first	and	second	editions	of	Mastering	ElasticSearch,	all	published	by
Packt	Publishing.

He	is	currently	the	chief	technology	officer	and	lead	architect	at	ZenCard,	a	company	that
processes	and	analyzes	large	quantities	of	payment	transactions	in	real	time,	allowing
automatic	and	anonymous	identification	of	retail	customers	on	all	retailer	channels	(m-
commerce/e-commerce/brick&mortar)	and	giving	retailers	a	customer	retention	and
loyalty	tool.

www.EBooksWorld.ir

www.EBooksWorld.ir

About	the	Reviewer
Paige	Cook	works	as	a	software	architect	for	Videa,	part	of	the	Cox	Family	of
Companies,	and	lives	near	Atlanta,	Georgia.	He	has	twenty	years	of	experience	in
software	development,	primarily	with	the	Microsoft	.NET	Framework.	His	career	has	been
largely	focused	on	building	enterprise	solutions	for	the	media	and	entertainment	industry.
He	is	especially	interested	in	search	technologies	using	the	Apache	Lucene	search	engine
and	has	experience	with	both	Elasticsearch	and	Apache	Solr.	Apart	from	his	work,	he
enjoys	DIY	home	projects	and	spending	time	with	his	wife	and	two	daughters.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.PacktPub.com

www.EBooksWorld.ir

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.EBooksWorld.ir

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

www.EBooksWorld.ir

www.EBooksWorld.ir

Preface
Welcome	to	Elasticsearch	Server,	Third	Edition.	This	is	the	third	instalment	of	the	book
dedicated	to	yet	another	major	release	of	Elasticsearch—this	time	version	2.2.	In	the	third
edition,	we	have	decided	to	go	on	a	similar	route	that	we	took	when	we	wrote	the	second
edition	of	the	book.	We	not	only	updated	the	content	to	match	the	new	version	of
Elasticsearch,	but	also	restructured	the	book	by	removing	and	adding	new	sections	and
chapters.	We	read	the	suggestions	we	got	from	you—the	readers	of	the	book,	and	we
carefully	tried	to	incorporate	the	suggestions	and	comments	received	since	the	release	of
the	first	and	second	editions.

While	reading	this	book,	you	will	be	taken	on	a	journey	to	the	wonderful	world	of	full-text
search	provided	by	the	Elasticsearch	server.	We	will	start	with	a	general	introduction	to
Elasticsearch,	which	covers	how	to	start	and	run	Elasticsearch,	its	basic	concepts,	and	how
to	index	and	search	your	data	in	the	most	basic	way.	This	book	will	also	discuss	the	query
language,	so	called	Query	DSL,	that	allows	you	to	create	complicated	queries	and	filter
returned	results.	In	addition	to	all	of	this,	you’ll	see	how	you	can	use	the	aggregation
framework	to	calculate	aggregated	data	based	on	the	results	returned	by	your	queries.	We
will	implement	the	autocomplete	functionality	together	and	learn	how	to	use	Elasticsearch
spatial	capabilities	and	prospective	search.

Finally,	this	book	will	show	you	Elasticsearch’s	administration	API	capabilities	with
features	such	as	shard	placement	control,	cluster	handling,	and	more,	ending	with	a
dedicated	chapter	that	will	discuss	Elasticsearch’s	preparation	for	small	and	large
deployments—	both	ones	that	concentrate	on	indexing	and	also	ones	that	concentrate	on
indexing.

www.EBooksWorld.ir

What	this	book	covers
Chapter	1,	Getting	Started	with	Elasticsearch	Cluster,	covers	what	full-text	searching	is,
what	Apache	Lucene	is,	what	text	analysis	is,	how	to	run	and	configure	Elasticsearch,	and
finally,	how	to	index	and	search	your	data	in	the	most	basic	way.

Chapter	2,	Indexing	Your	Data,	shows	how	indexing	works,	how	to	prepare	index
structure,	what	data	types	we	are	allowed	to	use,	how	to	speed	up	indexing,	what	segments
are,	how	merging	works,	and	what	routing	is.

Chapter	3,	Searching	Your	Data,	introduces	the	full-text	search	capabilities	of
Elasticsearch	by	discussing	how	to	query	it,	how	the	querying	process	works,	and	what
types	of	basic	and	compound	queries	are	available.	In	addition	to	this,	we	will	show	how
to	use	position-aware	queries	in	Elasticsearch.

Chapter	4,	Extending	Your	Query	Knowledge,	shows	how	to	efficiently	narrow	down	your
search	results	by	using	filters,	how	highlighting	works,	how	to	sort	your	results,	and	how
query	rewrite	works.

Chapter	5,	Extending	Your	Index	Structure,	shows	how	to	index	more	complex	data
structures.	We	learn	how	to	index	tree-like	data	types,	how	to	index	data	with	relationships
between	documents,	and	how	to	modify	index	structure.

Chapter	6,	Make	Your	Search	Better,	covers	Apache	Lucene	scoring	and	how	to	influence
it	in	Elasticsearch,	the	scripting	capabilities	of	Elasticsearch,	and	its	language	analysis
capabilities.

Chapter	7,	Aggregations	for	Data	Analysis,	introduces	you	to	the	great	world	of	data
analysis	by	showing	you	how	to	use	the	Elasticsearch	aggregation	framework.	We	will
discuss	all	types	of	aggregations—metrics,	buckets,	and	the	new	pipeline	aggregations	that
have	been	introduced	in	Elasticsearch.

Chapter	8,	Beyond	Full-text	Searching,	discusses	non	full-text	search-related
functionalities	such	as	percolator—reversed	search,	and	the	geo-spatial	capabilities	of
Elasticsearch.	This	chapter	also	discusses	suggesters,	which	allow	us	to	build	a
spellchecking	functionality	and	an	efficient	autocomplete	mechanism,	and	we	will	show
how	to	handle	deep-paging	efficiently.

Chapter	9,	Elasticsearch	Cluster	in	Detail,	discusses	nodes	discovery	mechanism,
recovery	and	gateway	Elasticsearch	modules,	templates,	caches,	and	settings	update	API.

Chapter	10,	Administrating	Your	Cluster,	covers	the	Elasticsearch	backup	functionality,
rebalancing,	and	shards	moving.	In	addition	to	this,	you	will	learn	how	to	use	the	warm	up
functionality,	use	the	Cat	API,	and	work	with	aliases.

Chapter	11,	Scaling	by	Example,	is	dedicated	to	scaling	and	tuning.	We	will	start	with
hardware	preparations	and	considerations	and	a	single	Elasticsearch	node-related	tuning.
We	will	go	through	cluster	setup	and	vertical	scaling,	ending	the	chapter	with	high
querying	and	indexing	use	cases	and	cluster	monitoring.

www.EBooksWorld.ir

www.EBooksWorld.ir

What	you	need	for	this	book
This	book	was	written	using	Elasticsearch	server	2.2	and	all	the	examples	and	functions
should	work	with	this.	In	addition	to	this,	you’ll	need	a	command	that	allows	you	to	send
HTTP	request	such	as	curl,	which	is	available	for	most	operating	systems.	Please	note	that
all	the	examples	in	this	book	use	the	previously	mentioned	curl	tool.	If	you	want	to	use
another	tool,	please	remember	to	format	the	request	in	an	appropriate	way	that	is
understood	by	the	tool	of	your	choice.

In	addition	to	this,	some	chapters	may	require	additional	software,	such	as	Elasticsearch
plugins,	but	when	needed	it	has	been	explicitly	mentioned.

www.EBooksWorld.ir

www.EBooksWorld.ir

Who	this	book	is	for
If	you	are	a	beginner	to	the	world	of	full-text	search	and	Elasticsearch,	then	this	book	is
especially	for	you.	You	will	be	guided	through	the	basics	of	Elasticsearch	and	you	will
learn	how	to	use	some	of	the	advanced	functionalities.

If	you	know	Elasticsearch	and	you	worked	with	it,	then	you	may	find	this	book	interesting
as	it	provides	a	nice	overview	of	all	the	functionalities	with	examples	and	descriptions.
However,	you	may	encounter	sections	that	you	already	know.

If	you	know	the	Apache	Solr	search	engine,	this	book	can	also	be	used	to	compare	some
functionalities	of	Apache	Solr	and	Elasticsearch.	This	may	give	you	the	knowledge	about
which	tool	is	more	appropriate	for	your	use	case.

If	you	know	all	the	details	about	Elasticsearch	and	you	know	how	each	of	the
configuration	parameters	work,	then	this	is	definitely	not	the	book	you	are	looking	for.

www.EBooksWorld.ir

www.EBooksWorld.ir

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“If	you
use	the	Linux	or	OS	X	command,	the	cURL	package	should	already	be	available.”

A	block	of	code	is	set	as	follows:

{

		"mappings":	{

				"post":	{

						"properties":	{																

								"id":	{	"type":"long"	},

								"name":	{	"type":"string"	},

								"published":	{	"type":"date"	},

								"contents":	{	"type":"string"	}													

						}

				}

		}

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

{

		"mappings":	{

				"post":	{

						"properties":	{																

								"id":	{	"type":"long"	},

								"name":	{	"type":"string"	},

								"published":	{	"type":"date"	},

								"contents":	{	"type":"string"	}													

						}

				}

		}

}

Any	command-line	input	or	output	is	written	as	follows:

curl	-XPUT	http://localhost:9200/users/?pretty	-d	'{	

		"mappings"	:	{

				"user":	{

						"numeric_detection"	:	true

				}

		}

}'

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

www.EBooksWorld.ir

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

www.EBooksWorld.ir

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.EBooksWorld.ir

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/ElasticsearchServerThirdEdition_ColorImages.pdf

www.EBooksWorld.ir

https://www.packtpub.com/sites/default/files/downloads/ElasticsearchServerThirdEdition_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

www.EBooksWorld.ir

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

www.EBooksWorld.ir

mailto:questions@packtpub.com

www.EBooksWorld.ir

Chapter	1.	Getting	Started	with
Elasticsearch	Cluster
Welcome	to	the	wonderful	world	of	Elasticsearch—a	great	full	text	search	and	analytics
engine.	It	doesn’t	matter	if	you	are	new	to	Elasticsearch	and	full	text	searches	in	general,
or	if	you	already	have	some	experience	in	this.	We	hope	that,	by	reading	this	book,	you’ll
be	able	to	learn	and	extend	your	knowledge	of	Elasticsearch.	As	this	book	is	also
dedicated	to	beginners,	we	decided	to	start	with	a	short	introduction	to	full	text	searches	in
general,	and	after	that,	a	brief	overview	of	Elasticsearch.

Please	remember	that	Elasticsearch	is	a	rapidly	changing	of	software.	Not	only	are
features	added,	but	the	Elasticsearch	core	functionality	is	also	constantly	evolving	and
changing.	We	try	to	keep	up	with	these	changes,	and	because	of	this	we	are	giving	you	the
third	edition	of	the	book	dedicated	to	Elasticsearch	2.x.

The	first	thing	we	need	to	do	with	Elasticsearch	is	install	and	configure	it.	With	many
applications,	you	start	with	the	installation	and	configuration	and	usually	forget	the
importance	of	these	steps.	We	will	try	to	guide	you	through	these	steps	so	that	it	becomes
easier	to	remember.	In	addition	to	this,	we	will	show	you	the	simplest	way	to	index	and
retrieve	data	without	going	into	too	much	detail.	The	first	chapter	will	take	you	on	a	quick
ride	through	Elasticsearch	and	the	full	text	search	world.	By	the	end	of	this	chapter,	you
will	have	learned	the	following	topics:

Full	text	searching
The	basics	of	Apache	Lucene
Performing	text	analysis
The	basic	concepts	of	Elasticsearch
Installing	and	configuring	Elasticsearch
Using	the	Elasticsearch	REST	API	to	manipulate	data
Searching	using	basic	URI	requests

www.EBooksWorld.ir

Full	text	searching
Back	in	the	days	when	full	text	searching	was	a	term	known	to	a	small	percentage	of
engineers,	most	of	us	used	SQL	databases	to	perform	search	operations.	Using	SQL
databases	to	search	for	the	data	stored	in	them	was	okay	to	some	extent.	Such	a	search
wasn’t	fast,	especially	on	large	amounts	of	data.	Even	now,	small	applications	are	usually
good	with	a	standard	LIKE	%phrase%	search	in	a	SQL	database.	However,	as	we	go	deeper
and	deeper,	we	start	to	see	the	limits	of	such	an	approach—a	lack	of	scalability,	not
enough	flexibility,	and	a	lack	of	language	analysis.	Of	course,	there	are	additional	modules
that	extend	SQL	databases	with	full	text	search	capabilities,	but	they	are	still	limited
compared	to	dedicated	full	text	search	libraries	and	search	engines	such	as	Elasticsearch.
Some	of	those	reasons	led	to	the	creation	of	Apache	Lucene	(http://lucene.apache.org/),	a
library	written	completely	in	Java	(http://java.com/en/),	which	is	very	fast,	light,	and
provides	language	analysis	for	a	large	number	of	languages	spoken	throughout	the	world.

www.EBooksWorld.ir

http://lucene.apache.org/
http://java.com/en/

The	Lucene	glossary	and	architecture
Before	going	into	the	details	of	the	analysis	process,	we	would	like	to	introduce	you	to	the
glossary	and	overall	architecture	of	Apache	Lucene.	We	decided	that	this	information	is
crucial	for	understanding	how	Elasticsearch	works,	and	even	though	the	book	is	not	about
Apache	Lucene,	knowing	the	foundation	of	the	Elasticsearch	analytics	and	indexing
engine	is	vital	to	fully	understand	how	this	great	search	engine	works.

The	basic	concepts	of	the	mentioned	library	are	as	follows:

Document:	This	is	the	main	data	carrier	used	during	indexing	and	searching,
comprising	one	or	more	fields	that	contain	the	data	we	put	in	and	get	from	Lucene.
Field:	This	a	section	of	the	document,	which	is	built	of	two	parts:	the	name	and	the
value.
Term:	This	is	a	unit	of	search	representing	a	word	from	the	text.
Token:	This	is	an	occurrence	of	a	term	in	the	text	of	the	field.	It	consists	of	the	term
text,	start	and	end	offsets,	and	a	type.

Apache	Lucene	writes	all	the	information	to	a	structure	called	the	inverted	index.	It	is	a
data	structure	that	maps	the	terms	in	the	index	to	the	documents	and	not	the	other	way
around	as	a	relational	database	does	in	its	tables.	You	can	think	of	an	inverted	index	as	a
data	structure	where	data	is	term-oriented	rather	than	document-oriented.	Let’s	see	how	a
simple	inverted	index	will	look.	For	example,	let’s	assume	that	we	have	documents	with
only	a	single	field	called	title	to	be	indexed,	and	the	values	of	that	field	are	as	follows:

Elasticsearch	Server	(document	1)
Mastering	Elasticsearch	Second	Edition	(document	2)
Apache	Solr	Cookbook	Third	Edition	(document	3)

A	very	simplified	visualization	of	the	Lucene	inverted	index	could	look	as	follows:

Each	term	points	to	the	number	of	documents	it	is	present	in.	For	example,	the	term

www.EBooksWorld.ir

edition	is	present	twice	in	the	second	and	third	documents.	Such	a	structure	allows	for
very	efficient	and	fast	search	operations	in	term-based	queries	(but	not	exclusively).
Because	the	occurrences	of	the	term	are	connected	to	the	terms	themselves,	Lucene	can
use	information	about	the	term	occurrences	to	perform	fast	and	precise	scoring
information	by	giving	each	document	a	value	that	represents	how	well	each	of	the
returned	documents	matched	the	query.

Of	course,	the	actual	index	created	by	Lucene	is	much	more	complicated	and	advanced
because	of	additional	files	that	include	information	such	as	term	vectors	(per	document
inverted	index),	doc	values	(column	oriented	field	information),	stored	fields	(the	original
and	not	the	analyzed	value	of	the	field),	and	so	on.	However,	all	you	need	to	know	for
now	is	how	the	data	is	organized	and	not	what	exactly	is	stored.

Each	index	is	divided	into	multiple	write-once	and	read-many-time	structures	called
segments.	Each	segment	is	a	miniature	Apache	Lucene	index	on	its	own.	When	indexing,
after	a	single	segment	is	written	to	the	disk	it	can’t	be	updated,	or	we	should	rather	say	it
can’t	be	fully	updated;	documents	can’t	be	removed	from	it,	they	can	only	be	marked	as
deleted	in	a	separate	file.	The	reason	that	Lucene	doesn’t	allow	segments	to	be	updated	is
the	nature	of	the	inverted	index.	After	the	fields	are	analyzed	and	put	into	the	inverted
index,	there	is	no	easy	way	of	building	the	original	document	structure.	When	deleting,
Lucene	would	have	to	delete	the	information	from	the	segment,	which	translates	to
updating	all	the	information	within	the	inverted	index	itself.

Because	of	the	fact	that	segments	are	write-once	structures	Lucene	is	able	to	merge
segments	together	in	a	process	called	segment	merging.	During	indexing,	if	Lucene	thinks
that	there	are	too	many	segments	falling	into	the	same	criterion,	a	new	and	bigger	segment
will	be	created—one	that	will	have	data	from	the	other	segments.	During	that	process,
Lucene	will	try	to	remove	deleted	data	and	get	back	the	space	needed	to	hold	information
about	those	documents.	Segment	merging	is	a	demanding	operation	both	in	terms	of	the
I/O	and	CPU.	What	we	have	to	remember	for	now	is	that	searching	with	one	large
segment	is	faster	than	searching	with	multiple	smaller	ones	holding	the	same	data.	That’s
because,	in	general,	searching	translates	to	just	matching	the	query	terms	to	the	ones	that
are	indexed.	You	can	imagine	how	searching	through	multiple	small	segments	and
merging	those	results	will	be	slower	than	having	a	single	segment	preparing	the	results.

www.EBooksWorld.ir

Input	data	analysis
The	transformation	of	a	document	that	comes	to	Lucene	and	is	processed	and	put	into	the
inverted	index	format	is	called	indexation.	One	of	the	things	Lucene	has	to	do	during	this
is	data	analysis.	You	may	want	some	of	your	fields	to	be	processed	by	a	language	analyzer
so	that	words	such	as	car	and	cars	are	treated	as	the	same	be	your	index.	On	the	other
hand,	you	may	want	other	fields	to	be	divided	only	on	the	white	space	character	or	be	only
lowercased.

Analysis	is	done	by	the	analyzer,	which	is	built	of	a	tokenizer	and	zero	or	more	token
filters,	and	it	can	also	have	zero	or	more	character	mappers.

A	tokenizer	in	Lucene	is	used	to	split	the	text	into	tokens,	which	are	basically	the	terms
with	additional	information	such	as	its	position	in	the	original	text	and	its	length.	The
results	of	the	tokenizer’s	work	is	called	a	token	stream,	where	the	tokens	are	put	one	by
one	and	are	ready	to	be	processed	by	the	filters.

Apart	from	the	tokenizer,	the	Lucene	analyzer	is	built	of	zero	or	more	token	filters	that	are
used	to	process	tokens	in	the	token	stream.	Some	examples	of	filters	are	as	follows:

Lowercase	filter:	Makes	all	the	tokens	lowercased
Synonyms	filter:	Changes	one	token	to	another	on	the	basis	of	synonym	rules
Language	stemming	filters:	Responsible	for	reducing	tokens	(actually,	the	text	part
that	they	provide)	into	their	root	or	base	forms	called	the	stem
(https://en.wikipedia.org/wiki/Word_stem)

Filters	are	processed	one	after	another,	so	we	have	almost	unlimited	analytical	possibilities
with	the	addition	of	multiple	filters,	one	after	another.

Finally,	the	character	mappers	operate	on	non-analyzed	text—they	are	used	before	the
tokenizer.	Therefore,	we	can	easily	remove	HTML	tags	from	whole	parts	of	text	without
worrying	about	tokenization.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Word_stem

Indexing	and	querying
You	may	wonder	how	all	the	information	we’ve	described	so	far	affects	indexing	and
querying	when	using	Lucene	and	all	the	software	that	is	built	on	top	of	it.	During
indexing,	Lucene	will	use	an	analyzer	of	your	choice	to	process	the	contents	of	your
document;	of	course,	different	analyzers	can	be	used	for	different	fields,	so	the	name	field
of	your	document	can	be	analyzed	differently	compared	to	the	summary	field.	For
example,	the	name	field	may	only	be	tokenized	on	whitespaces	and	lowercased,	so	that
exact	matches	are	done	and	the	summary	field	is	stemmed	in	addition	to	that.	We	can	also
decide	to	not	analyze	the	fields	at	all—we	have	full	control	over	the	analysis	process.

During	a	query,	your	query	text	can	be	analyzed	as	well.	However,	you	can	also	choose
not	to	analyze	your	queries.	This	is	crucial	to	remember	because	some	Elasticsearch
queries	are	analyzed	and	some	are	not.	For	example,	prefix	and	term	queries	are	not
analyzed,	and	match	queries	are	analyzed	(we	will	get	to	that	in	Chapter	3,	Searching	Your
Data).	Having	queries	that	are	analyzed	and	not	analyzed	is	very	useful;	sometimes,	you
may	want	to	query	a	field	that	is	not	analyzed,	while	sometimes	you	may	want	to	have	a
full	text	search	analysis.	For	example,	if	we	search	for	the	LightRed	term	and	the	query	is
being	analyzed	by	the	standard	analyzer,	then	the	terms	that	would	be	searched	are	light
and	red.	If	we	use	a	query	type	that	has	not	been	analyzed,	then	we	will	explicitly	search
for	the	LightRed	term.	We	may	not	want	to	analyze	the	content	of	the	query	if	we	are	only
interested	in	exact	matches.

What	you	should	remember	about	indexing	and	querying	analysis	is	that	the	index	should
match	the	query	term.	If	they	don’t	match,	Lucene	won’t	return	the	desired	documents.
For	example,	if	you	use	stemming	and	lowercasing	during	indexing,	you	need	to	ensure
that	the	terms	in	the	query	are	also	lowercased	and	stemmed,	or	your	queries	won’t	return
any	results	at	all.	For	example,	let’s	get	back	to	our	LightRed	term	that	we	analyzed
during	indexing;	we	have	it	as	two	terms	in	the	index:	light	and	red.	If	we	run	a
LightRed	query	against	that	data	and	don’t	analyze	it,	we	won’t	get	the	document	in	the
results—the	query	term	does	not	match	the	indexed	terms.	It	is	important	to	keep	the
token	filters	in	the	same	order	during	indexing	and	query	time	analysis	so	that	the	terms
resulting	from	such	an	analysis	are	the	same.

www.EBooksWorld.ir

Scoring	and	query	relevance
There	is	one	additional	thing	that	we	only	mentioned	once	till	now—scoring.	What	is	the
score	of	a	document?	The	score	is	a	result	of	a	scoring	formula	that	describes	how	well	the
document	matches	the	query.	By	default,	Apache	Lucene	uses	the	TF/IDF	(term
frequency/inverse	document	frequency)	scoring	mechanism,	which	is	an	algorithm	that
calculates	how	relevant	the	document	is	in	the	context	of	our	query.	Of	course,	it	is	not	the
only	algorithm	available,	and	we	will	mention	other	algorithms	in	the	Mappings
configuration	section	of	Chapter	2,	Indexing	Your	Data.

Note
If	you	want	to	read	more	about	the	Apache	Lucene	TF/IDF	scoring	formula,	please	visit
Apache	Lucene	Javadocs	for	the	TFIDF.	The	similarity	class	is	available	at
http://lucene.apache.org/core/5_4_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

www.EBooksWorld.ir

http://lucene.apache.org/core/5_4_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

www.EBooksWorld.ir

The	basics	of	Elasticsearch
Elasticsearch	is	an	open	source	search	server	project	started	by	Shay	Banon	and	published
in	February	2010.	During	this	time,	the	project	grew	into	a	major	player	in	the	field	of
search	and	data	analysis	solutions	and	is	widely	used	in	many	common	or	lesser-known
search	and	data	analysis	platforms.	In	addition,	due	to	its	distributed	nature	and	real-time
search	and	analytics	capabilities,	many	organizations	use	it	as	a	document	store.

www.EBooksWorld.ir

Key	concepts	of	Elasticsearch
In	the	next	few	pages,	we	will	get	you	through	the	basic	concepts	of	Elasticsearch.	You
can	skip	this	section	if	you	are	already	familiar	with	Elasticsearch	architecture.	However,
if	you	are	not	familiar	with	Elasticsearch,	we	strongly	advise	you	to	read	this	section.	We
will	refer	to	the	key	words	used	in	this	section	in	the	rest	of	the	book,	and	understanding
those	concepts	is	crucial	to	fully	utilize	Elasticsearch.

Index
An	index	is	the	logical	place	where	Elasticsearch	stores	the	data.	Each	index	can	be	spread
onto	multiple	Elasticsearch	nodes	and	is	divided	into	one	or	more	smaller	pieces	called
shards	that	are	physically	placed	on	the	hard	drives.	If	you	are	coming	from	the	relational
database	world,	you	can	think	of	an	index	like	a	table.	However,	the	index	structure	is
prepared	for	fast	and	efficient	full	text	searching	and,	in	particular,	does	not	store	original
values.	That	structure	is	called	an	inverted	index
(https://en.wikipedia.org/wiki/Inverted_index).

If	you	know	MongoDB,	you	can	think	of	the	Elasticsearch	index	as	a	collection	in
MongoDB.	If	you	are	familiar	with	CouchDB,	you	can	think	about	an	index	as	you	would
about	the	CouchDB	database.	Elasticsearch	can	hold	many	indices	located	on	one	machine
or	spread	them	over	multiple	servers.	As	we	have	already	said,	every	index	is	built	of	one
or	more	shards,	and	each	shard	can	have	many	replicas.

Document
The	main	entity	stored	in	Elasticsearch	is	a	document.	A	document	can	have	multiple
fields,	each	having	its	own	type	and	treated	differently.	Using	the	analogy	to	relational
databases,	a	document	is	a	row	of	data	in	a	database	table.	When	you	compare	an
Elasticsearch	document	to	a	MongoDB	document,	you	will	see	that	both	can	have
different	structures.	The	thing	to	keep	in	mind	when	it	comes	to	Elasticsearch	is	that	fields
that	are	common	to	multiple	types	in	the	same	index	need	to	have	the	same	type.	This
means	that	all	the	documents	with	a	field	called	title	need	to	have	the	same	data	type	for	it,
for	example,	string.

Documents	consist	of	fields,	and	each	field	may	occur	several	times	in	a	single	document
(such	a	field	is	called	multivalued).	Each	field	has	a	type	(text,	number,	date,	and	so	on).
The	field	types	can	also	be	complex—a	field	can	contain	other	subdocuments	or	arrays.
The	field	type	is	important	to	Elasticsearch	because	type	determines	how	various
operations	such	as	analysis	or	sorting	are	performed.	Fortunately,	this	can	be	determined
automatically	(however,	we	still	suggest	using	mappings;	take	a	look	at	what	follows).

Unlike	the	relational	databases,	documents	don’t	need	to	have	a	fixed	structure—every
document	may	have	a	different	set	of	fields,	and	in	addition	to	this,	fields	don’t	have	to	be
known	during	application	development.	Of	course,	one	can	force	a	document	structure
with	the	use	of	schema.	From	the	client’s	point	of	view,	a	document	is	a	JSON	object	(see
more	about	the	JSON	format	at	https://en.wikipedia.org/wiki/JSON).	Each	document	is
stored	in	one	index	and	has	its	own	unique	identifier,	which	can	be	generated

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/JSON

automatically	by	Elasticsearch,	and	document	type.	The	thing	to	remember	is	that	the
document	identifier	needs	to	be	unique	inside	an	index	and	should	be	for	a	given	type.
This	means	that,	in	a	single	index,	two	documents	can	have	the	same	unique	identifier	if
they	are	not	of	the	same	type.

Document	type
In	Elasticsearch,	one	index	can	store	many	objects	serving	different	purposes.	For
example,	a	blog	application	can	store	articles	and	comments.	The	document	type	lets	us
easily	differentiate	between	the	objects	in	a	single	index.	Every	document	can	have	a
different	structure,	but	in	real-world	deployments,	dividing	documents	into	types
significantly	helps	in	data	manipulation.	Of	course,	one	needs	to	keep	the	limitations	in
mind.	That	is,	different	document	types	can’t	set	different	types	for	the	same	property.	For
example,	a	field	called	title	must	have	the	same	type	across	all	document	types	in	a	given
index.

Mapping
In	the	section	about	the	basics	of	full	text	searching	(the	Full	text	searching	section),	we
wrote	about	the	process	of	analysis—the	preparation	of	the	input	text	for	indexing	and
searching	done	by	the	underlying	Apache	Lucene	library.	Every	field	of	the	document
must	be	properly	analyzed	depending	on	its	type.	For	example,	a	different	analysis	chain	is
required	for	the	numeric	fields	(numbers	shouldn’t	be	sorted	alphabetically)	and	for	the
text	fetched	from	web	pages	(for	example,	the	first	step	would	require	you	to	omit	the
HTML	tags	as	it	is	useless	information).	To	be	able	to	properly	analyze	at	indexing	and
querying	time,	Elasticsearch	stores	the	information	about	the	fields	of	the	documents	in
so-called	mappings.	Every	document	type	has	its	own	mapping,	even	if	we	don’t	explicitly
define	it.

www.EBooksWorld.ir

Key	concepts	of	the	Elasticsearch	infrastructure
Now,	we	already	know	that	Elasticsearch	stores	its	data	in	one	or	more	indices	and	every
index	can	contain	documents	of	various	types.	We	also	know	that	each	document	has
many	fields	and	how	Elasticsearch	treats	these	fields	is	defined	by	the	mappings.	But	there
is	more.	From	the	beginning,	Elasticsearch	was	created	as	a	distributed	solution	that	can
handle	billions	of	documents	and	hundreds	of	search	requests	per	second.	This	is	due	to
several	important	key	features	and	concepts	that	we	are	going	to	describe	in	more	detail
now.

Nodes	and	clusters
Elasticsearch	can	work	as	a	standalone,	single-search	server.	Nevertheless,	to	be	able	to
process	large	sets	of	data	and	to	achieve	fault	tolerance	and	high	availability,	Elasticsearch
can	be	run	on	many	cooperating	servers.	Collectively,	these	servers	connected	together	are
called	a	cluster	and	each	server	forming	a	cluster	is	called	a	node.

Shards
When	we	have	a	large	number	of	documents,	we	may	come	to	a	point	where	a	single	node
may	not	be	enough—for	example,	because	of	RAM	limitations,	hard	disk	capacity,
insufficient	processing	power,	and	an	inability	to	respond	to	client	requests	fast	enough.	In
such	cases,	an	index	(and	the	data	in	it)	can	be	divided	into	smaller	parts	called	shards
(where	each	shard	is	a	separate	Apache	Lucene	index).	Each	shard	can	be	placed	on	a
different	server,	and	thus	your	data	can	be	spread	among	the	cluster	nodes.	When	you
query	an	index	that	is	built	from	multiple	shards,	Elasticsearch	sends	the	query	to	each
relevant	shard	and	merges	the	result	in	such	a	way	that	your	application	doesn’t	know
about	the	shards.	In	addition	to	this,	having	multiple	shards	can	speed	up	indexing,
because	documents	end	up	in	different	shards	and	thus	the	indexing	operation	is
parallelized.

Replicas
In	order	to	increase	query	throughput	or	achieve	high	availability,	shard	replicas	can	be
used.	A	replica	is	just	an	exact	copy	of	the	shard,	and	each	shard	can	have	zero	or	more
replicas.	In	other	words,	Elasticsearch	can	have	many	identical	shards	and	one	of	them	is
automatically	chosen	as	a	place	where	the	operations	that	change	the	index	are	directed.
This	special	shard	is	called	a	primary	shard,	and	the	others	are	called	replica	shards.	When
the	primary	shard	is	lost	(for	example,	a	server	holding	the	shard	data	is	unavailable),	the
cluster	will	promote	the	replica	to	be	the	new	primary	shard.

Gateway
The	cluster	state	is	held	by	the	gateway,	which	stores	the	cluster	state	and	indexed	data
across	full	cluster	restarts.	By	default,	every	node	has	this	information	stored	locally;	it	is
synchronized	among	nodes.	We	will	discuss	the	gateway	module	in	The	gateway	and
recovery	modules	section	of	Chapter	9,	Elasticsearch	Cluster,	in	detail.

www.EBooksWorld.ir

Indexing	and	searching
You	may	wonder	how	you	can	tie	all	the	indices,	shards,	and	replicas	together	in	a	single
environment.	Theoretically,	it	would	be	very	difficult	to	fetch	data	from	the	cluster	when
you	have	to	know	where	your	document	is:	on	which	server,	and	in	which	shard.	Even
more	difficult	would	be	searching	when	one	query	can	return	documents	from	different
shards	placed	on	different	nodes	in	the	whole	cluster.	In	fact,	this	is	a	complicated
problem;	fortunately,	we	don’t	have	to	care	about	this	at	all—it	is	handled	automatically
by	Elasticsearch.	Let’s	look	at	the	following	diagram:

When	you	send	a	new	document	to	the	cluster,	you	specify	a	target	index	and	send	it	to
any	of	the	nodes.	The	node	knows	how	many	shards	the	target	index	has	and	is	able	to
determine	which	shard	should	be	used	to	store	your	document.	Elasticsearch	can	alter	this
behavior;	we	will	talk	about	this	in	the	Introduction	to	routing	section	in	Chapter	2,
Indexing	Your	Data.	The	important	information	that	you	have	to	remember	for	now	is	that
Elasticsearch	calculates	the	shard	in	which	the	document	should	be	placed	using	the
unique	identifier	of	the	document—this	is	one	of	the	reasons	each	document	needs	a
unique	identifier.	After	the	indexing	request	is	sent	to	a	node,	that	node	forwards	the
document	to	the	target	node,	which	hosts	the	relevant	shard.

Now,	let’s	look	at	the	following	diagram	on	searching	request	execution:

www.EBooksWorld.ir

When	you	try	to	fetch	a	document	by	its	identifier,	the	node	you	send	the	query	to	uses	the
same	routing	algorithm	to	determine	the	shard	and	the	node	holding	the	document	and
again	forwards	the	request,	fetches	the	result,	and	sends	the	result	to	you.	On	the	other
hand,	the	querying	process	is	a	more	complicated	one.	The	node	receiving	the	query
forwards	it	to	all	the	nodes	holding	the	shards	that	belong	to	a	given	index	and	asks	for
minimum	information	about	the	documents	that	match	the	query	(the	identifier	and	score
are	matched	by	default),	unless	routing	is	used,	when	the	query	will	go	directly	to	a	single
shard	only.	This	is	called	the	scatter	phase.	After	receiving	this	information,	the	aggregator
node	(the	node	that	receives	the	client	request)	sorts	the	results	and	sends	a	second	request
to	get	the	documents	that	are	needed	to	build	the	results	list	(all	the	other	information	apart
from	the	document	identifier	and	score).	This	is	called	the	gather	phase.	After	this	phase	is
executed,	the	results	are	returned	to	the	client.

Now	the	question	arises:	what	is	the	replica’s	role	in	the	previously	described	process?
While	indexing,	replicas	are	only	used	as	an	additional	place	to	store	the	data.	When
executing	a	query,	by	default,	Elasticsearch	will	try	to	balance	the	load	among	the	shard
and	its	replicas	so	that	they	are	evenly	stressed.	Also,	remember	that	we	can	change	this
behavior;	we	will	discuss	this	in	the	Understanding	the	querying	process	section	in
Chapter	3,	Searching	Your	Data.

www.EBooksWorld.ir

www.EBooksWorld.ir

Installing	and	configuring	your	cluster
Installing	and	running	Elasticsearch	even	in	production	environments	is	very	easy
nowadays,	compared	to	how	it	was	in	the	days	of	Elasticsearch	0.20.x.	From	a	system	that
is	not	ready	to	one	with	Elasticsearch,	there	are	only	a	few	steps	that	one	needs	to	go.	We
will	explore	these	steps	in	the	following	section:

www.EBooksWorld.ir

Installing	Java
Elasticsearch	is	a	Java	application	and	to	use	it	we	need	to	make	sure	that	the	Java	SE
environment	is	installed	properly.	Elasticsearch	requires	Java	Version	7	or	later	to	run.	You
can	download	it	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.	You	can	also	use
OpenJDK	(http://openjdk.java.net/)	if	you	wish.	You	can,	of	course,	use	Java	Version	7,
but	it	is	not	supported	by	Oracle	anymore,	at	least	without	commercial	support.	For
example,	you	can’t	expect	new,	patched	versions	of	Java	7	to	be	released.	Because	of	this,
we	strongly	suggest	that	you	install	Java	8,	especially	given	that	Java	9	seems	to	be	right
around	the	corner	with	the	general	availability	planned	to	be	released	in	September	2016.

www.EBooksWorld.ir

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/

Installing	Elasticsearch
To	install	Elasticsearch	you	just	need	to	go	to
https://www.elastic.co/downloads/elasticsearch,	choose	the	last	stable	version	of
Elasticsearch,	download	it,	and	unpack	it.	That’s	it!	The	installation	is	complete.

Note
At	the	time	of	writing,	we	used	a	snapshot	of	Elasticsearch	2.2.	This	means	that	we’ve
skipped	describing	some	properties	that	were	marked	as	deprecated	and	are	or	will	be
removed	in	the	future	versions	of	Elasticsearch.

The	main	interface	to	communicate	with	Elasticsearch	is	based	on	the	HTTP	protocol	and
REST.	This	means	that	you	can	even	use	a	web	browser	for	some	basic	queries	and
requests,	but	for	anything	more	sophisticated	you’ll	need	to	use	additional	software,	such
as	the	cURL	command.	If	you	use	the	Linux	or	OS	X	command,	the	cURL	package	should
already	be	available.	If	you	use	Windows,	you	can	download	the	package	from
http://curl.haxx.se/download.html.

www.EBooksWorld.ir

https://www.elastic.co/downloads/elasticsearch
http://curl.haxx.se/download.html

Running	Elasticsearch
Let’s	run	our	first	instance	that	we	just	downloaded	as	the	ZIP	archive	and	unpacked.	Go
to	the	bin	directory	and	run	the	following	commands	depending	on	the	OS:

Linux	or	OS	X:	./elasticsearch
Windows:	elasticsearch.bat

Congratulations!	Now,	you	have	your	Elasticsearch	instance	up-and-running.	During	its
work,	the	server	usually	uses	two	port	numbers:	the	first	one	for	communication	with	the
REST	API	using	the	HTTP	protocol,	and	the	second	one	for	the	transport	module	used	for
communication	in	a	cluster	and	between	the	native	Java	client	and	the	cluster.	The	default
port	used	for	the	HTTP	API	is	9200,	so	we	can	check	search	readiness	by	pointing	the	web
browser	to	http://127.0.0.1:9200/.	The	browser	should	show	a	code	snippet	similar	to
the	following:

{

		"name"	:	"Blob",

		"cluster_name"	:	"elasticsearch",

		"version"	:	{

				"number"	:	"2.2.0",

				"build_hash"	:	"5b1dd1cf5a1957682d84228a569e124fedf8e325",

				"build_timestamp"	:	"2016-01-13T18:12:26Z",

				"build_snapshot"	:	true,

				"lucene_version"	:	"5.4.0"

		},

		"tagline"	:	"You	Know,	for	Search"

}

The	output	is	structured	as	a	JavaScript	Object	Notation	(JSON)	object.	If	you	are	not
familiar	with	JSON,	please	take	a	minute	and	read	the	article	available	at
https://en.wikipedia.org/wiki/JSON.

Note
Elasticsearch	is	smart.	If	the	default	port	is	not	available,	the	engine	binds	to	the	next	free
port.	You	can	find	information	about	this	on	the	console	during	booting	as	follows:

[2016-01-13	20:04:49,953][INFO][http]	[Blob]	publish_address	

{127.0.0.1:9201},	bound_addresses	{[fe80::1]:9200},	{[::1]:9200},	

{127.0.0.1:9201}	

Note	the	fragment	with	[http].	Elasticsearch	uses	a	few	ports	for	various	tasks.	The
interface	that	we	are	using	is	handled	by	the	HTTP	module.

Now,	we	will	use	the	cURL	program	to	communicate	with	Elasticsearch.	For	example,	to
check	the	cluster	health,	we	will	use	the	following	command:

curl	-XGET	http://127.0.0.1:9200/_cluster/health?pretty

The	-X	parameter	is	a	definition	of	the	HTTP	request	method.	The	default	value	is	GET	(so
in	this	example,	we	can	omit	this	parameter).	For	now,	do	not	worry	about	the	GET	value;
we	will	describe	it	in	more	detail	later	in	this	chapter.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/JSON

As	a	standard,	the	API	returns	information	in	a	JSON	object	in	which	new	line	characters
are	omitted.	The	pretty	parameter	added	to	our	requests	forces	Elasticsearch	to	add	a	new
line	character	to	the	response,	making	the	response	more	user-friendly.	You	can	try
running	the	preceding	query	with	and	without	the	?pretty	parameter	to	see	the	difference.

Elasticsearch	is	useful	in	small	and	medium-sized	applications,	but	it	has	been	built	with
large	clusters	in	mind.	So,	now	we	will	set	up	our	big	two-node	cluster.	Unpack	the
Elasticsearch	archive	in	a	different	directory	and	run	the	second	instance.	If	we	look	at	the
log,	we	will	see	the	following:

[2016-01-13	20:07:58,561][INFO][cluster.service]	[Big	Man]	

detected_master	{Blob}{5QPh00RUQraeLHAInbR4Jw}{127.0.0.1}{127.0.0.1:9300},	

added	{{Blob}{5QPh00RUQraeLHAInbR4Jw}{127.0.0.1}{127.0.0.1:9300},},	reason:	

zen-disco-receive(from	master	[{Blob}{5QPh00RUQraeLHAInbR4Jw}{127.0.0.1}

{127.0.0.1:9300}])

This	means	that	our	second	instance	(named	Big	Man)	discovered	the	previously	running
instance	(named	Blob).	Here,	Elasticsearch	automatically	formed	a	new	two-node	cluster.
Starting	from	Elasticsearch	2.0,	this	will	only	work	with	nodes	running	on	the	same
physical	machine—because	Elasticsearch	2.0	no	longer	supports	multicast.	To	allow	your
cluster	to	form,	you	need	to	inform	Elasticsearch	about	the	nodes	that	should	be	contacted
initially	using	the	discovery.zen.ping.unicast.hosts	array	in	elasticsearch.yml.	For
example,	like	this:

discovery.zen.ping.unicast.hosts:	["192.168.2.1",	"192.168.2.2"]

www.EBooksWorld.ir

Shutting	down	Elasticsearch
Even	though	we	expect	our	cluster	(or	node)	to	run	flawlessly	for	a	lifetime,	we	may	need
to	restart	it	or	shut	it	down	properly	(for	example,	for	maintenance).	The	following	are	the
two	ways	in	which	we	can	shut	down	Elasticsearch:

If	your	node	is	attached	to	the	console,	just	press	Ctrl	+	C
The	second	option	is	to	kill	the	server	process	by	sending	the	TERM	signal	(see	the
kill	command	on	the	Linux	boxes	and	Program	Manager	on	Windows)

Note
The	previous	versions	of	Elasticsearch	exposed	a	dedicated	shutdown	API	but,	in	2.0,
this	option	has	been	removed	because	of	security	reasons.

www.EBooksWorld.ir

The	directory	layout
Now,	let’s	go	to	the	newly	created	directory.	We	should	see	the	following	directory
structure:

Directory Description

Bin The	scripts	needed	to	run	Elasticsearch	instances	and	for	plugin	management

Config The	directory	where	configuration	files	are	located

Lib The	libraries	used	by	Elasticsearch

Modules The	plugins	bundled	with	Elasticsearch

After	Elasticsearch	starts,	it	will	create	the	following	directories	(if	they	don’t	exist):

Directory Description

Data The	directory	used	by	Elasticsearch	to	store	all	the	data

Logs The	files	with	information	about	events	and	errors

Plugins The	location	to	store	the	installed	plugins

Work The	temporary	files	used	by	Elasticsearch

www.EBooksWorld.ir

Configuring	Elasticsearch
One	of	the	reasons—of	course,	not	the	only	one—why	Elasticsearch	is	gaining	more	and
more	popularity	is	that	getting	started	with	Elasticsearch	is	quite	easy.	Because	of	the
reasonable	default	values	and	automatic	settings	for	simple	environments,	we	can	skip	the
configuration	and	go	straight	to	indexing	and	querying	(or	to	the	next	chapter	of	the	book).
We	can	do	all	this	without	changing	a	single	line	in	our	configuration	files.	However,	in
order	to	truly	understand	Elasticsearch,	it	is	worth	understanding	some	of	the	available
settings.

We	will	now	explore	the	default	directories	and	the	layout	of	the	files	provided	with	the
Elasticsearch	tar.gz	archive.	The	entire	configuration	is	located	in	the	config
directory.	We	can	see	two	files	here:	elasticsearch.yml	(or	elasticsearch.json,	which
will	be	used	if	present)	and	logging.yml.	The	first	file	is	responsible	for	setting	the
default	configuration	values	for	the	server.	This	is	important	because	some	of	these	values
can	be	changed	at	runtime	and	can	be	kept	as	a	part	of	the	cluster	state,	so	the	values	in
this	file	may	not	be	accurate.	The	two	values	that	we	cannot	change	at	runtime	are
cluster.name	and	node.name.

The	cluster.name	property	is	responsible	for	holding	the	name	of	our	cluster.	The	cluster
name	separates	different	clusters	from	each	other.	Nodes	configured	with	the	same	cluster
name	will	try	to	form	a	cluster.

The	second	value	is	the	instance	(the	node.name	property)	name.	We	can	leave	this
parameter	undefined.	In	this	case,	Elasticsearch	automatically	chooses	a	unique	name	for
itself.	Note	that	this	name	is	chosen	during	each	startup,	so	the	name	can	be	different	on
each	restart.	Defining	the	name	can	helpful	when	referring	to	concrete	instances	by	the
API	or	when	using	monitoring	tools	to	see	what	is	happening	to	a	node	during	long
periods	of	time	and	between	restarts.	Think	about	giving	descriptive	names	to	your	nodes.

Other	parameters	are	commented	well	in	the	file,	so	we	advise	you	to	look	through	it;
don’t	worry	if	you	do	not	understand	the	explanation.	We	hope	that	everything	will
become	clearer	after	reading	the	next	few	chapters.

Note
Remember	that	most	of	the	parameters	that	have	been	set	in	the	elasticsearch.yml	file
can	be	overwritten	with	the	use	of	the	Elasticsearch	REST	API.	We	will	talk	about	this
API	in	The	update	settings	API	section	of	Chapter	9,	Elasticsearch	Cluster	in	Detail.

The	second	file	(logging.yml)	defines	how	much	information	is	written	to	system	logs,
defines	the	log	files,	and	creates	new	files	periodically.	Changes	in	this	file	are	usually
required	only	when	you	need	to	adapt	to	monitoring	or	backup	solutions	or	during	system
debugging;	however,	if	you	want	to	have	a	more	detailed	logging,	you	need	to	adjust	it
accordingly.

Let’s	leave	the	configuration	files	for	now	and	look	at	the	base	for	all	the	applications—
the	operating	system.	Tuning	your	operating	system	is	one	of	the	key	points	to	ensure	that
your	Elasticsearch	instance	will	work	well.	During	indexing,	especially	when	having

www.EBooksWorld.ir

many	shards	and	replicas,	Elasticsearch	will	create	many	files;	so,	the	system	cannot	limit
the	open	file	descriptors	to	less	than	32,000.	For	Linux	servers,	this	can	usually	be
changed	in	/etc/security/limits.conf	and	the	current	value	can	be	displayed	using	the
ulimit	command.	If	you	end	up	reaching	the	limit,	Elasticsearch	will	not	be	able	to	create
new	files;	so	merging	will	fail,	indexing	may	fail,	and	new	indices	will	not	be	created.

Note
On	Microsoft	Windows	platforms,	the	default	limit	is	more	than	16	million	handles	per
process,	which	should	be	more	than	enough.	You	can	read	more	about	file	handles	on	the
Microsoft	Windows	platform	at
https://blogs.technet.microsoft.com/markrussinovich/2009/09/29/pushing-the-limits-of-
windows-handles/.

The	next	set	of	settings	is	connected	to	the	Java	Virtual	Machine	(JVM)	heap	memory
limit	for	a	single	Elasticsearch	instance.	For	small	deployments,	the	default	memory	limit
(1,024	MB)	will	be	sufficient,	but	for	large	ones	it	will	not	be	enough.	If	you	spot	entries
that	indicate	OutOfMemoryError	exceptions	in	a	log	file,	set	the	ES_HEAP_SIZE	variable	to
a	value	greater	than	1024.	When	choosing	the	right	amount	of	memory	size	to	be	given	to
the	JVM,	remember	that,	in	general,	no	more	than	50	percent	of	your	total	system	memory
should	be	given.	However,	as	with	all	the	rules,	there	are	exceptions.	We	will	discuss	this
in	greater	detail	later,	but	you	should	always	monitor	your	JVM	heap	usage	and	adjust	it
when	needed.

www.EBooksWorld.ir

https://blogs.technet.microsoft.com/markrussinovich/2009/09/29/pushing-the-limits-of-windows-handles/

The	system-specific	installation	and	configuration
Although	downloading	an	archive	with	Elasticsearch	and	unpacking	it	works	and	is
convenient	for	testing,	there	are	dedicated	methods	for	Linux	operating	systems	that	give
you	several	advantages	when	you	do	production	deployment.	In	production	deployments,
the	Elasticsearch	service	should	be	run	automatically	with	a	system	boot;	we	should	have
dedicated	start	and	stop	scripts,	unified	paths,	and	so	on.	Elasticsearch	supports
installation	packages	for	various	Linux	distributions	that	we	can	use.	Let’s	see	how	this
works.

Installing	Elasticsearch	on	Linux
The	other	way	to	install	Elasticsearch	on	a	Linux	operating	system	is	to	use	packages	such
as	RPM	or	DEB,	depending	on	your	Linux	distribution	and	the	supported	package	type.
This	way	we	can	automatically	adapt	to	system	directory	layout;	for	example,
configuration	and	logs	will	go	into	their	standard	places	in	the	/etc/	or	/var/log
directories.	But	this	is	not	the	only	thing.	When	using	packages,	Elasticsearch	will	also
install	startup	scripts	and	make	our	life	easier.	What’s	more,	we	will	be	able	to	upgrade
Elasticsearch	easily	by	running	a	single	command	from	the	command	line.	Of	course,	the
mentioned	packages	can	be	found	at	the	same	URL	address	as	we	mentioned	previously
when	we	talked	about	installing	Elasticsearch	from	zip	or	tar.gz	packages:
https://www.elastic.co/downloads/elasticsearch.	Elasticsearch	can	also	be	installed	from
remote	repositories	via	standard	distribution	tools	such	as	apt-get	or	yum.

Note
Before	installing	Elasticsearch,	make	sure	that	you	have	a	proper	version	of	Java	Virtual
Machine	installed.

Installing	Elasticsearch	using	RPM	packages

When	using	a	Linux	distribution	that	supports	RPM	packages	such	as	Fedora	Linux,
(https://getfedora.org/)	Elasticsearch	installation	is	very	easy.	After	downloading	the	RPM
package,	we	just	need	to	run	the	following	command	as	root:

yum	elasticsearch-2.2.0.noarch.rpm

Alternatively,	you	can	add	the	remote	repository	and	install	Elasticsearch	from	it	(this
command	needs	to	be	run	as	root	as	well):

rpm	--import	https://packages.elastic.co/GPG-KEY-elasticsearch

This	command	adds	the	GPG	key	and	allows	the	system	to	verify	that	the	fetched	package
really	comes	from	Elasticsearch	developers.	In	the	second	step,	we	need	to	create	the
repository	definition	in	the	/etc/yum.repos.d/elasticsearch.repo	file.	We	need	to	add
the	following	entries	to	this	file:

[elasticsearch-2.2]

name=Elasticsearch	repository	for	2.2.x	packages

baseurl=http://packages.elastic.co/elasticsearch/2.x/centos

gpgcheck=1

www.EBooksWorld.ir

https://www.elastic.co/downloads/elasticsearch
https://getfedora.org/

gpgkey=http://packages.elastic.co/GPG-KEY-elasticsearch

enabled=1

Now	it’s	time	to	install	the	Elasticsearch	server,	which	is	as	simple	as	running	the
following	command	(again,	don’t	forget	to	run	it	as	root):

yum	install	elasticsearch

Elasticsearch	will	be	automatically	downloaded,	verified,	and	installed.

Installing	Elasticsearch	using	the	DEB	package

When	using	a	Linux	distribution	that	supports	DEB	packages	(such	as	Debian),	installing
Elasticsearch	is	again	very	easy.	After	downloading	the	DEB	package,	all	you	need	to	do
is	run	the	following	command:

sudo	dpkg	-i	elasticsearch-2.2.0.deb

It	is	as	simple	as	that.	Another	way,	which	is	similar	to	what	we	did	with	RPM	packages,
is	by	creating	a	new	packages	source	and	installing	Elasticsearch	from	the	remote
repository.	The	first	step	is	to	add	the	public	GPG	key	used	for	package	verification.	We
can	do	that	using	the	following	command:

wget	-qO	-	https://packages.elastic.co/GPG-KEY-elasticsearch	|	sudo	apt-key	

add	-

The	second	step	is	by	adding	the	DEB	package	location.	We	need	to	add	the	following	line
to	the	/etc/apt/sources.list	file:

deb	http://packages.elastic.co/elasticsearch/2.2/debian	stable	main

This	defines	the	source	for	the	Elasticsearch	packages.	The	last	step	is	updating	the	list	of
remote	packages	and	installing	Elasticsearch	using	the	following	command:

sudo	apt-get	update	&&	sudo	apt-get	install	elasticsearch

Elasticsearch	configuration	file	localization

When	using	packages	to	install	Elasticsearch,	the	configuration	files	are	in	slightly
different	directories	than	the	default	conf	directory.	After	the	installation,	the
configuration	files	should	be	stored	in	the	following	location:

/etc/sysconfig/elasticsearch	or	/etc/default/elasticsearch:	A	file	with	the
configuration	of	the	Elasticsearch	process	as	a	user	to	run	as,	directories	for	logs,	data
and	memory	settings
/etc/elasticsearch/:	A	directory	for	the	Elasticsearch	configuration	files,	such	as
the	elasticsearch.yml	file

Configuring	Elasticsearch	as	a	system	service	on	Linux
If	everything	goes	well,	you	can	run	Elasticsearch	using	the	following	command:

/bin/systemctl	start	elasticsearch.service

If	you	want	Elasticsearch	to	start	automatically	every	time	the	operating	system	starts,	you

www.EBooksWorld.ir

can	set	up	Elasticsearch	as	a	system	service	by	running	the	following	command:

/bin/systemctl	enable	elasticsearch.service

Elasticsearch	as	a	system	service	on	Windows
Installing	Elasticsearch	as	a	system	service	on	Windows	is	also	very	easy.	You	just	need	to
go	to	your	Elasticsearch	installation	directory,	then	go	to	the	bin	subdirectory,	and	run	the
following	command:

service.bat	install

You’ll	be	asked	for	permission	to	do	so.	If	you	allow	the	script	to	run,	Elasticsearch	will
be	installed	as	a	Windows	service.

If	you	would	like	to	see	all	the	commands	exposed	by	the	service.bat	script	file,	just	run
the	following	command	in	the	same	directory	as	earlier:

service.bat

For	example,	to	start	Elasticsearch,	we	will	just	run	the	following	command:

service.bat	start

www.EBooksWorld.ir

www.EBooksWorld.ir

Manipulating	data	with	the	REST	API
Elasticsearch	exposes	a	very	rich	REST	API	that	can	be	used	to	search	through	the	data,
index	the	data,	and	control	Elasticsearch	behavior.	You	can	imagine	that	using	the	REST
API	allows	you	to	get	a	single	document,	index	or	update	a	document,	get	the	information
on	Elasticsearch	current	state,	create	or	delete	indices,	or	force	Elasticsearch	to	move
around	shards	of	your	indices.	Of	course,	these	are	only	examples	that	show	what	you	can
expect	from	the	Elasticsearch	REST	API.	For	now,	we	will	concentrate	on	using	the
create,	retrieve,	update,	delete	(CRUD)	part	of	the	Elasticsearch	API
(https://en.wikipedia.org/wiki/Create,_read,_update_and_delete),	which	allows	us	to	use
Elasticsearch	in	a	fashion	similar	to	how	we	would	use	any	other	NoSQL
(https://en.wikipedia.org/wiki/NoSQL)	data	store.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete)
https://en.wikipedia.org/wiki/NoSQL

Understanding	the	REST	API
If	you’ve	never	used	an	application	exposing	the	REST	API,	you	may	be	surprised	how
easy	it	is	to	use	such	applications	and	remember	how	to	use	them.	In	REST-like
architectures,	every	request	is	directed	to	a	concrete	object	indicated	by	a	path	in	the
address.	For	example,	let’s	assume	that	our	hypothetical	application	exposes	the	/books
REST	end-point	as	a	reference	to	the	list	of	books.	In	such	case,	a	call	to	/books/1	could
be	a	reference	to	a	concrete	book	with	the	identifier	1.	You	can	think	of	it	as	a	data-
oriented	model	of	an	API.	Of	course,	we	can	nest	the	paths—for	example,	a	path	such	as
/books/1/chapters	could	return	the	list	of	chapters	of	our	book	with	identifier	1	and	a
path	such	as	/books/1/chapters/6	could	be	a	reference	to	the	sixth	chapter	in	that
particular	book.

We	talked	about	paths,	but	when	using	the	HTTP	protocol,
(https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol)	we	have	some	additional
verbs	(such	as	POST,	GET,	PUT,	and	so	on.)	that	we	can	use	to	define	system	behavior	in
addition	to	paths.	So	if	we	would	like	to	retrieve	the	book	with	identifier	1,	we	would	use
the	GET	request	method	with	the	/books/1	path.	However,	we	would	use	the	PUT	request
method	with	the	same	path	to	create	a	book	record	with	the	identifier	or	one,	the	POST
request	method	to	alter	the	record,	DELETE	to	remove	that	entry,	and	the	HEAD	request
method	to	get	basic	information	about	the	data	referenced	by	the	path.

Now,	let’s	look	at	example	HTTP	requests	that	are	sent	to	real	Elasticsearch	REST	API
endpoints,	so	the	preceding	hypothetical	information	will	be	turned	into	something	real:

GET	http://localhost:9200/:	This	retrieves	basic	information	about	Elasticsearch,	such
as	the	version,	the	name	of	the	node	that	the	command	has	been	sent	to,	the	name	of	the
cluster	that	node	is	connected	to,	the	Apache	Lucene	version,	and	so	on.

GET	http://localhost:9200/_cluster/state/nodes/	This	retrieves	information	about
all	the	nodes	in	the	cluster,	such	as	their	identifiers,	names,	transport	addresses	with	ports,
and	additional	node	attributes	for	each	node.

DELETE	http://localhost:9200/books/book/123:	This	deletes	a	document	that	is
indexed	in	the	books	index,	with	the	book	type	and	an	identifier	of	123.

We	now	know	what	REST	means	and	we	can	start	concentrating	on	Elasticsearch	to	see
how	we	can	store,	retrieve,	alter,	and	delete	the	data	from	its	indices.	If	you	would	like	to
read	more	about	REST,	please	refer	to
http://en.wikipedia.org/wiki/Representational_state_transfer.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Representational_state_transfer

Storing	data	in	Elasticsearch
In	Elasticsearch,	every	document	is	represented	by	three	attributes—the	index,	the	type,
and	the	identifier.	Each	document	must	be	indexed	into	a	single	index,	needs	to	have	its
type	correspond	to	the	document	structure,	and	is	described	by	the	identifier.	These	three
attributes	allows	us	to	identify	any	document	in	Elasticsearch	and	needs	to	be	provided
when	the	document	is	physically	written	to	the	underlying	Apache	Lucene	index.	Having
the	knowledge,	we	are	now	ready	to	create	our	first	Elasticsearch	document.

Creating	a	new	document
We	will	start	learning	the	Elasticsearch	REST	API	by	indexing	one	document.	Let’s
imagine	that	we	are	building	a	CMS	system
(http://en.wikipedia.org/wiki/Content_management_system)	that	will	provide	the
functionality	of	a	blogging	platform	for	our	internal	users.	We	will	have	different	types	of
documents	in	our	indices,	but	the	most	important	ones	are	the	articles	that	will	be
published	and	are	readable	by	users.

Because	we	talk	to	Elasticsearch	using	JSON	notation	and	Elasticsearch	responds	to	us
again	using	JSON,	our	example	document	could	look	as	follows:

{	

	"id":	"1",	

	"title":	"New	version	of	Elasticsearch	released!",	

	"content":	"Version	2.2	released	today!",	

	"priority":	10,	

	"tags":	["announce",	"elasticsearch",	"release"]	

}

As	you	can	see	in	the	preceding	code	snippet,	the	JSON	document	is	built	with	a	set	of
fields,	where	each	field	can	have	a	different	format.	In	our	example,	we	have	a	set	of	text
fields	(id,	title,	and	content),	we	have	a	number	(the	priority	field),	and	an	array	of	text
values	(the	tags	field).	We	will	show	documents	that	are	more	complicated	in	the	next
examples.

Note
One	of	the	changes	introduced	in	Elasticsearch	2.0	has	been	that	field	names	can’t	contain
the	dot	character.	Such	field	names	were	possible	in	older	versions	of	Elasticsearch,	but
could	result	in	serialization	errors	in	certain	cases	and	thus	Elasticsearch	creators	decided
to	remove	that	possibility.

One	thing	to	remember	is	that	by	default	Elasticsearch	works	as	a	schema-less	data	store.
This	means	that	it	can	try	to	guess	the	type	of	the	field	in	a	document	sent	to	Elasticsearch.
It	will	try	to	use	numeric	types	for	the	values	that	are	not	enclosed	in	quotation	marks	and
strings	for	data	enclosed	in	quotation	marks.	It	will	try	to	guess	the	date	and	index	them	in
dedicated	fields	and	so	on.	This	is	possible	because	the	JSON	format	is	semi-typed.
Internally,	when	the	first	document	with	a	new	field	is	sent	to	Elasticsearch,	it	will	be
processed	and	mappings	will	be	written	(we	will	talk	more	about	mappings	in	the
Mappings	configuration	section	of	Chapter	2,	Indexing	Your	Data).

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Content_management_system

Note
A	schema-less	approach	and	dynamic	mappings	can	be	problematic	when	documents
come	with	a	slightly	different	structure—for	example,	the	first	document	would	contain
the	value	of	the	priority	field	without	quotation	marks	(like	the	one	shown	in	the	discussed
example),	while	the	second	document	would	have	quotation	marks	for	the	value	in	the
priority	field.	This	will	result	in	an	error	because	Elasticsearch	will	try	to	put	a	text	value
in	the	numeric	field	and	this	is	not	possible	in	Lucene.	Because	of	this,	it	is	advisable	to
define	your	own	mappings,	which	you	will	learn	in	the	Mappings	configuration	section	of
Chapter	2,	Indexing	Your	Data.

Let’s	now	index	our	document	and	make	it	available	for	retrieval	and	searching.	We	will
index	our	articles	to	an	index	called	blog	under	a	type	named	article.	We	will	also	give
our	document	an	identifier	of	1,	as	this	is	our	first	document.	To	index	our	example
document,	we	will	execute	the	following	command:

curl	-XPUT	'http://localhost:9200/blog/article/1'	-d	'{"title":	"New	

version	of	Elasticsearch	released!",	"content":	"Version	2.2	released	

today!",	"priority":	10,	"tags":	["announce",	"elasticsearch",	"release"]	

}'

Note	a	new	option	to	the	curl	command,	the	-d	parameter.	The	value	of	this	option	is	the
text	that	will	be	used	as	a	request	payload—a	request	body.	This	way,	we	can	send
additional	information	such	as	the	document	definition.	Also,	note	that	the	unique
identifier	is	placed	in	the	URL	and	not	in	the	body.	If	you	omit	this	identifier	(while	using
the	HTTP	PUT	request),	the	indexing	request	will	return	the	following	error:

No	handler	found	for	uri	[/blog/article]	and	method	[PUT]

If	everything	worked	correctly,	Elasticsearch	will	return	a	JSON	response	informing	us
about	the	status	of	the	indexing	operation.	This	response	should	be	similar	to	the	following
one:

{

	"_index":"blog",

	"_type":"article",

	"_id":"1",

	"_version":1,

	"_shards":{

		"total":2,

		"successful":1,

		"failed":0},

	"created":true

}

In	the	preceding	response,	Elasticsearch	included	information	about	the	status	of	the
operation,	index,	type,	identifier,	and	version.	We	can	also	see	information	about	the
shards	that	took	part	in	the	operation—all	of	them,	the	ones	that	were	successful	and	the
ones	that	failed.

Automatic	identifier	creation

www.EBooksWorld.ir

In	the	previous	example,	we	specified	the	document	identifier	manually	when	we	were
sending	the	document	to	Elasticsearch.	However,	there	are	use	cases	when	we	don’t	have
an	identifier	for	our	documents—for	example,	when	handling	logs	as	our	data.	In	such
cases,	we	would	like	some	application	to	create	the	identifier	for	us	and	Elasticsearch	can
be	such	an	application.	Of	course,	generating	document	identifiers	doesn’t	make	sense
when	your	document	already	has	them,	such	as	data	in	a	relational	database.	In	such	cases,
you	may	want	to	update	the	documents;	in	this	case,	automatic	identifier	generation	is	not
the	best	idea.	However,	when	we	are	in	need	of	such	functionality,	instead	of	using	the
HTTP	PUT	method	we	can	use	POST	and	omit	the	identifier	in	the	REST	API	path.	So	if	we
would	like	Elasticsearch	to	generate	the	identifier	in	the	previous	example,	we	would	send
a	command	like	this:

curl	-XPOST	'http://localhost:9200/blog/article/'	-d	'{"title":	"New	

version	of	Elasticsearch	released!",	"content":	"Version	2.2	released	

today!",	"priority":	10,	"tags":	["announce",	"elasticsearch",	"release"]	

}'

We’ve	used	the	HTTP	POST	method	instead	of	PUT	and	we’ve	omitted	the	identifier.	The
response	produced	by	Elasticsearch	in	such	a	case	would	be	as	follows:

{

	"_index":"blog",

	"_type":"article",

	"_id":"AU1y-s6w2WzST_RhTvCJ",

	"_version":1,

	"_shards":{

		"total":2,

		"successful":1,

		"failed":0},

	"created":true

}

As	you	can	see,	the	response	returned	by	Elasticsearch	is	almost	the	same	as	in	the
previous	example,	with	a	minor	difference—the	_id	field	is	returned.	Now,	instead	of	the
1	value,	we	have	a	value	of	AU1y-s6w2WzST_RhTvCJ,	which	is	the	identifier	Elasticsearch
generated	for	our	document.

www.EBooksWorld.ir

Retrieving	documents
We	now	have	two	documents	indexed	into	our	Elasticsearch	instance—one	using	a
explicit	identifier	and	one	using	a	generated	identifier.	Let’s	now	try	to	retrieve	one	of	the
documents	using	its	unique	identifier.	To	do	this,	we	will	need	information	about	the	index
the	document	is	indexed	in,	what	type	it	has,	and	of	course	what	identifier	it	has.	For
example,	to	get	the	document	from	the	blog	index	with	the	article	type	and	the	identifier	of
1,	we	would	run	the	following	HTTP	GET	request:

curl	-XGET	'localhost:9200/blog/article/1?pretty'

Note
The	additional	URI	property	called	pretty	tells	Elasticsearch	to	include	new	line
characters	and	additional	white	spaces	in	response	to	make	the	output	easier	to	read	for
users.

Elasticsearch	will	return	a	response	similar	to	the	following:

{

		"_index"	:	"blog",

		"_type"	:	"article",

		"_id"	:	"1",

		"_version"	:	1,

		"found"	:	true,

		"_source"	:	{

				"title"	:	"New	version	of	Elasticsearch	released!",

				"content"	:	"Version	2.2	released	today!",

				"priority"	:	10,

				"tags"	:	["announce",	"elasticsearch",	"release"]

		}

}

As	you	can	see	in	the	preceding	response,	Elasticsearch	returned	the	_source	field,	which
is	the	original	document	sent	to	Elasticsearch	and	a	few	additional	fields	that	tell	us	about
the	document,	such	as	the	index,	type,	identifier,	document	version,	and	of	course
information	as	towhether	the	document	was	found	or	not	(the	found	property).

If	we	try	to	retrieve	a	document	that	is	not	present	in	the	index,	such	as	the	one	with	the
12345	identifier,	we	get	a	response	like	this:

{

		"_index"	:	"blog",

		"_type"	:	"article",

		"_id"	:	"12345",

		"found"	:	false

}

As	you	can	see,	this	time	the	value	of	the	found	property	was	set	to	false	and	there	was
no	_source	field	because	the	document	has	not	been	retrieved.

www.EBooksWorld.ir

Updating	documents
Updating	documents	in	the	index	is	a	more	complicated	task	compared	to	indexing.	When
the	document	is	indexed	and	Elasticsearch	flushes	the	document	to	a	disk,	it	creates
segments—an	immutable	structure	that	is	written	once	and	read	many	times.	This	is	done
because	the	inverted	index	created	by	Apache	Lucene	is	currently	impossible	to	update	(at
least	most	of	its	parts).	To	update	a	document,	Elasticsearch	internally	first	fetches	the
document	using	the	GET	request,	modifies	its	_source	field,	removes	the	old	document,	and
indexes	a	new	document	using	the	updated	content.	The	content	update	is	done	using
scripts	in	Elasticsearch	(we	will	talk	more	about	scripting	in	Elasticsearch	in	the	Scripting
capabilities	of	Elasticsearch	section	in	Chapter	6,	Make	Your	Search	Better).

Note
Please	note	that	the	following	document	update	examples	require	you	to	put	the
script.inline:	on	property	into	your	elasticsearch.yml	configuration	file.	This	is
needed	because	inline	scripting	is	disabled	in	Elasticsearch	for	security	reasons.	The	other
way	to	handle	updates	is	to	store	the	script	content	in	the	file	in	the	Elasticsearch
configuration	directory,	but	we	will	talk	about	that	in	the	Scripting	capabilities	of
Elasticsearch	section	in	Chapter	6,	Make	Your	Search	Better.

Let’s	now	try	to	update	our	document	with	identifier	1	by	modifying	its	content	field	to
contain	the	This	is	the	updated	document	sentence.	To	do	this,	we	need	to	run	a	POST
HTTP	request	on	the	document	path	using	the	_update	REST	end-point.	Our	request	to
modify	the	document	would	look	as	follows:

curl	-XPOST	'http://localhost:9200/blog/article/1/_update'	-d	'{	

	"script"	:	"ctx._source.content	=	new_content",

	"params"	:	{

		"new_content"	:	"This	is	the	updated	document"

	}

}'

As	you	can	see,	we’ve	sent	the	request	to	the	/blog/article/1/_update	REST	end-point.
In	the	request	body,	we’ve	provided	two	parameters—the	update	script	in	the	script
property	and	the	parameters	of	the	script.	The	script	is	very	simple;	it	takes	the	_source
field	and	modifies	the	content	field	by	setting	its	value	to	the	value	of	the	new_content
parameter.	The	params	property	contains	all	the	script	parameters.

For	the	preceding	update	command	execution,	Elasticsearch	would	return	the	following
response:

{"_index":"blog","_type":"article","_id":"1","_version":2,"_shards":

{"total":2,"successful":1,"failed":0}}

The	thing	to	look	at	in	the	preceding	response	is	the	_version	field.	Right	now,	the
version	is	2,	which	means	that	the	document	has	been	updated	(or	re-indexed)	once.
Basically,	each	update	makes	Elasticsearch	update	the	_version	field.

We	could	also	update	the	document	using	the	doc	section	and	providing	the	changed	field,

www.EBooksWorld.ir

for	example:

curl	-XPOST	'http://localhost:9200/blog/article/1/_update'	-d	'{

	"doc"	:	{

		"content"	:	"This	is	the	updated	document"

	}

}'

We	now	retrieve	the	document	using	the	following	command:

curl	-XGET	'http://localhost:9200/blog/article/1?pretty'

And	we	get	the	following	response	from	Elasticsearch:

{

		"_index"	:	"blog",

		"_type"	:	"article",

		"_id"	:	"1",

		"_version"	:	2,

		"found"	:	true,

		"_source"	:	{

				"title"	:	"New	version	of	Elasticsearch	released!",

				"content"	:	"This	is	the	updated	document",

				"priority"	:	10,

				"tags"	:	["announce",	"elasticsearch",	"release"]

		}

}

As	you	can	see,	the	document	has	been	updated	properly.

Note
The	thing	to	remember	when	using	the	update	API	of	Elasticsearch	is	that	the	_source
field	needs	to	be	present	because	this	is	the	field	that	Elasticsearch	uses	to	retrieve	the
original	document	content	from	the	index.	By	default,	that	field	is	enabled	and
Elasticsearch	uses	it	to	store	the	original	document.

Dealing	with	non-existing	documents
The	nice	thing	when	it	comes	to	document	updates,	which	we	would	like	to	mention	as	it
can	come	in	handy	when	using	Elasticsearch	Update	API,	is	that	we	can	define	what
Elasticsearch	should	do	when	the	document	we	try	to	update	is	not	present.

For	example,	let’s	try	incrementing	the	priority	field	value	for	a	non-existing	document
with	identifier	2:

curl	-XPOST	'http://localhost:9200/blog/article/2/_update'	-d	'{	

	"script"	:	"ctx._source.priority	+=	1"

}'

The	response	returned	by	Elasticsearch	would	look	more	or	less	as	follows:

{"error":{"root_cause":[{"type":"document_missing_exception","reason":"

[article][2]:	document	

missing","shard":"2","index":"blog"}],"type":"document_missing_exception","

reason":"[article][2]:	document	

www.EBooksWorld.ir

missing","shard":"2","index":"blog"},"status":404}

As	you	can	imagine,	the	document	has	not	been	updated	because	it	doesn’t	exist.	So	now,
let’s	modify	our	request	to	include	the	upsert	section	in	our	request	body	that	will	tell
Elasticsearch	what	to	do	when	the	document	is	not	present.	The	new	command	would	look
as	follows:

curl	-XPOST	'http://localhost:9200/blog/article/2/_update'	-d	'{	

	"script"	:	"ctx._source.priority	+=	1",

	"upsert"	:	{

		"title"	:	"Empty	document",

		"priority"	:	0,

		"tags"	:	["empty"]

	}

}'

With	the	modified	request,	a	new	document	would	be	indexed;	if	we	retrieve	it	using	the
GET	API,	it	will	look	as	follows:

{

		"_index"	:	"blog",

		"_type"	:	"article",

		"_id"	:	"2",

		"_version"	:	1,

		"found"	:	true,

		"_source"	:	{

				"title"	:	"Empty	document",

				"priority"	:	0,

				"tags"	:	["empty"]

		}

}

As	you	can	see,	the	fields	from	the	upsert	section	of	our	update	request	were	taken	by
Elasticsearch	and	used	as	document	fields.

Adding	partial	documents
In	addition	to	what	we	already	wrote	about	the	update	API,	Elasticsearch	is	also	capable
of	merging	partial	documents	from	the	update	request	to	already	existing	documents	or
indexing	new	documents	using	information	about	the	request,	similar	to	what	we	saw	seen
with	the	upsert	section.

Let’s	imagine	that	we	would	like	to	update	our	initial	document	and	add	a	new	field	called
count	to	it	(setting	it	to	1	initially).	We	would	also	like	to	index	the	document	under	the
specified	identifier	if	the	document	is	not	present.	We	can	do	this	by	running	the	following
command:

curl	-XPOST	'http://localhost:9200/blog/article/1/_update'	-d	'{	

		"doc"	:	{

				"count"	:	1

		},

		"doc_as_upsert"	:	true

}

We	specified	the	new	field	in	the	doc	section	and	we	said	that	we	want	the	doc	section	to

www.EBooksWorld.ir

be	treated	as	the	upsert	section	when	the	document	is	not	present	(with	the
doc_as_upsert	property	set	to	true).

If	we	now	retrieve	that	document,	we	see	the	following	response:

{

		"_index"	:	"blog",

		"_type"	:	"article",

		"_id"	:	"1",

		"_version"	:	3,

		"found"	:	true,

		"_source"	:	{

				"title"	:	"New	version	of	Elasticsearch	released!",

				"content"	:	"This	is	the	updated	document",

				"priority"	:	10,

				"tags"	:	["announce",	"elasticsearch",	"release"],

				"count"	:	1

		}

}

Note
For	a	full	reference	on	document	updates,	please	refer	to	the	official	Elasticsearch
documentation	on	the	Update	API,	which	is	available	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-update.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-update.html

Deleting	documents
Now	that	we	know	how	to	index	documents,	update	them,	and	retrieve	them,	it	is	time	to
learn	about	how	we	can	delete	them.	Deleting	a	document	from	an	Elasticsearch	index	is
very	similar	to	retrieving	it,	but	with	one	major	difference—instead	of	using	the	HTTP	GET
method,	we	have	to	use	HTTP	DELETE	one.

For	example,	if	we	would	like	to	delete	the	document	indexed	in	the	blog	index	under	the
article	type	and	with	an	identifier	of	1,	we	would	run	the	following	command:

curl	-XDELETE	'localhost:9200/blog/article/1'

The	response	from	Elasticsearch	indicates	that	the	document	has	been	deleted	and	should
look	as	follows:

{

	"found":true,

	"_index":"blog",

	"_type":"article",

	"_id":"1",

	"_version":4,

	"_shards":{

		"total":2,

		"successful":1,

		"failed":0

	}

}

Of	course,	this	is	not	the	only	thing	when	it	comes	to	deleting.	We	can	also	remove	all	the
documents	of	a	given	type.	For	example,	if	we	would	like	to	delete	the	entire	blog	index,
we	should	just	omit	the	identifier	and	the	type,	so	the	command	would	look	like	this:

curl	-XDELETE	'localhost:9200/blog'

The	preceding	command	would	result	in	the	deletion	of	the	blog	index.

www.EBooksWorld.ir

Versioning
Finally,	there	is	one	last	thing	that	we	would	like	to	talk	about	when	it	comes	to	data
manipulation	in	Elasticsearch	—the	great	feature	of	versioning.	As	you	may	have	already
noticed,	Elasticsearch	increments	the	document	version	when	it	does	updates	to	it.	We	can
leverage	this	functionality	and	use	optimistic	locking
(http://en.wikipedia.org/wiki/Optimistic_concurrency_control),	and	avoid	conflicts	and
overwrites	when	multiple	processes	or	threads	access	the	same	document	concurrently.
You	can	assume	that	your	indexing	application	may	want	to	try	to	update	the	document,
while	the	user	would	like	to	update	the	document	while	doing	some	manual	work.	The
question	that	arises	is:	Which	document	should	be	the	correct	one—the	one	updated	by	the
indexing	application,	the	one	updated	by	the	user,	or	the	merged	document	of	the	changes?
What	if	the	changes	are	conflicting?	To	handle	such	cases,	we	can	use	versioning.

Usage	example
Let’s	index	a	new	document	to	our	blog	index—one	with	an	identifier	of	10,	and	let’s
index	its	second	version	soon	after	we	do	that.	The	commands	that	do	this	look	as	follows:

curl	-XPUT	'localhost:9200/blog/article/10'	-d	'{"title":"Test	document"}'

curl	-XPUT	'localhost:9200/blog/article/10'	-d	'{"title":"Updated	test	

document"}'

Because	we’ve	indexed	the	document	with	the	same	identifier,	it	should	have	a	version	2
(you	can	check	it	using	the	GET	request).

Now,	let’s	try	deleting	the	document	we’ve	just	indexed	but	let’s	specify	a	version
property	equal	to	1.	By	doing	this,	we	tell	Elasticsearch	that	we	are	interested	in	deleting
the	document	with	the	provided	version.	Because	the	document	is	a	different	version	now,
Elasticsearch	shouldn’t	allow	indexing	with	version	1.	Let’s	check	if	what	we	say	is	true.
The	command	we	will	use	to	send	the	delete	request	looks	as	follows:

curl	-XDELETE	'localhost:9200/blog/article/10?version=1'

The	response	generated	by	Elasticsearch	should	be	similar	to	the	following	one:

{

		"error"	:	{

				"root_cause"	:	[{

						"type"	:	"version_conflict_engine_exception",

						"reason"	:	"[article][10]:	version	conflict,	current	[2],	provided	

[1]",

						"shard"	:	1,

						"index"	:	"blog"

				}],

				"type"	:	"version_conflict_engine_exception",

				"reason"	:	"[article][10]:	version	conflict,	current	[2],	provided	

[1]",

				"shard"	:	1,

				"index"	:	"blog"

		},

		"status"	:	409

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Optimistic_concurrency_control

}

As	you	can	see,	the	delete	operation	was	not	successful—the	versions	didn’t	match.	If	we
set	the	version	property	to	2,	the	delete	operation	would	be	successful:

curl	-XDELETE	'localhost:9200/blog/article/10?version=2&pretty'

The	response	this	time	will	look	as	follows:

{

		"found"	:	true,

		"_index"	:	"blog",

		"_type"	:	"article",

		"_id"	:	"10",

		"_version"	:	3,

		"_shards"	:	{

				"total"	:	2,

				"successful"	:	1,

				"failed"	:	0

		}

}

This	time	the	delete	operation	has	been	successful	because	the	provided	version	was
proper.

Versioning	from	external	systems
The	very	good	thing	about	Elasticsearch	versioning	capabilities	is	that	we	can	provide	the
version	of	the	document	that	we	would	like	Elasticsearch	to	use.	This	allows	us	to	provide
versions	from	external	data	systems	that	are	our	primary	data	stores.	To	do	this,	we	need
to	provide	an	additional	parameter	during	indexing—version_type=external	and,	of
course,	the	version	itself.	For	example,	if	we	would	like	our	document	to	have	the	12345
version,	we	could	send	a	request	like	this:

curl	-XPUT	'localhost:9200/blog/article/20?

version=12345&version_type=external'	-d	'{"title":"Test	document"}'

The	response	returned	by	Elasticsearch	is	as	follows:

{

		"_index"	:	"blog",

		"_type"	:	"article",

		"_id"	:	"20",

		"_version"	:	12345,

		"_shards"	:	{

				"total"	:	2,

				"successful"	:	1,

				"failed"	:	0

		},

		"created"	:	true

}

We	just	need	to	remember	that,	when	using	version_type=external,	we	need	to	provide
the	version	in	cases	where	we	index	the	document.	In	cases	where	we	would	like	to
change	the	document	and	use	optimistic	locking,	we	need	to	provide	a	version	parameter

www.EBooksWorld.ir

equal	to,	or	higher	than,	the	version	present	in	the	document.

www.EBooksWorld.ir

www.EBooksWorld.ir

Searching	with	the	URI	request	query
Before	getting	into	the	wonderful	world	of	the	Elasticsearch	query	language,	we	would
like	to	introduce	you	to	the	simple	but	pretty	flexible	URI	request	search,	which	allows	us
to	use	a	simple	Elasticsearch	query	combined	with	the	Lucene	query	language.	Of	course,
we	will	extend	our	search	knowledge	using	Elasticsearch	in	Chapter	3,	Searching	Your
Data,	but	for	now	we	will	stick	to	the	simplest	approach.

www.EBooksWorld.ir

Sample	data
For	the	purpose	of	this	section	of	the	book,	we	will	create	a	simple	index	with	two
document	types.	To	do	this,	we	will	run	the	following	six	commands:

curl	-XPOST	'localhost:9200/books/es/1'	-d	'{"title":"Elasticsearch	

Server",	"published":	2013}'

curl	-XPOST	'localhost:9200/books/es/2'	-d	'{"title":"Elasticsearch	Server	

Second	Edition",	"published":	2014}'

curl	-XPOST	'localhost:9200/books/es/3'	-d	'{"title":"Mastering	

Elasticsearch",	"published":	2013}'

curl	-XPOST	'localhost:9200/books/es/4'	-d	'{"title":"Mastering	

Elasticsearch	Second	Edition",	"published":	2015}'

curl	-XPOST	'localhost:9200/books/solr/1'	-d	'{"title":"Apache	Solr	4	

Cookbook",	"published":	2012}'

curl	-XPOST	'localhost:9200/books/solr/2'	-d	'{"title":"Solr	Cookbook	Third	

Edition",	"published":	2015}'

Running	the	preceding	commands	will	create	the	book’s	index	with	two	types:	es	and
solr.	The	title	and	published	fields	will	be	indexed	and	thus,	searchable.

www.EBooksWorld.ir

URI	search
All	queries	in	Elasticsearch	are	sent	to	the	_search	endpoint.	You	can	search	a	single
index	or	multiple	indices,	and	you	can	restrict	your	search	to	a	given	document	type	or
multiple	types.	For	example,	in	order	to	search	our	book’s	index,	we	will	run	the	following
command:

curl	-XGET	'localhost:9200/books/_search?pretty'

The	results	returned	by	Elasticsearch	will	include	all	the	documents	from	our	book’s	index
(because	no	query	has	been	specified)	and	should	look	similar	to	the	following:

{

		"took"	:	3,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	6,

				"max_score"	:	1.0,

				"hits"	:	[{

						"_index"	:	"books",

						"_type"	:	"es",

						"_id"	:	"2",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"Elasticsearch	Server	Second	Edition",

								"published"	:	2014

						}

				},	{

						"_index"	:	"books",

						"_type"	:	"es",

						"_id"	:	"4",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"Mastering	Elasticsearch	Second	Edition",

								"published"	:	2015

						}

				},	{

						"_index"	:	"books",

						"_type"	:	"solr",

						"_id"	:	"2",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"Solr	Cookbook	Third	Edition",

								"published"	:	2015

						}

				},	{

						"_index"	:	"books",

						"_type"	:	"es",

						"_id"	:	"1",

						"_score"	:	1.0,

www.EBooksWorld.ir

						"_source"	:	{

								"title"	:	"Elasticsearch	Server",

								"published"	:	2013

						}

				},	{

						"_index"	:	"books",

						"_type"	:	"solr",

						"_id"	:	"1",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"Apache	Solr	4	Cookbook",

								"published"	:	2012

						}

				},	{

						"_index"	:	"books",

						"_type"	:	"es",

						"_id"	:	"3",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"Mastering	Elasticsearch",

								"published"	:	2013

						}

				}]

		}

}

As	you	can	see,	the	response	has	a	header	that	tells	you	the	total	time	of	the	query	and	the
shards	used	in	the	query	process.	In	addition	to	this,	we	have	documents	matching	the
query—the	top	10	documents	by	default.	Each	document	is	described	by	the	index,	type,
identifier,	score,	and	the	source	of	the	document,	which	is	the	original	document	sent	to
Elasticsearch.

We	can	also	run	queries	against	many	indices.	For	example,	if	we	had	another	index	called
clients,	we	could	also	run	a	single	query	against	these	two	indices	as	follows:

curl	-XGET	'localhost:9200/books,clients/_search?pretty'

We	can	also	run	queries	against	all	the	data	in	Elasticsearch	by	omitting	the	index	names
completely	or	setting	the	queries	to	_all:

curl	-XGET	'localhost:9200/_search?pretty'

curl	-XGET	'localhost:9200/_all/_search?pretty'

In	a	similar	manner,	we	can	also	choose	the	types	we	want	to	use	during	searching.	For
example,	if	we	want	to	search	only	in	the	es	type	in	the	book’s	index,	we	run	a	command
as	follows:

curl	-XGET	'localhost:9200/books/es/_search?pretty'	

Please	remember	that,	in	order	to	search	for	a	given	type,	we	need	to	specify	the	index	or
multiple	indices.	Elasticsearch	allows	us	to	have	quite	a	rich	semantics	when	it	comes	to
choosing	index	names.	If	you	are	interested,	please	refer	to
https://www.elastic.co/guide/en/elasticsearch/reference/current/multi-index.html;	however,
there	is	one	thing	we	would	like	to	point	out.	When	running	a	query	against	multiple

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/multi-index.html

indices,	it	may	happen	that	some	of	them	do	not	exist	or	are	closed.	In	such	cases,	the
ignore_unavailable	property	comes	in	handy.	When	set	to	true,	it	tells	Elasticsearch	to
ignore	unavailable	or	closed	indices.

For	example,	let’s	try	running	the	following	query:

curl	-XGET	'localhost:9200/books,non_existing/_search?pretty'	

The	response	would	be	similar	to	the	following	one:

{

		"error"	:	{

				"root_cause"	:	[{

						"type"	:	"index_missing_exception",

						"reason"	:	"no	such	index",

						"index"	:	"non_existing"

				}],

				"type"	:	"index_missing_exception",

				"reason"	:	"no	such	index",

				"index"	:	"non_existing"

		},

		"status"	:	404

}

Now	let’s	check	what	will	happen	if	we	add	the	ignore_unavailable=true	to	our	request
and	execute	the	following	command:

curl	-XGET	'localhost:9200/books,non_existing/_search?

pretty&ignore_unavailable=true'

In	this	case,	Elasticsearch	would	return	the	results	without	any	error.

Elasticsearch	query	response
Let’s	assume	that	we	want	to	find	all	the	documents	in	our	book’s	index	that	contain	the
elasticsearch	term	in	the	title	field.	We	can	do	this	by	running	the	following	query:

curl	-XGET	'localhost:9200/books/_search?pretty&q=title:elasticsearch'

The	response	returned	by	Elasticsearch	for	the	preceding	request	will	be	as	follows:

{

		"took"	:	37,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.625,

				"hits"	:	[{

						"_index"	:	"books",

						"_type"	:	"es",

						"_id"	:	"1",

						"_score"	:	0.625,

www.EBooksWorld.ir

						"_source"	:	{

								"title"	:	"Elasticsearch	Server",

								"published"	:	2013

						}

				},	{

						"_index"	:	"books",

						"_type"	:	"es",

						"_id"	:	"2",

						"_score"	:	0.5,

						"_source"	:	{

								"title"	:	"Elasticsearch	Server	Second	Edition",

								"published"	:	2014

						}

				},	{

						"_index"	:	"books",

						"_type"	:	"es",

						"_id"	:	"4",

						"_score"	:	0.5,

						"_source"	:	{

								"title"	:	"Mastering	Elasticsearch	Second	Edition",

								"published"	:	2015

						}

				},	{

						"_index"	:	"books",

						"_type"	:	"es",

						"_id"	:	"3",

						"_score"	:	0.19178301,

						"_source"	:	{

								"title"	:	"Mastering	Elasticsearch",

								"published"	:	2013

						}

				}]

		}

}

The	first	section	of	the	response	gives	us	information	about	how	much	time	the	request
took	(the	took	property	is	specified	in	milliseconds),	whether	it	was	timed	out	(the
timed_out	property),	and	information	about	the	shards	that	were	queried	during	the
request	execution—the	number	of	queried	shards	(the	total	property	of	the	_shards
object),	the	number	of	shards	that	returned	the	results	successfully	(the	successful	property
of	the	_shards	object),	and	the	number	of	failed	shards	(the	failed	property	of	the	_shards
object).	The	query	may	also	time	out	if	it	is	executed	for	a	longer	period	than	we	want.
(We	can	specify	the	maximum	query	execution	time	using	the	timeout	parameter.)	The
failed	shard	means	that	something	went	wrong	with	that	shard	or	it	was	not	available
during	the	search	execution.

Of	course,	the	mentioned	information	can	be	useful,	but	usually,	we	are	interested	in	the
results	that	are	returned	in	the	hits	object.	We	have	the	total	number	of	documents	returned
by	the	query	(in	the	total	property)	and	the	maximum	score	calculated	(in	the	max_score
property).	Finally,	we	have	the	hits	array	that	contains	the	returned	documents.	In	our
case,	each	returned	document	contains	its	index	name	(the	_index	property),	the	type	(the
_type	property),	the	identifier	(the	_id	property),	the	score	(the	_score	property),	and	the

www.EBooksWorld.ir

_source	field	(usually,	this	is	the	JSON	object	sent	for	indexing.

www.EBooksWorld.ir

Query	analysis
You	may	wonder	why	the	query	we’ve	run	in	the	previous	section	worked.	We	indexed	the
Elasticsearch	term	and	ran	a	query	for	Elasticsearch	and	even	though	they	differ
(capitalization),	the	relevant	documents	were	found.	The	reason	for	this	is	the	analysis.
During	indexing,	the	underlying	Lucene	library	analyzes	the	documents	and	indexes	the
data	according	to	the	Elasticsearch	configuration.	By	default,	Elasticsearch	will	tell
Lucene	to	index	and	analyze	both	string-based	data	as	well	as	numbers.	The	same	happens
during	querying	because	the	URI	request	query	maps	to	the	query_string	query	(which
will	be	discussed	in	Chapter	3,	Searching	Your	Data),	and	this	query	is	analyzed	by
Elasticsearch.

Let’s	use	the	indices-analyze	API
(https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html).	It
allows	us	to	see	how	the	analysis	process	is	done.	With	this,	we	can	see	what	happened	to
one	of	the	documents	during	indexing	and	what	happened	to	our	query	phrase	during
querying.

In	order	to	see	what	was	indexed	in	the	title	field	of	the	Elasticsearch	server	phrase,	we
will	run	the	following	command:

curl	-XGET	'localhost:9200/books/_analyze?pretty&field=title'	-d	

'Elasticsearch	Server'

The	response	will	be	as	follows:

{

		"tokens"	:	[{

				"token"	:	"elasticsearch",

				"start_offset"	:	0,

				"end_offset"	:	13,

				"type"	:	"<ALPHANUM>",

				"position"	:	0

		},	{

				"token"	:	"server",

				"start_offset"	:	14,

				"end_offset"	:	20,

				"type"	:	"<ALPHANUM>",

				"position"	:	1

		}]

}

You	can	see	that	Elasticsearch	has	divided	the	text	into	two	terms—the	first	one	has	a
token	value	of	elasticsearch	and	the	second	one	has	a	token	value	of	the	server.

Now	let’s	look	at	how	the	query	text	was	analyzed.	We	can	do	this	by	running	the
following	command:

curl	-XGET	'localhost:9200/books/_analyze?pretty&field=title'	-d	

'elasticsearch'

The	response	of	the	request	will	look	as	follows:

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html

{

		"tokens"	:	[{

				"token"	:	"elasticsearch",

				"start_offset"	:	0,

				"end_offset"	:	13,

				"type"	:	"<ALPHANUM>",

				"position"	:	0

		}]

}

We	can	see	that	the	word	is	the	same	as	the	original	one	that	we	passed	to	the	query.	We
won’t	get	into	the	Lucene	query	details	and	how	the	query	parser	constructed	the	query,
but	in	general	the	indexed	term	after	the	analysis	was	the	same	as	the	one	in	the	query
after	the	analysis;	so,	the	document	matched	the	query	and	the	result	was	returned.

www.EBooksWorld.ir

URI	query	string	parameters
There	are	a	few	parameters	that	we	can	use	to	control	URI	query	behavior,	which	we	will
discuss	now.	The	thing	to	remember	is	that	each	parameter	in	the	query	should	be
concatenated	with	the	&	character,	as	shown	in	the	following	example:

curl	-XGET	'localhost:9200/books/_search?

pretty&q=published:2013&df=title&explain=true&default_operator=AND'

Please	remember	to	enclose	the	URL	of	the	request	using	the	'	characters	because,	on
Linux-based	systems,	the	&	character	will	be	analyzed	by	the	Linux	shell.

The	query
The	q	parameter	allows	us	to	specify	the	query	that	we	want	our	documents	to	match.	It
allows	us	to	specify	the	query	using	the	Lucene	query	syntax	described	in	the	Lucene
query	syntax	section	later	in	this	chapter.	For	example,	a	simple	query	would	look	like
this:	q=title:elasticsearch.

The	default	search	field
Using	the	df	parameter,	we	can	specify	the	default	search	field	that	should	be	used	when
no	field	indicator	is	used	in	the	q	parameter.	By	default,	the	_all	field	will	be	used.	(This
is	the	field	that	Elasticsearch	uses	to	copy	the	content	of	all	the	other	fields.	We	will
discuss	this	in	greater	depth	in	Chapter	2,	Indexing	Your	Data).	An	example	of	the	df
parameter	value	can	be	df=title.

Analyzer
The	analyzer	property	allows	us	to	define	the	name	of	the	analyzer	that	should	be	used	to
analyze	our	query.	By	default,	our	query	will	be	analyzed	by	the	same	analyzer	that	was
used	to	analyze	the	field	contents	during	indexing.

The	default	operator	property
The	default_operator	property	that	can	be	set	to	OR	or	AND,	allows	us	to	specify	the
default	Boolean	operator	used	for	our	query
(http://en.wikipedia.org/wiki/Boolean_algebra).	By	default,	it	is	set	to	OR,	which	means
that	a	single	query	term	match	will	be	enough	for	a	document	to	be	returned.	Setting	this
parameter	to	AND	for	a	query	will	result	in	returning	the	documents	that	match	all	the	query
terms.

Query	explanation
If	we	set	the	explain	parameter	to	true,	Elasticsearch	will	include	additional	explain
information	with	each	document	in	the	result—such	as	the	shard	from	which	the	document
was	fetched	and	the	detailed	information	about	the	scoring	calculation	(we	will	talk	more
about	it	in	the	Understanding	the	explain	information	section	in	Chapter	6,	Make	Your
Search	Better).	Also	remember	not	to	fetch	the	explain	information	during	normal	search
queries	because	it	requires	additional	resources	and	adds	performance	degradation	to	the
queries.	For	example,	a	query	that	includes	explain	information	could	look	as	follows:

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Boolean_algebra

curl	-XGET	'localhost:9200/books/_search?pretty&explain=true&q=title:solr'

The	results	returned	by	Elasticsearch	for	the	preceding	query	would	be	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	2,

				"max_score"	:	0.70273256,

				"hits"	:	[{

						"_shard"	:	2,

						"_node"	:	"v5iRsht9SOWVzu-GY-YHlA",

						"_index"	:	"books",

						"_type"	:	"solr",

						"_id"	:	"2",

						"_score"	:	0.70273256,

						"_source"	:	{

								"title"	:	"Solr	Cookbook	Third	Edition",

								"published"	:	2015

						},

						"_explanation"	:	{

								"value"	:	0.70273256,

								"description"	:	"weight(title:solr	in	0)	[PerFieldSimilarity],	

result	of:",

								"details"	:	[{

										"value"	:	0.70273256,

										"description"	:	"fieldWeight	in	0,	product	of:",

										"details"	:	[{

												"value"	:	1.0,

												"description"	:	"tf(freq=1.0),	with	freq	of:",

												"details"	:	[{

														"value"	:	1.0,

														"description"	:	"termFreq=1.0",

														"details"	:	[]

												}]

										},	{

												"value"	:	1.4054651,

												"description"	:	"idf(docFreq=1,	maxDocs=3)",

												"details"	:	[]

										},	{

												"value"	:	0.5,

												"description"	:	"fieldNorm(doc=0)",

												"details"	:	[]

										}]

								}]

						}

				},	{

						"_shard"	:	3,

						"_node"	:	"v5iRsht9SOWVzu-GY-YHlA",

						"_index"	:	"books",

www.EBooksWorld.ir

						"_type"	:	"solr",

						"_id"	:	"1",

						"_score"	:	0.5,

						"_source"	:	{

								"title"	:	"Apache	Solr	4	Cookbook",

								"published"	:	2012

						},

						"_explanation"	:	{

								"value"	:	0.5,

								"description"	:	"weight(title:solr	in	1)	[PerFieldSimilarity],	

result	of:",

								"details"	:	[{

										"value"	:	0.5,

										"description"	:	"fieldWeight	in	1,	product	of:",

										"details"	:	[{

												"value"	:	1.0,

												"description"	:	"tf(freq=1.0),	with	freq	of:",

												"details"	:	[{

														"value"	:	1.0,

														"description"	:	"termFreq=1.0",

														"details"	:	[]

												}]

										},	{

												"value"	:	1.0,

												"description"	:	"idf(docFreq=1,	maxDocs=2)",

												"details"	:	[]

										},	{

												"value"	:	0.5,

												"description"	:	"fieldNorm(doc=1)",

												"details"	:	[]

										}]

								}]

						}

				}]

		}

}

The	fields	returned
By	default,	for	each	document	returned,	Elasticsearch	will	include	the	index	name,	the
type	name,	the	document	identifier,	score,	and	the	_source	field.	We	can	modify	this
behavior	by	adding	the	fields	parameter	and	specifying	a	comma-separated	list	of	field
names.	The	field	will	be	retrieved	from	the	stored	fields	(if	they	exist;	we	will	discuss
them	in	Chapter	2,	Indexing	Your	Data)	or	from	the	internal	_source	field.	By	default,	the
value	of	the	fields	parameter	is	_source.	An	example	is:	fields=title,priority.

We	can	also	disable	the	fetching	of	the	_source	field	by	adding	the	_source	parameter
with	its	value	set	to	false.

Sorting	the	results
Using	the	sort	parameter,	we	can	specify	custom	sorting.	The	default	behavior	of
Elasticsearch	is	to	sort	the	returned	documents	in	descending	order	of	the	value	of	the
_score	field.	If	we	want	to	sort	our	documents	differently,	we	need	to	specify	the	sort

www.EBooksWorld.ir

parameter.	For	example,	adding	sort=published:desc	will	sort	the	documents	in
descending	order	of	published	field.	By	adding	the	sort=published:asc	parameter,	we
will	tell	Elasticsearch	to	sort	the	documents	on	the	basis	of	the	published	field	in
ascending	order.

If	we	specify	custom	sorting,	Elasticsearch	will	omit	the	_score	field	calculation	for	the
documents.	This	may	not	be	the	desired	behavior	in	your	case.	If	you	want	to	still	keep	a
track	of	the	scores	for	each	document	when	using	a	custom	sort,	you	should	add	the
track_scores=true	property	to	your	query.	Please	note	that	tracking	the	scores	when
doing	custom	sorting	will	make	the	query	a	little	bit	slower	(you	may	not	even	notice	the
difference)	due	to	the	processing	power	needed	to	calculate	the	score.

The	search	timeout
By	default,	Elasticsearch	doesn’t	have	timeout	for	queries,	but	you	may	want	your	queries
to	timeout	after	a	certain	amount	of	time	(for	example,	5	seconds).	Elasticsearch	allows
you	to	do	this	by	exposing	the	timeout	parameter.	When	the	timeout	parameter	is
specified,	the	query	will	be	executed	up	to	a	given	timeout	value	and	the	results	that	were
gathered	up	to	that	point	will	be	returned.	To	specify	a	timeout	of	5	seconds,	you	will	have
to	add	the	timeout=5s	parameter	to	your	query.

The	results	window
Elasticsearch	allows	you	to	specify	the	results	window	(the	range	of	documents	in	the
results	list	that	should	be	returned).	We	have	two	parameters	that	allow	us	to	specify	the
results	window	size:	size	and	from.	The	size	parameter	defaults	to	10	and	defines	the
maximum	number	of	results	returned.	The	from	parameter	defaults	to	0	and	specifies	from
which	document	the	results	should	be	returned.	In	order	to	return	five	documents	starting
from	the	11th	one,	we	will	add	the	following	parameters	to	the	query:	size=5&from=10.

Limiting	per-shard	results
Elasticsearch	allows	us	to	specify	the	maximum	number	of	documents	that	should	be
fetched	from	each	shard	using	terminate_after	property	and	specifying	the	maximum
number	of	documents.	For	example,	if	we	want	to	get	no	more	than	100	documents	from
each	shard,	we	can	add	terminate_after=100	to	our	URI	request.

Ignoring	unavailable	indices
When	running	queries	against	multiple	indices,	it	is	handy	to	tell	Elasticsearch	that	we
don’t	care	about	the	indices	that	are	not	available.	By	default,	Elasticsearch	will	throw	an
error	if	one	of	the	indices	is	not	available,	but	we	can	change	this	by	simply	adding	the
ignore_unavailable=true	parameter	to	our	URI	request.

The	search	type
The	URI	query	allows	us	to	specify	the	search	type	using	the	search_type	parameter,
which	defaults	to	query_then_fetch.	Two	values	that	we	can	use	here	are:
dfs_query_then_fetch	and	query_then_fetch.	The	rest	of	the	search	types	available	in
older	Elasticsearch	versions	are	now	deprecated	or	removed.	We’ll	learn	more	about

www.EBooksWorld.ir

search	types	in	the	Understanding	the	querying	process	section	of	Chapter	3,	Searching
Your	Data.

Lowercasing	term	expansion
Some	queries,	such	as	the	prefix	query,	use	query	expansion.	We	will	discuss	this	in	the
Query	rewrite	section	in	Chapter	4,	Extending	Your	Querying	Knowledge.	We	are	allowed
to	define	whether	the	expanded	terms	should	be	lowercased	or	not	using	the
lowercase_expanded_terms	property.	By	default,	the	lowercase_expanded_terms
property	is	set	to	true,	which	means	that	the	expanded	terms	will	be	lowercased.

Wildcard	and	prefix	analysis
By	default,	wildcard	queries	and	prefix	queries	are	not	analyzed.	If	we	want	to	change	this
behavior,	we	can	set	the	analyze_wildcard	property	to	true.

Note
If	you	want	to	see	all	the	parameters	exposed	by	Elasticsearch	as	the	URI	request
parameters,	please	refer	to	the	official	documentation	available	at:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html

Lucene	query	syntax
We	thought	that	it	would	be	good	to	know	a	bit	more	about	what	syntax	can	be	used	in	the
q	parameter	passed	in	the	URI	query.	Some	of	the	queries	in	Elasticsearch	(such	as	the	one
currently	being	discussed)	support	the	Lucene	query	parser	syntax—the	language	that
allows	you	to	construct	queries.	Let’s	take	a	look	at	it	and	discuss	some	basic	features.

A	query	that	we	pass	to	Lucene	is	divided	into	terms	and	operators	by	the	query	parser.
Let’s	start	with	the	terms;	you	can	distinguish	them	into	two	types—single	terms	and
phrases.	For	example,	to	query	for	a	book	term	in	the	title	field,	we	will	pass	the
following	query:

title:book

To	query	for	the	elasticsearch	book	phrase	in	the	title	field,	we	will	pass	the	following
query:

title:"elasticsearch	book"

You	may	have	noticed	the	name	of	the	field	in	the	beginning	and	in	the	term	or	the	phrase
later.

As	we	already	said,	the	Lucene	query	syntax	supports	operators.	For	example,	the	+
operator	tells	Lucene	that	the	given	part	must	be	matched	in	the	document,	meaning	that
the	term	we	are	searching	for	must	present	in	the	field	in	the	document.	The	-	operator	is
the	opposite,	which	means	that	such	a	part	of	the	query	can’t	be	present	in	the	document.
A	part	of	the	query	without	the	+	or	-	operator	will	be	treated	as	the	given	part	of	the	query
that	can	be	matched	but	it	is	not	mandatory.	So,	if	we	want	to	find	a	document	with	the
book	term	in	the	title	field	and	without	the	cat	term	in	the	description	field,	we	send	the
following	query:

+title:book	-description:cat

We	can	also	group	multiple	terms	with	parentheses,	as	shown	in	the	following	query:

title:(crime	punishment)

We	can	also	boost	parts	of	the	query	(this	increases	their	importance	for	the	scoring
algorithm	—the	higher	the	boost,	the	more	important	the	query	part	is)	with	the	^	operator
and	the	boost	value	after	it,	as	shown	in	the	following	query:

title:book^4

These	are	the	basics	of	the	Lucene	query	language	and	should	allow	you	to	use
Elasticsearch	and	construct	queries	without	any	problems.	However,	if	you	are	interested
in	the	Lucene	query	syntax	and	you	would	like	to	explore	that	in	depth,	please	refer	to	the
official	documentation	of	the	query	parser	available	at
http://lucene.apache.org/core/5_4_0/queryparser/org/apache/lucene/queryparser/classic/package-
summary.html.

www.EBooksWorld.ir

http://lucene.apache.org/core/5_4_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html

www.EBooksWorld.ir

Summary
In	this	chapter,	we	learned	what	full	text	search	is	and	the	contribution	Apache	Lucene
makes	to	this.	In	addition	to	this,	we	are	now	familiar	with	the	basic	concepts	of
Elasticsearch	and	its	top-level	architecture.	We	used	the	Elasticsearch	REST	API	not	only
to	index	data,	but	also	to	update,	retrieve,	and	finally	delete	it.	We’ve	learned	what
versioning	is	and	how	we	can	use	it	for	optimistic	locking	in	Elasticsearch.	Finally,	we
searched	our	data	using	the	simple	URI	query.

In	the	next	chapter,	we’ll	focus	on	indexing	our	data.	We	will	see	how	Elasticsearch
indexing	works	and	what	the	role	of	primary	shards	and	replicas	is.	We’ll	see	how
Elasticsearch	handles	data	that	it	doesn’t	know	and	how	to	create	our	own	mappings—the
JSON	structure	that	describes	the	structure	of	our	index.	We’ll	also	learn	how	to	use	batch
indexing	to	speed	up	the	indexing	process	and	what	additional	information	can	be	stored
along	with	our	index	to	help	us	achieve	our	goal.	In	addition,	we	will	discuss	what	an
index	segment	is,	what	segment	merging	is,	and	how	to	tune	a	segment.	Finally,	we’ll	see
how	routing	works	in	Elasticsearch	and	what	options	we	have	when	it	comes	to	both
indexing	and	querying	routing.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	2.	Indexing	Your	Data
In	the	previous	chapter,	we	learned	what	full	text	search	is	and	how	Apache	Lucene	fits
there.	We	were	introduced	to	the	basic	concepts	of	Elasticsearch	and	we	are	now	familiar
with	its	top-level	architecture,	so	we	know	how	it	works.	We	used	the	REST	API	to	index
data,	to	update	it,	to	delete	it,	and	of	course	to	retrieve	it.	We	searched	our	data	with	the
simple	URI	query	and	we	used	versioning	that	allowed	us	to	use	optimistic	locking
functionality.	By	the	end	of	this	chapter,	you	will	have	learned	the	following	topics:

Basic	information	about	Elasticsearch	indexing
Adjusting	Elasticsearch	schema-less	behavior
Creating	your	own	mappings
Using	out	of	the	box	analyzers
Configuring	your	own	analyzers
Index	data	in	batches
Adding	additional	internal	information	to	indices
Segment	merging
Routing

www.EBooksWorld.ir

Elasticsearch	indexing
So	far	we	have	our	Elasticsearch	cluster	up	and	running.	We	also	know	how	to	use
Elasticsearch	REST	API	to	index	our	data,	we	know	how	to	retrieve	it,	and	we	also	know
how	to	remove	the	data	that	we	no	longer	need.	We’ve	also	learned	how	to	search	in	our
data	by	using	the	URI	request	search	and	Apache	Lucene	query	language.	However,	until
now	we’ve	used	Elasticsearch	functionality	that	allows	us	not	to	care	about	indices,
shards,	and	data	structure.	This	is	not	something	that	you	may	be	used	to	when	you	are
coming	from	the	world	of	SQL	databases,	where	you	need	the	database	and	the	tables	with
all	the	columns	created	upfront.	In	general,	you	needed	to	describe	the	data	structure	to	be
able	to	put	data	into	the	database.	Elasticsearch	is	schema-less	and	by	default	creates
indices	automatically	and	because	of	that	we	can	just	install	it	and	index	data	without	the
need	of	any	preparations.	However,	this	is	usually	not	the	best	situation	when	it	comes	to
production	environments	where	you	want	to	control	the	analysis	of	your	data.	Because	of
that	we	will	start	with	showing	you	how	to	manage	your	indices	and	then	we	will	get	you
through	the	world	of	mappings	in	Elasticsearch.

www.EBooksWorld.ir

Shards	and	replicas
In	Chapter	1,	Getting	Started	with	Elasticsearch	Cluster,	we	told	you	that	indices	in
Elasticsearch	are	built	from	one	or	more	shards.	Each	of	those	shards	contains	part	of	the
document	set	and	each	shard	is	a	separate	Lucene	index.	In	addition	to	that,	each	shard	can
have	replicas	–	physical	copies	of	the	primary	shard	itself.	When	we	create	an	index,	we
can	tell	Elasticsearch	how	many	shards	it	should	be	built	from.

Note
The	default	number	of	shards	that	Elasticsearch	uses	is	5	and	each	index	will	also	contain
a	single	replica.	The	default	configuration	can	be	changed	by	setting	the
index.number_of_shards	and	index.number_of_replicas	properties	in	the
elasticsearch.yml	configuration	file.

When	defaults	are	used,	we	will	end	up	with	five	Apache	Lucene	indices	that	our
Elasticsearch	index	is	built	of	and	one	replica	for	each	of	those.	So,	with	five	shards	and
one	replica,	we	would	actually	get	10	shards.	This	is	because	each	shard	would	get	its	own
copy,	so	the	total	number	of	shards	in	the	cluster	would	be	10.

Dividing	indices	in	such	a	way	allows	us	to	spread	the	shards	across	the	cluster.	The	nice
thing	about	that	is	that	all	the	shards	will	be	automatically	spread	throughout	the	cluster.	If
we	have	a	single	node,	Elasticsearch	will	put	the	five	primary	shards	on	that	node	and	will
leave	the	replicas	unassigned,	because	Elasticsearch	doesn’t	assign	shards	and	their
replicas	to	the	same	node.	The	reason	for	that	is	simple	–	if	a	node	would	crash,	we	would
lose	both	the	primary	source	of	the	data	and	all	the	copies.	So,	if	you	have	one
Elasticsearch	node,	don’t	worry	about	replicas	not	being	assigned	–	it	is	something	to	be
expected.	Of	course	when	you	have	enough	nodes	for	Elasticsearch	to	assign	all	the
replicas	(in	addition	to	shards),	it	is	not	good	to	not	have	them	assigned	and	you	should
look	for	the	probable	causes	of	that	situation.

The	thing	to	remember	is	that	having	shards	and	replicas	is	not	free.	First	of	all,	each
replica	needs	additional	disk	space,	exactly	the	same	amount	of	space	that	the	original
shard	needs.	So	if	we	have	3	replicas	for	our	index,	we	will	actually	need	4	times	more
space.	If	our	primary	shard	weighs	100GB	in	total,	with	3	replicas	we	would	need	400GB
–	100GB	for	each	replica.	However,	this	is	not	the	only	cost.	Each	replica	is	a	Lucene
index	on	its	own	and	Elasticsearch	needs	some	memory	to	handle	that.	The	more	shards	in
the	cluster,	the	more	memory	is	being	used.	And	finally,	having	replicas	means	that	we
will	have	to	do	indexation	on	each	of	the	replica,	in	addition	to	the	indexation	on	the
primary	shard.	There	is	a	notion	of	shadow	replicas	which	can	copy	the	whole	binary
index,	but,	in	most	cases,	each	replica	will	do	its	own	indexation.	The	good	thing	about
replicas	is	that	Elasticsearch	will	try	to	spread	the	query	and	get	requests	evenly	between
the	shards	and	their	replicas,	which	means	that	we	can	scale	our	cluster	horizontally	by
using	them.

So	to	sum	up	the	conclusions:

Having	more	shards	in	the	index	allows	us	to	spread	the	index	between	more	servers

www.EBooksWorld.ir

and	parallelize	the	indexing	operations	and	thus	have	better	indexing	throughput.
Depending	on	your	deployment,	having	more	shards	may	increase	query	throughput
and	lower	queries	latency	–	especially	in	environments	that	don’t	have	a	large
number	of	queries	per	second.
Having	more	shards	may	be	slower	compared	to	a	single	shard	query,	because
Elasticsearch	needs	to	retrieve	the	data	from	multiple	servers	and	combine	them
together	in	memory,	before	returning	the	final	query	results.
Having	more	replicas	results	in	a	more	resilient	cluster,	because	when	the	primary
shard	is	not	available,	its	copy	will	take	that	role.	Basically,	having	a	single	replica
allows	us	to	lose	one	copy	of	a	shard	and	still	serve	the	whole	data.	Having	two
replicas	allows	us	to	lose	two	copies	of	the	shard	and	still	see	the	whole	data.
The	higher	the	replica	count,	the	higher	queries	throughput	the	cluster	will	have.
That’s	because	each	replica	can	serve	the	data	it	has	independently	from	all	the
others.
The	higher	number	of	shards	(both	primary	and	replicas)	will	result	in	more	memory
needed	by	Elasticsearch.

Of	course,	these	are	not	the	only	relationships	between	the	number	of	shards	and	replicas
in	Elasticsearch.	We	will	talk	about	most	of	them	later	in	the	book.

So,	how	many	shards	and	replicas	should	we	have	for	our	indices?	That	depends.	We
believe	that	the	defaults	are	quite	good	but	nothing	can	replace	a	good	test.	Note	that	the
number	of	replicas	is	not	very	important	because	you	can	adjust	it	on	a	live	cluster	after
index	creation.	You	can	remove	and	add	them	if	you	want	and	have	the	resources	to	run
them.	Unfortunately,	this	is	not	true	when	it	comes	to	the	number	of	shards.	Once	you
have	your	index	created,	the	only	way	to	change	the	number	of	shards	is	to	create	another
index	and	re-index	your	data.

Write	consistency
Elasticsearch	allows	us	to	control	the	write	consistency	to	prevent	writes	happening	when
they	should	not.	By	default,	Elasticsearch	indexing	operation	is	successful	when	the	write
is	successful	on	the	quorum	on	active	shards	–	meaning	50%	of	the	active	shards	plus	one.
We	can	control	this	behavior	by	adding	action.write_consitency	to	our
elasticsearch.yml	file	or	by	adding	the	consistency	parameter	to	our	index	request.	The
mentioned	properties	can	take	the	following	values:

quorum:	The	default	value,	requiring	50%	plus	1	active	shards	to	be	successful	for	the
index	operation	to	succeed
one:	Requires	only	a	single	active	shard	to	be	successful	for	the	index	operation	to
succeed
all:	Requires	all	the	active	shards	to	be	successful	for	the	index	operation	to	succeed

www.EBooksWorld.ir

Creating	indices
When	we	were	indexing	our	documents	in	Chapter	1,	Getting	Started	with	Elasticsearch
Cluster,	we	didn’t	care	about	index	creation	at	all.	We	assumed	that	Elasticsearch	will	do
everything	for	us	and	actually	it	was	true;	we	just	used	the	following	command:

curl	-XPUT	'http://localhost:9200/blog/article/1'	-d	'{"title":	"New	

version	of	Elasticsearch	released!",	"content":	"Version	1.0	released	

today!",	"tags":	["announce",	"elasticsearch",	"release"]	}'

This	is	just	fine.	If	such	an	index	does	not	exist,	Elasticsearch	automatically	creates	the
index	for	us.	However,	there	are	times	when	we	want	to	create	indices	ourselves	for
various	reasons.	Maybe	we	would	like	to	have	control	over	which	indices	are	created	to
avoid	errors	or	maybe	we	have	some	non	default	settings	that	we	would	like	to	use	when
creating	a	particular	index.	The	reasons	may	differ,	but	it’s	good	to	know	that	we	can
create	indices	without	indexing	documents.

The	simplest	way	to	create	an	index	is	to	run	a	PUT	HTTP	request	with	the	name	of	the
index	we	want	to	create.	For	example,	to	create	an	index	called	blog,	we	could	use	the
following	command:

curl	-XPUT	http://localhost:9200/blog/

We	just	told	Elasticsearch	that	we	want	to	create	the	index	with	the	name	blog.	If
everything	goes	right,	you	will	see	the	following	response	from	Elasticsearch:

{"acknowledged":true}

Altering	automatic	index	creation
We	already	mentioned	that	automatic	index	creation	is	not	the	best	idea	in	some	cases.	For
example,	a	simple	typo	during	index	creation	can	lead	to	creating	hundreds	of	unused
indices	and	make	cluster	state	information	larger	than	it	should	be,	putting	more	pressure
on	Elasticsearch	and	the	underlying	JVM.	Because	of	that,	we	can	turn	off	automatic
index	creation	by	adding	a	simple	property	to	the	elasticsearch.yml	configuration	file:

action.auto_create_index:	false

Let’s	stop	for	a	while	and	discuss	the	action.auto_create_index	property,	because	it
allows	us	to	do	more	complicated	things	than	just	allowing	(setting	it	to	true)	and
disabling	(setting	it	to	false)	automatic	index	creation.	The	mentioned	property	allows	us
to	use	patterns	that	specify	the	index	names	which	should	be	allowed	to	be	automatically
created	and	which	should	be	disallowed.	For	example,	let’s	assume	that	we	would	like	to
allow	automatic	index	creation	for	indices	starting	with	logs	and	we	would	like	to	disallow
all	the	others.	To	do	something	like	this,	we	would	set	the	action.auto_create_index
property	to	something	as	follows:

action.auto_create_index:	+logs*,-*

Now	if	we	would	like	to	create	an	index	called	logs_2015-10-01,	we	would	succeed.	To
create	such	an	index,	we	would	use	the	following	command:

www.EBooksWorld.ir

curl	-XPUT	http://localhost:9200/logs_2015-10-01/log/1	-d	'{"message":	

"Test	log	message"	}'

Elasticsearch	would	respond	with:

{

		"_index"	:	"logs_2015-10-01",

		"_type"	:	"log",

		"_id"	:	"1",

		"_version"	:	1,

		"_shards"	:	{

				"total"	:	2,

				"successful"	:	1,

				"failed"	:	0

		},

		"created"	:	true

}

However,	suppose	we	now	try	to	create	the	blog	using	the	following	command:

curl	-XPUT	http://localhost:9200/blog/article/1	-d	'{"title":	"Test	article	

title"	}'

Elasticsearch	would	respond	with	an	error	similar	to	the	following	one:

{

		"error"	:	{

				"root_cause"	:	[{

						"type"	:	"index_not_found_exception",

						"reason"	:	"no	such	index",

						"resource.type"	:	"index_expression",

						"resource.id"	:	"blog",

						"index"	:	"blog"

				}],

				"type"	:	"index_not_found_exception",

				"reason"	:	"no	such	index",

				"resource.type"	:	"index_expression",

				"resource.id"	:	"blog",

				"index"	:	"blog"

		},

		"status"	:	404

}

One	thing	to	remember	is	that	the	order	of	pattern	definitions	matters.	Elasticsearch
checks	the	patterns	up	to	the	first	pattern	that	matches,	so	if	we	move	-*	as	the	first
pattern,	the	+logs*	pattern	won’t	be	used	at	all.

Settings	for	a	newly	created	index
Manual	index	creation	is	also	necessary	when	we	want	to	pass	non	default	configuration
options	during	index	creation;	for	example,	initial	number	of	shards	and	replicas.	We	can
do	that	by	including	JSON	payload	with	settings	as	the	PUT	HTTP	request	body.	For
example,	if	we	would	like	to	tell	Elasticsearch	that	our	blog	index	should	only	have	a
single	shard	and	two	replicas	initially,	the	following	command	could	be	used:

curl	-XPUT	http://localhost:9200/blog/	-d	'{

www.EBooksWorld.ir

				"settings"	:	{

								"number_of_shards"	:	1,

								"number_of_replicas"	:	2

				}

}'

The	preceding	command	will	result	in	the	creation	of	the	blog	index	with	one	shard	and
two	replicas,	making	a	total	of	three	physical	Lucene	indices	–	called	shards	as	we	already
know.	Of	course	there	are	a	lot	more	settings	that	we	can	use,	but	what	we	did	is	enough
for	now	and	we	will	learn	about	the	rest	throughout	the	book.

Index	deletion
Of	course,	similar	to	how	we	handled	documents,	Elasticsearch	allows	us	to	delete	indices
as	well.	Deleting	an	index	is	very	similar	to	creating	it,	but	instead	of	using	the	PUT	HTTP
method,	we	use	the	DELETE	one.	For	example,	if	we	would	like	to	delete	our	previously
created	blog	index,	we	would	run	the	following	command:

curl	-XDELETE	http://localhost:9200/blog

The	response	will	be	the	same	as	the	one	we	saw	earlier	when	we	created	an	index	and
should	look	as	follows:

{"acknowledged":true}

Now	that	we	know	what	an	index	is,	how	to	create	it,	and	how	to	delete	it,	we	are	ready	to
create	indices	with	the	mappings	we	have	defined.	Even	though	Elasticsearch	is	schema–
less,	there	are	a	lot	of	situations	where	we	would	like	to	manually	create	the	schema,	to
avoid	any	problems	with	the	index	structure.

www.EBooksWorld.ir

www.EBooksWorld.ir

Mappings	configuration
If	you	are	used	to	SQL	databases,	you	may	know	that	before	you	can	start	inserting	the
data	in	the	database,	you	need	to	create	a	schema,	which	will	describe	what	your	data
looks	like.	Although	Elasticsearch	is	a	schema-less	(we	rather	call	it	data	driven	schema)
search	engine	and	can	figure	out	the	data	structure	on	the	fly,	we	think	that	controlling	the
structure	and	thus	defining	it	ourselves	is	a	better	way.	The	field	type	determining
mechanism	is	not	going	to	guess	the	future.	For	example,	if	you	first	send	an	integer
value,	such	as	60,	and	you	send	a	float	value	such	as	70.23	for	the	same	field,	an	error
can	happen	or	Elasticsearch	will	just	cut	off	the	decimal	part	of	the	float	value	(which	is
actually	what	happens).	This	is	because	Elasticsearch	will	first	set	the	field	type	to	integer
and	will	try	to	index	the	float	value	to	the	integer	field	which	will	cause	cutting	of	the
decimal	point	in	the	floating	point	number.	In	the	next	few	pages	you’ll	see	how	to	create
mappings	that	suit	your	needs	and	match	your	data	structure.

Note
Note	that	we	didn’t	include	all	the	information	about	the	available	types	in	this	chapter
and	some	features	of	Elasticsearch,	such	as	nested	type,	parent-child	handling,	storing
geographical	points,	and	search,	are	described	in	the	following	chapters	of	this	book.

www.EBooksWorld.ir

Type	determining	mechanism
Before	we	start	describing	how	to	create	mappings	manually,	we	want	to	get	back	to	the
automatic	type	determining	algorithm	used	in	Elasticsearch.	As	we	already	said,
Elasticsearch	can	try	guessing	the	schema	for	our	documents	by	looking	at	the	JSON	that
the	document	is	built	from.	Because	JSON	is	structured,	that	seems	easy	to	do.	For
example,	strings	are	surrounded	by	quotation	marks,	Booleans	are	defined	using	specific
words,	and	numbers	are	just	a	few	digits.	This	is	a	simple	trick,	but	it	usually	works.	For
example,	let’s	look	at	the	following	document:

{

		"field1":	10,

		"field2":	"10"

}

The	preceding	document	has	two	fields.	The	field1	field	will	be	given	a	type	number	(to
be	precise,	that	field	will	be	given	a	long	type).	The	second	field,	called	field2	will	be
given	a	string	type,	because	it	is	surrounded	by	quotation	marks.	Of	course,	for	some	use
cases	this	can	be	the	desired	behavior.	However,	if	somehow	we	would	surround	all	the
data	using	quotation	mark	(which	is	not	the	best	idea	anyway)	our	index	structure	would
contain	only	string	type	fields.

Note
Don’t	worry	about	the	fact	that	you	are	not	familiar	with	what	are	the	numeric	types,	the
string	types,	and	so	on.	We	will	describe	them	after	we	show	you	what	you	can	do	to	tune
the	automatic	type	determining	mechanism	in	Elasticsearch.

Disabling	the	type	determining	mechanism
The	first	solution	is	to	completely	disable	the	schema-less	behavior	in	Elasticsearch.	We
can	do	that	by	adding	the	index.mapper.dynamic	property	to	our	index	properties	and
setting	it	to	false.	We	can	do	that	by	running	the	following	command	to	create	the	index:

curl	-XPUT	'localhost:9200/sites'	-d	'{

		"index.mapper.dynamic":	false

}'

By	doing	that	we	told	Elasticsearch	that	we	don’t	want	it	to	guess	the	type	of	our
documents	in	the	site’s	index	and	that	we	will	provide	the	mappings	ourselves.	If	we	will
try	indexing	some	example	document	to	the	site’s	index,	we	will	get	the	following	error:

{

		"error"	:	{

				"root_cause"	:	[{

						"type"	:	"type_missing_exception",

						"reason"	:	"type[[doc,	trying	to	auto	create	mapping,	but	dynamic	

mapping	is	disabled]]	missing",

						"index"	:	"sites"

				}],

				"type"	:	"type_missing_exception",

				"reason"	:	"type[[doc,	trying	to	auto	create	mapping,	but	dynamic	

www.EBooksWorld.ir

mapping	is	disabled]]	missing",

				"index"	:	"sites"

		},

		"status"	:	404

}

This	is	because	we	didn’t	create	any	mappings	–	no	schema	for	documents	was	created.
Elasticsearch	couldn’t	create	one	for	us	because	we	didn’t	allow	it	and	the	indexation
command	failed.

Of	course	this	is	not	the	only	thing	we	can	do	when	it	comes	to	configuring	how	the	type
determining	mechanism	works.	We	can	also	tune	it	or	disable	it	for	a	given	type	on	the
object	level.	We	will	talk	about	the	second	case	in	Chapter	5,	Extending	Your	Index
Structure.	For	now,	let’s	look	at	the	possibilities	of	tuning	type	determining	mechanism	in
Elasticsearch.

Tuning	the	type	determining	mechanism	for	numeric	types
One	of	the	solutions	to	the	problems	with	JSON	documents	and	type	guessing	is	that	we
are	not	always	in	control	of	the	data.	The	documents	that	we	are	indexing	can	come	from
multiple	places	and	some	systems	in	our	environment	may	include	quotation	marks	for	all
the	fields	in	the	document.	This	can	lead	to	problems	and	bad	guesses.	Because	of	that,
Elasticsearch	allows	us	to	enable	more	aggressive	fields	value	checking	for	numeric	fields
by	setting	the	numeric_detection	property	to	true	in	the	mappings	definition.	For
example,	let’s	assume	that	we	want	to	create	an	index	called	users	and	we	want	it	to	have
the	user	type	on	which	we	will	want	more	aggressive	numeric	fields	parsing.	To	do	that,
we	will	use	the	following	command:

curl	-XPUT	http://localhost:9200/users/?pretty	-d	'{	

		"mappings"	:	{

				"user":	{

						"numeric_detection"	:	true

				}

		}

}'

Now	let’s	run	the	following	command	to	index	a	single	document	to	the	users	index:

curl	-XPOST	http://localhost:9200/users/user/1	-d	'{"name":	"User	1",	

"age":	"20"}'

Earlier,	with	the	default	settings,	the	age	field	would	be	set	to	string	type.	With	the
numeric_detection	property	set	to	true,	the	type	of	the	age	field	will	be	set	to	long.	We
can	check	that	by	running	the	following	command	(it	will	retrieve	the	mappings	for	all	the
types	in	the	users	index):

curl	-XGET	'localhost:9200/users/_mapping?pretty'

The	preceding	command	should	result	in	the	following	response	returned	by	Elasticsearch:

{

		"users"	:	{

				"mappings"	:	{

www.EBooksWorld.ir

						"user"	:	{

								"numeric_detection"	:	true,

								"properties"	:	{

										"age"	:	{

												"type"	:	"long"

										},

										"name"	:	{

												"type"	:	"string"

										}

								}

						}

				}

		}

}

As	we	can	see,	the	age	field	was	really	set	to	be	of	type	long.

Tuning	the	type	determining	mechanism	for	dates
Another	type	of	data	that	causes	trouble	are	fields	with	dates.	Dates	can	come	in	different
flavors,	for	example,	2015-10-01	11:22:33	is	a	proper	date	and	so	is	2015-10-
01T11:22:33+00.	Because	of	that,	Elasticsearch	tries	to	match	the	fields	to	timestamps	or
strings	that	match	some	given	date	format.	If	that	matching	operation	is	successful,	the
field	is	treated	as	a	date	based	one.	If	we	know	how	our	date	fields	look,	we	can	help
Elasticsearch	by	providing	a	list	of	recognized	date	formats	using	the
dynamic_date_formats	property,	which	allows	us	to	specify	the	formats	array.	Let’s	look
at	the	following	command	for	creating	an	index:

curl	-XPUT	'http://localhost:9200/blog/'	-d	'{	

		"mappings"	:	{

				"article"	:	{

						"dynamic_date_formats"	:	["yyyy-MM-dd	hh:mm"]

				}

		}

}'

The	preceding	command	will	result	in	the	creation	of	an	index	called	blog	with	the	single
type	called	article.	We’ve	also	used	the	dynamic_date_formats	property	with	a	single
date	format	that	will	result	in	Elasticsearch	using	the	date	core	type	(refer	to	the	Core
types	section	in	this	chapter	for	more	information	about	field	types)	for	fields	matching
the	defined	format.	Elasticsearch	uses	the	joda-time	library	to	define	the	date	formats,	so
visit	http://joda-time.sourceforge.net/api-
release/org/joda/time/format/DateTimeFormat.html	if	you	are	interested	in	knowing	about
them.

Note
Remember	that	the	dynamic_date_format	property	accepts	an	array	of	values.	That	means
that	we	can	handle	several	date	formats	simultaneously.

With	the	preceding	index,	we	can	now	try	indexing	a	new	document	using	the	following
command:

www.EBooksWorld.ir

http://joda-time.sourceforge.net/api-release/org/joda/time/format/DateTimeFormat.html

curl	-XPUT	localhost:9200/blog/article/1	-d	'{"name":	"Test",	

"test_field":"2015-10-01	11:22"}'

Elasticsearch	will	of	course	index	that	document,	but	let’s	look	at	the	mappings	created	for
our	index:

curl	-XGET	'localhost:9200/blog/_mapping?pretty'

The	response	for	the	preceding	command	will	be	as	follows:

{

		"blog"	:	{

				"mappings"	:	{

						"article"	:	{

								"dynamic_date_formats"	:	["yyyy-MM-dd	hh:mm"],

								"properties"	:	{

										"name"	:	{

												"type"	:	"string"

										},

										"test_field"	:	{

												"type"	:	"date",

												"format"	:	"yyyy-MM-dd	hh:mm"

										}

								}

						}

				}

		}

}

As	we	can	see,	the	test_field	field	was	given	a	date	type,	so	our	tuning	works.

Unfortunately,	the	problem	still	exists	if	we	want	the	Boolean	type	to	be	guessed.	There	is
no	option	to	force	the	guessing	of	Boolean	types	from	the	text.	In	such	cases,	when	a
change	of	source	format	is	impossible,	we	can	only	define	the	field	directly	in	the
mappings	definition.

www.EBooksWorld.ir

Index	structure	mapping
Each	data	has	its	own	structure	–	some	are	very	simple,	and	some	include	complicated
object	relations,	children	documents,	and	nested	properties.	In	each	case,	we	need	to	have
a	schema	in	Elasticsearch	called	mappings	that	define	how	the	data	looks.	Of	course,	we
can	use	the	schema-less	nature	of	Elasticsearch,	but	we	can	and	we	usually	want	to
prepare	the	mappings	upfront,	so	we	know	how	the	data	is	handled.

For	the	purposes	of	this	chapter,	we	will	use	a	single	type	in	the	index.	Of	course,
Elasticsearch	as	a	multitenant	system	allows	us	to	have	multiple	types	in	a	single	index,
but	we	want	to	simplify	the	example,	to	make	it	easier	to	understand.	So,	for	the	purpose
of	the	next	few	pages,	we	will	create	an	index	called	posts	that	will	hold	data	for
documents	in	a	post	type.	We	also	assume	that	the	index	will	hold	the	following
information:

Unique	identifier	of	the	blog	post
Name	of	the	blog	post
Publication	date
Contents	–	text	of	the	post	itself

In	Elasticsearch,	mappings,	as	with	almost	all	communication,	are	sent	as	JSON	objects	in
the	request	body.	So,	if	we	want	to	create	the	simplest	mappings	that	matches	our	need,	it
will	look	as	follows	(we	stored	the	mappings	in	the	posts.json	file,	so	we	can	easily	send
it):

{

		"mappings":	{

				"post":	{

						"properties":	{

								"id":	{	"type":"long"	},

								"name":	{	"type":"string"	},

								"published":	{	"type":"date"	},

								"contents":	{	"type":"string"	}

						}

				}

		}

}

To	create	our	posts	index	with	the	preceding	mappings	file,	we	will	just	run	the	following
command:

curl	-XPOST	'http://localhost:9200/posts'	-d	@posts.json

Note
Note	that	you	can	store	your	mappings	and	set	a	file	name	to	whatever	name	you	like.	The
curl	command	will	just	take	the	contents	of	it.

And	again,	if	everything	goes	well,	we	see	the	following	response:

{"acknowledged":true}

Elasticsearch	reported	that	our	index	has	been	created.	If	we	look	at	the	Elasticsearch	node
www.EBooksWorld.ir

–	on	the	current	master,	we	will	see	something	as	follows:

[2015-10-14	15:02:12,840][INFO][cluster.metadata]	[Shalla-Bal]	

[posts]	creating	index,	cause	[api],	templates	[],	shards	[5]/[1],	mappings	

[post]

We	can	see	that	the	posts	index	has	been	created,	with	5	shards	and	1	replica	(shards
[5]/[1])	and	with	mappings	for	a	single	post	type	(mappings	[post]).	Let’s	now	discuss
the	contents	of	the	posts.json	file	and	the	possibilities	when	it	comes	to	mappings.

Type	and	types	definition
The	mappings	definition	in	Elasticsearch	is	just	another	JSON	object,	so	it	needs	to	be
properly	started	and	ended	with	curly	brackets.	All	the	mappings	definitions	are	nested
inside	a	single	mappings	object.	In	our	example,	we	had	a	single	post	type,	but	we	can
have	multiple	of	them.	For	example,	if	we	would	like	to	have	more	than	a	single	type	in
our	mappings,	we	just	need	to	separate	them	with	a	comma	character.	Let’s	assume	that
we	would	like	to	have	an	additional	user	type	in	our	posts	index.	The	mappings	definition
in	such	case	will	look	as	follows	(we	stored	it	in	the	posts_with_user.json	file):

{

		"mappings":	{

				"post":	{

						"properties":	{

								"id":	{	"type":"long"	},

								"name":	{	"type":"string"	},

								"published":	{	"type":"date"	},

								"contents":	{	"type":"string"	}

						}

				},

				"user":	{

						"properties":	{

								"id":	{	"type":"long"	},

								"name":	{	"type":"string"	}

						}

				}

		}

}

As	you	can	see,	we	can	name	the	types	with	the	names	we	want.	Under	each	type	we	have
the	properties	object	in	which	we	store	the	actual	name	of	the	fields	and	their	definition.

Fields
Each	field	in	the	mappings	definition	is	just	a	name	and	an	object	describing	the	properties
of	the	field.	For	example,	we	can	have	a	field	defined	as	the	following:

"body":	{	"type":"string",	"store":"yes",	"index":"analyzed"	}

The	preceding	field	definition	starts	with	a	name	–	body.	After	that	we	have	an	object	with
three	properties	–	the	type	of	the	field	(the	type	property),	if	the	original	field	value
should	be	stored	(the	store	property),	and	if	the	field	should	be	indexed	and	how	(the
index	property).	And,	of	course,	multiple	field	definitions	are	separated	from	each	other
using	the	comma	character,	just	like	other	JSON	objects.

www.EBooksWorld.ir

Core	types
Each	field	type	in	Elasticsearch	can	be	given	one	of	the	provided	core	types.	The	core
types	in	Elasticsearch	are	as	follows:

String
Number	(integer,	long,	float,	double)
Date
Boolean
Binary

In	addition	to	the	core	types,	Elasticsearch	provides	additional	types	that	can	handle	more
complicated	data	–	such	as	nested	documents,	object,	and	so	on.	We	will	talk	about	them
in	Chapter	5,	Extending	Your	Index	Structure.

Common	attributes

Before	continuing	with	all	the	core	type	descriptions,	we	would	like	to	discuss	some
common	attributes	that	you	can	use	to	describe	all	the	types	(except	for	the	binary	one):

index_name:	This	attribute	defines	the	name	of	the	field	that	will	be	stored	in	the
index.	If	this	is	not	defined,	the	name	will	be	set	to	the	name	of	the	object	that	the
field	is	defined	with.	Usually,	you	don’t	need	to	set	this	property,	but	it	may	be	useful
in	some	cases;	for	example,	when	you	don’t	have	control	over	the	name	of	the	fields
in	the	JSON	documents	that	are	sent	to	Elasticsearch.
index:	This	attribute	can	take	the	values	analyzed	and	no	and,	for	string-based	fields,
it	can	also	be	set	to	the	additional	not_analyzed	value.	If	set	to	analyzed,	the	field
will	be	indexed	and	thus	searchable.	If	set	to	no,	you	won’t	be	able	to	search	on	such
a	field.	The	default	value	is	analyzed.	In	case	of	string-based	fields,	there	is	an
additional	option,	not_analyzed.	This,	when	set,	will	mean	that	the	field	will	be
indexed	but	not	analyzed.	So,	the	field	is	written	in	the	index	as	it	was	sent	to
Elasticsearch	and	only	a	perfect	match	will	be	counted	during	a	search	–	the	query
will	have	to	include	exactly	the	same	value	as	the	value	in	the	index.	If	we	compare	it
to	the	SQL	databases	world,	setting	the	index	property	of	a	field	to	not_analyzed
would	work	just	like	using	where	field	=	value.	Also	remember	that	setting	the
index	property	to	no	will	result	in	the	disabling	inclusion	of	that	field	in
include_in_all	(the	include_in_all	property	is	discussed	as	the	last	property	in
the	list).
store:	This	attribute	can	take	the	values	yes	and	no	and	specifies	if	the	original	value
of	the	field	should	be	written	into	the	index.	The	default	value	is	no,	which	means
that	Elasticsearch	won’t	store	the	original	value	of	the	field	and	will	try	to	use	the
_source	field	(the	JSON	representing	the	original	document	that	has	been	sent	to
Elasticsearch)	when	you	want	to	retrieve	the	field	value.	Stored	fields	are	not	used	for
searching,	however	they	can	be	used	for	highlighting	if	enabled	(which	may	be	more
efficient	that	loading	the	_source	field	in	case	it	is	big).
doc_values:	This	attribute	can	take	the	values	of	true	and	false.	When	set	to	true,
Elasticsearch	will	create	a	special	on	disk	structure	during	indexation	for	not
tokenized	fields	(like	not	analyzed	string	fields,	number	based	fields,	Boolean	fields,

www.EBooksWorld.ir

and	date	fields).	This	structure	is	highly	efficient	and	is	used	by	Elasticsearch	for
operations	that	require	un-inverted	data,	such	as	aggregations,	sorting,	or	scripting.
Starting	with	Elasticsearch	2.0	the	default	value	of	this	is	true	for	not	tokenized
fields.	Setting	this	value	to	false	will	result	in	Elasticsearch	using	field	data	cache
instead	of	doc	values,	which	has	higher	memory	demand,	but	may	be	faster	in	some
rare	situations.
boost:	This	attribute	defines	how	important	the	field	is	inside	the	document;	the
higher	the	boost,	the	more	important	the	values	in	the	field	are.	The	default	value	of
this	attribute	is	1,	which	means	a	neutral	value	–	anything	above	1	will	make	the	field
more	important,	anything	less	than	1	will	make	it	less	important.
null_value:	This	attribute	specifies	a	value	that	should	be	written	into	the	index	in
case	that	field	is	not	a	part	of	an	indexed	document.	The	default	behavior	will	just
omit	that	field.
copy_to:	This	attribute	specifies	an	array	of	fields	to	which	the	original	value	will	be
copied	to.	This	allows	for	different	kind	of	analysis	of	the	same	data.	For	example,
you	could	imagine	having	two	fields	–	one	called	title	and	one	called	title_sort,
each	having	the	same	value	but	processed	differently.	We	could	use	copy_to	to	copy
the	title	field	value	to	title_sort.
include_in_all:	This	attribute	specifies	if	the	field	should	be	included	in	the	_all
field.	The	_all	field	is	a	special	field	used	by	Elasticsearch	to	allow	easy	searching	in
the	contents	of	the	whole	indexed	document.	Elasticsearch	creates	the	content	of	the
_all	field	by	copying	all	the	document	fields	there.	By	default,	if	the	_all	field	is
used,	all	the	fields	will	be	included	in	it.

String

String	is	the	basic	text	type	which	allows	us	to	store	one	or	more	characters	inside	it.	A
sample	definition	of	such	a	field	is	as	follows:

"body"	:	{	"type"	:	"string",	"store"	:	"yes",	"index"	:	"analyzed"	}

In	addition	to	the	common	attributes,	the	following	attributes	can	also	be	set	for	the	string-
based	fields:

term_vector:	This	attribute	can	take	the	values	no	(the	default	one),	yes,
with_offsets,	with_positions,	and	with_positions_offsets.	It	defines	whether
or	not	to	calculate	the	Lucene	term	vectors	for	that	field.	If	you	are	using	highlighting
(distinction	which	terms	where	matched	in	a	document	during	the	query),	you	will
need	to	calculate	the	term	vector	for	the	so	called	fast	vector	highlighting	–	a	more
efficient	highlighting	version.
analyzer:	This	attribute	defines	the	name	of	the	analyzer	used	for	indexing	and
searching.	It	defaults	to	the	globally-defined	analyzer	name.
search_analyzer:	This	attribute	defines	the	name	of	the	analyzer	used	for	processing
the	part	of	the	query	string	that	is	sent	to	a	particular	field.
norms.enabled:	This	attribute	specifies	whether	the	norms	should	be	loaded	for	a
field.	By	default,	it	is	set	to	true	for	analyzed	fields	(which	means	that	the	norms	will
be	loaded	for	such	fields)	and	to	false	for	non-analyzed	fields.	Norms	are	values

www.EBooksWorld.ir

inside	of	Lucene	index	that	are	used	when	calculating	a	score	for	a	document	–
usually	not	needed	for	not	analyzed	fields	and	used	only	during	query	time.	An
example	index	creation	command	that	disables	norm	for	a	single	field	present	would
look	as	follows:

curl	-XPOST	'localhost:9200/essb'	-d	'{

	"mappings"	:	{

		"book"	:	{

			"properties"	:	{

				"name"	:	{	

					"type"	:	"string",	

					"norms"	:	{

						"enabled"	:	false

					}

				}

			}

		}

	}

}'

norms.loading:	This	attribute	takes	the	values	eager	and	lazy	and	defines	how
Elasticsearch	will	load	the	norms.	The	first	value	means	that	the	norms	for	such	fields
are	always	loaded.	The	second	value	means	that	the	norms	will	be	loaded	only	when
needed.	Norms	are	useful	for	scoring,	but	may	require	a	vast	amount	of	memory	for
large	data	sets.	Having	norms	loaded	eagerly	(property	set	to	eager)	means	less	work
during	query	time,	but	will	lead	to	more	memory	consumption.	An	example	index
creation	command	that	eagerly	load	norms	for	a	single	field	present	look	as	follows:

curl	-XPOST	'localhost:9200/essb_eager'	-d	'{

	"mappings"	:	{

		"book"	:	{

			"properties"	:	{

				"name"	:	{	

					"type"	:	"string",	

					"norms"	:	{

						"loading"	:	"eager"

					}

				}

			}

		}

	}

}'

position_offset_gap:	This	attribute	defaults	to	0	and	specifies	the	gap	in	the	index
between	instances	of	the	given	field	with	the	same	name.	Setting	this	to	a	higher
value	may	be	useful	if	you	want	position-based	queries	(such	as	phrase	queries)	to
match	only	inside	a	single	instance	of	the	field.
index_options:	This	attribute	defines	the	indexing	options	for	the	postings	list	–	the
structure	holding	the	terms	(we	talk	more	about	it	in	the	Postings	format	section	of
this	chapter).	The	possible	values	are	docs	(only	document	numbers	are	indexed),
freqs	(document	numbers	and	term	frequencies	are	indexed),	positions	(document
numbers,	term	frequencies,	and	their	positions	are	indexed),	and	offsets	(document

www.EBooksWorld.ir

numbers,	term	frequencies,	their	positions,	and	offsets	are	indexed).	The	default
value	for	this	property	is	positions	for	analyzed	fields	and	docs	for	fields	that	are
indexed	but	not	analyzed.
ignore_above:	This	attribute	defines	the	maximum	size	of	the	field	in	characters.	A
field	whose	size	is	above	the	specified	value	will	be	ignored	by	the	analyzer.

Note
In	one	of	the	upcoming	Elasticsearch	versions,	the	string	type	may	be	deprecated	and
may	be	replaced	by	two	new	types,	text	and	keyword,	to	better	indicate	what	the
string	based	field	is	representing.	The	text	type	will	be	used	for	analyzed	text	fields
and	the	keyword	type	will	be	used	for	not	analyzed	text	fields.	If	you	are	interested	in
the	incoming	changes,	refer	to	the	following	GitHub	issue:
https://github.com/elastic/elasticsearch/issues/12394.

Number

This	is	the	common	name	for	a	few	core	types	that	gather	all	the	numeric	field	types	that
are	available	and	waiting	to	be	used.	The	following	types	are	available	in	Elasticsearch
(we	specify	them	by	using	the	type	property):

byte:	This	type	defines	a	byte	value;	for	example,	1.	It	allows	for	values	between
-128	and	127	inclusive.
short:	This	type	defines	a	short	value;	for	example,	12.	It	allows	for	values	between
-32768	and	32767	inclusive.
integer:	This	type	defines	an	integer	value;	for	example,	134.	It	allows	for	values
between	-231	and	231-1	inclusive	up	to	Java	7	and	values	between	0	and	232-1	in
Java	8.
long:	This	type	defines	a	long	value;	for	example,	123456789.	It	allows	for	values
between	-263	and	263-1	inclusive	up	to	Java	7	and	values	between	0	and	264-1	in
Java	8.
float:	This	type	defines	a	float	value;	for	example,	12.23.	For	information	about
the	possible	values,	refer	to	https://docs.oracle.com/javase/specs/jls/se8/html/jls-
4.html#jls-4.2.3.
double:	This	type	defines	a	double	value;	for	example,	123.45.	For	information
about	the	possible	values,	refer	to
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2.3.

Note
You	can	learn	more	about	the	mentioned	Java	types	at
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.

A	sample	definition	of	a	field	based	on	one	of	the	numeric	types	is	as	follows:

"price"	:	{	"type"	:	"float",	"precision_step"	:	"4"	}

In	addition	to	the	common	attributes,	the	following	ones	can	also	be	set	for	the	numeric
fields:

www.EBooksWorld.ir

https://github.com/elastic/elasticsearch/issues/12394
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2.3
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2.3
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

precision_step:	This	attribute	defines	the	number	of	terms	generated	for	each	value
in	the	numeric	field.	The	lower	the	value,	the	higher	the	number	of	terms	generated.
For	fields	with	a	higher	number	of	terms	per	value,	range	queries	will	be	faster	at	the
cost	of	a	slightly	larger	index.	The	default	value	is	16	for	long	and	double,	8	for
integer,	short,	and	float,	and	2147483647	for	byte.
coerce:	This	attribute	defaults	to	true	and	can	take	the	value	of	true	or	false.	It
defines	if	Elasticsearch	should	try	to	convert	the	string	values	to	numbers	for	a	given
field	and	if	the	decimal	parts	of	the	float	value	should	be	truncated	for	the	integer
based	fields.
ignore_malformed:	This	attribute	can	take	the	value	true	or	false	(which	is	the
default).	It	should	be	set	to	true	in	order	to	omit	the	badly	formatted	values.

Boolean

The	boolean	core	type	is	designed	for	indexing	the	Boolean	values	(true	or	false).	A
sample	definition	of	a	field	based	on	the	boolean	type	is	as	follows:

"allowed"	:	{	"type"	:	"boolean",	"store":	"yes"	}

Binary

The	binary	field	is	a	BASE64	representation	of	the	binary	data	stored	in	the	index.	You
can	use	it	to	store	data	that	is	normally	written	in	binary	form,	such	as	images.	Fields
based	on	this	type	are	by	default	stored	and	not	indexed,	so	you	can	only	retrieve	them	and
not	perform	search	operations	on	them.	The	binary	type	only	supports	the	index_name,
type,	store,	and	doc_values	properties.	The	sample	field	definition	based	on	the	binary
field	may	look	like	the	following:

"image"	:	{	"type"	:	"binary"	}

Date

The	date	core	type	is	designed	to	be	used	for	date	indexing.	The	date	in	the	field	allows	us
to	specify	a	format	that	will	be	recognized	by	Elasticsearch.	It	is	worth	noting	that	all	the
dates	are	indexed	in	UTC	and	are	internally	indexed	as	long	values.	In	addition	to	that,	for
the	date	based	fields,	Elasticsearch	accepts	long	values	representing	UTC	milliseconds
since	epoch	regardless	of	the	format	specified	for	the	date	field.

The	default	date	format	recognized	by	Elasticsearch	is	quite	universal	and	allows	us	to
provide	the	date	and	optionally	the	time;	for	example,	2012-12-24T12:10:22.	A	sample
definition	of	a	field	based	on	the	date	type	is	as	follows:

"published"	:	{	"type"	:	"date",	"format"	:	"YYYY-mm-dd"	}

A	sample	document	that	uses	the	above	date	field	with	the	specified	format	is	as	follows:

{

		"name"	:	"Sample	document",

		"published"	:	"2012-12-22"

}

In	addition	to	the	common	attributes,	the	following	ones	can	also	be	set	for	the	fields

www.EBooksWorld.ir

based	on	the	date	type:

format:	This	attribute	specifies	the	format	of	the	date.	The	default	value	is
dateOptionalTime.	For	a	full	list	of	formats,	visit
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-date-
format.html.
precision_step:	This	attribute	defines	the	number	of	terms	generated	for	each	value
in	the	numeric	field.	Refer	to	the	numeric	core	type	description	for	more	information
about	this	parameter.
numeric_resolution:	This	attribute	defines	the	unit	of	time	that	Elasticsearch	will
use	when	a	numeric	value	is	passed	to	the	date	based	field	instead	of	the	date
following	a	format.	By	default,	Elasticsearch	uses	the	milliseconds	value,	which
means	that	the	numeric	value	will	be	treated	as	milliseconds	since	epoch.	Another
value	is	seconds.
ignore_malformed:	This	attribute	can	take	the	value	true	or	false.	The	default
value	is	false.	It	should	be	set	to	true	in	order	to	omit	badly	formatted	values.

Multi	fields
There	are	situations	where	we	need	to	have	the	same	field	analyzed	differently.	For
example,	one	for	sorting,	one	for	searching,	and	one	for	analysis	with	aggregations,	but	all
using	the	same	field	value,	just	indexed	differently.	We	could	of	course	use	the	previously
described	field	value	copying,	but	we	can	also	use	so	called	multi	fields.	To	be	able	to	use
that	feature	of	Elasticsearch,	we	need	to	define	an	additional	property	in	our	field
definition	called	fields.	The	fields	is	an	object	that	can	contain	one	or	more	additional
fields	that	will	be	present	in	our	index	and	will	have	the	value	of	the	field	that	they	are
assigned	to.	For	example,	if	we	would	like	to	have	aggregations	done	on	the	name	field
and	in	addition	to	that	search	on	that	field,	we	would	define	it	as	follows:

"name":	{

		"type":	"string",

		"fields":	{

				"agg":	{	"type"	:	"string",	"index":	"not_analyzed"	}

		}

}

The	preceding	definition	will	create	two	fields	–	one	called	name	and	the	second	called
name.agg.	Of	course,	you	don’t	have	to	specify	two	separate	fields	in	the	data	you	are
sending	to	Elasticsearch	–	a	single	one	named	name	is	enough.	Elasticsearch	will	do	the
rest,	which	means	copying	the	value	of	the	field	to	all	the	fields	from	the	preceding
definition.

The	IP	address	type
The	ip	field	type	was	added	to	Elasticsearch	to	simplify	the	use	of	IPv4	addresses	in	a
numeric	form.	This	field	type	allows	us	to	search	data	that	is	indexed	as	an	IP	address,	sort
on	such	data,	and	use	range	queries	using	IP	values.

A	sample	definition	of	a	field	based	on	one	of	the	numeric	types	is	as	follows:

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-date-format.html

"address"	:	{	"type"	:	"ip"	}

In	addition	to	the	common	attributes,	the	precision_step	attribute	can	also	be	set	for	the
ip	type	based	fields.	Refer	to	the	numeric	type	description	for	more	information	about	that
property.

A	sample	document	that	uses	the	ip	based	field	looks	as	follows:

{

		"name"	:	"Tom	PC",

		"address"	:	"192.168.2.123"

}

Token	count	type
The	token_count	field	type	allows	us	to	store	and	index	information	about	how	many
tokens	the	given	field	has	instead	of	storing	and	indexing	the	text	provided	to	the	field.	It
accepts	the	same	configuration	options	as	the	number	type,	but	in	addition	to	that,	we	need
to	specify	the	analyzer	which	will	be	used	to	divide	the	field	value	into	tokens.	We	do	that
by	using	the	analyzer	property.

A	sample	definition	of	a	field	based	on	the	token_count	field	type	looks	as	follows:

"title_count"	:	{	"type"	:	"token_count",	"analyzer"	:	"standard"	}

www.EBooksWorld.ir

Using	analyzers
The	great	thing	about	Elasticsearch	is	that	it	leverages	the	analysis	capabilities	of	Apache
Lucene.	This	means	that	for	fields	that	are	based	on	the	string	type,	we	can	specify
which	analyzer	Elasticsearch	should	use.	As	you	remember	from	the	Full	text	searching
section	of	Chapter	1,	Getting	Started	with	Elasticsearch	Cluster,	the	analyzer	is	a
functionality	that	is	used	to	analyze	data	or	queries	in	the	way	we	want.	For	example,
when	we	divide	words	on	the	basis	of	whitespaces	and	lowercase	characters,	we	don’t
have	to	worry	about	the	users	sending	words	that	are	lowercased	or	uppercased.	This
means	that	Elasticsearch,	elasticsearch,	and	ElAstIcSeaRCh	will	be	treated	as	the	same
word.	What’s	more	is	that	Elasticsearch	allows	us	to	use	not	only	the	analyzers	provided
out	of	the	box,	but	also	create	our	own	configurations.	We	can	also	use	different	analyzers
at	the	time	of	indexing	and	different	analyzers	at	the	time	of	querying—we	can	choose
how	we	want	our	data	to	be	processed	at	each	stage	of	the	search	process.	Let’s	now	have
a	look	at	the	analyzers	provided	by	Elasticsearch	and	at	Elasticsearch	analysis
functionality	in	general.

Out-of-the-box	analyzers
Elasticsearch	allows	us	to	use	one	of	the	many	analyzers	defined	by	default.	The	following
analyzers	are	available	out	of	the	box:

standard:	This	analyzer	is	convenient	for	most	European	languages	(refer	to
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-standard-
analyzer.html	for	the	full	list	of	parameters).
simple:	This	analyzer	splits	the	provided	value	on	non-letter	characters	and	converts
them	to	lowercase.
whitespace:	This	analyzer	splits	the	provided	value	on	the	basis	of	whitespace
characters.
stop:	This	is	similar	to	a	simple	analyzer,	but	in	addition	to	the	functionality	of	the
simple	analyzer,	it	filters	the	data	on	the	basis	of	the	provided	set	of	stop	words	(refer
to	https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-
analyzer.html	for	the	full	list	of	parameters).
keyword:	This	is	a	very	simple	analyzer	that	just	passes	the	provided	value.	You’ll
achieve	the	same	by	specifying	a	particular	field	as	not_analyzed.
pattern:	This	analyzer	allows	flexible	text	separation	by	the	use	of	regular
expressions	(refer	to
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-
analyzer.html	for	the	full	list	of	parameters).	The	key	point	to	remember	when	it
comes	to	the	pattern	analyzer	is	that	the	provided	pattern	should	match	the	separators
of	the	words,	not	the	words	themselves.
language:	This	analyzer	is	designed	to	work	with	a	specific	language.	The	full	list	of
languages	supported	by	this	analyzer	can	be	found	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-
analyzer.html.
snowball:	This	is	an	analyzer	that	is	similar	to	standard,	but	additionally	provides	the

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-standard-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-analyzer.html

stemming	algorithm	(refer	to
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-snowball-
analyzer.html	for	the	full	list	of	parameters).

Note
Stemming	is	the	process	of	reducing	the	inflected	and	derived	words	to	their	stem	or
base	form.	Such	a	process	allows	for	the	reduction	of	words,	for	example,	with	cars
and	car.	For	the	mentioned	words,	stemmer	(which	is	an	implementation	of	the
stemming	algorithm)	will	produce	a	single	stem,	car.	After	indexing,	the	documents
containing	such	words	will	be	matched	while	using	any	of	them.	Without	stemming,
the	documents	with	the	word	“cars”	will	only	be	matched	by	a	query	containing	the
same	word.	You	can	find	more	information	about	stemming	on	Wikipedia	at
https://en.wikipedia.org/wiki/Stemming.

Defining	your	own	analyzers
In	addition	to	the	analyzers	mentioned	previously,	Elasticsearch	allows	us	to	define	new
ones	without	the	need	for	writing	a	single	line	of	Java	code.	In	order	to	do	that,	we	need	to
add	an	additional	section	to	our	mappings	file;	that	is,	the	settings	section,	which	holds
additional	information	used	by	Elasticsearch	during	index	creation.	The	following	code
snippet	shows	how	we	can	define	our	custom	settings	section:

"settings"	:	{

		"index"	:	{

				"analysis":	{

						"analyzer":	{

								"en":	{

										"tokenizer":	"standard",

										"filter":	[

												"asciifolding",

												"lowercase",

												"ourEnglishFilter"

]

								}

						},

						"filter":	{

								"ourEnglishFilter":	{

										"type":	"kstem"

								}

						}

				}

		}

}

We	specified	that	we	want	a	new	analyzer	named	en	to	be	present.	Each	analyzer	is	built
from	a	single	tokenizer	and	multiple	filters.	A	complete	list	of	the	default	filters	and
tokenizers	can	be	found	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html.
Our	en	analyzer	includes	the	standard	tokenizer	and	three	filters:	asciifolding	and
lowercase,	which	are	the	ones	available	by	default,	and	a	custom	ourEnglishFilter,
which	is	a	filter	we	have	defined.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-snowball-analyzer.html
https://en.wikipedia.org/wiki/Stemming
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html

To	define	a	filter,	we	need	to	provide	its	name,	its	type	(the	type	property),	and	any
number	of	additional	parameters	required	by	that	filter	type.	The	full	list	of	filter	types
available	in	Elasticsearch	can	be	found	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html.
Please	be	aware,	that	we	won’t	be	discussing	each	filter	as	the	list	of	filters	is	constantly
changing.	If	you	are	interested	in	the	full	filters	list,	please	refer	to	the	mentioned	page	in
the	documentation.

So,	the	final	mappings	file	with	our	custom	analyzer	defined	will	be	as	follows:

{

		"settings"	:	{

				"index"	:	{

						"analysis":	{

								"analyzer":	{

										"en":	{

												"tokenizer":	"standard",

												"filter":	[

													"asciifolding",

													"lowercase",

													"ourEnglishFilter"

]

										}

								},

								"filter":	{

										"ourEnglishFilter":	{

												"type":	"kstem"

										}

								}

						}

				}

		},

		"mappings"	:	{

				"post"	:	{

						"properties"	:	{	

								"id":	{	"type"	:	"long"	},

								"name":	{	"type"	:	"string",	"analyzer":	"en"	}	

						}

				}

		}

}

If	we	save	the	preceding	mappings	to	a	file	called	posts_mappings.json,	we	can	run	the
following	command	to	create	the	posts	index:

curl	-XPOST	'http://localhost:9200/posts'	-d	@posts_mappings.json

We	can	see	how	our	analyzer	works	by	using	the	Analyze	API
(https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html).	For
example,	let’s	look	at	the	following	command:

curl	-XGET	'localhost:9200/posts/_analyze?pretty&field=name'	-d	'robots	

cars'

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html

The	command	asks	Elasticsearch	to	show	the	content	of	the	analysis	of	the	given	phrase
(robots	cars)	with	the	use	of	the	analyzer	defined	for	the	post	type	and	its	name	field.	The
response	that	we	will	get	from	Elasticsearch	is	as	follows:

{

		"tokens"	:	[{

				"token"	:	"robot",

				"start_offset"	:	0,

				"end_offset"	:	6,

				"type"	:	"<ALPHANUM>",

				"position"	:	0

		},	{

				"token"	:	"car",

				"start_offset"	:	7,

				"end_offset"	:	11,

				"type"	:	"<ALPHANUM>",

				"position"	:	1

		}]

}

As	you	can	see,	the	robots	cars	phrase	was	divided	into	two	tokens.	In	addition	to	that,	the
robots	word	was	changed	to	robot	and	the	cars	word	was	changed	to	car.

Default	analyzers
There	is	one	more	thing	to	say	about	analyzers.	Elasticsearch	allows	us	to	specify	the
analyzer	that	should	be	used	by	default	if	no	analyzer	is	defined.	This	is	done	in	the	same
way	as	we	configured	a	custom	analyzer	in	the	settings	section	of	the	mappings	file,	but
instead	of	specifying	a	custom	name	for	the	analyzer,	a	default	keyword	should	be	used.
So	to	make	our	previously	defined	analyzer	the	default,	we	can	change	the	en	analyzer	to
the	following:

{

		"settings"	:	{

				"index"	:	{

						"analysis":	{

								"analyzer":	{

										"default":	{

												"tokenizer":	"standard",

												"filter":	[

													"asciifolding",

													"lowercase",

													"ourEnglishFilter"

]

										}

								},

								"filter":	{

										"ourEnglishFilter":	{

												"type":	"kstem"

										}

								}

						}

				}

		}

www.EBooksWorld.ir

}

We	can	also	choose	a	different	default	analyzer	for	searching	and	a	different	one	for
indexing.	If	we	would	like	to	do	that	instead	of	using	the	default	keyword	for	the	analyzer
name,	we	should	use	default_search	and	default_index	respectively.

www.EBooksWorld.ir

Different	similarity	models
With	the	release	of	Apache	Lucene	4.0	in	2012,	all	the	users	of	this	great	full	text	search
library	were	given	the	opportunity	to	alter	the	default	TF/IDF-based	algorithm	and	use	a
different	one	(we’ve	mentioned	it	in	the	Full	text	searching	section	of	Chapter	1,	Getting
Started	with	Elasticsearch	Cluster).	Because	of	that	we	are	able	to	choose	a	similarity
model	in	Elasticsearch,	which	basically	allows	us	to	use	different	scoring	formulas	for	our
documents.

Note
Note	that	the	similarity	models	topic	ranges	from	intermediate	to	advanced	and	in	most
cases	the	TF/IDF	based	algorithm	will	be	sufficient	for	your	use	case.	However,	we
decided	to	have	it	described	in	the	book,	so	you	know	that	you	have	the	possibility	of
changing	the	scoring	algorithm	behavior	if	needed.

Setting	per-field	similarity
Since	Elasticsearch	0.90,	we	are	allowed	to	set	a	different	similarity	for	each	of	the	fields
that	we	have	in	our	mappings	file.	For	example,	let’s	assume	that	we	have	the	following
simple	mappings	that	we	use	in	order	to	index	the	blog	posts:

{

		"mappings"	:	{

				"post"	:	{

						"properties"	:	{

								"id"	:	{	"type"	:	"long"	},

								"name"	:	{	"type"	:	"string"	},

								"contents"	:	{	"type"	:	"string"	}

						}

				}

		}

}

To	do	this,	we	will	use	the	BM25	similarity	model	for	the	name	field	and	the	contents
field.	In	order	to	do	that,	we	need	to	extend	our	field	definitions	and	add	the	similarity
property	with	the	value	of	the	chosen	similarity	name.	Our	changed	mappings	will	look
like	the	following:

{

		"mappings"	:	{

				"post"	:	{

						"properties"	:	{

								"id"	:	{	"type"	:	"long"	},

								"name"	:	{	"type"	:	"string",	"similarity"	:	"BM25"	},

								"contents"	:	{	"type"	:	"string",	"similarity"	:	"BM25"	}

						}

				}

		}

}

And	that’s	all,	nothing	more	is	needed.	After	the	above	change,	Apache	Lucene	will	use
the	BM25	similarity	to	calculate	the	score	factor	for	the	name	and	the	contents	fields.

www.EBooksWorld.ir

Available	similarity	models
There	are	at	least	five	new	similarity	models	available.	For	most	of	the	use	cases,	apart
from	the	default	one,	you	may	find	the	following	models	useful:

Okapi	BM25	model:	This	similarity	model	is	based	on	a	probabilistic	model	that
estimates	the	probability	of	finding	a	document	for	a	given	query.	In	order	to	use	this
similarity	in	Elasticsearch,	you	need	to	use	the	BM25	name.	Okapi	BM25	similarity
is	said	perform	best	when	dealing	with	short	text	documents	where	term	repetitions
are	especially	hurtful	to	the	overall	document	score.	To	use	this	similarity,	one	needs
to	set	the	similarity	property	for	a	field	to	BM25.	This	similarity	is	defined	out	of	the
box	and	doesn’t	need	additional	properties	to	be	set.
Divergence	from	randomness	model:	This	similarity	model	is	based	on	the
probabilistic	model	of	the	same	name.	In	order	to	use	this	similarity	in	Elasticsearch,
you	need	to	use	the	DFR	name.	It	is	said	that	the	divergence	from	randomness
similarity	model	performs	well	on	text	that	is	similar	to	natural	language.
Information-based	model:	This	is	the	last	model	of	the	newly	introduced	similarity
models	and	is	very	similar	to	the	divergence	from	randomness	model.	In	order	to	use
this	similarity	in	Elasticsearch,	you	need	to	use	the	IB	name.	Similar	to	the	DFR
similarity,	it	is	said	that	the	information-based	model	performs	well	on	data	similar	to
natural	language	text.

The	two	other	similarity	models	currently	available	are	LM	Dirichlet	similarity	(to	use	it,
set	the	type	property	to	LMDirichlet)	and	LM	Jelinek	Mercer	similarity	(to	use	it,	set	the
type	property	to	LMJelinekMercer).	You	can	find	more	about	these	similarity	models	in
Apache	Lucene	Javadocs,	Mastering	Elasticsearch	Second	Edition,	published	by
Packt	Publishing	or	in	official	documentation	of	Elasticsearch	available	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-
similarity.html.

Configuring	default	similarity

The	default	similarity	allows	us	to	provide	an	additional	discount_overlaps	property.	It
allows	us	to	control	if	the	tokens	on	the	same	positions	in	the	token	stream	(with	position
increment	of	0)	are	omitted	during	score	calculation.	By	default,	it	is	set	to	true,	which
means	that	the	tokens	on	the	same	positions	are	omitted;	if	you	want	them	to	be	counted,
you	can	set	that	property	to	false.	For	example,	the	following	command	shows	how	to
create	an	index	with	the	discount_overlaps	property	changed	for	the	default	similarity:

curl	-XPUT	'localhost:9200/test_similarity'	-d	'{

	"settings"	:	{

		"similarity"	:	{

			"altered_default":	{

				"type"	:	"default",

				"discount_overlaps"	:	false

			}

		}

	},

	"mappings":	{

		"doc":	{

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html

			"properties":	{

				"name":	{	"type"	:	"string",	"similarity":	"altered_default"	}

			}

		}

	}

}'

Configuring	BM25	similarity

Even	though	we	don’t	need	to	configure	the	BM25	similarity,	we	can	provide	some
additional	options	to	tune	its	behavior.	The	BM25	similarity	allows	us	to	provide	the
discount_overlaps	property	similar	to	the	default	similarity	and	two	additional
properties:	k1	and	b.	The	k1	property	specifies	the	term	frequency	normalization	factor
and	the	b	property	value	determines	to	what	degree	the	document	length	will	normalize
the	term	frequency	values.

Configuring	DFR	similarity

In	case	of	the	DFR	similarity,	we	can	configure	the	basic_model	property	(which	can	take
the	value	be,	d,	g,	if,	in,	p,	or	ine),	the	after_effect	property	(with	values	of	no,	b,	or
l),	and	the	normalization	property	(which	can	be	no,	h1,	h2,	h3,	or	z).	If	we	choose	a
normalization	value	other	than	no,	we	need	to	set	the	normalization	factor.

Depending	on	the	chosen	normalization	value,	we	should	use	normalization.h1.c	(the
float	value)	for	h1	normalization,	normalization.h2.c	(the	float	value)	for	h2
normalization,	normalization.h3.c	(the	float	value)	for	h3	normalization,	and
normalization.z.z	(the	float	value)	for	z	normalization.	For	example,	the	following	is
how	the	example	similarity	configuration	will	look	(we	put	this	into	the	settings	section	of
our	mappings	file):

						"similarity"	:	{

								"esserverbook_dfr_similarity"	:	{

										"type"	:	"DFR",

										"basic_model"	:	"g",

										"after_effect"	:	"l",

										"normalization"	:	"h2",

										"normalization.h2.c"	:	"2.0"

								}

						}

Configuring	IB	similarity

In	case	of	IB	similarity,	we	have	the	following	parameters	through	which	we	can
configure	the	distribution	property	(which	can	take	the	value	of	ll	or	spl)	and	the	lambda
property	(which	can	take	the	value	of	df	or	tff).	In	addition	to	that,	we	can	choose	the
normalization	factor,	which	is	the	same	as	for	the	DFR	similarity,	so	we’ll	omit	describing
it	a	second	time.	The	following	is	how	the	example	IB	similarity	configuration	will	look
(we	put	this	into	the	settings	section	of	our	mappings	file):

						"similarity"	:	{

								"esserverbook_ib_similarity"	:	{

										"type"	:	"IB",

										"distribution"	:	"ll",

www.EBooksWorld.ir

										"lambda"	:	"df",

										"normalization"	:	"z",

										"normalization.z.z"	:	"0.25"

								}

						}

www.EBooksWorld.ir

www.EBooksWorld.ir

Batch	indexing	to	speed	up	your	indexing
process
In	Chapter	1,	Getting	Started	with	Elasticsearch	Cluster,	we	saw	how	to	index	a	particular
document	into	Elasticsearch.	It	required	opening	an	HTTP	connection,	sending	the
document,	and	closing	the	connection.	Of	course,	we	were	not	responsible	for	most	of	that
as	we	used	the	curl	command,	but	in	the	background	this	is	what	happened.	However,
sending	the	documents	one	by	one	is	not	efficient.	Because	of	that,	it	is	now	time	to	find
out	how	to	index	a	large	number	of	documents	in	a	more	convenient	and	efficient	way
than	doing	so	one	by	one.

www.EBooksWorld.ir

Preparing	data	for	bulk	indexing
Elasticsearch	allows	us	to	merge	many	requests	into	one	package.	This	package	can	be
sent	as	a	single	request.	What’s	more,	we	are	not	limited	to	having	a	single	type	of	request
in	the	so	called	bulk	–	we	can	mix	different	types	of	operations	together,	which	include:

Adding	or	replacing	the	existing	documents	in	the	index	(index)
Removing	documents	from	the	index	(delete)

Adding	new	documents	into	the	index	when	there	is	no	other	definition	of	the
document	in	the	index	(create)
Modifying	the	documents	or	creating	new	ones	if	the	document	doesn’t	exist
(update)

The	format	of	the	request	was	chosen	for	processing	efficiency.	It	assumes	that	every	line
of	the	request	contains	a	JSON	object	with	the	description	of	the	operation	followed	by	the
second	line	with	a	document	–	another	JSON	object	itself.	We	can	treat	the	first	line	as	a
kind	of	information	line	and	the	second	as	the	data	line.	The	exception	to	this	rule	is	the
delete	operation,	which	contains	only	the	information	line,	because	the	document	is	not
needed.	Let’s	look	at	the	following	example:

{	"index":	{	"_index":	"addr",	"_type":	"contact",	"_id":	1	}}

{	"name":	"Fyodor	Dostoevsky",	"country":	"RU"	}

{	"create":	{	"_index":	"addr",	"_type":	"contact",	"_id":	2	}}

{	"name":	"Erich	Maria	Remarque",	"country":	"DE"	}

{	"create":	{	"_index":	"addr",	"_type":	"contact",	"_id":	2	}}

{	"name":	"Joseph	Heller",	"country":	"US"	}

{	"delete":	{	"_index":	"addr",	"_type":	"contact",	"_id":	4	}}

{	"delete":	{	"_index":	"addr",	"_type":	"contact",	"_id":	1	}}

It	is	very	important	that	every	document	or	action	description	is	placed	in	one	line	(ended
by	a	newline	character).	This	means	that	the	document	cannot	be	pretty-printed.	There	is	a
default	limitation	on	the	size	of	the	bulk	indexing	file,	which	is	set	to	100	megabytes	and
can	be	changed	by	specifying	the	http.max_content_length	property	in	the	Elasticsearch
configuration	file.	This	lets	us	avoid	issues	with	possible	request	timeouts	and	memory
problems	when	dealing	with	requests	that	are	too	large.

Note
Note	that	with	a	single	batch	indexing	file,	we	can	load	the	data	into	many	indices	and
documents	in	the	bulk	request	can	have	different	types.

www.EBooksWorld.ir

Indexing	the	data
In	order	to	execute	the	bulk	request,	Elasticsearch	provides	the	_bulk	endpoint.	This	can
be	used	as	/_bulk	or	with	an	index	name	as	/index_name/_bulk	or	even	with	a	type	and
index	name	as	/index_name/type_name/_bulk.	The	second	and	third	forms	define	the
default	values	for	the	index	name	and	the	type	name.	We	can	omit	these	properties	in	the
information	line	of	our	request	and	Elasticsearch	will	use	the	default	values	from	the	URI.
It	is	also	worth	knowing	that	the	default	URI	values	can	be	overwritten	by	the	values	in
the	information	lines.

Assuming	we’ve	stored	our	data	in	the	documents.json	file,	we	can	run	the	following
command	to	send	this	data	to	Elasticsearch:

curl	-XPOST	'localhost:9200/_bulk?pretty'	--data-binary	@documents.json

The	?pretty	parameter	is	of	course	not	necessary.	We’ve	used	this	parameter	only	for	the
ease	of	analyzing	the	response	of	the	preceding	command.	What	is	important,	in	this	case,
is	using	curl	with	the	--data-binary	parameter	instead	of	using	–d.	This	is	because	the
standard	–d	parameter	ignores	new	line	characters,	which,	as	we	said	earlier,	are	important
for	parsing	the	bulk	request	content	by	Elasticsearch.	Now	let’s	look	at	the	response
returned	by	Elasticsearch:

{

		"took"	:	469,

		"errors"	:	true,

		"items"	:	[{

				"index"	:	{

						"_index"	:	"addr",

						"_type"	:	"contact",

						"_id"	:	"1",

						"_version"	:	1,

						"_shards"	:	{

								"total"	:	2,

								"successful"	:	1,

								"failed"	:	0

						},

						"status"	:	201

				}

		},	{

				"create"	:	{

						"_index"	:	"addr",

						"_type"	:	"contact",

						"_id"	:	"2",

						"_version"	:	1,

						"_shards"	:	{

								"total"	:	2,

								"successful"	:	1,

								"failed"	:	0

						},

						"status"	:	201

				}

		},	{

				"create"	:	{

www.EBooksWorld.ir

						"_index"	:	"addr",

						"_type"	:	"contact",

						"_id"	:	"2",

						"status"	:	409,

						"error"	:	{

								"type"	:	"document_already_exists_exception",

								"reason"	:	"[contact][2]:	document	already	exists",

								"shard"	:	"2",

								"index"	:	"addr"

						}

				}

		},	{

				"delete"	:	{

						"_index"	:	"addr",

						"_type"	:	"contact",

						"_id"	:	"4",

						"_version"	:	1,

						"_shards"	:	{

								"total"	:	2,

								"successful"	:	1,

								"failed"	:	0

						},

						"status"	:	404,

						"found"	:	false

				}

		},	{

				"delete"	:	{

						"_index"	:	"addr",

						"_type"	:	"contact",

						"_id"	:	"1",

						"_version"	:	2,

						"_shards"	:	{

								"total"	:	2,

								"successful"	:	1,

								"failed"	:	0

						},

						"status"	:	200,

						"found"	:	true

				}

		}]

}

As	we	can	see,	every	result	is	a	part	of	the	items	array.	Let’s	briefly	compare	these	results
with	our	input	data.	The	first	two	commands,	named	index	and	create,	were	executed
without	any	problems.	The	third	operation	failed	because	we	wanted	to	create	a	record
with	an	identifier	that	already	existed	in	the	index.	The	next	two	operations	were
deletions.	Both	succeeded.	Note	that	the	first	of	them	tried	to	delete	a	nonexistent
document;	as	you	can	see,	this	wasn’t	a	problem	for	Elasticsearch	–	the	thing	worth	noting
though	is	that	for	the	nonexisting	document	we	saw	a	status	of	404,	which	in	the	HTTP
response	code	means	not	found	(http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html).	As	you	can	see,	Elasticsearch	returns	information	about	each	operation,	so
for	large	bulk	requests	the	response	can	be	massive.

www.EBooksWorld.ir

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

The	_all	field
The	_all	field	is	used	by	Elasticsearch	to	store	data	from	all	the	other	fields	in	a	single
field	for	ease	of	searching.	This	kind	of	field	may	be	useful	when	we	want	to	implement	a
simple	search	feature	and	we	want	to	search	all	the	data	(or	only	the	fields	we	copy	to	the
_all	field),	but	we	don’t	want	to	think	about	the	field	names	and	things	like	that.	By
default,	the	_all	field	is	enabled	and	contains	all	the	data	from	all	the	fields	from	the
document.	However,	this	field	makes	the	index	a	bit	bigger	and	that	is	not	always	needed.

For	example,	when	you	input	a	search	phrase	into	a	search	box	in	the	library	catalog	site,
you	expect	that	you	can	search	using	the	author’s	name,	the	ISBN	number,	and	the	words
that	the	book	title	contains,	but	searching	for	the	number	of	pages	or	the	cover	type
usually	does	not	make	sense.	We	can	either	disable	the	_all	field	completely	or	exclude
the	copying	of	certain	fields	to	it.	In	order	not	to	include	a	certain	field	in	the	_all	field,
we	use	the	include_in_all	property,	which	was	discussed	earlier	in	this	chapter.	To
completely	turn	off	the	_all	field	functionality,	we	modify	our	mappings	file	as	follows:

{

		"book"	:	{

				"_all"	:	{

						"enabled"	:	false

					},

					"properties"	:	{

							.		.		.

					}

		}

}

In	addition	to	the	enabled	property,	the	_all	field	supports	the	following	ones:

store

term_vector

analyzer

For	information	about	the	preceding	properties,	refer	to	the	Mappings	configuration
section	in	this	chapter.

www.EBooksWorld.ir

The	_source	field
The	_source	field	allows	us	to	store	the	original	JSON	document	that	was	sent	to
Elasticsearch	during	indexation.	By	default,	the	_source	field	is	turned	on	as	some	of	the
Elasticsearch	functionalities	depend	on	it	(for	example,	the	partial	update	feature).	In
addition	to	that,	the	_source	field	can	be	used	as	the	source	of	data	for	the	highlighting
functionality	if	a	field	is	not	stored.	However,	if	we	don’t	need	such	a	functionality,	we
can	disable	the	_source	field	as	it	causes	some	storage	overhead.	In	order	to	do	that,	we
need	to	set	the	_source	object’s	enabled	property	to	false,	as	follows:

{

		"book"	:	{ 
	 "_source"	:	{

						"enabled"	:	false

				},

				"properties"	:	{

						.	.	.

				}

		}

}

We	can	also	tell	Elasticsearch	which	fields	we	want	to	exclude	from	the	_source	field	and
which	fields	we	want	to	include.	We	do	that	by	adding	the	includes	and	excludes
properties	to	the	_source	field	definition.	For	example,	if	we	want	to	exclude	all	the	fields
in	the	author	path	from	the	_source	field,	our	mappings	will	look	as	follows:

{

		"book"	:	{

				"_source"	:	{

						"excludes"	:	["author.*"]

				},

				"properties"	:	{

						.	.	.

				}

		}

}

www.EBooksWorld.ir

Additional	internal	fields
There	are	additional	fields	that	are	internally	used	by	Elasticsearch,	but	which	we	can’t
configure.	Those	fields	are:

_id:	This	field	is	used	to	hold	the	identifier	of	the	document	inside	the	index	and	type
_uid:	This	field	is	used	to	hold	the	unique	identifier	of	the	document	in	the	index	and
is	built	of	_id	and	_type	(this	allows	to	have	documents	with	the	same	identifier	with
different	types	inside	the	same	index)
_type:	This	field	is	the	type	name	for	the	document
_field_names:	This	field	is	the	list	of	fields	existing	in	the	document

www.EBooksWorld.ir

www.EBooksWorld.ir

Introduction	to	segment	merging
In	the	Full	text	searching	section	of	Chapter	1,	Getting	Started	with	Elasticsearch	Cluster,
we	mentioned	segments	and	their	immutability.	We	wrote	that	the	Lucene	library,	and	thus
Elasticsearch,	writes	data	to	certain	structures	that	are	written	once	and	never	change.	This
allows	for	some	simplification,	but	also	introduces	the	need	for	additional	work.	One	such
example	is	deletion.	Because	segment,	cannot	be	altered,	information	about	deletions	must
be	stored	alongside	and	dynamically	applied	during	search.	This	is	done	by	filtering
deleted	documents	from	the	returned	result	set.	The	other	example	is	the	inability	to
modify	the	documents	(however,	some	modifications	are	possible,	such	as	modifying
numeric	doc	values).	Of	course,	one	can	say	that	Elasticsearch	supports	document	updates
(refer	to	the	Manipulating	data	with	the	REST	API	section	of	Chapter	1,	Getting	Started
with	Elasticsearch	Cluster).	However,	under	the	hood,	the	old	document	is	marked	as
deleted	and	the	one	with	the	updated	contents	is	indexed.

As	time	passes	and	you	continue	to	index	or	delete	your	data,	more	and	more	segments	are
created.	Depending	on	how	often	you	modify	the	index,	Lucene	creates	segments	with
various	numbers	of	documents	-	thus,	segments	have	different	sizes.	Because	of	that,	the
search	performance	may	be	lower	and	your	index	may	be	larger	than	it	should	be	–	it	still
contains	the	deleted	documents.	The	equation	is	simple	-	the	more	segments	your	index
has,	the	slower	the	search	speed	is.	This	is	when	segment	merging	comes	into	play.	We
don’t	want	to	describe	this	process	in	detail;	in	the	current	Elasticsearch	version,	this	part
of	the	engine	was	simplified	but	it	is	still	a	rather	advanced	topic.	We	decided	to	mention
merging	because	we	think	that	it	is	handy	to	know	where	to	look	for	the	cause	of	troubles
connected	with	too	many	open	files,	suspicious	CPU	usage,	expanding	indices,	or
searching	and	indexing	speed	degrading	with	time.

www.EBooksWorld.ir

Segment	merging
Segment	merging	is	the	process	during	which	the	underlying	Lucene	library	takes	several
segments	and	creates	a	new	segment	based	on	the	information	found	in	them.	The
resulting	segment	has	all	the	documents	stored	in	the	original	segments	except	the	ones
that	were	marked	for	deletion.	After	the	merge	operation,	the	source	segments	are	deleted
from	the	disk.	Because	segment	merging	is	rather	costly	in	terms	of	CPU	and	I/O	usage,	it
is	crucial	to	appropriately	control	when	and	how	often	this	process	is	invoked.

www.EBooksWorld.ir

The	need	for	segment	merging
You	may	ask	yourself	why	you	have	to	bother	with	segment	merging.	First	of	all,	the	more
segments	the	index	is	built	from,	the	slower	the	search	will	be	and	the	more	memory
Lucene	will	use.	The	second	is	the	disk	space	and	resources,	such	as	file	descriptors,	used
by	the	index.	If	you	delete	many	documents	from	your	index	then,	until	the	merge
happens,	those	documents	are	only	marked	as	deleted	and	not	deleted	physically.	So,	it
may	happen	that	most	of	the	documents	that	use	our	CPU	and	memory	don’t	exist!
Fortunately,	Elasticsearch	uses	reasonable	defaults	for	segment	merging	and	it	is	very
probable	that	no	changes	are	necessary.

www.EBooksWorld.ir

The	merge	policy
The	merge	policy	defines	when	the	merging	process	should	be	performed.	Elasticsearch
merges	segments	of	approximately	similar	sizes,	taking	into	account	the	maximum
number	of	segments	allowed	per	tier.	The	algorithm	of	merging	can	find	segments	with
the	lowest	cost	of	merge	and	the	most	impact	on	the	resulting	segment.

The	basic	properties	of	the	tiered	merge	policy	are	as	follows:

index.merge.policy.expunge_deletes_allowed:	This	property	tells	Elasticsearch
to	merge	segments	with	percentage	of	the	deleted	documents	higher	than	this	value,
defaults	to	10.
index.merge.policy.floor_segment:	This	property	defaults	to	2mb	and	tells
Elasticsearch	to	treat	smaller	segments	as	ones	with	size	equal	to	the	value	of	this
property.	It	prevents	flushing	of	tiny	segments	to	avoid	their	high	number.
index.merge.policy.max_merge_at_once:	In	this	property,	the	maximum	number	of
segments	to	be	merged	at	once	defaults	to	10.
index.merge.policy.max_merge_at_once_explicit:	In	this	property,	the	maximum
number	of	segments	merged	at	once	during	expunge	deletes	or	optimize	operations
defaults	to	10.
index.merge.policy.max_merged_segment:	In	this	property,	the	maximum	size	of
segment	that	can	be	produced	during	normal	merging	defaults	to	5gb.
index.merge.policy.segments_per_tier:	This	property	defaults	to	10	and	roughly
defines	the	number	of	segments.	Smaller	values	mean	more	merging	but	fewer
segments,	which	results	in	higher	search	speed	but	lower	indexing	speed	and	more
I/O	pressure.	Higher	values	of	the	property	will	result	in	higher	segments	count,	thus
slower	search	speed	but	higher	indexing	speed.
index.merge.policy.reclaim_deletes_weight	–	This	property	tells	Elasticsearch
how	important	it	is	to	choose	segments	with	many	deleted	documents.	It	defaults	to
2.0.

For	example,	to	update	merge	policy	settings	of	already	created	index	we	could	run	a
command	like	this:

curl	-XPUT	'localhost:9200/essb/_settings'	-d	'{

"index.merge.policy.max_merged_segment"	:	"10gb"

}'

To	get	deeper	into	segment	merging,	refer	to	our	book	Mastering	Elasticsearch	Second
Edition,	published	by	Packt	Publishing.	You	can	also	find	more	information	about	the
tiered	merge	policy	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-
merge.html.

Note
Up	to	the	2.0	version	of	Elasticsearch,	we	were	able	to	choose	between	three	merge
policies:	tiered,	log_byte_size,	and	log_doc.	The	currently	used	merge	policy	is	based

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-merge.html

on	the	tiered	merge	policy	and	we	are	forced	to	use	it.

www.EBooksWorld.ir

The	merge	scheduler
The	merge	scheduler	tells	Elasticsearch	how	the	merge	process	should	occur.	The	current
implementation	is	based	on	a	concurrent	merge	scheduler	that	is	started	in	a	separate
thread	and	uses	the	defined	number	of	threads	doing	merges	in	parallel.	Elasticsearch
allows	you	to	set	the	number	of	threads	that	can	be	used	for	simultaneous	merging	by
using	the	index.merge.scheduler.max_thread_count	property.

www.EBooksWorld.ir

Throttling
As	we	have	already	mentioned,	merging	may	be	expensive	when	it	comes	to	server
resources.	The	merge	process	usually	works	in	parallel	to	other	operations,	so	theoretically
it	shouldn’t	have	too	much	influence.	In	practice,	the	number	of	disk	input/output
operations	can	be	so	large	as	to	significantly	affect	the	overall	performance.	In	such	cases,
throttling	is	something	that	may	help.	In	fact,	this	feature	can	be	used	for	limiting	the
speed	of	the	merge,	but	it	may	also	be	used	for	all	the	operations	using	the	data	store.
Throttling	can	be	set	in	the	Elasticsearch	configuration	file	(the	elasticsearch.yml	file)
or	dynamically	by	using	the	settings	API	(refer	to	the	The	update	settings	API	section	of
Chapter	9,	Elasticsearch	Cluster,	for	detail).	There	are	two	settings	that	adjust	throttling:
type	and	value.

To	set	the	throttling	type,	set	the	indices.store.throttle.type	property,	which	allows
us	to	use	the	following	values:

none:	This	value	defines	that	no	throttling	is	on
merge:	This	value	defines	that	throttling	affects	only	the	merge	process
all:	This	value	defines	that	throttling	is	used	for	all	the	data	store	activities

The	second	property,	indices.store.throttle.max_bytes_per_sec,	describes	how
much	the	throttling	limits	the	I/O	operations.	As	its	name	suggests,	it	tells	us	how	many
bytes	can	be	processed	per	second.	For	example,	let’s	look	at	the	following	configuration:

indices.store.throttle.type:	merge

indices.store.throttle.max_bytes_per_sec:	10mb

In	this	example,	we	limit	the	merge	operations	to	10	megabytes	per	second.	By	default,
Elasticsearch	uses	the	merge	throttling	type	with	the	max_bytes_per_sec	property	set	to
20mb.	This	means	that	all	the	merge	operations	are	limited	to	20	megabytes	per	second.

www.EBooksWorld.ir

www.EBooksWorld.ir

Introduction	to	routing
By	default,	Elasticsearch	will	try	to	distribute	your	documents	evenly	among	all	the	shards
of	the	index.	However,	that’s	not	always	the	desired	situation.	In	order	to	retrieve	the
documents,	Elasticsearch	must	query	all	the	shards	and	merge	the	results.	What	if	we
could	divide	our	data	on	some	basis	(for	example,	the	client	identifier)	and	use	that
information	to	put	data	with	the	same	properties	in	the	same	place	in	the	cluster.
Elasticsearch	allows	us	to	do	that	by	exposing	a	powerful	document	and	query	distribution
control	mechanism	routing.	In	short,	it	allows	us	to	choose	a	shard	to	be	used	to	index	or
search	the	data.

www.EBooksWorld.ir

Default	indexing
During	indexing	operations,	when	you	send	a	document	for	indexing,	Elasticsearch	looks
at	its	identifier	to	choose	the	shard	in	which	the	document	should	be	indexed.	By	default,
Elasticsearch	calculates	the	hash	value	of	the	document’s	identifier	and,	on	the	basis	of
that,	it	puts	the	document	in	one	of	the	available	primary	shards.	Then,	those	documents
are	redistributed	to	the	replicas.	The	following	diagram	shows	a	simple	illustration	of	how
indexing	works	by	default:

www.EBooksWorld.ir

Default	searching
Searching	is	a	bit	different	from	indexing,	because	in	most	situations	you	need	to	query	all
the	shards	to	get	the	data	you	are	interested	in	(we	will	talk	about	that	in	Chapter	3,
Searching	Your	Data),	at	least	in	the	initial	scatter	phase	of	the	query.	Imagine	a	situation
when	you	have	the	following	mappings	describing	your	index:

			{

					"mappings"	:	{

							"post"	:	{

									"properties"	:	{

											"id"	:	{	"type"	:	"long"	},

											"name"	:	{	"type"	:	"string"	},

											"contents"	:	{	"type"	:	"string"	},

											"userId"	:	{	"type"	:	"long"	}

				}	}	

}	}

As	you	can	see,	our	index	consists	of	four	fields:	the	identifier	(the	id	field),	name	of	the
document	(the	name	field),	contents	of	the	document	(the	contents	field),	and	the	identifier
of	the	user	to	which	the	documents	belong	(the	userId	field).	To	get	all	the	documents	for
a	particular	user,	one	with	userId	equal	to	12,	you	can	run	the	following	query:

curl	–XGET	'http://localhost:9200/posts/_search?q=userId:12'

Depending	on	the	search	type	(we	will	talk	more	about	it	in	Chapter	3,	Searching	Your
Data),	Elasticsearch	will	run	your	query.	It	usually	means	that	it	will	first	query	all	the
nodes	for	the	identifiers	and	score	of	the	matching	documents	and	then	it	will	send	an
internal	query	again,	but	only	to	the	relevant	shards	(the	ones	containing	the	needed
documents)	to	get	the	documents	needed	to	build	the	response.

A	very	simplified	view	of	how	the	default	searching	works	during	its	initial	phase	is
shown	in	the	following	illustration:

www.EBooksWorld.ir

What	if	we	could	put	all	the	documents	for	a	single	user	into	a	single	shard	and	query	on
that	shard?	Wouldn’t	that	be	wise	for	performance?	Yes,	that	is	handy	and	that	is	what
routing	allows	you	do	to.

www.EBooksWorld.ir

Routing
Routing	can	control	which	shard	your	documents	and	queries	will	be	forwarded	to.	By
now,	you	will	probably	have	guessed	that	we	can	specify	the	routing	value	both	during
indexing	and	during	querying	and,	in	fact,	if	you	decide	to	specify	explicit	routing	values,
you’ll	probably	want	to	do	that	during	indexing	and	searching.

In	our	case,	we	will	use	the	userId	value	to	set	routing	during	indexing	and	the	same
value	will	be	used	during	searching.	Because	we	will	use	the	same	routing	value	for	all	the
documents	for	a	single	user,	the	same	hash	value	will	be	calculated	and	thus	all	the
documents	for	that	particular	user	will	be	placed	in	the	same	shard.	Using	the	same	value
during	search	will	result	in	searching	a	single	shard	instead	of	the	whole	index.

There	is	one	thing	you	should	remember	when	using	routing	when	searching.	When
searching,	you	should	add	a	query	part	that	will	limit	the	returned	documents	to	the	ones
for	the	given	user.	Routing	is	not	enough.	This	is	because	you’ll	probably	have	more
distinct	routing	values	than	the	number	of	shards	your	index	will	be	built	with.	For
example,	you	can	have	10	shards	building	your	index,	but	at	the	same	time	have	hundreds
of	users.	It	is	physically	impossible	to	dedicate	a	single	shard	to	only	a	single	user.	It	is
usually	not	good	from	a	scaling	point	for	view	as	well.	Because	of	that,	a	few	distinct
values	can	point	to	the	same	shard	–	in	our	case	data	of	a	few	users	will	be	placed	in	the
same	shard.	Because	of	that,	we	need	a	query	part	that	will	limit	the	data	to	a	particular
user	identifier,	such	as	a	term	query.

The	following	diagram	shows	a	very	simple	illustration	of	how	searching	works	with	a
provided	custom	routing	value:

www.EBooksWorld.ir

As	you	can	see,	Elasticsearch	will	send	our	query	to	a	single	shard.	Now	let’s	look	at	how
we	can	specify	the	routing	values.

www.EBooksWorld.ir

The	routing	parameters
The	idea	is	very	simple.	The	endpoint	used	for	all	the	operations	connected	with	fetching
or	storing	documents	in	Elasticsearch	allows	us	to	use	additional	parameter	called	routing.
You	can	add	it	to	your	HTTP	or	set	it	by	using	the	client	library	of	your	choice.

So,	in	order	to	index	a	sample	document	to	the	previously	shown	index,	we	will	use	the
following	command:

curl	-XPUT	'http://localhost:9200/posts/post/1?routing=12'	-d	'{

		"id":	"1",

		"name":	"Test	document",

		"contents":	"Test	document",

		"userId":	"12"

}'

If	we	now	get	back	to	our	previous	query	fetching	our	user’s	data	and	we	modify	it	to	use
routing,	it	would	look	as	follows:

curl	-XGET	'http://localhost:9200/posts/_search?routing=12&q=userId:12'

As	you	can	see,	the	same	routing	value	was	used	during	indexing	and	querying.	This	is
possible	in	most	cases	when	routing	is	used.	We	know	which	user	data	we	are	indexing
and	we	will	probably	know	which	user	is	searching	for	the	data.	In	our	case,	our
imaginary	user	was	given	the	identifier	of	12	and	we	used	that	value	during	indexing	and
searching.

Note	that	during	searching	you	can	specify	multiple	routing	values	separated	by	commas.
For	example,	if	we	want	the	preceding	query	to	be	additionally	routed	by	the	value	of	the
section	parameter	(if	it	existed)	and	we	also	want	to	filter	by	this	parameter,	our	query	will
look	like	the	following:

curl	-XGET	'http://localhost:9200/posts/_search?

routing=12,6654&q=userId:12+AND+section:6654'

Of	course,	the	preceding	command	can	match	multiple	shards	now	as	the	values	given	to
routing	can	point	to	multiple	shards.	Because	of	that	you	need	to	provide	only	a	single
routing	value	during	indexation	(Elasticsearch	needs	to	be	pointed	to	a	single	shard	or
indexation	will	fail).	You	can	of	course	query	multiple	shards	at	the	same	time	and
because	of	that	multiple	routing	values	can	be	provided	during	searching.

Note
Remember	that	routing	is	not	the	only	thing	that	is	required	to	get	results	for	a	given	user.
That’s	because	usually	we	have	few	shards	that	have	unique	routing	values.	This	means
that	we	will	have	data	from	multiple	users	in	a	single	shard.	So,	when	using	routing,	you
should	also	narrow	down	your	results	to	the	ones	for	a	given	user.	You’ll	learn	more	about
how	you	can	do	that	in	Chapter	3,	Searching	Your	Data.

www.EBooksWorld.ir

Routing	fields
Specifying	the	routing	value	with	each	request	is	critical	when	using	an	index	operation.
Without	it,	Elasticsearch	uses	the	default	way	of	determining	where	the	document	should
be	stored	–	it	uses	the	hash	value	of	the	document	identifier.	This	may	lead	to	a	situation
where	one	document	exists	in	many	versions	on	different	shards.	A	similar	situation	may
occur	when	fetching	the	document.	When	a	document	is	stored	with	a	given	routing	value,
we	may	hit	the	wrong	shard	and	the	document	may	be	not	found.

In	fact,	Elasticsearch	allows	us	to	change	the	default	behavior	and	forces	us	to	use	routing
when	querying	a	given	index.	To	do	that,	we	need	to	add	the	following	section	to	our	type
definition:

			"_routing"	:	{

					"required"	:	true

			}

The	preceding	definition	means	that	the	routing	value	needs	to	be	provided	(the
"required":	true	property);	without	it,	an	index	request	will	fail.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we’ve	learned	a	lot	when	it	comes	to	indexation	and	data	handling	in
Elasticsearch.	We	started	with	basic	information	about	Elasticsearch	and	we	proceeded	to
tuning	the	schema-less	behavior	in	Elasticsearch.	We	learned	how	to	configure	our
mappings,	use	out	of	the	box	language	analysis	capabilities	of	Elasticsearch,	and	create
our	own	mappings.	We	looked	at	batch	indexing	to	speed	up	indexation	and	we	added
additional	internal	information	to	the	documents	in	our	indices.	Finally,	we	looked	at
segment	merging	and	routing.

In	the	next	chapter,	we	will	fully	concentrate	on	searching	and	the	extensive	query
language	of	Elasticsearch.	We	will	start	with	how	to	query	Elasticsearch	and	how	the
Elasticsearch	query	process	works.	We	will	learn	about	all	the	basic	queries	and
compound	queries	to	be	able	to	use	them	in	our	applications.	Finally,	we	will	see	which
query	should	be	chosen	for	the	given	use	case.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	3.	Searching	Your	Data
In	the	previous	chapter,	we	dived	into	Elasticsearch	indexing.	We	learned	a	lot	when	it
comes	to	data	handling.	We	saw	how	to	tune	Elasticsearch	schema-less	mechanism	and	we
now	know	how	to	create	our	own	mappings.	We	also	saw	the	core	types	of	Elasticsearch
and	we	used	analyzers	–	both	the	one	that	comes	out	of	the	box	with	Elasticsearch	and	the
one	we	defined	ourselves.	We	used	bulk	indexing	and	we	added	additional	internal
information	to	our	indices.	Finally,	we	learned	what	segment	merging	is,	how	we	can	fine
tune	it,	and	how	to	use	routing	in	Elasticsearch	and	what	it	gives	us.	This	chapter	is	fully
dedicated	to	querying.	By	the	end	of	this	chapter,	you	will	have	learned	the	following
topics:

How	to	query	Elasticsearch
What	happens	internally	when	queries	are	run
What	are	the	basic	queries	in	Elasticsearch
What	are	the	compound	queries	in	Elasticsearch	that	allow	us	to	group	other	queries
How	to	use	position	aware	queries	–	span	queries
How	to	choose	the	right	query	for	the	job

www.EBooksWorld.ir

Querying	Elasticsearch
So	far,	when	we	havesearched	our	data,	we	used	the	REST	API	and	a	simple	query	or	the
GET	request.	Similarly,	when	we	were	changing	the	index,	we	also	used	the	REST	API	and
sent	the	JSON-structured	data	to	Elasticsearch.	Regardless	of	the	type	of	operation	we
wanted	to	perform,	whether	it	was	a	mapping	change	or	document	indexation,	we	used
JSON	structured	request	body	to	inform	Elasticsearch	about	the	operation	details.

A	similar	situation	happens	when	we	want	to	send	more	than	a	simple	query	to
Elasticsearch,	we	structure	it	using	the	JSON	objects	and	send	it	to	Elasticsearch	in	the
request	body.	This	is	called	the	query	DSL.	In	a	broader	view,	Elasticsearch	supports	two
kinds	of	queries:	basic	ones	and	compound	ones.	Basic	queries,	such	as	the	term	query,
are	used	for	querying	the	actual	data.	We	will	cover	these	in	the	Basic	queries	section	of
this	chapter.	The	second	type	of	query	is	the	compound	query,	such	as	the	bool	query,
which	can	combine	multiple	queries.	We	will	cover	these	in	the	Compound	queries	section
of	this	chapter.

However,	this	is	not	the	whole	picture.	In	addition	to	these	two	types	of	queries,	certain
queries	can	have	filters	that	are	used	to	narrow	down	your	results	with	certain	criteria.
Filter	queries	don’t	affect	scoring	and	are	usually	very	efficient	and	easily	cached.

To	make	it	even	more	complicated,	queries	can	contain	other	queries	(don’t	worry;	we	will
try	to	explain	all	this!).	Furthermore,	some	queries	can	contain	filters	and	others	can
contain	both	queries	and	filters.	Although	this	is	not	everything,	we	will	stick	with	this
working	explanation	for	now.	We	will	go	over	this	in	greater	detail	in	the	Compound
queries	section	in	this	chapter	and	the	Filtering	your	results	section	in	Chapter	4,
Extending	Your	Querying	Knowledge.

www.EBooksWorld.ir

The	example	data
If	not	stated	otherwise,	the	following	mappings	will	be	used	for	the	rest	of	the	chapter:

{

		"book"	:	{

				"properties"	:	{

						"author"	:	{

								"type"	:	"string"

						},

						"characters"	:	{

								"type"	:	"string"

						},

						"copies"	:	{

								"type"	:	"long",

								"ignore_malformed"	:	false

						},

						"otitle"	:	{

								"type"	:	"string"

						},

						"tags"	:	{

								"type"	:	"string",

								"index"	:	"not_analyzed"

						},

						"title"	:	{

								"type"	:	"string"

						},

						"year"	:	{

								"type"	:	"long",

								"ignore_malformed"	:	false,

								"index"	:	"analyzed"

						},

						"available"	:	{

								"type"	:	"boolean"

						}

				}

		}

}

The	preceding	mappings	represent	a	simple	library	and	were	used	to	create	the	library
index.	One	thing	to	remember	is	that	Elasticsearch	will	analyze	the	string	based	fields	if
we	don’t	configure	it	differently.

The	preceding	mappings	were	stored	in	the	mapping.json	file	and,	in	order	to	create	the
mentioned	library	index,	we	can	use	the	following	commands:

curl	-XPOST	'localhost:9200/library'

curl	-XPUT	'localhost:9200/library/book/_mapping'	-d	@mapping.json

We	also	used	the	following	sample	data	as	the	example	ones	for	this	chapter:

{	"index":	{"_index":	"library",	"_type":	"book",	"_id":	"1"}}

{	"title":	"All	Quiet	on	the	Western	Front","otitle":	"Im	Westen	nichts	

Neues","author":	"Erich	Maria	Remarque","year":	1929,"characters":	["Paul	

Bäumer",	"Albert	Kropp",	"Haie	Westhus",	"Fredrich	Müller",	"Stanislaus	

www.EBooksWorld.ir

Katczinsky",	"Tjaden"],"tags":	["novel"],"copies":	1,	"available":	true,	

"section"	:	3}

{	"index":	{"_index":	"library",	"_type":	"book",	"_id":	"2"}}

{	"title":	"Catch-22","author":	"Joseph	Heller","year":	1961,"characters":	

["John	Yossarian",	"Captain	Aardvark",	"Chaplain	Tappman",	"Colonel	

Cathcart",	"Doctor	Daneeka"],"tags":	["novel"],"copies":	6,	"available"	:	

false,	"section"	:	1}

{	"index":	{"_index":	"library",	"_type":	"book",	"_id":	"3"}}

{	"title":	"The	Complete	Sherlock	Holmes","author":	"Arthur	Conan	

Doyle","year":	1936,"characters":	["Sherlock	Holmes","Dr.	Watson",	"G.	

Lestrade"],"tags":	[],"copies":	0,	"available"	:	false,	"section"	:	12}

{	"index":	{"_index":	"library",	"_type":	"book",	"_id":	"4"}}

{	"title":	"Crime	and	Punishment","otitle":	"Преступлéние	и	

наказáние","author":	"Fyodor	Dostoevsky","year":	1886,"characters":	

["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],"tags":	[],"copies":	0,	

"available"	:	true}

We	stored	our	sample	data	in	the	documents.json	file	and	we	use	the	following	command
to	index	it:

curl	-s	-XPOST	'localhost:9200/_bulk'	--data-binary	@documents.json

This	command	runs	bulk	indexing.	You	can	learn	more	about	it	in	the	Batch	indexing	to
speed	up	your	indexing	process	section	in	Chapter	2,	Indexing	Your	Data.

www.EBooksWorld.ir

A	simple	query
The	simplest	way	to	query	Elasticsearch	is	to	use	the	URI	request	query.	We	already
discussed	it	in	the	Searching	with	the	URI	request	query	section	of	Chapter	1,	Getting
Started	with	Elasticsearch	Cluster.	For	example,	to	search	for	the	word	crime	in	the	title
field,	you	could	send	a	query	using	the	following	command:

curl	-XGET	'localhost:9200/library/book/_search?q=title:crime&pretty'	

This	is	a	very	simple,	but	limited,	way	of	submitting	queries	to	Elasticsearch.	If	we	look
from	the	point	of	view	of	the	Elasticsearch	query	DSL,	the	preceding	query	is	a
query_string	query.	It	searches	for	the	documents	that	have	the	term	crime	in	the	title
field	and	can	be	rewritten	as	follows:

{

		"query"	:	{	

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}

Sending	a	query	using	the	query	DSL	is	a	bit	different,	but	still	not	rocket	science.	We
send	the	GET	(POST	is	also	accepted	in	case	your	tool	or	library	doesn’t	allow	sending
request	body	in	HTTP	GET	requests)	HTTP	request	to	the	_search	REST	endpoint	as
earlier	and	include	the	query	in	the	request	body.	Let’s	take	a	look	at	the	following
command:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

As	you	can	see,	we	used	the	request	body	(the	-d	switch)	to	send	the	whole	JSON-
structured	query	to	Elasticsearch.	The	pretty	request	parameter	tells	Elasticsearch	to
structure	the	response	in	such	a	way	that	we	humans	can	read	it	more	easily.	In	response	to
the	preceding	command,	we	get	the	following	output:

{

		"took"	:	4,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5,

www.EBooksWorld.ir

						"_source"	:	{

								"title"	:	"Crime	and	Punishment",

								"otitle"	:	"Преступлéние	и	наказáние",

								"author"	:	"Fyodor	Dostoevsky",

								"year"	:	1886,

								"characters"	:	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],

								"tags"	:	[],

								"copies"	:	0,

								"available"	:	true

						}

				}]

		}

}

Nice!	We	got	our	first	search	results	with	the	query	DSL.

www.EBooksWorld.ir

Paging	and	result	size
Elasticsearch	allows	us	to	control	how	many	results	we	want	to	get	(at	most)	and	from
which	result	we	want	to	start.	The	following	are	the	two	additional	properties	that	can	be
set	in	the	request	body:

from:	This	property	specifies	the	document	that	we	want	to	have	our	results	from.	Its
default	value	is	0,	which	means	that	we	want	to	get	our	results	from	the	first
document.
size:	This	property	specifies	the	maximum	number	of	documents	we	want	as	the
result	of	a	single	query	(which	defaults	to	10).	For	example,	if	we	are	only	interested
in	aggregations	results	and	don’t	care	about	the	documents	returned	by	the	query,	we
can	set	this	parameter	to	0.

If	we	want	our	query	to	get	documents	starting	from	the	tenth	item	on	the	list	and	fetch	20
documents,	we	send	the	following	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"from"	:		9,

		"size"	:	20,

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

Log	in	or	register	to	our	website	using	your	e-mail	address	and	password
Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top
Click	on	Code	Downloads	&	Errata
Enter	the	name	of	the	book	in	the	Search	box
Select	the	book	for	which	you’re	looking	to	download	the	code	files
Choose	from	the	drop-down	menu	where	you	purchased	this	book	from
Click	on	Code	Download

Once	the	file	is	downloaded,	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest
version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support

Returning	the	version	value
In	addition	to	all	the	information	returned,	Elasticsearch	can	return	the	version	of	the
document	(we	mentioned	about	versioning	in	Chapter	1,	Getting	Started	with
Elasticsearch	Cluster.	To	do	this,	we	need	to	add	the	version	property	with	the	value	of
true	to	the	top	level	of	our	JSON	object.	So,	the	final	query,	which	requests	the	version
information,	will	look	as	follows:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

					"version"	:	true,

					"query"	:	{

							"query_string"	:	{	"query"	:	"title:crime"	}

					}

}'

After	running	the	preceding	query,	we	get	the	following	results:

{

		"took"	:	4,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_version"	:	1,

						"_score"	:	0.5,

						"_source"	:	{

								"title"	:	"Crime	and	Punishment",

								"otitle"	:	"Преступлéние	и	наказáние",

								"author"	:	"Fyodor	Dostoevsky",

								"year"	:	1886,

								"characters"	:	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],

								"tags"	:	[],

								"copies"	:	0,

								"available"	:	true

						}

				}]

		}

}

As	you	can	see,	the	_version	section	is	present	for	the	single	hit	we	got.

www.EBooksWorld.ir

Limiting	the	score
For	nonstandard	use	cases,	Elasticsearch	provides	a	feature	that	lets	us	filter	the	results	on
the	basis	of	a	minimum	score	value	that	the	document	must	have	to	be	considered	a	match.
In	order	to	use	this	feature,	we	must	provide	the	min_score	value	at	the	top	level	of	our
JSON	object	with	the	value	of	the	minimum	score.	For	example,	if	we	want	our	query	to
only	return	documents	with	a	score	higher	than	0.75,	we	send	the	following	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"min_score"	:	0.75,

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

We	get	the	following	response	after	running	the	preceding	query:

{

		"took"	:	3,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	0,

				"max_score"	:	null,

				"hits"	:	[]

		}

}

If	you	look	at	the	previous	examples,	the	score	of	our	document	was	0.5,	which	is	lower
than	0.75,	and	thus	we	didn’t	get	any	documents	in	response.

Limiting	the	score	usually	doesn’t	make	much	sense	because	comparing	scores	between
the	queries	is	quite	hard.	However,	maybe	in	your	case,	this	functionality	will	be	needed.

www.EBooksWorld.ir

Choosing	the	fields	that	we	want	to	return
With	the	use	of	the	fields	array	in	the	request	body,	Elasticsearch	allows	us	to	define
which	fields	to	include	in	the	response.	Remember	that	you	can	only	return	these	fields	if
they	are	marked	as	stored	in	the	mappings	used	to	create	the	index,	or	if	the	_source	field
was	used	(Elasticsearch	uses	the	_source	field	to	provide	the	stored	values	and	the
_source	field	is	turned	on	by	default).

So,	for	example,	to	return	only	the	title	and	the	year	fields	in	the	results	(for	each
document),	send	the	following	query	to	Elasticsearch:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"fields"	:	["title",	"year"],

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

In	response,	we	get	the	following	output:

{

		"took"	:	5,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5,

						"fields"	:	{

								"title"	:	["Crime	and	Punishment"],

								"year"	:	[1886]

						}

				}]

		}

}

As	you	can	see,	everything	worked	as	we	wanted	to.	There	are	four	things	we	would	like
to	share	with	you	at	this	point,	which	are	as	follows:

If	we	don’t	define	the	fields	array,	it	will	use	the	default	value	and	return	the	_source
field	if	available.
If	we	use	the	_source	field	and	request	a	field	that	is	not	stored,	then	that	field	will
be	extracted	from	the	_source	field	(however,	this	requires	additional	processing).
If	we	want	to	return	all	the	stored	fields,	we	just	pass	an	asterisk	(*)	as	the	field	name.
From	a	performance	point	of	view,	it’s	better	to	return	the	_source	field	instead	of

www.EBooksWorld.ir

multiple	stored	fields.	This	is	because	getting	multiple	stored	fields	may	be	slower
compared	to	retrieving	a	single	_source	field.

www.EBooksWorld.ir

Source	filtering
In	addition	to	choosing	which	fields	are	returned,	Elasticsearch	allows	us	to	use	so-called
source	filtering.	This	functionality	allows	us	to	control	which	fields	are	returned	from	the
_source	field.	Elasticsearch	exposes	several	ways	to	do	this.	The	simplest	source	filtering
allows	us	to	decide	whether	a	document	should	be	returned	or	not.	Consider	the	following
query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"_source"	:	false,

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

The	result	retuned	by	Elasticsearch	should	be	similar	to	the	following	one:

{

		"took"	:	12,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5

				}]

		}

}

Note	that	the	response	is	limited	to	base	information	about	a	document	and	the	_source
field	was	not	included.	If	you	use	Elasticsearch	as	a	second	source	of	data	and	content	of
the	document	is	served	from	SQL	database	or	cache,	the	document	identifier	is	all	you
need.

The	second	way	is	similar	to	that	described	in	the	preceding	fields,	although	we	define
which	fields	should	be	returned	in	the	document	source	itself.	Let’s	see	that	using	the
following	example	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"_source"	:	["title",	"otitle"],

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

We	wanted	to	get	the	title	and	the	otitle	document	fields	in	the	returned	_source	field.

www.EBooksWorld.ir

Elasticsearch	extracted	those	values	from	the	original	_source	value	and	included	the
_source	field	only	with	the	requested	fields.	The	whole	response	returned	by
Elasticsearch	looked	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5,

						"_source"	:	{

								"otitle"	:	"Преступлéние	и	наказáние",

								"title"	:	"Crime	and	Punishment"

						}

				}]

		}

}

We	can	also	use	an	asterisk	to	select	which	fields	should	be	returned	in	the	_source	field;
for	example,	title*	will	return	values	for	the	title	field	and	for	title10	(if	we	have
such	field	in	our	data).	If	we	have	documents	with	nested	parts,	we	can	use	notation	with	a
dot;	for	example,	title.*	to	select	all	the	fields	nested	under	the	title	object.

Finally,	we	can	also	specify	explicitly	which	fields	we	want	to	include	and	which	to
exclude	from	the	_source	field.	We	can	include	fields	using	the	include	property	and	we
can	exclude	fields	using	the	exclude	property	(both	of	them	are	arrays	of	values).	For
example,	if	we	want	the	returned	_source	field	to	include	all	the	fields	starting	with	the
letter	t	but	not	the	title	field,	we	will	run	the	following	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"_source"	:	{	

				"include"	:	["t*"],	

				"exclude"	:	["title"]	

		},

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

www.EBooksWorld.ir

Using	the	script	fields
Elasticsearch	allows	us	to	use	script-evaluated	values	that	will	be	returned	with	the	result
documents	(we	will	discuss	Elasticsearch	scripting	capabilities	in	greater	detail	in	the
Scripting	capabilities	of	Elasticsearch	section	in	Chapter	6,	Make	Your	Search	Better).	To
use	the	script	fields	functionality,	we	add	the	script_fields	section	to	our	JSON	query
object	and	an	object	with	a	name	of	our	choice	for	each	scripted	value	that	we	want	to
return.	For	example,	to	return	a	value	named	correctYear,	which	is	calculated	as	the	year
field	minus	1800,	we	run	the	following	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"script_fields"	:	{

				"correctYear"	:	{

						"script"	:	"doc[\"year\"].value	-	1800"

				}	

		},	

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

Note
By	default,	Elasticsearch	doesn’t	allow	us	to	use	dynamic	scripting.	If	you	tried	the
preceding	query,	you	probably	got	an	error	with	information	stating	that	the	scripts	of	type
[inline]	with	operation	[search]	and	language	[groovy]	are	disabled.	To	make	this
example	work,	you	should	add	the	script.inline:	on	property	to	the
elasticsearch.yml	file.	However,	this	exposes	a	security	threat.	Make	sure	to	read	the
Scripting	capabilities	of	Elasticsearch	section	in	Chapter	6,	Make	Your	Search	Better,	to
learn	about	the	consequences.

Using	the	doc	notation,	like	we	did	in	the	preceding	example,	allows	us	to	catch	the	results
returned	and	speed	up	script	execution	at	the	cost	of	higher	memory	consumption.	We	also
get	limited	to	single-valued	and	single	term	fields.	If	we	care	about	memory	usage,	or	if
we	are	using	more	complicated	field	values,	we	can	always	use	the	_source	field.	The
same	query	using	the	_source	field	looks	as	follows:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"script_fields"	:	{

				"correctYear"	:	{

						"script"	:	"_source.year	-	1800"

				}	

		},	

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

The	following	response	is	returned	by	Elasticsearch	with	dynamic	scripting	enabled:

{

		"took"	:	76,

www.EBooksWorld.ir

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5,

						"fields"	:	{

								"correctYear"	:	[86]

						}

				}]

		}

}

As	you	can	see,	we	got	the	calculated	correctYear	field	in	response.

Passing	parameters	to	the	script	fields
Let’s	take	a	look	at	one	more	feature	of	the	script	fields	-	the	passing	of	additional
parameters.	Instead	of	having	the	value	1800	in	the	equation,	we	can	use	a	variable	name
and	pass	its	value	in	the	params	section.	If	we	do	this,	our	query	will	look	as	follows:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"script_fields"	:	{

				"correctYear"	:	{

						"script"	:	"_source.year	-	paramYear",

						"params"	:	{

								"paramYear"	:	1800

						}

				}	

		},	

		"query"	:	{

				"query_string"	:	{	"query"	:	"title:crime"	}

		}

}'

As	you	can	see,	we	added	the	paramYear	variable	as	part	of	the	scripted	equation	and
provided	its	value	in	the	params	section.	This	allows	Elasticsearch	to	execute	the	same
script	with	different	parameter	values	in	a	slightly	more	efficient	way.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding	the	querying	process
After	reading	the	previous	section,	we	now	know	how	querying	works	in	Elasticsearch.
You	know	that	Elasticsearch,	in	most	cases,	needs	to	scatter	the	query	across	multiple
nodes,	get	the	results,	merge	them,	fetch	the	relevant	documents	from	one	or	more	shards,
and	return	the	final	results	to	the	client	requesting	the	documents.	What	we	didn’t	talk
about	are	two	additional	things	that	define	how	queries	behave:	search	type	and	query
execution	preference.	We	will	now	concentrate	on	these	functionalities	of	Elasticsearch.

www.EBooksWorld.ir

Query	logic
Elasticsearch	is	a	distributed	search	engine	and	so	all	functionality	provided	must	be
distributed	in	its	nature.	It	is	exactly	the	same	with	querying.	Because	we	would	like	to
discuss	some	more	advanced	topics	on	how	to	control	the	query	process,	we	first	need	to
know	how	it	works.

Let’s	now	get	back	to	how	querying	works.	We	started	the	theory	in	the	first	chapter	and
we	would	like	to	get	back	to	it.	By	default,	if	we	don’t	alter	anything,	the	query	process
will	consist	of	two	phases:	the	scatter	and	the	gather	phase.	The	aggregator	node	(the	one
that	receives	the	request)	will	run	the	scatter	phase	first.	During	that	phase,	the	query	is
distributed	to	all	the	shards	that	our	index	is	built	from	(of	course	if	routing	is	not	used).
For	example,	if	it	is	built	of	5	shards	and	1	replica	then	5	physical	shards	will	be	queried
(we	don’t	need	to	query	a	shard	and	its	replica	as	they	contain	the	same	data).	Each	of	the
queried	shards	will	only	return	the	document	identifier	and	the	score	of	the	document.	The
node	that	sent	the	scatter	query	will	wait	for	all	the	shards	to	complete	their	task,	gather
the	results,	and	sort	them	appropriately	(in	this	case,	from	top	scoring	to	the	lowest	scoring
ones).

After	that,	a	new	request	will	be	sent	to	build	the	search	results.	However,	now	only	to
those	shards	that	held	the	documents	to	build	the	response.	In	most	cases,	Elasticsearch
won’t	send	the	request	to	all	the	shards	but	to	its	subset.	That’s	because	we	usually	don’t
get	the	complete	result	of	the	query	but	only	a	portion	of	it.	This	phase	is	called	the	gather
phase.	After	all	the	documents	are	gathered,	the	final	response	is	built	and	returned	as	the
query	result.	This	is	the	basic	and	default	Elasticsearch	behavior	but	we	can	change	it.

www.EBooksWorld.ir

Search	type
Elasticsearch	allows	us	to	choose	how	we	want	our	query	to	be	processed	internally.	We
can	do	that	by	specifying	the	search	type.	There	are	different	situations	where	different
search	types	are	appropriate:	sometimes	one	can	care	only	about	the	performance	while
sometimes	query	relevance	is	the	most	important	factor.	You	should	remember	that	each
shard	is	a	small	Lucene	index	and,	in	order	to	return	more	relevant	results,	some
information,	such	as	frequencies,	needs	to	be	transferred	between	the	shards.	To	control
how	the	queries	are	executed,	we	can	pass	the	search_type	request	parameter	and	set	it	to
one	of	the	following	values:

query_then_fetch:	In	the	first	step,	the	query	is	executed	to	get	the	information
needed	to	sort	and	rank	the	documents.	This	step	is	executed	against	all	the	shards.
Then	only	the	relevant	shards	are	queried	for	the	actual	content	of	the	documents.
This	is	the	search	type	used	by	default	if	no	search	type	is	provided	with	the	query
and	this	is	the	query	type	we	described	previously.
dfs_query_then_fetch:	This	is	similar	to	query_then_fetch.	However,	it	contains
an	additional	query	phase	comparing	to	query_then_fetch	which	calculates
distributed	term	frequencies.

There	are	also	two	deprecated	search	types:	count	and	scan.	The	first	one	is	deprecated
starting	from	Elasticsearch	2.0	and	the	second	one	starting	with	Elasticsearch	2.1.	The	first
search	type	used	to	provide	benefits	where	only	aggregations	or	the	number	of	documents
was	relevant,	but	now	it	is	enough	to	add	size	equal	to	0	to	your	queries.	The	scan	request
was	used	for	scrolling	functionality.

So	if	we	would	like	to	use	the	simplest	search	type,	we	would	run	the	following	command:

curl	-XGET	'localhost:9200/library/book/_search?

pretty&search_type=query_then_fetch'	-d	'{

	"query"	:	{

		"term"	:	{	"title"	:	"crime"	}

	}

}'

www.EBooksWorld.ir

Search	execution	preference
In	addition	to	the	possibility	of	controlling	how	the	query	is	executed,	we	can	also	control
on	which	shards	to	execute	the	query.	By	default,	Elasticsearch	uses	shards	and	replicas	on
any	node	in	a	round	robin	manner	–	so	that	each	shard	is	queried	a	similar	number	of
times.	The	default	behavior	is	the	proper	method	of	shard	execution	preference	for	most
use	cases.	But	there	may	be	times	when	we	want	to	change	the	default	behavior.	For
example,	you	may	want	the	search	to	only	be	executed	on	the	primary	shards.	To	do	that,
we	can	set	the	preference	request	parameter	to	one	of	the	following	values:

_primary:	The	operation	will	be	only	executed	on	the	primary	shards,	so	the	replicas
won’t	be	used.	This	can	be	useful	when	we	need	to	use	the	latest	information	from
the	index	but	our	data	is	not	replicated	right	away.
_primary_first:	The	operation	will	be	executed	on	the	primary	shards	if	they	are
available.	If	not,	it	will	be	executed	on	the	other	shards.
_replica:	The	operation	will	be	executed	only	on	the	replica	shards.
_replica_first:	This	operation	is	similar	to	_primary_first,	but	uses	replica
shards.	The	operation	will	be	executed	on	the	replica	shards	if	possible	and	on	the
primary	shards	if	the	replicas	are	not	available.
_local:	The	operation	will	be	executed	on	the	shards	available	on	the	node	which	the
request	was	sent	from	and,	if	such	shards	are	not	present,	the	request	will	be
forwarded	to	the	appropriate	nodes.
_only_node:node_id:	This	operation	will	be	executed	on	the	node	with	the	provided
node	identifier.
_only_nodes:nodes_spec:	This	operation	will	be	executed	on	the	nodes	that	are
defined	in	nodes_spec.	This	can	be	an	IP	address,	a	name,	a	name	or	IP	address	using
wildcards,	and	so	on.	For	example,	if	nodes_spec	is	set	to	192.168.1.*,	the
operation	will	be	run	on	the	nodes	with	IP	addresses	starting	with	192.168.1.
_prefer_node:node_id:	Elasticsearch	will	try	to	execute	the	operation	on	the	node
with	the	provided	identifier.	However,	if	the	node	is	not	available,	it	will	be	executed
on	the	nodes	that	are	available.
_shards:1,2:	Elasticsearch	will	execute	the	operation	on	the	shards	with	the	given
identifiers;	in	this	case,	on	shards	with	identifiers	1	and	2.	The	_shards	parameter
can	be	combined	with	other	preferences,	but	the	shards	identifiers	need	to	be
provided	first.	For	example,	_shards:1,2;_local.
Custom	value:	Any	custom,	string	value	may	be	passed.	Requests	with	the	same
values	provided	will	be	executed	on	the	same	shards.

For	example,	if	we	would	like	to	execute	a	query	only	on	the	local	shards,	we	would	run
the	following	command:

curl	-XGET	'localhost:9200/library/_search?pretty&preference=_local'	-d	'{

	"query"	:	{

		"term"	:	{	"title"	:	"crime"	}

	}

}'

www.EBooksWorld.ir

Search	shards	API
When	discussing	the	search	preference,	we	would	also	like	to	mention	the	search	shards
API	exposed	by	Elasticsearch.	This	API	allows	us	to	check	which	shards	the	query	will	be
executed	on.	In	order	to	use	this	API,	run	a	request	against	the	search_shards	rest	end
point.	For	example,	to	see	how	the	query	will	be	executed,	we	run	the	following
command:

curl	-XGET	'localhost:9200/library/_search_shards?pretty'	-d	

'{"query":"match_all":{}}'

The	response	to	the	preceding	command	will	be	as	follows:

{

		"nodes"	:	{

				"my0DcA_MTImm4NE3cG3ZIg"	:	{

						"name"	:	"Cloud	9",

						"transport_address"	:	"127.0.0.1:9300",

						"attributes"	:	{	}

				}

		},

		"shards"	:	[[{

				"state"	:	"STARTED",

				"primary"	:	true,

				"node"	:	"my0DcA_MTImm4NE3cG3ZIg",

				"relocating_node"	:	null,

				"shard"	:	0,

				"index"	:	"library",

				"version"	:	4,

				"allocation_id"	:	{

						"id"	:	"9ayLDbL1RVSyJRYIJkuAxg"

				}

		}],	[{

				"state"	:	"STARTED",

				"primary"	:	true,

				"node"	:	"my0DcA_MTImm4NE3cG3ZIg",

				"relocating_node"	:	null,

				"shard"	:	1,

				"index"	:	"library",

				"version"	:	4,

				"allocation_id"	:	{

						"id"	:	"wfpvtaLER-KVyOsuD46Yqg"

				}

		}],	[{

				"state"	:	"STARTED",

				"primary"	:	true,

				"node"	:	"my0DcA_MTImm4NE3cG3ZIg",

				"relocating_node"	:	null,

				"shard"	:	2,

				"index"	:	"library",

				"version"	:	4,

				"allocation_id"	:	{

						"id"	:	"zrLPWhCOSTmjlb8TY5rYQA"

				}

		}],	[{

www.EBooksWorld.ir

				"state"	:	"STARTED",

				"primary"	:	true,

				"node"	:	"my0DcA_MTImm4NE3cG3ZIg",

				"relocating_node"	:	null,

				"shard"	:	3,

				"index"	:	"library",

				"version"	:	4,

				"allocation_id"	:	{

						"id"	:	"efnvY7YcSz6X8X8USacA7g"

				}

		}],	[{

				"state"	:	"STARTED",

				"primary"	:	true,

				"node"	:	"my0DcA_MTImm4NE3cG3ZIg",

				"relocating_node"	:	null,

				"shard"	:	4,

				"index"	:	"library",

				"version"	:	4,

				"allocation_id"	:	{

						"id"	:	"XJHW2J63QUKdh3bK3T2nzA"

				}

		}]]

}

As	you	can	see,	in	the	response	returned	by	Elasticsearch,	we	have	the	information	about
the	shards	that	will	be	used	during	the	query	process.	Of	course,	with	the	search	shards
API,	we	can	use	additional	parameters	that	control	the	querying	process.	These	properties
are	routing,	preference,	and	local.	We	are	already	familiar	with	the	first	two.	The
local	parameter	is	a	Boolean	(values	true	or	false),	one	that	allows	us	to	tell
Elasticsearch	to	use	the	cluster	state	information	stored	on	the	local	node	(setting	local
to	true)	instead	of	the	one	from	the	master	node	(setting	local	to	false).	This	allows	us
to	diagnose	problems	with	cluster	state	synchronization.

www.EBooksWorld.ir

www.EBooksWorld.ir

Basic	queries
Elasticsearch	has	extensive	search	and	data	analysis	capabilities	that	are	exposed	in	forms
of	different	queries,	filters,	aggregates,	and	so	on.	In	this	section,	we	will	concentrate	on
the	basic	queries	provided	by	Elasticsearch.	By	basic	queries	we	mean	the	ones	that	don’t
combine	the	other	queries	together	but	run	on	their	own.

www.EBooksWorld.ir

The	term	query
The	term	query	is	one	of	the	simplest	queries	in	Elasticsearch.	It	just	matches	the
document	that	has	a	term	in	a	given	field	-	the	exact,	not	analyzed	term.	The	simplest	term
query	is	as	follows:

{

		"query"	:	{

		"term"	:	{

				"title"	:	"crime"

		}

		}

}

It	will	match	the	documents	that	have	the	term	crime	in	the	title	field.	Remember	that	the
term	query	is	not	analyzed,	so	you	need	to	provide	the	exact	term	that	will	match	the	term
in	the	indexed	document.	Note	that	in	our	input	data,	we	have	the	title	field	with	the
value	of	Crime	and	Punishment	(upper	cased),	but	we	are	searching	for	crime,	because	the
Crime	terms	becomes	crime	after	analysis	during	indexing.

In	addition	to	the	term	we	want	to	find,	we	can	also	include	the	boost	attribute	to	our	term
query,	which	will	affect	the	importance	of	the	given	term.	We	will	talk	more	about	boosts
in	the	Introduction	to	Apache	Lucene	scoring	section	of	Chapter	6,	Make	Your	Search
Better.	For	now,	we	just	need	to	remember	that	it	changes	the	importance	of	the	given	part
of	the	query.

For	example,	to	change	our	previous	query	and	give	our	term	query	a	boost	of	10.0,	send
the	following	query:

{

		"query"	:	{

		"term"	:	{

				"title"	:	{

				"value"	:	"crime",

				"boost"	:	10.0

				}

		}

		}

}

As	you	can	see,	the	query	changed	a	bit.	Instead	of	a	simple	term	value,	we	nested	a	new
JSON	object	which	contains	the	value	property	and	the	boost	property.	The	value	of	the
value	property	should	contain	the	term	we	are	interested	in	and	the	boost	property	is	the
boost	value	we	want	to	use.

www.EBooksWorld.ir

The	terms	query
The	terms	query	is	an	extension	to	the	term	query.	It	allows	us	to	match	documents	that
have	certain	terms	in	their	contents	instead	of	a	single	term.	The	term	query	allowed	us	to
match	a	single,	not	analyzed	term	and	the	terms	query	allows	us	to	match	multiple	of
those.	For	example,	let’s	say	that	we	want	to	get	all	the	documents	that	have	the	terms
novel	or	book	in	the	tags	field.	To	achieve	this,	we	will	run	the	following	query:

{

		"query"	:	{

		"terms"	:	{

				"tags"	:	["novel",	"book"]

		}

		}

}

The	preceding	query	returns	all	the	documents	that	have	one	or	both	of	the	searched	terms
in	the	tags	field.	This	is	a	key	point	to	remember	–	the	terms	query	will	find	documents
having	any	of	the	provided	terms.

www.EBooksWorld.ir

The	match	all	query
The	match	all	query	is	one	of	the	simplest	queries	available	in	Elasticsearch.	It	allows	us
to	match	all	of	the	documents	in	the	index.	If	we	want	to	get	all	the	documents	from	our
index,	we	just	run	the	following	query:

{

		"query"	:	{

		"match_all"	:	{}

		}

}

We	can	also	include	boost	in	the	query,	which	will	be	given	to	all	the	documents	matched
by	it.	For	example,	if	we	want	to	add	a	boost	of	2.0	to	all	the	documents	in	our	match	all
query,	we	will	send	the	following	query	to	Elasticsearch:

{

		"query"	:	{

		"match_all"	:	{	

				"boost"	:	2.0	

		}

		}

}

www.EBooksWorld.ir

The	type	query
A	very	simple	query	that	allows	us	to	find	all	the	documents	with	a	certain	type.	For
example,	if	we	would	like	to	search	for	all	the	documents	with	the	book	type	in	our	library
index,	we	will	run	the	following	query:

{

		"query"	:	{

		"type"	:	{

				"value"	:	"book"

		}

		}

}

www.EBooksWorld.ir

The	exists	query
A	query	that	allows	us	to	find	all	the	documents	that	have	a	value	in	the	defined	field.	For
example,	to	find	the	documents	that	have	a	value	in	the	tags	field,	we	will	run	the
following	query:

{

		"query"	:	{

		"exists"	:	{

				"field"	:	"tags"

		}

		}

}

www.EBooksWorld.ir

The	missing	query
Opposite	to	the	exists	query,	the	missing	query	returns	the	documents	that	have	a	null
value	or	no	value	at	all	in	a	given	field.	For	example,	to	find	all	the	documents	that	don’t
have	a	value	in	the	tags	field,	we	will	run	the	following	query:

{

		"query"	:	{

		"missing"	:	{

				"field"	:	"tags"

		}

		}

}

www.EBooksWorld.ir

The	common	terms	query
The	common	terms	query	is	a	modern	Elasticsearch	solution	for	improving	query
relevance	and	precision	with	common	words	when	we	are	not	using	stop	words
(http://en.wikipedia.org/wiki/Stop_words).	For	example,	a	crime	and	punishment	query
results	in	three	term	queries	and	each	of	them	have	a	cost	in	terms	of	performance.
However,	the	and	term	is	a	very	common	one	and	its	impact	on	the	document	score	will	be
very	low.	The	solution	is	the	common	terms	query	which	divides	the	query	into	two
groups.	The	first	group	is	the	one	with	important	terms,	which	are	the	ones	that	have	lower
frequency.	The	second	group	is	the	one	with	less	important	terms,	which	are	the	ones	with
high	frequency.	The	first	query	is	executed	first	and	Elasticsearch	calculates	the	score	for
all	of	the	terms	from	the	first	group.	This	way	the	low	frequency	terms,	which	are	usually
the	ones	that	have	more	importance,	are	always	taken	into	consideration.	Then
Elasticsearch	executes	the	second	query	for	the	second	group	of	terms,	but	calculates	the
score	only	for	the	documents	matched	for	the	first	query.	This	way	the	score	is	only
calculated	for	the	relevant	documents	and	thus	higher	performance	can	be	achieved.

An	example	of	the	common	terms	query	is	as	follows:

{

	"query"	:	{

		"common"	:	{	

			"title"	:	{

				"query"	:	"crime	and	punishment",

				"cutoff_frequency"	:	0.001

			}

		}

	}

}

The	query	can	take	the	following	parameters:

query:	The	actual	query	contents.
cutoff_frequency:	The	percentage	(0.001	means	0.1%)	or	an	absolute	value	(when
property	is	set	to	a	value	equal	to	or	larger	than	1).	High	and	low	frequency	groups
are	constructed	using	this	value.	Setting	this	parameter	to	0.001	means	that	the	low
frequency	terms	group	will	be	constructed	for	terms	having	a	frequency	of	0.1%	and
lower.
low_freq_operator:	This	can	be	set	to	or	or	and,	but	defaults	to	or.	It	specifies	the
Boolean	operator	used	for	constructing	queries	in	the	low	frequency	term	group.	If
we	want	all	the	terms	to	be	present	in	a	document	for	it	to	be	considered	a	match,	we
should	set	this	parameter	to	and.
high_freq_operator:	This	can	be	set	to	or	or	and,	but	defaults	to	or.	It	specifies	the
Boolean	operator	used	for	constructing	queries	in	the	high	frequency	term	group.	If
we	want	all	the	terms	to	be	present	in	a	document	for	it	to	be	considered	a	match,	we
should	set	this	parameter	to	and.
minimum_should_match:	Instead	of	using	low_freq_operator	and
high_freq_operator,	we	can	use	minimum_should_match.	Just	like	with	the	other

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Stop_words

queries,	it	allows	us	to	specify	the	minimum	number	of	terms	that	should	be	found	in
a	document	for	it	to	be	considered	a	match.	We	can	also	specify	high_freq	and
low_freq	inside	the	minimum_should_match	object,	which	allows	us	to	define	the
different	number	of	terms	that	need	to	be	matched	for	the	high	and	low	frequency
terms.
boost:	The	boost	given	to	the	score	of	the	documents.
analyzer:	The	name	of	the	analyzer	that	will	be	used	to	analyze	the	query	text,
which	defaults	to	the	default	analyzer.
disable_coord:	Defaults	to	false	and	allows	us	to	enable	or	disable	the	score	factor
computation	that	is	based	on	the	fraction	of	all	the	query	terms	that	a	document
contains.	Set	it	to	true	for	less	precise	scoring,	but	slightly	faster	queries.

Note
Unlike	the	term	and	terms	queries,	the	common	terms	query	is	analyzed	by
Elasticsearch.

www.EBooksWorld.ir

The	match	query
The	match	query	takes	the	values	given	in	the	query	parameter,	analyzes	it,	and	constructs
the	appropriate	query	out	of	it.	When	using	a	match	query,	Elasticsearch	will	choose	the
proper	analyzer	for	the	field	we	choose,	so	you	can	be	sure	that	the	terms	passed	to	the
match	query	will	be	processed	by	the	same	analyzer	that	was	used	during	indexing.
Remember	that	the	match	query	(and	the	multi_match	query)	doesn’t	support	Lucene
query	syntax;	however,	it	perfectly	fits	as	a	query	handler	for	your	search	box.	The
simplest	match	(and	the	default)	query	will	look	like	the	following:

{

		"query"	:	{

				"match"	:	{

						"title"	:	"crime	and	punishment"

				}

		}

}

The	preceding	query	will	match	all	the	documents	that	have	the	terms	crime,	and,	or
punishment	in	the	title	field.	However,	the	previous	query	is	only	the	simplest	one;	there
are	multiple	types	of	match	query	which	we	will	discuss	now.

The	Boolean	match	query
The	Boolean	match	query	is	a	query	which	analyzes	the	provided	text	and	makes	a
Boolean	query	out	of	it.	This	is	also	the	default	type	for	the	match	query.	There	are	a	few
parameters	which	allow	us	to	control	the	behavior	of	the	Boolean	match	queries:

operator:	This	parameter	can	take	the	value	of	or	or	and,	and	controls	which
Boolean	operator	is	used	to	connect	the	created	Boolean	clauses.	The	default	value	is
or.	If	we	want	all	the	terms	in	our	query	to	be	matched,	we	should	use	the	and
Boolean	operator.
analyzer:	This	specifies	the	name	of	the	analyzer	that	will	be	used	to	analyze	the
query	text	and	defaults	to	the	default	analyzer.
fuzziness:	Providing	the	value	of	this	parameter	allows	us	to	construct	fuzzy
queries.	The	value	of	this	parameter	can	vary.	For	numeric	fields,	it	should	be	set	to
numeric	value;	for	date	based	field,	it	can	be	set	to	millisecond	or	time	value,	such
as	2h;	and	for	text	fields,	it	can	be	set	to	0,	1,	or	2	(the	edit	distance	in	the
Levenshtein	algorithm	–	https://en.wikipedia.org/wiki/Levenshtein_distance),	AUTO
(which	allows	Elasticsearch	to	control	how	fuzzy	queries	are	constructed	and	which
is	a	preferred	value).	Finally,	for	text	fields,	it	can	also	be	set	to	values	from	0.0	to
1.0,	which	results	in	edit	distance	being	calculated	as	term	length	minus	1.0
multiplied	by	the	provided	fuzziness	value.	In	general,	the	higher	the	fuzziness,	the
more	difference	between	terms	will	be	allowed.
prefix_length:	This	allows	control	over	the	behavior	of	the	fuzzy	query.	For	more
information	on	the	value	of	this	parameter,	refer	to	the	The	fuzzy	query	section	in	this
chapter.
max_expansions:	This	allows	control	over	the	behavior	of	the	fuzzy	query.	For	more

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Levenshtein_distance

information	on	the	value	of	this	parameter,	refer	to	the	The	fuzzy	query	section	in	this
chapter.
zero_terms_query:	This	allows	us	to	specify	the	behavior	of	the	query,	when	all	the
terms	are	removed	by	the	analyzer	(for	example,	because	of	stop	words).	It	can	be	set
to	none	or	all,	with	none	as	the	default.	When	set	to	none,	no	documents	will	be
returned	when	the	analyzer	removes	all	the	query	terms.	If	set	it	to	all,	all	the
documents	will	be	returned.
cutoff_frequency:	It	allows	dividing	the	query	into	two	groups:	one	with	high
frequency	terms	and	one	with	low	frequency	terms.	Refer	to	the	description	of	the
common	terms	query	to	see	how	this	parameter	can	be	used.
lenient:	When	set	to	true	(by	default	it	is	false),	it	allows	us	to	ignore	the
exceptions	caused	by	data	incompatibility,	such	as	trying	to	query	numeric	fields
using	string	value.

The	parameters	should	be	wrapped	in	the	name	of	the	field	we	are	running	the	query
against.	So	if	we	want	to	run	a	sample	Boolean	match	query	against	the	title	field,	we
send	a	query	as	follows:

{

		"query"	:	{

		"match"	:	{

				"title"	:	{

				"query"	:	"crime	and	punishment",

				"operator"	:	"and"

				}

		}

		}

}

The	phrase	match	query
A	phrase	match	query	is	similar	to	the	Boolean	query,	but,	instead	of	constructing	the
Boolean	clauses	from	the	analyzed	text,	it	constructs	the	phrase	query.	You	may	wonder
what	phrase	is	when	it	comes	to	Lucene	and	Elasticsearch	–	well,	it	is	two	or	more	terms
positioned	one	after	another	in	an	order.	The	following	parameters	are	available:

slop:	An	integer	value	that	defines	how	many	unknown	words	can	be	put	between
the	terms	in	the	text	query	for	a	match	to	be	considered	a	phrase.	The	default	value
of	this	parameter	is	0,	which	means	that	no	additional	words	are	allowed.
analyzer:	This	specifies	the	name	of	the	analyzer	that	will	be	used	to	analyze	the
query	text	and	defaults	to	the	default	analyzer.

A	sample	phrase	match	query	against	the	title	field	looks	like	the	following	code:

{

		"query"	:	{

		"match_phrase"	:	{

				"title"	:	{

				"query"	:	"crime	punishment",

				"slop"	:	1

				}

www.EBooksWorld.ir

		}

		}

}

Note	that	we	removed	the	and	term	from	our	query,	but	because	the	slop	is	set	to	1,	it	will
still	match	our	document	because	we	allowed	one	term	to	be	present	between	our	terms.

The	match	phrase	prefix	query
The	last	type	of	the	match	query	is	the	match	phrase	prefix	query.	This	query	is	almost
the	same	as	the	phrase	match	query,	but	in	addition,	it	allows	prefix	matches	on	the	last
term	in	the	query	text.	Also,	in	addition	to	the	parameters	exposed	by	the	match	phrase
query,	it	exposes	an	additional	one	–	the	max_expansions	parameter,	which	controls	how
many	prefixes	the	last	term	will	be	rewritten	to.	Our	example	query	changed	to	the
match_phrase_prefix	query	will	look	as	follows:

{

		"query"	:	{

		"match_phrase_prefix"	:	{

				"title"	:	{

				"query"	:	"crime	punishm",

				"slop"	:	1,

				"max_expansions"	:	20

				}

		}

		}

}

Note	that	we	didn’t	provide	the	full	crime	and	punishment	phrase,	but	only	crime
punishm	and	still	the	query	would	match	our	document.	This	is	because	we	used	the
match_phrase_prefix	query	combined	with	slop	set	to	1.

www.EBooksWorld.ir

The	multi	match	query
It	is	the	same	as	the	match	query,	but	instead	of	running	against	a	single	field,	it	can	be	run
against	multiple	fields	with	the	use	of	the	fields	parameter.	Of	course,	all	the	parameters
you	use	with	the	match	query	can	be	used	with	the	multi	match	query.	So	if	we	would
like	to	modify	our	match	query	to	be	run	against	the	title	and	otitle	fields,	we	will	run
the	following	query:

{

		"query"	:	{

				"multi_match"	:	{

						"query"	:	"crime	punishment",

						"fields"	:	["title^10",	"otitle"]

		}

		}

}

As	shown	in	the	preceding	example,	the	nice	thing	about	the	multi	match	query	is	that
the	fields	defined	in	it	support	boosting,	so	we	can	increase	or	decrease	the	importance	of
matches	on	certain	fields.

However,	this	is	not	the	only	difference	when	it	comes	to	comparison	with	the	match
query.	We	can	also	control	how	the	query	is	run	internally	by	using	the	type	property	and
setting	it	to	one	of	the	following	values:

best_fields:	This	is	the	default	behavior,	which	finds	documents	having	matches	in
any	field	from	the	defined	ones,	but	setting	the	document	score	to	the	score	of	the
best	matching	field.	The	most	useful	type	when	searching	for	multiple	words	and
wanting	to	boost	documents	that	have	those	words	in	the	same	field.
most_fields:	This	value	finds	documents	that	match	any	field	and	sets	the	score	of
the	document	to	the	combined	score	from	all	the	matched	fields.
cross_fields:	This	value	treats	the	query	as	if	all	the	terms	were	in	one,	big	field,
thus	returning	documents	matching	any	field.
phrase:	This	value	uses	the	match_phrase	query	on	each	field	and	sets	the	score	of
the	document	to	the	score	combined	from	all	the	fields.
phrase_prefix:	This	value	uses	the	match_phrase_prefix	query	on	each	field	and
sets	the	score	of	the	document	to	the	score	combined	from	all	the	fields.

In	addition	to	the	parameters	mentioned	in	the	match	query	and	type,	the	multi	match
query	exposes	some	additional	ones	allowing	more	control	over	its	behavior:

tie_breaker:	This	allows	us	to	specify	the	balance	between	the	minimum	and	the
maximum	scoring	query	items	and	the	value	can	be	from	0.0	to	1.0.	When	used,	the
score	of	the	document	is	equal	to	the	best	scoring	element	plus	the	tie_breaker
multiplied	by	the	score	of	all	the	other	matching	fields	in	the	document.	So,	when	set
to	0.0,	Elasticsearch	will	only	use	the	score	of	the	most	scoring	matching	element.
You	can	read	more	about	it	in	The	dis_max	query	section	in	this	chapter.

www.EBooksWorld.ir

The	query	string	query
In	comparison	to	the	other	queries	available,	the	query	string	query	supports	full
Apache	Lucene	query	syntax,	which	we	discussed	earlier	in	the	Lucene	query	syntax
section	of	Chapter	1,	Getting	Started	with	Elasticsearch	Cluster.	It	uses	a	query	parser	to
construct	an	actual	query	using	the	provided	text.	An	example	query	string	query	will	look
like	the	following	code:

{

		"query"	:	{

		"query_string"	:	{

				"query"	:	"title:crime^10	+title:punishment	-otitle:cat	+author:

(+Fyodor	+dostoevsky)",

				"default_field"	:	"title"

		}

		}

}

Because	we	are	familiar	with	the	basics	of	the	Lucene	query	syntax,	we	can	discuss	how
the	preceding	query	works.	As	you	can	see,	we	wanted	to	get	the	documents	that	may
have	the	term	crime	in	the	title	field	and	such	documents	should	be	boosted	with	the	value
of	10.	Next,	we	wanted	only	the	documents	that	have	the	term	punishment	in	the	title	field
and	we	didn’t	want	documents	with	the	term	cat	in	the	otitle	field.	Finally,	we	told
Lucene	that	we	only	wanted	the	documents	that	had	the	fyodor	and	dostoevsky	terms	in
the	author	field.

Similar	to	most	of	the	queries	in	Elasticsearch,	the	query	string	query	provides	quite	a
few	parameters	that	allow	us	to	control	the	query	behavior	and	the	list	of	parameters	for
this	query	is	rather	extensive:

query:	This	specifies	the	query	text.
default_field:	This	specifies	the	default	field	the	query	will	be	executed	against.	It
defaults	to	the	index.query.default_field	property,	which	is	by	default	set	to
_all.
default_operator:	This	specifies	the	default	logical	operator	(or	or	and)	used	when
no	operator	is	specified.	The	default	value	of	this	parameter	is	or.
analyzer:	This	specifies	the	name	of	the	analyzer	used	to	analyze	the	query	provided
in	the	query	parameter.
allow_leading_wildcard:	This	specifies	if	a	wildcard	character	is	allowed	as	the
first	character	of	a	term.	It	defaults	to	true.
lowercase_expand_terms:	This	specifies	if	the	terms	that	are	a	result	of	query
rewrite	should	be	lowercased.	It	defaults	to	true,	which	means	that	the	rewritten
terms	will	be	lowercased.
enable_position_increments:	This	specifies	if	position	increments	should	be
turned	on	in	the	result	query.	It	defaults	to	true.
fuzzy_max_expansions:	This	specifies	the	maximum	number	of	terms	into	which
fuzzy	query	will	be	expanded,	if	fuzzy	query	is	used.	It	defaults	to	50.
fuzzy_prefix_length:	This	specifies	the	prefix	length	for	the	generated	fuzzy

www.EBooksWorld.ir

queries	and	defaults	to	0.	To	learn	more	about	it,	look	at	the	fuzzy	query	description.
phrase_slop:	This	specifies	the	phrase	slop	and	defaults	to	0.	To	learn	more	about	it,
look	at	the	phrase	match	query	description.
boost:	This	specifies	the	boost	value	which	will	be	used	and	defaults	to	1.0.
analyze_wildcard:	This	specifies	if	the	terms	generated	by	the	wildcard	query
should	be	analyzed.	It	defaults	to	false,	which	means	that	those	terms	won’t	be
analyzed.
auto_generate_phrase_queries:	specifies	if	the	phrase	queries	will	be
automatically	generated	from	the	query.	It	defaults	to	false,	which	means	that	the
phrase	queries	won’t	be	automatically	generated.
minimum_should_match:	This	controls	how	many	of	the	generated	Boolean	should
clauses	should	be	matched	against	a	document	for	the	document	to	be	considered	a
hit.	The	value	can	be	provided	as	a	percentage;	for	example,	50%,	which	would	mean
that	at	least	50	percent	of	the	given	terms	should	match.	It	can	also	be	provided	as	an
integer	value,	such	as	2,	which	means	that	at	least	2	terms	must	match.
fuzziness:	This	controls	the	behavior	of	the	generated	fuzzy	query.	Refer	to	the
match	query	description	for	more	information.
max_determined_states:	This	defaults	to	10000	and	sets	the	number	of	states	that
the	automaton	can	have	for	handling	regular	expression	queries.	It	is	used	to	disallow
very	expensive	queries	using	regular	expressions.
locale:	This	sets	the	locale	that	should	be	used	for	the	conversion	of	string	values.
By	default,	it	is	set	to	ROOT.
time_zone:	This	sets	the	time	zone	that	should	be	used	by	range	queries	that	are	run
on	date	based	fields.
lenient:	This	can	take	the	value	of	true	or	false.	If	set	to	true,	format-based
failures	will	be	ignored.	By	default,	it	is	set	to	false.

Note	that	Elasticsearch	can	rewrite	the	query	string	query	and,	because	of	that,
Elasticsearch	allows	us	to	pass	additional	parameters	that	control	the	rewrite	method.
However,	for	more	details	about	this	process,	go	to	the	Understanding	the	querying
process	section	in	this	chapter.

Running	the	query	string	query	against	multiple	fields
It	is	possible	to	run	the	query	string	query	against	multiple	fields.	In	order	to	do	that,
one	needs	to	provide	the	fields	parameter	in	the	query	body,	which	should	hold	the	array
of	the	field	names.	There	are	two	methods	of	running	the	query	string	query	against
multiple	fields:	the	default	method	uses	the	Boolean	query	to	make	queries	and	the	other
method	can	use	the	dis_max	query.

In	order	to	use	the	dis_max	query,	one	should	add	the	use_dis_max	property	in	the	query
body	and	set	it	to	true.	An	example	query	will	look	like	the	following	code:

{

	"query"	:	{

		"query_string"	:	{

			"query"	:	"crime	punishment",

			"fields"	:	["title",	"otitle"],

www.EBooksWorld.ir

			"use_dis_max"	:	true

		}

	}

}

www.EBooksWorld.ir

The	simple	query	string	query
The	simple	query	string	query	uses	one	of	the	newest	query	parsers	in	Lucene	-	the
SimpleQueryParser
(https://lucene.apache.org/core/5_4_0/queryparser/org/apache/lucene/queryparser/simple/SimpleQueryParser.html
Similar	to	the	query	string	query,	it	accepts	Lucene	query	syntax	as	the	query;	however,
unlike	it,	it	never	throws	an	exception	when	a	parsing	error	happens.	Instead	of	throwing
an	exception,	it	discards	the	invalid	parts	of	the	query	and	runs	the	rest.

An	example	simple	query	string	query	will	look	like	the	following	code:

{

	"query"	:	{

		"simple_query_string"	:	{

			"query"	:	"crime	punishment",

			"default_operator"	:	"or"

		}

	}

}

The	query	supports	parameters	such	as	query,	fields,	default_operator,	analyzer,
lowercase_expanded_terms,	locale,	lenient,	and	minimum_should_match,	and	can	also
be	run	against	multiple	fields	using	the	fields	property.

www.EBooksWorld.ir

https://lucene.apache.org/core/5_4_0/queryparser/org/apache/lucene/queryparser/simple/SimpleQueryParser.html

The	identifiers	query
This	is	a	simple	query	that	filters	the	returned	documents	to	only	those	with	the	provided
identifiers.	It	works	on	the	internal	_uid	field,	so	it	doesn’t	require	the	_id	field	to	be
enabled.	The	simplest	version	of	such	a	query	will	look	like	the	following:

{

		"query"	:	{

		"ids"	:	{

			"values"	:	["1",	"2",	"3"]

		}

		}

}

This	query	will	only	return	those	documents	that	have	one	of	the	identifiers	present	in	the
values	array.	We	can	complicate	the	identifiers	query	a	bit	and	also	limit	the	documents
on	the	basis	of	their	type.	For	example,	if	we	want	to	only	include	documents	from	the
book	types,	we	will	send	the	following	query:

{

	"query"	:	{

		"ids"	:	{

			"type"	:	"book",

			"values"	:	["1",	"2",	"3"]

		}

	}

}

As	you	can	see,	we’ve	added	the	type	property	to	our	query	and	we’ve	set	its	value	to	the
type	we	are	interested	in.

www.EBooksWorld.ir

The	prefix	query
This	query	is	similar	to	the	term	query	in	its	configuration	and	to	the	multi	term	query
when	looking	into	its	logic.	The	prefix	query	allows	us	to	match	documents	that	have	the
value	in	a	certain	field	that	starts	with	a	given	prefix.	For	example,	if	we	want	to	find	all
the	documents	that	have	values	starting	with	cri	in	the	title	field,	we	will	run	the
following	query:

{

		"query"	:	{

				"prefix"	:	{

						"title"	:	"cri"

				}

		}

}

Similar	to	the	term	query,	you	can	also	include	the	boost	attribute	to	your	prefix	query
which	will	affect	the	importance	of	the	given	prefix.	For	example,	if	we	would	like	to
change	our	previous	query	and	give	our	query	a	boost	of	3.0,	we	will	send	the	following
query:

{

		"query"	:	{

		"prefix"	:	{

				"title"	:	{

				"value"	:	"cri",

				"boost"	:	3.0

				}

		}

		}

}

Note
Note	that	the	prefix	query	is	rewritten	by	Elasticsearch	and	because	of	that	Elasticsearch
allows	us	to	pass	an	additional	parameter,	that	is,	controlling	the	rewrite	method.
However,	for	more	details	about	that	process,	refer	to	the	Understanding	the	querying
process	section	in	this	chapter.

www.EBooksWorld.ir

The	fuzzy	query
The	fuzzy	query	allows	us	to	find	documents	that	have	values	similar	to	the	ones	we’ve
provided	in	the	query.	The	similarity	of	terms	is	calculated	on	the	basis	of	the	edit	distance
algorithm.	The	edit	distance	is	calculated	on	the	basis	of	terms	we	provide	in	the	query
and	against	the	searched	documents.	This	query	can	be	expensive	when	it	comes	to	CPU
resources,	but	can	help	us	when	we	need	fuzzy	matching;	for	example,	when	users	make
spelling	mistakes.	In	our	example,	let’s	assume	that	instead	of	crime,	our	user	enters	the
crme	word	into	the	search	box	and	we	would	like	to	run	the	simplest	form	of	fuzzy	query.
Such	a	query	will	look	like	this:

{

		"query"	:	{

				"fuzzy"	:	{

						"title"	:	"crme"

				}

		}

}

The	response	for	such	a	query	will	be	as	follows:

{

		"took"	:	81,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5,

						"_source"	:	{

								"title"	:	"Crime	and	Punishment",

								"otitle"	:	"Преступлéние	и	наказáние",

								"author"	:	"Fyodor	Dostoevsky",

								"year"	:	1886,

								"characters"	:	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],

								"tags"	:	[],

								"copies"	:	0,

								"available"	:	true

						}

				}]

		}

}

Even	though	we	made	a	typo,	Elasticsearch	managed	to	find	the	documents	we	were
interested	in.

www.EBooksWorld.ir

We	can	control	the	fuzzy	query	behavior	by	using	the	following	parameters:

value:	This	specifies	the	actual	query.
boost:	This	specifies	the	boost	value	for	the	query.	It	defaults	to	1.0.
fuzziness:	This	controls	the	behavior	of	the	generated	fuzzy	query.	Refer	to	the
match	query	description	for	more	information.
prefix_length:	This	is	the	length	of	the	common	prefix	of	the	differencing	terms.	It
defaults	to	0.
max_expansions:	This	specifies	the	maximum	number	of	terms	the	query	will	be
expanded	to.	The	default	value	is	unbounded.

The	parameters	should	be	wrapped	in	the	name	of	the	field	we	are	running	the	query
against.	So	if	we	would	like	to	modify	the	previous	query	and	add	additional	parameters,
the	query	will	look	like	the	following	code:

{

	"query"	:	{

		"fuzzy"	:	{

			"title"	:	{

				"value"	:	"crme",

				"fuzziness"	:	2

			}

		}

	}

}

www.EBooksWorld.ir

The	wildcard	query
A	query	that	allows	us	to	use	*	and	?	wildcards	in	the	values	we	search.	Apart	from	that,
the	wildcard	query	is	very	similar	to	the	term	query	in	case	of	its	body.	To	send	a	query
that	would	match	all	the	documents	with	the	value	of	the	cr?me	term	(?	matching	any
character)	we	would	send	the	following	query:

{

	"query"	:	{

		"wildcard"	:	{

			"title"	:	"cr?me"

		}

	}

}

It	will	match	the	documents	that	have	all	the	terms	matching	cr?me	in	the	title	field.
However,	you	can	also	include	the	boost	attribute	to	your	wildcard	query	which	will
affect	the	importance	of	each	term	that	matches	the	given	value.	For	example,	if	we	would
like	to	change	our	previous	query	and	give	our	term	query	a	boost	of	20.0,	we	will	send
the	following	query:

{

	"query"	:	{

		"wildcard"	:	{

			"title"	:	{

				"value"	:	"cr?me",

				"boost"	:	20.0

			}

		}

	}

}

Note
Note	that	wildcard	queries	are	not	very	performance	oriented	queries	and	should	be
avoided	if	possible;	especially	avoid	leading	wildcards	(terms	starting	with	wildcards).
The	wildcard	query	is	rewritten	by	Elasticsearch	and	because	of	that	Elasticsearch	allows
us	to	pass	an	additional	parameter,	that	is,	controlling	the	rewrite	method.	For	more	details
about	this	process,	refer	to	the	Understanding	the	querying	process	section	in	this	chapter.
Also	remember	that	the	wildcard	query	is	not	analyzed.

www.EBooksWorld.ir

The	range	query
A	query	that	allows	us	to	find	documents	that	have	a	field	value	within	a	certain	range	and
which	works	for	numerical	fields	as	well	as	for	string-based	fields	and	date	based	fields
(just	maps	to	a	different	Apache	Lucene	query).	The	range	query	should	be	run	against	a
single	field	and	the	query	parameters	should	be	wrapped	in	the	field	name.	The	following
parameters	are	supported:

gte:	The	query	will	match	documents	with	the	value	greater	than	or	equal	to	the	one
provided	with	this	parameter
gt:	The	query	will	match	documents	with	the	value	greater	than	the	one	provided
with	this	parameter
lte:	The	query	will	match	documents	with	the	value	lower	than	or	equal	to	the	one
provided	with	this	parameter
lt:	The	query	will	match	documents	with	the	value	lower	than	the	one	provided	with
this	parameter

So	for	example,	if	we	want	to	find	all	the	books	that	have	the	value	from	1700	to	1900	in
the	year	field,	we	will	run	the	following	query:

{

	"query"	:	{

		"range"	:	{

			"year"	:	{

				"gte"	:	1700,

				"lte"	:	1900

			}

		}

	}

}

www.EBooksWorld.ir

Regular	expression	query
Regular	expression	query	allows	us	to	use	regular	expressions	as	the	query	text.
Remember	that	the	performance	of	such	queries	depends	on	the	chosen	regular	expression.
If	our	regular	expression	would	match	many	terms,	the	query	will	be	slow.	The	general
rule	is	that	the	more	terms	matched	by	the	regular	expression,	the	slower	the	query	will	be.

An	example	regular	expression	query	looks	like	this:

{

	"query"	:	{

		"regexp"	:	{

			"title"	:	{

				"value"	:	"cr.m[ae]",

				"boost"	:	10.0

			}

		}

	}

}

The	preceding	query	will	result	in	Elasticsearch	rewriting	the	query.	The	rewritten	query
will	have	the	number	of	term	queries	depending	on	the	content	of	our	index	matching	the
given	regular	expression.	The	boost	parameter	seen	in	the	query	specifies	the	boost	value
for	the	generated	queries.

The	full	regular	expression	syntax	accepted	by	Elasticsearch	can	be	found	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-
query.html#regexp-syntax.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-query.html#regexp-syntax

The	more	like	this	query
One	of	the	queries	that	got	a	major	rework	in	Elasticsearch	2.0,	the	more	like	this	query
allows	us	to	retrieve	documents	that	are	similar	(or	not	similar)	to	the	provided	text	or	to
the	documents	that	were	provided.

The	more	like	this	query	allows	us	to	get	documents	that	are	similar	to	the	provided	text.
Elasticsearch	supports	a	few	parameters	to	define	how	the	more	like	this	query	should
work:

fields:	An	array	of	fields	that	the	query	should	be	run	against.	It	defaults	to	the	_all
field.
like:	This	parameter	comes	in	two	flavors:	it	allows	us	to	provide	a	text	which	the
returned	documents	should	be	similar	to	or	an	array	of	documents	that	the	returning
document	should	be	similar	to.
unlike:	This	is	similar	to	the	like	parameter,	but	it	allows	us	to	define	text	or
documents	that	our	returning	document	should	not	be	similar	to.
min_term_freq:	The	minimum	term	frequency	(for	the	terms	in	the	documents)
below	which	terms	will	be	ignored.	It	defaults	to	2.
max_query_terms:	The	maximum	number	of	terms	that	will	be	included	in	any
generated	query.	It	defaults	to	25.	The	higher	value	may	mean	higher	precision,	but
lower	performance.
stop_words:	An	array	of	words	that	will	be	ignored	when	comparing	documents	and
the	query.	It	is	empty	by	default.
min_doc_freq:	The	minimum	number	of	documents	in	which	the	term	has	to	be
present	in	order	not	to	be	ignored.	It	defaults	to	5,	which	means	that	a	term	needs	to
be	present	in	at	least	five	documents.
max_doc_freq:	The	maximum	number	of	documents	in	which	the	term	may	be
present	in	order	not	to	be	ignored.	By	default,	it	is	unbounded	(set	to	0).
min_word_len:	The	minimum	length	of	a	single	word	below	which	a	word	will	be
ignored.	It	defaults	to	0.
max_word_len:	The	maximum	length	of	a	single	word	above	which	it	will	be	ignored.
It	defaults	to	unbounded	(which	means	setting	the	value	to	0).
boost_terms:	The	boost	value	that	will	be	used	when	boosting	each	term.	It	defaults
to	0.
boost:	The	boost	value	that	will	be	used	when	boosting	the	query.	It	defaults	to	1.
include:	This	specifies	if	the	input	documents	should	be	included	in	the	results
returned	by	the	query.	It	defaults	to	false,	which	means	that	the	input	documents
won’t	be	included.
minimum_should_match:	This	controls	the	number	of	terms	that	need	to	be	matched
in	the	resulting	documents.	By	default,	it	is	set	to	30%.
analyzer:	The	name	of	the	analyzer	that	will	be	used	to	analyze	the	text	we
provided.

An	example	for	a	more	like	this	query	looks	like	this:

www.EBooksWorld.ir

{

	"query"	:	{

		"more_like_this"	:	{

			"fields"	:	["title",	"otitle"],

			"like"	:	"crime	and	punishment",

			"min_term_freq"	:	1,

			"min_doc_freq"	:	1

		}

	}

}

As	we	said	earlier,	the	like	property	can	also	be	used	to	show	which	documents	the
results	should	be	similar	to.	For	example,	the	following	is	the	query	that	will	use	the	like
property	to	point	to	a	given	document	(note	that	the	following	query	won’t	return
documents	on	our	example	data):

{

		"query"	:	{

		"more_like_this"	:	{

				"fields"	:	["title",	"otitle"],

				"min_term_freq"	:	1,

				"min_doc_freq"	:	1,

				"like"	:	[

					{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4"

				}

]

		}

		}

}

We	can	also	mix	the	documents	and	text	together:

{

		"query"	:	{

		"more_like_this"	:	{

				"fields"	:	["title",	"otitle"],

				"min_term_freq"	:	1,

				"min_doc_freq"	:	1,

				"like"	:	[

				{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4"

				},

				"crime	and	punishment"

]

		}

		}

}

www.EBooksWorld.ir

www.EBooksWorld.ir

Compound	queries
In	the	Basic	queries	section	of	this	chapter,	we	discussed	the	simplest	queries	exposed	by
Elasticsearch.	We	also	talked	about	the	position	aware	queries	called	span	queries	in	the
Span	queries	section.	However,	the	simple	ones	and	the	span	queries	are	not	the	only
queries	that	Elasticsearch	provides.	The	compound	queries,	as	we	call	them,	allow	us	to
connect	multiple	queries	together	or	alter	the	behavior	of	other	queries.	You	may	wonder
if	you	need	such	functionality.	Your	deployment	may	not	need	it,	but	anything	apart	from
a	simple	query	will	probably	require	compound	queries.	For	example,	combining	a	simple
term	query	with	a	match_phrase	query	to	get	better	search	results	may	be	a	good
candidate	for	compound	queries	usage.

www.EBooksWorld.ir

The	bool	query
The	bool	query	allows	us	to	wrap	a	virtually	unbounded	number	of	queries	and	connect
them	with	a	logical	value	using	one	of	the	following	sections:

should:	The	query	wrapped	into	this	section	may	or	may	not	match.	The	number	of
should	sections	that	have	to	match	is	controlled	by	the	minimum_should_match
parameter
must:	The	query	wrapped	into	this	section	must	match	in	order	for	the	document	to
be	returned.
must_not:	The	query	when	wrapped	into	this	section	must	not	match	in	order	for	the
document	to	be	returned.

Each	of	the	preceding	mentioned	sections	can	be	present	multiple	times	in	a	single	bool
query.	This	allows	us	to	build	very	complex	queries	that	have	multiple	levels	of	nesting
(you	can	include	the	bool	query	in	another	bool	query).	Remember	that	the	score	of	the
resulting	document	will	be	calculated	by	taking	a	sum	of	all	the	wrapped	queries	that	the
document	matched.

In	addition	to	the	preceding	sections,	we	can	add	the	following	parameters	to	the	query
body	to	control	its	behavior:

filter:	This	allows	us	to	specify	the	part	of	the	query	that	should	be	used	as	a	filter.
You	can	read	more	about	filters	in	the	Filtering	your	results	section	in	Chapter	4,
Extending	Your	Querying	Knowledge.
boost:	This	specifies	the	boost	used	in	the	query,	defaulting	to	1.0.	The	higher	the
boost,	the	higher	the	score	of	the	matching	document.
minimum_should_match:	This	describes	the	minimum	number	of	should	clauses	that
have	to	match	in	order	for	the	checked	document	to	be	counted	as	a	match.	For
example,	it	can	be	an	integer	value	such	as	2	or	a	percentage	value	such	as	75%.	For
more	information,	refer	to
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-minimum-
should-match.html.
disable_coord:	A	Boolean	parameter	(defaults	to	false),	which	allows	us	to	enable
or	disable	the	score	factor	computation	that	is	based	on	the	fraction	of	all	the	query
terms	that	a	document	contains.	We	should	set	it	to	true	for	less	precise	scoring,	but
slightly	faster	queries.

Imagine	that	we	want	to	find	all	the	documents	that	have	the	term	crime	in	the	title	field.
In	addition,	the	documents	may	or	may	not	have	a	range	of	1900	to	2000	in	the	year	field
and	may	not	have	the	nothing	term	in	the	otitle	field.	Such	a	query	made	with	the	bool
query	will	look	as	follows:

{

		"query"	:	{

				"bool"	:	{

						"must"	:	{

								"term"	:	{

										"title"	:	"crime"

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-minimum-should-match.html

								}

						},

						"should"	:	{

								"range"	:	{

										"year"	:	{

												"from"	:	1900,

												"to"	:	2000

										}

								}

						},

						"must_not"	:	{

								"term"	:	{

										"otitle"	:	"nothing"

								}

						}

				}

		}

}

Note
Note	that	the	must,	should,	and	must_not	sections	can	contain	a	single	query	or	an	array
of	queries.

www.EBooksWorld.ir

The	dis_max	query
The	dis_max	query	is	very	useful	as	it	generates	a	union	of	documents	returned	by	all	the
sub	queries	and	returns	it	as	the	result.	The	good	thing	about	this	query	is	the	fact	that	we
can	control	how	the	lower	scoring	sub	queries	affect	the	final	score	of	the	documents.	For
the	dis_max	query,	we	specify	the	queries	using	the	queries	property	(query	or	an	array
of	queries)	and	the	tie	breaker,	with	the	tie_breaker	property.	We	can	also	include
additional	boost	by	specifying	the	boost	parameter.

The	final	document	score	is	calculated	as	the	sum	of	scores	of	the	maximum	scoring	query
and	the	sum	of	scores	returned	from	the	rest	of	the	queries,	multiplied	by	the	value	of	the
tie	parameter.	So,	the	tie_breaker	parameter	allows	us	to	control	how	the	lower	scoring
queries	affect	the	final	score.	If	we	set	the	tie_breaker	parameter	to	1.0,	we	get	the	exact
sum,	while	setting	the	tie	parameter	to	0.1	results	in	only	10	percent	of	the	scores	(of	all
the	scores	apart	from	the	maximum	scoring	query)	being	added	to	the	final	score.

An	example	of	the	dis_max	query	is	as	follows:

{

		"query"	:	{

				"dis_max"	:	{

						"tie_breaker"	:	0.99,

						"boost"	:	10.0,

						"queries"	:	[

								{

										"match"	:	{

												"title"	:	"crime"

										}

								},

								{	

										"match"	:	{

												"author"	:	"fyodor"

										}

								}	

]	

				}	

		}

}

As	you	can	see,	we	included	the	tie_breaker	and	boost	parameters.	In	addition	to	that,
we	specified	the	queries	parameter	that	holds	the	array	of	queries	that	will	be	run	and
used	to	generate	the	union	of	documents	for	results.

www.EBooksWorld.ir

The	boosting	query
The	boosting	query	wraps	around	two	queries	and	lowers	the	score	of	the	documents
returned	by	one	of	the	queries.	There	are	three	sections	of	the	boosting	query	that	need	to
be	defined:	the	positive	section	that	holds	the	query	whose	document	score	will	be	left
unchanged,	the	negative	section	whose	resulting	documents	will	have	their	score
lowered,	and	the	negative_boost	section	that	holds	the	boost	value	that	will	be	used	to
lower	the	second	section’s	query	score.	The	advantage	of	the	boosting	query	is	that	the
results	of	both	the	queries	(the	negative	and	the	positive	ones)	will	be	present	in	the
results,	although	the	scores	of	some	queries	will	be	lowered.	For	comparison,	if	we	were
to	use	the	bool	query	with	the	must_not	section,	we	wouldn’t	get	the	results	for	such	a
query.

Let’s	assume	that	we	want	to	have	the	results	of	a	simple	term	query	for	the	term	crime	in
the	title	field	and	want	the	score	of	such	documents	to	not	be	changed.	However,	we
also	want	to	have	the	documents	that	range	from	1800	to	1900	in	the	year	field,	and	the
scores	of	documents	returned	by	such	a	query	to	have	an	additional	boost	of	0.5.	Such	a
query	will	look	like	the	following:

{

		"query"	:	{

				"boosting"	:	{

						"positive"	:	{

								"term"	:	{

										"title"	:	"crime"

									}

						},

						"negative"	:	{

								"range"	:	{

										"year"	:	{

												"from"	:	1800,

												"to"	:	1900

										}

								}	

						},

						"negative_boost"	:	0.5

				}

		}

}

www.EBooksWorld.ir

The	constant_score	query
The	constant_score	query	wraps	another	query	and	returns	a	constant	score	for	each
document	returned	by	the	wrapped	query.	We	specify	the	score	that	should	be	given	to	the
documents	by	using	the	boost	property,	which	defaults	to	1.0.	It	allows	us	to	strictly
control	the	score	value	assigned	for	a	document	matched	by	a	query.	For	example,	if	we
want	to	have	a	score	of	2.0	for	all	the	documents	that	have	the	term	crime	in	the	title
field,	we	send	the	following	query	to	Elasticsearch:

{

		"query"	:	{

				"constant_score"	:	{

						"query"	:	{

								"term"	:	{

										"title"	:	"crime"

								}

						},	

						"boost"	:	2.0

				}

		}

}

www.EBooksWorld.ir

The	indices	query
The	indices	query	is	useful	when	executing	a	query	against	multiple	indices.	It	allows	us
to	provide	an	array	of	indices	(the	indices	property)	and	two	queries,	one	that	will	be
executed	if	we	query	the	index	from	the	list	(the	query	property)	and	the	second	that	will
be	executed	on	all	the	other	indices	(the	no_match_query	property).	For	example,	assume
we	have	an	alias	named	books,	holding	two	indices:	library	and	users.	What	we	want	to	do
is	use	this	alias.	However,	we	want	to	run	different	queries	depending	on	which	index	is
used	for	searching.	An	example	query	following	this	logic	will	look	as	follows:

{

		"query"	:	{

				"indices"	:	{

						"indices"	:	["library"],

						"query"	:	{

								"term"	:	{

										"title"	:	"crime"

								}

						},

						"no_match_query"	:	{

								"term"	:	{

										"user"	:	"crime"

								}

						}

				}	

		}

}

In	the	preceding	query,	the	query	described	in	the	query	property	was	run	against	the
library	index	and	the	query	defined	in	the	no_match_query	section	was	run	against	all	the
other	indices	present	in	the	cluster,	which	for	our	hypothetical	alias	means	the	users	index.

The	no_match_query	property	can	also	have	a	string	value	instead	of	a	query.	This	string
value	can	either	be	all	or	none,	but	it	defaults	to	all.	If	the	no_match_query	property	is	set
to	all,	the	documents	from	the	indices	that	don’t	match	will	be	returned.	Setting	the
no_match_query	property	to	none	will	result	in	no	documents	from	the	indices	that	don’t
match	the	query	from	that	section.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using	span	queries
Elasticsearch	leverages	Lucene	span	queries,	which	allow	us	to	make	queries	when	some
tokens	or	phrases	are	near	other	tokens	or	phrases.	Basically,	we	can	call	them	position
aware	queries.	When	using	the	standard	non	span	queries,	we	are	not	able	to	make	queries
that	are	position	aware;	to	some	extent,	the	phrase	queries	allow	that,	but	only	to	some
extent.	So,	for	Elasticsearch	and	the	underlying	Lucene,	it	doesn’t	matter	if	the	term	is	in
the	beginning	of	the	sentence	or	at	the	end	or	near	another	term.	When	using	span	queries,
it	does	matter.

The	following	span	queries	are	exposed	in	Elasticsearch:

span	term	query
span	first	query
span	near	query
span	or	query
span	not	query
span	within	query
span	containing	query
span	multi	query

Before	we	continue	with	the	description,	let’s	index	a	document	to	a	completely	new	index
that	we	will	use	to	show	how	span	queries	work.	To	do	this,	we	use	the	following
command:

curl	-XPUT	'localhost:9200/spans/book/1'	-d	'{

	"title"	:	"Test	book",

	"author"	:	"Test	author",

	"description"	:	"The	world	breaks	everyone,	and	afterward,	some	are	strong	

at	the	broken	places"

}'

www.EBooksWorld.ir

A	span
A	span,	in	our	context,	is	a	starting	and	ending	token	position	in	a	field.	For	example,	in
our	case,	the	world	breaks	everyone	could	be	a	single	span,	a	world	can	be	a	single	span
too.	As	you	may	know,	during	analysis,	Lucene,	in	addition	to	token,	includes	some
additional	parameters,	such	as	position	in	the	token	stream.	Position	information	combined
with	the	terms	allows	us	to	construct	spans	using	Elasticsearch	span	queries	(which	are
mapped	to	Lucene	span	queries).	In	the	next	few	pages,	we	will	learn	how	to	construct
spans	using	different	span	queries	and	how	to	control	which	documents	are	matched.

www.EBooksWorld.ir

Span	term	query
The	span_term	query	is	a	builder	for	the	other	span	queries.	A	span_term	query	is	a	query
similar	to	the	already	discussed	term	query.	On	its	own,	it	works	just	like	the	mentioned
term	query	–	it	matches	a	term.	Its	definition	is	simple	and	looks	as	follows	(we	omitted
some	parts	of	the	queries	on	purpose,	because	we	will	discuss	it	later):

{

		"query"	:	{

	...

				"span_term"	:	{	

				"description"	:	{	

					"value"	:	"world",	

					"boost"	:	5.0	

				}

			}

		}

}

As	you	can	see,	it	is	very	similar	to	the	standard	term	query.	The	above	query	is	run
against	the	description	field	and	we	want	to	have	the	documents	that	have	the	world	term
returned.	We	also	specified	the	boost,	which	is	also	allowed.

One	thing	to	remember	is	that	the	span_term	query,	similar	to	the	standard	term	query,	is
not	analyzed.

www.EBooksWorld.ir

Span	first	query
The	span	first	query	allows	us	to	match	documents	that	have	matches	only	in	the	first
positions	of	the	field.	In	order	to	define	a	span	first	query,	we	need	to	nest	inside	of	it	any
other	span	query;	for	example,	a	span	term	query	we	already	know.	So,	let’s	find	the
document	that	has	the	term	world	in	the	first	two	positions	in	the	description	field.	We
do	that	by	sending	the	following	query:

{

	"query"	:	{

		"span_first"	:	{

			"match"	:	{

				"span_term"	:	{	"description"	:	"world"	}

			},

			"end"	:	2

		}

	}

}

In	the	results,	we	will	get	the	document	that	we	had	indexed	in	the	beginning	of	this
section.	In	the	match	section	of	the	span	first	query,	we	should	include	at	least	a	single
span	query	that	should	be	matched	at	the	maximum	position	specified	by	the	end
parameter.

So,	to	understand	everything	well,	if	we	set	the	end	parameter	to	1,	we	shouldn’t	get	our
document	with	the	previous	query.	So,	let’s	check	it	by	sending	the	following	query:

{

	"query"	:	{

		"span_first"	:	{

			"match"	:	{

				"span_term"	:	{	"description"	:	"world"	}

			},

			"end"	:	1

		}

	}

}

The	response	to	the	preceding	query	will	be	as	follows:

{

		"took"	:	1,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	0,

				"max_score"	:	null,

				"hits"	:	[]

		}

}

www.EBooksWorld.ir

So	it	is	working	as	expected.	This	is	because	the	first	term	in	our	index	will	be	the	term
the	and	not	the	term	world	which	we	searched	for.

www.EBooksWorld.ir

Span	near	query
The	span	near	query	allows	us	to	match	documents	that	have	other	spans	near	each	other
and	we	can	call	this	query	a	compound	query	as	it	wraps	another	span	query.	For	example,
if	we	want	to	find	documents	that	have	the	term	world	near	the	term	everyone,	we	will
run	the	following	query:

{

	"query"	:	{

		"span_near"	:	{

			"clauses"	:	[

				{	"span_term"	:	{	"description"	:	"world"	}	},

				{	"span_term"	:	{	"description"	:	"everyone"	}	}

],

			"slop"	:	0,

			"in_order"	:	true

		}

	}

}

As	you	can	see,	we	specify	our	queries	in	the	clauses	section	of	the	span	near	query.	It	is
an	array	of	other	span	queries.	The	slop	parameter	defines	the	allowed	number	of	terms
between	the	spans.	The	in_order	parameter	can	be	used	to	limit	the	matches	only	to	those
documents	that	match	our	queries	in	the	same	order	that	they	were	defined	in.	So,	in	our
case,	we	will	get	documents	that	have	world	everyone,	but	not	everyone	world	in	the
description	field.

So	let’s	get	back	to	our	query,	right	now	it	would	return	0	results.	If	you	look	at	our
example	document,	you	will	notice	that	between	the	terms	world	and	everyone,	an
additional	term	is	present	and	we	set	the	slop	parameter	to	0	(slop	was	discussed	during
the	phrase	query	description).	If	we	increase	it	to	1,	we	will	get	our	result.	To	test	it,	let’s
send	the	following	query:

{

	"query"	:	{

		"span_near"	:	{

			"clauses"	:	[

				{	"span_term"	:	{	"description"	:	"world"	}	},

				{	"span_term"	:	{	"description"	:	"everyone"	}	}

],

			"slop"	:	1,

			"in_order"	:	true

		}

	}

}

The	results	returned	by	Elasticsearch	are	as	follows:

{

		"took"	:	6,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

www.EBooksWorld.ir

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.10848885,

				"hits"	:	[{

						"_index"	:	"spans",

						"_type"	:	"book",

						"_id"	:	"1",

						"_score"	:	0.10848885,

						"_source"	:	{

								"title"	:	"Test	book",

								"author"	:	"Test	author",

								"description"	:	"The	world	breaks	everyone,	and	afterward,	some	are	

strong	at	the	broken	places"

						}

				}]

		}

}

As	we	can	see,	the	altered	query	successfully	returned	our	indexed	document.

www.EBooksWorld.ir

Span	or	query
The	span	or	query	allows	us	to	wrap	other	span	queries	and	aggregate	matches	of	all
those	that	we’ve	wrapped.	Similar	to	the	span_near	query,	the	span_or	query	uses	the
array	of	clauses	to	specify	other	span	queries.	For	example,	if	we	want	to	get	the
documents	that	have	the	term	world	in	the	first	two	positions	of	the	description	field,	or
the	ones	that	have	the	term	world	not	further	than	a	single	position	from	the	term
everyone,	we	will	send	the	following	query	to	Elasticsearch:

{

	"query"	:	{

		"span_or"	:	{

			"clauses"	:	[

				{

					"span_first"	:	{

						"match"	:	{

							"span_term"	:	{	"description"	:	"world"	}

						},

						"end"	:	2

					}

				},

				{

					"span_near"	:	{

						"clauses"	:	[

							{	"span_term"	:	{	"description"	:	"world"	}	},

							{	"span_term"	:	{	"description"	:	"everyone"	}	}

],

						"slop"	:	1,

						"in_order"	:	true

					}

				}

]

		}

	}

}

The	result	of	the	preceding	query	will	return	our	indexed	document.

www.EBooksWorld.ir

Span	not	query
The	span	not	query	allows	us	to	specify	two	sections	of	queries.	The	first	is	the	include
section	which	specifies	which	span	queries	should	be	matched	and	the	second	section	is
the	exclude	one	which	specifies	the	span	queries	which	shouldn’t	be	overlapping	the	first
ones.	To	keep	it	simple,	if	a	query	from	the	exclude	one	matches	the	same	span	(or	a	part
of	it)	as	the	query	from	the	include	section,	such	a	document	won’t	be	returned	as	a	match
for	such	a	span	not	query.	Each	of	these	sections	can	contain	multiple	span	queries.

So,	to	illustrate	that	query,	let’s	make	a	query	that	will	return	all	the	documents	that	have
the	span	constructed	from	a	single	term	and	which	have	the	term	breaks	in	the
description	field.	Let’s	also	exclude	the	documents	that	have	a	span	which	matches	the
terms	world	and	everyone	at	the	maximum	of	a	single	position	from	each	other,	when
such	a	span	overlaps	the	one	defined	in	the	first	span	query.

{

		"query"	:	{

		"span_not"	:	{

			"include"	:	{

				"span_term"	:	{	"description"	:	"breaks"	}

			},

			"exclude"	:	{

				"span_near"	:	{

						"clauses"	:	[

							{	"span_term"	:	{	"description"	:	"world"	}	},

							{	"span_term"	:	{	"description"	:	"everyone"	}	}

],

						"slop"	:	1

					}

			}

		}

	}

}

The	following	is	the	result:

{

		"took"	:	1,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	0,

				"max_score"	:	null,

				"hits"	:	[]

		}

}

As	you	would	have	noticed,	the	result	of	the	query	is	as	we	would	have	expected.	Our
document	wasn’t	found	because	the	span	query	from	the	exclude	section	was	overlapping

www.EBooksWorld.ir

the	span	from	the	include	section.

www.EBooksWorld.ir

Span	within	query
The	span_within	query	allows	us	to	find	documents	that	have	a	span	enclosed	in	another
span.	We	define	two	sections	in	the	span_within	query:	the	little	and	the	big.	The	little
section	defines	a	span	query	that	needs	to	be	enclosed	by	the	span	query	defined	using	the
big	section.

For	example,	if	we	would	like	to	find	a	document	that	has	the	term	world	near	the	term
breaks	and	those	terms	should	be	inside	a	span	that	is	bound	by	the	terms	world	and
afterward	not	more	than	10terms	from	each	other,	the	query	that	does	that	will	look	as
follows:

{

	"query"	:	{

		"span_within"	:	{

			"little"	:	{

				"span_near"	:	{

					"clauses"	:	[

						{	"span_term"	:	{	"description"	:	"world"	}	},

						{	"span_term"	:	{	"description"	:	"breaks"	}	}

],

					"slop"	:	0,

					"in_order"	:	false

				}

			},

			"big"	:	{

				"span_near"	:	{

					"clauses"	:	[

						{	"span_term"	:	{	"description"	:	"world"	}	},

						{	"span_term"	:	{	"description"	:	"afterward"	}	}

],

					"slop"	:	10,

					"in_order"	:	false

				}

			}

		}

	}

}

www.EBooksWorld.ir

Span	containing	query
The	span_contaning	query	can	be	seen	as	the	opposite	of	the	span_within	query	we	just
discussed.	It	allows	us	to	match	spans	that	overlap	other	spans.	Again,	we	use	two	sections
with	the	span	queries:	the	little	and	the	big.	The	little	section	defines	a	span	query	that
needs	to	be	enclosed	by	the	span	query	defined	using	the	big	section.

We	can	use	the	same	example.	If	we	would	like	to	find	a	document	that	has	the	term	world
near	the	term	breaks,	and	those	terms	should	be	inside	a	span	that	is	bound	by	the	terms
world	and	afterward	not	more	than	10	terms	from	each	other,	the	query	that	does	that
will	look	as	follows:

{

	"query"	:	{

		"span_containing"	:	{

			"little"	:	{

				"span_near"	:	{	

					"clauses"	:	[

						{	"span_term"	:	{	"description"	:	"world"	}	},

						{	"span_term"	:	{	"description"	:	"breaks"	}	}

],

					"slop"	:	0,

					"in_order"	:	false

				}

			},

			"big"	:	{

				"span_near"	:	{

					"clauses"	:	[

						{	"span_term"	:	{	"description"	:	"world"	}	},

						{	"span_term"	:	{	"description"	:	"afterward"	}	}

],

					"slop"	:	10,

					"in_order"	:	false

				}

			}

		}

	}

}

www.EBooksWorld.ir

Span	multi	query
The	last	type	of	span	query	that	Elasticsearch	supports	is	the	span_multi	query.	It	allows
us	to	wrap	any	multi	term	query	that	we’ve	discussed	(the	term	query,	the	range	query,	the
wildcard	query,	the	regex	query,	the	fuzzy	query,	or	the	prefix	query)	as	a	span	query.

For	example,	if	we	want	to	find	documents	that	have	the	term	starting	with	the	prefix	wor
in	the	first	two	positions	in	the	description	field,	we	can	do	that	by	sending	the	following
query:

{

	"query"	:	{

		"span_multi"	:	{	

			"match"	:	{

				"prefix"	:	{

					"description"	:	{	"value"	:	"wor"	}

				}

			}

		}

	}

}

There	is	one	thing	to	remember	–	the	multi	term	query	that	we	want	to	use	needs	to	be
enclosed	in	the	match	section	of	the	span_multi	query.

www.EBooksWorld.ir

Performance	considerations
A	few	words	at	the	end	of	discussing	span	queries.	Remember	that	they	are	costlier	when
it	comes	to	processing	power,	because	not	only	do	the	terms	have	to	be	matched	but	also
positions	have	to	be	calculated	and	checked.	This	means	that	Lucene	and	thus
Elasticsearch	will	need	more	CPU	cycles	to	calculate	all	the	needed	information	to	find
matching	documents.	You	can	expect	span	queries	to	be	slower	than	the	queries	that	don’t
take	positions	into	account.

www.EBooksWorld.ir

www.EBooksWorld.ir

Choosing	the	right	query
By	now	we’ve	seen	what	queries	are	available	in	Elasticsearch,	both	the	simple	ones	and
the	ones	that	can	group	other	queries	as	well.	Before	continuing	with	more	complicated
topics,	we	would	like	to	discuss	which	of	the	queries	should	be	used	for	which	use	case.
Of	course,	one	could	dedicate	the	whole	book	to	showing	different	queries	use	cases,	so
we	will	only	show	a	few	of	them	to	help	you	see	what	you	can	expect	and	which	query	to
use.

www.EBooksWorld.ir

The	use	cases
As	you	already	know	which	queries	can	be	used	to	find	which	data,	what	we	would	like	to
show	you	are	example	use	cases	using	the	data	we	indexed	in	Chapter	2,	Indexing	Your
Data.	To	do	this,	we	will	start	with	a	few	guiding	lines	on	how	to	chose	the	query	and	then
we	will	show	you	example	use	cases	and	discuss	why	those	queries	could	be	used.

Limiting	results	to	given	tags
One	of	the	simplest	examples	of	querying	Elasticsearch	is	the	search	for	exact	terms.	By
exact	we	mean	character	to	character	comparison	of	a	term	that	is	indexed	and	written	into
Lucene	inverted	index.	To	run	such	a	query,	we	can	use	the	term	query	provided	by
Elasticsearch.	This	is	because	its	content	is	not	analyzed	by	Elasticsearch.	For	example,
let’s	assume	that	we	would	like	to	search	for	all	the	books	with	the	value	novel	in	the	tags
field,	which	as	we	know	from	the	mappings	is	not	analyzed.	To	do	that,	we	would	run	the
following	command:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"term"	:	{

						"tags"	:	"novel"

		}

		}

}'

www.EBooksWorld.ir

Searching	for	values	in	a	range
One	of	the	simplest	queries	that	can	be	run	is	a	query	matching	documents	in	a	given
range	of	values.	Usually	such	queries	are	a	part	of	a	larger	query	or	a	filter.	For	example,	a
query	that	would	return	books	with	the	number	of	copies	from	1	to	3	inclusive,	would	look
as	follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"range"	:	{

			"copies"	:	{

				"gte"	:	1,

				"lte"	:	3

			}

		}

	}

}'

Boosting	some	of	the	matched	documents
There	are	many	common	examples	of	using	the	bool	query.	For	example,	very	simple
ones	like	finding	documents	having	a	list	of	terms.	What	we	would	like	to	show	you	is
how	to	use	the	bool	query	to	boost	some	of	the	documents.	For	example,	if	we	want	to
find	all	the	documents	that	have	one	or	more	copy	and	have	the	ones	that	are	published
after	1950,	we	will	run	the	following	query:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

		"bool"	:	{

				"must"	:	[

				{	

					"range"	:	{

						"copies"	:	{

							"gte"	:	1

						}	

					}

				}

],

				"should"	:	[

				{

					"range"	:	{

						"year"	:	{

							"gt"	:	1950

						}

					}

				}

]

		}

		}

}'

Ignoring	lower	scoring	partial	queries
The	dis_max	query,	as	we	discussed,	allows	us	to	control	how	influential	the	lower	scoring

www.EBooksWorld.ir

partial	queries	are.	For	example,	if	we	would	only	want	to	assign	the	score	of	the	highest
scoring	partial	query	for	the	documents	matching	crime	punishment	in	the	title	field	or
raskolnikov	in	the	characters	field,	we	would	run	the	following	query:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"fields"	:	["_id",	"_score"],

		"query"	:	{

		"dis_max"	:	{

				"tie_breaker"	:	0.0,

				"queries"	:	[

				{

					"match"	:	{

						"title"	:	"crime	punishment"

					}	

				},

				{

					"match"	:	{

						"characters"	:	"raskolnikov"

					}

				}

]

			}

		}

}'

The	result	for	the	preceding	query	will	look	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.70710677,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.70710677

				}]

		}

}

Now	let’s	see	the	score	of	the	partial	queries	alone.	To	do	that,	we	will	run	the	partial
queries	using	the	following	commands:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"fields"	:	["_id",	"_score"],

	"query"	:	{

		"match"	:	{

			"title"	:	"crime	punishment"

		}

www.EBooksWorld.ir

	}

}'

The	response	for	the	preceding	query	is	as	follows:

{

		"took"	:	4,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.70710677,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.70710677

				}]

		}

}

The	following	is	the	next	command:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"fields"	:	["_id",	"_score"],

	"query"	:	{

		"match"	:	{

			"characters"	:	"raskolnikov"

		}

	}

}'

The	response	is	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5

				}]

		}

}

www.EBooksWorld.ir

As	you	can	see,	the	score	of	the	document	returned	by	our	dis_max	query	is	equal	to	the
score	of	the	highest	scoring	partial	query	(the	first	partial	query).	That	is	because	we	set
the	tie_breaker	property	to	0.0.

Using	Lucene	query	syntax	in	queries
Having	a	simple	search	syntax	is	very	useful	for	users	and	we	already	have	such	–	the
Lucene	query	syntax.	Using	the	query_string	query	is	an	example	where	we	can	leverage
that	by	allowing	the	users	to	type	in	queries	with	additional	control	characters.	For
example,	if	we	would	like	to	find	books	having	the	terms	crime	and	punishment	in	their
title	and	the	fyodor	dostoevsky	phrase	in	the	author	field,	and	not	being	published
between	2000	(exclusive)	and	2015	(inclusive),	we	would	use	the	following	command:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

		"query_string"	:	{

			"query"	:	"+title:crime	+title:punishment	+author:\"fyodor	dostoevsky\"	

-copies:{2000	TO	2015]"

		}

		}

}'

As	you	can	see,	we	used	the	Lucene	query	syntax	to	pass	all	the	matching	requirements
and	we	let	the	query	parser	construct	the	appropriate	query.

Handling	user	queries	without	errors
Using	the	query_string	query	is	very	handy,	but	it	is	not	error	tolerant.	If	our	user
provides	incorrect	Lucene	syntax,	the	query	will	return	an	error.	Because	of	that,
Elasticsearch	exposes	a	second	query	that	supports	analysis	and	full	Lucene	query	syntax
–	the	simple_query_string	query.	Using	such	a	query	allows	us	to	run	the	user	queries
and	not	care	about	the	parsing	errors	at	all.	For	example,	let’s	look	at	the	following	query:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"query_string"	:	{

						"query"	:	"+crime	+punishment	\"",

						"default_field"	:	"title"

				}

		}

}'

The	response	will	contain:

{

		"error"	:	{

				"root_cause"	:	[{

						"type"	:	"query_parsing_exception",

						"reason"	:	"Failed	to	parse	query	[+crime	+punishment	\"]",

						"index"	:	"library",

						"line"	:	6,

						"col"	:	3

				}],

				"type"	:	"search_phase_execution_exception",

www.EBooksWorld.ir

				"reason"	:	"all	shards	failed",

				"phase"	:	"query",

				"grouped"	:	true,

				"failed_shards"	:	[{

						"shard"	:	0,

						"index"	:	"library",

						"node"	:	"7jznW07BRrqjG-aJ7iKeaQ",

						"reason"	:	{

								"type"	:	"query_parsing_exception",

								"reason"	:	"Failed	to	parse	query	[+crime	+punishment	\"]",

								"index"	:	"library",

								"line"	:	6,

								"col"	:	3,

								"caused_by"	:	{

										"type"	:	"parse_exception",

										"reason"	:	"Cannot	parse	'+crime	+punishment	\"':	Lexical	error	

at	line	1,	column	21.		Encountered:	<EOF>	after	:	\"\"",

										"caused_by"	:	{

												"type"	:	"token_mgr_error",

												"reason"	:	"Lexical	error	at	line	1,	column	21.	

														Encountered:	<EOF>	after	:	\"\""

										}

								}

						}

				}]

		},

		"status"	:	400

}

This	means	that	the	query	was	not	properly	constructed	and	a	parse	error	happened.	That’s
why	the	simple_query_string	query	was	introduced.	It	uses	a	query	parser	that	tries	to
handle	user	mistakes	and	tries	to	guess	how	the	query	should	look.	Our	query	using	that
parser	will	look	as	follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"simple_query_string"	:	{

						"query"	:	"+crime	+punishment	\"",

						"fields"	:	["title"]

				}

		}

}'

If	you	run	the	preceding	query,	you	will	see	that	the	proper	document	is	returned	by
Elasticsearch	even	though	the	query	is	not	properly	constructed.

Autocomplete	using	prefixes
A	very	common	use	case	is	to	provide	autocomplete	functionality	on	the	indexed	data.	As
we	know,	the	prefix	query	is	not	analyzed	and	works	on	the	basis	of	terms	indexed	in	the
field.	So	the	actual	functionality	depends	on	which	tokens	are	produced	during	indexing.
For	example,	let’s	assume	that	we	would	like	to	provide	autocomplete	functionality	on	any
token	in	the	title	field	and	the	user	provided	wes	prefix.	A	query	that	would	match	such	a
requirement	looks	as	follows:

www.EBooksWorld.ir

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"prefix"	:	{

						"title"	:	"wes"

				}

		}

}'

Finding	terms	similar	to	a	given	one
A	very	simple	example	is	using	the	fuzzy	query	to	find	documents	having	a	term	similar
to	a	given	one.	For	example,	if	we	want	to	find	all	the	documents	having	a	value	similar	to
crimea,	we	will	run	the	following	query:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"fuzzy"	:	{

			"title"	:	{

				"value"	:	"crimea",

				"fuzziness"	:	2,

				"max_expansions"	:	50

			}

		}

	}

}'

Matching	phrases
The	simplest	position	aware	query,	the	phrase	query	allows	us	to	find	documents	not	with
a	term	but	terms	positioned	one	after	another	–	ones	that	form	a	phrase.	For	example,	a
query	that	would	only	match	documents	that	have	the	westen	nichts	neues	phrase	in	the
otitle	field	would	look	as	follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"match_phrase"	:	{

			"otitle"	:	"westen	nichts	neues"

		}

	}

}'

Spans,	spans	everywhere
The	last	use	case	we	would	like	to	discuss	is	a	more	complicated	example	of	position
aware	queries	called	span	queries.	Imagine	that	we	would	like	to	run	a	query	to	find
documents	that	have	the	western	front	phrase	not	more	than	three	positions	after	the
term	quiet	and	all	that	just	after	the	all	term?	This	can	be	done	with	span	queries	and	the
following	command	shows	how	such	query	will	look:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query":	{

		"span_near":	{

				"clauses":	[

				{	

			"span_term":	{

www.EBooksWorld.ir

				"title":	"all"

				}

		},

				{

				"span_near":	{

						"clauses":	[

						{

					"span_term":	{

						"title":	"quiet"

					}

				},

						{

					"span_near":	{

								"clauses":	[

									{

						"span_term":	{

							"title":	"western"

						}

					},

									{

						"span_term":	{

							"title":	"front"

						}

					}

],

								"slop":	0,

								"in_order":	true

							}

				}

],

					"slop":	3,

					"in_order":	true

				}

				}

],

		"slop":	0,

		"in_order":	true

		}

		}

}'

Note	that	the	span	queries	are	not	analyzed.	We	can	see	that	by	looking	at	the	response	of
the	Explain	API.	To	see	that	response,	we	should	run	the	same	request	body	(our	query)	to
the	/library/book/1/_explain	REST	end-point.	The	interesting	part	of	the	output	looks
as	follows:

"description"	:	"weight(spanNear([title:all,	spanNear([title:quiet,	

spanNear([title:western,	title:front],	0,	true)],	3,	true)],	0,	true)	in	0)	

[PerFieldSimilarity],	result	of:",

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
This	chapter	has	been	all	about	the	querying	process.	We	started	by	looking	at	how	to
query	Elasticsearch	and	what	Elasticsearch	does	when	it	needs	to	handle	the	query.	We
also	learned	about	the	basic	and	compound	queries,	so	we	are	now	able	to	use	both	simple
queries	as	well	as	the	ones	that	group	multiple	small	queries	together.	Finally,	we
discussed	how	to	choose	the	right	query	for	a	given	use	case.

In	the	next	chapter,	we	will	extend	our	query	knowledge.	We	will	start	with	filtering	our
queries	and	move	to	highlighting	possibilities	and	a	way	to	validate	our	queries	using
Elasticsearch	API.	We	will	discuss	sorting	of	search	results	and	query	rewrite	which	will
show	us	what	happens	to	some	queries	in	Elasticsearch	internals.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	4.	Extending	Your	Querying
Knowledge
In	the	previous	chapter,	we	dived	into	Elasticsearch	querying	capabilities.	We	discussed
how	to	query	Elasticsearch	in	detail	and	we	learned	how	Elasticsearch	querying	works.
We	now	know	the	basic	and	compound	queries	of	this	great	search	engine	and	what	are
the	configuration	options	for	each	query	type.	We	also	got	to	know	when	to	use	our
queries	and	we	discussed	a	few	use	cases	and	which	queries	can	be	used	to	handle	them.
This	chapter	is	dedicated	to	extending	our	querying	knowledge.	By	the	end	of	this	chapter,
you	will	have	learned	the	following	topics:

What	filtering	is	and	how	to	use	it
What	highlighting	is	and	how	to	use	it
What	are	the	highlighter	types	and	what	benefits	they	bring
How	to	validate	your	queries
How	to	sort	your	query	results
What	query	rewrite	is	and	how	to	control	it

www.EBooksWorld.ir

Filtering	your	results
In	the	previous	chapter,	we	talked	about	various	types	of	queries.	The	common	part	was
that	we	always	wanted	to	get	the	best	results	first.	This	is	the	main	difference	from	the
standard	database	approach	where	every	document	matches	the	query	or	not.	In	the
database	world,	we	do	not	ask	how	good	the	document	is;	our	only	interest	lies	in	the
results	returned.	When	talking	about	full	text	search	engines	this	is	different	–	we	are
interested	not	only	in	the	results,	we	are	also	interested	in	their	quality.	The	reason	is
obvious,	we	are	searching	in	unstructured	data,	using	text	fields	that	use	language
analysis,	stemming,	and	so	on.	Because	of	that,	the	initial	results	of	our	queries,	in	most
cases,	give	results	that	are	far	from	optimal.	This	is	why	when	we	talk	about	searching,	we
talk	about	precision	and	document	recall.

On	the	other	hand,	sometimes	we	want	to	limit	the	whole	subset	of	documents	to	a	chosen
part.	For	example,	in	a	library,	we	may	want	to	search	only	the	available	books,	the	rest
being	unimportant.	Sometimes	the	score,	busily	calculated	for	the	given	fields,	only
interferes	with	the	overall	score	and	has	no	meaning	in	terms	of	accuracy.	In	such	cases,
filters	should	be	used	to	limit	the	results	of	the	query,	but	not	interfere	with	the	calculated
score.

Prior	to	Elasticsearch	2.0,	filters	were	independent	entities	from	queries.	In	practice,
almost	every	query	had	its	own	counterpart	in	filters.	There	was	the	term	query	and	the
term	filter,	the	bool	query	and	the	bool	filter,	the	range	query	and	the	range	filter,	and	so
on.	From	the	user	point	of	view,	the	most	important	difference	between	the	queries	and	the
filters	was	scoring.	The	filter	didn’t	calculate	score,	which	resulted	in	the	filter	being
easily	cached	and	more	efficient.	But	this	difference	was	very	inconvenient	for	users.	With
the	release	of	Elasticsearch	2.0	and	its	usage	of	Lucene	5.3,	filter	queries	were	deprecated
along	with	some	types	of	queries	that	allowed	us	to	use	filters.	Let’s	discuss	how	filtering
works	now	and	what	we	can	do	to	achieve	the	same	or	better	performance	as	before	in
Elasticsearch	2.0.

www.EBooksWorld.ir

The	context	is	the	key
In	Elasticsearch	2.0,	queries	can	calculate	score	or	omit	it	by	choosing	more	efficient	way
of	execution.	This	behavior,	in	many	cases,	is	done	automatically	based	on	the	context
where	the	query	is	used.	This	is	about	the	queries	that	include	filter	sections,	which
remove	the	documents	based	on	some	criteria.	These	documents	are	unnecessary	in	the
returned	results	and	should	be	skipped	as	quickly	as	possible	without	affecting	the	overall
score.	Thanks	to	this,	after	discarding	some	documents	we	can	focus	only	on	the	rest	of
the	documents,	calculating	their	scores,	and	sorting	them	before	returning.	The	example	of
this	case	can	be	the	must_not	clause	of	a	Boolean	query.	The	document	that	matches	the
must_not	clause	will	be	removed	from	the	returned	result	set,	so	calculating	the	score	for
the	documents	matched	by	this	part	of	the	bool	query	would	be	an	additional,
unnecessary,	and	performance	ineffective	work.

The	best	thing	about	all	the	changes	is	that	we	don’t	need	to	care	about	if	we	want	to	use
filtering	or	not.	Elasticsearch	and	the	underlying	Apache	Lucene	library	take	care	of
choosing	the	right	execution	method	for	us.

www.EBooksWorld.ir

Explicit	filtering	with	bool	query
As	we	mentioned	in	the	Compound	queries	section	in	Chapter	3,	Searching	Your	Data,	the
bool	query	in	Elasticsearch	2.0	allows	us	to	add	a	filter	explicitly	by	adding	the	filter
section	and	including	a	query	in	that	section.	This	is	very	convenient	if	we	want	to	have	a
part	of	the	query	that	needs	to	match,	but	we	are	not	interested	in	the	score	for	those
documents.

Let’s	look	at	the	following	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"term"	:	{

						"available"	:	true

				}

		}

}'

We	see	a	simple	query	that	should	return	all	the	books	in	our	library	available	for
borrowing,	which	means	the	documents	with	the	available	field	set	to	true.	Now	let’s
compare	it	with	the	following	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"bool"	:	{

						"must"	:	{

								"match_all"	:	{	}

						},

						"filter"	:	{

								"term"	:	{

										"available"	:	true

									}

						}

				}

		}

}'

This	query	returns	all	the	books,	but	it	also	contains	the	filter	section,	which	tells
Elasticsearch	that	we	are	only	interested	in	the	available	books.	The	query	will	return	the
same	results	as	the	previous	query	we’ve	seen,	of	course	when	looking	only	at	the	number
of	documents	and	which	documents	are	returned.	The	difference	is	the	score.	For	our
example	data,	both	the	queries	return	two	books.	The	results	returned	for	the	first	query
look	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

www.EBooksWorld.ir

				"total"	:	2,

				"max_score"	:	1.0,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"Crime	and	Punishment",

								"otitle"	:	"Преступлéние	и	наказáние",

								"author"	:	"Fyodor	Dostoevsky",

								"year"	:	1886,

								"characters"	:	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],

								"tags"	:	[],

								"copies"	:	0,

								"available"	:	true

						}

				},	{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"1",

						"_score"	:	0.30685282,

						"_source"	:	{

								"title"	:	"All	Quiet	on	the	Western	Front",

								"otitle"	:	"Im	Westen	nichts	Neues",

								"author"	:	"Erich	Maria	Remarque",

								"year"	:	1929,

								"characters"	:	["Paul	Bäumer",	"Albert	Kropp",	"Haie	Westhus",	

"Fredrich	Müller",	"Stanislaus	Katczinsky",	"Tjaden"],

								"tags"	:	["novel"],

								"copies"	:	1,

								"available"	:	true,

								"section"	:	3

						}

				}]

		}

}

The	results	for	the	second	query	look	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	2,

				"max_score"	:	1.0,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	1.0,

www.EBooksWorld.ir

						"_source"	:	{

								"title"	:	"Crime	and	Punishment",

								"otitle"	:	"Преступлéние	и	наказáние",

								"author"	:	"Fyodor	Dostoevsky",

								"year"	:	1886,

								"characters"	:	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],

								"tags"	:	[],

								"copies"	:	0,

								"available"	:	true

						}

				},	{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"1",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"All	Quiet	on	the	Western	Front",

								"otitle"	:	"Im	Westen	nichts	Neues",

								"author"	:	"Erich	Maria	Remarque",

								"year"	:	1929,

								"characters"	:	["Paul	Bäumer",	"Albert	Kropp",	"Haie	Westhus",	

"Fredrich	Müller",	"Stanislaus	Katczinsky",	"Tjaden"],

								"tags"	:	["novel"],

								"copies"	:	1,

								"available"	:	true, 								"section"	:	3
						}

				}]

		}

}

If	you	look	at	the	score	for	the	documents	in	each	query,	you’ll	notice	the	difference.	In
the	simple	term	query,	Elasticsearch	(the	Lucene	library,	in	fact)	has	a	score	of	1.0	for	the
first	document	and	a	score	of	0.30685282	for	the	second	one.	This	is	not	a	perfect	solution
because	the	availability	check	is	more	or	less	binary	and	we	don’t	want	it	to	interfere	with
the	score.	That’s	why	the	second	query	is	better	in	this	case.	With	the	bool	query	and
filtering,	the	score	for	the	filter	element	is	not	calculated	and	the	score	for	both	the
documents	is	the	same,	that	is	1.0.

www.EBooksWorld.ir

www.EBooksWorld.ir

Highlighting
You	have	probably	heard	of	highlighting	or	seen	it.	You	may	not	even	know	that	you	are
actually	using	highlighting	when	you	are	using	the	bigger	and	smaller	public	search
engines	on	the	World	Wide	Web	(WWW).	When	we	talk	about	highlighting	in	context	of
full	text	search,	we	usually	mean	showing	which	words	or	phrases	from	the	query	were
matched	in	the	resulting	documents.	For	example,	if	we	use	Google	and	search	for	the
word	lucene,	we	would	see	that	word	bolded	in	the	search	results:

It	is	even	more	visible	on	the	Microsoft	Bing	search	engine:

In	this	chapter,	we	will	see	how	to	use	Elasticsearch	highlighting	capabilities	to	enhance
our	application	with	highlighted	results.

www.EBooksWorld.ir

Getting	started	with	highlighting
There	is	no	better	way	of	showing	how	highlighting	works	other	than	making	a	query	and
looking	at	the	results	returned	by	Elasticsearch.	So	let’s	do	that.	We	assume	that	we	would
like	to	highlight	the	terms	that	are	matched	in	the	title	field	of	our	documents	to	increase
the	search	experience	of	our	users.	By	now	you	know	the	example	data	from	top	to
bottom,	so	let’s	again	reuse	the	same	data	set.	We	want	to	match	the	term	crime	in	the
title	field	and	we	want	to	get	highlighting	results.	One	of	the	simplest	queries	that	can
achieve	this	looks	as	follows:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

	"query"	:	{

		"match"	:	{

			"title"	:	"crime"

		}

	},

	"highlight"	:	{

		"fields"	:	{

			"title"	:	{}

		}

	}

}'

The	response	for	the	preceding	query	is	as	follows:

{

		"took"	:	16,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5,

						"_source"	:	{

								"title"	:	"Crime	and	Punishment",

								"otitle"	:	"Преступлéние	и	наказáние",

								"author"	:	"Fyodor	Dostoevsky",

								"year"	:	1886,

								"characters"	:	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],

								"tags"	:	[],

								"copies"	:	0,

								"available"	:	true

						},

						"highlight"	:	{

								"title"	:	["Crime	and	Punishment"]

						}

www.EBooksWorld.ir

				}]

		}

}

As	you	can	see,	apart	from	the	standard	information	about	the	documents	that	matched	the
query,	we	got	a	new	section	called	highlight.	Elasticsearch	used	the		HTML	tag	as
the	beginning	of	the	highlighting	section	and	its	closing	counterpart	to	close	the
highlighted	section.	This	is	the	default	behavior	of	Elasticsearch,	but	we	will	learn	how	to
change	that.

www.EBooksWorld.ir

Field	configuration
In	order	to	perform	highlighting,	the	original	content	of	the	field	needs	to	be	present.	We
have	to	set	the	fields	we	will	use	for	highlighting.	This	is	done	by	either	marking	a	field	to
be	stored	or	using	the	_source	field	with	those	fields	included.	If	the	field	is	set	to	be
stored	in	the	mappings,	the	stored	version	will	be	used,	otherwise	Elasticsearch	will	try	to
use	the	_source	field	and	extract	the	field	that	needs	to	be	highlighted.

www.EBooksWorld.ir

Under	the	hood
Elasticsearch	uses	Apache	Lucene	under	the	hood	and	highlighting	is	one	of	the	features
of	that	library.	Lucene	provides	three	types	of	highlighting	implementation:	the	standard
one,	which	we	just	used;	the	second	one	called	FastVectorHighlighter
(https://lucene.apache.org/core/5_4_0/highlighter/org/apache/lucene/search/vectorhighlight/FastVectorHighlighter.html
which	needs	term	vectors	and	positions	to	be	able	to	work;	and	the	third	one	called
PostingsHighlighter

(http://lucene.apache.org/core/5_4_0/highlighter/org/apache/lucene/search/postingshighlight/PostingsHighlighter.html
Elasticsearch	chooses	the	right	highlighter	implementation	automatically.	If	the	field	is
configured	with	the	term_vector	property	set	to	with_positions_offsets,
FastVectorHighlighter	will	be	used.	If	the	field	is	configured	with	the	index_options
property	set	to	offsets,	PostingsHighlighter	will	be	used.	Otherwise,	the	standard
highlighter	will	be	used	by	Elasticsearch.

Which	highlighter	to	use	depends	on	your	data,	your	queries,	and	the	needed	performance.
The	standard	highlighter	is	a	general	use	case	one.	However,	if	you	want	to	highlight
fields	with	lots	of	data,	FastVectorHighlighter	is	the	recommended	one.	The	thing	to
remember	about	it	is	that	it	requires	term	vectors	to	be	present	and	that	will	make	your
index	slightly	larger.	Finally,	the	fastest	highlighter,	that	is	also	recommended	for	natural
language	highlighting,	is	PostingsHighlighter.	However,	the	thing	to	remember	is	that
PostingsHighlighter	doesn’t	support	complex	queries	such	as	the
match_phrase_prefix	query	and	in	such	cases	highlighting	won’t	be	returned.

Forcing	highlighter	type
While	Elasticsearch	chooses	the	highlighter	type	for	us,	we	can	also	enforce	the
highlighting	type	if	we	really	want	to.	To	do	that,	we	need	to	set	the	type	property	to	one
of	the	following	values:

plain:	When	this	value	is	set,	Elasticsearch	will	use	the	standard	highlighter
fvh:	When	this	value	is	set,	Elasticsearch	will	try	using	FastVectorHighlighter.	It
will	require	term	vectors	to	be	turned	on	for	the	field	used	for	highlighting.
postings:	When	this	value	is	set,	Elasticsearch	will	try	using	PostingsHighlighter.
It	will	require	offsets	to	be	turned	on	for	the	field	used	for	highlighting

For	example,	to	use	the	standard	highlighter,	we	will	run	the	following	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

	"query"	:	{

		"term"	:	{

			"title"	:	"crime"

		}

	},

"highlight"	:	{

		"fields"	:	{

			"title"	:	{	"type"	:	"plain"	}

		}

	}

}'

www.EBooksWorld.ir

https://lucene.apache.org/core/5_4_0/highlighter/org/apache/lucene/search/vectorhighlight/FastVectorHighlighter.html
http://lucene.apache.org/core/5_4_0/highlighter/org/apache/lucene/search/postingshighlight/PostingsHighlighter.html

Configuring	HTML	tags
The	default	behavior	of	highlighting	mechanism	may	not	be	suited	for	everyone	–	not	all
of	us	would	like	to	have	the		and		tags	to	be	used	for	highlighting.	Because	of
that,	Elasticsearch	allows	us	to	change	the	default	behavior	and	change	the	tags	that	are
used	for	that	purpose.	To	do	that,	we	should	set	the	pre_tags	and	post_tags	properties	to
the	code	snippets	we	want	the	highlighting	to	start	from	and	end	at;	for	example,	by	
and	.	The	pre_tags	and	post_tags	properties	are	arrays	and	because	of	that	we	can
provide	more	than	a	single	opening	and	closing	tag	and	Elasticsearch	will	use	each	of	the
defined	tags	to	highlight	different	words.	For	example,	if	we	want	to	use		as	the
opening	tag	and		as	the	closing	tag,	our	query	will	look	like	this:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

	"query"	:	{

		"term"	:	{

			"title"	:	"crime"

		}

},

	"highlight"	:	{

		"pre_tags"	:	[""],

		"post_tags"	:	[""],

		"fields"	:	{

			"title"	:	{}

		}

	}

}'

The	result	returned	by	Elasticsearch	to	the	preceding	query	will	be	as	follows:

{

		"took"	:	3,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.5,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	0.5,

						"_source"	:	{

								"title"	:	"Crime	and	Punishment",

								"otitle"	:	"Преступлéние	и	наказáние",

								"author"	:	"Fyodor	Dostoevsky",

								"year"	:	1886,

								"characters"	:	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],

								"tags"	:	[],

								"copies"	:	0,

www.EBooksWorld.ir

								"available"	:	true

						},

						"highlight"	:	{

								"title"	:	["Crime	and	Punishment"]

						}

				}]

		}

}

As	you	can	see,	the	term	Crime	in	the	title	field	was	surrounded	by	the	tags	of	our
choice.

www.EBooksWorld.ir

Controlling	highlighted	fragments
Elasticsearch	allows	us	to	control	the	number	of	highlighted	fragments	returned	and	their
sizes	by	exposing	two	properties.	The	first	one	is	number_of_fragments,	which	defines
the	number	of	fragments	returned	by	Elasticsearch	(defaults	to	5).	Setting	this	property	to
0	causes	the	whole	field	to	be	returned,	which	can	be	handy	for	short	fields	but	expensive
for	longer	fields.	The	second	property	is	fragment_size	which	lets	us	specify	the
maximum	length	of	the	highlighted	fragments	in	characters	and	defaults	to	100.

An	example	query	using	these	properties	will	look	as	follows:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

	"query"	:	{

		

"term"	:	{

			"title"	:	"crime"

		}

	},

	"highlight"	:	{

		"fields"	:	{

			"title"	:	{	"fragment_size"	:	200,	"number_of_fragments"	:	0	}

		}

	}

}'

www.EBooksWorld.ir

Global	and	local	settings
The	highlighting	properties	we	discussed	previously	can	be	set	both	on	a	global	basis	and
per	field	basis.	The	global	ones	will	be	used	for	all	the	fields	that	don’t	overwrite	them	and
should	be	placed	on	the	same	level	as	the	fields	section	of	your	highlighting,	for
example,	like	this:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

	"query"	:	{

		"term"	:	{

			"title"	:	"crime"

		}

	},

	"highlight"	:	{

		"pre_tags"	:	[""],

		"post_tags"	:	[""],

		

"fields"	:	{

			"title"	:	{}

		}

	}

}'

You	can	also	set	the	properties	for	each	field.	For	example,	if	we	would	like	to	keep	the
default	behavior	for	all	the	fields	except	our	title	field,	we	would	do	the	following:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

	"query"	:	{

		"term"	:	{

			"title"	:	"crime"

		}

	},

	"highlight"	:	{

		"fields"	:	{

			"title"	:	{	"pre_tags"	:	[""],	"post_tags"	:	[""]	}

		}

	}

}'

As	you	can	see,	instead	of	placing	the	properties	on	the	same	level	as	the	fields	section,
we	placed	it	inside	the	empty	JSON	object	that	specifies	the	title	field	behavior.	Of
course,	each	field	can	be	configured	using	different	properties.

www.EBooksWorld.ir

Require	matching
Sometimes	there	may	be	a	need	(especially	when	using	multiple	highlighted	fields)	to
show	only	the	fields	that	matched	our	query.	In	order	to	have	such	behavior,	we	need	to	set
the	require_field_match	property	to	true.	Setting	this	property	to	false	will	cause	all
the	terms	to	be	highlighted	even	if	a	field	didn’t	match	the	query.

To	see	how	that	works,	let’s	create	a	new	index	called	users	and	let’s	index	a	single
document	there.	We	will	do	that	by	sending	the	following	command:

curl	-XPUT	'http://localhost:9200/users/user/1'	-d	'{

	"name"	:	"Test	user",

	"description"	:	"Test	document"

}'

So,	let’s	assume	we	want	to	highlight	the	hits	in	both	of	the	preceding	fields.	Our
command	sending	the	query	to	our	new	index	will	look	like	this:

curl	-XGET	'localhost:9200/users/_search?pretty'	-d	'{

	"query"	:	{

		"term"	:	{

			"name"	:	"test"

		}

	},

	"highlight"	:	{

		"fields"	:	{

			"name"	:	{	"pre_tags"	:	[""],	"post_tags"	:	[""]	},

			"description"	:	{	"pre_tags"	:	[""],	"post_tags"	:	[""]	}

		}

	}

}'

The	result	of	the	preceding	query	will	be	as	follows:

{

		"took"	:	3,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.19178301,

				"hits"	:	[{

						"_index"	:	"users",

						"_type"	:	"user",

						"_id"	:	"1",

						"_score"	:	0.19178301,

						"_source":{

								"name"	:	"Test	user",

								"description"	:	"Test	document"

						},

						"highlight"	:	{

www.EBooksWorld.ir

								"name"	:	["Test	user"]

						}

				}]

		}

}

Note	that	we	only	got	highlighting	on	the	name	field.	This	is	because	our	query	matched
only	that	field.	Let’s	see	what	will	happen	if	we	set	the	require_field_match	property	to
false	and	use	a	command	similar	to	the	following	one:

curl	-XGET	'localhost:9200/users/_search?pretty'	-d	'{

	"query"	:	{

		"term"	:	{

			"name"	:	"test"

		}

	},

	"highlight"	:	{

		"require_field_match"	:	false,

		"fields"	:	{

			"name"	:	{	"pre_tags"	:	[""],	"post_tags"	:	[""]	},

			"description"	:	{	"pre_tags"	:	[""],	"post_tags"	:	[""]	}

		}

	}

}'

Now	let’s	look	at	the	modified	query	results:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.19178301,

				"hits"	:	[{

						"_index"	:	"users",

						"_type"	:	"user",

						"_id"	:	"1",

						"_score"	:	0.19178301,

						"_source":{

								"name"	:	"Test	user",

								"description"	:	"Test	document"

						},

						"highlight"	:	{

								"name"	:	["Test	user"],

								"description"	:	["Test	document"]

						}

				}]

		}

}

As	you	can	see,	Elasticsearch	returned	highlighting	in	both	the	fields	now.

www.EBooksWorld.ir

Custom	highlighting	query
There	are	use	cases	where	your	queries	are	complicated	and	not	really	suitable	for
highlighting,	but	you	still	want	to	use	highlighting	functionality.	In	such	cases,
Elasticsearch	allows	us	to	highlight	results	on	the	basis	of	a	different	query	provided	using
the	highlight_query	property.	An	example	of	using	a	different	highlighting	query	looks
as	follows:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

	"query"	:	{

		"term"	:	{

			"title"	:	"crime"

		}

	},

	"highlight"	:	{

		"fields"	:	{

			"title"	:	{	

				"highlight_query"	:	{

					"term"	:	{

						"title"	:	"punishment"

					}

				}

			}

		}

	}

}'

The	preceding	query	will	result	in	highlighting	the	term	punishment	in	the	title	field,
instead	of	the	crime	one.

www.EBooksWorld.ir

The	Postings	highlighter
It	is	time	to	talk	about	the	third	available	highlighter.	It	was	added	in	Elasticsearch	0.90.6
and	is	slightly	different	from	the	previous	ones.	PostingsHighlighter	is	automatically
used	when	the	field	definition	has	index_options	set	to	offsets.	To	illustrate	how
PostingsHighlighter	works,	we	will	create	a	simple	index	with	proper	configuration	that
allows	that	highlighter	to	work.	We	will	do	that	by	using	the	following	commands:

curl	-XPUT	'localhost:9200/hl_test'

curl	-XPOST	'localhost:9200/hl_test/doc/_mapping'	-d	'{

	"doc"	:	{

		"properties"	:	{

			"contents"	:	{

				"type"	:	"string",

				"fields"	:	{

					"ps"	:	{	"type"	:	"string",	"index_options"	:	"offsets"	}

				}

			}

		}

	}

}'

If	everything	goes	well,	we	should	have	a	new	index	and	the	mappings.	The	mappings
have	two	fields	defined:	one	named	contents	and	the	second	one	named	contents.ps.	In
this	second	case,	we	turned	on	the	offsets	by	using	the	index_options	property.	This
means	that	Elasticsearch	will	use	the	standard	highlighter	for	the	contents	field	and	the
postings	highlighter	for	the	contents.ps	field.

To	see	the	difference,	we	will	index	a	single	document	with	a	fragment	from	Wikipedia
describing	the	history	of	Birmingham.	We	do	that	by	running	the	following	command:

curl	-XPUT	localhost:9200/hl_test/doc/1	-d	'{

		"contents"	:	"Birmingham''s	early	history	is	that	of	a	remote	and	

marginal	area.	The	main	centres	of	population,	power	and	wealth	in	the	pre-

industrial	English	Midlands	lay	in	the	fertile	and	accessible	river	valleys	

of	the	Trent,	the	Severn	and	the	Avon.	The	area	of	modern	Birmingham	lay	in	

between,	on	the	upland	Birmingham	Plateau	and	within	the	densely	wooded	and	

sparsely	populated	Forest	of	Arden."

}'

The	last	step	is	to	send	a	query	using	both	the	highlighters.	We	can	do	it	in	a	single	request
by	using	the	following	command:

curl	'localhost:9200/hl_test/_search?pretty'	-d	'{

	"query":	{

		"term":	{

			"contents.ps":	"modern"

		}

	},

	"highlight":	{

		"require_field_match"	:	false,

		"fields":	{

			"contents":	{},

			"contents.ps"	:	{}

www.EBooksWorld.ir

		}

	}

}'

If	everything	goes	well,	you	will	find	the	following	snippet	in	the	response	returned	by
Elasticsearch:

"highlight"	:	{

	"contents"	:	["	valleys	of	the	Trent,	the	Severn	and	the	Avon.	The	area	

of	modern	Birmingham	lay	in	between,	on	the	upland"],

	"contents.ps"	:	["The	area	of	modern	Birmingham	lay	in	between,	

on	the	upland	Birmingham	Plateau	and	within	the	densely	wooded	and	sparsely	

populated	Forest	of	Arden."]

}

As	you	see,	both	the	highlighters	found	the	occurrence	of	the	desired	word.	The	difference
is	that	the	postings	highlighter	returns	the	smarter	snippet	–	it	checks	for	the	sentence
boundaries.

Let’s	try	one	more	query:

curl	'localhost:9200/hl_test/_search?pretty'	-d	'{

	"query":	{

		"match_phrase":	{

			"contents.ps":	"centres	of"

		}

	},

	"highlight":	{

		"require_field_match"	:	false,

		"fields":	{

			"contents":	{},

			"contents.ps":	{}

		}

	}

}'

We	searched	for	the	phrase	centres	of.	As	you	may	expect,	the	results	for	the	two
highlighters	will	differ.	For	the	standard	highlighter,	run	on	the	contents	field,	we	will
find	the	following	phrase	in	the	response:

"Birminghams	early	history	is	that	of	a	remote	and	marginal	area.	The	main	

centres	of	population"

As	you	can	clearly	see,	the	standard	highlighter	divided	the	given	phrase	and	highlighted
individual	terms.	Also,	not	all	occurrences	of	the	terms	centres	and	of	were	highlighted,
but	only	the	ones	that	formed	the	phrase.

On	the	other	hand,	the	PostingsHighlighter	returned	the	following	highlighted
fragment:

"Birminghams	early	history	is	that	of	a	remote	and	marginal	

area.",	"The	main	centres	of	population,	power	and	wealth	

in	the	pre-industrial	English	Midlands	lay	in	the	fertile	and	accessible	

river	valleys	of	the	Trent,	the	Severn	and	the	Avon.",	"The	area	

of	modern	Birmingham	lay	in	between,	on	the	upland	Birmingham	

Plateau	and	within	the	densely	wooded	and	sparsely	populated	Forest	

www.EBooksWorld.ir

of	Arden."

This	is	the	significant	difference.	The	PostingsHighlighter	highlighted	all	the	terms
matching	the	query	and	not	only	those	that	formed	the	phrase,	and	returned	whole
sentences.	This	is	a	very	nice	feature,	especially	when	you	want	to	display	the	highlighting
results	for	the	user	in	the	UI	of	your	application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Validating	your	queries
There	are	times	when	you	are	not	in	total	control	of	the	queries	that	you	send	to
Elasticsearch.	The	queries	can	be	generated	from	multiple	criteria	making	them	a	monster
or	even	worse.	They	can	be	generated	by	some	kind	of	a	wizard	which	makes	it	hard	to
troubleshoot	and	find	the	part	that	is	faulty	and	making	the	query	fail.	Because	of	such	use
cases,	Elasticsearch	exposes	the	Validate	API,	which	helps	us	validate	our	queries	and
diagnose	potential	problems.

www.EBooksWorld.ir

Using	the	Validate	API
The	usage	of	the	Validate	API	is	very	simple.	Instead	of	sending	the	query	to	the	_search
REST	endpoint,	we	send	it	to	the	_validate/query	one.	And	that’s	it.	Let’s	look	at	the
following	command:

curl	-XGET	'localhost:9200/library/_validate/query?pretty'	--data-binary	'{

	"query"	:	{

		"bool"	:	{

				"must"	:	{

						"term"	:	{

								"title"	:	"crime"

						}

				},

				"should"	:	{

						"range	:	{

								"year"	:	{

										"from"	:	1900,

										"to"	:	2000

								}

						}

				},

				"must_not"	:	{

						"term"	:	{

								"otitle"	:	"nothing"

						}

				}

		}

	}

}'

A	similar	query	was	already	used	in	this	book	in	Chapter	3,	Searching	Your	Data.	The
preceding	command	will	tell	Elasticsearch	to	validate	it	and	return	the	information	about
its	validity.	The	response	of	Elasticsearch	to	the	preceding	command	will	be	similar	to	the
following	one:

{

		"valid"	:	false,

		"_shards"	:	{

				"total"	:	1,

				"successful"	:	1,

				"failed"	:	0

		}

}

Look	at	the	valid	attribute.	It	is	set	to	false.	Something	went	wrong.	Let’s	execute	the
query	validation	once	again	with	the	explain	parameter	added	in	the	query:

curl	-XGET	'localhost:9200/library/_validate/query?pretty&explain'	--data-

binary	'{

	"query"	:	{

		"bool"	:	{

				"must"	:	{

						"term"	:	{

www.EBooksWorld.ir

								"title"	:	"crime"

						}

				},

				"should"	:	{

						"range	:	{

								"year"	:	{

										"from"	:	1900,

										"to"	:	2000

								}

						}

				},

				"must_not"	:	{

						"term"	:	{

								"otitle"	:	"nothing"

						}

				}

		}

	}

}'

Now	the	result	returned	from	Elasticsearch	is	more	verbose:

{

		"valid"	:	false,

		"_shards"	:	{

				"total"	:	1,

				"successful"	:	1,

				"failed"	:	0

		},

		"explanations"	:	[{

				"index"	:	"library",

				"valid"	:	false,

				"error"	:	"[library]	QueryParsingException[Failed	to	parse];	nested:	

JsonParseException[Illegal	unquoted	character	((CTRL-CHAR,	code	10)):	has	

to	be	escaped	using	backslash	to	be	included	in	name\n	at	[Source:	

org.elasticsearch.transport.netty.ChannelBufferStreamInput@1110d090;	line:	

10,	column:	18]];;	com.fasterxml.jackson.core.JsonParseException:	Illegal	

unquoted	character	((CTRL-CHAR,	code	10)):	has	to	be	escaped	using	

backslash	to	be	included	in	name\n	at	[Source:	

org.elasticsearch.transport.netty.ChannelBufferStreamInput@1110d090;	line:	

10,	column:	18]"

		}]

}

Now	everything	is	clear.	In	our	example,	we	have	improperly	quoted	the	range	attribute.

Note
You	may	wonder	why	in	our	curl	query	we	used	the	--data-binary	parameter.	This
parameter	properly	preserves	the	new	line	character	when	sending	a	query	to
Elasticsearch.	This	means	that	the	line	and	the	column	number	remain	intact	and	it’s	easier
to	find	errors.	In	the	other	cases,	the	–d	parameter	is	more	convenient	because	it’s	shorter.

The	Validate	API	can	also	detect	other	errors,	for	example,	incorrect	format	of	a	number
or	other	mapping-related	issues.	Unfortunately,	for	our	application,	it	is	not	easy	to	detect
what	the	problem	is	because	of	a	lack	of	structure	in	the	error	messages.

www.EBooksWorld.ir

The	Validate	API	supports	most	of	the	parameters	that	are	supported	by	standard
Elasticsearch	queries,	which	include:	explain,	ignore_unavailable,	allow_no_indices,
expand_wildcards,	operation_threading,	analyzer,	analyze_wildcard,
default_operator,	df,	lenient,	lowercase_expanded_terms,	and	rewrite.

www.EBooksWorld.ir

www.EBooksWorld.ir

Sorting	data
So	far	we’ve	run	our	queries	and	got	the	results	in	the	order	determined	by	the	score	of
each	document.	However,	it	is	not	enough	for	all	the	use	cases.	It	is	really	handy	to	be	able
to	sort	our	results	on	the	basis	of	the	field	values.	For	example,	when	you	are	searching
logs	or	time-based	data	in	general,	you	probably	want	to	have	the	most	recent	data	first.	In
addition	to	that,	Elasticsearch	allows	us	to	control	how	the	document	such	be	sorted	not
only	using	field	values,	but	also	using	more	sophisticated	sorting	like	ones	that	use	scripts
or	sorting	on	fields	that	have	multiple	values.	We	will	cover	all	that	in	this	section.

www.EBooksWorld.ir

Default	sorting
Let’s	look	at	the	following	query	that	returns	all	the	books	with	at	least	one	of	the
specified	words:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"terms"	:	{

						"title"	:	["crime",	"front",	"punishment"]

				}

		}

}'

Under	the	hood,	we	can	imagine	that	Elasticsearch	sees	the	preceding	query	as	follows:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"terms"	:	{

						"title"	:	["crime",	"front",	"punishment"]

				}

		},

		"sort"	:	{	"_score"	:	"desc"	}

}'

Look	at	the	highlighted	section	in	the	preceding	query.	This	is	the	default	sorting	used	by
Elasticsearch.	For	better	visibility,	we	can	change	the	formatting	slightly	and	show	the
highlighted	fragment	as	follows:

"sort"	:	[

		{	"_score"	:	"desc"	}

]

The	preceding	section	defines	how	the	documents	should	be	sorted	in	the	results	list.	In
this	case,	Elasticsearch	will	show	the	documents	with	the	highest	score	on	top	of	the
results	list.	The	simplest	modification	is	to	reverse	the	ordering	by	changing	the	sort
section	to	the	following	one:

	"sort"	:	[

			{	"_score"	:	"asc"	}

]

www.EBooksWorld.ir

Selecting	fields	used	for	sorting
Default	sorting	is	boring,	isn’t	it?	So,	let’s	change	it	to	sort	on	the	basis	of	the	values	of	the
fields	present	in	the	documents.	Let’s	choose	the	title	field,	which	means	that	the	sort
section	of	our	query	will	look	as	follows:

"sort"	:	[

		{	"title"	:	"asc"	}

]

Unfortunately,	this	doesn’t	work	as	expected.	Although	Elasticsearch	sorted	the
documents,	the	ordering	is	somewhat	strange.	Look	closely	at	the	response.	With	every
document,	Elasticsearch	returns	information	about	the	sorting;	for	example,	for	the	Crime
and	Punishment	book,	the	returned	document	looks	like	the	following	code:

				{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"4",

						"_score"	:	null,

						"_source"	:	{

								"title"	:	"Crime	and	Punishment",

								"otitle"	:	"Преступлéние	и	наказáние",

								"author"	:	"Fyodor	Dostoevsky",

								"year"	:	1886,

								"characters"	:	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],

								"tags"	:	[],

								"copies"	:	0,

								"available"	:	true

						},

						"sort"	:	["punishment"]

				}

If	you	compare	the	title	field	and	the	returned	sorting	information,	everything	should	be
clear.	Elasticsearch,	during	the	analysis	process,	splits	the	field	into	several	tokens.	Since
sorting	is	done	using	a	single	token,	Elasticsearch	chooses	one	of	the	produced	tokens.	It
does	the	best	that	it	can	by	sorting	these	tokens	alphabetically	and	choosing	the	first	one.
This	is	the	reason	why,	in	the	sorting	value,	we	find	only	a	single	word	instead	of	the
whole	content	of	the	title	field.	If	you	would	like	to	see	how	Elasticsearch	behaves	when
using	different	fields	for	sorting,	you	can	try	fields	such	as	copies:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

	"query"	:	{	

		"terms"	:	{

			"title"	:	["crime",	"front",	"punishment"]

		}	

	},

	"sort"	:	[

		{	"copies"	:	"asc"	}

]

}'

In	general,	it	is	a	good	idea	to	have	a	not	analyzed	field	for	sorting.	We	can	use	fields	with

www.EBooksWorld.ir

multiple	values	for	sorting,	but,	in	most	cases,	it	doesn’t	make	much	sense	and	has	limited
usage.

As	an	example	of	using	two	different	fields,	one	for	sorting	and	another	for	searching,	let’s
change	our	title	field.	The	changed	title	field	definition	will	look	as	follows:

"title"	:	{

		"type":	"string",

		"fields":	{

				"sort":	{	"type"	:	"string",	"index":	"not_analyzed"	}

		}

}

After	changing	the	title	field	in	the	mappings	(we’ve	used	the	same	mappings	as	in
Chapter	3,	Searching	Your	Data)	and	re-indexing	the	data,	we	can	try	sorting	the
title.sort	field	and	see	whether	it	works.	To	do	this,	we	will	need	to	send	the	following
query:

{

		"query"	:	{	

				"match_all"	:	{	}

		},

		"sort"	:	[

				{"title.sort"	:	"asc"	}

]

}

Now,	it	works	properly.	As	you	can	see,	we	used	the	new	field,	the	title.sort	one.	We
set	it	as	not	to	be	analyzed,	so	there	is	a	single	token	for	that	field	in	the	index	of
Elasticsearch.

Sorting	mode
In	the	response	from	Elasticsearch,	every	document	contains	information	about	the	value
used	for	sorting.	For	example,	let’s	look	at	one	of	the	documents	returned	by	the	query	in
which	we	used	the	title	field	for	sorting:

				{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"1",

						"_score"	:	null,

						"_source"	:	{

								"title"	:	"All	Quiet	on	the	Western	Front",

								"otitle"	:	"Im	Westen	nichts	Neues",

								"author"	:	"Erich	Maria	Remarque",

								"year"	:	1929,

								"characters"	:	["Paul	Bäumer",	"Albert	Kropp",	"Haie	Westhus",	

"Fredrich	Müller",	"Stanislaus	Katczinsky",	"Tjaden"],

								"tags"	:	["novel"],

								"copies"	:	1,

								"available"	:	true,

								"section"	:	3

						},

						"sort"	:	["all"]

www.EBooksWorld.ir

				}

The	sorting	used	in	the	query	to	get	the	preceding	document,	was	as	follows:

"sort"	:	[

		{	"title"	:	"asc"	}

]

However,	because	we	are	sorting	on	an	analyzed	field,	which	contains	more	than	a	single
value,	the	sorting	definition	is	in	fact	equivalent	to	the	longer	form,	which	looks	as
follows:

"sort"	:	[

		{	"title"	:	{	"order"	:	"asc",	"mode"	:	"min"	}

]

mode	defines	which	token	should	be	used	for	comparison	when	sorting	on	a	field	which
has	more	than	one	value.	The	available	values	we	can	choose	from	are:

min:	Sorting	will	use	the	lowest	value	(or	the	first	alphabetical	value	on	the	text	based
fields)
max:	Sorting	will	use	the	highest	value	(or	the	last	alphabetical	value	on	the	text	based
fields)
avg:	Sorting	will	use	the	average	value
median:	Sorting	will	use	the	median	value
sum:	Sorting	will	use	the	sum	of	all	the	values	in	the	field

Note
The	modes	such	as	median,	avg,	and	sum	are	useful	for	numerical	multivalued	fields,
but	don’t	make	much	sense	when	it	comes	to	text	based	fields.

Note	that	sort,	in	request	and	response,	is	given	as	an	array.	This	suggests	that	we	can	use
several	different	orderings.	Elasticsearch	will	use	the	next	element	in	the	sorting	definition
list	to	determine	ordering	between	the	documents	that	have	the	same	value	of	the	previous
sorting	clause.	So,	if	we	have	the	same	value	in	the	title	field,	the	documents	will	be
sorted	by	the	next	field	that	we	specify.	For	example,	if	we	would	like	to	get	the
documents	that	have	the	most	copies	and	then	sort	by	the	title,	we	will	run	the	following
query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"terms"	:	{

						"title"	:	["crime",	"front",	"punishment"]

				}

		},

		"sort"	:	[

				{	"copies"	:	"desc"	},	{	"title"	:	"asc"	}

]

}'

www.EBooksWorld.ir

Specifying	behavior	for	missing	fields
What	about	when	some	of	the	documents	that	match	the	query	don’t	have	the	field	we
want	to	sort	on?	By	default,	documents	without	the	given	field	are	returned	first	in	the
case	of	ascending	order	and	last	in	the	case	of	descending	order.	However,	sometimes	this
is	not	exactly	what	we	want	to	achieve.

When	we	use	sorting	on	numeric	fields,	we	can	change	the	default	Elasticsearch	behavior
for	documents	with	missing	fields.	For	example,	let’s	take	a	look	at	the	following	query:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"match_all"	:	{	}

		},

		"sort"	:	[

				{	

						"section"	:	{

								"order"	:	"asc",

								"missing"	:	"_last"

						}

				}

]

}'

Note	the	extended	form	of	the	sort	section	of	our	query.	We’ve	added	the	missing
parameter	to	it.	By	setting	the	missing	parameter	to	_last,	Elasticsearch	will	place	the
documents	without	the	given	field	at	the	bottom	of	the	results	list.	Setting	the	missing
parameter	to	_first	will	result	in	Elasticsearch	placing	documents	without	the	given	field
at	the	top	of	the	results	list.	It	is	worth	mentioning	that	besides	the	_last	and	_first
values,	Elasticsearch	also	allows	us	to	use	any	number.	In	such	a	case,	a	document	without
a	defined	field	will	be	treated	as	the	document	with	this	given	value.

www.EBooksWorld.ir

Dynamic	criteria
As	we	mentioned	in	the	previous	section,	Elasticsearch	allows	us	to	sort	using	fields	that
have	multiple	values.	We	can	control	how	the	comparison	is	made	using	scripts.	We	do
that	by	showing	Elasticsearch	how	to	calculate	the	value	that	should	be	used	for	sorting.
Let’s	assume	that	we	want	to	sort	by	the	first	value	indexed	in	the	tags	field.	Let’s	take	a
look	at	the	following	example	query	(note	that	running	the	following	query	requires	the
script.inline	property	set	to	on	in	the	elasticsearch.yml	file):

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{	

				"match_all"	:	{	}

		},

		"sort"	:	{

				"_script"	:	{

						"script"	:	"doc[\"tags\"].values.size()	>	0	?	doc[\"tags\"].values[0]	

:	\"\u19999\"",

							"type"	:	"string",

							"order"	:	"asc"

					}

		}

}'

In	the	preceding	example,	we	replaced	every	nonexistent	value	with	the	Unicode	code	of	a
character	that	should	be	low	enough	in	the	list.	The	main	idea	of	this	code	is	to	check	if
our	array	contains	at	least	a	single	element.	If	it	does,	then	the	first	value	from	the	array	is
returned.	If	the	array	is	empty,	we	return	the	Unicode	character	that	should	be	placed	at
the	bottom	of	the	results	list.	Besides	the	script	parameter,	this	option	of	sorting	requires
us	to	specify	the	order	(ascending,	in	our	case)	and	type	parameters	that	will	be	used	for
the	comparison	(we	return	string	from	our	script).

www.EBooksWorld.ir

Calculate	scoring	when	sorting
By	default,	Elasticsearch	assumes	that	when	you	use	sorting,	the	score	is	completely
unimportant.	Usually	it	is	a	good	assumption;	why	do	additional	computations	when	the
importance	of	the	documents	is	given	by	the	sorting	formula.	Sometimes,	however,	you
want	to	know	how	good	the	document	is	in	relation	to	the	current	query,	even	if	the
documents	are	presented	in	a	different	order.	This	is	when	the	track_scores	parameter
should	be	used	and	set	to	true.	An	example	query	using	it	looks	as	follows:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"match_all"	:	{	}

		},

		"track_scores"	:	true,

		"sort"	:	[

				{	"title"	:	{	"order"	:	"asc"	}}

]

}'

The	preceding	query	calculates	the	score	for	every	document.	In	fact,	in	our	example,	the
score	is	boring	and	is	always	equal	to	1.0	because	of	the	match_all	query	which	treats	all
the	documents	as	equal.

www.EBooksWorld.ir

www.EBooksWorld.ir

Query	rewrite
When	debugging	your	queries,	it	is	very	valuable	to	know	how	all	the	queries	are
executed.	Because	of	that,	we	decided	to	include	the	section	on	how	query	rewrite	works
in	Elasticsearch,	why	it	is	used,	and	how	to	control	it.	If	you	have	ever	used	queries,	such
as	the	prefix	query	and	the	wildcard	query,	basically	any	query	that	is	said	to	be
multiterm	(a	query	that	is	built	of	multiple	terms),	you’ve	used	query	rewriting	even
though	you	may	not	have	known	about	it.	Elasticsearch	does	rewrite	for	performance
reasons.	The	rewrite	process	is	about	changing	the	original,	expensive	query	into	a	set	of
queries	that	are	far	less	expensive	from	an	Apache	Lucene	point	of	view,	thus	speeding	up
the	query	execution.

www.EBooksWorld.ir

Prefix	query	as	an	example
The	best	way	to	illustrate	how	the	rewrite	process	is	done	internally	is	to	look	at	an
example	and	see	which	terms	are	used	instead	of	the	original	query	term.	We	will	index
three	documents	to	our	library_it	index	by	using	the	following	commands:

curl	-XPOST	'localhost:9200/library_it/book/1'	-d	'{"title":	"Solr	4	

Cookbook"}'

curl	-XPOST	'localhost:9200/library_it/book/2'	-d	'{"title":	"Solr	3.1	

Cookbook"}'

curl	-XPOST	'localhost:9200/library_it/book/3'	-d	'{"title":	"Mastering	

Elasticsearch"}'

What	we	would	like	is	to	find	all	the	documents	that	start	with	the	letter	s.	Simple	as	that,
we	run	the	following	query	against	our	library_it	index:

curl	-XGET	'localhost:9200/library_it/_search?pretty'	-d	'{

	"query"	:	{

		"prefix"	:	{

			"title"	:	{

				"prefix"	:	"s",

				"rewrite"	:	"constant_score_boolean"

			}

		}

	}

}'

We’ve	used	a	simple	prefix	query;	we’ve	said	that	we	would	like	to	find	all	the
documents	with	the	letter	s	in	the	title	field.	We’ve	also	used	the	rewrite	property	to
specify	the	query	rewrite	method,	but	let’s	skip	it	for	now	as	we	will	discuss	the	possible
values	of	this	parameter	in	the	later	part	of	this	section.

As	the	response	to	the	previous	query,	we	get	the	following:

{

		"took"	:	13,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	2,

				"max_score"	:	1.0,

				"hits"	:	[{

						"_index"	:	"library_it",

						"_type"	:	"book",

						"_id"	:	"2",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"Solr	3.1	Cookbook"

						}

				},	{

						"_index"	:	"library_it",

www.EBooksWorld.ir

						"_type"	:	"book",

						"_id"	:	"1",

						"_score"	:	1.0,

						"_source"	:	{

								"title"	:	"Solr	4	Cookbook"

						}

				}]

		}

}

As	you	can	see,	in	response	we	got	the	two	documents	that	had	the	contents	of	the	title
field	starting	with	the	desired	character.	We	didn’t	specify	the	mappings	explicitly,	so	we
relied	on	Elasticsearch’s	ability	to	choose	the	mapping	type	for	us.	As	we	already	know,
for	the	text	field,	Elasticsearch	uses	the	default	analyzer.	This	means	that	the	terms	in	our
documents	will	be	lowercased	and,	because	of	that,	we	used	the	lowercased	letter	in	our
prefix	query	(remember	that	the	prefix	query	is	not	analyzed).

www.EBooksWorld.ir

Getting	back	to	Apache	Lucene
Now	let’s	take	a	step	back	and	look	at	Apache	Lucene	again.	If	you	recall	what	Lucene
inverted	index	is	built	from,	you	can	tell	that	it	contains	a	term,	count,	and	document
pointer	(if	you	don’t	recall,	refer	to	the	Full	text	searching	section	in	Chapter	1,	Getting
Started	with	Elasticsearch	Cluster).	So,	let’s	see	how	the	simplified	view	of	the	index	may
look	for	the	preceding	data	we’ve	put	to	the	library_it	index:

What	you	see	in	the	column	with	the	Term	text	is	quite	important.	If	you	look	at
Elasticsearch	and	Apache	Lucene	internals,	you	can	see	that	our	prefix	query	was
rewritten	to	the	following	Lucene	query:

ConstantScore(title:solr)

We	can	check	the	portions	of	the	rewrite	using	the	Elasticsearch	API.	First	of	all,	we	can
use	the	Explain	API	by	running	the	following	command:

curl	-XGET	'localhost:9200/library_it/book/1/_explain?pretty'	-d	'{

	"query"	:	{

		"prefix"	:	{

			"title"	:	{

				"prefix"	:	"s",

				"rewrite"	:	"constant_score_boolean"

			}

		}

	}

}'

The	result	will	be	as	follows:

{

		"_index"	:	"library_it",

		"_type"	:	"book",

		"_id"	:	"1",

		"matched"	:	true,

		"explanation"	:	{

www.EBooksWorld.ir

				"value"	:	1.0,

				"description"	:	"sum	of:",

				"details"	:	[{

						"value"	:	1.0,

						"description"	:	"ConstantScore(title:solr),	product	of:",

						"details"	:	[{

								"value"	:	1.0,

								"description"	:	"boost",

								"details"	:	[]

						},	{

								"value"	:	1.0,

								"description"	:	"queryNorm",

								"details"	:	[]

						}]

				},	{

						"value"	:	0.0,

						"description"	:	"match	on	required	clause,	product	of:",

						"details"	:	[{

								"value"	:	0.0,

								"description"	:	"#	clause",

								"details"	:	[]

						},	{

								"value"	:	1.0,

								"description"	:	"_type:book,	product	of:",

								"details"	:	[{

										"value"	:	1.0,

										"description"	:	"boost",

										"details"	:	[]

								},	{

										"value"	:	1.0,

										"description"	:	"queryNorm",

										"details"	:	[]

								}]

						}]

				}]

		}

}

We	can	see	that	Elasticsearch	used	a	constant	score	query	with	the	term	solr	against	the
title	field.

www.EBooksWorld.ir

Query	rewrite	properties
We	can	control	how	the	queries	are	rewritten	internally.	To	do	that,	we	place	the	rewrite
parameter	inside	the	JSON	object	responsible	for	the	actual	query.	For	example:

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

			"query"	:	{

				"prefix"	:	{

						"title"	:	"s",

						"rewrite"	:	"constant_score_boolean"

				}

		}

}'

The	rewrite	property	can	take	the	following	values:

scoring_boolean:	This	rewrite	method	translates	each	generated	term	into	a	Boolean
should	clause	in	the	Boolean	query.	This	rewrite	method	causes	the	score	to	be
calculated	for	each	document.	Because	of	that,	this	method	may	be	CPU	demanding.
Please	also	note	that,	for	queries	that	have	many	terms,	it	may	exceed	the	Boolean
query	limit,	which	is	set	to	1024.	The	default	Boolean	query	limit	can	be	changed	by
setting	the	index.query.bool.max_clause_count	property	in	the
elasticsearch.yml	file.	However,	remember	that	the	more	Boolean	queries
produced,	the	lower	the	query	performance	may	be.
constant_score:	This	rewrite	method	chooses	constant_score_boolean	or
constant_score_filter	depending	on	the	query	and	taking	performance	into
consideration.	This	is	also	the	default	behavior	when	the	rewrite	property	is	not	set	at
all.
constant_score_boolean:	This	rewrite	method	is	similar	to	the	scoring_boolean
rewrite	method	described	previously,	but	less	CPU	demanding	because	the	scoring	is
not	computed	and,	instead	of	that,	each	term	receives	a	score	equal	to	the	query	boost
(one	by	default,	and	which	can	be	set	using	the	boost	property).	Because	this	rewrite
method	also	results	in	Boolean	should	clauses	being	created,	similar	to	the
scoring_boolean	rewrite	method,	this	method	can	also	hit	the	maximum	Boolean
clauses	limit.
top_terms_N:	A	rewrite	method	that	translates	each	generated	term	into	a	Boolean
should	clause	in	a	Boolean	query	and	keeps	the	scores	as	computed	by	the	query.
However,	unlike	the	scoring_boolean	rewrite	method,	it	only	keeps	an	N	number	of
top	scoring	terms	to	avoid	hitting	the	maximum	Boolean	clauses	limit	and	increase
the	final	query	performance.
top_terms_blended_freqs_N:	A	rewrite	method	that	translates	each	term	into	a
Boolean	query	and	treat	the	terms	as	if	they	had	the	same	term	frequency.
top_terms_boost_N:	A	rewrite	method	similar	to	the	top_terms_N	one,	but	the
scores	are	not	computed.	Instead,	the	documents	are	given	a	score	equal	to	the	value
of	the	boost	property	(one	by	default).

For	example,	if	we	would	like	our	example	query	to	use	top_terms_N	with	N	equal	to	2,
our	query	would	look	like	this:

www.EBooksWorld.ir

curl	-XGET	'localhost:9200/library/book/_search?pretty'	-d	'{

		"query"	:	{

				"prefix"	:	{

					"title"	:	{

						"prefix"	:"s",

						"rewrite"	:	"top_terms_2"

					}

				}

		}

}'

If	you	look	at	the	results	returned	by	Elasticsearch,	you’ll	notice	that,	unlike	our	initial
query,	the	documents	were	given	a	score	different	than	the	default	1.0:

{

		"took"	:	4,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.15342641,

				"hits"	:	[{

						"_index"	:	"library",

						"_type"	:	"book",

						"_id"	:	"3",

						"_score"	:	0.15342641,

						"_source"	:	{

								"title"	:	"The	Complete	Sherlock	Holmes",

								"author"	:	"Arthur	Conan	Doyle",

								"year"	:	1936,

								"characters"	:	["Sherlock	Holmes",	"Dr.	Watson",	"G.	Lestrade"],

								"tags"	:	[],

								"copies"	:	0,

								"available"	:	false,

								"section"	:	12

						}

				}]

		}

}

The	score	is	different	than	the	default	1.0	because	we’ve	used	the	top_terms_N	rewrite
type	and	this	type	of	query	rewrite	keeps	the	score	for	N	top	scoring	terms.

Before	we	finish	the	Query	rewrite	section	of	this	chapter,	we	should	ask	ourselves	one
last	question:	when	to	use	which	rewrite	type?	The	answer	to	this	question	greatly	depends
on	your	use	case,	but,	to	summarize,	if	you	can	live	with	lower	precision	and	relevancy
(but	higher	performance),	you	can	go	for	the	top	N	rewrite	method.	If	you	need	high
precision	and	thus	more	relevant	queries	(but	lower	performance),	choose	the	Boolean
approach.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
The	chapter	you	just	finished	was	again	focused	on	querying.	We	used	filters	and	saw
what	highlighting	is	and	how	to	use	it.	We	learned	what	are	the	highlighter	types	and	how
they	can	help	us.	We	validated	our	queries	and	we	learned	how	Elasticsearch	can	help	us
when	it	comes	to	sorting	our	results.	Finally,	we	discussed	query	rewriting,	what	that
brings	us,	and	how	we	can	control	it.

In	the	next	chapter,	we	will	get	back	to	indexation	topic.	We	will	discuss	indexing
complex	JSON	objects	such	as	tree-like	structures	and	indexing	data	that	is	not	flat.	We
will	prepare	Elasticsearch	to	handle	relationships	between	documents	and	we	will	use	the
Elasticsearch	API	to	update	the	structure	of	our	indices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	5.	Extending	Your	Index
Structure
We	started	the	previous	chapter	by	learning	how	to	deal	with	revised	filtering	in
Elasticsearch	2.x	and	what	to	expect	from	it	now.	We	also	explored	highlighting	and	how
it	can	help	us	in	improving	the	users’	search	experience.	We	discovered	query	validation	in
Elasticsearch	and	learned	the	ways	of	data	sorting	in	Elasticsearch.	Finally,	we	discussed
query	rewriting	and	how	that	affects	our	queries.	By	the	end	of	this	chapter,	you	will	have
learned	the	following	topics:

Indexing	tree-like	structures
Indexing	data	that	is	not	flat
Handling	document	relationships	by	using	nested	object	and	parent–child	features
Modifying	index	structure	by	using	Elasticsearch	API

www.EBooksWorld.ir

Indexing	tree-like	structures
Trees	are	everywhere.	If	you	develop	an	e-commerce	shop	application,	your	products	will
probably	be	described	with	the	use	of	categories.	The	thing	about	categories	is	that	in	most
cases	they	are	hierarchical.	There	are	top	categories,	such	as	electronics,	music,	books,
and	so	on.	Each	of	the	top	level	categories	can	have	numerous	children	categories,	such	as
fiction	and	science,	and	those	can	get	even	deeper	into	science	fiction,	romance,	and	so	on.
If	you	look	at	the	file	system,	the	files	and	directories	are	arranged	in	tree-like	structures
as	well.	This	book	can	also	be	represented	as	a	tree:	chapters	contain	topics	and	topics	are
divided	into	subtopics.	So	the	data	around	us	is	arranged	into	tree-like	structures	and	as
you	can	imagine,	Elasticsearch	is	capable	of	indexing	tree-like	structures	so	that	we	can
represent	the	data	in	an	easier	manner.	Let’s	check	how	we	can	navigate	through	this	type
of	data	using	path_analyzer.

www.EBooksWorld.ir

Data	structure
To	begin	with,	let’s	create	a	simple	index	structure	by	using	the	following	command:

curl	-XPUT	'localhost:9200/path?pretty'	-d	'{

		"settings"	:	{

				"index"	:	{

						"analysis"	:	{

								"analyzer"	:	{

										"path_analyzer"	:	{	"tokenizer"	:	"path_hierarchy"	}

								}

						}

				}

		},

		"mappings"	:	{

				"category"	:	{

						"properties"	:	{

								"category"	:	{

										"type"	:	"string",

										"fields"	:	{

												"name"	:	{	"type"	:	"string",	"index"	:	"not_analyzed"	},

												"path"	:	{	"type"	:	"string",	"analyzer"	:	"path_analyzer",	

"store"	:	true	}

										}

								}

						}

				}

		}

}'

As	you	can	see,	we	have	a	single	type	created	–	the	category	type.	We	will	use	it	to	store
and	index	the	information	about	the	location	of	our	document	in	the	tree	structure.	The
idea	is	simple	–	we	can	show	the	location	of	the	document	as	a	path,	in	the	exact	same
manner	as	the	files	and	directories	are	presented	on	your	hard	disk	drive.	For	example,	in
an	automotive	shop,	we	can	have	/cars/passenger/sport,	/cars/passenger/camper,	or
/cars/delivery_truck/.	However,	to	achieve	that,	we	need	to	index	this	path	in	two
different	ways.	First	of	all,	we	will	use	an	not	analyzed	field	called	name,	to	store	and
index	paths	name	in	its	original	form.	We	will	also	use	a	field	called	path,	which	will	use
the	path_analyzer	analyzer	which	we’ve	defined	to	process	the	path	so	it	is	easier	to
search.

www.EBooksWorld.ir

Analysis
Now,	let’s	see	what	Elasticsearch	will	do	with	the	category	path	during	the	analysis
process.	To	see	this,	we	will	use	the	following	command	line,	which	uses	the	analysis	API
discussed	in	the	Understanding	the	explain	information	section	of	Chapter	6,	Make	Your
Search	Better:

curl	-XGET	'localhost:9200/path/_analyze?field=category.path&pretty'	-d	

'/cars/passenger/sport'

The	following	results	will	be	returned	by	Elasticsearch:

{

		"tokens"	:	[{

				"token"	:	"/cars",

				"start_offset"	:	0,

				"end_offset"	:	5,

				"type"	:	"word",

				"position"	:	0

		},	{

				"token"	:	"/cars/passenger",

				"start_offset"	:	0,

				"end_offset"	:	15,

				"type"	:	"word",

				"position"	:	0

		},	{

				"token"	:	"/cars/passenger/sport",

				"start_offset"	:	0,

				"end_offset"	:	21,

				"type"	:	"word",

				"position"	:	0

		}]

}

As	we	can	see,	our	category	path	/cars/passenger/sport	was	processed	by	Elasticsearch
and	divided	into	three	tokens.	Thanks	to	this,	we	can	simply	find	every	document	that
belongs	to	a	given	category	or	its	subcategories	using	the	term	filter.	For	the	example	to	be
complete,	let’s	index	a	simple	document	by	using	the	following	command:

curl	-XPUT	'localhost:9200/path/category/1'	-d	'{	"category"	:	

"/cars/passenger/sport"	}'

An	example	of	using	filters	is	as	follows:

curl	-XGET	'localhost:9200/path/_search?pretty'	-d	'{

		"query"	:	{

				"bool"	:	{

						"filter"	:	{

								"term"	:	{

										"category.path"	:	"/cars"

								}

						}

				}

		}

}'

www.EBooksWorld.ir

Note	that	we	also	have	the	original	value	indexed	in	the	category.name	field.	This	is
handy	when	we	want	to	find	documents	from	a	particular	path,	ignoring	the	documents
that	are	deeper	in	the	hierarchy.

www.EBooksWorld.ir

www.EBooksWorld.ir

Indexing	data	that	is	not	flat
Not	all	data	is	flat	like	the	examples	we	have	used	in	the	book	until	now.	Most	of	the	data
you	will	encounter	will	have	some	structure	and	nested	objects	inside	the	root	JSON
object.	Of	course,	if	we	are	building	our	system	that	Elasticsearch	will	be	a	part	of	and	we
are	in	control	of	all	the	pieces	of	it,	we	can	create	a	structure	that	is	convenient	for
Elasticsearch.	But	even	in	such	cases,	flat	data	is	not	always	an	option.	Thankfully,
Elasticsearch	allows	us	to	index	data	that	is	not	flat	and	this	section	will	show	us	how	to
do	that.

www.EBooksWorld.ir

Data
Let’s	assume	that	we	have	the	following	data	(we	store	it	in	the	file	called
structured_data.json):

{

		"author"	:	{

				"name"	:	{

						"firstName"	:	"Fyodor",

						"lastName"	:	"Dostoevsky"

				}

		},

		"isbn"	:	"123456789",

		"englishTitle"	:	"Crime	and	Punishment",

		"year"	:	1886,

		"characters"	:	[

				{

						"name"	:	"Raskolnikov"

				},	

				{

						"name"	:	"Sofia"

				}

],

		"copies"	:	0

}

As	you	can	see	the	data	is	not	flat	–	it	contains	arrays	and	nested	objects.	If	we	want	to
create	mappings	and	use	the	knowledge	that	we’ve	got	so	far,	we	will	have	to	flatten	the
data.	However,	as	we	already	said,	Elasticsearch	allows	some	degree	of	structure	and	we
should	be	able	to	create	mappings	that	will	work	for	the	preceding	example.

www.EBooksWorld.ir

Objects
The	preceding	example	data	shows	the	structured	JSON	file.	As	you	can	see	in	the
example,	our	root	object	has	some	additional,	simple	properties,	such	as	englishTitle,	isbn,
year,	and	copies.	These	will	be	indexed	as	normal	fields	in	the	index	and	we	already	know
how	to	deal	with	them	(we	discussed	that	in	the	Mappings	configuration	section	of
Chapter	2,	Indexing	Your	Data).	In	addition	to	that,	it	has	the	characters	array	type	and	the
author	object.	The	author	object	has	another	object	nested	within	it	–	the	name	object,
which	has	two	properties:	firstName	and	lastName.	So	as	you	can	see,	we	can	have
multiple	nested	objects	inside	each	other.

www.EBooksWorld.ir

Arrays
We	have	already	used	array	type	data,	but	we	didn’t	talk	about	it.	By	default,	all	the	fields
in	Lucene	and	thus	in	Elasticsearch	are	multivalued,	which	means	that	they	can	store
multiple	values.	In	order	to	send	such	fields	to	indexing	to	Elasticsearch,	we	use	the	JSON
array	type,	which	is	nested	within	the	opening	and	closing	square	brackets	[].	As	you	can
see	in	the	preceding	example,	we	used	the	array	type	for	the	characters	of	our	book.

www.EBooksWorld.ir

Mappings
Let’s	now	look	at	how	our	mappings	would	look	like	for	the	book	object	we	showed
earlier.	We	already	said	that	to	index	arrays	we	don’t	need	anything	special.	So,	in	our
case,	to	index	the	characters	data	we	will	need	to	add	fields	definition	similar	to	the
following	one:

"characters"	:	{

	"properties"	:	{

		"name"	:	{"type"	:	"string"}

	}

}

Nothing	strange!	We	just	nest	the	properties	section	inside	the	arrays	name	(which	is
characters	in	our	case)	and	we	define	the	fields	there.	As	the	result	of	the	preceding
mappings,	we	will	get	the	characters.name	multivalued	field	in	the	index.

We	do	similar	thing	for	our	author	object.	We	call	the	section	with	the	same	name	as	it	is
present	in	the	data.	We	have	the	author	object,	but	it	also	has	the	name	object	nested	in	it,
so	we	do	the	same	–	we	just	nest	another	object	inside	it.	So,	our	mappings	for	the	author
field	would	look	as	follows:

"author"	:	{

	"properties"	:	{

		"name"	:	{

			"properties"	:	{

				"firstName"	:	{"type"	:	"string"},

				"lastName"	:	{"type"	:	"string"}

			}

		}

	}

}

The	firstName	and	lastName	fields	appear	in	the	index	as	author.name.firstName	and
author.name.lastName.

The	rest	of	the	fields	are	simple	core	types,	so	I’ll	skip	discussing	them	as	they	were
already	discussed	in	the	Mappings	configuration	section	of	Chapter	2,	Indexing	Your
Data.

Final	mappings
So	our	final	mappings	file,	that	we’ve	called	structured_mapping.json,	looks	like	the
following:

{

	"book"	:	{

		"properties"	:	{

			"author"	:	{

				"type"	:	"object",

				"properties"	:	{

					"name"	:	{

						"type"	:	"object",

www.EBooksWorld.ir

						"properties"	:	{

							"firstName"	:	{"type"	:	"string"},

							"lastName"	:	{"type"	:	"string"}

						}

					}

				}

			},

			"isbn"	:	{"type"	:	"string"},

			"englishTitle"	:	{"type"	:	"string"},

			"year"	:	{"type"	:	"integer"},

			"characters"	:	{

				"properties"	:	{

					"name"	:	{"type"	:	"string"}

				}

			},

			"copies"	:	{"type"	:	"integer"}

		}

	}

}

Sending	the	mappings	to	Elasticsearch
Now	that	we	have	our	mappings	done,	we	would	like	to	test	if	all	the	work	we	did	actually
works.	This	time	we	will	use	a	slightly	different	technique	of	creating	an	index	and	putting
the	mappings.	First,	let’s	create	the	library	index	with	the	following	command	(you	need
to	delete	the	library	index	if	you	already	have	it):

curl	-XPUT	'localhost:9200/library'

Now,	let’s	send	our	mappings	for	the	book	type:

curl	-XPUT	'localhost:9200/library/book/_mapping'	-d	

@structured_mapping.json

Now	we	can	index	our	example	data:

curl	-XPOST	'localhost:9200/library/book/1'	-d	@structured_data.json

www.EBooksWorld.ir

To	be	or	not	to	be	dynamic
As	we	already	know,	Elasticsearch	is	schema-less,	which	means	that	it	can	index	data
without	the	need	of	creating	the	mappings	upfront.	What	Elasticsearch	will	do	in	the
background	when	a	new	field	is	encountered	in	the	data	is	a	mapping	update	–	it	will	try	to
guess	the	field	type	and	add	it	to	the	mappings.	The	dynamic	behavior	of	Elasticsearch	is
turned	on	by	default,	but	there	may	be	situations	where	you	may	want	to	turn	it	off	for
some	parts	of	your	index.	In	order	to	do	that,	one	should	add	the	dynamic	property	to	the
given	field	and	set	it	to	false.	This	should	be	done	on	the	same	level	of	nesting	as	the
type	property	for	the	object,	which	shouldn’t	be	dynamic.	For	example,	if	we	want	our
author	and	name	objects	to	not	be	dynamic,	we	should	modify	the	relevant	part	of	the
mappings	file	so	that	it	looks	as	follows:

"author"	:	{

	"type"	:	"object",

	"dynamic"	:	false,

	"properties"	:	{

		"name"	:	{

			"type"	:	"object",

			"dynamic"	:	false,

			"properties"	:	{

				"firstName"	:	{"type"	:	"string",	"index"	:	"analyzed"},

				"lastName"	:	{"type"	:	"string",	"index"	:	"analyzed"}

			}

		}

	}

}

However,	remember	that	in	order	to	add	new	fields	for	such	objects,	we	would	have	to
update	the	mappings.

Note
You	can	also	turn	off	the	dynamic	mappings	functionality	by	adding	the
index.mapper.dynamic	property	to	your	elasticsearch.yml	configuration	file	and
setting	it	to	false.

www.EBooksWorld.ir

Disabling	object	indexing
There	is	one	additional	thing	that	we	would	like	to	mention	when	it	comes	to	objects
handling	–	we	can	disable	indexing	a	particular	object	by	using	the	enabled	property	and
setting	it	to	false.	There	may	be	various	reasons	for	that,	such	as	not	wanting	a	field	to	be
indexed	or	not	wanting	a	whole	JSON	object	to	be	indexed.	For	example,	if	we	want	to
omit	an	object	called	information	from	our	author	object,	we	will	have	the	author	object
definition	look	as	follows:

"author"	:	{

	"type"	:	"object",

		"properties"	:	{

		"name"	:	{

			"type"	:	"object",

			"dynamic"	:	false,

			"properties"	:	{

				"firstName"	:	{"type"	:	"string",	"index"	:	"analyzed"},

				"lastName"	:	{"type"	:	"string",	"index"	:	"analyzed"},

				"information"	:	{"type"	:	"object",	"enabled"	:	false}

			}

		}

	}

}

The	dynamic	parameter	can	also	be	set	to	strict.	This	means	that	new	fields	won’t	be
added	into	the	document	when	they	appear	and	the	indexing	of	such	document	will	fail.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using	nested	objects
Nested	objects	can	come	in	handy	in	certain	situations.	Basically,	with	nested	objects
Elasticsearch	allows	us	to	connect	multiple	documents	together	–	one	main	document	and
multiple	dependent	ones.	The	main	document	and	the	nested	ones	are	indexed	together
and	they	are	placed	in	the	same	segment	of	the	index	(actually,	in	the	same	block	inside
the	segment,	near	each	other),	which	guarantees	the	best	performance	we	can	get	for	such
a	data	structure.	The	same	goes	for	changing	the	document;	unless	you	are	using	the
update	API,	you	need	to	index	the	parent	document	and	all	the	other	nested	ones	at	the
same	time.

Note
If	you	would	like	to	read	more	about	how	nested	objects	work	on	the	Apache	Lucene
level,	there	is	a	very	good	blog	post	written	by	Mike	McCandless	at
http://blog.mikemccandless.com/2012/01/searching-relational-content-with.html.

Now	let’s	get	on	with	our	example	use	case.	Imagine	that	we	have	a	shop	with	clothes	and
we	store	the	size	and	color	of	each	t-shirt.	Our	standard,	non-nested	mappings	will	look
like	this	(stored	in	cloth.json):

{

	"cloth"	:	{

		"properties"	:	{

			"name"	:	{"type"	:	"string"},

			"size"	:	{"type"	:	"string",	"index"	:	"not_analyzed"},

			"color"	:	{"type"	:	"string",	"index"	:	"not_analyzed"}

		}

	}

}

To	create	the	shop	index	without	cloth	mapping,	we	run	the	following	commands:

curl	-XPOST	'localhost:9200/shop'

curl	-XPUT	'localhost:9200/shop/cloth/_mapping'	-d	@cloth.json

Now	imagine	that	we	have	a	t-shirt	in	our	shop	that	we	only	have	in	XXL	size	in	red	and
in	XL	size	in	black.	So	our	example	document	indexation	command	will	look	as	follows:

curl	-XPOST	'localhost:9200/shop/cloth/1'	-d	'{

	"name"	:	"Test	shirt",

	"size"	:	["XXL",	"XL"],

	"color"	:	["red",	"black"]

}'

However,	there	is	a	problem	with	such	a	data	structure.	What	if	one	of	our	clients	searches
our	shop	in	order	to	find	the	XXL	t-shirt	in	black?	Let’s	check	that	by	running	the
following	query	(we	assume	that	we’ve	used	our	mappings	to	create	the	index	and	we’ve
indexed	our	example	document):

curl	-XGET	'localhost:9200/shop/cloth/_search?pretty=true'	-d	'{

		"query"	:	{

www.EBooksWorld.ir

http://blog.mikemccandless.com/2012/01/searching-relational-content-with.html

		"bool"	:	{

		"must"	:	[

				{

					"term"	:	{	"size"	:	"XXL"	}

				},

				{

					"term"	:	{	"color"	:	"black"	}

				}

]

		}

		}

}'

We	should	get	no	results,	right?	But	in	fact	Elasticsearch	returned	the	following	document:

{

		(…)

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.4339554,

				"hits"	:	[{

						"_index"	:	"shop",

						"_type"	:	"cloth",

						"_id"	:	"1",

						"_score"	:	0.4339554,

						"_source"	:	{

								"name"	:	"Test	shirt",

								"size"	:	["XXL",	"XL"],

								"color"	:	["red",	"black"]

						}

				}]

		}

}

This	is	because	the	document	was	matched	–	we	have	the	values	we	are	searching	for	in
the	size	field	and	in	the	color	field.	Of	course,	this	is	not	what	we	would	like	to	get.

So,	let’s	modify	our	mappings	to	use	the	nested	objects	to	separate	color	and	size	to
different	nested	documents.	The	final	mapping	looks	as	follows	(we	store	these	mappings
in	the	cloth_nested.json	file):

{

	"cloth"	:	{

		"properties"	:	{

			"name"	:	{"type"	:	"string",	"index"	:	"analyzed"},

			"variation"	:	{

				"type"	:	"nested",

				"properties"	:	{

					"size"	:	{"type"	:	"string",	"index"	:	"not_analyzed"},

					"color"	:	{"type"	:	"string",	"index"	:	"not_analyzed"}

				}

			}

		}

	}

}

www.EBooksWorld.ir

Now,	we	will	create	a	second	index	called	shop_nested	using	our	modified	mappings	by
running	the	following	commands:

curl	-XPOST	'localhost:9200/shop_nested'

curl	-XPUT	'localhost:9200/shop_nested/cloth/_mapping'	-d	

@cloth_nested.json

As	you	can	see,	we’ve	introduced	a	new	object	inside	our	cloth	type	–	variation	one,
which	is	a	nested	one	(the	type	property	set	to	nested).	It	basically	says	that	we	will	want
to	index	the	nested	documents.	Now,	let’s	modify	our	document.	We	will	add	the	variation
object	to	it	and	that	object	will	store	the	objects	with	two	properties	–	size	and	color.	So
the	index	command	for	our	modified	example	product	will	look	like	the	following:

curl	-XPOST	'localhost:9200/shop_nested/cloth/1'	-d	'{

		"name"	:	"Test	shirt",

		"variation"	:	[

		{	"size"	:	"XXL",	"color"	:	"red"	},

		{	"size"	:	"XL",	"color"	:	"black"	}

]

}'

We’ve	structured	the	document	so	that	each	size	and	its	matching	color	is	a	separate
document.	However,	if	you	run	our	previous	query,	it	won’t	return	any	documents.	This	is
because	in	order	to	query	for	nested	documents,	we	need	to	use	a	specialized	query.	So
now	our	query	looks	as	follows:

curl	-XGET	'localhost:9200/shop_nested/cloth/_search?pretty=true'	-d	'{

		"query"	:	{

		"nested"	:	{

			"path"	:	"variation",

			"query"	:	{

				"bool"	:	{

					"must"	:	[

						{	"term"	:	{	"variation.size"	:	"XXL"	}	},

						{	"term"	:	{	"variation.color"	:	"black"	}	}

]

				}

				}

		}

		}

}'

And	now,	the	preceding	query	will	not	return	the	indexed	document,	because	we	don’t
have	a	nested	document	that	has	the	size	equal	to	XXL	and	color	black.

Let’s	get	back	to	the	query	for	a	second	to	discuss	it	briefly.	As	you	can	see,	we	used	the
nested	query	in	order	to	search	in	the	nested	documents.	The	path	property	specifies	the
name	of	the	nested	object	(yes,	we	can	have	multiple	of	them).	We	just	included	a	standard
query	section	under	the	nested	type.	Also	note	that	we	specified	the	full	path	for	the	field
names	in	the	nested	objects,	which	is	handy	when	you	have	multilevel	nesting,	which	is
also	possible.

www.EBooksWorld.ir

Scoring	and	nested	queries
There	is	one	additional	property	when	it	comes	to	handling	nested	documents	during
query.	In	addition	to	the	path	property,	there	is	the	score_mode	property,	which	allows	us
to	define	how	the	scoring	is	calculated	from	the	nested	queries.	Elasticsearch	allows	us	to
set	the	score_mode	property	to	one	of	the	following	values:

avg:	This	is	the	default	value.	Using	it	for	the	score_mode	property	will	result	in
Elasticsearch	taking	the	average	value	calculated	from	the	scores	of	the	defined
nested	queries.	Calculated	average	will	be	included	in	the	score	of	the	main	query.
sum:	Using	this	value	for	the	score_mode	property	will	result	in	Elasticsearch	taking	a
sum	of	the	scores	for	each	nested	query	and	including	it	in	the	score	of	the	main
query.
min:	Using	this	value	for	the	score_mode	property	will	result	in	Elasticsearch	taking
the	score	of	the	minimum	scoring	nested	query	and	including	it	in	the	score	of	the
main	query.
max:	Using	this	value	for	the	score_mode	property	will	result	in	Elasticsearch	taking
the	score	of	the	maximum	scoring	nested	query	and	including	it	in	the	score	of	the
main	query.
none:	Using	this	value	for	the	score_mode	property	will	result	in	no	score	being	taken
from	the	nested	query.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using	the	parent-child	relationship
In	the	previous	section,	we	discussed	using	Elasticsearch	to	index	the	nested	documents
along	with	the	parent	one.	However,	even	though	the	nested	documents	are	indexed	as
separate	documents	in	the	index,	we	can’t	change	a	single	nested	document	(unless	we	use
the	update	API).	Elasticsearch	allows	us	to	have	a	real	parent-child	relationship	and	we
will	look	at	it	in	the	following	section.

www.EBooksWorld.ir

Index	structure	and	data	indexing
Let’s	use	the	same	example	that	we	used	when	discussing	the	nested	documents	–	the
hypothetical	cloth	store.	What	we	would	like	to	have	is	the	ability	to	update	the	sizes	and
colors	without	the	need	to	index	the	whole	parent	document	after	each	change.	We	will	see
how	to	achieve	that	using	Elasticsearch	parent-child	functionality.

Child	mappings
First	we	have	to	create	a	child	index	definition.	To	create	child	mappings,	we	need	to	add
the	_parent	property	with	the	name	of	the	parent	type,	which	will	be	cloth	in	our	case.	In
the	children	documents,	we	want	to	have	the	size	and	the	color	of	the	cloth.	So,	the
command	that	will	create	the	shop	index	and	the	variation	type	will	look	as	follows:

curl	-XPOST	'localhost:9200/shop'

curl	-XPUT	'localhost:9200/shop/variation/_mapping'	-d	'{

		"variation"	:	{

				"_parent"	:	{	"type"	:	"cloth"	},

				"properties"	:	{

						"size"	:	{	"type"	:	"string",	"index"	:	"not_analyzed"	},

						"color"	:	{	"type"	:	"string",	"index"	:	"not_analyzed"	}

				}

			}

}'

And	that’s	all.	You	don’t	need	to	specify	which	field	will	be	used	to	connect	the	child
documents	to	the	parent	ones.	By	default,	Elasticsearch	will	use	the	documents’	unique
identifier	for	that.	If	you	remember	from	the	previous	chapters,	the	information	about	a
unique	identifier	is	present	in	the	index	by	default.

Parent	mappings
The	only	field	we	need	to	have	in	our	parent	document	is	name.	We	don’t	need	anything
more	than	that.	So,	in	order	to	create	our	cloth	type	in	the	shop	index,	we	will	run	the
following	commands:

curl	-XPUT	'localhost:9200/shop/cloth/_mapping'	-d	'{

		"cloth"	:	{

				"properties"	:	{

						"name"	:	{	"type"	:	"string"	}

				}

		}

}'

The	parent	document
Now	we	are	going	to	index	our	parent	document.	As	we	want	to	store	the	information
about	the	size	and	the	color	in	the	child	documents,	the	only	thing	we	need	to	have	in	the
parent	documents	is	the	name.	Of	course,	there	is	one	thing	to	remember	–	our	parent
documents	need	to	be	of	type	cloth,	because	of	the	_parent	property	value	in	the	child
mappings.	The	indexing	command	for	our	parent	document	is	very	simple	and	looks	as
follows:

www.EBooksWorld.ir

curl	-XPOST	'localhost:9200/shop/cloth/1'	-d	'{

		"name"	:	"Test	shirt"

}'

If	you	look	at	the	preceding	command,	you’ll	notice	that	our	document	will	be	given	the
identifier	1.

Child	documents
To	index	the	child	documents,	we	need	to	provide	information	about	the	parent	document
with	the	use	of	the	parent	request	parameter.	The	value	of	the	parent	parameter	should
point	to	the	identifier	of	the	parent	document.	So,	to	index	two	child	documents	to	our
parent	document,	we	need	to	run	the	following	command	lines:

curl	-XPOST	'localhost:9200/shop/variation/1000?parent=1'	-d	'{

		"color"	:	"red",

		"size"	:	"XXL"

}'

curl	-XPOST	'localhost:9200/shop/variation/1001?parent=1'	-d	'{

		"color"	:	"black",

		"size"	:	"XL"

}'

And	that’s	all.	We’ve	indexed	two	additional	documents,	which	are	of	our	variation	type,
but	we’ve	specified	that	our	documents	have	a	parent,	the	document	with	an	identifier	of
1.

www.EBooksWorld.ir

Querying
We’ve	indexed	our	data	and	now	we	need	to	use	appropriate	queries	to	match	the
documents	with	the	data	stored	in	their	children.	This	is	because,	by	default,	Elasticsearch
searches	on	the	documents	without	looking	at	the	parent-child	relations.	For	example,	the
following	query	will	match	all	three	documents	that	we’ve	indexed	(two	children	and	one
parent):

curl	-XGET	'localhost:9200/shop/_search?q=*&pretty'

This	is	not	what	we	would	like	to	achieve,	at	least	in	most	cases.	Usually,	we	are
interested	in	parent	documents	that	have	children	matching	the	query.	Of	course
Elasticsearch	provides	such	functionalities	with	specialized	types	of	queries.

Note
The	thing	to	remember	though	is	that,	when	running	queries	against	parents,	the	children
documents	won’t	be	returned,	and	vice	versa.

Querying	data	in	the	child	documents
Imagine	that	we	want	to	get	clothes	that	are	of	the	XXL	size	and	are	red.	As	you	recall,	the
size	and	the	color	of	the	cloth	are	indexed	in	the	child	documents,	so	we	need	a
specialized	has_child	query,	to	check	which	parent	documents	have	children	with	the
desired	size	and	color.	So	an	example	query	that	matches	our	requirement	looks	as
follows:

curl	-XGET	'localhost:9200/shop/_search?pretty'	-d	'{

		"query"	:	{

				"has_child"	:	{

						"type"	:	"variation",

						"query"	:	{

								"bool"	:	{

										"must"	:	[

												{	"term"	:	{	"size"	:	"XXL"	}	},

												{	"term"	:	{	"color"	:	"red"	}	}

]

								}

						}

				}

		}

}'

The	query	is	quite	simple;	it	is	of	the	has_child	type,	which	tells	Elasticsearch	that	we
want	to	search	in	the	child	documents.	In	order	to	specify	which	type	of	children	we	are
interested	in,	we	specify	the	type	property	with	the	name	of	the	child	type.	The	query	is
provided	using	the	query	property.	We’ve	used	a	standard	bool	query,	which	we’ve
already	discussed.	The	result	of	the	query	will	contain	only	those	parent	documents	that
have	children	matching	our	bool	query.	In	our	case,	the	single	document	returned	looks	as
follows:

{

www.EBooksWorld.ir

		"took"	:	16,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	1.0,

				"hits"	:	[{

						"_index"	:	"shop",

						"_type"	:	"cloth",

						"_id"	:	"1",

						"_score"	:	1.0,

						"_source"	:	{

								"name"	:	"Test	shirt"

						}

				}]

		}

}

The	has_child	query	allows	us	to	provide	additional	parameters	to	control	its	behavior.
Every	parent	document	found	may	be	connected	with	one	or	more	child	documents.	This
means	that	every	child	document	can	influence	the	resulting	score.	By	default,	the	query
doesn’t	care	about	the	children	documents,	how	many	of	them	matched,	and	what	is	their
content	–	it	only	matters	if	they	match	the	query	or	not.	This	can	be	changed	by	using	the
score_mode	parameter,	which	controls	the	score	calculation	of	the	has_child	query.	The
values	this	parameter	can	take	are:

none:	The	default	one,	the	score	generated	by	the	relation	is	1.0
min:	The	score	is	taken	from	the	lowest	scored	child
max:	The	score	is	taken	from	the	highest	scored	child
sum:	The	score	is	calculated	as	the	sum	of	the	child	scores
avg:	The	score	is	taken	as	the	average	of	the	child	scores

Let’s	see	an	example:

curl	-XGET	'localhost:9200/shop/_search?pretty'	-d	'{

		"query"	:	{

				"has_child"	:	{

						"type"	:	"variation",

						"score_mode"	:	"sum",

						"query"	:	{

								"bool"	:	{

										"must"	:	[

												{	"term"	:	{	"size"	:	"XXL"	}	},

												{	"term"	:	{	"color"	:	"red"	}	}

]

								}

						}

				}

		}

}'

www.EBooksWorld.ir

We	used	sum	as	score_mode	which	results	in	children	contributing	to	the	final	score	of	the
parent	document	–	the	contribution	is	the	sum	of	scores	of	every	child	document	matching
the	query.

And	finally,	we	can	limit	the	number	of	children	documents	that	need	to	be	matched;	we
can	specify	both	the	maximum	number	of	the	children	documents	allowed	to	be	matched
(the	max_children	property)	and	the	minimum	number	of	children	documents	(the
min_children	property)	that	need	to	be	matched.	The	query	illustrating	the	usage	of	these
parameters	is	as	follows:

curl	-XGET	'localhost:9200/shop/_search?pretty'	-d	'{

		"query"	:	{

				"has_child"	:	{

						"type"	:	"variation",

						"min_children"	:	1,

						"max_children"	:	3,

						"query"	:	{

								"bool"	:	{

										"must"	:	[

												{	"term"	:	{	"size"	:	"XXL"	}	},

												{	"term"	:	{	"color"	:	"red"	}	}

]

								}

						}

				}

		}

}'

Querying	data	in	the	parent	documents
Sometimes,	we	are	not	interested	in	the	parent	documents	but	in	the	children	documents.
If	you	would	like	to	return	the	child	documents	that	matches	a	given	data	in	the	parent
document,	Elasticsearch	has	a	query	for	us	–	the	has_parent	query.	It	is	similar	to	the
has_child	query;	however,	instead	of	the	type	property,	we	specify	the	parent_type
property	with	the	value	of	the	parent	document	type.	For	example,	the	following	query
will	return	both	the	child	documents	that	we’ve	indexed,	but	not	the	parent	document:

curl	-XGET	'localhost:9200/shop/_search?pretty'	-d	'{

		"query"	:	{

				"has_parent"	:	{

						"parent_type"	:	"cloth",

						"query"	:	{

								"term"	:	{	"name"	:	"test"	}

						}

				}

		}

}'

The	response	from	Elasticsearch	will	be	similar	to	the	following	one:

{

		"took"	:	3,

		"timed_out"	:	false,

		"_shards"	:	{

www.EBooksWorld.ir

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	2,

				"max_score"	:	1.0,

				"hits"	:	[{

						"_index"	:	"shop",

						"_type"	:	"variation",

						"_id"	:	"1000",

						"_score"	:	1.0,

						"_routing"	:	"1",

						"_parent"	:	"1",

						"_source"	:	{

								"color"	:	"red",

								"size"	:	"XXL"

						}

				},	{

						"_index"	:	"shop",

						"_type"	:	"variation",

						"_id"	:	"1001",

						"_score"	:	1.0,

						"_routing"	:	"1",

						"_parent"	:	"1",

						"_source"	:	{

								"color"	:	"black",

								"size"	:	"XL"

						}

				}]

		}

}

Similar	to	the	has_child	query,	the	has_parent	query	also	gives	us	the	possibility	of
tuning	the	score	calculation	of	the	query.	In	this	case,	score_mode	has	only	two	options:
none,	the	default	one	where	the	score	calculated	by	the	query	is	equal	to	1.0,	and	score,
which	calculates	the	score	of	the	document	on	the	basis	of	the	parent	document	contents.
An	example	that	uses	score_mode	in	the	has_parent	query	looks	as	follows:

curl	-XGET	'localhost:9200/shop/_search?pretty'	-d	'{

		"query"	:	{

				"has_parent"	:	{

						"parent_type"	:	"cloth",

						"score_mode"	:	"score",

						"query"	:	{

								"term"	:	{	"name"	:	"test"	}

						}

				}

		}

}'

The	one	difference	with	the	previous	example	is	score_mode.	If	you	check	the	results	of
these	queries,	you’ll	notice	only	a	single	difference.	The	score	of	all	the	documents	from
the	first	example	is	1.0,	while	the	score	for	the	results	returned	by	the	preceding	query	is
equal	to	0.8784157.	In	this	case,	all	the	documents	found	have	the	same	score,	because

www.EBooksWorld.ir

they	have	a	common	parent	document.

www.EBooksWorld.ir

Performance	considerations
When	using	Elasticsearch	parent-child	functionality,	you	have	to	be	aware	of	the
performance	impact	that	it	has.	The	first	thing	you	need	to	remember	is	that	the	parent	and
the	child	documents	need	to	be	stored	in	the	same	shard	in	order	for	the	queries	to	work.	If
you	happen	to	have	a	high	number	of	children	for	a	single	parent,	you	may	end	up	with
shards	not	having	a	similar	number	of	documents.	Because	of	that,	your	query
performance	can	be	lower	on	one	of	the	nodes,	resulting	in	the	whole	query	being	slower.
Also,	remember	that	parent-child	queries	will	be	slower	than	ones	that	run	against	the
documents	that	don’t	have	a	relationship	between	them.	There	is	a	way	of	speeding	up
joins	for	the	parent-child	queries	at	the	cost	of	memory	by	eagerly	loading	the	so	called
global	ordinals;	however,	we	will	discuss	that	method	in	the	Elasticsearch	caches	section
of	Chapter	9,	Elasticsearch	Cluster	in	Detail.

Finally,	the	first	query	will	preload	and	cache	the	document	identifiers	using	the	doc
values.	This	takes	time.	In	order	to	improve	the	performance	of	initial	queries	that	use	the
parent-child	relationship,	Warmer	API	can	be	used.	You	can	find	more	information	about
how	to	add	warming	queries	to	Elasticsearch	in	the	Warming	up	section	of	Chapter	10,
Administrating	Your	Cluster.

www.EBooksWorld.ir

www.EBooksWorld.ir

Modifying	your	index	structure	with	the
update	API
In	the	previous	chapters,	we	discussed	how	to	create	index	mappings	and	index	the	data.
But	what	if	you	already	have	the	mappings	created,	and	data	indexed,	but	you	want	to
modify	the	structure	of	the	index?	Of	course	one	could	say	that	we	could	just	create	a	new
index	with	new	mappings,	but	that	is	not	always	a	possibility,	especially	in	a	production
environment.	This	is	possible	to	some	extent.	For	example,	by	default,	if	we	index	a
document	with	a	new	field,	Elasticsearch	will	add	that	field	to	the	index	structure.	Let’s
now	look	at	how	to	modify	the	index	structure	manually.

Note
For	situations	where	mapping	changes	are	needed	and	they	are	not	possible	because	of
conflicts	with	the	current	index	structure,	it	is	very	good	to	use	aliases	–	both	read	and
write	ones.	We	will	discuss	aliasing	in	the	Index	aliasing	section	of	Chapter	10,
Administrating	Your	Cluster.

www.EBooksWorld.ir

The	mappings
Let’s	assume	that	we	have	the	following	mappings	for	our	users	index	stored	in	the
user.json	file:

{

	"user"	:	{

		"properties"	:	{

			"name"	:	{"type"	:	"string"}

		}

	}

}

As	you	can	see,	it	is	very	simple.	It	just	has	a	single	property	that	will	hold	the	user	name.
Now	let’s	create	an	index	called	users	and	let’s	use	the	preceding	mappings	to	create	our
type.	To	do	that,	we	will	run	the	following	commands:

curl	-XPOST	'localhost:9200/users'

curl	-XPUT	'localhost:9200/users/user/_mapping'	-d	@user.json

If	everything	goes	well,	we	will	have	our	index	(called	users)	and	type	(called	user)
created.	So	now	let’s	try	to	add	a	new	field	to	the	mappings.

Adding	a	new	field	to	the	existing	index
In	order	to	illustrate	how	to	add	a	new	field	to	our	mappings,	we	assume	that	we	want	to
add	a	phone	number	to	the	data	stored	for	each	user.	In	order	to	do	that,	we	need	to	send
an	HTTP	PUT	command	to	the	/index_name/type_name/_mapping	REST	end	point	with
the	proper	body	that	will	include	our	new	field.	For	example,	to	add	the	mentioned	phone
field,	we	will	run	the	following	command:

curl	-XPUT	'http://localhost:9200/users/user/_mapping'	-d	'{

	"user"	:	{

		"properties"	:	{

			"phone"	:	{"type"	:	"string",	index	:	"not_analyzed"}

		}

	}

}'

Similar	to	the	previous	command	we	ran,	if	everything	goes	well,	we	should	have	a	new
field	added	to	our	index	structure.

Note
Of	course,	Elasticsearch	won’t	reindex	our	data	or	populate	the	newly	added	field
automatically.	It	will	just	alter	the	mappings	held	by	the	master	node	and	populate	the
mappings	to	all	the	other	nodes	in	the	cluster	and	that’s	all.	Data	reindexation	must	be
done	by	us	or	the	application	that	indexes	the	data	in	our	environment.	Until	then,	the	old
documents	won’t	have	the	newly	added	field.	This	is	crucial	to	remember.	If	you	don’t
have	the	original	documents,	you	can	use	the	_source	field	to	get	the	original	data	from
Elasticsearch	and	index	them	once	again.

To	ensure	everything	is	okay,	we	can	run	the	GET	HTTP	request	to	the	_mapping	REST	end

www.EBooksWorld.ir

point	and	Elasticsearch	will	return	the	appropriate	mappings.	An	example	command	to	get
the	mappings	for	our	user	type	in	the	users	index	will	look	as	follows:

curl	-XGET	'localhost:9200/users/user/_mapping?pretty'

Modifying	fields	of	an	existing	index
Our	users	index	structure	contains	two	fields:	name	and	phone.	Let’s	imagine	that	we
indexed	some	data	but	after	a	while	we	decided	that	we	want	to	search	on	the	phone	field
and	we	would	like	to	change	its	index	property	from	not_analyzed	to	analyzed.	Because
we	already	know	how	to	alter	the	index	structure,	we	will	run	the	following	command:

curl	-XPUT	'http://localhost:9200/users/user/_mapping?pretty'	-d	'{

	"user"	:	{

		"properties"	:	{

			"phone"	:	{"type"	:	"string",	"store"	:	"yes",	"index"	:	"analyzed"}

		}

	}

}'

What	Elasticsearch	will	return	is	a	response	indicating	an	error,	which	looks	as	follows:

{

		"error"	:	{

				"root_cause"	:	[{

						"type"	:	"illegal_argument_exception",

						"reason"	:	"Mapper	for	[phone]	conflicts	with	existing	mapping	in	

other	types:\n[mapper	[phone]	has	different	[index]	values,	mapper	[phone]	

has	different	[store]	values,	mapper	[phone]	has	different	[omit_norms]	

values,	cannot	change	from	disable	to	enabled,	mapper	[phone]	has	different	

[analyzer]]"

				}],

				"type"	:	"illegal_argument_exception",

				"reason"	:	"Mapper	for	[phone]	conflicts	with	existing	mapping	in	other	

types:\n[mapper	[phone]	has	different	[index]	values,	mapper	[phone]	has	

different	[store]	values,	mapper	[phone]	has	different	[omit_norms]	values,	

cannot	change	from	disable	to	enabled,	mapper	[phone]	has	different	

[analyzer]]"

		},

		"status"	:	400

}

This	is	because	we	can’t	change	a	field	that	was	set	to	be	not_analyzed	to	one	that	is
analyzed.	And	not	only	that,	in	most	cases	you	won’t	be	able	to	update	the	fields
mapping.	This	is	a	good	thing,	because	if	we	would	be	allowed	to	change	such	settings,
we	would	confuse	Elasticsearch	and	Lucene.	Imagine	that	we	already	have	many
documents	with	the	phone	field	set	to	not_analyzed	and	we	are	allowed	to	change	the
mappings	to	analyzed.	Elasticsearch	wouldn’t	change	the	data	that	was	already	indexed,
but	the	queries	that	are	analyzed	would	be	processed	with	a	different	logic	and	thus	you
wouldn’t	be	able	to	properly	find	your	data.

However,	to	give	you	some	examples	of	what	is	prohibited	and	what	is	not,	we	decided	to
mention	some	of	the	operations	for	both	the	cases.	For	example,	the	following
modification	can	be	safely	made:

www.EBooksWorld.ir

Adding	a	new	type	definition
Adding	a	new	field
Adding	a	new	analyzer

The	following	modifications	are	prohibited	or	will	not	work:

Enabling	norms	for	a	field
Changing	a	field	to	be	stored	or	not	stored
Changing	the	type	of	the	field	(for	example,	from	text	to	numeric)
Changing	a	stored	field	to	not	stored	and	vice	versa
Changing	the	value	of	indexed	property
Changing	the	analyzer	of	an	already	indexed	document

Remember	that	the	preceding	mentioned	examples	of	allowed	and	not	allowed	updates	do
not	mention	all	the	possibilities	of	update	API	usage	and	you	have	to	try	for	yourself	if	the
update	you	are	trying	to	do	will	work.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
The	chapter	you	just	finished	reading	concentrated	on	indexing	operations	and	handling
data	that	is	not	flat	or	have	relationships	between	the	documents.	We	started	with	indexing
tree-like	structures	and	objects	in	Elasticsearch.	We	also	used	nested	objects	and	learned
when	they	can	be	used.	We	also	used	parent-child	functionality	and	we	learned	how	this
approach	is	different	compared	to	nested	documents.	Finally,	we	modified	our	indices
structure	with	a	call	of	an	API	and	learned	when	this	is	possible.

In	the	next	chapter,	we	will	get	back	to	querying	related	topics.	We	will	learn	how	Lucene
scoring	works,	how	to	use	scripts	in	Elasticsearch,	and	how	to	handle	multilingual	data.
We	will	affect	scoring	using	boosts	and	we	will	use	synonyms	to	improve	users’	search
results.	Finally,	we	will	look	at	what	we	can	do	to	see	how	our	documents	were	scored.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	6.	Make	Your	Search	Better
In	the	previous	chapter,	we	were	focused	on	indexing	operations;	we	learned	how	to
handle	the	structured	data.	We	started	with	indexing	tree-like	structures	and	JSON	objects.
We	used	nested	objects	and	indexed	documents	using	parent-child	functionality.	Finally,	at
the	end	of	the	chapter,	we	used	Elasticsearch	API	to	modify	our	indices	structures.	By	the
end	of	this	chapter,	you	will	have	learned	the	following	topics:

Understanding	how	Apache	Lucene	scoring	works
Using	scripting
Handling	multilingual	data
Using	boosting	to	affect	document	scoring
Using	synonyms
Understanding	how	your	documents	were	scored

www.EBooksWorld.ir

Introduction	to	Apache	Lucene	scoring
When	talking	about	queries	and	their	relevance,	we	can’t	omit	the	information	about	the
scoring	and	where	it	comes	from.	But	what	is	a	score?	The	score	is	a	property	that
describes	the	relevance	of	a	document	in	the	context	of	a	query.	In	the	following	section,
we	will	talk	about	the	default	Apache	Lucene	scoring	mechanism	–	the	TF/IDF	algorithm
and	how	it	affects	the	returned	document.

Note
The	TF/IDF	is	not	the	only	available	algorithm	exposed	by	Elasticsearch.	For	more
information	about	the	available	models,	refer	to	the	Available	similarity	models	section	in
Chapter	2,	Indexing	Your	Data.	You	can	also	refer	to	the	books	Mastering	Elasticsearch
and	Mastering	Elasticsearch	Second	Edition	published	by	Packt	Publishing.

www.EBooksWorld.ir

When	a	document	is	matched
When	a	document	is	returned	by	Lucene,	it	means	that	it	matched	the	query	we	sent	to	it.
In	most	cases,	each	of	the	resulting	documents	in	the	response	is	given	a	score.	The	higher
the	score,	the	more	relevant	the	document	is	from	the	search	engine’s	point	of	view,	of
course,	in	the	context	of	a	given	query.	This	means	that	the	score	factor	calculated	for	the
same	document	on	two	different	queries	will	be	different.	Because	of	that,	comparing
scores	between	queries	usually	doesn’t	make	much	sense.	However,	let’s	get	back	to	the
scoring.	To	calculate	the	score	property	for	a	document,	multiple	factors	are	taken	into
account:

document	boost:	The	boost	value	given	for	a	document	during	indexing.
field	boost:	The	boost	value	given	for	a	field	during	querying	and	indexing.
coord:	The	coordination	factor	that	is	based	on	the	number	of	terms	the	document
has.	It	is	responsible	for	giving	more	value	to	the	documents	that	contain	more	search
terms	compared	to	the	other	documents.
inverse	document	frequency:	The	term	based	factor	that	tells	the	scoring	formula
how	rarefor	score	property	calculation:inverse	document	frequency”	the	given	term
is.	The	higher	the	inverse	document	frequency	the	less	common	the	term	is.
length	norm:	The	field	based	factor	for	normalization	based	on	the	number	of	terms
the	given	field	contains.	The	longer	the	field,	the	smaller	boost	this	factor	will	give.	It
basically	means	that	the	shorter	documents	will	be	favored.
term	frequency:	The	term	based	factor	describing	how	many	times	the	given	term
occurs	in	a	document.	The	higher	the	term	frequency,	the	higher	the	score	of	the
document	will	be.
query	norm:	The	query	based	normalization	factor	that	is	calculated	as	the	sum	of	the
squared	weight	of	each	of	the	query	terms.	Query	norm	is	used	to	allow	score
comparison	between	queries,	which	we	said	is	not	always	easy	or	possible.

www.EBooksWorld.ir

Default	scoring	formula
The	practical	formula	for	the	TF/IDF	algorithm	looks	as	follows:

To	adjust	your	query	relevance,	you	don’t	need	to	remember	the	details	of	the	equation,
but	it	is	very	important	to	know	how	it	works	–	to	at	least	be	aware	that	there	is	an
equation	you	can	analyze.	We	can	see	that	the	score	factor	for	the	document	is	a	function
of	query	q	and	document	d.	There	are	also	two	factors	that	are	not	dependent	directly	on
query	terms:	coord	and	queryNorm.	These	two	elements	of	the	formula	are	multiplied	by
the	sum	calculated	for	each	term	in	the	query.	The	sum	on	the	other	hand	is	calculated	by
multiplying	the	term	frequency	for	the	given	term,	its	inverse	document	frequency,	term
boost,	and	the	norm,	which	is	the	length	norm	we	discussed	previously.

Note
Note	that	the	preceding	formula	is	a	practical	one.	You	can	find	more	information	about
the	conceptual	formula	in	Lucene	Javadocs	at
http://lucene.apache.org/core/5_4_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

The	good	thing	about	the	preceding	rules	is	that	you	don’t	need	to	remember	all	of	that.
What	you	should	be	aware	of	is	what	matters	when	it	comes	to	the	document	score.
Basically,	there	are	a	few	rules	which	come	from	the	preceding	mentioned	equation:

The	rarer	the	matched	term	is,	the	higher	the	score	the	document	will	have
The	shorter	the	document	fields	are	(the	less	terms	they	have),	the	higher	the	score
the	document	will	have
The	higher	the	boost	for	the	fields	is,	the	higher	the	score	the	document	will	have

As	we	can	see,	Lucene	gives	a	higher	score	for	the	documents	that	have	many	query	terms
matched	and	have	shorter	fields	(less	terms	indexed)	that	were	used	for	matching,	and	it
also	favors	rarer	terms	instead	of	the	common	ones	(of	course,	the	ones	that	matched).

www.EBooksWorld.ir

http://lucene.apache.org/core/5_4_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

Relevancy	matters
In	most	cases,	we	want	to	get	the	best	matching	documents.	However,	the	most	relevant
documents	don’t	always	mean	the	same	as	the	best	matches.	Some	use	cases	define	very
strict	rules	on	why	a	given	document	should	be	higher	on	the	results	list.	For	example,	one
could	say	that,	in	addition	to	the	document	being	a	perfect	match	in	terms	of	TF/IDF
similarity,	we	have	paying	customers	to	consider.	Depending	on	the	customer	plan,	we
want	to	give	more	importance	to	such	documents.	In	such	cases,	we	could	want	the
documents	for	the	customers	that	pay	the	most	to	be	on	top	of	the	search	results.	Of
course,	this	is	not	relevant	in	TF/IDF.

The	other	example	is	yellow	pages,	where	customers	pay	for	more	information	describing
the	document.	Such	large	documents	may	not	be	the	most	relevant	ones	according	to
TF/IDF,	so	you	may	want	to	adjust	the	scoring	if	you	are	working	with	such	data.

These	are	very	simple	examples	and	Elasticsearch	queries	can	become	really	complicated.
We	will	talk	about	such	queries	in	the	Influencing	scores	with	query	boosts	section	in	this
chapter.

When	working	on	search	relevance,	you	should	always	remember	that	it	is	not	a	onetime
process.	Your	data	will	change	with	time	and	your	queries	will	need	to	be	adjusted.	In
most	cases,	tuning	the	query	relevancy	will	be	constant	work.	You	will	need	to	react	to
your	business	rules	and	needs,	to	how	the	users	behave,	and	so	on.	It	is	very	important	to
remember	that	this	process	is	not	a	single	time	one	about	which	you	can	forget.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scripting	capabilities	of	Elasticsearch
Elasticsearch	has	a	few	functionalities	where	scripts	can	be	used.	You’ve	already	seen
examples	such	as	updating	documents	and	searching.	We	will	also	use	the	scripting
capabilities	of	Elasticsearch	when	we	discuss	aggregations.	Even	though	scripts	seem	to
be	a	rather	advanced	topic,	we	will	look	at	the	possibilities	offered	by	Elasticsearch.	That’s
because	scripts	are	priceless	in	certain	situations.

Elasticsearch	can	use	several	languages	for	scripting.	When	not	explicitly	declared,	it
assumes	that	Groovy	(www.groovy-lang.org/)	is	used.	Other	languages	available	out	of	the
box	are	Lucene	expression	language	and	Mustache	(https://mustache.github.io/).	Of
course	we	can	use	plugins,	which	will	make	Elasticsearch	understand	additional	scripting
languages,	such	as	JavaScript,	MVEL,	and	Python.	The	thing	worth	mentioning	is	that
independent	from	the	scripting	language	that	we	choose,	Elasticsearch	exposes	objects
that	we	can	use	in	our	scripts.	Let’s	start	by	briefly	looking	at	what	type	of	information	we
are	allowed	to	use	in	our	scripts.

www.EBooksWorld.ir

http://www.groovy-lang.org/
https://mustache.github.io/

Objects	available	during	script	execution
During	different	operations,	Elasticsearch	allows	us	to	use	different	objects	in	our	scripts.
To	develop	a	script	that	fits	our	use	case,	we	should	be	familiar	with	these	objects.

For	example,	during	a	search	operation,	the	following	objects	are	available:

_doc	(also	available	as	doc):	This	is	an	instance	of	the
org.elasticsearch.search.lookup.LeafDocLookup	object.	It	gives	us	access	to	the
current	document	found	with	the	calculated	score	and	field	values.
_source:	This	is	an	instance	of	the
org.elasticsearch.search.lookup.SourceLookup	object.	It	provides	access	to	the
source	of	the	current	document	and	the	values	defined	in	the	source.
_fields:	This	is	an	instance	of	the
org.elasticsearch.search.lookup.LeafFieldsLookup	object.	It	can	be	used	to
access	the	values	of	the	document	fields.

On	the	other	hand,	during	a	document	update	operation,	the	preceding	mentioned
variables	are	not	accessible.	Elasticsearch	exposes	only	the	ctx	object	with	the	_source
property,	which	provides	access	to	the	document	currently	processed	in	the	update
request.

As	we	have	previously	seen,	several	methods	are	mentioned	in	the	context	of	document
fields	and	their	values.	Let’s	now	look	at	examples	of	how	to	get	the	value	for	a	particular
field	using	the	previously	mentioned	object	available	during	the	search	operation.	In	the
brackets	after	the	script	piece,	you	can	see	what	Elasticsearch	will	return	for	one	of	our
example	documents	from	the	library	index	(we	will	use	the	document	with	identifier	4):

_doc.title.value	(and)
_source.title	(crime	and	punishment)
_fields.title.value	(null)

A	bit	confusing,	isn’t	it?	During	indexing,	the	original	document	is	by	default	stored	in	the
_source	field.	Of	course,	by	default,	all	the	fields	are	present	in	that	_source	field.	In
addition	to	that,	the	document	is	parsed	and	every	field	may	be	stored	in	an	index	if	it	is
marked	as	stored	(that	is,	if	the	store	property	is	set	to	true;	otherwise,	by	default,	the
fields	are	not	stored).	Finally,	the	field	value	may	be	configured	as	indexed.	This	means
that	the	field	value	is	analyzed	and	placed	in	the	index.	To	sum	up,	one	field	may	land	in
Elasticsearch	index	in	the	following	ways:

As	a	part	of	the	_source	document
As	a	stored	and	unparsed	original	value
As	an	indexed	value	that	is	processed	by	an	analyzer

In	scripts,	we	have	access	to	all	these	field	representations.	The	only	exception	is	the
update	operation,	which,	as	we’ve	mentioned	before,	gives	us	only	access	to	document
_source	as	part	of	the	ctx	variable.	You	may	wonder	which	version	you	should	use.	Well,
if	you	want	access	to	the	processed	form,	the	answer	will	be	simple	–	use	the	_doc	object.
What	about	_source	and	_fields?	In	most	cases,	_source	is	a	good	choice.	It	is	usually

www.EBooksWorld.ir

fast	and	needs	less	disk	operations	than	reading	the	original	field	values	from	the	index.
This	is	especially	true	when	you	need	to	read	the	values	of	multiple	fields	in	your	scripts;
fetching	a	single	_source	field	is	faster	than	fetching	multiple	independent	fields	from	the
index.

www.EBooksWorld.ir

Script	types
Elasticsearch	allows	us	to	use	scripts	in	three	different	ways:

Inline	scripts:	The	source	of	the	script	is	directly	defined	in	the	query
In	file	scripts:	The	source	is	defined	in	the	external	file	placed	in	the	Elasticsearch
config/scripts	directory
As	a	document	in	the	dedicated	index:	The	source	of	the	script	is	defined	as	a
document	in	a	special	index	available	by	using	the	/_scripts	API	end-point

Choosing	the	way	to	define	scripts	depends	on	several	factors.	If	you	have	scripts	which
you	will	use	in	many	different	queries,	the	file	or	the	dedicated	index	seem	to	be	the	best
solutions.	The	scripts	in	file	is	probably	less	convenient,	but	it	is	preferred	from	the
security	point	of	view;	they	can’t	be	overwritten	and	injected	into	your	query	causing	a
security	breach.

In	file	scripts
This	is	the	only	way	to	allow	dynamic	scripting	if	we	don’t	want	to	enable	query	dynamic
scripting	in	Elasticsearch.	The	idea	is	that	every	script	used	by	the	queries	is	defined	in	its
own	file	placed	in	the	config/scripts	directory.	We	will	now	look	at	this	method	of	using
scripts.	Let’s	create	an	example	file	called	tag_sort.groovy	and	let’s	place	it	in	the
config/scripts	directory	of	our	Elasticsearch	instance	(or	instances	if	we	run	a	cluster).
The	content	of	the	mentioned	file	should	look	like	this:

_doc.tags.values.size()	>	0	?	_doc.tags.values[0]	:	'\u19999'

After	few	seconds,	Elasticsearch	will	automatically	load	a	new	file.	You	should	see
something	like	the	following	in	the	Elasticsearch	logs:

[2015-08-30	13:14:33,005][INFO][script]	[Alex	Wilder]	

compiling	script	file	[/Users/negativ/Developer/ES/es-

current/config/scripts/tag_sort.groovy]

Note
If	you	have	multi-node	cluster,	you	have	to	make	sure	that	the	script	is	available	on	every
node.

Now	we	are	ready	to	use	this	script	in	our	queries.	You	may	remember	that	we	used
exactly	the	same	script	in	the	Sorting	data	section	in	Chapter	4,	Extending	Your	Querying
Knowledge.	Now	the	modified	query	that	uses	our	script	stored	in	the	file	looks	as
follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"match_all"	:	{	}

		},

		"sort"	:	{

				"_script"	:	{

						"script"	:	{

								"file"	:	"tag_sort"

www.EBooksWorld.ir

							},

							"type"	:	"string",

							"order"	:	"asc"

					}

		}

}'

We	will	return	to	this,	but	first,	the	next	possible	way	of	defining	inline	scripts.

Inline	scripts
Inline	scripts	are	a	more	convenient	way	of	using	scripts,	especially	for	constantly
changing	queries	and	for	ad-hoc	queries.	The	main	drawback	of	such	an	approach	is
security.	If	we	allow	users	to	run	any	kind	of	query,	including	scripts,	we	can	expose	our
Elasticsearch	instance	to	attackers.	Such	attacks	can	execute	arbitrary	code	on	the	server
running	Elasticsearch	with	rights	equal	to	the	ones	given	to	the	user	running	Elasticsearch.
In	the	worst	case	scenario,	the	attacker	could	use	security	holes	to	gain	super	user	rights.
This	is	the	reason	why	inline	scripts	are	disabled	by	default.	After	careful	consideration,
you	can	enable	them	by	adding:

script.inline:	on

Add	the	preceding	command	line	to	the	elasticsearch.yml	file.

After	allowing	the	inline	script	to	be	executed,	we	can	run	a	query	that	looks	as	follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"match_all"	:	{	}

		},

		"sort"	:	{

				"_script"	:	{

						"script"	:	{

								"inline"	:	"_doc.tags.values.size()	>	0	?	_doc.tags.values[0]	:	

\"\u19999\""

							},

							"type"	:	"string",

							"order"	:	"asc"

					}

		}

}'

Indexed	scripts
The	last	option	for	defining	scripts	is	storing	them	in	the	dedicated	Elasticsearch	index.
For	the	same	security	reasons,	dynamic	execution	of	the	indexed	scripts	is	by	default
disabled.	To	enable	the	indexed	scripts,	we	have	to	add	a	similar	configuration	option	to
the	one	we	added	to	be	able	to	use	the	inline	scripts.	We	need	to	add	the	following	line	to
the	elasticsearch.yml	file:

script.indexed:	on

After	adding	the	preceding	property	to	all	the	nodes	and	restarting	the	cluster,	we	will	be
ready	to	start	using	the	indexed	scripts.	Elasticsearch	provides	an	additional,	dedicated

www.EBooksWorld.ir

endpoint	for	this	purpose.	Let’s	store	our	script:

curl	-XPOST	'localhost:9200/_scripts/groovy/tag_sort'	-d	'{

		"script"	:		"_doc.tags.values.size()	>	0	?	_doc.tags.values[0]	:	

\"\u19999\""

}'

The	script	is	ready,	but	let’s	discuss	what	we	just	did.	We	sent	an	HTTP	POST	request	to
the	special	_scripts	REST	end-point.	We	also	specified	the	language	of	the	script
(groovy	in	our	case)	and	the	name	of	the	script	(tag_sort).	The	body	of	the	request	is	the
script	itself.

We	can	now	move	on	to	the	query,	which	looks	as	follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"match_all"	:	{	}

		},

		"sort"	:	{

				"_script"	:	{

						"script"	:	{

								"id"	:	"tag_sort"

							},

							"type"	:	"string",

							"order"	:	"asc"

					}

		}

}'

As	we	see,	the	query	is	practically	identical	to	the	query	used	with	the	script	defined	in	a
file.	The	only	difference	is	that	we	provided	the	identifier	of	the	script	using	the	id
parameter	instead	of	providing	the	file	name.

www.EBooksWorld.ir

Querying	with	scripts
If	we	look	at	any	request	made	to	Elasticsearch	that	uses	scripts,	we	will	notice	some
similar	properties,	which	are	as	follows:

script:	This	property	wraps	the	script	definition.
inline:	This	property	holds	the	code	of	the	script	itself.
id:	This	property	defines	the	identifier	of	the	indexed	script.
file:	The	filename	of	the	script	without	the	extension.
lang:	This	property	defines	the	language	of	the	script.	If	it	is	omitted,	Elasticsearch
assumes	groovy.
params:	This	object	contains	the	parameters	and	their	values.	Every	defined
parameter	can	be	used	inside	the	script	by	specifying	that	parameter’s	name.	The
parameters	allow	us	to	write	cleaner	code	which	will	be	executed	in	a	more	efficient
manner.	Scripts	using	the	parameters	are	executed	faster	than	code	with	embedded
constants	because	of	caching.

www.EBooksWorld.ir

Scripting	with	parameters
As	our	scripts	become	more	and	more	complicated,	the	need	for	creating	multiple,	almost
identical	scripts	can	appear.	These	scripts	usually	differ	in	the	values	used,	with	the	logic
behind	them	being	exactly	the	same.	In	our	simple	example,	we	used	a	hardcoded	value
used	to	mark	documents	with	empty	tags	list.	Let’s	change	this	to	allow	definition	of	the
hardcoded	value.	Let’s	use	in	file	script	definition	and	create	a
tag_sort_with_param.groovy	file	with	the	following	contents:

_doc.tags.values.size()	>	0	?	_doc.tags.values[0]	:	tvalue

The	only	change	we’ve	made	is	the	introduction	of	the	parameter	named	tvalue,	which
can	be	set	in	the	query	in	the	following	way:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"match_all"	:	{	}

		},

		"sort"	:	{

				"_script"	:	{

						"script"	:	{

								"file"	:	"tag_sort_with_param",

								"params"	:	{

										"tvalue"	:	"000"

								}

							},

							"type"	:	"string",

							"order"	:	"asc"

					}

		}

}'

The	params	section	defines	all	the	script	parameters.	In	our	simple	example,	we’ve	only
used	a	single	parameter,	but	of	course	we	can	have	multiple	parameters	in	a	single	query.

www.EBooksWorld.ir

Script	languages
As	we	already	said,	the	default	language	for	scripting	is	Groovy.	However,	we	are	not
limited	to	only	a	single	scripting	language	when	using	Elasticsearch.	In	fact,	if	you	would
like	to,	you	can	even	use	Java	to	write	your	scripts.	In	addition	to	that,	the	community
behind	Elasticsearch	provides	additional	languages	support	as	plugins.	So	if	you	are
willing	to	install	plugins,	you	can	extend	the	list	of	scripting	languages	that	Elasticsearch
supports	even	further.	You	may	wonder	why	you	would	even	consider	using	a	scripting
language	other	than	the	default	Groovy.	The	first	reason	is	your	own	preferences.	If	you
are	a	python	enthusiast,	you	are	probably	now	thinking	about	how	to	use	python	for	your
Elasticsearch	scripts.	The	other	reason	could	be	security.	When	we	talked	about	the	inline
scripts,	we	told	you	that	they	are	turned	off	by	default.	This	is	not	exactly	true	for	all	the
scripting	languages	available	out	of	the	box.	The	inline	scripts	are	disabled	by	default
when	using	Groovy,	but	you	can	use	Lucene	expressions	and	Mustache	without	any
issues.	This	is	because	those	languages	are	sandboxed,	which	means	that	the	security
sensitive	functions	are	turned	off.	And	of	course,	the	last	factor	when	choosing	a	language
is	performance.	Theoretically,	the	native	scripts	(in	Java)	should	have	better	performance
than	others,	but	you	should	remember	that	the	difference	can	be	insignificant.	You	should
always	consider	the	cost	of	development	and	measure	performance.

www.EBooksWorld.ir

Using	other	than	embedded	languages
Using	Groovy	for	scripting	is	a	simple	and	sufficient	solution	for	most	use	cases.
However,	you	may	have	a	different	preference	and	you	may	like	to	use	something
different,	such	as	JavaScript,	Python,	or	Mvel.	Before	using	other	languages,	we	must
install	an	appropriate	plugin.	You	can	read	more	details	about	plugins	in	the	Elasticsearch
plugins	section	of	Chapter	9,	Elasticsearch	Cluster.	For	now,	we’ll	just	run	the	following
command	from	the	Elasticsearch	directory:

bin/plugin	install	lang-javascript

The	preceding	command	will	install	a	plugin	that	will	allow	the	usage	of	JavaScript	as	the
scripting	language.	The	only	change	we	should	make	in	the	request	is	to	add	the	additional
information	about	the	language	we	are	using	for	scripting	and,	of	course,	modify	the	script
itself	to	correctly	use	the	new	language.	Look	at	the	following	example:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"match_all"	:	{	}

		},

		"sort"	:	{

				"_script"	:	{

						"script"	:	{

								"inline"	:	"_doc.tags.values.length	>	0	?	_doc.tags.values[0]	

:\"\u19999\";",

								"lang"	:	"javascript"

						},

						"type"	:	"string",

						"order"	:	"asc"

				}

		}

}'

As	you	can	see,	we’ve	used	JavaScript	for	scripting	instead	of	the	default	Groovy.	The
lang	parameter	informs	Elasticsearch	about	the	language	being	used.

www.EBooksWorld.ir

Using	native	code
In	case	the	scripts	are	too	slow	or	you	don’t	like	scripting	languages,	Elasticsearch	allows
you	to	write	Java	classes	and	use	them	instead	of	scripts.	There	are	two	possible	ways	of
adding	native	scripts:	adding	classes	defining	scripts	to	Elasticsearch	classpath	or	adding
script	as	a	functionality	provided	by	a	plugin.	We	will	describe	this	second	solution	as	it	is
more	elegant.

The	factory	implementation
We	need	to	implement	at	least	two	classes	to	create	a	new	native	script.	The	first	one	is	a
factory	for	our	script.	For	now,	let’s	focus	on	it.	The	following	sample	code	illustrates	the
factory	for	our	script:

package	pl.solr.elasticsearch.examples.scripts;

import	java.util.Map;

import	org.elasticsearch.common.Nullable;

import	org.elasticsearch.script.ExecutableScript;

import	org.elasticsearch.script.NativeScriptFactory;

public	class	HashCodeSortNativeScriptFactory	implements	NativeScriptFactory	

{

				@Override

				public	ExecutableScript	newScript(@Nullable	Map<String,	Object>	params)	

{

								return	new	HashCodeSortScript(params);

				}

		@Override

		public	boolean	needsScores()	{

				return	false;

		}

}

The	essential	parts	are	highlighted	in	the	code	snippet.	This	class	should	implement	the
org.elasticsearch.script.NativeScriptFactory	class.	The	interface	forces	us	to
implement	two	methods.	The	newScript()	method	takes	the	parameters	defined	in	the
API	call	and	returns	an	instance	of	our	script.	Finally,	needsScores()	informs
Elasticsearch	if	we	want	to	use	scoring	and	whether	it	should	be	calculated.

Implementing	the	native	script
Now	let’s	look	at	the	implementation	of	our	script.	The	idea	is	simple	–	our	script	will	be
used	for	sorting.	Documents	will	be	ordered	by	the	hashCode()	value	of	the	chosen	field.
The	documents	without	a	value	in	the	defined	field	will	be	first	on	the	results	list.	We
know	the	logic	doesn’t	make	too	much	sense,	but	it	is	good	for	presentation	as	it	is	simple.
The	source	code	for	our	native	script	looks	as	follows:

www.EBooksWorld.ir

package	pl.solr.elasticsearch.examples.scripts;

import	java.util.Map;

import	org.elasticsearch.script.AbstractSearchScript;

public	class	HashCodeSortScript	extends	AbstractSearchScript	{

		private	String	field	=	"name";

		public	HashCodeSortScript(Map<String,	Object>	params)	{

				if	(params	!=	null	&&	params.containsKey("field"))	{

						this.field	=	params.get("field").toString();

				}

		}

		@Override

		public	Object	run()	{

				Object	value	=	source().get(field);

				if	(value	!=	null)	{

						return	value.hashCode();

				}

				return	0;

		}

}

First	of	all,	our	class	inherits	from	the
org.elasticsearch.script.AbstractSearchScript	class	and	implements	the	run()
method.	This	is	where	we	get	the	appropriate	values	from	the	current	document,	process	it
according	to	our	strange	logic,	and	return	the	result.	You	may	notice	the	source()	call.	It
is	exactly	the	same	_source	parameter	that	we	used	when	dealing	with	non-native	scripts.
The	doc()	and	fields()	methods	are	also	available	and	they	follow	the	same	logic	we
described	earlier.

The	thing	worth	looking	at	is	how	we’ve	used	the	parameters.	We	assume	that	a	user	can
put	the	field	parameter,	telling	us	which	document	field	will	be	used	for	manipulation.
We	also	provide	a	default	value	for	this	parameter.

The	plugin	definition
We	said	that	we	will	install	our	script	as	a	part	of	a	plugin.	This	is	why	we	need	additional
files.	The	first	file	is	the	plugin	initialization	class	where	we	tell	Elasticsearch	about	our
new	script:

package	pl.solr.elasticsearch.examples.scripts;

import	org.elasticsearch.plugins.Plugin;

import	org.elasticsearch.script.ScriptModule;

public	class	ScriptPlugin	extends	Plugin	{

		@Override

		public	String	description()	{

				return	"The	example	of	native	sort	script";

www.EBooksWorld.ir

		}

		@Override

		public	String	name()	{

				return	"naive-sort-plugin";

		}

		public	void	onModule(final	ScriptModule	module)	{

				module.registerScript("native_sort",	

HashCodeSortNativeScriptFactory.class);

		}

}

The	implementation	is	easy.	The	description()	and	name()	methods	are	only	for
information,	so	let’s	focus	on	the	onModule()	method.	In	our	case,	we	need	access	to	the
script	module	–	Elasticsearch	service	with	scripts	and	scripting	languages.	This	is	why	we
define	onModule()	with	one	ScriptModule	argument.	Thanks	to	Elasticsearch	magic,	we
can	use	this	module	and	register	our	script	so	it	can	be	found	by	the	engine.	We	have	used
the	registerScript()	method,	which	takes	the	script	name	and	the	previously	defined
factory	class.

The	second	needed	file	is	a	plugin	descriptor	file:	plugin-descriptor.properties.	It
defines	the	constants	used	by	the	Elasticsearch	plugin	subsystem.	Without	more	thinking,
let’s	look	at	the	contents	of	this	file:

jvm=true

classname=pl.solr.elasticsearch.examples.scripts.ScriptPlugin

elasticsearch.version=2.2.0

version=0.0.1-SNAPSHOT

name=native_script

description=Example	Native	Scripts

java.version=1.7

The	appropriate	lines	have	the	following	meaning:

jvm:	tells	Elasticsearch	that	our	file	contains	Java	code
classname:	describes	the	main	class	with	plugin	definition
elasticsearch.version	and	java.version:	tells	us	about	the	Elasticsearch	version
that	is	supported	by	the	plugin	and	the	Java	version	that	is	needed
name	and	description:	Informative	name	and	short	description	of	our	plugin

And	that’s	it.	We	have	all	the	files	needed	to	run	our	script.	Please	note	that	you	can	have
more	than	a	single	script	packed	as	a	single	plugin.

Installing	the	plugin
Now	it’s	time	to	install	our	native	script	embedded	in	the	plugin.	After	packing	the
compiled	classes	as	a	JAR	archive,	we	should	put	it	in	the	Elasticsearch	plugins/native-
script	directory.	The	native-script	part	is	a	root	directory	for	our	plugin	and	you	may
name	it	as	you	wish.	In	this	directory	you	also	need	the	prepared	plugin-
descriptor.properties	file.	This	makes	our	plugin	visible	to	Elasicsearch.

www.EBooksWorld.ir

Running	the	script
After	restarting	Elasticsearch	(or	the	whole	cluster	if	you	run	more	than	a	single	node),	we
can	start	sending	the	queries	that	use	our	native	script.	For	example,	we	will	send	a	query
that	uses	our	previously	indexed	data	from	the	library	index.	This	example	query	looks
as	follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"match_all"	:	{	}

		},

		"sort"	:	{

				"_script"	:	{

						"script"	:	{

								"script"	:	"native_sort",

								"lang"	:	"native",

								"params"	:	{

										"field"	:	"otitle"

								}

						},

						"type"	:	"string",

						"order"	:	"asc"

				}

		}

}'

Note	the	params	part	of	the	query.	In	this	call,	we	want	to	sort	on	the	otitle	field.	We
provide	the	script	name	native_sort	and	the	script	language	native.	This	is	required.	If
everything	goes	well,	we	should	see	our	results	sorted	by	our	custom	sort	logic.	If	we	look
at	the	response	from	Elasticsearch,	we	will	see	that	the	documents	without	the	otitle
field	are	at	the	first	few	positions	of	the	results	list	and	their	sort	value	is	0.

www.EBooksWorld.ir

www.EBooksWorld.ir

Searching	content	in	different	languages
Until	now,	when	discussing	language	analysis,	we’ve	talked	mostly	about	theory.	We
didn’t	see	an	example	regarding	language	analysis,	handling	multiple	languages	that	our
data	can	consist	of,	and	so	on.	Now	this	will	change,	as	this	section	is	dedicated	to
information	about	how	we	can	handle	data	in	multiple	languages.

www.EBooksWorld.ir

Handling	languages	differently
As	you	already	know,	Elasticsearch	allows	us	to	choose	different	analyzers	for	our	data.
We	can	have	our	data	divided	on	the	basis	of	whitespaces,	or	have	them	lowercased,	and
so	on.	This	can	usually	be	done	regardless	of	the	language	–the	same	tokenization	on	the
basis	of	whitespaces	will	work	for	English,	German,	and	Polish,	although	it	won’t	work
for	Chinese.	However,	what	if	you	want	to	find	documents	that	contain	words	such	as	cat
and	cats	by	only	sending	the	word	cat	to	Elasticsearch?	This	is	where	language	analysis
comes	into	play	with	stemming	algorithms	for	different	languages,	which	allow	the
analyzed	words	to	be	reduced	to	their	root	forms.	And	now	the	worst	part	–	we	can’t	use
one	general	stemming	algorithm	for	all	the	languages	in	the	world;	we	have	to	choose	one
appropriate	language.	The	following	sections	in	the	chapter	will	help	you	with	some	parts
of	the	language	analysis	process.

www.EBooksWorld.ir

Handling	multiple	languages
There	are	a	few	ways	of	handling	multiple	languages	in	Elasticsearch	and	all	of	them	have
some	pros	and	cons.	We	won’t	be	discussing	everything,	but	just	for	the	purpose	of	giving
you	an	idea,	a	few	of	those	methods	are	as	follows:

Storing	documents	in	different	languages	as	different	types
Storing	documents	in	different	languages	in	separate	indices
Storing	language	data	in	different	fields	of	a	single	document

For	the	purpose	of	the	book,	we	will	focus	on	a	single	method	–	the	one	that	allows	storing
documents	in	different	languages	in	a	single	index.	We	will	focus	on	a	problem	where	we
have	a	single	type	of	document,	but	each	document	may	come	from	anywhere	in	the	world
and	thus	can	be	written	in	multiple	languages.	Also,	we	would	like	to	enable	our	users	to
use	all	the	analysis	capabilities,	such	as	stemming	and	stop	words	for	different	languages,
not	only	for	English.

Note
Note	that	the	stemming	algorithms	perform	differently	for	different	languages,	both	in
terms	of	analysis	performance	and	the	resulting	terms.	For	example,	English	stemmers	are
very	good,	but	you	can	run	into	issues	with	European	languages,	such	as	German.

www.EBooksWorld.ir

Detecting	the	language	of	the	document
Before	we	continue	with	showing	you	how	to	solve	our	problem	with	handling	multiple
languages	in	Elasticsearch,	we	would	like	to	tell	you	about	one	additional	thing,	that	is
language	detection.	There	are	situations	where	you	just	don’t	know	what	language	your
document	or	query	are	in.	In	such	cases,	language	detection	libraries	may	be	a	good
choice,	especially	when	using	Java	as	your	programming	language	of	choice.	Some	of	the
libraries	are	as	follows:

Apache	Tika	(http://tika.apache.org/)
Language	detection	(https://github.com/shuyo/language-detection)

The	language	detection	library	claims	to	have	over	99	percent	precision	for	53	languages;
that’s	a	lot	if	you	ask	us.

You	should	remember,	though,	that	data	language	detection	will	be	more	precise	for
longer	text.	Because	the	text	of	queries	is	usually	short,	you	can	expect	to	have	some
degree	of	error	during	query	language	identification.

www.EBooksWorld.ir

http://tika.apache.org/
https://www.github.com/shuyo/language-detection

Sample	document
Let’s	start	with	introducing	a	sample	document,	which	is	as	follows:

{

					"title"	:	"First	test	document",

					"content"	:	"This	is	a	test	document"

}

As	you	can	see,	the	document	is	pretty	simple;	it	contains	the	following	two	fields:

title:	This	field	holds	the	title	of	the	document
content:	This	field	holds	the	actual	content	of	the	document

This	document	is	quite	simple,	but,	from	the	search	point	of	view,	the	information	about
document	language	is	missing.	What	we	should	do	is	enrich	the	document	by	adding	the
needed	information.	We	can	do	that	by	using	one	of	the	previously	mentioned	libraries,
which	will	try	to	detect	the	language.

After	we	have	the	language	detected,	we	inform	Elasticsearch	which	analyzer	should	be
used	and	modify	the	document	to	directly	show	the	language	of	each	field.	Each	of	the
fields	would	have	to	be	analyzed	by	a	language	analyzer	dedicated	to	the	detected
language.

Note
A	full	list	of	these	language	analyzers	can	be	found	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-
analyzer.html).

If	a	document	is	written	in	a	language	that	we	are	not	supporting,	we	will	just	fall	back	to
some	default	field	with	the	default	analyzer.	For	example,	our	processed	and	prepared	for
indexing	document	could	look	like	this:

{

					"title_english"	:	"First	test	document",

					"content_english"	:	"This	is	a	test	document"

}

The	thing	is	that	all	this	processing	we’ve	mentioned	would	have	to	be	done	outside	of
Elasticsearch	or	in	some	kind	of	custom	plugin	that	would	implement	the	mentioned	logic.

Note
In	the	previous	versions	of	Elasticsearch,	there	was	a	possibility	of	choosing	an	analyzer
based	on	the	value	of	an	additional	field,	which	contained	the	analyzer	name.	This	was	a
more	convenient	and	elegant	way	but	introduced	some	uncertainty	about	the	field
contents.	You	always	had	to	deliver	a	proper	analyzer	when	using	the	given	field	or
strange	things	happened.	The	Elasticsearch	team	made	the	difficult	decision	and	removed
this	feature.

There	is	also	a	simpler	way:	we	can	take	our	first	document	and	index	it	in	several	ways
independently	from	input	language.	Let’s	focus	on	this	solution.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-analyzer.html

The	mappings
To	handle	our	solution,	which	will	process	the	document	using	several	defined	languages,
we	need	new	mappings.	Let’s	look	at	the	mappings	we’ve	created	to	index	our	documents
(we’ve	stored	them	in	the	mappings.json	file):

{

		"mappings"	:	{

				"doc"	:	{

						"properties"	:	{

								"title"	:	{

										"type"	:	"string",

										"index"	:	"analyzed",

										"fields"	:	{

												"english"	:	{

														"type"	:	"string",

														"index"	:	"analyzed",

														"analyzer"	:	"english"

												},

												"russian"	:	{

														"type"	:	"string",

														"index"	:	"analyzed",

														"analyzer"	:	"russian"

												},

												"german"	:	{

														"type"	:	"string",

														"index"	:	"analyzed",

														"analyzer"	:	"german"

												}

										}

								},

								"content"	:	{

										"type"	:	"string",

										"index"	:	"analyzed",

										"fields"	:	{

												"english"	:	{

														"type"	:	"string",

														"index"	:	"analyzed",

														"analyzer"	:	"english"

												},

												"russian"	:	{

														"type"	:	"string",

														"index"	:	"analyzed",

														"analyzer"	:	"russian"

												},

												"german"	:	{

														"type"	:	"string",

														"index"	:	"analyzed",

														"analyzer"	:	"german"

												}

										}

								}

						}

				}

		}

www.EBooksWorld.ir

}

In	the	preceding	mappings,	we’ve	shown	the	definition	for	the	title	and	content	fields
(if	you	are	not	familiar	with	any	aspect	of	mappings	definition,	refer	to	the	Mappings
configuration	section	of	Chapter	2,	Indexing	Your	Data).	We	have	used	the	multifield
feature	of	Elasticsearch:	each	field	can	be	indexed	in	several	ways	using	various	language
analyzers	(in	our	example,	those	analyzers	are:	English,	Russian,	and	German).

In	addition,	the	base	field	uses	the	default	analyzer,	which	we	may	use	at	query	time	when
the	language	is	unknown.	So,	each	field	will	actually	have	four	fields	–	the	default	one	and
three	language	oriented	fields.

In	order	to	create	a	sample	index	called	docs	that	uses	our	mappings,	we	will	use	the
following	command:

curl	-XPUT	'localhost:9200/docs'	-d	@mappings.json

www.EBooksWorld.ir

Querying
Now	let’s	see	how	we	can	query	our	data	to	use	the	newly	created	language	fields.	We	can
divide	the	querying	situation	into	two	different	cases.	Of	course,	to	start	querying	we	need
documents.	Let’s	index	our	example	document	by	running	the	following	command:

curl	-XPOST	'localhost:9200/docs/doc/1'	-d	'{"title"	:	"First	test	

document","content"	:	"This	is	a	test	document"}'

Queries	with	an	identified	language
The	first	case	is	when	we	have	our	query	language	identified.	Let’s	assume	that	the
identified	language	is	English.	In	such	cases,	our	query	is	as	follows:

curl	'localhost:9200/docs/_search?pretty'	-d	'{

		"query"	:	{

				"match"	:	{

						"content.english"	:	"documents"

				}

		}

}'

The	thing	to	put	emphasis	on	in	the	preceding	query	is	the	field	used	for	querying	and	the
query	type.	The	field	used	is	content.english,	which	also	indicates	which	analyzer	we
want	to	use.	We	used	that	field	because	we	had	identified	our	language	before	running	the
query.	Thanks	to	this,	the	English	analyzer	can	find	our	document	even	if	we	have	the
singular	form	of	the	word	in	the	document.	The	response	returned	by	Elasticsearch	will	be
as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.19178301,

				"hits"	:	[{

						"_index"	:	"docs",

						"_type"	:	"doc",

						"_id"	:	"1",

						"_score"	:	0.19178301,

						"_source":	{

								"title"	:	"First	test	document",

								"content"	:	"This	is	a	test	document"

						}

				}]

		}

}

The	thing	to	note	is	also	the	query	type	–	the	match	query.	We	used	the	match	query

www.EBooksWorld.ir

because	it	analyzes	its	body	with	the	analyzer	used	by	the	field	that	it	is	run	against.	We
need	that	to	properly	match	the	data	in	the	query	and	the	data	in	the	index.

Queries	with	an	unknown	language
Now	let’s	look	at	the	second	situation	–	handling	queries	when	we	couldn’t	identify	the
language	of	the	query.	In	such	cases,	we	can’t	use	the	field	name	pointing	to	one	of	the
languages,	such	as	content.german.	In	such	a	case,	we	use	the	default	field	which	uses
the	default	analyzer	and	we	send	the	query	to	the	content	field	instead.	The	query	will	look
as	follows:

curl	'localhost:9200/docs/_search?pretty'	-d	'{

		"query"	:	{

				"match"	:	{

						"content"	:	"documents"

				}

		}

}'

However,	we	didn’t	get	any	results	this	time	because	the	default	analyzer	can’t	deal	with	a
singular	form	of	a	word	when	we	are	searching	with	a	plural	form.

www.EBooksWorld.ir

Combining	queries
To	additionally	boost	the	documents	that	perfectly	match	with	our	default	analyzer,	we	can
combine	the	two	preceding	queries	with	the	bool	query.	Such	a	combined	query	will	look
as	follows:

curl	-XGET	'localhost:9200/docs/_search?pretty=true	'	-d	'{

		"query"	:	{

				"bool"	:	{

						"minimum_should_match"	:	1,

						"should"	:	[

								{

										"match"	:	{

												"content.english"	:	"documents"

										}

								},

								{

										"match"	:	{

												"content"	:	"documents"

										}

								}

]

				}

		}

}'

For	the	document	to	be	returned,	at	least	one	of	the	defined	queries	must	match.	If	they
both	match,	the	document	will	have	a	higher	score	value	and	will	be	placed	higher	in	the
results.

There	is	one	additional	advantage	of	the	preceding	combined	query.	If	our	language
analyzer	doesn’t	find	a	document	(for	example,	when	the	analysis	is	different	from	the	one
used	during	indexing),	the	second	query	has	a	chance	to	find	the	terms	that	are	tokenized
only	by	whitespace	characters	and	lowercase.

www.EBooksWorld.ir

www.EBooksWorld.ir

Influencing	scores	with	query	boosts
In	the	beginning	of	this	chapter,	we	learned	what	scoring	is	and	how	Elasticsearch	uses	the
scoring	formula.	When	an	application	grows,	the	need	for	improving	the	quality	of	search
also	increases	-	we	call	it	search	experience.	We	need	to	gain	knowledge	about	what	is
more	important	to	the	user	and	we	see	how	the	users	use	the	searches	functionality.	This
leads	to	various	conclusions;	for	example,	we	see	that	some	parts	of	the	documents	are
more	important	than	others	or	that	particular	queries	emphasize	one	field	at	the	cost	of
others.	We	need	to	include	such	information	in	our	data	and	queries	so	that	both	sides	of
the	scoring	equation	are	closer	to	our	business	needs.	This	is	where	boosting	can	be	used.

www.EBooksWorld.ir

The	boost
Boost	is	an	additional	value	used	in	the	process	of	scoring.	We	already	know	it	can	be
applied	to:

Query:	When	used,	we	inform	the	search	engine	that	the	given	query	is	a	part	of	a
complex	query	and	is	more	significant	than	the	other	parts.
Document:	When	used	during	indexing,	we	tell	Elasticsearch	that	a	document	is
more	important	than	the	others	in	the	index.	For	example,	when	indexing	blog	posts,
we	are	probably	more	interested	in	the	posts	themselves	than	ping	backs	or
comments.

Values	assigned	by	us	to	a	query	or	a	document	are	not	the	only	factors	used	when	we
calculate	the	resulting	score	and	we	know	that.	We	will	now	look	at	a	few	examples	of
query	boosting.

www.EBooksWorld.ir

Adding	the	boost	to	queries
Let’s	imagine	that	our	index	has	two	documents	and	we’ve	used	the	following	commands
to	index	them:

curl	-XPOST	'localhost:9200/messages/email/1'	-d	'{

		"id"	:	1,

		"to"	:	"John	Smith",

		"from"	:	"David	Jones",

		"subject"	:	"Top	secret!"

}'

curl	-XPOST	'localhost:9200/messages/email/2'	-d	'{

		"id"	:	2,

		"to"	:	"David	Jones",

		"from"	:	"John	Smith",

		"subject"	:	"John,	read	this	document"

}'

This	data	is	trivial,	but	it	should	describe	our	problem	very	well.	Now	let’s	assume	we
have	the	following	query:

curl	-XGET	'localhost:9200/messages/_search?pretty'	-d	'{

		"query"	:	{

				"query_string"	:	{

							"query"	:	"john",

							"use_dis_max"	:	false

				}

		}

}'

In	this	case,	Elasticsearch	will	create	a	query	to	the	_all	field	and	will	find	documents
that	contain	the	desired	words.	We	also	said	that	we	don’t	want	the	disjunction	query	to
be	used	by	specifying	the	use_dis_max	parameter	to	false	(if	you	don’t	remember	what	a
disjunction	query	is,	refer	to	the	The	dis_max	query	section	in	Chapter	3,	Searching	Your
Data).	As	we	can	easily	guess,	both	our	records	will	be	returned.	The	record	with
identifier	equal	to	2	will	be	first	because	the	word	John	occurs	two	times	–	once	in	the
from	field	and	once	in	the	subject	field.	Let’s	check	this	out	in	the	following	result:

"hits"	:	{

				"total"	:	2,

				"max_score"	:	0.13561106,

				"hits"	:	[{

						"_index"	:	"messages",

						"_type"	:	"email",

						"_id"	:	"2",

						"_score"	:	0.13561106,

						"_source"	:	{

								"id"	:	2,

								"to"	:	"David	Jones",

								"from"	:	"John	Smith",

								"subject"	:	"John,	read	this	document"

						}

				},	{

www.EBooksWorld.ir

						"_index"	:	"messages",

						"_type"	:	"email",

						"_id"	:	"1",

						"_score"	:	0.11506981,

						"_source"	:	{

								"id"	:	1,

								"to"	:	"John	Smith",

								"from"	:	"David	Jones",

								"subject"	:	"Top	secret!"

						}

				}]

		}

Is	everything	all	right?	Technically,	yes.	But	we	think	that	the	second	document	(the	one
with	identifier	1)	should	be	positioned	as	the	first	one	in	the	result	list,	because	when
searching	for	something,	the	most	important	factor	(in	many	cases)	is	matching	people
rather	than	the	subject	of	the	message.	You	can	disagree,	but	this	is	exactly	why	full-text
searching	relevance	is	a	difficult	topic;	sometimes	it	is	hard	to	tell	which	ordering	is	better
for	a	particular	case.	What	can	we	do?	First,	let’s	rewrite	our	query	to	implicitly	inform
Elasticsearch	what	fields	should	be	used	for	searching:

curl	-XGET	'localhost:9200/messages/_search?pretty'	-d	'{

		"query"	:	{

				"query_string"	:	{

						"fields"	:	["from",	"to",	"subject"],

						"query"	:	"john",

						"use_dis_max"	:	false

				}

		}

}'

This	is	not	exactly	the	same	query	as	the	previous	one.	If	we	run	it,	we	will	get	the	same
results	(in	our	case).	However,	if	you	look	carefully,	you	will	notice	differences	in	scoring.
In	the	previous	example,	Elasticsearch	only	used	one	field,	that	is	the	default	_all	field.
The	query	that	we	are	using	now	is	using	three	fields	for	matching.	This	means	that
several	factors,	such	as	field	lengths,	are	changed.	Anyway,	this	is	not	so	important	in	our
case.	Elasticsearch	under	the	hood	generates	a	complex	query	made	of	three	queries	–	one
to	each	field.	Of	course,	the	score	contributed	by	each	query	depends	on	the	number	of
terms	found	in	this	field	and	the	length	of	this	field.

Let’s	introduce	some	differences	between	the	fields	and	their	importance.	Compare	the
following	query	to	the	last	one:

curl	-XGET	'localhost:9200/messages/_search?pretty'	-d	'{

		"query"	:	{

				"query_string"	:	{

						"fields"	:	["from^5",	"to^10",	"subject"],

						"query"	:	"john",

						"use_dis_max"	:	false

				}

		}

}'

www.EBooksWorld.ir

Look	at	the	highlighted	parts	(^5	and	^10).	By	using	that	notation	(the	^	character
followed	by	a	number),	we	can	inform	Elasticsearch	how	important	a	given	field	is.	We
see	that	the	most	important	field	is	the	to	field	(because	of	the	highest	boost	value).	Next
we	have	the	from	field,	which	is	less	important.	The	subject	field	has	the	default	value	for
boost,	which	is	1.0	and	is	the	least	important	field	when	it	comes	to	score	calculation.
Always	remember	that	this	value	is	only	one	of	the	various	factors.	You	may	be
wondering	why	we	choose	5	and	not	1000	or	1.23.	Well,	this	value	depends	on	the	effect
we	want	to	achieve,	what	query	we	have,	and,	most	importantly,	what	data	we	have	in	our
index.	Typically,	when	data	changes	in	the	meaningful	parts,	we	should	probably	check
and	tune	our	relevance	once	again.

In	the	end,	let’s	look	at	a	similar	example,	but	using	the	bool	query:

curl	-XGET	'localhost:9200/messages/_search?pretty'	-d	'{

	"query"	:	{

		"bool"	:	{

			"should"	:	[

				{	"term"	:	{	"from":	{	"value"	:	"john",	"boost"	:	5	}}},

				{	"term"	:	{	"to":	{	"value"	:	"john",	"boost"	:	10		}}},

				{	"term"	:	{	"subject":	{	"value"	:	"john"	}}}

]

		}

	}

}'

The	preceding	query	will	yield	the	same	results,	which	means	that	the	first	document	on
the	results	list	will	be	the	one	with	the	identifier	1,	but	the	scores	will	be	slightly	different.
This	is	because	the	Lucene	queries	made	from	the	last	two	examples	are	slightly	different
and	thus	the	scores	are	different.

www.EBooksWorld.ir

Modifying	the	score
The	preceding	example	shows	how	to	affect	the	result	list	by	boosting	particular	query
components	–	the	fields.	Another	technique	is	to	run	a	query	and	affect	the	score	of	the
matched	documents.	In	the	following	sections,	we	will	summarize	the	possibilities	offered
by	Elasticsearch.	In	the	examples,	we	will	use	our	library	data	that	we	have	already	used
in	the	previous	chapters.

Constant	score	query
A	constant_score	query	allows	us	to	take	any	query	and	explicitly	set	the	value	that
should	be	used	as	the	score	that	will	be	given	for	each	matching	document	by	using	the
boost	parameter.

At	first,	this	query	doesn’t	seem	to	be	practical.	But	when	we	think	about	building
complex	queries,	this	query	allows	us	to	set	how	many	documents	matching	this	query	can
affect	the	total	score.	Look	at	the	following	example:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"constant_score"	:	{

						"query":	{

								"query_string"	:	{

										"query"	:	"available:false	author:heller"

								}

						}

				}

		}

}'

In	our	data,	we	have	two	documents	with	the	available	field	set	to	false.	One	of	these
documents	has	an	additional	value	in	the	author	field.	If	we	use	a	different	query,	the
document	with	an	additional	value	in	the	author	field	(a	book	with	identifier	2)	would	be
given	a	higher	score,	but,	thanks	to	the	constant	score	query,	Elasticsearch	will	ignore	that
information	during	scoring.	Both	documents	will	be	given	a	score	equal	to	1.0.

Boosting	query
The	next	type	of	query	that	can	be	used	with	boosting	is	the	boosting	query.	The	idea	is	to
allow	us	to	define	a	part	of	query	which	will	cause	matched	documents	to	have	their
scores	lowered.	The	following	example	returns	all	the	available	books	(available	field	set
to	true),	but	the	books	written	by	E.	M.	Remarque	will	have	a	negative	boost	of	0.1
(which	means	about	ten	times	lower	score):

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

		"query"	:	{

				"boosting"	:	{

						"positive"	:	{

								"term"	:	{

										"available"	:	true

								}

						},

www.EBooksWorld.ir

						"negative"	:	{

								"match"	:	{

										"author"	:	"remarque"

								}

						},

						"negative_boost"	:	0.1

				}

		}

}'

The	function	score	query
Till	now	we’ve	seen	two	examples	of	queries	that	allowed	us	to	alter	the	score	of	the
returned	documents.	The	third	example	we	wanted	to	talk	about,	the	function_score
query,	is	way	more	complicated	than	the	previously	discussed	queries.	The
function_score	query	is	very	useful	when	the	score	calculation	is	more	complicated	than
giving	a	single	boost	to	all	the	documents;	boosting	more	recent	documents	is	an	example
of	a	perfect	use	case	for	the	function_score	query.

Structure	of	the	function	query

The	structure	of	the	function	query	is	quite	simple	and	looks	as	follows:

{

	"query"	:	{

		"function_score"	:	{

			"query"	:	{	...	},

			"functions"	:	[

					{

							"filter"	:	{	...	},

							"FUNCTION"	:	{	...	}

					}

],

			"boost_mode"	:	"	...	",

			"score_mode"	:	"	...	",

			"max_boost"	:	"	...	",

			"min_score"	:	"	...	",

			"boost"	:	"	...	"

		}

	}

}

In	general,	the	function	score	query	can	use	a	query,	one	of	several	functions,	and
additional	parameters.	Each	function	can	have	a	filter	defined	to	filter	the	results	on	which
it	will	be	applied.	If	no	filter	is	given	for	a	function,	it	will	be	applied	to	all	the	documents.

The	logic	behind	the	function	score	query	is	quite	simple.	First	of	all,	the	functions	are
matched	against	the	documents	and	the	score	is	calculated	based	on	score_mode.	After
that,	the	query	score	for	the	document	is	combined	with	the	score	calculated	for	the
functions	and	combined	together	on	the	basis	of	boost_mode.

Let’s	now	discuss	the	parameters:

Boost	mode:	The	boost_mode	parameter	allows	us	to	define	how	the	score	computed
by	the	function	queries	will	be	combined	with	the	score	of	the	query.	The	following

www.EBooksWorld.ir

values	are	allowed:

multiply:	The	default	behavior,	which	results	in	the	query	score	being
multiplied	by	the	score	computed	from	the	functions
replace:	The	query	score	will	be	totally	ignored	and	the	document	score	will	be
equal	to	the	score	calculated	by	the	functions
sum:	The	document	score	will	be	calculated	as	the	sum	of	the	query	and	the
function	scores
avg:	The	score	of	the	document	will	be	an	average	of	the	query	score	and	the
function	score
max:	The	document	will	be	given	a	maximum	of	query	score	and	function	score
min:	The	document	will	be	given	a	minimum	of	query	score	and	function	score

Score	mode:	The	score_mode	parameter	defines	how	the	score	computed	by	the
functions	are	combined	together.	The	following	score_mode	parameter	values	are
defined:

multiply:	The	default	behavior	which	results	in	the	scores	returned	by	the
functions	being	multiplied
sum:	The	scores	returned	by	the	defined	functions	are	summed
avg:	The	score	returned	by	the	functions	is	an	average	of	all	the	scores	of	the
matching	functions
first:	The	score	of	the	first	function	with	a	filter	matching	the	document	is
returned
max:	The	maximum	score	of	the	functions	is	returned
min:	The	minimum	score	of	the	functions	is	returned

There	is	one	thing	to	remember	–	we	can	limit	the	maximum	calculated	score	value	by
using	the	max_boost	parameter	in	the	function	score	query.	By	default,	that	parameter	is
set	to	Float.MAX_VALUE,	which	means	the	maximum	float	value.

The	boost	parameter	allows	us	to	set	a	query	wide	boost	for	the	documents.

Of	course,	there	is	one	thing	we	should	remember	–	the	score	calculated	doesn’t	affect
which	documents	matched	the	query.	Because	of	that,	the	min_score	property	has	been
introduced.	It	allows	us	to	define	the	minimum	score	of	the	documents.	Documents	that
have	a	score	lower	than	the	min_score	property	will	be	excluded	from	the	results.

What	we	haven’t	talked	about	yet	are	the	function	scores	that	we	can	include	in	the
functions	section	of	our	query.	The	currently	available	functions	are:

weight	factor
field	value	factor
script	score
random
decay

The	weight	factor	function

The	weight	factor	function	allows	us	to	multiply	the	score	of	the	document	by	a	given

www.EBooksWorld.ir

value.	The	value	of	the	weight	parameter	is	not	normalized	and	is	taken	as	is.	An	example
using	the	weight	function,	where	we	multiply	the	score	of	the	document	by	20,	looks	as
follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"function_score"	:	{

			"query"	:	{

				"term"	:	{

					"available"	:	true

				}

			},

			"functions"	:	[

				{	"weight"	:	20	}

]

		}

	}

}'

Field	value	factor	function

The	field_value_factor	function	allows	us	to	influence	the	score	of	the	document	by
using	a	value	of	the	field	in	that	document.	For	example,	to	multiply	the	score	of	the
document	by	the	value	of	the	year	field,	we	run	the	following	query:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"function_score"	:	{

			"query"	:	{

				"term"	:	{

					"available"	:	true

				}

			},

			"functions"	:	[

				{	

					"field_value_factor"	:	{

						"field"	:	"year",

						"missing"	:	1

					}	

				}

]

		}

	}

}'

In	addition	to	choosing	the	field	whose	value	should	be	used,	we	can	also	control	the
behavior	of	the	field	value	factor	function	by	using	the	following	properties:

factor:	The	multiplication	factor	that	will	be	used	along	with	the	field	value.	It
defaults	to	1.
modifier:	The	modifier	that	will	be	applied	to	the	field	value.	It	defaults	to	none.	It
can	take	the	value	of	log,	log1p,	log2p,	ln,	ln1p,	ln2p,	square,	sqrt,	and
reciprocal.
missing:	The	value	that	should	be	used	when	a	document	doesn’t	have	any	value	in

www.EBooksWorld.ir

the	field	specified	in	the	field	property.

The	script	score	function

The	script_score	function	allows	us	to	use	a	script	to	calculate	the	score	that	will	be
used	as	the	score	returned	by	a	function	(and	thus	will	fall	into	behavior	defined	by	the
boost_mode	parameter).	An	example	of	script_score	usage	is	as	follows	(for	the
following	example	to	work,	inline	scripting	needs	to	be	allowed,	which	means	adding	the
script.inline	property	and	setting	it	to	on	in	elasticsearch.yml):

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"function_score"	:	{

			"query"	:	{

				"term"	:	{

					"available"	:	true

				}

			},

			"functions"	:	[

				{

					"script_score"	:	{

						"script"	:	{

					"inline"	:	"_score	*	_source.copies	*	parameter1",

							"params"	:	{

								"parameter1"	:	12

							}

						}

					}

				}

]

		}

	}

}'

The	random	score	function

By	using	the	random_score	function,	we	can	generate	a	pseudo	random	score,	by
specifying	a	seed.	In	order	to	simulate	randomness,	we	should	specify	a	new	seed	every
time.	The	random	number	will	be	generated	by	using	the	_uid	field	and	the	provided	seed.
If	a	seed	is	not	provided,	the	current	timestamp	will	be	used.	An	example	of	using	this	is
as	follows:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"function_score"	:	{

			"query"	:	{

				"term"	:	{

					"available"	:	true

				}

			},

			"functions"	:	[

				{

					"random_score"	:	{

						"seed"	:	12345

					}

www.EBooksWorld.ir

				}

]

		}

	}

}'

Decay	functions

In	addition	to	the	earlier	mentioned	scoring	functions,	Elasticsearch	exposes	additional
ones,	called	the	decay	functions.	The	difference	from	the	previously	described	functions	is
that	the	score	given	by	those	functions	lowers	with	distance.	The	distance	is	calculated	on
the	basis	of	a	single	valued	numeric	field	(such	as	a	date,	a	geographical	point,	or	a
standard	numeric	field).	The	simplest	example	that	comes	to	mind	is	boosting	documents
on	the	basis	of	distance	from	a	given	point	or	boosting	on	the	basis	of	document	date.

For	example,	let’s	assume	that	we	have	a	point	field	that	stores	the	location	and	we	want
our	document’s	score	to	be	affected	by	the	distance	from	a	point	where	the	user	stands	(for
example,	our	user	sends	a	query	from	a	mobile	device).	Assuming	the	user	is	at	52,	21,
we	could	send	the	following	query:

{

	"query"	:	{

		"function_score"	:	{

			"query"	:	{

				"term"	:	{

					"available"	:	true

				}

			},

			"functions"	:	[

				{

					"linear"	:	{

						"point"	:	{

							"origin"	:	"52,	21",

							"scale"	:	"1km",

							"offset"	:	0,

							"decay"	:	0.2

						}

					}

				}

]

		}

	}

}

In	the	preceding	example,	the	linear	is	the	name	of	the	decay	function.	The	value	will
decay	linearly	when	using	it.	The	other	possible	values	are	gauss	and	exp.	We’ve	chosen
the	linear	decay	function	because	of	the	fact	that	it	sets	the	score	to	0	when	the	field	value
exceeds	the	given	origin	value	twice.	This	is	useful	when	you	want	to	lower	the	value	of
the	documents	that	are	too	far	away.

Note
Note	that	the	geographical	searching	capabilities	of	Elasticsearch	will	be	discussed	in	the
Geo	section	of	Chapter	8,	Beyond	Full-text	Searching.

www.EBooksWorld.ir

Now	let’s	discuss	the	rest	of	the	query	structure.	The	point	is	the	name	of	the	field	we
want	to	use	for	score	calculation.	If	the	document	doesn’t	have	a	value	in	the	defined	field,
it	will	be	given	a	value	of	1	for	the	time	of	calculation.

In	addition	to	that,	we’ve	provided	additional	parameters.	The	origin	and	scale	are
required.	The	origin	parameter	is	the	central	point	from	which	the	calculation	will	be	done
and	the	scale	is	the	rate	of	decay.	By	default,	the	offset	is	set	to	0.	If	defined,	the	decay
function	will	only	compute	a	score	for	the	documents	with	value	greater	than	the	value	of
this	parameter.	The	decay	parameter	tells	Elasticsearch	how	much	the	score	should	be
lowered	and	is	set	to	0.5	by	default.	In	our	case,	we’ve	said	that,	at	the	distance	of	1
kilometer,	the	score	should	be	reduced	by	20%	(0.2).

Note
We	expect	the	function_score	query	to	be	modified	and	extended	with	the	next	versions
of	Elasticsearch	(just	as	it	was	with	Elasticsearch	version	1.x).	We	suggest	following	the
official	documentation	and	the	page	dedicated	to	the	function_score	query	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-
query.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html

www.EBooksWorld.ir

When	does	index-time	boosting	make
sense?
In	the	previous	section,	we	discussed	boosting	queries.	This	kind	of	approach	to	handling
differences	in	the	weight	of	documents	is	very	handy,	powerful,	and	easy	to	use.	It	is	also
sufficient	in	most	situations.	However,	there	are	cases	when	a	more	convenient	way	of
documents	boosting	is	index-time	boosting.	One	of	such	use	case	is	the	situation	when	we
know	which	documents	are	important	during	the	indexing	phase.	In	such	a	case,	we	can
prepare	the	document	boost	and	include	it	as	part	of	the	document.	We	gain	a	boost	that	is
independent	from	a	query	at	the	cost	of	reindexing	the	documents	when	the	boost	value	is
changed	(because	we	need	to	apply	the	changed	boost).	In	addition	to	that,	the
performance	gets	slightly	better	because	some	parts	needed	in	the	boosting	process	are
already	calculated	at	index	time,	which	can	matter	when	your	indices	have	a	large	number
of	documents.	Information	about	the	boost	is	stored	as	a	part	of	the	normalization	factor
and	because	of	that	it	is	important	to	keep	the	norms	turned	on.	This	means	that	we	can’t
set	norms.enabled	to	false	because	we	won’t	be	able	to	use	index	time	boosting.

www.EBooksWorld.ir

Defining	boosting	in	the	mappings
It	is	also	possible	to	directly	define	the	field’s	boost	in	our	mappings.	This	will	result	in
Elasticsearch	giving	a	boost	for	all	the	documents	having	a	value	in	such	a	field.	Of
course,	that	will	also	happen	during	indexing	time.	The	following	example	illustrates	that:

{

		"mappings"	:	{

				"book"	:	{

						"properties"	:	{

								"title"	:	{	"type"	:	"string"	},

								"author"	:	{	"type"	:	"string",	"boost"	:	10.0	}

						}

				}

		}

}

Thanks	to	the	preceding	boost,	all	queries	will	favor	values	found	in	the	field	named
author.	This	also	applies	to	queries	using	the	_all	field,	because	Elasticsearch	will	apply
the	boost	to	values	copied	between	the	fields.

www.EBooksWorld.ir

www.EBooksWorld.ir

Words	with	the	same	meaning
You	may	have	heard	about	synonyms,	words	that	have	the	same	or	similar	meaning.
Sometimes	you	would	want	to	have	some	words	matched	when	one	of	those	words	is
entered	into	the	search	box.	Let’s	recall	our	sample	data	from	Chapter	3,	Searching	Your
Data.	There	was	a	book	called	crime	and	punishment.	What	if	we	want	that	book	to	not
only	be	matched	when	the	words	crime	or	punishment	are	used,	but	also	when	using	the
words	such	as	criminality	and	abuse.	At	first	glance,	this	may	not	sound	like	good
behavior,	but	sometimes	this	is	really	needed,	especially	in	use	cases	where	there	are
multiple	words	meaning	the	same	(like	in	medicine).	To	handle	such	use	cases,	we	will
use	synonyms.

www.EBooksWorld.ir

Synonym	filter
Synonyms	in	Elasticsearch	are	handled	on	the	analysis	level	–	at	both	index	and	query
time,	by	a	dedicated	synonyms	filter.	To	use	the	synonym	filter,	we	need	to	define	our	own
analyzer.	For	example,	let’s	define	an	analyzer	that	will	be	called	synonym	and	will	use
the	whitespace	tokenizer	and	a	single	filter	called	synonym.	Our	filter’s	type	property
needs	to	be	set	to	synonym,	which	tells	Elasticsearch	that	this	filter	is	a	synonym	filter.

In	addition	to	that,	we	want	to	ignore	case,	so	that	the	uppercased	and	lowercased
synonyms	are	treated	equally	(set	the	ignore_case	property	to	true).	To	define	our
custom	synonym	analyzer	that	uses	a	synonym	filter	when	creating	a	new	index,	we	would
use	the	following	command:

curl	-XPOST	'localhost:9200/test'	-d	'{

		"index"	:	{

				"analysis"	:	{

						"analyzer"	:	{

								"synonym"	:	{

										"tokenizer"	:	"whitespace",

										"filter"	:	[

												"synonym"

]

								}

						},

						"filter"	:	{

								"synonym"	:	{

										"type"	:	"synonym",

										"ignore_case"	:	true,

										"synonyms"	:	[

												"crime	=>	criminality"

]

								}

						}

				}

		}

}'

Synonyms	in	the	mappings
In	the	definition	you’ve	just	seen,	we’ve	specified	the	synonym	rule	in	the	mappings	we
send	to	Elasticsearch.	To	do	that,	we	needed	to	add	the	synonyms	property,	which	is	an
array	of	synonym	rules.	For	example,	the	following	part	of	the	mappings	definition
defines	a	single	synonym	rule:

"synonyms"	:	[

		"crime	=>	criminality"

]

The	preceding	rule	tells	Elasticsearch	to	change	the	crime	term	to	the	criminality	term
when	the	crime	term	is	encountered	during	analysis.

Synonyms	stored	on	the	file	system

www.EBooksWorld.ir

Apart	from	storing	the	synonyms	rules	in	the	mappings,	Elasticsearch	allows	us	to	use	a
file-based	synonyms	rule	set.	To	use	a	file,	we	need	to	specify	the	synonyms_path
property	instead	of	the	synonyms	one.	The	synonyms_path	property	should	be	set	to	the
name	of	the	file	that	holds	the	synonym’s	definition	and	the	specified	file	path	is	relative
to	the	Elasticsearch	config	directory.	So,	if	we	store	our	synonyms	in	the
synonyms.txt	file	and	we	save	that	file	in	the	config	directory,	then,	in	order	to	use	it,	we
should	set	synonyms_path	to	the	value	of	synonyms.txt.

For	example,	this	is	how	our	synonym	filter	would	look	like	if	we	want	to	use	the
synonyms	stored	in	a	file:

"filter"	:	{

		"synonym"	:	{

				"type"	:	"synonym",

				"synonyms_path"	:	"synonyms.txt"

		}

}

www.EBooksWorld.ir

Defining	synonym	rules
So	far	we	have	discussed	what	we	have	to	do	in	order	to	use	synonym	expansions	in
Elasticsearch.	Now	let’s	see	what	formats	of	synonyms	are	allowed.

Using	Apache	Solr	synonyms
The	most	common	synonym	structure	in	the	Apache	Lucene	world	is	probably	the	one
used	by	Apache	Solr	(http://lucene.apache.org/solr/),	the	search	engine	built	on	top	of
Lucene,	just	like	Elasticsearch	is.	This	is	the	default	way	of	handling	synonyms	in
Elasticsearch	and	the	possibilities	of	defining	a	new	synonym	are	discussed	in	the
following	sections.

Explicit	synonyms

A	simple	mapping	allows	us	to	map	a	list	of	words	onto	other	words.	So,	in	our	case,	if	we
want	the	word	criminality	to	be	mapped	to	crime	and	the	word	abuse	to	be	mapped	to
punishment,	we	need	to	define	the	following	entries:

criminality	=>	crime

abuse	=>	punishment

Of	course,	a	single	word	can	be	mapped	into	multiple	ones	and	multiple	ones	can	be
mapped	into	a	single	one.	For	example:

star	wars,	wars	=>	starwars

The	preceding	example	means	that	star	wars	and	wars	will	be	changed	to	starwars	by
the	synonym	filter.

Equivalent	synonyms

In	addition	to	the	explicit	mapping,	Elasticsearch	allows	us	to	use	equivalent	synonyms.
For	example,	the	following	definition	will	make	all	the	words	exchangeable	so	that	you
can	use	any	of	them	to	match	a	document	that	has	one	of	them	in	its	contents:

star,	wars,	star	wars,	starwars

Expanding	synonyms

A	synonym	filter	allows	us	to	use	one	additional	property	when	it	comes	to	Apache	Solr
format	synonyms	–	the	expand	property.	When	the	expand	property	is	set	to	true	(by
default	it	is	set	to	false),	all	synonyms	will	be	expanded	by	Elasticsearch	to	all	equivalent
forms.	For	example,	let’s	say	we	have	the	following	filter	configuration:

"filter"	:	{

		"synonym"	:	{

				"type"	:	"synonym",

				"expand":	false,

				"synonyms"	:	[

						"one,	two,	three"

]

		}

}

www.EBooksWorld.ir

http://lucene.apache.org/solr/

Elasticsearch	will	map	the	preceding	synonym	definition	to	the	following:

one,	two,	three	=>	one

This	means	that	the	words	one,	two,	and	three	will	be	changed	to	one.	However,	if	we	set
the	expand	property	to	true,	the	same	synonym	definition	will	be	interpreted	in	the
following	way:

one,	two,	three	=>	one,	two,	three

This	basically	means	that	each	of	the	words	from	the	left-side	of	the	definition	will	be
expanded	to	all	the	words	on	the	right-side.

Using	WordNet	synonyms
If	we	want	to	use	WordNet-structured	(to	learn	more	about	WordNet,	visit
http://wordnet.princeton.edu/)	synonyms,	we	need	to	provide	an	additional	property	for
our	synonym	filter.	The	property	name	is	format	and	we	should	set	its	value	to	wordnet	in
order	for	Elasticsearch	to	understand	that	format.

www.EBooksWorld.ir

http://wordnet.princeton.edu/

Query	or	index-time	synonym	expansion
As	with	all	the	analyzers,	one	can	wonder	when	to	use	the	synonym	filter	–	during
indexing,	during	querying,	or	maybe	during	indexing	and	querying.	Of	course,	it	depends
on	your	needs.	However,	remember	that	using	index-time	synonyms	requires	data
reindexing	after	each	synonym	change.	That’s	because	they	need	to	be	reapplied	to	all	the
documents.	If	we	use	only	the	query-time	synonyms,	we	can	update	the	synonym’s	lists
and	have	them	applied	without	data	reindexation.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding	the	explain	information
Compared	to	databases,	using	systems	capable	of	performing	full-text	search	can	often	be
anything	other	than	obvious.	We	can	search	in	many	fields	simultaneously	and	the	data	in
the	index	can	vary	from	the	ones	provided	as	the	values	of	the	document	fields	(because	of
the	analysis	process,	synonyms,	abbreviations,	and	others).	It’s	even	worse!	By	default,
search	engines	sort	data	by	relevance,	which	means	that	each	document	is	given	a	number
indicating	how	similar	the	document	is	to	the	query.	The	key	point	here	is	understanding
the	how	similar	phrase.	As	we	discussed	in	the	beginning	of	the	chapter,	scoring	takes
many	factors	into	account	–	how	many	searched	words	were	found	in	the	document,	how
frequent	the	word	is,	how	many	terms	are	in	the	field,	and	so	on.	This	seems	complicated
and	finding	out	why	a	document	was	found	and	why	another	document	is	better	is	not
easy.	Fortunately,	Elasticsearch	provides	us	with	tools	that	can	answer	these	questions	and
we	will	look	at	them	in	this	section.

www.EBooksWorld.ir

Understanding	field	analysis
One	of	the	common	questions	asked	when	analyzing	the	returned	documents	is	why	a
given	document	was	not	found.	In	many	cases,	the	problem	lies	in	the	mappings	definition
and	the	analysis	process	configuration.	For	debugging	the	analysis	process,	Elasticsearch
provides	a	dedicated	REST	API	endpoint	–	the	_analyze	one.

Using	it	is	very	simple.	Let’s	see	how	it	is	used	by	running	a	request	to	Elasticsearch	to
give	us	information	on	how	the	crime	and	punishment	phrase	is	analyzed.	To	do	that,	we
will	run	a	command	using	HTTP	GET	to	the	_analyze	REST	end-point	and	we	will
provide	the	phrase	as	the	request	body.	The	following	command	does	that:

curl	-XGET	'localhost:9200/_analyze?pretty'	-d	'Crime	and	Punishment'

In	response,	we	get	the	following	data:

{

		"tokens"	:	[{

				"token"	:	"crime",

				"start_offset"	:	0,

				"end_offset"	:	5,

				"type"	:	"<ALPHANUM>",

				"position"	:	0

		},	{

				"token"	:	"and",

				"start_offset"	:	6,

				"end_offset"	:	9,

				"type"	:	"<ALPHANUM>",

				"position"	:	1

		},	{

				"token"	:	"punishment",

				"start_offset"	:	10,

				"end_offset"	:	20,

				"type"	:	"<ALPHANUM>",

				"position"	:	2

		}]

}

As	we	can	see,	Elasticsearch	divided	the	input	phrase	into	three	tokens.	During
processing,	the	phrase	was	divided	into	tokens	on	the	basis	of	whitespace	characters	and
was	lowercased.	This	shows	us	exactly	what	would	be	happening	during	the	analysis
process.	We	can	also	provide	the	name	of	the	analyzer.	For	example,	we	can	change	the
preceding	command	to	something	like	this:

curl	-XGET	'localhost:9200/_analyze?analyzer=standard&pretty'	-d	'Crime	and	

Punishment'

The	preceding	command	will	allow	us	to	check	how	the	standard	analyzer	analyzes	the
data.

It	is	worth	noting	that	there	is	another	form	of	analysis	API	available	–	one	which	allows
us	to	provide	tokenizers	and	filters.	It	is	very	handy	when	we	want	to	experiment	with
configuration	before	creating	the	target	mappings.	Instead	of	specifying	the	analyzer

www.EBooksWorld.ir

parameter	in	the	request,	we	provide	the	tokenizer	and	the	filters	parameters.	We	can
provide	a	single	tokenizer	and	a	list	of	filters	(separated	by	comma	character).	For
example,	to	illustrate	how	tokenization	using	whitespace	tokenizer	works	with	lowercase
and	kstem	filters	we	would	run	the	following	request:

curl	-XGET	'localhost:9200/library/_analyze?

tokenizer=whitespace&filters=lowercase,kstem&pretty'	-d	'John	Smith'

As	we	can	see,	an	analysis	API	can	be	very	useful	for	tracking	down	bugs	in	the	mapping
configuration.	It	is	also	priceless	when	we	want	to	solve	problems	with	queries	and
matching.	It	can	show	us	how	our	analyzers	work,	what	terms	they	produce,	and	what	the
attributes	of	those	terms	are.	With	such	information,	analyzing	the	query	problems	will	be
easier	to	track	down.

www.EBooksWorld.ir

Explaining	the	query
In	addition	to	looking	at	what	happened	during	analysis,	Elasticsearch	allows	us	to	explain
how	the	score	was	calculated	for	a	particular	query	and	document.	Let’s	look	at	the
following	example:

curl	-XGET	'localhost:9200/library/book/1/_explain?pretty&q=quiet'

The	preceding	request	specifies	a	document	and	a	query	to	run.	The	document	is	specified
in	the	URI	and	the	query	is	passed	using	the	q	parameter.	Using	the	_explain	endpoint,
we	ask	Elasticsearch	for	an	explanation	about	how	the	document	was	matched	by
Elasticsearch	(or	not	matched).	The	response	returned	by	Elasticsearch	for	the	preceding
request	looks	as	follows:

{

		"_index"	:	"library",

		"_type"	:	"book",

		"_id"	:	"1",

		"matched"	:	true,

		"explanation"	:	{

				"value"	:	0.057534903,

				"description"	:	"sum	of:",

				"details"	:	[{

						"value"	:	0.057534903,

						"description"	:	"weight(_all:quiet	in	0)	[PerFieldSimilarity],	result	

of:",

						"details"	:	[{

								"value"	:	0.057534903,

								"description"	:	"fieldWeight	in	0,	product	of:",

								"details"	:	[{

										"value"	:	1.0,

										"description"	:	"tf(freq=1.0),	with	freq	of:",

										"details"	:	[{

												"value"	:	1.0,

												"description"	:	"termFreq=1.0",

												"details"	:	[]

										}]

								},	{

										"value"	:	0.30685282,

										"description"	:	"idf(docFreq=1,	maxDocs=1)",

										"details"	:	[]

								},	{

										"value"	:	0.1875,

										"description"	:	"fieldNorm(doc=0)",

										"details"	:	[]

								}]

						}]

				},	{

						"value"	:	0.0,

						"description"	:	"match	on	required	clause,	product	of:",

						"details"	:	[{

								"value"	:	0.0,

								"description"	:	"#	clause",

								"details"	:	[]

www.EBooksWorld.ir

						},	{

								"value"	:	3.2588913,

								"description"	:	"_type:book,	product	of:",

								"details"	:	[{

										"value"	:	1.0,

										"description"	:	"boost",

										"details"	:	[]

								},	{

										"value"	:	3.2588913,

										"description"	:	"queryNorm",

										"details"	:	[]

								}]

						}]

				}]

		}

}

It	can	look	slightly	complicated	and	well,	it	is	complicated.	It	is	even	worse	if	we	realize
that	this	is	only	a	simple	query!	Elasticsearch,	and	more	specifically	the	Lucene	library,
shows	the	internal	information	about	the	scoring	process.	We	will	only	scratch	the	surface
and	will	explain	the	most	important	things	about	the	preceding	response.

The	first	thing	that	you	can	notice	is	that	for	the	particular	query	Elasticsearch	provided
the	information	if	the	document	was	a	match	or	not.	If	the	matched	property	is	set	to	true,
it	means	that	the	document	was	a	match	for	the	provided	query.

The	next	important	thing	is	the	explanation	object.	It	contains	three	properties:	the	value,
the	description,	and	the	details.	The	value	is	the	score	calculated	for	the	given	part	of	the
query.	The	description	is	the	simplified	text	representation	of	the	internal	score
calculation,	and	the	details	object	contains	detailed	information	about	the	score
calculation.	The	nice	thing	is	that	the	details	object	will	again	contain	the	same	three
properties	and	this	is	how	Elasticsearch	provides	us	with	information	on	how	the	score	is
calculated.

For	example,	let’s	analyze	the	following	part	of	the	response:

				"value"	:	0.057534903,

				"description"	:	"sum	of:",

				"details"	:	[{

						"value"	:	0.057534903,

						"description"	:	"weight(_all:quiet	in	0)	[PerFieldSimilarity],	result	

of:",

						"details"	:	[{

								"value"	:	0.057534903,

								"description"	:	"fieldWeight	in	0,	product	of:",

								"details"	:	[{

										"value"	:	1.0,

										"description"	:	"tf(freq=1.0),	with	freq	of:",

										"details"	:	[{

												"value"	:	1.0,

												"description"	:	"termFreq=1.0",

												"details"	:	[]

										}]

								},	{

www.EBooksWorld.ir

										"value"	:	0.30685282,

										"description"	:	"idf(docFreq=1,	maxDocs=1)",

										"details"	:	[]

								},	{

										"value"	:	0.1875,

										"description"	:	"fieldNorm(doc=0)",

										"details"	:	[]

								}]

						}]

The	score	of	the	element	is	0.057534903	(the	value	property)	and	it	is	a	sum	of	(we	see
that	in	the	description	property)	all	the	inner	elements.	In	the	description	on	the	first
level	of	nesting	of	the	preceding	fragment,	we	can	see	that	PerFieldSimilarity	has	been
used	and	that	the	score	of	that	element	is	the	result	of	the	inner	elements	–	the	second	level
of	nesting.

On	the	second	level	of	details	nesting,	we	can	see	three	elements.	The	first	one	shows	us
the	score	of	the	element,	which	is	the	product	of	the	two	scores	of	the	elements	below	it.
We	can	also	see	various	internal	statistics	retrieved	from	the	index:	the	term	frequency
which	informs	us	how	common	the	term	is	(termFreq=1.0),	the	inverted	document
frequency,	which	shows	us	how	often	the	term	appears	in	the	documents	(idf(docFreq=1,
maxDocs=1)),	and	the	field	normalization	factor	(fieldNorm(doc=0)).

The	Explain	API	supports	the	following	parameters:	analyze_wildcard,	analyzer,
default_operator,	df,	fields,	lenient,	lowercase_expanded_terms,	parent,
preference,	routing,	_source,	_source_exclude,	and	_source_include.	To	learn	more
about	all	these	parameters,	refer	to	the	official	Elasticsearch	documentation	regarding
Explain	API,	which	is	available	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html

www.EBooksWorld.ir

Summary
The	chapter	we	just	finished	was	focused	on	querying;	not	about	the	matching	part	of	it
but	mostly	about	scoring.	We	learned	how	Apache	Lucene	TF/IDF	scoring	works.	We	saw
the	scripting	capabilities	of	Elasticsearch	and	we	handled	multilingual	data.	We	used
boosting	to	influence	how	the	scores	of	the	returned	documents	were	calculated	and	we
used	synonyms.	Finally,	we	used	explain	information	to	see	how	the	document	scores
were	calculated	by	the	query.

In	the	next	chapter,	we	will	fully	focus	on	Elasticsearch	data	analysis	capabilities	–	the
aggregations,	their	types,	and	how	they	can	be	used.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	7.	Aggregations	for	Data	Analysis
In	the	previous	chapter,	we	discussed	the	querying	side	of	Elasticsearch	again.	We	learned
how	the	Lucene	TF/IDF	algorithm	works	and	how	to	use	Elasticsearch	scripting
capabilities.	We	handled	multilingual	data	and	influenced	document	scores	with	boosts.
We	used	synonyms	to	match	words	that	have	the	same	meaning	and	we	used	Elasticsearch
Explain	API	to	see	how	document	scores	were	calculated.	By	the	end	of	this	chapter,	you
will	have	learned	the	following	topics:

What	are	aggregations
How	the	Elasticsearch	aggregation	engine	works
How	to	use	metrics	aggregations
How	to	use	buckets	aggregations
How	to	use	pipeline	aggregations

www.EBooksWorld.ir

Aggregations
Introduced	in	Elasticsearch	1.0,	aggregations	are	the	heart	of	data	analytics	in
Elasticsearch.	Highly	flexible	and	performant,	aggregations	brought	Elasticsearch	1.0	to	a
new	position	as	a	full-featured	analysis	engine.	Extended	through	the	life	of	Elasticsearch
1.x,	in	2.x	they	are	yet	more	powerful,	less	memory	demanding,	and	faster.	With	this
framework,	you	can	use	Elasticsearch	as	the	analysis	engine	for	data	extraction	and
visualization.	Let’s	see	how	that	functionality	works	and	what	we	can	achieve	by	using	it.

www.EBooksWorld.ir

General	query	structure
To	use	aggregations,	we	need	to	add	an	additional	section	in	our	query.	In	general,	our
queries	with	aggregations	look	like	this:

{

			"query":	{	…	},

			"aggs"	:	{

					"aggregation_name"	:	{

							"aggregation_type"	:	{

									...

							}

					}

			}

}

In	the	aggs	property	(you	can	use	aggregations	if	you	want;	aggs	is	just	an	abbreviation),
you	can	define	any	number	of	aggregations.	Each	aggregation	is	defined	by	its	name	and
one	of	the	types	of	aggregations	that	are	provided	by	Elasticsearch.	One	thing	to
remember	though	is	that	the	key	defines	the	name	of	the	aggregation	(you	will	need	it	to
distinguish	particular	aggregations	in	the	server	response).	Let’s	take	our	library	index
and	create	the	first	query	using	use	aggregations.	A	command	sending	such	a	query	looks
like	this:

curl	'localhost:9200/library/_search?

search_type=query_then_fetch&size=0&pretty'	-d	'{

			"aggs":	{

						"years":	{

									"stats":	{

												"field":	"year"

									}

						},

						"words":	{

									"terms":	{

												"field":	"copies"

									}

						}

			}

}'

This	query	defines	two	aggregations.	The	aggregation	named	years	shows	statistics	for
the	year	field.	The	words	aggregation	contains	information	about	the	terms	used	in	a
given	field.

Note
In	our	examples	we	assumed	that	we	perform	aggregation	in	addition	to	searching.	If	we
don’t	need	found	documents,	a	better	idea	is	to	use	the	size	parameter	and	set	it	to	0.	This
omits	some	unnecessary	work	and	is	more	efficient.	In	such	a	case,	the	endpoint	should	be
/library/_search?size=0.	You	can	read	more	about	search	types	in	Chapter	3,
Understanding	the	Querying	Process.

Let’s	now	look	at	the	response	returned	by	Elasticsearch	for	the	preceding	query:

www.EBooksWorld.ir

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"words"	:	{

						"doc_count_error_upper_bound"	:	0,

						"sum_other_doc_count"	:	0,

						"buckets"	:	[{

								"key"	:	0,

								"doc_count"	:	2

						},	{

								"key"	:	1,

								"doc_count"	:	1

						},	{

								"key"	:	6,

								"doc_count"	:	1

						}]

				},

				"years"	:	{

						"count"	:	4,

						"min"	:	1886.0,

						"max"	:	1961.0,

						"avg"	:	1928.0,

						"sum"	:	7712.0

				}

		}

}

As	you	see,	both	the	aggregations	(years	and	words)	were	returned.	The	first	aggregation
we	defined	in	our	query	(years)	returned	general	statistics	for	the	given	field	gathered
across	all	the	documents	that	matched	our	query.	The	second	of	the	defined	aggregations
(words)	was	a	bit	different.	It	created	several	sets	called	buckets	that	were	calculated	on
the	returned	documents	and	each	of	the	aggregated	values	was	within	one	of	these	sets.	As
you	can	see,	there	are	multiple	aggregation	types	available	and	they	return	different
results.	We	will	see	the	differences	in	the	later	part	of	this	section.

The	great	thing	about	the	aggregation	engine	is	that	it	allows	you	to	have	multiple
aggregations	and	that	aggregations	can	be	nested.	This	means	that	you	can	have	indefinite
levels	of	nesting	and	any	number	of	aggregations	in	general.	The	extended	structure	of	the
query	is	shown	next:

{

			"query":	{	…	},

			"aggs"	:	{

www.EBooksWorld.ir

					"first_aggregation_name"	:	{

							"aggregation_type"	:	{

									...

							},

				"aggregations"	:	{

									"first_nested_aggregation"	:	{

									...

									},

									.

									.

									.

									"nth_nested_aggregation"	:	{

									...

									}

							}

					},

					.

					.

					.

					"nth_aggregation_name"	:	{

					...

					}

			}

}

www.EBooksWorld.ir

Inside	the	aggregations	engine
Aggregations	work	on	the	basis	of	results	returned	by	the	query.	This	is	very	handy	as	we
get	the	information	that	we	are	interested	in,	both	from	the	query	as	well	as	the	data
analysis	perspective.	So	what	does	Elasticsearch	do	when	we	include	the	aggregation	part
of	the	query	in	the	request	that	we	send	to	Elasticsearch?	First	of	all,	the	aggregation	is
executed	on	each	relevant	shard	and	the	results	are	returned	to	the	node	that	is	responsible
for	running	that	query.	That	node	waits	for	the	partial	results	to	be	calculated;	after	it	gets
all	the	results,	it	merges	the	results,	producing	the	final	results.

This	approach	is	nothing	new	when	it	comes	to	distributed	systems	and	how	they	work
and	communicate,	but	can	cause	issues	when	it	comes	to	the	precision	of	the	results.	In
most	cases	this	is	not	a	problem,	but	you	should	be	aware	about	what	to	expect.	Let’s
imagine	the	following	example:

The	preceding	image	shows	a	simplified	view	of	three	shards,	each	containing	documents
having	only	Elasticsearch	and	Solr	terms	in	them.	Now	imagine	that	we	are	interested	in	a
single	term	for	our	index.	The	terms	aggregation	when	run	using	size=1	would	return	a
single	term,	that	would	be	the	one	that	is	the	most	frequent	(of	course	limited	to	the	query
we’ve	run).	So	our	aggregator	node	would	see	partial	results	telling	us	that	Elasticsearch
is	present	in	19	documents	in	Shard	1	and	the	Solr	term	is	present	in	10	documents	in
Shard	2	and	Shard	3,	which	means	that	the	top	term	is	Solr,	which	is	not	true.	This	is	an
extreme	case,	but	there	are	use	cases	(such	as	accounting)	where	precision	is	key	and	you
should	be	aware	about	such	situations.

Note
Compared	to	queries,	aggregations	are	heavier	for	Elasticsearch	in	terms	of	both	CPU
cycles	and	memory	consumption.	We	will	discuss	this	in	more	detail	in	the	Caching
Aggregations	section	of	this	chapter.

www.EBooksWorld.ir

www.EBooksWorld.ir

Aggregation	types
Elasticsearch	2.x	allows	us	to	use	three	types	of	aggregation:	metrics,	buckets,	and
pipeline.	The	metrics	aggregations	return	a	metric,	just	like	the	stats	aggregation	we	used
for	the	stats	field.	The	bucket	aggregations	return	buckets,	the	key	and	the	number	of
documents	sharing	the	same	values,	ranges,	and	so	on,	just	like	the	terms	aggregation	we
used	for	the	copies	field.	Finally,	the	pipeline	aggregations	introduced	in	Elasticsearch	2.0
aggregate	the	output	of	the	other	aggregations	and	their	metrics,	which	allows	us	to	do
even	more	sophisticated	data	analysis.	Knowing	all	that,	let’s	now	look	at	all	the
aggregations	we	can	use	in	Elasticsearch	2.x.

www.EBooksWorld.ir

Metrics	aggregations
We	will	start	with	the	metrics	aggregations,	which	can	aggregate	values	from	documents
into	a	single	metric.	This	is	always	the	case	with	metrics	aggregations	–	you	can	expect
them	to	be	a	single	metric	on	the	basis	of	the	data.	Let’s	now	take	a	look	at	the	metrics
aggregations	available	in	Elasticsearch	2.x.

Minimum,	maximum,	average,	and	sum
The	first	group	of	metrics	aggregations	that	we	want	to	show	you	is	the	one	that	calculates
the	basic	value	from	the	given	documents.	These	aggregations	are:

min:	This	calculates	the	minimum	value	from	the	given	numeric	field	in	the	returned
documents
max:	This	calculates	the	maximum	value	from	the	given	numeric	field	in	the	returned
documents
avg:	This	calculates	an	average	from	the	given	numeric	field	in	the	returned
documents
sum:	This	calculates	the	sum	from	the	given	numeric	field	in	the	returned	documents

As	you	can	see,	the	preceding	mentioned	aggregations	are	pretty	self-explanatory.	So,	let’s
try	to	calculate	the	average	value	on	our	data.	For	example,	let’s	assume	that	we	want	to
calculate	the	average	number	of	copies	for	our	books.	The	query	to	do	that	will	look	as
follows:

{

	"aggs"	:	{

		"avg_copies"	:	{

			"avg"	:	{

				"field"	:	"copies"

			}

		}

	}

}

The	results	returned	by	Elasticsearch	after	running	the	preceding	query	will	be	as	follows:

{

		"took"	:	5,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"avg_copies"	:	{

						"value"	:	1.75

www.EBooksWorld.ir

				}

		}

}

So,	we	have	an	average	of	1.75	copies	per	book.	It	is	very	easy	to	calculate	–	(6	+	0	+	1
+	0)	/	4	is	equal	to	1.75.	Seems	that	we	got	it	right.

Missing	values

The	nice	thing	about	the	previously	mentioned	aggregations	is	that	we	can	control	what
value	Elasticsearch	can	use	if	the	fields	we’ve	specified	don’t	have	any.	For	example,	if
we	wanted	Elasticsearch	to	use	0	as	the	value	for	the	copies	field	in	our	previous	example,
we	would	add	the	missing	property	to	our	query	and	and	set	it	to	0.	For	example:

{

	"aggs"	:	{

		"avg_copies"	:	{

			"avg"	:	{

				"field"	:	"copies",

				"missing"	:	0

			}

		}

	}

}

Using	scripts

The	input	values	can	also	be	generated	by	a	script.	For	example,	if	we	want	to	find	the
minimum	value	from	all	the	values	in	the	year	field,	but	we	want	to	subtract	1000	from
those	values,	we	will	send	an	aggregation	like	the	following	one:

{

	"aggs":	{

		"min_year":	{

			"min":	{

				"script":	"doc['year'].value	-	1000"

			}

		}

	}

}

Note
Note	that	the	preceding	query	requires	inline	scripts	to	be	allowed.	This	means	that	the
query	requires	the	script.inline	property	set	to	on	in	the	elasticsearch.yml	file.

In	this	case,	the	value	the	aggregations	will	use	will	be	the	original	year	field	value
reduced	by	1000.

We	can	also	use	the	value	script	capabilities	of	Elasticsearch.	For	example,	to	achieve	the
same	as	the	previous	script,	we	can	use	the	following	query:

{

	"aggs":	{

		"min_year":	{

			"min":	{

www.EBooksWorld.ir

				"field"	:	"year",

				"script"	:	{

					"inline"	:	"_value	-	factor",

					"params"	:	{

						"factor"	:	1000

					}

				}

			}

		}

	}

}

If	you	are	not	familiar	with	Elasticsearch	scripting	capabilities,	you	can	read	more	about	it
in	the	Scripting	capabilities	of	Elasticsearch	section	of	Chapter	6,	Make	Your	Search
Better.

One	thing	worth	remembering	is	that	using	the	command	line	may	require	proper	escaping
of	the	values	in	the	doc	array.	For	example,	the	command	that	executes	the	first	scripted
query	would	look	as	follows:

curl	-XGET	'localhost:9200/library/_search?size=0&pretty'	-d	'{

	"aggs":	{

		"min_year":	{

			"min":	{

				"script":	"doc[\"year\"].value	-	1000"

			}

		}

	}

}'

Field	value	statistics	and	extended	statistics
The	next	aggregations	we	will	discuss	are	the	ones	that	provide	us	with	the	statistical
information	about	the	numeric	field	we	are	running	the	aggregation	on:	the	stats	and
extended_stats	aggregations.

For	example,	the	following	query	provides	extended	statistics	for	the	year	field:

{

	"aggs"	:	{

		"extended_statistics"	:	{

			"extended_stats"	:	{

				"field"	:	"year"

			}

		}

	}

}

The	response	to	the	preceding	query	will	be	as	follows:

{

		"took"	:	1,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

www.EBooksWorld.ir

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"extended_statistics"	:	{

						"count"	:	4,

						"min"	:	1886.0,

						"max"	:	1961.0,

						"avg"	:	1928.0,

						"sum"	:	7712.0,

						"sum_of_squares"	:	1.4871654E7,

						"variance"	:	729.5,

						"std_deviation"	:	27.00925767213901,

						"std_deviation_bounds"	:	{

								"upper"	:	1982.018515344278,

								"lower"	:	1873.981484655722

						}

				}

		}

}

As	you	can	see,	in	the	response	we	got	information	about	the	number	of	documents	with
value	in	the	year	field,	the	minimum	value,	the	maximum	value,	the	average,	and	the	sum.
These	are	the	values	that	we	will	get	if	we	run	the	stats	aggregation	instead	of
extended_stats.	The	extended_stats	aggregation	provides	additional	information,	such
as	the	sum	of	squares,	variance,	and	standard	deviation.	Elasticsearch	provides	two	types
of	aggregations	because	extended_stats	is	slightly	more	expensive	when	it	comes	to
processing	power.

Note
The	stats	and	extended_stats	aggregations,	similar	to	the	min,	max,	avg,	and	sum
aggregations,	support	scripting	and	allow	us	to	specify	which	value	should	be	used	for	the
fields	that	don’t	have	value	in	the	specified	field.

Value	count
The	value_count	aggregation	is	a	simple	aggregation	which	allows	counting	values	in
aggregated	documents.	This	is	quite	useful	when	used	with	nested	aggregations.	We	are
not	focusing	on	that	topic	right	now,	but	it	is	something	to	keep	in	mind.	For	example,	to
use	the	value_count	aggregation	on	the	copied	field,	we	will	run	the	following	query:

{

	"aggs"	:	{

		"count"	:	{

			"value_count"	:	{

				"field"	:	"copies"

			}

		}

	}

www.EBooksWorld.ir

}

Note
The	value_count	aggregation	allows	us	to	use	scripts,	discussed	earlier	in	this	chapter
when	we	described	the	min,	max,	avg,	and	sum	aggregations.	Please	refer	to	the	beginning
of	Metrics	aggregation	section	earlier	in	the	current	chapter	for	further	reference.

Field	cardinality
One	of	the	aggregation	that	allows	us	to	control	how	resource	hungry	the	aggregation	will
be	by	controlling	its	precision,	the	cardinality	aggregation	calculates	the	count	of
distinct	values	in	a	given	field.	However,	one	thing	needs	to	be	remembered:	the
calculated	count	is	an	approximation,	not	the	exact	value.	Elasticsearch	uses	the
HyperLogLog++	algorithm
(http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/40671.pdf
to	calculate	the	value.

This	aggregation	has	a	wide	variety	of	use	cases,	such	as	showing	the	number	of	distinct
values	in	a	field	that	is	responsible	for	holding	the	status	code	for	your	indexed	Apache
access	logs.	One	query,	and	you	know	the	approximated	count	of	the	distinct	values	in	that
field.

For	example,	we	can	request	the	cardinality	for	our	title	field:

{

	"aggs"	:	{

		"card_title"	:	{

			"cardinality"	:	{

				"field"	:	"title"

			}

		}

	}

}

To	control	the	precision	of	the	cardinality	calculation,	we	can	specify	the
precision_threshold	property	–	the	higher	the	value,	the	more	precise	the	aggregation
will	be	and	the	more	resources	it	will	need.	The	current	maximum	precision_threshold
value	is	40000	and	the	default	depends	on	the	parent	aggregation.	An	example	query	using
the	precision_threshold	property	looks	as	follows:

{

	"aggs"	:	{

		"card_title"	:	{

			"cardinality"	:	{

				"field"	:	"title",

				"precision_threshold"	:	1000

			}

		}

	}

}

Percentiles

www.EBooksWorld.ir

http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/40671.pdf

The	percentiles	aggregation	is	another	example	of	aggregation	in	Elasticsearch.	It	uses	an
algorithmic	approximation	approach	to	provide	us	with	results.	It	uses	the	T-Digest
algorithm	(https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf)
from	Ted	Dunning	and	Otmar	Ertl	and	allows	us	to	calculate	percentiles:	metrics	that	show
us	how	many	results	are	above	a	certain	value.	For	example,	the	99th	percentile	shows	us
the	value	that	is	greater	than	99	percent	of	the	other	values.

Let’s	go	into	an	example	and	look	at	a	query	that	will	calculate	percentiles	for	the	year
field	in	our	data:

{

	"aggs"	:	{

		"copies_percentiles"	:	{

			"percentiles"	:	{

				"field"	:	"year"

			}

		}

	}

}

The	results	returned	by	Elasticsearch	for	the	preceding	request	will	look	as	follows:

{

		"took"	:	26,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"copies_percentiles"	:	{

						"values"	:	{

								"1.0"	:	1887.2899999999997,

								"5.0"	:	1892.4499999999998,

								"25.0"	:	1918.25,

								"50.0"	:	1932.5,

								"75.0"	:	1942.25,

								"95.0"	:	1957.25,

								"99.0"	:	1960.25

						}

				}

		}

}

As	you	can	see,	the	value	that	is	higher	than	99	percent	of	the	values	is	1960.25.

You	may	wonder	why	such	aggregation	is	important.	It	is	very	useful	for	performance
metrics;	for	example,	where	we	usually	look	at	averages	for	some	period	of	time.	Imagine
that	the	average	response	time	of	our	queries	for	the	last	hour	is	50	milliseconds,	which	is

www.EBooksWorld.ir

https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf

not	bad.	However,	if	the	95th	percentile	would	show	2	seconds,	that	would	mean	that
about	5	percent	of	the	users	had	to	wait	two	or	more	seconds	for	the	search	results,	which
is	not	that	good.

By	default,	the	percentiles	aggregation	calculates	seven	percentiles:	1,	5,	25,	50,	75,	95,
and	99.	We	can	control	this	by	using	the	percents	property	and	specify	which	percentiles
we	are	interested	in.	For	example,	if	we	want	to	get	only	the	95th	and	the	99th	percentile,
we	change	our	query	to	the	following	one:

{

	"aggs"	:	{

		"copies_percentiles"	:	{

			"percentiles"	:	{

				"field"	:	"year",

				"percents"	:	["95",	"99"]

			}

		}

	}

}

Note
Similar	to	the	min,	max,	avg,	and	sum	aggregations,	the	percentiles	aggregation	supports
scripting	and	allows	us	to	specify	which	value	should	be	used	for	the	fields	that	don’t	have
value	in	the	specified	field.

We’ve	mentioned	earlier	that	the	percentiles	aggregation	uses	an	algorithmic	approach	and
is	an	approximation.	As	with	all	approximations,	we	can	control	the	precision	and	memory
usage	of	the	algorithm.	We	do	that	by	using	the	compression	property,	which	defaults	to
100.	It	is	an	internal	property	of	Elasticsearch	and	its	implementation	details	may	change
between	versions.	It	is	worth	knowing	that	setting	the	compression	value	to	one	higher
than	100	can	increase	the	algorithm	precision	at	the	cost	of	memory	usage.

Percentile	ranks
The	percentile_ranks	aggregation	is	similar	to	the	percentiles	one	that	we	just
discussed.	It	allows	us	to	show	which	percentile	a	given	value	has.	For	example,	to	show
us	which	percentile	year	1932	and	year	1960	are,	we	run	the	following	query:

{

	"aggs"	:	{

		"copies_percentile_ranks"	:	{

			"percentile_ranks"	:	{

				"field"	:	"year",

				"values"	:	["1932",	"1960"]

			}

		}

	}

}

The	response	returned	by	Elasticsearch	will	be	as	follows:

{

		"took"	:	2,

www.EBooksWorld.ir

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"copies_percentile_ranks"	:	{

						"values"	:	{

								"1932.0"	:	49.5,

								"1960.0"	:	61.5

						}

				}

		}

}

Top	hits	aggregation
The	top_hits	aggregation	keeps	track	of	the	most	relevant	document	being	aggregated.
This	doesn’t	sound	very	appealing,	but	it	allows	us	to	implement	one	of	the	most	desired
functionalities	in	Elasticsearch	called	document	grouping,	field	collapsing,	or	document
folding.	Such	functionality	is	very	useful	in	some	use	cases—for	example,	when	we	want
to	show	a	book	catalog	but	only	one	from	a	single	publisher.	To	do	that	without	the
top_hits	aggregation,	we	would	have	to	run	multiple	queries.	With	the	top_hits
aggregation,	we	need	only	a	single	query.

The	top_hits	aggregation	was	introduced	in	Elasticsearch	1.3.	In	fact,	the	mentioned
document	folding	is	more	or	less	a	side	effect	and	only	one	of	the	possible	usage	examples
of	the	top_hits	aggregation.

The	idea	behind	the	top_hits	aggregation	is	simple.	Every	document	that	is	assigned	to	a
particular	bucket	can	be	also	remembered.	By	default,	only	three	documents	per	bucket
are	remembered.

Note
Note	that,	in	order	to	show	the	full	potential	of	the	top_hits	aggregation,	we	decided	to
use	one	of	the	bucketing	aggregations	as	well	and	nest	them	to	show	the	document
grouping	functionality	implementation.	The	bucketing	aggregations	are	described	in	detail
later	in	this	chapter.

To	show	you	a	potential	use	case	that	leverages	the	top_hits	aggregation,	we	have
decided	to	use	a	simple	example.	We	would	like	to	get	the	most	relevant	book	published
every	100	years.	To	do	that	we	use	the	following	query:

{

	"aggs":	{

		"when":	{

www.EBooksWorld.ir

			"histogram":	{

				"field":	"year",

				"interval":	100

			},

			"aggs":	{

				"book":	{

					"top_hits":	{

						"_source":	{

							"include":	["title",	"available"]

						},

						"size":	1

					}

				}

			}

		}

	}

}

In	the	preceding	example,	we	did	the	histogram	aggregation	on	year	ranges.	Every	bucket
was	created	for	every	one	hundred	years.	The	nested	top_hits	aggregations	remembers	a
single	document	with	the	greatest	score	from	each	bucket	(because	of	the	size	property
being	set	to	1).	We	added	the	include	option	only	for	simpler	results,	so	that	we	only
return	the	title	and	available	fields	for	every	aggregated	document.	The	response
returned	by	Elasticsearch	will	be	as	follows:

{

		"took"	:	8,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"when"	:	{

						"buckets"	:	[{

								"key"	:	1800,

								"doc_count"	:	1,

								"book"	:	{

										"hits"	:	{

												"total"	:	1,

												"max_score"	:	1.0,

												"hits"	:	[{

														"_index"	:	"library",

														"_type"	:	"book",

														"_id"	:	"4",

														"_score"	:	1.0,

														"_source"	:	{

																"available"	:	true,

																"title"	:	"Crime	and	Punishment"

www.EBooksWorld.ir

														}

												}]

										}

								}

						},	{

								"key"	:	1900,

								"doc_count"	:	3,

								"book"	:	{

										"hits"	:	{

												"total"	:	3,

												"max_score"	:	1.0,

												"hits"	:	[{

														"_index"	:	"library",

														"_type"	:	"book",

														"_id"	:	"2",

														"_score"	:	1.0,

														"_source"	:	{

																"available"	:	false,

																"title"	:	"Catch-22"

														}

												}]

										}

								}

						}]

				}

		}

}

We	can	see	that,	because	of	the	top_hits	aggregation,	we	have	the	most	scoring	document
(from	each	bucket)	included	in	the	response.	In	our	particular	case,	the	query	was	the
match_all	one	and	all	the	documents	had	the	same	score,	so	the	top-scoring	document	for
every	bucket	was	more	or	less	random.	However,	you	need	to	remember	that	this	is	the
default	behavior.	If	we	want	to	have	custom	sorting,	this	is	not	a	problem	for
Elasticsearch.	We	just	need	to	add	the	sort	property	for	our	top_hits	aggregator.	For
example,	we	can	return	the	first	book	from	a	given	century:

{

	"aggs":	{

		"when":	{

			"histogram":	{

				"field":	"year",

				"interval":	100

			},

			"aggs":	{

				"book":	{

					"top_hits":	{

						"sort":	{

							"year":	"asc"

						},

						"_source":	{

							"include":	["title",	"available"]

						},

						"size":	1

					}

				}

www.EBooksWorld.ir

			}

		}

	}

}

We	added	sorting	to	the	top_hits	aggregation,	so	the	results	are	sorted	on	the	basis	of	the
year	field.	This	means	that	the	first	document	will	be	the	one	with	the	lowest	value	in	that
field	and	this	is	the	document	that	is	going	to	be	returned	for	each	bucket.

Additional	parameters

Sorting	and	field	inclusion	is	not	everything	that	we	can	we	do	inside	the	top_hits
aggregation.	Because	this	aggregation	returns	documents,	we	can	also	use	functionalities
such	as:

highlighting
explain
scripting
fielddata	field	(uninverted	representation	of	the	fields)
version

We	just	need	to	include	an	appropriate	section	in	the	top_hits	aggregation	body,	similar
to	what	we	do	when	we	construct	a	query.	For	example:

{

	"aggs":	{

		"when":	{

			"histogram":	{

				"field":	"year",

				"interval":	100

			},

			"aggs":	{

				"book":	{

					"top_hits":	{

						"highlight":	{

							"fields":	{

							"title":	{}

							}

						},

						"explain":	true,

						"version":	true,

						"_source":	{

							"include":	["title",	"available"]

						},

						"fielddata_fields"	:	["title"],

						"script_fields":	{

							"century":	{

								"script":	"(doc[\"year\"].value	/	100).intValue()"

							}

						},

						"size":	1

					}

				}

			}

		}

www.EBooksWorld.ir

	}

}

Note
Note	that	the	preceding	query	requires	the	inline	scripts	to	be	allowed.	This	means	that	the
query	requires	the	script.inline	property	set	to	on	in	the	elasticsearch.yml	file.

Geo	bounds	aggregation
The	geo_bounds	aggregation	is	a	simple	aggregation	that	allows	us	to	compute	the
bounding	box	that	includes	all	the	geo_point	type	field	values	from	the	aggregated
documents.

Note
If	you	are	interested	in	spatial	searches,	the	section	dedicated	to	it	is	called	Geo	and	is
included	in	Chapter	8,	Beyond	Full-text	Searching.

We	only	need	to	provide	the	field	(by	using	the	field	property;	it	needs	to	be	of	the
geo_point	type).	We	can	also	provide	wrap_longitude	(values	true	or	false;	it	defaults
to	true)	if	the	bounding	box	is	allowed	to	overlap	the	international	date	line.	In	response,
we	get	the	latitude	and	longitude	of	the	top-left	and	bottom-right	corners	of	the	bounding
box.	An	example	query	using	this	aggregation	looks	as	follows	(using	the	hypothetical
location	field):

{

	"aggs"	:	{

		"box"	:	{

			"geo_bounds"	:	{

				"field"	:	"location"

			}

		}

	}

}

Scripted	metrics	aggregation
The	last	metric	aggregation	we	want	to	discuss	is	the	scripted_metric	aggregation,
which	allows	us	to	define	our	own	aggregation	calculation	using	scripts.	For	this
aggregation,	we	can	provide	the	following	scripts	(map_script	is	the	only	required	one,
the	rest	are	optional):

init_script:	This	script	is	run	during	initialization	and	allows	us	to	set	up	an	initial
state	of	the	calculation.
map_script:	This	is	the	only	required	script.	It	is	executed	once	for	every	document
that	needs	to	store	the	calculation	in	an	object	called	_agg.
combine_script:	This	script	is	executed	once	on	each	shard	after	Elasticsearch
finishes	document	collection	on	that	shard.
reduce_script:	This	script	is	executed	once	on	the	node	that	is	coordinating	a
particular	query	execution.	This	script	has	access	to	the	_aggs	variable,	which	is	an
array	of	the	values	returned	by	combine_script.

www.EBooksWorld.ir

For	example,	we	can	use	the	scripted_metric	aggregation	to	calculate	all	the	copies	of
all	the	books	we	have	in	our	library	by	running	the	following	request	(we	show	the	whole
request	to	show	how	the	names	are	escaped):

curl	-XGET	'localhost:9200/library/_search?size=0&pretty'	-d	'{

	"aggs"	:	{

		"all_copies"	:	{

			"scripted_metric"	:	{

				"init_script"	:	"_agg[\"all_copies\"]	=	0",

				"map_script"	:	"_agg.all_copies	+=	doc.copies.value",

				"combine_script"	:	"return	_agg.all_copies",

				"reduce_script"	:	"sum	=	0;	for	(number	in	_aggs)	{	sum	+=	number	};	

return	sum"

			}

		}

	}

}'

Of	course,	the	preceding	script	is	just	a	simple	sum	and	we	could	use	sum	aggregation,	but
we	just	wanted	to	show	you	a	simple	example	of	what	you	can	do	with	the
scripted_metric	aggregation.

Note
Note	that	the	preceding	query	requires	inline	scripts	to	be	allowed.	This	means	that	the
query	requires	the	script.inline	property	set	to	on	in	the	elasticsearch.yml	file.

As	you	can	see,	the	init_script	part	of	the	aggregation	is	used	to	initialize	the
all_copies	variable.	Next,	we	have	map_script,	which	is	executed	once	for	every
document	and	we	just	add	the	value	of	the	copies	field	to	the	earlier	initialized	variable.
The	combine_script	part,	executed	once	on	each	shard,	tells	Elasticsearch	to	return	the
calculated	variable.	Finally,	the	reduce_script	part,	executed	once	for	the	whole	query	on
the	aggregator	node,	will	run	a	for	loop,	which	will	go	through	all	the	returned	values	that
are	stored	in	the	_aggs	array	and	return	the	sum	of	those.	The	final	result	returned	by
Elasticsearch	for	the	preceding	query	looks	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"all_copies"	:	{

						"value"	:	7

				}

www.EBooksWorld.ir

		}

}

www.EBooksWorld.ir

Buckets	aggregations
The	second	type	of	aggregations	that	we	will	discuss	are	the	buckets	aggregations.	In
comparison	to	metrics	aggregations,	bucket	aggregation	returns	data	not	as	a	single	metric
but	as	a	list	of	key	value	pairs	called	buckets.	For	example,	the	terms	aggregation	returns
the	number	of	documents	associated	with	each	term	in	a	given	field.	The	very	powerful
thing	about	buckets	aggregations	is	that	they	can	have	sub-aggregations,	which	means	that
we	can	nest	other	aggregations	inside	the	aggregations	that	return	buckets	(we	will	discuss
this	at	the	end	of	the	buckets	aggregation	discussion).	Let’s	look	at	the	bucket
aggregations	that	are	provided	by	Elasticsearch	now.

Filter	aggregation
The	filter	aggregation	is	a	simple	bucketing	aggregation	that	allows	us	to	filter	the
results	to	a	single	bucket.	For	example,	let’s	assume	that	we	want	to	get	a	count	and	the
average	copies	count	of	all	the	books	that	are	novels,	which	means	they	have	the	term
novel	in	the	tags	field.	The	query	that	will	return	such	results	looks	as	follows:

{

	"aggs"	:	{

		"novels_count"	:	{

			"filter"	:	{

				"term":	{

					"tags":	"novel"

				}

			},

			"aggs"	:	{

				"avg_copies"	:	{

					"avg"	:	{

						"field"	:	"copies"

					}

				}

			}

		}

	}

}

As	you	can	see,	we	defined	the	filter	in	the	filter	section	of	the	aggregation	definition
and	we	defined	a	second	nested	aggregation.	The	nested	aggregation	is	the	one	that	will	be
run	on	the	filtered	documents.

The	response	returned	by	Elasticsearch	looks	as	follows:

{

		"took"	:	13,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

www.EBooksWorld.ir

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"novels_count"	:	{

						"doc_count"	:	2,

						"avg_copies"	:	{

								"value"	:	3.5

						}

				}

		}

}

In	the	returned	bucket,	we	have	information	about	the	number	of	documents	(represented
by	the	doc_count	property)	and	the	average	number	of	copies,	which	is	all	we	wanted.

Filters	aggregation
The	second	bucket	aggregation	we	want	to	show	you	is	the	filters	aggregation.	While
the	previously	discussed	filter	aggregation	resulted	in	a	single	bucket,	the	filters
aggregation	returns	multiple	buckets	–	one	for	each	of	the	defined	filters.	Let’s	extend	our
previous	example	and	assume	that,	in	addition	to	the	average	number	of	copies	for	the
novels,	we	also	want	to	know	the	average	number	of	copies	for	the	books	that	are
available.	The	query	that	will	get	us	this	information	will	use	the	filters	aggregation	and
will	look	as	follows:

{

	"aggs"	:	{

		"count"	:	{

			"filters"	:	{

				"filters"	:	{

					"novels"	:	{

						"term"	:	{

							"tags"	:	"novel"

						}

					},

					"available"	:	{

						"term"	:	{

							"available"	:	true

						}

					}

				}

			},

			"aggs"	:	{

				"avg_copies"	:	{

					"avg"	:	{

						"field"	:	"copies"

					}

				}

			}

		}

	}

}

Let’s	stop	here	and	look	at	the	definition	of	the	aggregation.	As	you	can	see,	we	defined

www.EBooksWorld.ir

two	filters	using	the	filters	section	of	the	filters	aggregation.	Each	filter	has	a	name
and	the	actual	Elasticsearch	filter;	the	first	is	called	novels	and	the	second	is	called
available.	Elasticsearch	will	use	these	names	in	the	returned	response.	The	thing	to
remember	is	that	Elasticsearch	will	create	a	bucket	for	each	defined	filter	and	will
calculate	the	nested	aggregation	that	we	defined	–	in	our	case,	the	one	that	calculates	the
average	number	of	copies.

Note
The	filters	aggregation	allows	us	to	return	one	more	bucket	in	addition	to	the	defined	ones
–	a	bucket	with	all	the	documents	that	didn’t	match	the	filters.	In	order	to	calculate	such	a
bucket,	we	need	to	add	the	other_bucket	property	to	the	body	of	the	aggregation	and	set
it	to	true.

The	results	returned	by	Elasticsearch	are	as	follows:

{

		"took"	:	4,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"count"	:	{

						"buckets"	:	{

								"novels"	:	{

										"doc_count"	:	2,

										"avg_copies"	:	{

												"value"	:	3.5

										}

								},

								"available"	:	{

										"doc_count"	:	2,

										"avg_copies"	:	{

												"value"	:	0.5

										}

								}

						}

				}

		}

}

As	you	can	see,	we	got	two	buckets,	which	is	what	we	expected.

Terms	aggregation
One	of	the	most	commonly	used	bucket	aggregations	is	the	terms	aggregation.	It	allows

www.EBooksWorld.ir

us	to	get	information	about	the	terms	and	the	count	of	documents	having	those	terms.	For
example,	one	of	the	simplest	uses	is	getting	the	count	of	the	books	that	are	available	and
not	available.	We	can	do	that	by	running	the	following	query:

{

	"aggs"	:	{

		"counts"	:	{

			"terms"	:	{

				"field"	:	"available"

			}

		}

	}

}

In	the	response,	we	will	get	two	buckets	(because	the	Boolean	field	can	only	have	two
values	–	true	and	false).	Here,	this	will	look	as	follows:

{

		"took"	:	7,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"counts"	:	{

						"doc_count_error_upper_bound"	:	0,

						"sum_other_doc_count"	:	0,

						"buckets"	:	[{

								"key"	:	0,

								"key_as_string"	:	"false",

								"doc_count"	:	2

						},	{

								"key"	:	1,

								"key_as_string"	:	"true",

								"doc_count"	:	2

						}]

				}

		}

}

By	default,	the	data	is	sorted	on	the	basis	of	document	count,	which	means	that	the	most
common	terms	will	be	placed	on	top	of	the	aggregation	results.	Of	course,	we	can	control
this	behavior	by	specifying	the	order	property	and	providing	the	order	just	like	we	usually
do	when	sorting	by	arbitrary	field	values.	Elasticsearch	allows	us	to	sort	by	the	document
count	(using	the	_count	static	value)	and	by	the	term	(using	the	_term	static	value).	For
example,	if	we	want	to	sort	our	preceding	aggregation	results	by	descending	term,	we	can
run	the	following	query:

www.EBooksWorld.ir

{

	"aggs"	:	{

		"counts"	:	{

			"terms"	:	{

				"field"	:	"available",

				"order"	:	{	"_term"	:	"desc"	}			}

		}

	}

}

However,	that’s	not	all	when	it	comes	to	sorting.	We	can	also	sort	by	the	results	of	the
nested	aggregations	that	were	included	in	the	query.

Note
terms	aggregation,	similar	to	the	min,	max,	avg,	and	sum	aggregations	discussed	in	the
metrics	aggregation	section	of	this	chapter,	supports	scripting	and	allows	us	to	specify
which	value	should	be	used	for	the	fields	that	don’t	have	a	value	in	the	specified	field.

Counts	are	approximate

The	thing	to	remember	when	discussing	terms	aggregation	is	that	the	counts	are
approximate.	This	is	because	each	shard	provides	its	own	counts	and	returns	that
aggregated	information	to	the	coordinating	node.	The	coordinating	node	aggregates	the
information	it	got	returning	the	final	information	to	the	client.	Because	of	that,	depending
on	the	data	and	how	it	is	distributed	between	the	shards,	some	information	about	the
counts	may	be	lost	and	the	counts	will	not	be	exact.	Of	course,	when	dealing	with	low
cardinality	fields,	the	approximation	will	be	closer	to	exact	numbers,	but	still	this	is
something	that	should	be	considered	when	using	the	terms	aggregation.

We	can	control	how	much	information	is	returned	from	each	of	the	shards	to	the
coordinating	node.	We	can	do	this	by	specifying	the	size	and	the	shard_size	properties.
The	size	property	specifies	how	many	buckets	will	be	returned	at	most.	The	higher	the
size	property,	the	more	accurate	the	calculation	will	be.	However,	that	will	cost	us
additional	memory	and	CPU	cycles,	which	means	that	the	calculation	will	be	more
expensive	and	will	put	more	pressure	on	the	hardware.	This	is	because	the	results	returned
to	the	coordinating	node	from	each	shard	will	be	larger	and	the	result	merging	process	will
be	harder.

The	shard_size	property	can	be	used	to	minimize	the	work	that	needs	to	be	done	by	the
coordinating	node.	When	set,	the	coordinating	node	will	fetch	(from	each	shard)	the
number	of	buckets	determined	by	the	shard_size	property.	This	allows	us	to	increase	the
precision	of	the	aggregation	while	avoiding	the	additional	overhead	on	the	coordinating
node.	Remember	that	the	shard_size	property	cannot	be	smaller	than	the	size	property.

Finally,	the	size	property	can	be	set	to	0,	which	will	tell	Elasticsearch	not	to	limit	the
number	of	returned	buckets.	It	is	usually	not	wise	to	set	the	size	property	to	0	as	it	can
result	in	high	resource	consumption.	Also,	avoid	setting	the	size	property	to	0	for	high
cardinality	fields	as	this	will	likely	make	your	Elasticsearch	cluster	explode.

Minimum	document	count

www.EBooksWorld.ir

Elasticsearch	provides	us	with	two	additional	properties,	which	can	be	useful	in	certain
situations:	min_doc_count	and	shard_min_doc_count.	The	min_doc_count	property
defaults	to	1	and	specifies	how	many	documents	must	match	a	term	to	be	included	in	the
aggregation	results.	One	thing	to	remember	is	that	setting	the	min_doc_count	property	to	0
will	result	in	returning	all	the	terms,	no	matter	if	they	have	a	matching	document	or	not.
This	can	result	in	a	very	large	result	set	for	aggregation	results.	For	example,	if	we	want	to
return	terms	matched	by	5	or	more	documents,	we	will	run	the	following	query:

{

	"aggs"	:	{

		"counts"	:	{

			"terms"	:	{

				"field"	:	"available",

				"min_doc_count"	:	5			}

		}

	}

}

The	shard_min_doc_count	property	is	very	similar	and	defines	how	many	documents
must	match	a	term	to	be	included	in	the	aggregation’s	results,	but	on	the	shard	level.

Range	aggregation
The	range	aggregation	allows	us	to	define	one	or	more	ranges	and	Elasticsearch	calculates
buckets	for	them.	For	example,	if	we	want	to	check	how	many	books	were	published	in	a
given	period	of	time,	we	create	the	following	query:

{

	"aggs":	{

		"years":	{

			"range":	{

				"field":	"year",

				"ranges":	[

					{	"to"	:	1850	},

					{	"from":	1851,	"to":	1900	},

					{	"from":	1901,	"to":	1950	},

					{	"from":	1951,	"to":	2000	},

					{	"from":	2001	}

]

			}

		}

	}

}

We	specify	the	field	we	want	the	aggregation	to	be	calculated	on	and	the	array	of	ranges.
Each	range	is	defined	by	one	or	two	properties:	the	two	and	from	similar	to	the	range
queries	which	we	already	discussed.

The	result	returned	by	Elasticsearch	for	our	data	looks	as	follows:

{

		"took"	:	23,

		"timed_out"	:	false,

		"_shards"	:	{

www.EBooksWorld.ir

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"years"	:	{

						"buckets"	:	[{

								"key"	:	"*-1850.0",

								"to"	:	1850.0,

								"to_as_string"	:	"1850.0",

								"doc_count"	:	0

						},	{

								"key"	:	"1851.0-1900.0",

								"from"	:	1851.0,

								"from_as_string"	:	"1851.0",

								"to"	:	1900.0,

								"to_as_string"	:	"1900.0",

								"doc_count"	:	1

						},	{

								"key"	:	"1901.0-1950.0",

								"from"	:	1901.0,

								"from_as_string"	:	"1901.0",

								"to"	:	1950.0,

								"to_as_string"	:	"1950.0",

								"doc_count"	:	2

						},	{

								"key"	:	"1951.0-2000.0",

								"from"	:	1951.0,

								"from_as_string"	:	"1951.0",

								"to"	:	2000.0,

								"to_as_string"	:	"2000.0",

								"doc_count"	:	1

						},	{

								"key"	:	"2001.0-*",

								"from"	:	2001.0,

								"from_as_string"	:	"2001.0",

								"doc_count"	:	0

						}]

				}

		}

}

For	example,	between	1901	and	1950	we	had	two	books	released.

Note
The	range	aggregation,	similar	to	the	min,	max,	avg,	and	sum	aggregations	discussed	in	the
metrics	aggregations	section	of	this	chapter,	supports	scripting	and	allows	us	to	specify
which	value	should	be	used	for	the	fields	that	don’t	have	a	value	in	the	specified	field.

Keyed	buckets

www.EBooksWorld.ir

One	thing	that	should	mention	when	it	comes	to	the	range	aggregation	is	that	we	can	give
the	defined	ranges	names.	For	example,	let’s	assume	that	we	want	to	use	the	names
Before	18th	century	for	the	books	released	before	1799,	18th	century	for	the	books
released	between	1800	and	1900,	19th	century	for	the	books	released	between	1900	and
1999,	and	After	19th	century	for	the	books	released	after	2000.	We	can	do	this	by
adding	the	key	property	to	each	defined	range,	giving	it	the	name,	and	adding	the	keyed
property	set	to	true.	Setting	the	keyed	property	to	true	will	associate	a	unique	string
value	to	each	bucket	and	the	key	property	defines	the	name	for	the	bucket	that	will	be	used
as	the	unique	name.	A	query	that	does	that	will	look	as	follows:

{

	"aggs":	{

		"years":	{

			"range":	{

				"field":	"year",

				"keyed":	true,

				"ranges":	[

					{	"key":	"Before	18th	century",	"to":	1799	},

					{	"key":	"18th	century",	"from":	1800,	"to":	1899	},

					{	"key":	"19th	century",	"from":	1900,	"to":	1999	},

					{	"key":	"After	19th	century",	"from":	2000	}

]

			}

		}

	}

}

The	response	returned	by	Elasticsearch	in	such	a	case	will	look	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"years"	:	{

						"buckets"	:	{

								"Before	18th	century"	:	{

										"to"	:	1799.0,

										"to_as_string"	:	"1799.0",

										"doc_count"	:	0

								},

								"18th	century"	:	{

										"from"	:	1800.0,

										"from_as_string"	:	"1800.0",

										"to"	:	1899.0,

www.EBooksWorld.ir

										"to_as_string"	:	"1899.0",

										"doc_count"	:	1

								},

								"19th	century"	:	{

										"from"	:	1900.0,

										"from_as_string"	:	"1900.0",

										"to"	:	1999.0,

										"to_as_string"	:	"1999.0",

										"doc_count"	:	3

								},

								"After	19th	century"	:	{

										"from"	:	2000.0,

										"from_as_string"	:	"2000.0",

										"doc_count"	:	0

								}

						}

				}

		}

}

Note
An	important	and	quite	useful	point	about	the	range	aggregation	is	that	the	defined	ranges
need	not	be	disjoint.	In	such	cases,	Elasticsearch	will	properly	count	the	document	for
multiple	buckets.

Date	range	aggregation
The	date_range	aggregation	is	similar	to	the	previously	discussed	range	aggregation	but
it	is	designed	for	fields	that	use	date-based	types.	However,	in	the	library	index,	the
documents	have	years,	but	the	field	is	a	number,	not	a	date.	For	the	purpose	of	showing
how	this	aggregation	works,	let’s	imagine	that	we	want	to	extend	our	library	index	to
support	newspapers.	To	do	this	we	will	create	a	new	index	(called	library2)	by	using	the
following	command:

curl	-XPOST	localhost:9200/_bulk	--data-binary	'{	"index":	{"_index":	

"library2",	"_type":	"book",	"_id":	"1"}}

{	"title":	"Fishing	news",	"published":	"2010/12/03	10:00:00",	"copies":	3,	

"available":	true	}

{	"index":	{"_index":	"library2",	"_type":	"book",	"_id":	"2"}}

{	"title":	"Knitting	magazine",	"published":	"2010/11/07	11:32:00",	

"copies":	1,	"available":	true	}

{	"index":	{"_index":	"library2",	"_type":	"book",	"_id":	"3"}}

{	"title":	"The	guardian",	"published":	"2009/07/13	04:33:00",	"copies":	0,	

"available":	false	}

{	"index":	{"_index":	"library2",	"_type":	"book",	"_id":	"4"}}

{	"title":	"Hadoop	World",	"published":	"2012/01/01	04:00:00",	"copies":	6,	

"available":	true	}

'

For	the	purpose	of	this	example,	we	will	leave	the	mappings	definition	for	Elasticsearch	–
this	is	sufficient	in	this	case.	Let’s	start	with	the	first	query	using	the	date_range
aggregation:

{

www.EBooksWorld.ir

	"aggs":	{

		"years":	{

			"date_range":	{

				"field":	"published",

				"ranges":	[

					{	"to"	:	"2009/12/31"	},

					{	"from":	"2010/01/01",	"to":	"2010/12/31"	},

					{	"from":	"2011/01/01"	}

]

			}

		}

	}

}

Compared	with	the	ordinary	range	aggregation,	the	only	thing	that	changed	is	the
aggregation	type,	which	is	now	date_range.	The	dates	can	be	passed	as	a	string	in	a	form
recognized	by	Elasticsearch	or	as	a	number	value	(number	of	milliseconds	since	1970-01-
01).	The	response	returned	by	Elasticsearch	for	the	preceding	query	looks	as	follows:

{

		"took"	:	5,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"years"	:	{

						"buckets"	:	[{

								"key"	:	"*-2009/12/31	00:00:00",

								"to"	:	1.2622176E12,

								"to_as_string"	:	"2009/12/31	00:00:00",

								"doc_count"	:	1

						},	{

								"key"	:	"2010/01/01	00:00:00-2010/12/31	00:00:00",

								"from"	:	1.262304E12,

								"from_as_string"	:	"2010/01/01	00:00:00",

								"to"	:	1.2937536E12,

								"to_as_string"	:	"2010/12/31	00:00:00",

								"doc_count"	:	2

						},	{

								"key"	:	"2011/01/01	00:00:00-*",

								"from"	:	1.29384E12,

								"from_as_string"	:	"2011/01/01	00:00:00",

								"doc_count"	:	1

						}]

				}

		}

}

www.EBooksWorld.ir

As	you	can	see,	the	response	is	no	different	when	compared	to	the	response	returned	by
the	range	aggregation.	We	have	two	attributes	for	each	bucket	-	named	from	and	to	which
represent	the	number	of	milliseconds	from	1970-01-01.	The	properties	from_as_string
and	to_as_string	present	the	same	information	as	from	and	to,	but	in	a	human-readable
form.	Of	course	the	keyed	parameter	and	key	in	the	definition	of	date	range	work	in	the
already	described	way.

Elasticsearch	also	allows	us	to	define	the	format	of	presented	dates	using	the	format
attribute.	In	our	example,	we	presented	the	dates	with	year	resolution,	so	the	day	and	time
parts	were	unnecessary.	If	we	want	to	show	the	month	names,	we	can	send	a	query	such	as
the	following	one:

{

	"aggs":	{

		"years":	{

			"date_range":	{

				"field":	"published",

				"format":	"MMMM	YYYY",

				"ranges":	[

					{	"to"	:	"December	2009"	},

					{	"from":	"January	2010",	"to":	"December	2010"	},

					{	"from":	"January	2011"	}

]

			}

		}

	}

}

Note	that	the	dates	in	the	to	and	from	parameters	also	need	to	be	provided	in	the	specified
format.	One	of	the	returned	ranges	looks	as	follows:

{

	"key"	:	"January	2010-December	2010",

	"from"	:	1.262304E12,

	"from_as_string"	:	"January	2010",

	"to"	:	1.2911616E12,

	"to_as_string"	:	"December	2010",

	"doc_count"	:	1

}

Note
The	available	formats	we	can	use	in	format	are	defined	in	the	Joda	Time	library.	The	full
list	is	available	at	http://joda-
time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html.

There	is	one	more	thing	about	the	date_range	aggregation	that	we	want	to	mention.
Imagine	that	some	time	we	may	want	to	build	an	aggregation	that	can	change	with	time.
For	example,	we	may	want	to	see	how	many	newspapers	were	published	in	the	last	3,	6,	9,
and	12	months.	This	is	possible	without	the	need	to	adjust	the	query	every	time,	as	we	can
use	constants	such	as	now-9M.	The	following	example	shows	this:

{

www.EBooksWorld.ir

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

	"aggs":	{

		"years":	{

			"date_range":	{

				"field":	"published",

				"format":	"dd-MM-YYYY",

				"ranges":	[

					{	"to"	:	"now-9M/M"		},

					{	"to"	:	"now-9M"		},

					{	"from":	"now-6M/M",	"to":	"now-9M/M"	},

					{	"from":	"now-3M/M"	}

]

			}

		}

	}

}

The	key	here	is	expressions	such	as	now-9M.	Elasticsearch	does	the	math	and	generates	the
appropriate	value.	For	example,	you	can	use	y	(year),	M	(month),	w	(week),	d	(day),	h
(hour),	m	(minute),	and	s	(second).	For	example,	the	expression	now+3d	means	three	days
from	now.	The	/M	in	our	example	takes	only	the	date	rounded	to	months.	Thanks	to	such
notation,	we	only	count	full	months.	The	second	advantage	is	that	the	calculated	date	is
more	cache-friendly	without	the	rounding	date	changes	every	millisecond	that	make	every
cache	based	on	the	range	irrelevant	and	basically	useless	in	most	cases.

IPv4	range	aggregation
A	very	interesting	aggregation	is	the	ip_range	one	as	it	works	on	Internet	addresses.	It
works	on	the	fields	defined	with	the	ip	type	and	allows	defining	ranges	given	by	the	IP
range	in	CIDR	notation	(http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing).
An	example	usage	of	the	ip_range	aggregation	looks	as	follows:

{

	"aggs":	{

		"access":	{

			"ip_range":	{

				"field":	"ip",

				"ranges":	[

					{	"from":	"192.168.0.1",	"to":	"192.168.0.254"	},

					{	"mask":	"192.168.1.0/24"	}

]

			}

		}

	}

}

The	response	to	the	preceding	query	is	as	follows:

						"access":	{

									"buckets":	[

												{

															"from":	3232235521,

															"from_as_string":	"192.168.0.1",

															"to":	3232235774,

															"to_as_string":	"192.168.0.254",

															"doc_count":	0

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

												},

												{

															"key":	"192.168.1.0/24",

															"from":	3232235776,

															"from_as_string":	"192.168.1.0",

															"to":	3232236032,

															"to_as_string":	"192.168.2.0",

															"doc_count":	4

												}

]

						}

Similar	to	the	range	aggregation,	we	define	both	ends	of	the	brackets	and	the	mask.	The
rest	is	done	by	Elasticsearch	itself.

Missing	aggregation
The	missing	aggregation	allows	us	to	create	a	bucket	and	see	how	many	documents	have
no	value	in	a	specified	field.	For	example,	we	can	check	how	many	of	our	books	in	the
library	index	don’t	have	the	original	title	defined	–	the	otitle	field.	To	do	this,	we	run
the	following	query:

{

	"aggs":	{

		"missing_original_title":	{

			"missing":	{

				"field":	"otitle"

			}

		}

	}

}

The	response	returned	by	Elasticsearch	in	this	case	will	look	as	follows:

{

		"took"	:	15,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"missing_original_title"	:	{

						"doc_count"	:	2

				}

		}

}

As	we	can	see,	we	have	two	documents	without	the	otitle	field.

www.EBooksWorld.ir

Histogram	aggregation
The	histogram	aggregation	is	an	interesting	one	because	of	its	automation.	This
aggregation	defines	buckets	itself.	We	are	only	responsible	for	defining	the	field	and	the
interval,	and	the	rest	is	done	automatically.	The	simplest	form	of	a	query	that	uses	this
aggregation	looks	as	follows:

{

	"aggs":	{

		"years":	{

			"histogram":	{

				"field"	:	"year",

				"interval":	100

			}

		}

	}

}

The	new	information	we	need	to	provide	is	interval,	which	defines	the	length	of	every
range	that	will	be	used	to	create	a	bucket.	We	set	the	interval	to	100,	which	in	our	case	will
result	in	buckets	that	are	100	years	wide.	The	aggregation	part	of	the	response	to	the
preceding	query	that	was	sent	to	our	library	index	is	as	follows:

{

		"took"	:	13,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"years"	:	{

						"buckets"	:	[{

								"key"	:	1800,

								"doc_count"	:	1

						},	{

								"key"	:	1900,

								"doc_count"	:	3

						}]

				}

		}

}

Similar	to	the	range	aggregation,	the	histogram	aggregation	allows	us	to	use	the	keyed
property	to	define	named	buckets.	The	other	available	option	is	min_doc_count,	which
allows	us	to	specify	the	minimum	number	of	documents	required	to	create	a	bucket.	If	we
set	the	min_doc_count	property	to	zero,	Elasticsearch	will	also	include	buckets	with	the
document	count	of	zero.	We	can	also	use	the	missing	property	to	specify	the	value

www.EBooksWorld.ir

Elasticsearch	should	use	when	a	document	doesn’t	have	a	value	in	the	specified	field.

www.EBooksWorld.ir

Date	histogram	aggregation
As	a	date_range	aggregation	is	a	specialized	form	of	the	range	aggregation,
date_histogram	is	an	extension	of	the	histogram	aggregation	that	works	on	dates.	For
the	purpose	of	this	example,	we	will	again	use	the	data	we	indexed	when	discussing	the
date	aggregation.	This	means	that	we	will	run	our	queries	against	the	index	called
library2.	An	example	query	using	the	date_histogram	aggregation	looks	as	follows:

{

	"aggs":	{

		"years":	{

			"date_histogram":	{

				"field"	:	"published",

				"format"	:	"yyyy-MM-dd	HH:mm",

				"interval"	:	"10d",	

				"min_doc_count"	:	1			}

		}

	}

}

The	difference	between	the	histogram	and	date_histogram	aggregations	is	the	interval
property.	The	value	of	this	property	is	now	a	string	describing	the	time	interval,	which	in
our	case	is	10	days.	Of	course	we	can	set	it	to	anything	we	want.	It	uses	the	same	suffixes
we	discussed	while	talking	about	formats	in	the	date_range	aggregation.	It	is	worth
mentioning	that	the	number	can	be	a	float	value.	For	example,	1.5m	means	that	the
length	of	the	bucket	will	be	one	and	a	half	minutes.	The	format	attribute	is	the	same	as	in
the	date_range	aggregation.	Thanks	to	it,	Elasticsearch	can	add	a	human-readable	date
text	according	to	the	defined	format.	Of	course	the	format	attribute	is	not	required	but
useful.	In	addition	to	that,	similar	to	the	other	range	aggregations,	the	keyed	and
min_doc_count	attributes	still	work.

Time	zones
Elasticsearch	stores	all	the	dates	in	the	UTC	time	zone.	You	can	define	the	time	zone	to	be
used	by	Elasticsearch	by	using	the	time_zone	attribute.	By	setting	this	property,	we
basically	tell	Elasticsearch	which	time	zone	should	be	used	to	perform	the	calculations.
There	are	three	notations	with	which	to	set	these	attributes:

We	can	set	the	hours	offset;	for	example,	time_zone:5
We	can	use	the	time	format;	for	example,	time_zone:"-04:30"
We	can	use	the	name	of	the	time	zone;	for	example,	time_zone:"Europe\Warsaw"

Note
Look	at	http://joda-time.sourceforge.net/timezones.html	to	see	the	available	time
zones.

www.EBooksWorld.ir

http://joda-time.sourceforge.net/timezones.html

Geo	distance	aggregations
The	next	two	aggregations	are	connected	with	maps	and	spatial	searches.	We	will	talk
about	geo	types	and	queries	in	the	Elasticsearch	spatial	capabilities	section	of	Chapter	8,
Beyond	Full-text	Searching,	so	feel	free	to	skip	these	two	topics	now	and	return	to	them
later.

Look	at	the	following	query:

{

	"aggs":	{

		"neighborhood":	{

			"geo_distance":	{

				"field":	"location",

				"origin":	[-0.1275,	51.507222],

				"ranges":	[

					{	"to":	1200	},

					{	"from":	1201	}

]

			}

		}

	}

}

You	can	see	that	the	query	is	similar	to	the	range	aggregation.	The	preceding	aggregation
will	calculate	the	number	of	documents	that	fall	into	two	buckets:	one	closer	than	1200	km
and	the	second	one	further	than	1200	km	from	the	geographical	point	defined	by	the
origin	property	(in	the	preceding	case,	the	origin	is	London).	The	aggregation	section	of
the	response	returned	by	Elasticsearch	looks	as	follows:

						"neighborhood":	{

									"buckets":	[

												{

															"key":	"*-1200.0",

															"from":	0,

															"to":	1200,

															"doc_count":	1

												},

												{

															"key":	"1201.0-*",

															"from":	1201,

															"doc_count":	4

												}

]

						}

The	keyed	and	the	key	attributes	work	in	the	geo_distance	aggregation	as	well,	so	we	can
easily	modify	the	response	to	our	needs	and	create	named	buckets.

The	geo_distance	aggregation	supports	a	few	additional	parameters	that	are	shown	in	the
following	query:

{

	"aggs":	{

www.EBooksWorld.ir

		"neighborhood":	{

			"geo_distance":	{

				"field":	"location",

				"origin":	{	"lon":	-0.1275,	"lat":	51.507222},

				"unit":	"m",

				"distance_type"	:	"plane",

				"ranges":	[

					{	"to":	1200	},

					{	"from":	1201	}

]

			}

		}

	}

}

We	have	highlighted	three	things	in	the	preceding	query.	The	first	change	is	how	we
defined	the	origin	point.	This	time	we	specified	the	location	by	providing	the	latitude	and
longitude	explicitly.

The	second	change	is	the	unit	attribute.	It	defines	the	units	used	in	the	ranges	array.	The
possible	values	are:	km	(the	default,	kilometers),	mi	(miles),	in	(inches),	yd	(yards),	m
(meters),	cm	(centimeters),	and	mm	(millimeters).

The	last	attribute,	distance_type,	specifies	how	Elasticsearch	calculates	the	distance.
The	possible	values	are	(from	the	fastest	but	least	accurate	to	the	slowest	but	the	most
accurate):	plane,	sloppy_arc	(the	default),	and	arc.

www.EBooksWorld.ir

Geohash	grid	aggregation
The	second	aggregation	related	to	geographical	analysis	is	based	on	grids	and	is	called
geohash_grid.	It	organizes	areas	into	grids	and	assigns	every	location	to	a	cell	in	such	a
grid.	To	do	this	efficiently,	Elasticsearch	uses	Geohash
(http://en.wikipedia.org/wiki/Geohash),	which	encodes	the	location	into	a	string.	The
longer	the	string	is,	the	more	accurate	the	description	of	a	particular	location.	For	example,
one	letter	is	sufficient	to	declare	a	box	of	about	five	thousand	square	kilometers	and	5
letters	are	enough	to	increase	the	accuracy	to	five	square	kilometers.	Let’s	look	at	the
following	query:

{

	"aggs":	{

		"neighborhood":	{

			"geohash_grid":	{

				"field":	"location",

				"precision":	5

			}

		}

	}

}

We	defined	the	geohash_grid	aggregation	with	buckets	that	have	a	precision	of	five
square	kilometers	(the	precision	attribute	describes	the	number	of	letters	used	in	the
geohash	string	object).	The	table	with	resolutions	versus	the	length	of	geohash	can	be
found	at	https://www.elastic.co/guide/en/elasticsearch/reference/master/search-
aggregations-bucket-geohashgrid-aggregation.html.

Of	course,	the	more	accurate	we	want	the	aggregation	to	be,	the	more	resources
Elasticsearch	will	consume,	because	of	the	number	of	buckets	that	the	aggregation	has	to
calculate.	By	default,	Elasticsearch	does	not	generate	more	than	10,000	buckets.	You	can
change	this	behavior	by	using	the	size	attribute,	but	keep	in	mind	that	the	performance
may	suffer	for	very	wide	queries	consisting	of	thousands	of	buckets.

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Geohash
https://www.elastic.co/guide/en/elasticsearch/reference/master/search-aggregations-bucket-geohashgrid-aggregation.html

Global	aggregation
The	global	aggregation	is	an	aggregation	that	defines	a	single	bucket	containing	all	the
documents	from	a	given	index	and	type,	and	not	influenced	by	the	query	itself.	The	thing
that	differentiates	the	global	aggregation	from	all	the	others	is	that	the	global
aggregation	has	an	empty	body.	For	example,	look	at	the	following	query:

{

	"query"	:	{

		"term"	:	{

			"available"	:	"true"

		}

	},

	"aggs":	{

		"all_books"	:	{

			"global"	:	{}

		}

	}

}

In	our	library	index,	we	only	have	two	available	books,	but	the	response	to	the	preceding
query	looks	as	follows:

{

		"took"	:	1,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	3,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"all_books"	:	{

						"doc_count"	:	4

				}

		}

}

As	you	can	see,	the	global	aggregation	is	not	bound	by	the	query.	Because	the	result	of
the	global	aggregation	is	a	single	bucket	containing	all	the	documents	(not	narrowed
down	by	the	query	itself),	it	is	a	perfect	candidate	for	use	as	a	top-level	parent	aggregation
for	nesting	aggregations.

www.EBooksWorld.ir

Significant	terms	aggregation
The	significant_terms	aggregation	allows	us	to	get	the	terms	that	are	relevant	and
probably	the	most	significant	for	a	given	query.	The	good	thing	is	that	it	doesn’t	only
show	the	top	terms	from	the	results	of	the	given	query,	but	also	the	one	that	seems	to	be
the	most	important	one.

The	use	cases	for	this	aggregation	type	can	vary	from	finding	the	most	troublesome	server
working	in	your	application	environment,	to	suggesting	nicknames	from	text.	Whenever
Elasticsearch	sees	a	significant	change	in	the	popularity	of	a	term,	such	a	term	is	a
candidate	for	being	significant.

Note
Remember	that	the	significant_terms	aggregation	is	very	expensive	when	it	comes	to
resources	and	running	against	large	indices.	Work	is	being	done	to	provide	a	lightweight
version	of	that	aggregation;	as	a	result,	the	API	for	significant_terms	aggregation	may
change	in	the	future.

The	best	way	to	describe	the	significant_terms	aggregation	type	is	to	use	an	example.
Let’s	start	with	indexing	12	simple	documents,	which	represent	reviews	of	work	done	by
interns:

curl	-XPOST	'localhost:9200/interns/review/1'	-d	'{"intern"	:	"Richard",	

"grade"	:	"bad",	"type"	:	"grade"}'

curl	-XPOST	'localhost:9200/interns/review/2'	-d	'{"intern"	:	"Ralf",	

"grade"	:	"perfect",	"type"	:	"grade"}'

curl	-XPOST	'localhost:9200/interns/review/3'	-d	'{"intern"	:	"Richard",	

"grade"	:	"bad",	"type"	:	"grade"}'

curl	-XPOST	'localhost:9200/interns/review/4'	-d	'{"intern"	:	"Richard",	

"grade"	:	"bad",	"type"	:	"review"}'

curl	-XPOST	'localhost:9200/interns/review/5'	-d	'{"intern"	:	"Richard",	

"grade"	:	"good",	"type"	:	"grade"}'

curl	-XPOST	'localhost:9200/interns/review/6'	-d	'{"intern"	:	"Ralf",	

"grade"	:	"good",	"type"	:	"grade"}'

curl	-XPOST	'localhost:9200/interns/review/7'	-d	'{"intern"	:	"Ralf",	

"grade"	:	"perfect",	"type"	:	"review"}'

curl	-XPOST	'localhost:9200/interns/review/8'	-d	'{"intern"	:	"Richard",	

"grade"	:	"medium",	"type"	:	"review"}'

curl	-XPOST	'localhost:9200/interns/review/9'	-d	'{"intern"	:	"Monica",	

"grade"	:	"medium",	"type"	:	"grade"}'

curl	-XPOST	'localhost:9200/interns/review/10'	-d	'{"intern"	:	"Monica",	

"grade"	:	"medium",	"type"	:	"grade"}'

curl	-XPOST	'localhost:9200/interns/review/11'	-d	'{"intern"	:	"Ralf",	

"grade"	:	"good",	"type"	:	"grade"}'

curl	-XPOST	'localhost:9200/interns/review/12'	-d	'{"intern"	:	"Ralf",	

"grade"	:	"good",	"type"	:	"grade"}'

Of	course,	to	show	the	real	power	of	the	significant_terms	aggregation,	we	should	use	a
way	larger	data	set.	However,	for	the	purpose	of	this	book,	we	will	concentrate	on	this
example,	so	it	is	easier	to	illustrate	how	this	aggregation	works.

Now	let’s	try	finding	the	most	significant	grade	for	Richard.	To	do	this	we	will	use	the

www.EBooksWorld.ir

following	query:

curl	-XGET	'localhost:9200/interns/_search?size=0&pretty'	-d	'{

	"query"	:	{

		"match"	:	{

			"intern"	:	"Richard"

		}

	},

	"aggregations"	:	{

		"description"	:	{

			"significant_terms"	:	{

				"field"	:	"grade"

			}

		}

	}

}'

The	result	of	the	preceding	query	looks	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	5,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"description"	:	{

						"doc_count"	:	5,

						"buckets"	:	[{

								"key"	:	"bad",

								"doc_count"	:	3,

								"score"	:	0.84,

								"bg_count"	:	3

						}]

				}

		}

}

As	you	can	see,	for	our	query	Elasticsearch	informed	us	that	the	most	significant	grade	for
Richard	is	bad.	Maybe	it	wasn’t	the	best	internship	for	him;	who	knows.

Choosing	significant	terms
To	calculate	significant	terms,	Elasticsearch	looks	for	data	that	reports	a	significant	change
in	their	popularity	between	two	sets	of	data:	the	foreground	set	and	the	background	set.
The	foreground	set	is	the	data	returned	by	our	query,	while	the	background	set	is	the	data
in	our	index	(or	indices,	depending	on	how	we	run	our	queries).	If	a	term	exists	in	10
documents	out	of	one	million	indexed,	but	appears	in	5	documents	from	the	10	returned,

www.EBooksWorld.ir

then	such	a	term	is	definitely	significant	and	worth	concentrating	on.

Let’s	get	back	to	our	preceding	example	now	to	analyze	it	a	bit.	Richard	got	three	grades
from	the	reviewers	–	bad	three	times,	medium	one	time,	and	good	one	time.	From	these
three,	the	bad	value	appeared	in	three	out	of	the	five	documents	matching	the	query.	In
general,	the	bad	grade	appeared	in	three	documents	(the	bg_count	property)	out	of	the	12
documents	in	the	index	(this	is	our	background	set).	This	gives	us	25	percent	of	the
indexed	documents.	On	the	other	hand,	the	bad	grade	appeared	in	three	out	of	the	five
documents	matching	the	query	(this	is	our	foreground	set),	which	gives	us	60	percent	of
the	documents.	As	you	can	see,	the	change	in	popularity	is	significant	for	the	bad	grade
and	that’s	why	Elasticsearch	has	returned	it	in	the	significant_terms	aggregation	results.

Multiple	value	analysis
The	significant_terms	aggregation	can	be	nested	and	provide	us	with	nice	data	analysis
capabilities	that	connect	two	multiple	sets	of	data.	For	example,	let’s	try	to	find	a
significant	grade	for	each	of	the	interns	that	we	have	information	about.	To	do	this	we	will
nest	the	significant_terms	aggregation	inside	the	terms	aggregation.	The	query	that
does	that	looks	as	follows:

curl	-XGET	'localhost:9200/interns/_search?size=0&pretty'	-d	'{

	"aggregations"	:	{

		"grades"	:	{

			"terms"	:	{

				"field"	:	"intern"

			},

			"aggregations"	:	{

				"significantGrades"	:	{

					"significant_terms"	:	{

						"field"	:	"grade"

					}

				}

			}

		}

	}

}'

The	results	returned	by	Elasticsearch	for	the	preceding	query	are	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	12,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

www.EBooksWorld.ir

				"grades"	:	{

						"doc_count_error_upper_bound"	:	0,

						"sum_other_doc_count"	:	0,

						"buckets"	:	[{

								"key"	:	"ralf",

								"doc_count"	:	5,

								"significantGrades"	:	{

										"doc_count"	:	5,

										"buckets"	:	[{

												"key"	:	"good",

												"doc_count"	:	3,

												"score"	:	0.48,

												"bg_count"	:	4

										}]

								}

						},	{

								"key"	:	"richard",

								"doc_count"	:	5,

								"significantGrades"	:	{

										"doc_count"	:	5,

										"buckets"	:	[{

												"key"	:	"bad",

												"doc_count"	:	3,

												"score"	:	0.84,

												"bg_count"	:	3

										}]

								}

						},	{

								"key"	:	"monica",

								"doc_count"	:	2,

								"significantGrades"	:	{

										"doc_count"	:	2,

										"buckets"	:	[]

								}

						}]

				}

		}

}

www.EBooksWorld.ir

Sampler	aggregation
The	sampler	aggregation	is	one	of	the	experimental	aggregations	in	Elasticsearch.	It
allows	us	to	limit	the	sub	aggregation	processing	to	a	sample	of	documents	that	are	top-
scoring	ones.	This	allows	filtering	and	potential	removal	of	garbage	in	the	data.	It	is	a	very
nice	candidate	as	a	top-level	aggregation	to	limit	the	amount	of	data	the
significant_terms	aggregation	runs	on.	The	simplest	example	of	using	this	aggregation
is	as	follows:

{

	"aggs":	{

		"sampler_example"	:	{

			"sampler"	:	{

				"field"	:	"tags",

				"max_docs_per_value"	:	1,

				"shard_size"	:	10

			},

			"aggs"	:	{

				"best_terms"	:	{

					"terms"	:	{

						"field"	:	"title"

					}

				}

			}

		}

	}

}

To	see	the	real	power	of	sampling,	we	will	have	to	play	with	it	on	a	larger	data	set,	but	for
now	we	will	discuss	the	preceding	example.	The	sampler	aggregation	was	defined	with
three	properties:	field,	max_docs_per_value,	and	shard_size.	The	first	two	properties
allow	us	to	control	the	diversity	of	the	sampling.	We	tell	Elasticsearch	how	many
documents	at	maximum	(the	value	of	the	max_doc_per_value	property)	can	be	collected
on	a	shard	with	the	same	value	in	the	defined	field	(the	value	of	the	field	property).

The	shard_size	property	tells	Elasticsearch	how	many	documents	(at	most)	to	collect
from	each	shard.

www.EBooksWorld.ir

Children	aggregation
The	children	aggregation	is	a	single-bucket	aggregation	that	creates	a	bucket	with	all	the
children	of	the	specified	type.	Let’s	get	back	to	the	Using	the	parent-child	relationship
section	in	Chapter	5,	Extending	Your	Index	Structure,	and	let’s	use	the	created	shop	index.
To	create	a	bucket	of	all	children	documents	with	the	variation	type	in	the	shop	index,	we
run	the	following	query:

{

	"aggs":	{

		"variation_children"	:	{

			"children"	:	{

				"type"	:	"variation"

			}

		}

	}

}

The	response	returned	by	Elasticsearch	is	as	follows:

{

		"took"	:	4,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	3,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"variation_children"	:	{

						"doc_count"	:	2

				}

		}

}

Note
Because	the	children	aggregation	uses	parent–child	functionality,	it	relies	on	the	_parent
field,	which	needs	to	be	present.

www.EBooksWorld.ir

Nested	aggregation
In	the	Using	nested	objects	section	of	Chapter	5,	Extending	Your	Index	Structure,	we
learned	about	nested	documents.	Let’s	use	that	data	to	look	into	the	next	type	of
aggregation	–	the	nested	one.	Let’s	create	the	simplest	working	query,	which	looks	like
this	(we	use	the	shop_nested	index	created	in	the	mentioned	chapter):

{

	"aggs":	{

		"variations":	{

			"nested":	{

				"path":	"variation"

			}

		}

	}

}

The	preceding	query	is	similar	in	structure	to	any	other	aggregation.	However,	instead	of
providing	the	field	name	on	which	the	aggregation	should	be	calculated,	it	contains	a
single	parameter	path,	which	points	to	the	nested	document.	In	the	response	we	get	a
number	of	nested	documents:

{

		"took"	:	4,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"variations"	:	{

						"doc_count"	:	2

				}

		}

}

The	preceding	response	means	that	we	have	two	nested	documents	in	the	index,	with	the
provided	type	variation.

www.EBooksWorld.ir

Reverse	nested	aggregation
The	reverse_nested	aggregation	is	a	special,	single-bucket	aggregation	that	allows
aggregation	on	parent	documents	from	the	nested	documents.	The	reverse_nested
aggregation	doesn’t	have	a	body	similar	to	global	aggregation.	Sounds	quite	complicated,
but	it	is	not.	Let’s	look	at	the	following	query	that	we	run	against	the	shop_nested	index
created	in	Chapter	5,	Extending	Your	Index	Structure	in	the	Using	nested	objects	section:

{

	"aggs":	{

		"variations":	{

			"nested":	{

				"path":	"variation"

			},

			"aggs"	:	{

				"sizes"	:	{

					"terms"	:	{

						"field"	:	"variation.size"

					},

					"aggs"	:	{

						"product_name_terms"	:	{

							"reverse_nested"	:	{},

							"aggs"	:	{

								"product_name_terms_per_size"	:	{

									"terms"	:	{

										"field"	:	"name"

									}

								}

							}

						}

					}

				}

			}

		}

	}

}

We	start	with	the	top	level	aggregation,	which	is	the	same	nested	aggregation	that	we
used	when	discussing	the	nested	aggregation.	However,	we	include	a	sub-aggregation	that
uses	reverse_nested	to	be	able	to	show	terms	from	the	title	for	each	size	returned	by	the
top-level	nested	aggregation.	This	is	possible	because,	when	the	reverse_nested
aggregation	is	used,	Elasticsearch	calculates	the	data	on	the	basis	of	the	parent	documents
instead	of	using	the	nested	documents.

Note
Remember	that	the	reverse_nested	aggregation	must	be	used	inside	the	nested
aggregation.

The	response	to	the	preceding	query	will	look	as	follows:

{

		"took"	:	7,

www.EBooksWorld.ir

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"variations"	:	{

						"doc_count"	:	2,

						"sizes"	:	{

								"doc_count_error_upper_bound"	:	0,

								"sum_other_doc_count"	:	0,

								"buckets"	:	[{

										"key"	:	"XL",

										"doc_count"	:	1,

										"product_name_terms"	:	{

												"doc_count"	:	1,

												"product_name_terms_per_size"	:	{

														"doc_count_error_upper_bound"	:	0,

														"sum_other_doc_count"	:	0,

														"buckets"	:	[{

																"key"	:	"shirt",

																"doc_count"	:	1

														},	{

																"key"	:	"test",

																"doc_count"	:	1

														}]

												}

										}

								},	{

										"key"	:	"XXL",

										"doc_count"	:	1,

										"product_name_terms"	:	{

												"doc_count"	:	1,

												"product_name_terms_per_size"	:	{

														"doc_count_error_upper_bound"	:	0,

														"sum_other_doc_count"	:	0,

														"buckets"	:	[{

																"key"	:	"shirt",

																"doc_count"	:	1

														},	{

																"key"	:	"test",

																"doc_count"	:	1

														}]

												}

										}

								}]

						}

				}

		}

}

www.EBooksWorld.ir

Nesting	aggregations	and	ordering	buckets
When	talking	about	bucket	aggregations,	we	just	need	to	get	back	to	the	topic	of	nesting
aggregations.	This	is	a	very	powerful	technique,	because	it	allows	you	to	further	process
the	data	for	documents	in	the	buckets.	For	example,	the	terms	aggregation	will	return	a
bucket	for	each	term	and	the	stats	aggregation	can	show	us	the	statistics	for	documents	in
each	bucket.	For	example,	let’s	look	at	the	following	query:

{

	"aggs":	{

		"copies"	:	{

			"terms"	:	{

				"field"	:	"copies"

			},

			"aggs"	:	{

				"years"	:	{

					"stats"	:	{

						"field"	:	"year"

					}

				}

			}

		}

	}

}

This	is	an	example	of	nested	aggregations.	The	terms	aggregation	will	return	buckets	for
each	term	from	the	copies	field	(three	buckets	in	the	case	of	our	data),	and	the	stats
aggregation	will	calculate	statistics	for	the	year	field	for	the	documents	falling	into	each
bucket	returned	by	the	top	aggregation.	The	response	from	Elasticsearch	for	the	preceding
query	looks	as	follows:

{

		"took"	:	3,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"copies	"	:	{

						"doc_count_error_upper_bound"	:	0,

						"sum_other_doc_count"	:	0,

						"buckets"	:	[{

								"key"	:	0,

								"doc_count"	:	2,

								"years"	:	{

										"count"	:	2,

www.EBooksWorld.ir

										"min"	:	1886.0,

										"max"	:	1936.0,

										"avg"	:	1911.0,

										"sum"	:	3822.0

								}

						},	{

								"key"	:	1,

								"doc_count"	:	1,

								"years"	:	{

										"count"	:	1,

										"min"	:	1929.0,

										"max"	:	1929.0,

										"avg"	:	1929.0,

										"sum"	:	1929.0

								}

						},	{

								"key"	:	6,

								"doc_count"	:	1,

								"years"	:	{

										"count"	:	1,

										"min"	:	1961.0,

										"max"	:	1961.0,

										"avg"	:	1961.0,

										"sum"	:	1961.0

								}

						}]

				}

		}

}

This	is	a	powerful	feature	and	allows	us	to	build	very	complex	data	processing	pipelines.
Of	course,	we	are	not	limited	to	a	single	nested	aggregation	and	we	can	nest	multiple	of
them	and	even	nest	an	aggregation	inside	a	nested	aggregation.	For	example:

{

	"aggs":	{

		"popular_tags"	:	{

			"terms"	:	{

				"field"	:	"copies"

			},

			"aggs"	:	{

				"years"	:	{

					"terms"	:	{

						"field"	:	"year"

					},

					"aggs"	:	{

						"available_by_year"	:	{

							"stats"	:	{

								"field"	:	"available"

							}

						}

					}

				},

				"available"	:	{

					"stats"	:	{

						"field"	:	"available"

www.EBooksWorld.ir

					}

				}

			}

		}

	}

}

As	you	can	see,	the	possibilities	are	almost	unlimited,	if	you	have	enough	memory	and
CPU	power	to	handle	very	complicated	aggregations.

Buckets	ordering
There	is	one	more	feature	about	nested	aggregations	and	the	ordering	of	aggregation
results.	Elasticsearch	can	use	values	from	the	nested	aggregations	to	sort	the	parent
buckets.	For	example,	let’s	look	at	the	following	query:

{

	"aggs":	{

		"availability":	{

			"terms":	{

				"field":	"copies",

				"order":	{	"numbers.avg":	"desc"	}

			},

			"aggs":	{

				"numbers":	{	"stats"	:	{}	}

			}

		}

	}

}

In	the	previous	example,	the	order	in	the	availability	aggregation	is	based	on	the
average	value	from	the	numbers	aggregation.	The	notation	numbers.avg	is	required	in	this
case,	because	stats	is	a	multivalued	aggregation	and	provides	multiple	information	and
we	were	interested	in	the	average.	If	it	were	the	sum	aggregation,	the	name	of	the
aggregation	would	be	sufficient.

www.EBooksWorld.ir

www.EBooksWorld.ir

Pipeline	aggregations
The	last	type	of	aggregation	we	will	discuss	is	pipeline	aggregations.	Till	now	we’ve
learned	about	metrics	aggregations	and	bucket	aggregations.	The	first	one	returned	metrics
while	the	second	type	returned	buckets.	And	both	metrics	and	buckets	aggregations
worked	on	the	basis	of	returned	documents.	Pipeline	aggregations	are	different.	They	work
on	the	output	of	the	other	aggregations	and	their	metrics,	allowing	functionalities	such	as
moving-average	calculations	(https://en.wikipedia.org/wiki/Moving_average).

Note
Remember	that	pipeline	aggregations	were	introduced	in	Elasticsearch	2.0	and	are
considered	experimental.	This	means	that	the	API	can	change	in	the	future,	breaking
backwards-compatibility.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Moving_average

Available	types
There	are	two	types	of	pipeline	aggregation.	The	so	called	parent	aggregations	family
works	on	the	output	of	other	aggregations.	They	are	able	to	produce	new	buckets	or	new
aggregations	to	add	to	existing	buckets.	The	second	type	is	called	sibling	aggregations	and
these	aggregations	are	able	to	produce	new	aggregations	on	the	same	level.

www.EBooksWorld.ir

Referencing	other	aggregations
Because	of	their	nature,	the	pipeline	aggregations	need	to	be	able	to	access	the	results	of
the	other	aggregations.	We	can	do	that	via	the	buckets_path	property,	which	is	defined
using	a	specified	format.	We	can	use	a	few	keywords	that	allow	us	to	tell	Elasticsearch
exactly	which	aggregation	and	metric	we	are	interested	in.	The	>	separates	the
aggregations	and	the	.	character	separates	the	aggregation	from	its	metrics.	For	example,
my_sum.sum	means	that	we	take	the	sum	metric	of	an	aggregation	called	my_sum.	Another
example	is	popular_tags>my_sum.sum,	which	means	that	we	are	interested	in	the	sum
metric	of	a	sub	aggregation	called	my_sum,	which	is	nested	inside	the	popular_tags
aggregation.	In	addition	to	this,	we	can	use	a	special	path	called	_count.	This	can	be	used
to	calculate	the	pipeline	aggregations	on	document	count	instead	of	specified	metrics.

www.EBooksWorld.ir

Gaps	in	the	data
Our	data	can	contain	gaps	–	situations	where	the	data	doesn’t	exist.	For	such	use	cases,	we
have	the	ability	to	specify	the	gap_policy	property	and	set	it	to	skip	or	insert_zeros.
The	skip	value	tells	Elasticsearch	to	ignore	the	missing	data	and	continue	from	the	next
available	value,	while	insert_zeros	replaces	the	missing	values	with	zero.

www.EBooksWorld.ir

Pipeline	aggregation	types
Most	of	the	aggregations	we	will	show	in	this	section	are	very	similar	to	the	ones	we’ve
already	seen	in	the	sections	about	metrics	and	buckets	aggregations.	Because	of	that,	we
won’t	discuss	them	in	depth.	There	are	also	new,	specific	pipeline	aggregations	that	we
want	to	talk	about	in	a	little	more	data.

Min,	max,	sum,	and	average	bucket	aggregations
The	min_bucket,	max_bucket,	sum_bucket,	and	avg_bucket	aggregations	are	sibling
aggregations,	similar	in	what	they	return	to	the	min,	max,	sum,	and	avg	aggregations.
However,	instead	of	working	on	the	data	returned	by	the	query,	they	work	on	the	results	of
the	other	aggregations.

To	show	you	a	simple	example	of	how	this	aggregation	works,	let’s	calculate	the	sum	of
all	the	buckets	returned	by	the	other	aggregations.	The	query	that	will	do	that	looks	as
follows:

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	100

			},

			"aggs"	:	{

				"copies_per_100_years"	:	{

					"sum"	:	{

						"field"	:	"copies"

					}

				}

			}

		},

		"sum_copies"	:	{

			"sum_bucket"	:	{

				"buckets_path"	:	"periods_histogram>copies_per_100_years"

			}

		}

	}

}

As	you	can	see,	we	used	the	histogram	aggregation	and	we	included	a	nested	aggregation
that	calculates	the	sum	of	the	copies	field.	Our	sum_bucket	sibling	aggregation	is	used
outside	the	main	aggregation	and	refers	to	it	using	the	buckets_path	property.	It	tells
Elasticsearch	that	we	are	interested	in	summing	the	values	of	metrics	returned	by	the
copies_per_100_years	aggregation.	The	result	returned	by	Elasticsearch	for	this	query
looks	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

www.EBooksWorld.ir

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"periods_histogram"	:	{

						"buckets"	:	[{

								"key"	:	1800,

								"doc_count"	:	1,

								"copies_per_100_years"	:	{

										"value"	:	0.0

								}

						},	{

								"key"	:	1900,

								"doc_count"	:	3,

								"copies_per_100_years"	:	{

										"value"	:	7.0

								}

						}]

				},

				"sum_copies"	:	{

						"value"	:	7.0

				}

		}

}

As	you	can	see,	Elasticsearch	added	another	bucket	to	the	results,	called	sum_copies,
which	holds	the	value	we	were	interested	in.

Cumulative	sum	aggregation
The	cumulative_sum	aggregation	is	a	parent	pipeline	aggregation	that	allows	us	to
calculate	the	sum	in	the	histogram	or	date_histogram	aggregation.	A	simple	example	of
the	aggregation	looks	as	follows:

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	100

			},

			"aggs"	:	{

				"copies_per_100_years"	:	{

					"sum"	:	{

						"field"	:	"copies"

					}

				},

				"cumulative_copies_sum"	:	{

					"cumulative_sum"	:	{

						"buckets_path"	:	"copies_per_100_years"

					}

www.EBooksWorld.ir

				}

			}

		}

	}

}

Because	this	aggregation	is	a	parent	pipeline	aggregation,	it	is	defined	in	the	sub
aggregations.	The	returned	result	looks	as	follows:

{

		"took"	:	2,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"periods_histogram"	:	{

						"buckets"	:	[{

								"key"	:	1800,

								"doc_count"	:	1,

								"copies_per_100_years"	:	{

										"value"	:	0.0

								},

								"cumulative_copies_sum"	:	{

										"value"	:	0.0

								}

						},	{

								"key"	:	1900,

								"doc_count"	:	3,

								"copies_per_100_years"	:	{

										"value"	:	7.0

								},

								"cumulative_copies_sum"	:	{

										"value"	:	7.0

								}

						}]

				}

		}

}

The	first	cumulative_copies_sum	is	0	because	of	the	sum	defined	in	the	bucket.	The
second	is	the	sum	of	all	the	previous	ones	and	the	current	bucket,	which	means	7.	The	next
will	be	the	sum	of	all	the	previous	ones	and	the	next	bucket.

Bucket	selector	aggregation
The	bucket_selector	aggregation	is	another	sibling	parent	aggregation.	It	allows	using	a
script	to	decide	if	a	bucket	should	be	retained	in	the	parent	multi-bucket	aggregation.	For

www.EBooksWorld.ir

example,	to	keep	only	buckets	that	have	more	than	one	copy	per	period,	we	can	run	the
following	query	(it	needs	the	script.inline	property	to	be	set	to	on	in	the
elasticsearch.yml	file):

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	100

			},

			"aggs"	:	{

				"copies_per_100_years"	:	{

					"sum"	:	{

						"field"	:	"copies"

					}

				},

				"remove_empty_buckets"	:	{

					"bucket_selector"	:	{

						"buckets_path"	:	{

							"sum_copies"	:	"copies_per_100_years"

						},

						"script"	:	"sum_copies	>	1"

					}

				}

			}

		}

	}

}

There	are	two	important	things	here.	The	first	is	the	buckets_path	property,	which	is
different	to	what	we’ve	used	so	far.	Now	it	uses	a	key	and	a	value.	The	key	is	used	to
reference	the	value	in	the	script.	The	second	important	thing	is	the	script	property,	which
defines	the	script	that	decides	if	the	processed	bucket	should	be	retained.	The	results
returned	by	Elasticsearch	in	this	case	are	as	follows:

{

		"took"	:	330,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"periods_histogram"	:	{

						"buckets"	:	[{

								"key"	:	1900,

								"doc_count"	:	3,

								"copies_per_100_years"	:	{

www.EBooksWorld.ir

										"value"	:	7.0

								}

						}]

				}

		}

}

As	we	can	see,	the	bucket	with	the	copies_per_100_years	value	equal	to	0	has	been
removed.

Bucket	script	aggregation
The	bucket_script	aggregation	(sibling	parent)	allows	us	to	define	multiple	bucket	paths
and	use	them	inside	a	script.	The	used	metrics	must	be	the	numeric	type	and	the	returned
value	also	needs	to	be	numeric.	An	example	of	using	this	aggregation	follows	(the
following	query	needs	the	script.inline	property	to	be	set	to	on	in	the
elasticsearch.yml	file):

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	100

			},

			"aggs"	:	{

				"copies_per_100_years"	:	{

					"sum"	:	{

						"field"	:	"copies"

					}

				},

				"stats_per_100_years"	:	{

					"stats"	:	{

						"field"	:	"copies"

					}

				},

				"example_bucket_script"	:	{

					"bucket_script"	:	{

						"buckets_path"	:	{

							"sum_copies"	:	"copies_per_100_years",

							"count"	:	"stats_per_100_years.count"

						},

						"script"	:	"sum_copies	/	count	*	1000"

					}

				}

			}

		}

	}

}

There	are	two	things	here.	The	first	thing	is	that	we’ve	defined	two	entries	in	the
buckets_path	property.	We	are	allowed	to	do	that	in	the	bucket_script	aggregation.
Each	entry	is	a	key	and	a	value.	The	key	is	the	name	of	the	value	that	we	can	use	in	the
script.	The	second	is	the	path	to	the	aggregation	metric	we	are	interested	in.	Of	course,	the

www.EBooksWorld.ir

script	property	defines	the	script	that	returns	the	value.

The	returned	results	for	the	preceding	query	are	as	follows:

{

		"took"	:	5,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

				"hits"	:	[]

		},

		"aggregations"	:	{

				"periods_histogram"	:	{

						"buckets"	:	[{

								"key"	:	1800,

								"doc_count"	:	1,

								"copies_per_100_years"	:	{

										"value"	:	0.0

								},

								"stats_per_100_years"	:	{

										"count"	:	1,

										"min"	:	0.0,

										"max"	:	0.0,

										"avg"	:	0.0,

										"sum"	:	0.0

								},

								"example_bucket_script"	:	{

										"value"	:	0.0

								}

						},	{

								"key"	:	1900,

								"doc_count"	:	3,

								"copies_per_100_years"	:	{

										"value"	:	7.0

								},

								"stats_per_100_years"	:	{

										"count"	:	3,

										"min"	:	0.0,

										"max"	:	6.0,

										"avg"	:	2.3333333333333335,

										"sum"	:	7.0

								},

								"example_bucket_script"	:	{

										"value"	:	2333.3333333333335

								}

						}]

				}

		}

}

www.EBooksWorld.ir

Serial	differencing	aggregation
The	serial_diff	aggregation	is	a	parent	pipeline	aggregation	that	implements	a	technique
where	the	values	in	time	series	data	(such	as	a	histogram	or	date	histogram)	are	subtracted
from	themselves	at	different	time	periods.	This	technique	allows	drawing	the	data	changes
between	time	periods	instead	of	drawing	the	whole	value.	You	know	that	the	population	of
a	city	grows	with	time.	If	we	use	the	serial	differencing	aggregation	with	the	period	of	one
day,	we	can	see	the	daily	growth.

To	calculate	the	serial_diff	aggregation,	we	need	the	parent	aggregation,	which	is	a
histogram	or	a	date_histogram,	and	we	need	to	provide	it	with	buckets_path,	which
points	to	the	metric	we	are	interested	in,	and	lag	(a	positive,	non-zero	integer	value),
which	tells	which	previous	bucket	to	subtract	from	the	current	one.	We	can	omit	lag,	in
which	case	Elasticsearch	will	set	it	to	1.

Let’s	now	look	at	a	simple	query	that	uses	the	discussed	aggregation:

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	100

			},

			"aggs"	:	{

				"copies_per_100_years"	:	{

					"sum"	:	{

						"field"	:	"copies"

					}

				},

				"first_difference"	:	{

					"serial_diff"	:	{

						"buckets_path"	:	"copies_per_100_years",

						"lag"	:	1

					}

				}

			}

		}

	}

}

The	response	to	the	preceding	query	looks	as	follows:

{

		"took"	:	68,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	0.0,

www.EBooksWorld.ir

				"hits"	:	[]

		},

		"aggregations"	:	{

				"periods_histogram"	:	{

						"buckets"	:	[{

								"key"	:	1800,

								"doc_count"	:	1,

								"copies_per_100_years"	:	{

										"value"	:	0.0

								}

						},	{

								"key"	:	1900,

								"doc_count"	:	3,

								"copies_per_100_years"	:	{

										"value"	:	7.0

								},

								"first_difference"	:	{

										"value"	:	7.0

								}

						}]

				}

		}

}

As	you	can	see,	with	the	second	bucket	we	got	our	aggregation	(we	will	get	it	with	every
bucket	after	that	as	well).	The	calculated	value	is	7	because	the	current	value	of
copies_per_100_years	is	7	and	the	previous	is	0.	Subtracting	0	from	7	gives	us	7.

Derivative	aggregation
The	derivative	aggregation	is	another	example	of	parent	pipeline	aggregation.	As	its
name	suggests,	it	calculates	a	derivative	(https://en.wikipedia.org/wiki/Derivative)	of	a
given	metric	from	a	histogram	or	date	histogram.	The	only	thing	we	need	to	provide	is
buckets_path,	which	points	to	the	metric	we	are	interested	in.	An	example	query	using
this	aggregation	looks	as	follows:

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	100

			},

			"aggs"	:	{

				"copies_per_100_years"	:	{

					"sum"	:	{

						"field"	:	"copies"

					}

				},

				"derivative_example"	:	{

					"derivative"	:	{

						"buckets_path"	:	"copies_per_100_years"

					}

				}

			}

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Derivative

		}

	}

}

Moving	avg	aggregation
The	last	pipeline	aggregation	that	we	want	to	discuss	is	the	moving_avg	one.	It	calculates
the	moving	average	metric	(https://en.wikipedia.org/wiki/Moving_average)	over	the
buckets	of	the	parent	aggregation	(yes,	this	is	a	parent	pipeline	aggregation).	Similar	to	the
few	previously	discussed	aggregations,	it	needs	to	be	run	on	the	parent	histogram	or	date
histogram	aggregation.

When	calculating	the	moving	average,	Elasticsearch	will	take	the	window	(specified	by
the	window	property	and	set	to	5	by	default),	calculate	the	average	for	buckets	in	the
window,	move	the	window	one	bucket	further,	and	repeat.	Of	course	we	also	need	to
provide	buckets_path,	which	points	to	the	metric	that	the	moving	average	should	be
calculated	for.

An	example	of	using	this	aggregation	looks	as	follows:

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	10

			},

			"aggs"	:	{

				"copies_per_10_years"	:	{

					"sum"	:	{

						"field"	:	"copies"

					}

				},

				"moving_avg_example"	:	{

					"moving_avg"	:	{

						"buckets_path"	:	"copies_per_10_years"

					}

				}

			}

		}

	}

}

We	will	omit	including	the	response	for	the	preceding	query	as	it	is	quite	large.

Predicting	future	buckets

The	very	nice	thing	about	moving	average	aggregation	is	that	it	supports	predictions;	it
can	attempt	to	extrapolate	the	data	it	has	and	create	future	buckets.	To	force	the
aggregation	to	predict	buckets,	we	just	need	to	add	the	predict	property	to	any	moving
average	aggregation	and	set	it	to	the	number	of	predictions	we	want	to	get.	For	example,	if
we	want	to	add	five	predictions	to	the	preceding	query,	we	will	change	it	to	look	as
follows:

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Moving_average

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	10

			},	

			"aggs"	:	{

				"copies_per_10_years"	:	{

					"sum"	:	{

						"field"	:	"copies"

					}

				},

				"moving_avg_example"	:	{

					"moving_avg"	:	{

						"buckets_path"	:	"copies_per_10_years",

						"predict"	:	5

					}

				}

			}

		}

	}

If	you	look	at	the	results	and	compare	the	response	returned	for	the	previous	query	with
the	one	with	predictions,	you	will	notice	that	the	last	bucket	in	the	previous	query	ends	on
the	key	property	equal	to	1960,	while	the	query	with	predictions	ends	on	the	key	property
equal	to	2010,	which	is	exactly	what	we	wanted	to	achieve.

The	models

By	default,	Elasticsearch	uses	the	simplest	model	for	calculating	the	moving	averages
aggregation,	but	we	can	control	that	by	specifying	the	model	property;	this	property	holds
the	name	of	the	model	and	the	settings	object,	which	we	can	use	to	provide	model
properties.

The	possible	models	are:	simple,	linear,	ewma,	holt,	and	holt_winters.	Discussing	each
of	the	models	in	detail	is	beyond	the	scope	of	the	book,	so	if	you	are	interested	in	details
about	the	different	models,	refer	to	the	official	Elasticsearch	documentation	regarding	the
moving	averages	aggregation	available	at
https://www.elastic.co/guide/en/elasticsearch/reference/master/search-aggregations-
pipeline-movavg-aggregation.html.

An	example	query	using	different	model	looks	as	follows:

{

	"aggs"	:	{

		"periods_histogram"	:	{

			"histogram"	:	{

				"field"	:	"year",

				"interval"	:	10			},

			"aggs"	:	{

				"copies_per_10_years"	:	{

						"sum"	:	{

								"field"	:	"copies"

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/master/search-aggregations-pipeline-movavg-aggregation.html

										}		},

		"moving_avg_example"	:	{

			"moving_avg"	:	{

				"buckets_path"	:	"copies_per_10_years",

				"model"	:	"holt",	

				"settings"	:	{

					"alpha"	:	0.6,

					"beta"	:	0.4

				}

			}

		}

			}

		}

	}

}

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
The	chapter	we	just	finished	was	all	about	data	analysis	in	Elasticsearch:	the	aggregations
engine.	We	learned	what	the	aggregations	are	and	how	they	work.	We	used	metrics,
buckets,	and	newly	introduced	pipeline	aggregations,	and	learned	what	we	can	do	with
them.

In	the	next	chapter,	we’ll	go	beyond	full	text	searching.	We	will	use	suggesters	to	build
efficient	autocomplete	functionality	and	correct	the	users’	spelling	mistakes.	We	will	see
what	percolation	is	and	how	to	use	it	in	our	application.	We	will	use	the	geospatial
abilities	of	Elasticsearch	and	we’ll	learn	how	to	efficiently	fetch	large	amount	of	data	from
Elasticsearch.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	8.	Beyond	Full-text	Searching
The	previous	chapter	was	fully	dedicated	to	data	analysis	and	how	we	can	perform	it	with
Elasticsearch.	We	learned	how	to	use	aggregations,	what	types	of	aggregation	are
available,	and	what	aggregations	are	available	within	each	type	and	how	to	use	them.	In
this	chapter,	we	will	get	back	to	query	related	topics.	By	the	end	of	this	chapter,	you	will
have	learned	the	following	topics:

What	is	percolator	and	how	to	use	it
What	are	the	geospatial	capabilities	of	Elasticsearch
How	to	use	and	build	functionalities	using	Elasticsearch	suggesters
How	to	use	the	Scroll	API	to	efficiently	fetch	large	numbers	of	results

www.EBooksWorld.ir

Percolator
Have	you	ever	wondered	what	would	happen	if	we	reverse	the	traditional	model	of	using
queries	to	find	documents	in	Elasticsearch?	Does	it	make	sense	to	have	a	document	and
search	for	queries	matching	it?	It	is	not	surprising	that	there	is	a	whole	range	of	solutions
where	this	model	is	very	useful.	Whenever	you	operate	on	an	unbounded	stream	of	input
data,	where	you	search	for	the	occurrences	of	particular	events,	you	can	use	this	approach.
This	can	be	used	for	the	detection	of	failures	in	a	monitoring	system	or	for	the	“Tell	me
when	a	product	with	the	defined	criteria	will	be	available	in	this	shop”	functionality.	In
this	section,	we	will	look	at	how	an	Elasticsearch	percolator	works	and	how	we	can	use	it
to	implement	one	of	the	aforementioned	use	cases.

www.EBooksWorld.ir

The	index
In	all	the	examples	to	be	used	when	discussing	percolator	functionality,	we	will	use	an
index	called	notifier.	The	mentioned	index	is	created	by	using	the	following	command:

curl	-XPOST	'localhost:9200/notifier'	-d	'{

		"mappings":	{

				"book"	:	{

						"properties"	:	{

								"title"	:	{

										"type"	:	"string"

								},

								"otitle"	:	{

										"type"	:	"string"

								},

								"year"	:	{

										"type"	:	"integer"

								},

								"available"	:	{

										"type"	:	"boolean"

								},

								"tags"	:	{

										"type"	:	"string",

										"index"	:	"not_analyzed"

								}

						}

				}

		}

}'

It	is	quite	simple.	It	contains	a	single	type	and	five	fields,	which	will	be	used	during	our
journey	through	the	world.

www.EBooksWorld.ir

Percolator	preparation
Elasticsearch	exposes	a	special	type	called	.percolator	that	is	treated	differently.	This
means	that	we	can	store	any	documents	and	also	search	them	like	an	ordinary	type	in	any
index.	If	you	look	at	any	Elasticsearch	query,	you	will	notice	that	each	is	a	valid	JSON
document,	which	means	that	we	can	index	and	store	it	as	a	document	as	well.	The	thing	is
that	percolator	allows	us	to	inverse	the	search	logic	and	search	for	queries	which	match	a
given	document.	This	is	possible	because	of	the	two	just	discussed	features:	the	special
.percolator	type	and	the	fact	that	queries	in	Elasticsearch	are	valid	JSON	documents.

Let’s	get	back	to	the	library	example	from	Chapter	2,	Indexing	Your	Data,	and	try	to
index	one	of	the	queries	in	the	percolator.	We	assume	that	our	users	need	to	be	informed
when	any	book	matching	the	criteria	defined	by	the	query	is	available.

Look	at	the	following	query1.json	file	that	contains	an	example	query	generated	by	the
user:

{

		"query"	:	{

				"bool"	:	{

						"must"	:	{

								"term"	:	{

										"title"	:	"crime"

								}

						},

						"should"	:	{

								"range"	:	{

										"year"	:	{

												"gt"	:	1900,

												"lt"	:	2000

										}

								}

						},

						"must_not"	:	{

								"term"	:	{

										"otitle"	:	"nothing"

								}

						}

				}

		}

}

To	enhance	the	example,	we	also	assume	that	our	users	are	allowed	to	define	filters	using
our	hypothetical	user	interface.	For	example,	our	user	may	be	interested	in	the	available
books	that	were	written	before	the	year	2010.	An	example	query	that	could	have	been
constructed	by	such	a	user	interface	would	look	as	follows	(the	query	was	written	to	the
query2.json	file):

{

		"query"	:	{

				"bool":	{

						"must"	:	{

								"range"	:	{

www.EBooksWorld.ir

										"year"	:	{

												"lt"	:	2010

										}

								}

						},

						"filter"	:	{

								"term"	:	{

										"available"	:	true

								}

						}

				}

		}

}

Now,	let’s	register	both	queries	in	the	percolator	(note	that	we	are	registering	the	queries
and	haven’t	indexed	any	documents).	In	order	to	do	this,	we	will	run	the	following
commands:

curl	-XPUT	'localhost:9200/notifier/.percolator/1'	-d	@query1.json

curl	-XPUT	'localhost:9200/notifier/.percolator/old_books'	-d	@query2.json

In	the	preceding	examples,	we	used	two	completely	different	identifiers.	We	did	that	in
order	to	show	that	we	can	use	an	identifier	that	best	describes	the	query.	It	is	up	to	us	to
decide	under	which	name	we	would	like	the	query	to	be	registered.

We	are	now	ready	to	use	our	percolator.	Our	application	will	provide	documents	to	the
percolator	and	check	if	any	of	the	already	registered	queries	match	the	document.	This	is
exactly	what	a	percolator	allows	us	to	do	-	to	reverse	the	search	logic.	Instead	of	indexing
the	documents	and	running	queries	against	them,	we	store	the	queries	and	send	the
documents	to	find	the	matching	queries.

Let’s	use	an	example	document	that	will	match	both	stored	queries;	it	will	have	the
required	title	and	the	release	date,	and	will	mention	whether	it	is	currently	available.	The
command	to	send	such	a	document	to	the	percolator	looks	as	follows:

curl	-XGET	'localhost:9200/notifier/book/_percolate?pretty'	-d	'{

		"doc"	:	{

				"title":	"Crime	and	Punishment",

				"otitle":	"Преступлéние	и	наказáние",

				"author":	"Fyodor	Dostoevsky",

				"year":	1886,

				"characters":	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],	

						"tags":	[],

				"copies":	0,

				"available"	:	true

		}

}'

As	we	expected,	both	queries	matched	and	the	Elasticsearch	response	includes	the
identifiers	of	the	matching	queries.	Such	a	response	looks	as	follows:

{

		"took"	:	36,

		"_shards"	:	{

				"total"	:	5,

www.EBooksWorld.ir

				"successful"	:	5,

				"failed"	:	0

		},

		"total"	:	2,

		"matches"	:	[{

				"_index"	:	"notifier",

				"_id"	:	"old_books"

		},	{

				"_index"	:	"notifier",

				"_id"	:	"1"

		}]

}

This	works	like	a	charm.	One	very	important	thing	to	note	is	the	endpoint	used	in	this
query:	_percolate.	Using	this	endpoint	is	required	when	we	want	to	use	the	percolator.
The	index	name	corresponds	to	the	index	where	the	queries	were	stored,	and	the	type	is
equal	to	the	type	defined	in	the	mappings.

Note
The	response	format	contains	information	about	the	index	and	the	query	identifier.	This
information	is	included	for	cases	when	we	search	against	multiple	indices	at	once.	When
using	a	single	index,	adding	an	additional	query	parameter,	percolate_format=ids,	will
change	the	response	as	follows:

		"matches"	:	["old_books",	"1"]

www.EBooksWorld.ir

Getting	deeper
Because	the	queries	registered	in	a	percolator	are	in	fact	documents,	we	can	use	a	normal
query	sent	to	Elasticsearch	in	order	to	choose	which	queries	stored	in	the	.percolator
type	should	be	used	in	the	percolation	process.	This	may	sound	weird,	but	it	really	gives	a
lot	of	possibilities.	In	our	library,	we	can	have	several	groups	of	users.	Let’s	assume	that
some	of	them	have	permissions	to	borrow	very	rare	books,	or	that	we	have	several
branches	in	the	city	and	the	user	can	declare	where	he	or	she	would	like	to	get	the	book
from.

Let’s	see	how	such	use	cases	can	be	implemented	by	using	the	percolator.	To	do	this,	we
will	need	to	update	our	mapping	and	include	the	branch	information.	We	do	that	by
running	the	following	command:

curl	-XPOST	'localhost:9200/notifier/.percolator/_mapping'	-d	'{

		".percolator"	:	{

				"properties"	:	{

						"branches"	:	{

								"type"	:	"string",

								"index"	:	"not_analyzed"

						}

				}

		}

}'

Now,	in	order	to	register	a	query,	we	use	the	following	command:

curl	-XPUT	'localhost:9200/notifier/.percolator/3'	-d	'{

		"query"	:	{

				"term"	:	{

						"title"	:	"crime"

				}

		},

		"branches"	:	["brA",	"brB",	"brD"]

}'

In	the	preceding	example,	we	registered	a	query	that	shows	a	user’s	interest.	Our
hypothetical	user	is	interested	in	any	book	with	the	term	crime	in	the	title	field	(the	term
query	is	responsible	for	this).	He	or	she	wants	to	borrow	this	book	from	one	of	the	three
listed	branches.	When	specifying	the	mappings,	we	defined	that	the	branches	field	is	a
non-analyzed	string	field.	We	can	now	include	a	query	along	with	the	document	we	sent
previously.	Let’s	look	at	how	to	do	this.

Our	book	system	just	got	the	book,	and	it	is	ready	to	report	the	book	and	check	whether
the	book	is	of	interest	to	anyone.	To	check	this,	we	send	the	document	that	describes	the
book	and	add	an	additional	query	to	such	a	request	-	the	query	that	will	limit	the	users	to
only	the	ones	interested	in	the	brB	branch.	Such	a	request	looks	as	follows:

curl	-XGET	'localhost:9200/notifier/book/_percolate?pretty'	-d	'{

		"doc"	:	{

				"title":	"Crime	and	Punishment",

				"otitle":	"

www.EBooksWorld.ir

Преступлéние	и	наказáние

",

				"author":	"Fyodor	Dostoevsky",

				"year":	1886,

				"characters":	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],	

						"tags":	[],

				"copies":	0,

				"available"	:	true

		},

		"size"	:	10,

		"filter"	:	{

				"term"	:	{

						"branches"	:	"brB"

				}

		}

}'

If	everything	was	executed	correctly,	the	response	returned	by	Elasticsearch	should	look
as	follows	(we	indexed	our	query	with	3	as	an	identifier):

{

		"took"	:	27,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"total"	:	1,

		"matches"	:	[{

				"_index"	:	"notifier",

				"_id"	:	"3"

		}]

}

Controlling	the	size	of	returned	results
The	size	of	the	results	when	it	comes	to	percolator	makes	the	difference.	The	more	queries
a	single	document	matches,	the	more	results	will	be	returned	and	more	memory	will	be
needed	by	Elasticsearch.	Because	of	this,	there	is	one	additional	thing	to	note	-	the	size
parameter.	It	allows	us	to	limit	the	number	of	matches	returned.

Percolator	and	score	calculation
In	the	previous	examples,	we	filtered	our	queries	using	a	single	term	query,	but	we	didn’t
think	about	the	scoring	process	at	all.	Elasticsearch	allows	us	to	calculate	the	score	when
using	the	percolator.	Let’s	change	the	previously	used	document	sent	to	the	percolator	and
adjust	it	so	that	scoring	is	used:

curl	-XGET	'localhost:9200/notifier/book/_percolate?pretty'	-d	'{

		"doc"	:	{

				"title":	"Crime	and	Punishment",

				"otitle":	"Преступлéние	и	наказáние",

				"author":	"Fyodor	Dostoevsky",

				"year":	1886,

				"characters":	["Raskolnikov",	"Sofia	Semyonovna	Marmeladova"],	

www.EBooksWorld.ir

						"tags":	[],

				"copies":	0,

				"available"	:	true

		},

		"size"	:	10,

		"query"	:	{

				"term"	:	{

						"branches"	:	"brB"

				}

		},

		"track_scores"	:	true,

		"sort"	:	{

				"_score"	:	"desc"

		}

}'

As	you	can	see,	we	used	the	query	section	and	included	an	additional	track_scores
attribute	set	to	true.	This	is	needed,	because	by	default	Elasticsearch	won’t	calculate	the
score	for	the	documents	because	of	performance.	If	we	need	scores	in	the	percolation
process,	we	should	be	aware	that	such	queries	will	be	slightly	more	demanding	when	it
comes	to	CPU	processing	power	than	the	ones	that	omit	calculating	the	score.

Note
In	the	preceding	example,	we	told	Elasticsearch	to	sort	our	result	on	the	basis	of	the	score
in	descending	order.	This	is	the	default	behavior	when	track_scores	is	turned	on,	so	we
can	omit	sort	declaration.	At	the	time	of	writing,	sorting	on	score	in	descending	direction
is	the	only	available	option.

Combining	percolators	with	other	functionalities
If	we	are	allowed	to	use	queries	along	with	the	documents	sent	for	percolation,	why	can
we	not	use	other	Elasticsearch	functionalities?	Of	course,	this	is	possible.	For	example,	the
following	document	is	sent	along	with	an	aggregation	and	the	results	will	include	the
aggregation	calculation:

curl	-XGET	'localhost:9200/notifier/book/_percolate?pretty'	-d	'{

		"doc":	{

				"title":	"Crime	and	Punishment",

				"available":	true

		},

		"aggs"	:	{

				"test"	:	{

						"terms"	:	{

								"field"	:	"branches"

						}

				}

		}

}'

As	we	can	see,	percolator	allows	us	to	run	both	query	and	aggregations.	Look	at	the
following	example	document:

curl	-XGET	'localhost:9200/notifier/book/_percolate?pretty'	-d	'{

www.EBooksWorld.ir

		"doc":	{

				"title":	"Crime	and	Punishment",

				"year":	1886,

				"available":	true

		},

		"size"	:	10,

		"highlight":	{

				"fields":	{

						"title":	{}

				}

		}

}'

As	you	can	see,	it	contains	a	highlighting	section.	A	fragment	of	the	response	returned	by
Elasticsearch	looks	as	follows:

		{

				"_index"	:	"notifier",

				"_id"	:	"3",

				"highlight"	:	{

						"title"	:	["Crime	and	Punishment"]

				}

		}

Note
Note	that	there	are	some	limitations	when	it	comes	to	the	query	types	supported	by	the
percolator	functionality.	In	the	current	implementation,	parent-child	relations	are	not
available	in	the	percolator,	so	you	can’t	use	queries	such	as	has_child,	top_children,
and	has_parent.

www.EBooksWorld.ir

Getting	the	number	of	matching	queries
Sometimes	you	don’t	care	about	the	matched	queries	and	you	only	want	the	number	of
matched	queries.	In	such	cases,	sending	a	document	against	the	standard	percolator
endpoint	is	not	efficient.	Elasticsearch	exposes	the	_percolate/count	endpoint	to	handle
such	cases	in	an	efficient	way.	An	example	of	such	a	command	follows:

curl	-XGET	'localhost:9200/notifier/book/_percolate/count?pretty'	-d	'{

	"doc"	:	{	...	}

	}'

www.EBooksWorld.ir

Indexed	document	percolation
In	the	final,	closing	paragraph	of	the	percolation	section,	we	want	to	show	you	one	more
thing	–	the	possibility	of	percolating	a	document	that	is	already	indexed.	To	do	this,	we
need	to	use	the	GET	operation	on	the	document	and	provide	information	about	which
percolator	index	should	be	used.	Let’s	look	at	the	following	command:

curl	-XGET	'localhost:9200/library/book/1/_percolate?

percolate_index=notifier'

This	command	checks	the	document	with	the	1	identifier	from	our	library	index	against
the	percolator	index	defined	by	the	percolate_index	parameter.	Remember	that,	by
default,	Elasticsearch	will	use	the	percolator	in	the	same	index	as	the	document;	that’s
why	we’ve	specified	the	percolate_index	parameter.

www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch	spatial	capabilities
The	search	servers	such	as	Elasticsearch	are	usually	looked	at	from	the	perspective	of	full-
text	searching.	Elasticsearch,	because	of	its	marketing	as	being	part	of	ELK	(Elasticsearch,
Logstash,	and	Kibana),	is	also	highly	known	for	being	able	to	handle	large	amount	of	time
series	data.	However,	this	is	only	a	part	of	the	whole	view.	Sometimes	both	of	the
mentioned	use	cases	are	not	enough.	Imagine	searching	for	local	services.	For	the	end
user,	the	most	important	thing	is	the	accuracy	of	the	results.	By	accuracy,	we	not	only
mean	the	proper	results	of	the	full-text	search,	but	also	the	results	being	as	near	as	they
can	in	terms	of	location.	In	several	cases,	this	is	the	same	as	a	text	search	on	geographical
names	such	as	cities	or	streets,	but	in	other	cases	we	can	find	it	very	useful	to	be	able	to
search	on	the	basis	of	the	geographical	coordinates	of	our	indexed	documents.	And	this	is
also	a	functionality	that	Elasticsearch	is	capable	of	handling.

With	the	release	of	Elasticsearch	2.2,	the	geo_point	type	received	a	lot	of	changes,
especially	internally	where	all	the	optimizations	were	done.	Prior	to	2.2,	the	geo_point
type	was	stored	in	the	index	as	a	two	not	analyzed	string	values	and	this	changed.	With	the
release	of	Elasticsearch	2.2,	the	geo_point	type	got	all	the	great	improvements	from
Apache	Lucene	library	and	is	now	more	efficient.

www.EBooksWorld.ir

Mapping	preparation	for	spatial	searches
In	order	to	discuss	the	spatial	search	functionality,	let’s	prepare	an	index	with	a	list	of
cities.	This	will	be	a	very	simple	index	with	one	type	named	poi	(which	stands	for	the
point	of	interest),	the	name	of	the	city,	and	its	coordinates.	The	mappings	are	as	follows:

{

		"mappings"	:	{

				"poi"	:	{

						"properties"	:	{

								"name"	:	{	"type"	:	"string"	},

								"location"	:	{	"type"	:	"geo_point"	}

						}

				}

		}

}

Assuming	that	we	put	this	definition	into	the	mapping1.json	file,	we	can	create	an	index
by	running	the	following	command:

curl	-XPUT	localhost:9200/map	-d	@mapping1.json

The	only	new	thing	in	the	preceding	mappings	is	the	geo_point	type,	which	is	used	for
the	location	field.	By	using	it,	we	can	store	the	geographical	position	of	our	city	and	use
spatial-based	functionalities.

www.EBooksWorld.ir

Example	data
Our	example	documents1.json	file	with	documents	looks	as	follows:

{	"index"	:	{	"_index"	:	"map",	"_type"	:	"poi",	"_id"	:	1	}}

{	"name"	:	"New	York",	"location"	:	"40.664167,	-73.938611"	}

{	"index"	:	{	"_index"	:	"map",	"_type"	:	"poi",	"_id"	:	2	}}

{	"name"	:	"London",	"location"	:	[-0.1275,	51.507222]	}

{	"index"	:	{	"_index"	:	"map",	"_type"	:	"poi",	"_id"	:	3	}}

{	"name"	:	"Moscow",	"location"	:	{	"lat"	:	55.75,	"lon"	:	37.616667	}}

{	"index"	:	{	"_index"	:	"map",	"_type"	:	"poi",	"_id"	:	4	}}

{	"name"	:	"Sydney",	"location"	:	"-33.859972,	151.211111"	}

{	"index"	:	{	"_index"	:	"map",	"_type"	:	"poi",	"_id"	:	5	}}

{	"name"	:	"Lisbon",	"location"	:	"eycs0p8ukc7v"	}

In	order	to	perform	a	bulk	request,	we	added	information	about	the	index	name,	type,	and
unique	identifiers	of	our	documents;	so,	we	can	now	easily	import	this	data	using	the
following	command:

curl	-XPOST	localhost:9200/_bulk	--data-binary	@documents1.json

One	thing	that	we	should	take	a	closer	look	at	is	the	location	field.	We	can	use	various
notations	for	coordination.	We	can	provide	the	latitude	and	longitude	values	as	a	string,	as
a	pair	of	numbers,	or	as	an	object.	Note	that	the	string	and	array	methods	of	providing	the
geographical	location	have	different	orders	for	the	latitude	and	longitude	parameters.	The
last	record	shows	that	there	is	also	a	possibility	to	give	coordination	as	a	Geohash	value
(the	notation	is	described	in	detail	at	http://en.wikipedia.org/wiki/Geohash).

Additional	geo_field	properties
With	the	release	of	Elasticsearch	2.2,	the	number	of	parameters	that	the	geo_point	type
can	accept	has	been	reduced	and	is	as	follows:

geohash:	Boolean	parameter	telling	Elasticsearch	whether	the	.geohash	field	should
be	created.	Defaults	to	false	unless	geohash_prefix	is	used.
geohash_precision:	Maximum	size	of	geohash	and	geohash_prefix.
geohash_prefix:	Boolean	parameter	telling	Elasticsearch	to	index	the	geohash	and
its	prefixes.	Defaults	to	false.
ignore_malformed:	Boolean	parameter	telling	Elasticsearch	to	ignore	a	badly	written
geo_field	point	instead	of	rejecting	the	whole	document.	Defaults	to	false,	which
means	that	the	badly	formatted	geo_field	data	will	result	in	an	indexation	error	for
the	whole	document.
lat_lon:	Boolean	parameter	telling	Elasticsearch	to	index	the	spatial	data	in	two
separate	fields	called	.lat	and	.lon.	Defaults	to	false.
precision_step:	Parameter	allowing	control	over	how	our	numeric	geographical
points	will	be	indexed.

Keep	in	mind	that	the	geohash	field	related	and	lat_lon	field	related	properties	were	not
removed	for	backward-compatibility	reasons.	The	users	can	still	use	them.	However,	the
queries	will	not	use	them	but	will	instead	use	the	highly	optimized	data	structure	that	is

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Geohash

built	during	indexing	by	the	geo_point	type.

www.EBooksWorld.ir

Sample	queries
Now	let’s	look	at	several	examples	of	using	coordinates	and	solving	common
requirements	in	modern	applications	that	require	geographical	data	searching	along	with
full-text	searching.

Note
If	you	are	interested	in	all	the	geospatial	queries	that	are	available	for	Elasticsearch	users,
refer	to	the	official	documentation	available	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html.

Distance-based	sorting
Let’s	start	with	a	very	common	requirement:	sorting	the	returned	results	by	distance	from
a	given	point.	In	our	example,	we	want	to	get	all	the	cities	and	sort	them	by	their	distances
from	the	capital	of	France,	Paris.	To	do	this,	we	send	the	following	query	to	Elasticsearch:

curl	-XGET	localhost:9200/map/_search?pretty	-d	'{

		"query"	:	{

				"match_all"	:	{}

		},

		"sort"	:	[{

				"_geo_distance"	:	{

						"location"	:	"48.8567,	2.3508",

						"unit"	:	"km"

				}

		}]

}'

If	you	remember	the	Sorting	data	section	from	Chapter	4,	Extending	Your	Querying
Knowledge,	you’ll	notice	that	the	format	is	slightly	different.	We	are	using	the
_geo_distance	key	to	indicate	sorting	by	distance.	We	must	give	the	base	location	(the
location	attribute,	which	holds	the	information	of	the	location	of	Paris	in	our	case),	and
we	need	to	specify	the	units	that	can	be	used	in	the	results.	The	available	values	are	km	and
mi,	which	stand	for	kilometers	and	miles,	respectively.	The	result	of	such	a	query	will	be
as	follows:

{

		"took"	:	5,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	5,

				"max_score"	:	null,

				"hits"	:	[{

						"_index"	:	"map",

						"_type"	:	"poi",

						"_id"	:	"2",

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

						"_score"	:	null,

						"_source"	:	{

								"name"	:	"London",

								"location"	:	[-0.1275,	51.507222]

						},

						"sort"	:	[343.17487356850313]

				},	{

						"_index"	:	"map",

						"_type"	:	"poi",

						"_id"	:	"5",

						"_score"	:	null,

						"_source"	:	{

								"name"	:	"Lisbon",

								"location"	:	"eycs0p8ukc7v"

						},

						"sort"	:	[1452.9506736367805]

				},	{

						"_index"	:	"map",

						"_type"	:	"poi",

						"_id"	:	"3",

						"_score"	:	null,

						"_source"	:	{

								"name"	:	"Moscow",

								"location"	:	{

										"lat"	:	55.75,

										"lon"	:	37.616667

								}

						},

						"sort"	:	[2483.837565935267]

				},	{

						"_index"	:	"map",

						"_type"	:	"poi",

						"_id"	:	"1",

						"_score"	:	null,

						"_source"	:	{

								"name"	:	"New	York",

								"location"	:	"40.664167,	-73.938611"

						},

						"sort"	:	[5832.645958617513]

				},	{

						"_index"	:	"map",

						"_type"	:	"poi",

						"_id"	:	"4",

						"_score"	:	null,

						"_source"	:	{

								"name"	:	"Sydney",

								"location"	:	"-33.859972,	151.211111"

						},

						"sort"	:	[16978.094780773998]

				}]

		}

}

As	with	the	other	examples	of	sorting,	Elasticsearch	shows	information	about	the	value
used	for	sorting.	Let’s	look	at	the	highlighted	record.	As	we	can	see,	the	distance	between
Paris	and	London	is	about	343	km,	and	if	you	check	a	traditional	map,	you	will	see	that

www.EBooksWorld.ir

this	is	true.

Bounding	box	filtering
The	next	example	that	we	want	to	show	is	narrowing	down	the	results	to	a	selected	area
that	is	bounded	by	a	given	rectangle.	This	is	very	handy	if	we	want	to	show	results	on	the
map	or	when	we	allow	a	user	to	mark	the	map	area	for	searching.	You	already	read	about
filters	in	the	Filtering	your	results	section	of	Chapter	4,	Extending	Your	Querying
Knowledge,	but	there	we	didn’t	mention	spatial	filters.	The	following	query	shows	how
we	can	filter	by	using	the	bounding	box:

curl	-XGET	localhost:9200/map/_search?pretty	-d	'{

		"query"	:	{

				"bool"	:	{

						"must"	:	{	"match_all":	{}},

						"filter"	:	{

								"geo_bounding_box"	:	{

										"location"	:	{

												"top_left"	:	"52.4796,	-1.903",

												"bottom_right"	:	"48.8567,	2.3508"

										}

								}

						}

				}

		}

}'

In	the	preceding	example,	we	selected	a	map	fragment	between	Birmingham	and	Paris	by
providing	the	top-left	and	bottom-right	corner	coordinates.	These	two	corners	are	enough
to	specify	any	rectangle	we	want,	and	Elasticsearch	will	do	the	rest	of	the	calculation	for
us.	The	following	screenshot	shows	the	specified	rectangle	on	the	map:

www.EBooksWorld.ir

As	we	can	see,	the	only	city	from	our	data	that	meets	the	criteria	is	London.	So,	let’s	check
whether	Elasticsearch	knows	this	by	running	the	preceding	query.	Let’s	now	look	at	the
returned	results:

{

		"took"	:	38,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	1.0,

				"hits"	:	[{

						"_index"	:	"map",

						"_type"	:	"poi",

						"_id"	:	"2",

						"_score"	:	1.0,

						"_source"	:	{

								"name"	:	"London",

								"location"	:	[-0.1275,	51.507222]

						}

				}]

		}

}

www.EBooksWorld.ir

As	you	can	see,	again	Elasticsearch	agrees	with	the	map.

Limiting	the	distance
The	last	example	shows	the	next	common	requirement:	limiting	the	results	to	the	places
that	are	located	no	further	than	the	defined	distance	from	a	given	point.	For	example,	if	we
want	to	limit	our	results	to	all	the	cities	within	the	500km	radius	from	Paris,	we	can	use	the
following	query:

curl	-XGET	localhost:9200/map/_search?pretty	-d	'{

		"query"	:	{

				"bool"	:	{

						"must"	:	{	"match_all":	{}},

						"filter"	:	{

								"geo_distance"	:	{

										"location"	:	"48.8567,	2.3508",

										"distance"	:	"500km"

								}

						}

				}

		}

}'

If	everything	goes	well,	Elasticsearch	should	only	return	a	single	record	for	the	preceding
query,	and	the	record	should	be	London	again.	However,	we	will	leave	it	for	you	as	a
reader	to	check.

www.EBooksWorld.ir

Arbitrary	geo	shapes
Sometimes,	using	a	single	geographical	point	or	a	single	rectangle	is	just	not	enough.	In
such	cases	something	more	sophisticated	is	needed,	and	Elasticsearch	addresses	this	by
giving	you	the	possibility	to	define	shapes.	In	order	to	show	you	how	we	can	leverage
custom	shape-limiting	in	Elasticsearch,	we	need	to	modify	our	index	or	create	a	new	one
and	introduce	the	geo_shape	type.	Our	new	mapping	looks	as	follows	(we	will	use	this	to
create	an	index	called	map2):

{

		"mappings"	:	{

				"poi"	:	{

						"properties"	:	{

								"name"	:	{	"type"	:	"string",	"index":	"not_analyzed"	},

								"location"	:	{	"type"	:	"geo_shape"	}

						}

				}

		}

}

Assuming	we	wrote	the	preceding	mapping	definition	to	the	mapping2.json	file,	we	can
create	an	index	by	using	the	following	command:

curl	-XPUT	localhost:9200/map2	-d	@mapping2.json

Note
Elasticsearch	allows	us	to	set	several	attributes	for	the	geo_shape	type.	The	most
commonly	used	is	the	precision	parameter.	During	indexing,	the	shapes	have	to	be
converted	to	a	set	of	terms.	The	more	accuracy	required,	the	more	terms	should	be
generated,	which	is	directly	reflected	in	the	index	size	and	performance.	Precision	can	be
defined	in	the	following	units:	in,	inch,	yd,	yard,	mi,	miles,	km,	kilometers,	m,	meters,
cm,	centimeters,	or	mm,	millimeters.	By	default,	the	precision	is	set	to	50m.

Next,	let’s	change	our	example	data	to	match	our	new	index	structure	and	create	the
documents2.json	file	with	the	following	contents:

{	"index"	:	{	"_index"	:	"map2",	"_type"	:	"poi",	"_id"	:	1	}}

{	"name"	:	"New	York",	"location"	:	{	"type":	"point",	"coordinates":	

[-73.938611,	40.664167]	}}

{	"index"	:	{	"_index"	:	"map2",	"_type"	:	"poi",	"_id"	:	2	}}

{	"name"	:	"London",	"location"	:	{	"type":	"point",	"coordinates":	

[-0.1275,	51.507222]	}}

{	"index"	:	{	"_index"	:	"map2",	"_type"	:	"poi",	"_id"	:	3	}}

{	"name"	:	"Moscow",	"location"	:	{	"type":	"point",	"coordinates":	[

37.616667,	55.75]}}

{	"index"	:	{	"_index"	:	"map2",	"_type"	:	"poi",	"_id"	:	4	}}

{	"name"	:	"Sydney",	"location"	:	{	"type":	"point",	"coordinates":	

[151.211111,	-33.865143]}}

{	"index"	:	{	"_index"	:	"map2",	"_type"	:	"poi",	"_id"	:	5	}}

{	"name"	:	"Lisbon",	"location"	:	{	"type":	"point",	"coordinates":	

[-9.142685,	38.736946]	}}

www.EBooksWorld.ir

The	structure	of	the	field	of	the	geo_shape	type	is	different	from	geo_point.	It	is
syntactically	called	GeoJSON	(http://en.wikipedia.org/wiki/GeoJSON).	It	allows	us	to
define	various	geographical	types.	Now	it’s	time	to	index	our	data:

curl	-XPOST	localhost:9200/_bulk	--data-binary	@documents2.json

Let’s	sum	up	the	types	that	we	can	use	during	querying,	at	least	the	ones	that	we	think	are
the	most	useful	ones.

Point
A	point	is	defined	by	the	table	when	the	first	element	is	the	longitude	and	the	second	is	the
latitude.	An	example	of	such	a	shape	is	as	follows:

{

		"type":	"point",

		"coordinates":	[-0.1275,	51.507222]

}

Envelope
An	envelope	defines	a	box	given	by	the	coordinates	of	the	upper-left	and	bottom-right
corners	of	the	box.	An	example	of	such	a	shape	is	as	follows:

{

		"type":	"envelope",

		"coordinates":	[[-0.087890625,	51.50874245880332],	[2.4169921875,	

48.80686346108517]]

}

Polygon
A	polygon	defines	a	list	of	points	that	are	connected	to	create	our	polygon.	The	first	and
the	last	point	in	the	array	must	be	the	same	so	that	the	shape	is	closed.	An	example	of	such
a	shape	is	as	follows:

{

		"type":	"polygon",

		"coordinates":	[[

				[-5.756836,	49.991408],

				[-7.250977,	55.124723],

				[1.845703,	51.500194],

				[-5.756836,	49.991408]

]]

}

If	you	look	closely	at	the	shape	definition,	you	will	find	a	supplementary	level	of	tables.
Thanks	to	this,	you	can	define	more	than	a	single	polygon.	In	such	a	case,	the	first
polygon	defines	the	base	shape	and	the	rest	of	the	polygons	are	the	shapes	that	will	be
excluded	from	the	base	shape.

Multipolygon
The	multipolygon	shape	allows	us	to	create	a	shape	that	consists	of	multiple	polygons.
An	example	of	such	a	shape	is	as	follows:

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/GeoJSON

{

		"type":	"multipolygon",

		"coordinates":	[

				[[

							[-5.756836,	49.991408],

							[-7.250977,	55.124723],

							[1.845703,	51.500194],

							[-5.756836,	49.991408]

]],	[[

							[-0.087890625,	51.50874245880332],

							[2.4169921875,	48.80686346108517],

							[3.88916015625,	51.01375465718826],

							[-0.087890625,	51.50874245880332]

]]]

}

The	multipolygon	shape	contains	multiple	polygons	and	falls	into	the	same	rules	as	the
polygon	type.	So,	we	can	have	multiple	polygons	and,	in	addition	to	this,	we	can	include
multiple	exclusion	shapes.

An	example	usage
Now	that	we	have	our	index	with	the	geo_shape	fields,	we	can	check	which	cities	are
located	in	the	UK.	The	query	that	will	allow	us	to	do	this	looks	as	follows:

curl	-XGET	localhost:9200/map2/_search?pretty	-d	'{

		"query"	:	{

				"bool"	:	{

						"must"	:	{	"match_all":	{}},

						"filter":	{

								"geo_shape":	{

										"location":	{

												"shape":	{

														"type":	"polygon",

														"coordinates":	[[

																[-5.756836,	49.991408],	[-7.250977,	55.124723],

																[-3.955078,	59.352096],	[1.845703,	51.500194],

																[-5.756836,	49.991408]

]]

												}

										}

								}

						}

				}

		}

}'

The	polygon	type	defines	the	boundaries	of	the	UK	(in	a	very,	very	imprecise	way),	and
Elasticsearch’s	response	is	as	follows:

{

		"took"	:	7,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

www.EBooksWorld.ir

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	1,

				"max_score"	:	1.0,

				"hits"	:	[{

						"_index"	:	"map2",

						"_type"	:	"poi",

						"_id"	:	"2",

						"_score"	:	1.0,

						"_source"	:	{

								"name"	:	"London",

								"location"	:	{

										"type"	:	"point",

										"coordinates"	:	[-0.1275,	51.507222]

								}

						}

				}]

		}

}

As	far	as	we	know,	the	response	is	correct.

Storing	shapes	in	the	index
Usually,	shape	definitions	are	complex,	and	the	defined	areas	don’t	change	too	often	(for
example,	the	boundaries	of	the	UK).	In	such	cases,	it	is	convenient	to	define	the	shapes	in
the	index	and	use	them	in	queries.	This	is	possible,	and	we	will	now	discuss	how	to	do	it.
As	usual,	we	will	start	with	the	appropriate	mapping,	which	is	as	follows:

{

		"mappings"	:	{

				"country":	{

						"properties":	{

								"name":	{	"type":	"string",	"index":	"not_analyzed"	},

								"area":	{	"type":	"geo_shape"	}

						}

				}

		}

}

This	mapping	is	similar	to	the	mapping	used	previously.	We	have	only	changed	the	field
name	and	saved	it	in	the	mapping3.json	file.	Let’s	create	a	new	index	by	running	the
following	command:

curl	-XPUT	localhost:9200/countries	-d	@mapping3.json

The	example	data	that	we	will	use	looks	as	follows	(stored	in	the	file	called
documents3.json):

{"index":	{	"_index":	"countries",	"_type":	"country",	"_id":	1	}}

{"name":	"UK",	"area":	{"type":	"polygon",	"coordinates":	[[[-5.756836,	

49.991408],	[-7.250977,	55.124723],	[-3.955078,	59.352096],	[1.845703,	

51.500194],	[-5.756836,	49.991408]]]}}

{"index":	{	"_index":	"countries",	"_type":	"country",	"_id":	2	}}

{"name":	"France",	"area":	{	"type":"polygon",	"coordinates":	[[[

www.EBooksWorld.ir

3.1640625,	42.09822241118974],	[-1.7578125,	43.32517767999296],	[

-4.21875,	48.22467264956519],	[2.4609375,	50.90303283111257],	[

7.998046875,	48.980216985374994],	[7.470703125,	44.08758502824516],	[

3.1640625,	42.09822241118974]]]	}}

{"index":	{	"_index":	"countries",	"_type":	"country",	"_id":	3	}}

{"name":	"Spain",	"area":	{	"type":	"polygon",	"coordinates":	[[[

3.33984375,	42.22851735620852],	[-1.845703125,	43.32517767999296],	[

-9.404296875,	43.19716728250127],	[-6.6796875,	41.57436130598913],	[

-7.3828125,	36.87962060502676],	[-2.109375,	36.52729481454624],	[

3.33984375,	42.22851735620852]]]	}}

To	index	the	data,	we	just	need	to	run	the	following	command:

curl	-XPOST	localhost:9200/_bulk	--data-binary	@documents3.json

As	you	can	see	in	the	data,	each	document	contains	a	polygon	type.	The	polygons	define
the	area	of	the	given	countries	(again,	it	is	far	from	being	accurate).	If	you	remember,	the
first	point	of	a	shape	needs	to	be	the	same	as	the	last	one	so	that	the	shape	is	closed.	Now,
let’s	change	our	query	to	include	the	shapes	from	the	index.	Our	new	query	looks	as
follows:

curl	-XGET	localhost:9200/map2/_search?pretty	-d	'{

		"query"	:	{

				"bool"	:	{

						"must"	:	{	"match_all":	{}},

						"filter":	{

								"geo_shape":	{

										"location":	{

												"indexed_shape":	{

														"index":	"countries",

														"type":	"country",

														"path":	"area",

														"id":	"1"

												}

										}

								}

						}

				}

		}

}'

When	comparing	these	two	queries,	we	can	note	that	the	shape	object	changed	to
indexed_shape.	We	need	to	tell	Elasticsearch	where	to	look	for	this	shape.	We	can	do	this
by	defining	the	index	(the	index	property,	which	defaults	to	shape),	the	type	(the	type
property),	and	the	path	(the	path	property,	which	defaults	to	shape).	The	one	item	lacking
is	an	id	property	of	the	shape.	In	our	case,	this	is	1.	However,	if	you	want	to	index	more
shapes,	we	advise	you	to	index	the	shapes	with	their	name	as	their	identifier.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using	suggesters
A	long	time	ago,	starting	from	Elasticsearch	0.90	(which	was	released	on	April	29,	2013),
we	got	the	ability	to	use	so-called	suggesters.	We	can	define	a	suggester	as	a	functionality
allowing	us	to	correct	the	user’s	spelling	mistakes	and	build	autocomplete	functionality
keeping	performance	in	mind.	This	section	is	dedicated	to	these	functionalities	and	will
help	you	learn	about	them.	We	will	discuss	each	available	suggester	type	and	show	the
most	common	properties	that	allow	us	to	control	them.	However,	keep	in	mind	that	this
section	is	not	a	comprehensive	guide	describing	each	and	every	property.	Description	of
all	the	details	about	suggesters	are	a	very	broad	topic	and	is	out	of	the	scope	of	this	book.
If	you	want	to	dig	into	their	functionality,	refer	to	the	official	Elasticsearch	documentation
(https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters.html)	or
to	the	Mastering	Elasticsearch	Second	Edition	book	published	by	Packt	Publishing.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters.html

Available	suggester	types
These	have	changed	since	the	initial	introduction	of	the	Suggest	API	to	Elasticsearch.	We
are	now	able	to	use	four	type	of	suggesters:

term:	A	suggester	returning	corrections	for	each	word	passed	to	it.	Useful	for
suggestions	that	are	not	phrases,	such	as	single	term	queries.
phrase:	A	suggester	working	on	phrases,	returning	a	proper	phrase.
completion:	A	suggester	designed	to	provide	fast	and	efficient	autocomplete	results.
context:	Extension	to	the	Suggest	API	of	Elasticsearch.	Allows	us	to	handle	parts	of
the	suggest	queries	in	memory	and	thus	very	effective	in	terms	of	performance.

www.EBooksWorld.ir

Including	suggestions
Let’s	now	try	getting	suggestions	along	with	the	query	results.	For	example,	let’s	use	a
match_all	query	and	try	getting	a	suggestion	for	a	serlock	holnes	phrase,	which	has
two	terms	spelled	incorrectly.	To	do	this,	we	run	the	following	command:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"match_all"	:	{}

	},

	"suggest"	:	{

		"first_suggestion"	:	{

			"text"	:	"serlock	holnes",

			"term"	:	{

				"field"	:	"_all"

			}

		}

	}

}'

As	you	can	see,	we’ve	introduced	a	new	section	to	our	query	–	the	suggest	one.	We’ve
specified	the	text	we	want	to	get	the	correction	for	by	using	the	text	property.	We’ve
specified	the	suggester	we	want	to	use	(the	term	one)	and	configured	it	specifying	the
name	of	the	field	that	should	be	used	for	building	suggestions	using	the	field	property.
first_suggestion	is	the	name	we	give	to	our	suggester;	we	need	to	do	this	because	there
can	be	multiple	ones	used.	This	is	how	you	send	a	request	for	suggestion	in	general.

If	we	want	to	get	multiple	suggestions	for	the	same	text,	we	can	embed	our	suggestions	in
the	suggest	object	and	place	the	text	property	as	the	suggest	object	option.	For	example,
if	we	want	to	get	suggestions	for	the	serlock	holnes	text	for	the	title	field	and	for	the
_all	field,	we	run	the	following	command:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"query"	:	{

		"match_all"	:	{}

	},

	"suggest"	:	{

		"text"	:	"serlock	holnes",

		"first_suggestion"	:	{

			"term"	:	{

				"field"	:	"_all"

			}

		},

		"second_suggestion"	:	{

			"term"	:	{

				"field"	:	"title"

			}

		}

	}

}'

Suggester	response

www.EBooksWorld.ir

Now	let’s	look	at	the	response	of	the	first	query	we	sent.	As	you	can	guess,	the	response
includes	both	the	query	results	and	the	suggestions:

{

		"took"	:	10,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	1.0,

				"hits"	:	[...]

		},

		"suggest"	:	{

				"first_suggestion"	:	[{

						"text"	:	"serlock",

						"offset"	:	0,

						"length"	:	7,

						"options"	:	[{

								"text"	:	"sherlock",

								"score"	:	0.85714287,

								"freq"	:	1

						}]

				},	{

						"text"	:	"holnes",

						"offset"	:	8,

						"length"	:	6,

						"options"	:	[{

								"text"	:	"holmes",

								"score"	:	0.8333333,

								"freq"	:	1

						}]

				}]

		}

}

We	can	see	that	we	got	both	the	search	results	and	the	suggestions	(we’ve	omitted	the
results	to	make	the	example	more	readable)	in	the	response.	The	term	suggester	returned	a
list	of	possible	suggestions	for	each	term	that	was	present	in	the	text	parameter.	For	each
term,	the	term	suggester	returns	an	array	of	possible	suggestions.	Looking	at	the	data
returned	for	the	serlock	term,	we	can	see	the	original	word	(the	text	parameter),	its
offset	in	the	original	text	parameter	(the	offset	parameter),	and	its	length	(the	length
parameter).

The	options	array	contains	suggestions	for	the	given	word	and	will	be	empty	if
Elasticsearch	doesn’t	find	any	suggestions.	Each	entry	in	this	array	is	a	suggestion	and
described	by	the	following	properties:

text:	Text	of	the	suggestion.
score:	Suggestion	score;	the	higher	the	score,	the	better	the	suggestion.
freq:	Frequency	of	the	suggestion.	The	frequency	represents	how	many	times	the

www.EBooksWorld.ir

word	appears	in	the	documents	in	the	index	we	are	running	the	suggestion	query
against.

www.EBooksWorld.ir

Term	suggester
The	term	suggester	works	on	the	basis	of	string	edit	distance.	This	means	that	the
suggestion	with	the	fewest	characters	that	need	to	be	changed,	added,	or	removed	to	make
the	suggestion	look	as	the	original	word,	is	the	best	one.	For	example,	let’s	take	the	words
worl	and	work.	To	change	the	worl	term	to	work,	we	need	to	change	the	l	letter	to	k,	so	it
means	a	distance	of	1.	The	text	provided	to	the	suggester	is	of	course	analyzed	and	then
terms	are	chosen	to	be	suggested.

Term	suggester	configuration	options
The	common	and	most	used	term	suggester	options	can	be	used	for	all	the	suggester
implementations	that	are	based	on	the	term	one.	Currently,	these	are	the	phrase	suggester
and	of	course	the	base	term	one.	The	available	options	are:

text:	The	text	we	want	to	get	the	suggestions	for.	This	parameter	is	required	in	order
for	the	suggester	to	work.
field:	Another	required	parameter	that	we	need	to	provide.	The	field	parameter
allows	us	to	set	which	field	the	suggestions	should	be	generated	for.
analyzer:	The	name	of	the	analyzer	which	should	be	used	to	analyze	the	text
provided	in	the	text	parameter.	If	not	set,	Elasticsearch	utilizes	the	analyzer	used	for
the	field	provided	by	the	field	parameter.
size:	Defaults	to	5	and	specifies	the	maximum	number	of	suggestions	allowed	to	be
returned	by	each	term	provided	in	the	text	parameter.
suggest_mode:	Controls	which	suggestions	will	be	included	and	for	what	terms	the
suggestions	will	be	returned.	The	possible	options	are:	missing	–	the	default
behavior,	which	means	that	the	suggester	will	only	provide	suggestions	for	terms	that
are	not	present	in	the	index;	popular	–	means	that	the	suggestions	will	only	be
returned	when	they	are	more	frequent	than	the	provided	term;	and	finally	always
means	that	suggestions	will	be	returned	every	time.
sort:	Allows	us	to	specify	how	the	suggestions	are	sorted	in	the	result	returned	by
Elasticsearch.	By	default,	it	is	set	to	score,	which	tells	Elasticsearch	that	the
suggestions	should	be	sorted	by	the	suggestion	score	first,	the	suggestion	document
frequency	next,	and	finally	by	the	term.	The	second	possible	value	is	frequency,
which	means	that	the	results	are	first	sorted	by	the	document	frequency,	then	by	the
score,	and	finally	by	the	term.

Additional	term	suggester	options
In	addition	to	the	preceding	common	term	suggest	options,	Elasticsearch	allows	us	to	use
additional	ones	that	only	make	sense	for	the	term	suggester	itself.	Some	of	these	options
are	as	follows:

lowercase_terms:	When	set	to	true,	it	tells	Elasticsearch	to	lowercase	all	the	terms
that	are	produced	from	the	text	field	after	analysis.
max_edits:	It	defaults	to	2	and	specifies	the	maximum	edit	distance	that	the
suggestion	can	have	to	be	returned	as	a	term	suggestion.	Elasticsearch	allows	us	to

www.EBooksWorld.ir

set	this	value	to	1	or	2.
prefix_len:	By	default,	it	is	set	to	1.	If	we	are	struggling	with	suggester
performance,	increasing	this	value	will	improve	the	overall	performance,	because
fewer	suggestions	will	need	to	be	processed.
min_word_len:	It	defaults	to	4	and	specifies	the	minimum	number	of	characters	a
suggestion	must	have	in	order	to	be	returned	on	the	suggestions	list.
shard_size:	It	defaults	to	the	value	specified	by	the	size	parameter	and	allows	us	to
set	the	maximum	number	of	suggestions	that	should	be	read	from	each	shard.	Setting
this	property	to	values	higher	than	the	size	parameter	can	result	in	more	accurate
document	frequency	at	the	cost	of	degradation	in	suggester	performance.

Note
The	provided	list	of	parameters	does	not	contain	all	the	options	that	are	available	for
the	term	suggester.	Refer	to	the	official	Elasticsearch	documentation	for	reference,	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-
term.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-term.html

Phrase	suggester
The	term	suggester	provides	a	great	way	to	correct	user	spelling	mistakes	on	per	term
basis,	but	it	is	not	great	for	phrases.	That’s	why	the	phrase	suggester	was	introduced.	It	is
built	on	top	of	the	term	suggester,	but	adds	additional	phrase	calculation	logic	to	it.

Let’s	start	with	an	example	of	how	to	use	the	phrase	suggester.	This	time	we	will	omit	the
query	section	in	our	query.	We	do	that	by	running	the	following	command:

curl	-XGET	'localhost:9200/library/_search?pretty'	-d	'{

	"suggest"	:	{

		"text"	:	"sherlock	holnes",

		"our_suggestion"	:	{

			"phrase"	:	{	"field"	:	"_all"	}

		}

	}

}'

As	you	can	see	in	the	preceding	command,	it	is	almost	the	same	as	we	sent	when	using	the
term	suggester,	but	instead	of	specifying	the	term	suggester	type	we’ve	specified	the
phrase	type.	The	response	to	the	preceding	command	is	as	follows:

{

		"took"	:	24,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				"max_score"	:	1.0,

				"hits"	:	[...]

		},

		"suggest"	:	{

				"our_suggestion"	:	[{

						"text"	:	"sherlock	holnes",

						"offset"	:	0,

						"length"	:	15,

						"options"	:	[{

								"text"	:	"sherlock	holmes",

								"score"	:	0.12227806

						}]

				}]

		}

}

As	you	can	see,	the	response	is	very	similar	to	the	one	returned	by	the	term	suggester	but,
instead	of	a	single	word	being	returned,	it	is	already	combined	and	returned	as	a	phrase.

Configuration
Because	the	phrase	suggester	is	based	on	the	term	suggester,	it	can	also	use	some	of	the

www.EBooksWorld.ir

configuration	options	provided	by	it.	Those	options	are:	text,	size,	analyzer,	and
shard_size.	In	addition	to	the	mentioned	properties,	the	phrase	suggester	exposes
additional	options.	Some	of	these	options	are:

max_errors:	Specifies	the	maximum	number	(or	percentage)	of	terms	that	can	be
erroneous	in	order	to	create	a	correction	using	it.	The	value	of	this	property	can	be
either	an	integer	number,	such	as	1,	or	a	float	between	0	and	1	which	will	be	treated
as	a	percentage	value.	By	default,	it	is	set	to	1,	which	means	that	at	most	a	single
term	can	be	misspelled	in	a	given	correction.
separator:	Defaults	to	a	whitespace	character	and	specifies	the	separator	that	will	be
used	to	divide	the	terms	in	the	resulting	bigram	field.

Note
The	provided	list	of	parameters	does	not	contain	all	the	options	that	are	available	for
the	phrase	suggester.	In	fact,	the	list	is	way	more	extensive	than	what	we’ve
provided.	Refer	to	the	official	Elasticsearch	documentation	for	reference,	at
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-
phrase.html,	or	to	Mastering	Elasticsearch	Second	Edition	published	by	Packt
Publishing.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-phrase.html

Completion	suggester
The	completion	suggester	allows	us	to	create	autocomplete	functionality	in	a	very
performance-effective	way,	because	of	storing	complicated	structures	in	the	index	instead
of	calculating	them	during	query	time.	We	need	to	prepare	Elasticsearch	for	that	by	using
a	dedicated	field	type	called	completion.	Let’s	assume	that	we	want	to	create	an
autocomplete	feature	to	allow	us	to	show	book	authors.	In	addition	to	author’s	name	we
want	to	return	the	identifiers	of	the	books	she/he	wrote.	We	start	with	creating	the	authors
index	by	running	the	following	command:

curl	-XPOST	'localhost:9200/authors'	-d	'{

	"mappings"	:	{

		"author"	:	{

			"properties"	:	{

				"name"	:	{	"type"	:	"string"	},

				"ac"	:	{

					"type"	:	"completion",

					"payloads"	:	true,

				"analyzer"	:	"standard",

				"search_analyzer"	:	"standard"

				}

			}

		}

	}

}'

Our	index	will	contain	a	single	type	called	author.	Each	document	will	have	two	fields:
the	name	and	the	ac	field,	which	is	the	field	we	will	use	for	autocomplete.	We’ve	defined
the	ac	field	using	the	completion	type.	In	addition	to	that,	we’ve	used	the	standard
analyzer	for	both	the	index	and	the	query	time.	The	last	thing	is	the	payload	-	the
additional,	optional	information	we	will	return	along	with	the	suggestion	-	in	our	case	it
will	be	an	array	of	book	identifiers.

Indexing	data
To	index	the	data,	we	need	to	provide	some	additional	information	along	with	the	ones	we
usually	provide	during	indexing.	Let’s	look	at	the	following	commands	that	index	two
documents	describing	the	authors:

curl	-XPOST	'localhost:9200/authors/author/1'	-d	'{

	"name"	:	"Fyodor	Dostoevsky",

	"ac"	:	{

		"input"	:	["fyodor",	"dostoevsky"],

		"output"	:	"Fyodor	Dostoevsky",

		"payload"	:	{	"books"	:	["123456",	"123457"]	}

	}

}'

curl	-XPOST	'localhost:9200/authors/author/2'	-d	'{

	"name"	:	"Joseph	Conrad",

	"ac"	:	{

		"input"	:	["joseph",	"conrad"],

		"output"	:	"Joseph	Conrad",

www.EBooksWorld.ir

		"payload"	:	{	"books"	:	["121211"]	}

	}

}'

Note	the	structure	of	the	data	for	the	ac	field.	We	have	provided	the	input,	output,	and
payload	properties.	The	optional	payload	property	is	used	to	provide	the	additional
information	that	will	be	returned.	The	input	property	is	used	to	provide	the	input
information	that	will	be	used	for	building	the	completion	used	by	the	suggester.	It	will	be
used	for	user	input	matching.	The	optional	output	property	is	used	to	tell	the	suggester
which	data	should	be	returned	for	the	document.

We	can	also	omit	the	additional	parameters	section	and	index	data	in	the	way	we	are	used
to,	just	like	in	the	following	example:

curl	-XPOST	'localhost:9200/authors/author/1'	-d	'{

	"name"	:	"Fyodor	Dostoevsky",

	"ac"	:	"Fyodor	Dostoevsky"

}'

However,	because	the	completion	suggester	uses	FST	under	the	hood,	we	won’t	be	able	to
find	the	preceding	document	by	starting	with	the	second	part	of	the	ac	field.	That’s	why
we	think	that	indexing	the	data	in	the	way	we	showed	first	is	more	convenient,	because	we
can	explicitly	control	what	we	want	to	match	and	what	we	want	to	show	as	an	output.

Querying	indexed	completion	suggester	data
If	we	want	to	find	documents	that	have	authors	starting	with	fyo,	we	run	the	following
command:

curl	-XGET	'localhost:9200/authors/_suggest?pretty'	-d	'{

	"authorsAutocomplete"	:	{

		"text"	:	"fyo",

		"completion"	:	{

			"field"	:	"ac"

		}

	}

}'

Before	we	look	at	the	results,	let’s	discuss	the	query.	As	you	can	see,	we’ve	run	the
command	to	the	_suggest	endpoint,	because	we	don’t	want	to	run	a	standard	query;	we
are	just	interested	in	the	autocomplete	results.	The	query	is	quite	simple.	We	set	its	name
to	authorsAutocomplete,	we	set	the	text	we	want	to	get	the	completion	for	(the	text
property),	and	we	added	the	completion	object	with	the	configuration	in	it.	The	result	of
the	preceding	command	looks	as	follows:

{

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"authorsAutocomplete"	:	[{

				"text"	:	"fyo",

				"offset"	:	0,

www.EBooksWorld.ir

				"length"	:	3,

				"options"	:	[{

						"text"	:	"Fyodor	Dostoevsky",

						"score"	:	1.0,

						"payload"	:	{

								"books"	:	["123456",	"123457"]

						}

				}]

		}]

}

As	you	can	see	in	the	response,	we	get	the	document	we	were	looking	for	along	with	the
payload	information,	if	it	is	available	(for	the	preceding	response,	it	is	not).

We	can	also	use	fuzzy	searches,	which	allow	us	to	tolerate	spelling	mistakes.	We	do	that
by	including	the	additional	fuzzy	section	in	our	query.	For	example,	to	enable	fuzzy
matching	in	the	completion	suggester	and	set	the	maximum	edit	distance	to	2	(which
means	that	a	maximum	of	two	errors	are	allowed),	we	send	the	following	query:

curl	-XGET	'localhost:9200/authors/_suggest?pretty'	-d	'{

	"authorsAutocomplete"	:	{

		"text"	:	"fio",

		"completion"	:	{

			"field"	:	"ac",

			"fuzzy"	:	{

				"edit_distance"	:	2

			}

		}

	}

}'

Although	we’ve	made	a	spelling	mistake,	we	will	still	get	the	same	results	as	we	got
earlier.

Custom	weights
By	default,	the	term	frequency	is	used	to	determine	the	weight	of	the	document	returned
by	the	prefix	suggester.	However,	this	may	not	be	the	best	solution.	In	such	cases,	it	is
useful	to	define	the	weight	of	the	suggestion	by	specifying	the	weight	property	for	the
field	defined	as	completion.	The	weight	property	should	be	set	to	an	integer	value.	The
higher	the	weight	property	value,	the	more	important	the	suggestion.	For	example,	if	we
want	to	specify	a	weight	for	the	first	document	in	our	example,	we	run	the	following
command:

curl	-XPOST	'localhost:9200/authors/author/1'	-d	'{

	"name"	:	"Fyodor	Dostoevsky",

	"ac"	:	{

		"input"	:	["fyodor",	"dostoevsky"],

		"output"	:	"Fyodor	Dostoevsky",

		"payload"	:	{	"books"	:	["123456",	"123457"]	},

		"weight"	:	30

	}

}'

www.EBooksWorld.ir

Now	if	we	run	our	example	query,	the	results	will	be	as	follows:

{

		...

		"authorsAutocomplete"	:	[{

				"text"	:	"fyo",

				"offset"	:	0,

				"length"	:	3,

				"options"	:	[{

						"text"	:	"Fyodor	Dostoevsky",

						"score"	:	30.0,	

						"payload":{

								"books":["123456","123457"]

						}

				}]

		}]

}

Look	how	the	score	of	the	result	changed.	In	our	initial	example,	it	was	1.0	and	now	it	is
30.0.	This	is	so	because	we	set	the	weight	parameter	to	30	during	indexing.

Context	suggester
The	context	suggester	is	an	extension	to	the	Elasticsearch	Suggest	API	for	Elasticsearch
2.1	and	older	versions	that	we	just	discussed.	When	describing	the	completion	suggester
for	Elasticsearch	2.1,	we	mentioned	that	this	suggester	allows	us	to	handle	suggester-
related	searches	entirely	in	memory.	Using	this	suggester,	we	can	define	the	so	called
context	for	the	query	that	will	limit	the	suggestions	to	a	subset	of	documents.	Because	we
define	the	context	in	the	mappings,	it	is	calculated	during	indexation,	which	makes	query
time	calculations	easier	and	less	demanding	in	terms	of	performance.

Note
Remember	that	this	section	is	related	to	Elasticsearch	2.1.	Contexts	in	Elasticsearch	2.2
are	handled	differently	and	were	discussed	when	discussing	the	completion	suggester.

Context	types

Elasticsearch	2.1	supports	two	types	of	context:	category	and	geo.	The	category	type	of
context	allows	us	to	assign	a	document	to	one	or	more	categories	during	the	index	time.
Later,	during	the	query	time,	we	can	tell	Elasticsearch	which	category	we	are	interested	in
and	Elasticsearch	will	limit	the	suggestions	to	those	categories.	The	geo	context	allows	us
to	limit	the	documents	returned	by	the	suggesters	to	a	given	location	or	to	a	certain
distance	from	a	point.	The	nice	thing	about	context	is	that	we	can	have	multiple	contexts.
For	example,	we	can	have	both	the	category	context	and	the	geo	context	for	the	same
document.	Let’s	now	see	what	we	need	to	do	to	use	context	in	suggestions.

Using	context

Using	the	geo	and	category	context	is	very	similar	–	they	just	differ	in	parameters.	We
will	show	you	how	to	use	contexts	in	an	example	using	the	simpler	category	context	and
later	we	will	get	back	to	the	geo	context	and	show	you	what	we	need	to	provide.

www.EBooksWorld.ir

The	first	step	when	using	context	suggester	is	creating	a	proper	mapping.	Let’s	get	back	to
our	author	mapping,	but	this	time	let’s	assume	that	each	author	can	be	given	one	or	more
category	–	the	brand	of	books	she/he	is	writing.	This	will	be	our	context.	The	mappings
using	the	context	look	as	follows:

curl	-XPOST	'localhost:9200/authors_geo_context'	-d	'{

	"mappings"	:	{

		"author"	:	{

			"properties"	:	{

				"name"	:	{	"type"	:	"string"	},

				"ac"	:	{

					"type"	:	"completion",

					"analyzer"	:	"simple",

					"search_analyzer"	:	"simple",

					"context"	:	{

						"brand"	:	{

							"type"	:	"category",

							"default"	:	["none"]

						}

					}

				}

			}

		}

	}

}'

We’ve	introduced	a	new	section	in	our	ac	field	definition:	context.	Each	context	is	given
a	name,	which	is	brand	in	our	case,	and	inside	that	object	we	provide	configuration.	We
need	to	provide	the	type	using	the	type	property	–	we	will	be	using	the	category	context
suggester	now.	In	addition	to	that,	we’ve	set	the	default	array,	which	provides	us	with	the
value	or	values	that	should	be	used	as	the	default	context.	If	we	want,	we	can	also	provide
the	path	property,	which	will	point	Elasticsearch	to	a	field	in	the	documents	from	which
the	context	value	should	be	taken.

We	can	now	index	a	single	author	by	modifying	the	commands	we	used	earlier,	because
we	need	to	provide	the	context:

curl	-XPOST	'localhost:9200/authors_context/author/1'	-d	'{

	"name"	:	"Fyodor	Dostoevsky",

	"ac"	:	{

		"input"	:	"Fyodor	Dostoevsky",

		"context"	:	{

			"brand"	:	"drama"

		}

	}

}'

As	you	can	see,	the	ac	field	definition	is	a	bit	different	now;	it	is	an	object.	The	input
property	is	used	to	provide	the	value	for	autocomplete	and	the	context	object	is	used	to
provide	the	values	for	each	of	the	contexts	defined	in	the	mappings.

Finally,	we	can	query	the	data.	As	you	could	imagine,	we	will	again	provide	the	context
we	are	interested	in.	The	query	that	does	that	looks	as	follows:

www.EBooksWorld.ir

curl	-XGET	'localhost:9200/authors_context/_suggest?pretty'	-d	'{

	"authorsAutocomplete"	:	{

		"text"	:	"fyo",

		"completion"	:	{

			"field"	:	"ac",

			"context"	:	{

				"brand"	:	"drama"

			}

		}

	}

}'

As	you	can	see,	we’ve	included	the	context	object	in	the	query	inside	the	completion
section	and	we’ve	set	the	context	we	are	interested	in	using	the	context	name.	The
response	returned	by	Elasticsearch	is	as	follows:

{

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"authorsAutocomplete"	:	[{

				"text"	:	"fyo",

				"offset"	:	0,

				"length"	:	3,

				"options"	:	[{

						"text"	:	"Fyodor	Dostoevsky",

						"score"	:	1.0

				}]

		}]

}

However,	if	we	change	the	brand	context	to	comedy,	for	example,	Elasticsearch	will	return
no	results,	because	we	don’t	have	authors	with	such	a	context.	Let’s	test	it	by	running	the
following	query:

curl	-XGET	'localhost:9200/authors_context/_suggest?pretty'	-d	'{

	"authorsAutocomplete"	:	{

		"text"	:	"fyo",

		"completion"	:	{

			"field"	:	"ac",

			"context"	:	{

				"brand"	:	"comedy"

			}

		}

	}

}'

This	time	Elasticsearch	returns	the	following	response:

{

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

www.EBooksWorld.ir

		},

		"authorsAutocomplete"	:	[{

				"text"	:	"fyo",

				"offset"	:	0,

				"length"	:	3,

				"options"	:	[]

		}]

}

This	is	because	no	author	with	the	brand	context	and	the	value	of	comedy	is	present	in	the
authors_context	index.

Using	the	geo	location	context

The	geo	context	is	similar	to	the	category	context	when	it	comes	to	using	it.	However,
instead	of	filtering	by	terms,	we	filter	using	geographical	points	and	distances.	When	we
use	the	geo	context,	we	need	to	provide	precision,	which	defines	the	precision	of	the
calculated	geohash.	The	second	property	that	we	provide	is	the	neighbors	one,	which	can
be	set	to	true	or	false.	By	default,	it	is	set	to	true,	which	means	that	the	neighboring
geohashes	will	be	included	in	the	context.

In	addition	to	that,	similar	to	the	category	context,	we	can	provide	path,	which	specifies
which	field	to	use	as	the	lookup	for	the	geographical	point,	and	the	default	property,
specifying	the	default	geopoint	for	the	documents.

For	example,	let’s	assume	that	we	want	to	filter	on	the	birth	place	of	our	authors.	The
mappings	for	such	a	suggester	will	look	as	follows:

curl	-XPOST	'localhost:9200/authors_geo_context'	-d	'{

	"mappings"	:	{

		"author"	:	{

			"properties"	:	{																

				"name"	:	{	"type"	:	"string"	},

				"ac"	:	{

					"type"	:	"completion",

					"analyzer"	:	"simple",

					"search_analyzer"	:	"simple",

					"context"	:	{

						"birth_location"	:	{

							"type"	:	"geo",

							"precision"	:	["1000km"],

							"neighbors"	:	true,

							"default"	:	{

								"lat"	:	0.0,

								"lon"	:	0.0

							}

						}

					}

				}

			}

		}

	}

}'

Now	we	can	index	the	documents	and	provide	the	birth	location.	For	our	example	author,

www.EBooksWorld.ir

it	will	look	as	follows	(the	centre	of	Moscow):

curl	-XPOST	'localhost:9200/authors_geo_context/author/1'	-d	'{

	"name"	:	"Fyodor	Dostoevsky",

	"ac"	:	{

		"input"	:	"Fyodor	Dostoevsky",

		"context"	:	{

			"birth_location"	:	{

				"lat"	:	55.75,

			"lon"	:	37.61

			}

		}

	}

}'

As	you	can	see,	we’ve	provided	the	birth_location	context	for	our	author.

Now	during	query	time,	we	need	to	provide	the	context	that	we	are	interested	in	and	we
can	(but	we	are	not	obligated	to)	provide	the	precision	as	the	subset	of	the	precision	values
provided	in	the	mappings.	We’ve	defined	the	precision	to	1000	km,	so	let’s	find	all	the
authors	starting	with	fyo	that	were	born	in	Kazan,	which	is	about	800	km	from	Moscow.
We	should	find	our	example	author.

The	query	that	does	that	looks	as	follows:

curl	-XGET	'localhost:9200/authors_geo_context/_suggest?pretty'	-d	'{

	"authorsAutocomplete"	:	{

		"text"	:	"fyo",

		"completion"	:	{

			"field"	:	"ac",

			"context"	:	{

				"birth_location"	:	{

					"lat"	:	55.45,

					"lon"	:	49.8

				}

			}

		}

	}

}'

The	response	returned	by	Elasticsearch	looks	as	follows:

{

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"authorsAutocomplete"	:	[{

				"text"	:	"fyo",

				"offset"	:	0,

				"length"	:	3,

				"options"	:	[{

						"text"	:	"Fyodor	Dostoevsky",

						"score"	:	1.0

				}]

www.EBooksWorld.ir

		}]

}

However,	if	we	run	the	same	query	but	point	to	the	North	Pole,	we	will	get	no	results:

curl	-XGET	'localhost:9200/authors_geo_context/_suggest?pretty'	-d	'{

	"authorsAutocomplete"	:	{

		"text"	:	"fyo",

		"completion"	:	{

			"field"	:	"ac",

			"context"	:	{

				"birth_location"	:	{

					"lat"	:	0.0,

					"lon"	:	0.0

				}

			}

		}

	}

}'

The	following	is	the	response	from	Elasticsearch	in	this	case:

{

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"authorsAutocomplete"	:	[{

				"text"	:	"fyo",

				"offset"	:	0,

				"length"	:	3,

				"options"	:	[]

		}]

}

www.EBooksWorld.ir

www.EBooksWorld.ir

The	Scroll	API
Let’s	imagine	that	we	have	an	index	with	several	million	documents.	We	already	know
how	to	build	our	query	and	so	on.	However,	when	trying	to	fetch	a	large	number	of
documents,	you	see	that	when	getting	further	and	further	with	pages	of	the	results,	the
queries	slow	down	and	finally	timeout	or	result	in	memory	issues.

The	reason	for	this	is	that	full-text	search	engines,	especially	those	that	are	distributed,
don’t	handle	paging	very	well.	Of	course,	getting	a	few	hundred	pages	of	results	is	not	a
problem	for	Elasticsearch,	but	for	going	through	all	the	indexed	documents	or	through
large	result	set,	a	specialized	API	has	been	introduced.

www.EBooksWorld.ir

Problem	definition
When	Elasticsearch	generates	a	response,	it	must	determine	the	order	of	the	documents
that	form	the	result.	If	we	are	on	the	first	page,	this	is	not	a	big	problem.	Elasticsearch	just
finds	the	set	of	documents	and	collects	the	first	ones;	let’s	say,	20	documents.	But	if	we
are	on	the	tenth	page,	Elasticsearch	has	to	take	all	the	documents	from	pages	one	to	ten
and	then	discard	the	ones	that	are	on	pages	one	to	nine.	This	is	even	more	complicated	if
we	have	a	distributed	environment,	because	we	don’t	know	from	which	nodes	the	results
will	come.	Because	of	that,	each	node	needs	to	build	the	response	and	keep	it	in	memory
for	some	time.	The	problem	is	not	Elasticsearch-specific;	a	similar	situation	can	be	found
in	the	database	systems,	for	example,	generally,	in	every	system	that	uses	the	so-called
priority	queue.

www.EBooksWorld.ir

Scrolling	to	the	rescue
The	solution	is	simple.	Since	Elasticsearch	has	to	do	some	operations	(determine	the
documents	for	the	previous	pages)	for	each	request,	we	can	ask	Elasticsearch	to	store	this
information	for	subsequent	queries.	The	drawback	is	that	we	cannot	store	this	information
forever	due	to	limited	resources.	Elasticsearch	assumes	that	we	can	declare	how	long	we
need	this	information	to	be	available.	Let’s	see	how	it	works	in	practice.

First	of	all,	we	query	Elasticsearch	as	we	usually	do.	However,	in	addition	to	all	the
known	parameters,	we	add	one	more:	the	parameter	with	the	information	that	we	want	to
use	scrolling	with	and	how	long	we	suggest	that	Elasticsearch	should	keep	the	information
about	the	results.	We	can	do	this	by	sending	a	query	as	follows:

curl	'localhost:9200/library/_search?pretty&scroll=5m'	-d	'{

		"size"	:	1,

		"query"	:	{

				"match_all"	:	{	}

		}

}'

The	content	of	this	query	is	irrelevant.	The	important	thing	is	how	Elasticsearch	modifies
the	response.	Look	at	the	following	first	few	lines	of	the	response	returned	by
Elasticsearch:

{

		"_scroll_id"	:	

"cXVlcnlUaGVuRmV0Y2g7NTsxNjo1RDNrYnlfb1JTeU1sX20yS0NRSUZ3OzE3OjVEM2tieV9vUl

N5TWxfbTJLQ1FJRnc7MTg6NUQza2J5X29SU3lNbF9tMktDUUlGdzsxOTo1RDNrYnlfb1JTeU1sX

20yS0NRSUZ3OzIwOjVEM2tieV9vUlN5TWxfbTJLQ1FJRnc7MDs=",

		"took"	:	3,

		"timed_out"	:	false,

		"_shards"	:	{

				"total"	:	5,

				"successful"	:	5,

				"failed"	:	0

		},

		"hits"	:	{

				"total"	:	4,

				...

The	new	part	is	the	_scroll_id	section.	This	is	a	handle	that	we	will	use	in	the	queries
that	follow.	Elasticsearch	has	a	special	endpoint	for	this:	the	_search/scroll	endpoint.
Let’s	look	at	the	following	example:

curl	-XGET	'localhost:9200/_search/scroll?pretty'	-d	'{

		"scroll"	:	"5m",

		"scroll_id"	:	

"cXVlcnlUaGVuRmV0Y2g7NTsyNjo1RDNrYnlfb1JTeU1sX20yS0NRSUZ3OzI3OjVEM2tieV9vUl

N5TWxfbTJLQ1FJRnc7Mjg6NUQza2J5X29SU3lNbF9tMktDUUlGdzsyOTo1RDNrYnlfb1JTeU1sX

20yS0NRSUZ3OzMwOjVEM2tieV9vUlN5TWxfbTJLQ1FJRnc7MDs="

}'

Now	every	call	to	this	endpoint	with	scroll_id	returns	the	next	page	of	results.

www.EBooksWorld.ir

Remember	that	this	handle	is	only	valid	for	the	defined	time	of	inactivity.

Of	course,	this	solution	is	not	ideal,	and	it	is	not	very	appropriate	when	there	are	many
requests	to	random	pages	of	various	results	or	when	the	time	between	the	requests	is
difficult	to	determine.	However,	you	can	use	this	successfully	for	use	cases	where	you
want	to	get	larger	result	sets,	such	as	transferring	data	between	several	systems.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	the	chapter	that	we	just	finished,	we	learned	about	some	functionalities	of	Elasticsearch
that	we	won’t	probably	use	everyday	or	at	least	not	everyone	of	us	will	use	them.	We
discussed	percolator	–	an	upside	down	search	functionality	that	allows	us	to	index	queries
and	find	which	documents	match	them.	We	learned	about	the	spatial	capabilities	of
Elasticsearch	and	we	used	suggesters	to	correct	user	spelling	mistakes	and	build	a	highly
efficient	autocomplete	functionality.	We	also	used	the	Scroll	API	to	efficiently	fetch	large
number	of	results	from	our	Elasticsearch	indices.

In	the	next	chapter,	we	will	focus	on	clusters	and	its	configuration.	We	will	discuss	node
discovery,	gateway,	and	recovery	modules	–	what	they	are	responsible	for	and	how	to
configure	them	to	match	our	needs.	We	will	use	templates	and	dynamic	templates,	and	we
will	see	how	to	install	plugins	extending	Elasticsearch’s	out-of-the	box	functionalities.	We
will	learn	what	are	the	caches	of	Elasticsearch	caches	are	and	how	to	configure	them
efficiently	to	make	the	most	out	of	them.	Finally,	we	will	use	the	update	settings	API	to
update	Elasticsearch	configuration	on	live	and	running	clusters.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	9.	Elasticsearch	Cluster	in	Detail
The	previous	chapter	was	fully	dedicated	to	search	functionalities	that	are	not	only	about
full	text	searching.	We	learned	how	to	use	percolator	–	an	inversed	search	that	allows	us	to
build	altering	functionalities	on	top	of	Elasticsearch.	We	learned	to	use	spatial
functionalities	of	Elasticsearch	and	we	used	the	suggest	API	that	allowed	us	to	correct
user’s	spelling	mistakes	as	well	as	build	very	efficient	autocomplete	functionalities.	But
let’s	now	focus	on	running	and	administering	Elasticsearch.	By	the	end	of	this	chapter,
you	will	have	learned	the	following	topics:

How	does	Elasticsearch	find	new	nodes	that	should	join	the	cluster
What	are	the	gateway	and	recovery	modules
How	do	templates	work
How	to	use	dynamic	templates
How	to	use	the	Elasticsearch	plugin	mechanism
What	are	the	caches	in	Elasticsearch	and	how	to	tune	them
How	to	use	the	Update	Settings	API	to	update	Elasticsearch	settings	on	running
clusters

www.EBooksWorld.ir

Understanding	node	discovery
When	starting	your	Elasticsearch	node,	one	of	the	first	things	that	happens	is	looking	for	a
master	node	that	has	the	same	cluster	name	and	is	visible.	If	a	master	is	found,	the	node
gets	joined	into	an	already	formed	cluster.	If	no	master	is	found,	then	the	node	itself	is
selected	as	a	master	(of	course	if	the	configuration	allows	such	behavior).	The	process	of
forming	a	cluster	and	finding	nodes	is	called	discovery.	The	module	responsible	for
discovery	has	two	main	purposes:	electing	a	master	and	discovering	new	nodes	within	a
cluster.	In	this	section,	we	will	discuss	how	we	can	configure	and	tune	the	discovery
module.

www.EBooksWorld.ir

Discovery	types
By	default,	without	installing	additional	plugins,	Elasticsearch	allows	us	to	use	Zen
discovery,	which	provides	us	with	unicast	discovery.	Unicast
(http://en.wikipedia.org/wiki/Unicast)	allows	transmission	of	a	single	message	over	the
network	to	a	single	host	at	once.	Elasticsearch	node	sends	the	message	to	the	nodes
defined	in	the	configuration	and	waits	for	a	response.	When	the	node	is	accepted	into	the
cluster,	the	recovery	module	kicks	in	and	starts	the	recovery	process	if	needed,	or	the
master	election	process	if	the	master	is	still	not	elected.

Note
Prior	to	Elasticsearch	2.0,	the	Zen	discovery	module	allowed	us	to	use	multicast
discovery.	On	a	multicast	capable	network,	Elasticsearch	was	able	to	automatically
discover	nodes	without	specifying	any	IP	addresses	of	other	Elasticsearch	servers	sharing
the	same	cluster	name.	This	was	very	mistake	prone	and	not	advised	for	production	use
and	thus	it	was	deprecated	and	removed	to	a	plugin.

Elasticsearch	architecture	is	designed	to	be	peer	to	peer.	When	running	operations	such	as
indexing	or	searching,	the	master	node	doesn’t	take	part	in	communication	and	the
relevant	nodes	communicate	with	each	other	directly.

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Unicast

Node	roles
Elasticsearch	nodes	can	be	configured	to	work	in	one	of	the	following	roles:

Master:	The	node	responsible	for	maintaining	the	global	cluster	state,	changing	it
depending	on	the	needs,	and	handling	the	addition	and	removal	of	nodes.	There	can
only	be	a	single	master	node	active	in	a	single	cluster.
Data:	The	node	responsible	for	holding	the	data	and	executing	data	related
operations	(indexation	and	searching)	on	the	shards	that	are	present	locally	for	the
node.
Client:	The	node	responsible	for	handling	requests.	For	the	indexing	requests,	the
client	node	forwards	the	request	to	the	appropriate	primary	shard	and,	for	the	search
requests,	it	sends	it	to	all	the	relevant	shards	and	aggregates	the	results.

By	default,	each	node	can	work	as	master,	data,	or	client.	It	can	be	a	data	and	a	client	at
the	same	time	for	example.	On	large	and	highly	loaded	clusters,	it	is	very	important	to
divide	the	roles	of	the	nodes	in	the	cluster	and	have	the	nodes	do	only	a	single	role	at	a
time.	When	dealing	with	such	clusters,	you	will	often	see	at	least	three	master	nodes,
multiple	data	nodes,	and	a	few	client	only	nodes	as	part	of	the	whole	cluster.

Master	node
It	is	the	most	important	node	type	from	Elasticsearch	cluster’s	point	of	view.	It	handles	the
cluster	state,	changes	it,	manages	the	nodes	joining	and	leaving	the	cluster,	checks	the
health	of	the	other	nodes	in	the	cluster	(by	running	ping	requests),	and	manages	the	shard
relocation	operations.	If	the	master	is	somehow	disconnected	from	the	cluster,	the
remaining	nodes	will	select	a	new	master	from	each	other.	All	these	processes	are	done
automatically	on	the	basis	of	the	configuration	values	we	provide.	You	usually	want	the
master	nodes	to	only	communicate	with	the	other	Elasticsearch	nodes,	using	the	internal
Java	communication.	To	avoid	hitting	the	master	nodes	by	mistake,	it	is	advised	to	turn	off
the	HTTP	module	for	them	in	the	configuration.

Data	node
The	data	node	is	responsible	for	holding	the	data	in	the	indices.	The	data	nodes	are	the
ones	that	need	the	most	disk	space	because	of	being	loaded	with	data	indexation	requests
and	running	searches	on	the	data	they	have	locally.	The	data	nodes,	similar	to	the	master
nodes	can	have	the	HTTP	module	disabled.

Client	node
The	client	nodes	are	in	most	cases	nodes	that	don’t	have	any	data	and	are	not	master
nodes.	The	client	nodes	are	the	ones	that	communicate	with	the	outside	world	and	with	all
the	nodes	in	the	cluster.	They	forward	the	data	to	the	appropriate	shards	and	aggregate	the
search	and	aggregations	results	from	all	the	other	nodes.

Keep	in	mind	that	client	nodes	can	have	data	as	well,	but	in	such	a	case	they	will	run	both
the	indexing	requests	and	the	search	requests	for	the	local	data	and	will	aggregate	the	data
from	the	other	nodes,	which	in	large	clusters	may	be	too	much	work	for	a	single	node.

www.EBooksWorld.ir

Configuring	node	roles
By	default,	Elasticsearch	allows	every	node	to	be	a	master	node,	a	data	node,	or	a	client
node.	However,	as	we	already	mentioned,	in	certain	situations	you	may	want	to	have
nodes	that	only	hold	data,	client	nodes	that	are	only	used	to	process	requests,	and	master
hosts	to	manage	the	cluster.	One	such	situation	is	when	massive	amounts	of	data	needs	to
be	handled,	where	the	data	nodes	should	be	as	performant	as	possible.	To	tell	Elasticsearch
what	role	it	should	take,	we	use	three	Boolean	properties	set	in	the	elasticsearch.yml
configuration	file:

node.master:	When	set	to	true,	we	tell	Elasticsearch	that	the	node	is	master
eligible,	which	means	that	it	can	take	the	role	of	a	master.	However,	note	that	the
master	will	be	automatically	marked	as	not	master	eligible	as	soon	as	it	is	assigned	a
client	role.
node.data:	When	set	to	true,	we	tell	Elasticsearch	that	the	node	can	be	used	to	hold
data.
node.client:	When	set	to	true,	we	tell	Elasticsearch	that	the	node	should	be	used
as	a	client.

So,	to	set	a	node	to	only	hold	data,	we	should	add	the	following	properties	to	the
elasticsearch.yml	configuration	file:

node.master:	false

node.data:	true

node.client:	false

To	set	the	node	to	not	hold	data	and	only	be	a	master	node,	we	need	to	instruct
Elasticsearch	that	we	don’t	want	the	node	to	hold	data.	In	order	to	do	this,	we	add	the
following	properties	to	the	elasticsearch.yml	configuration	file:

node.master:	true

node.data:	false

node.client:	false

www.EBooksWorld.ir

Setting	the	cluster’s	name
If	we	don’t	set	the	cluster.name	property	in	our	elasticsearch.yml	file,	Elasticsearch
uses	the	elasticsearch	default	value.	This	is	not	a	good	thing,	because	each	new
Elasticsearch	node	will	have	the	same	cluster	name	and	you	may	want	to	have	multiple
clusters	in	the	same	network.	In	such	a	case,	connecting	the	wrong	nodes	together	is	just	a
matter	of	time.	Because	of	that,	we	suggest	setting	the	cluster.name	property	to	some
other	value	of	your	choice.	Usually,	it	is	a	good	idea	to	adjust	cluster	names	based	on
cluster	responsibilities.

www.EBooksWorld.ir

Zen	discovery
The	default	discovery	method	used	by	Elasticsearch	and	one	that	is	commonly	used	in	the
Elasticsearch	world	is	called	Zen	discovery.	It	supports	unicast	discovery	and	allows
adjusting	various	parts	of	its	configuration.

Note
Note	that	there	are	additional	discovery	types	available	as	plugins,	such	as	Amazon	EC2
discovery,	Microsoft	Azure	discovery,	and	Google	Compute	Engine	discovery.

Master	election	configuration
Imagine	that	you	have	a	cluster	that	is	built	of	10	nodes.	Everything	is	working	fine	until
one	day	when	your	network	fails	and	3	of	your	nodes	are	disconnected	from	the	cluster,
but	they	still	see	each	other.	Because	of	the	Zen	discovery	and	master	election	process,	the
nodes	that	got	disconnected	elect	a	new	master	and	you	end	up	with	two	clusters	with	the
same	name,	with	two	master	nodes.	Such	a	situation	is	called	a	split-brain	and	you	must
avoid	it	as	much	as	possible.	When	split-brain	happens,	you	end	up	with	two	(or	more)
clusters	that	won’t	join	each	other	until	the	network	(or	any	other)	problems	are	fixed.	The
thing	to	remember	is	that	split-brain	may	result	in	not	recoverable	errors,	such	as	data
conflicts	in	which	you	end	up	with	data	corruption	or	partial	data	loss.	That’s	why	it	is
important	to	avoid	such	situations	at	all	costs.

In	order	to	prevent	split-brain	situations,	Elasticsearch	provides	a
discovery.zen.minimum_master_nodes	property.	This	property	defines	the	minimum
amount	of	master	eligible	nodes	that	should	be	connected	to	each	other	in	order	to	form	a
cluster.	So	now	let’s	get	back	to	our	cluster;	if	we	set	the
discovery.zen.minimum_master_nodes	property	to	50	percent	of	the	total	nodes
available	+	1	(which	is	6	in	our	case),	we	will	end	up	with	a	single	cluster.	Why	is	that?
Before	the	network	failure,	we	had	10	nodes,	which	is	more	than	six	nodes,	and	those
nodes	formed	a	cluster.	After	the	disconnection	of	the	three	nodes,	we	would	still	have	the
first	cluster	up	and	running.	However,	because	only	three	nodes	got	disconnected	and
three	is	less	than	six,	these	three	nodes	wouldn’t	be	allowed	to	elect	a	new	master	and	they
would	wait	for	reconnection	with	the	original	cluster.

Of	course	this	is	also	not	a	perfect	scenario.	It	is	advised	to	have	a	dedicated	master
eligible	nodes	only,	that	don’t	work	as	data	or	client	nodes.	To	have	a	quorum	in	such	a
case,	we	need	at	least	three	dedicated	master	eligible	nodes,	because	that	will	allow	us	to
have	a	single	master	offline	and	still	keep	the	quorum.	This	is	usually	enough	to	keep	the
clusters	in	a	good	shape	when	it	comes	to	master	related	features	and	to	be	split-brain
proof.	Of	course,	in	such	a	case,	the	discovery.zen.minimum_master_nodes	property
should	be	set	to	2	and	we	should	have	the	three	master	nodes	up	and	running.

Furthermore,	Elasticsearch	allows	us	to	additionally	specify	two	additional	Boolean
properties:	discover.zen.master_election.filter_client	and
discover.zen.master_election.filter_data.	They	allow	us	to	tell	Elasticsearch	to
ignore	ping	requests	from	the	client	and	data	nodes	during	master	election.	By	default,	the

www.EBooksWorld.ir

first	mentioned	property	is	set	to	true	and	the	second	is	set	to	false.	This	allows
Elasticsearch	to	focus	on	the	master	election	and	not	be	overloaded	with	ping	requests
from	the	nodes	that	are	not	master	eligible.

In	addition	to	the	mentioned	properties,	Elasticsearch	allows	configuring	timeouts	related
to	the	master	election	process.	discovery.zen.ping_timeout,	which	defaults	to	3s	(three
seconds),	allows	configuring	timeout	for	slow	networks	–	the	higher	the	value,	the	lesser
the	chance	of	failure,	but	the	election	process	can	take	longer.	The	second	property	is
called	discover.zen.join_timeout	and	specifies	the	timeout	for	the	join	request	to	the
master.	It	defaults	to	20	times	the	discovery.zen.ping_timeout	property.

Configuring	unicast
Because	of	the	way	unicast	works,	we	need	to	specify	at	least	a	host	that	the	unicast
message	should	be	sent	to.	To	do	this,	we	should	add	the
discovery.zen.ping.unicast.hosts	property	to	our	elasticsearch.yml	configuration
file.	Basically,	we	should	specify	all	the	hosts	that	form	the	cluster	in	the
discovery.zen.ping.unicast.hosts	property	(we	don’t	have	to	specify	all	the	hosts,	we
just	need	to	provide	enough	so	that	we	are	sure	that	a	single	one	will	work).	For	example,
if	we	want	the	hosts	192.168.2.1,	192.168.2.2	and	192.168.2.3	for	our	host,	we	should
specify	the	preceding	property	in	the	following	way:

discovery.zen.ping.unicast.hosts:	192.168.2.1:9300,	192.168.2.2:9300,	

192.168.2.3:9300

One	can	also	define	a	range	of	the	ports	Elasticsearch	can	use.	For	example,	to	say	that
ports	from	9300	to	9399	can	be	used,	we	specify	the	following:

discovery.zen.ping.unicast.hosts:	192.168.2.1:[9300-9399],	192.168.2.2:

[9300-9399],	192.168.2.3:[9300-9399]

Note	that	the	hosts	are	separated	with	a	comma	character	and	we’ve	specified	the	port	on
which	we	expect	unicast	messages.

Fault	detection	ping	settings
In	addition	to	the	settings	discussed	previously,	we	can	also	control	or	alter	the	default
ping	configuration.	Ping	is	a	signal	sent	between	the	nodes	to	check	if	they	are	running
and	responsive.	The	master	node	pings	all	the	other	nodes	in	the	cluster	and	each	of	the
other	nodes	in	the	cluster	pings	the	master	node.	The	following	properties	can	be	set:

discovery.zen.fd.ping_interval:	This	defaults	to	1s	(one	second)	and	specifies
how	often	the	nodes	ping	each	other
discovery.zen.fd.ping_timeout:	This	defaults	to	30s	(30	seconds)	and	defines
how	long	a	node	will	wait	for	the	response	to	its	ping	message	before	considering	a
node	as	unresponsive
discovery.zen.fd.ping_retries:	This	defaults	to	3	and	specifies	how	many	retries
should	be	taken	before	considering	a	node	as	not	working

If	you	experience	some	problems	with	your	network,	or	you	know	that	your	nodes	need
more	time	to	see	the	ping	response,	you	can	adjust	the	preceding	values	to	the	ones	that

www.EBooksWorld.ir

are	good	for	your	deployment.

Cluster	state	updates	control
As	we	have	already	discussed,	the	master	node	is	the	one	responsible	for	handling	the
changes	of	the	cluster	state	and	Elasticsearch	allows	us	to	control	that	process.	For	most
use	cases,	the	default	settings	are	more	than	enough,	but	you	may	run	into	situations	where
changing	the	settings	is	required.

The	master	node	processes	a	single	cluster	state	command	at	a	time.	First	the	master	node
propagates	the	changes	to	other	nodes	and	then	it	waits	for	response.	Each	cluster	state
change	is	not	considered	finished	until	enough	nodes	respond	to	the	master	with
acknoledgment.	The	number	of	nodes	that	need	to	respond	is	specified	by
discovery.zen.minimum_master_nodes,	which	we	are	already	aware	of.	The	maximum
time	an	Elasticsearch	node	waits	for	the	nodes	to	respond	is	30s	by	default	and	is	specified
by	the	discovery.zen.commit_timeout	property.	If	not	enough	nodes	respond	to	the
master,	the	cluster	state	change	is	rejected.

Once	enough	nodes	respond	to	the	master	publish	message,	the	cluster	state	change	is
accepted	on	the	master	and	the	cluster	state	is	changed.	Once	that	is	done,	the	master
sends	a	message	to	all	the	nodes	saying	that	the	change	can	be	applied.	The	timeout	of	this
message	is	again	set	to	30	seconds	and	is	controlled	using	the
discovery.zen.publish_timeout	property.

Dealing	with	master	unavailability
If	a	cluster	has	no	master	node,	whatever	the	reason	may	be,	it	is	not	fully	operational.	By
default,	we	can’t	change	the	metadata,	cluster	wide	commands	will	not	be	working,	and	so
on.	Elasticsearch	allows	us	to	configure	the	behavior	of	the	nodes	when	the	master	node	is
not	elected.	To	do	that,	we	can	use	the	discovery.zen.no_master_block	property	which
the	settings	of	all	and	write.	Setting	this	property	to	all	means	that	all	the	operations	on
the	node	will	be	rejected,	that	is,	the	search	operations,	the	write	related	operations,	and
the	cluster	wide	operations	such	as	health	or	mappings	retrieval.	Setting	this	property	to
write	means	that	only	the	write	operation	will	be	rejected	–	this	is	the	default	behavior	of
Elasticsearch.

www.EBooksWorld.ir

Adjusting	HTTP	transport	settings
While	discussing	the	node	discovery	module	and	process,	we	mentioned	the	HTTP
module	a	few	times.	We	would	like	to	get	back	to	that	topic	now	and	discuss	a	few	useful
properties	when	discussing	and	using	Elasticsearch.

Disabling	HTTP
The	first	thing	is	disabling	the	HTTP	completely.	This	is	useful	to	ensure	that	the	master
and	data	nodes	won’t	accept	any	queries	or	requests	in	general	from	users.	To	disable	the
HTTP	transport	completely,	we	just	need	to	add	the	http.enabled	property	and	set	it	to
false	in	our	elasticsearch.yml	file.

HTTP	port
Elasticsearch	allows	us	to	define	the	port	on	which	it	will	be	listening	to	HTTP	requests.
This	is	done	by	using	the	http.port	property.	It	defaults	to	9200-9300,	which	means	that
Elasticsearch	will	start	from	9200	port	and	increase	if	the	port	is	not	available	(so	the	next
instance	will	use	9201	port,	and	so	on).	There	is	also	http.publish_port,	which	is	very
useful	when	running	Elasticsearch	behind	a	firewall	and	when	the	HTTP	port	is	not
directly	accessible.	It	defines	which	port	should	be	used	by	the	clients	connecting	to
Elasticsearch	and	defaults	to	the	same	value	as	the	http.port	property.

HTTP	host
We	can	also	define	the	host	to	which	Elasticsearch	will	bind.	To	specify	it,	we	need	to
define	the	http.host	property.	The	default	value	is	the	one	set	by	the	network	module.	If
needed,	we	can	set	the	publish	host	and	the	bind	host	separately	using	the
http.publish_host	and	http.bind_host	properties.	You	usually	don’t	have	to	specify
these	properties	unless	your	nodes	have	non	standard	host	names	or	multiple	names	and
you	want	Elasticsearch	to	bind	to	a	single	one	only.

You	can	find	the	full	list	of	properties	allowed	for	the	HTTP	module	in	Elasticsearch
official	documentation	available	at
https://www.elastic.co/guide/en/elasticsearch/reference/2.2/modules-http.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/2.2/modules-http.html

www.EBooksWorld.ir

The	gateway	and	recovery	modules
Apart	from	our	indices	and	the	data	indexed	inside	them,	Elasticsearch	needs	to	hold	the
metadata,	such	as	the	type	mappings,	the	index	level	settings,	and	so	on.	This	information
needs	to	be	persisted	somewhere	so	it	can	be	read	during	cluster	recovery.	Of	course,	it
could	be	stored	in	memory,	but	full	cluster	restart	or	a	fatal	failure	would	result	in	this
information	being	lost,	which	is	not	something	that	we	want.	This	is	why	Elasticsearch
introduced	the	gateway	module.	You	can	think	about	it	as	a	safe	heaven	for	your	cluster
data	and	metadata.	Each	time	you	start	your	cluster,	all	the	needed	data	is	read	from	the
gateway	and,	when	you	make	a	change	to	your	cluster,	it	is	persisted	using	the	gateway
module.

www.EBooksWorld.ir

The	gateway
In	order	to	set	the	type	of	gateway	we	want	to	use,	we	need	to	add	the	gateway.type
property	to	the	elasticsearch.yml	configuration	file	and	set	it	to	the	local	value.
Currently,	Elasticsearch	recommends	using	the	local	gateway	type	(gateway.type	set	to
local),	which	is	the	default	one	and	the	only	one	available	without	additional	plugins.

The	default	local	gateway	type	stores	the	indices	and	their	metadata	in	the	local	file
system.	Compared	to	the	other	gateways,	the	write	operation	to	this	gateway	is	not
performed	in	an	asynchronous	way,	so,	whenever	a	write	succeeds,	you	can	be	sure	that
the	data	was	written	into	the	gateway	(so	basically	indexed	or	stored	in	the	transaction
log).

www.EBooksWorld.ir

Recovery	control
In	addition	to	choosing	the	gateway	type,	Elasticsearch	allows	us	to	configure	when	to
start	the	initial	recovery	process.	The	recovery	is	a	process	of	initializing	all	the	shards	and
replicas,	reading	all	the	data	from	the	transaction	log,	and	applying	them	on	the	shards.
Basically,	it’s	a	process	needed	to	start	Elasticsearch.

For	example,	let’s	imagine	that	we	have	a	cluster	that	consists	of	10	Elasticsearch	nodes.
We	should	inform	Elasticsearch	about	the	number	of	nodes	by	setting
gateway.expected_nodes	to	that	value,	so	10	in	our	case.	We	inform	Elasticsearch	about
the	number	of	expected	nodes	that	are	eligible	to	hold	the	data	and	eligible	to	be	selected
as	a	master.	Elasticsearch	will	start	the	recovery	process	immediately	if	the	number	of
nodes	in	the	cluster	is	equal	to	that	property.

We	would	also	like	to	start	the	recovery	after	six	nodes	are	together.	To	do	this,	we	should
set	the	gateway.recover_after_nodes	property	to	6.	This	property	should	be	set	to	a
value	that	ensures	that	the	newest	version	of	the	cluster	state	snapshot	will	be	available,
which	usually	means	that	you	should	start	recovery	when	most	of	your	nodes	are
available.

There	is	also	one	more	thing.	We	would	like	the	gateway	recovery	process	to	start	5
minutes	after	the	gateway.recover_after_nodes	condition	is	met.	To	do	this,	we	set	the
gateway.recover_after_time	property	to	5m.	This	property	tells	the	gateway	module
how	long	to	wait	with	the	recovery	process	after	the	number	of	nodes	reached	the
minimum	specified	by	the	gateway.recovery_after_nodes	property.	We	may	want	to	do
this	because	we	know	that	our	network	is	quite	slow	and	we	want	the	nodes
communication	to	be	stable.	Note	that	Elasticsearch	won’t	delay	the	recovery	if	the
number	of	master	and	data	eligible	nodes	that	formed	the	cluster	is	equal	to	the	value	of
the	gateway.expected_nodes	property.

The	preceding	property	values	should	be	set	in	the	elasticsearch.yml	configuration	file.
For	example:	if	we	would	like	to	have	the	previously	discussed	value	in	the	mentioned
file,	we	would	end	up	with	the	following	section	in	the	file:

gateway.recover_after_nodes:	6

gateway.recover_after_time:	5m

gateway.expected_nodes:	10

Additional	gateway	recovery	options
In	addition	to	the	mentioned	options,	Elasticsearch	allows	us	some	additional	degree	of
control.	These	additional	options	are:

gateway.recover_after_master_nodes:	This	is	similar	to	the
gateway_recover_after_nodes	property,	but	instead	of	taking	into	consideration	all
the	nodes,	it	allows	us	to	specify	how	many	master	eligible	nodes	should	be	present
in	the	cluster	before	recovery	starts
gateway.recover_after_data_nodes:	This	is	also	similar	to	the
gateway_recover_after_nodes	property,	but	it	allows	specifying	how	many	data

www.EBooksWorld.ir

nodes	should	be	present	in	the	cluster	before	recovery	starts
gateway.expected_master_nodes:	This	is	similar	to	the	gateway.expected_nodes
property,	but	instead	of	specifying	the	number	of	all	the	nodes	that	we	expect	in	the
cluster,	it	allows	specifying	how	many	master	eligible	nodes	we	expect	to	be	present
gateway.expected_master_nodes:	This	is	similar	to	the	gateway.expected_nodes
property,	but	allows	specifying	how	many	master	nodes	we	expect	to	be	present
gateway.expected_data_nodes:	This	is	also	similar	to	the
gateway.expected_nodes	property,	but	allows	specifying	how	many	data	nodes	we
expect	to	be	present

Indices	recovery	API
There	is	also	one	other	thing	when	it	comes	to	the	recovery	process	–	the	indices	recovery
API.	It	allows	us	to	see	the	process	of	index	or	indices	recovery.	To	use	it,	we	just	need	to
specify	the	indices	and	use	the	_recovery	end-point.	For	example,	to	check	the	recovery
process	of	the	library	index,	we	will	run	the	following	command:

curl	-XGET	'localhost:9200/library/_recovery?pretty'

The	response	for	the	preceding	command	can	be	large	and	depends	on	the	number	of
shards	in	the	index	and	of	course	the	amount	of	indices	we	want	to	get	information	for.	In
our	case,	the	response	looks	as	follows	(we	left	information	about	a	single	shard	to	make	it
less	extensive):

{

		"library"	:	{

				"shards"	:	[{

						"id"	:	0,

						"type"	:	"STORE",

						"stage"	:	"DONE",

						"primary"	:	true,

						"start_time_in_millis"	:	1444030695956,

						"stop_time_in_millis"	:	1444030695962,

						"total_time_in_millis"	:	5,

						"source"	:	{

								"id"	:	"Brt5ejEVSVCkIfvY9iDMRQ",

								"host"	:	"127.0.0.1",

								"transport_address"	:	"127.0.0.1:9300",

								"ip"	:	"127.0.0.1",

								"name"	:	"Puff	Adder"

						},

						"target"	:	{

								"id"	:	"Brt5ejEVSVCkIfvY9iDMRQ",

								"host"	:	"127.0.0.1",

								"transport_address"	:	"127.0.0.1:9300",

								"ip"	:	"127.0.0.1",

								"name"	:	"Puff	Adder"

						},

						"index"	:	{

								"size"	:	{

										"total_in_bytes"	:	157,

										"reused_in_bytes"	:	157,

										"recovered_in_bytes"	:	0,

www.EBooksWorld.ir

										"percent"	:	"100.0%"

								},

								"files"	:	{

										"total"	:	1,

										"reused"	:	1,

										"recovered"	:	0,

										"percent"	:	"100.0%"

								},

								"total_time_in_millis"	:	1,

								"source_throttle_time_in_millis"	:	0,

								"target_throttle_time_in_millis"	:	0

						},

						"translog"	:	{

								"recovered"	:	0,

								"total"	:	-1,

								"percent"	:	"-1.0%",

								"total_on_start"	:	-1,

								"total_time_in_millis"	:	4

						},

						"verify_index"	:	{

								"check_index_time_in_millis"	:	0,

								"total_time_in_millis"	:	0

						}

				},

				...

]

		}

}

As	you	can	see	in	the	response,	we	see	the	information	about	each	shard.	For	each	shard,
we	see	the	type	of	the	operation	(the	type	property),	the	stage	(the	stage	property)
describing	what	part	of	the	recovery	process	is	in	progress,	and	whether	it	is	a	primary
shard	(the	primary	property).	In	addition	to	this,	we	see	sections	about	the	source	shard,
the	target	shard,	the	index	the	shard	is	part	of,	the	information	about	the	transaction	log,
and	finally	information	about	the	index	verification.	All	of	this	allows	us	to	see	what	is	the
status	of	the	recovery	of	our	indices.

Delayed	allocation
We	already	discussed	that	by	default	Elasticsearch	tries	to	balance	the	shards	in	the	cluster
accordingly	to	the	number	of	nodes	in	that	cluster.	Because	of	that,	when	a	node	drops	off
the	cluster	(or	multiple	nodes	do)	or	when	nodes	join	the	cluster,	Elasticsearch	starts
rebalancing	the	cluster,	moving	the	shards	and	the	replicas	around.	This	is	usually	very
expensive	–	new	primary	shards	may	be	promoted	out	of	the	available	replicas,	large
amount	of	data	may	be	copied	between	the	new	primary	and	its	replicas,	and	so	on.	And
this	may	be	happening	because	a	single	node	was	just	restarted	for	30	seconds
maintenance.

To	avoid	such	situations,	Elasticsearch	provides	us	with	the	possibility	to	control	how	long
to	wait	before	beginning	allocation	of	shards	that	are	in	unassigned	state.	We	can	control
the	delay	by	using	the	index.unassigned.node_left.delayed_timeout	property	and
setting	it	on	per	index	basis.	For	example,	to	configure	the	allocation	timeout	for	the

www.EBooksWorld.ir

library	index	to	10	minutes,	we	run	the	following	command:

curl	-XPUT	'localhost:9200/library/_settings'	-d	'{

	"settings":	{

		"index.unassigned.node_left.delayed_timeout":	"10m"

	}

}'

We	can	also	configure	the	allocation	timeout	for	all	the	indices	by	running	the	following
command:

curl	-XPUT	'localhost:9200/_all/_settings'	-d	'{

	"settings":	{

		"index.unassigned.node_left.delayed_timeout":	"10m"

	}

}'

Index	recovery	prioritization
Elasticsearch	2.2	exposes	one	more	feature	when	it	comes	to	the	indices	recovery	process
that	allows	us	to	define	which	indices	should	be	prioritized	when	it	comes	to	recovery.	By
specifying	the	index.priority	property	in	the	index	settings	and	assigning	it	a	positive
integer	value,	we	define	the	order	in	which	Elasticsearch	should	recover	the	indices;	the
ones	with	the	higher	index.priority	property	will	be	started	first.

For	example,	let’s	assume	that	we	have	two	indices,	library	and	map,	and	we	want	the
library	index	to	be	recovered	before	the	map	index.	To	do	this,	we	will	run	the	following
commands:

curl	-XPUT	'localhost:9200/library/_settings'	-d	'{

	"settings":	{

		"index.priority":	10

	}

}'

curl	-XPUT	'localhost:9200/map/_settings'	-d	'{

	"settings":	{

		"index.priority":	1

	}

}'

We	assigned	higher	priority	to	the	library	index	and,	because	of	that,	it	will	be	recovered
faster.

www.EBooksWorld.ir

www.EBooksWorld.ir

Templates	and	dynamic	templates
In	the	Mappings	configuration	section	of	Chapter	2,	Indexing	Your	Data,	we	discussed
mappings,	how	they	are	created,	and	how	the	type-determining	mechanism	works.	Now
we	will	get	into	more	advanced	topics.	We	will	show	you	how	to	dynamically	create
mappings	for	new	indices	and	how	to	apply	some	logic	to	the	templates,	so	that	new
indices	are	already	created	with	predefined	mappings.

www.EBooksWorld.ir

Templates
In	various	parts	of	the	book,	when	discussing	index	configuration	and	its	structure,	we’ve
seen	that	this	can	become	complicated,	especially	when	we	have	sophisticated	data
structures	that	we	want	to	index,	search,	and	aggregate.	Especially	if	you	have	a	lot	of
similar	indices,	taking	care	of	the	mappings	in	each	of	them	can	be	a	very	painful	process
–	each	new	index	has	to	be	created	with	appropriate	mappings.	Elasticsearch	creators
predicted	this	and	implemented	a	feature	called	index	templates.	Each	template	defines	a
pattern,	which	is	compared	to	a	newly	created	index	name.	When	both	of	them	match,	the
values	defined	in	the	template	are	copied	to	the	index	structure	definition.	When	multiple
templates	match	the	name	of	the	newly	created	index,	all	of	them	are	applied	and	the
values	from	the	templates	that	are	applied	later	override	the	values	defined	in	the
previously	applied	templates.	This	is	very	convenient	because	we	can	define	a	few
common	settings	in	the	general	templates	and	change	them	in	the	more	specialized	ones.
In	addition,	there	is	an	order	parameter	that	lets	us	force	the	desired	template	ordering.
You	can	think	of	templates	as	dynamic	mappings	that	can	be	applied	not	to	the	types	in
documents	but	to	the	indices.

An	example	of	a	template
Let’s	see	a	real	example	of	a	template.	Imagine	that	we	want	to	create	many	indices	in
which	we	don’t	want	to	store	the	source	of	the	documents	so	that	our	indices	are	smaller.
We	also	don’t	need	any	replicas.	We	can	create	a	template	that	matches	our	need	by	using
the	Elasticsearch	REST	API	and	the	/_template	end	point,	by	sending	the	following
command:

curl	-XPUT	http://localhost:9200/_template/main_template?pretty	-d	'{

		"template"	:	"*",

				"order"	:	1,

				"settings"	:	{

				"index.number_of_replicas"	:	0

		},

		"mappings"	:	{

				"_default_"	:	{

						"_source"	:	{

								"enabled"	:	false

						}

				}

		}

}'

From	now	on,	all	the	created	indices	will	have	no	replicas	and	no	source	stored.	This	is
because	the	template	parameter	value	is	set	to	*,	which	matches	all	the	names	of	the
indices.	Note	the	_default_	type	name	in	our	example.	This	is	a	special	type	name
which	indicates	that	the	current	rule	should	be	applied	to	every	document	type.	The
second	interesting	thing	is	the	order	parameter.	Let’s	define	a	second	template	by	using	the
following	command:

curl	-XPUT	http://localhost:9200/_template/ha_template?pretty	-d	'{

		"template"	:	"ha_*",

www.EBooksWorld.ir

		"order"	:	10,

		"settings"	:	{

				"index.number_of_replicas"	:	5

		}

}'

After	running	the	preceding	command,	all	the	new	indices	will	behave	as	earlier	except
the	ones	with	names	beginning	with	ha_.	In	case	of	these	indices,	both	the	templates	are
applied.	First,	the	template	with	the	lower	order	value	is	used	and	then	the	next	template
overwrites	the	replica’s	setting.	So,	the	indices	whose	names	start	with	ha_	will	have	five
replicas	and	disabled	sources	stored.

Note
Before	version	2.0,	Elasticsearch	templates	could	also	be	stored	in	files.	Starting	with
Elasticsearch	2.0,	this	feature	is	no	longer	available.

www.EBooksWorld.ir

Dynamic	templates
Sometimes	we	want	to	have	the	possibility	of	defining	type	that	is	dependent	on	the	field
name	and	the	type.	This	is	where	dynamic	templates	can	help.	Dynamic	templates	are
similar	to	the	usual	mappings,	but	each	template	has	its	pattern	defined,	which	is	applied
to	a	document’s	field	name.	If	a	field	name	matches	the	pattern,	the	template	is	used.

Let’s	have	a	look	at	the	following	example:

curl	-XPOST	'localhost:9200/news'	-d	'{

		"mappings"	:	{

				"article"	:	{

						"dynamic_templates"	:	[

								{

										"template_test":	{

												"match"	:	"*",

												"mapping"	:	{

														"index"	:	"analyzed",

														"fields"	:	{

																"str":	{

																		"type":	"{dynamic_type}",

																		"index":	"not_analyzed"

																}

														}

												}

										}

								}

]

				}

		}

}'

In	the	preceding	example,	we	defined	the	mapping	for	the	article	type.	In	this	mapping,	we
have	only	one	dynamic	template	named	template_test.	This	template	is	applied	for
every	field	in	the	input	document	because	of	the	single	asterisk	pattern	in	the	match
property.	Each	field	will	be	treated	as	a	multifield,	consisting	of	a	field	named	as	the
original	field	(for	example,	title)	and	the	second	field	with	a	name	suffixed	with	str	(for
example,	title.str).	The	first	field	will	have	its	type	determined	by	Elasticsearch	(with
the	{dynamic_type}	type),	and	the	second	field	will	be	a	string	(because	of	the	string
type).

The	matching	pattern
We	have	two	ways	of	defining	the	matching	pattern.	They	are	as	follows:

match:	This	template	is	used	if	the	name	of	the	field	matches	the	pattern	(this	pattern
type	was	used	in	our	example)
unmatch:	This	template	is	used	if	the	name	of	the	field	doesn’t	match	the	pattern

By	default,	the	pattern	is	very	simple	and	uses	glob	patterns.	This	can	be	changed	by	using
match_pattern=regexp.	After	adding	this	property,	we	can	use	all	the	magic	provided	by
regular	expressions	to	match	and	unmatch	the	patterns.	There	are	variations	such	as

www.EBooksWorld.ir

path_match	and	path_unmatch	that	can	be	used	to	match	the	names	in	nested	documents
(by	providing	path,	similar	to	queries).

Field	definitions
When	writing	a	target	field	definition,	the	following	variables	can	be	used:

{name}:	The	name	of	the	original	field	found	in	the	input	document
{dynamic_type}:	The	type	determined	from	the	original	document

Note
Note	that	Elasticsearch	checks	the	templates	in	the	order	of	their	definitions	and	the
first	matching	template	is	applied.	This	means	that	the	most	generic	templates	(for
example,	with	"match":	"*")	must	be	defined	at	the	end.

www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch	plugins
At	various	places	in	this	book,	we	have	used	different	plugins	that	have	been	able	to
extend	the	core	functionality	of	Elasticsearch.	You	probably	remember	the	additional
programming	languages	used	in	scripts	described	in	the	Scripting	capabilities	of
Elasticsearch	section	of	Chapter	6,	Make	Your	Search	Better.	In	this	section,	we	will	look
at	how	the	plugins	work	and	how	to	install	them.

www.EBooksWorld.ir

The	basics
By	default,	Elasticsearch	plugins	are	located	in	their	own	subdirectory	in	the	plugins
subdirectory	of	the	search	engine	home	directory.	If	you	have	downloaded	a	new	plugin
manually,	you	can	just	create	a	new	directory	with	the	plugin	name	and	unpack	that	plugin
archive	to	this	directory.	There	is	also	a	more	convenient	way	to	install	plugins:	by	using
the	plugin	script.	We	have	used	it	several	times	in	this	book	without	talking	about	it,	so
this	time	let’s	take	the	time	and	describe	this	tool.

Elasticsearch	has	two	main	types	of	plugins.	These	two	types	can	be	categorized	based	on
the	content	of	the	plugin-descriptor.properties	file:	Java	plugins	and	site	plugins.
Let’s	start	with	the	site	plugins.	They	usually	contain	sets	of	HTML,	CSS,	and	JavaScript
files	and	add	additional	UI	components	to	Elasticsearch.	Elasticsearch	treats	the	site
plugins	as	a	file	set	that	should	be	served	by	the	built-in	HTTP	server	under	the
/_plugin/plugin_name/	URL	(for	example,	/_plugin/bigdesk/).	This	type	of	plugin
doesn’t	change	anything	in	core	Elasticsearch	functionality.

The	Java	plugins	are	the	ones	that	add	or	modify	the	core	Elasticsearch	features.	They
usually	contain	the	JAR	files.	The	plugin-descriptor.properties	file	contains
information	about	the	main	class	that	should	be	used	by	Elasticsearch	as	an	entry	point	to
configure	plugins	and	allow	them	to	extend	the	Elasticsearch	functionality.	The	nice	thing
about	the	Java	plugins	is	that	they	can	contain	the	site	part	as	well.	The	site	part	of	the
plugin	needs	to	be	placed	in	the	_site	directory	if	we	are	unpacking	the	plugin	manually.

www.EBooksWorld.ir

Installing	plugins
Plugins	can	be	downloaded	from	three	source	types.	The	first	is	the	official	repository
located	at	https://download.elastic.co.	All	plugins	from	this	source	can	be	installed	by
referring	to	the	plugin	name.	For	example:

bin/plugin	install	lang-javascript

The	preceding	command	results	in	installation	of	a	plugin	that	allows	us	to	use	an
additional	scripting	language,	JavaScript.	Elasticsearch	automatically	tries	to	find	a	plugin
version	that	is	the	same	as	the	version	of	Elasticsearch	we	are	using.	Sometimes,	like	in
the	following	example,	a	plugin	may	ask	for	additional	permissions	during	installation.

Just	so	we	know	what	to	expect,	this	is	an	example	result	of	running	the	preceding
command:

->	Installing	lang-javascript…

Trying	

https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/

lang-javascript/2.2.0/lang-javascript-2.2.0.zip…

Downloading…...

.........DONE

Verifying	

https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/

lang-javascript/2.2.0/lang-javascript-2.2.0.zip	checksums	if	available…

Downloading	.DONE

@@@

@					WARNING:	plugin	requires	additional	permissions					@

@@@

*	java.lang.RuntimePermission	createClassLoader

*	org.elasticsearch.script.ClassPermission	<<STANDARD>>

*	org.elasticsearch.script.ClassPermission	

org.mozilla.javascript.ContextFactory

*	org.elasticsearch.script.ClassPermission	org.mozilla.javascript.Callable

*	org.elasticsearch.script.ClassPermission	

org.mozilla.javascript.NativeFunction

*	org.elasticsearch.script.ClassPermission	org.mozilla.javascript.Script

*	org.elasticsearch.script.ClassPermission	

org.mozilla.javascript.ScriptRuntime

*	org.elasticsearch.script.ClassPermission	org.mozilla.javascript.Undefined

*	org.elasticsearch.script.ClassPermission	

org.mozilla.javascript.optimizer.OptRuntime

See	

http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.

html

for	descriptions	of	what	these	permissions	allow	and	the	associated	risks.

Continue	with	installation?	[y/N]y

Installed	lang-javascript	into	/Users/someplace/elasticsearch-

2.2.0/plugins/lang-javascript

Installed	lang-javascript	into	

/Users/negativ/Developer/Elastic/elasticsearch-2.2.0/plugins/lang-

javascript

www.EBooksWorld.ir

https://download.elastic.co

If	the	plugin	is	not	available	at	the	first	location,	it	can	be	placed	in	one	of	the	Apache
Maven	repositories:	Maven	Central	(https://search.maven.org/)	or	Maven	Sonatype
(https://oss.sonatype.org/).	In	this	case,	the	plugin	name	for	installation	should	be	equal	to
groupId/artifactId/version,	just	as	every	library	for	Maven
(http://maven.apache.org/).	For	example:

bin/plugin	install	org.elasticsearch/elasticsearch-mapper-attachments/3.0.1

The	third	source	are	the	GitHub	(https://github.com/)	repositories.	The	plugin	tool
assumes	that	the	given	plugin	address	contains	the	organization	name	followed	by	the
plugin	name	and,	optionally,	the	version	number.	Let’s	look	at	the	following	command
example:

bin/plugin	install	mobz/elasticsearch-head

If	you	write	your	own	plugin	and	you	have	no	access	to	the	earlier-mentioned	sites,	there
is	no	problem.	The	plugin	tool	accepts	the	url	property	from	where	the	plugin	should	be
downloaded	(instead	of	specifying	the	name	of	the	plugin).	This	option	allows	us	to	set
any	location	for	the	plugins,	including	the	local	file	system	(using	the	file://	prefix)	or
remote	file	(using	the	http://	prefix).	For	example,	the	following	command	will	result
in	the	installation	of	a	plugin	archived	on	the	local	file	system	in	the
/tmp/elasticsearch-lang-javascript-3.0.0.RC1.zip	directory:

bin/plugin	install	file:///tmp/elasticsearch-lang-javascript-3.0.0.RC1.zip

www.EBooksWorld.ir

https://search.maven.org/
https://oss.sonatype.org/
http://maven.apache.org/
https://github.com/

Removing	plugins
Removing	a	plugin	is	as	simple	as	removing	its	directory.	You	can	also	do	this	by	using
the	plugin	tool.	For	example,	to	remove	the	previously	installed	JavaScript	plugin,	we	run
a	command	as	follows:

bin/plugin	remove	lang-javascript

The	output	from	the	command	just	confirms	that	the	plugin	was	removed:

->	Removing	lang-javascript…

Removed	lang-javascript

Note
You	need	to	restart	the	Elasticsearch	node	for	the	plugin	installation	or	removal	to	take
effect.

www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch	caches
Until	now	we	haven’t	mentioned	Elasticsearch	caches	much	in	the	book.	However,	as
most	common	systems	Elasticsearch	users	a	variety	of	caches	to	perform	more
complicated	operations	or	to	speed	up	performance	of	heavy	data	retrieval	from	disk	based
Lucene	indices.	In	this	section,	we	will	look	at	the	most	common	caches	of	Elasticsearch,
what	they	are	used	for,	what	are	the	performance	implications	of	using	them,	and	how	to
configure	them.

www.EBooksWorld.ir

Fielddata	cache
In	the	beginning	of	the	book,	we	discussed	that	Elasticsearch	uses	the	so	called	inverted
index	data	structure	to	quickly	and	efficiently	search	through	the	documents.	This	is	very
good	when	searching	and	filtering	the	data,	but	for	features	such	as	aggregations,	sorting,
or	script	usage,	Elasticsearch	needs	an	un-inverted	data	structure,	because	these	functions
rely	on	per	document	data	information.

Because	of	the	need	for	uninverted	data,	when	Elasticsearch	was	first	released	it	contained
and	still	contains	an	in	memory	data	structure	called	fielddata.	Fielddata	is	used	to	store	all
the	values	of	a	given	field	to	memory	to	provide	very	fast	document	based	lookup.
However,	the	cost	of	using	fielddata	is	memory	and	increased	garbage	collection.	Because
of	memory	and	performance	cost,	starting	from	Elasticsearch	2.0,	each	indexed,	not
analyzed	field	uses	doc	values	by	default.	Other	fields,	such	as	analyzed	text	fields,	still
use	fielddata	and	because	of	that	it	is	good	to	know	how	to	handle	fielddata.

Fielddata	size
Elasticsearch	allows	us	to	control	how	much	memory	the	fielddata	cache	uses.	By	default,
the	cache	is	unbounded,	which	is	very	dangerous.	If	you	have	large	indices,	you	may	run
into	memory	issues,	where	the	fielddata	cache	will	eat	most	of	the	memory	given	to
Elasticsearch	and	will	result	in	node	failure.	We	are	allowed	to	configure	the	size	of	the
fielddata	cache	by	using	the	static	indices.fielddata.cache.size	property	set	to	an
explicit	value	(like	10GB)	or	to	a	percentage	of	the	whole	memory	given	to	Elasticsearch
(like	20%).

Remember	that	the	fielddata	cache	is	very	expensive	to	build	as	it	needs	to	load	all	the
values	of	a	given	field	to	memory.	This	can	take	a	lot	of	time	resulting	in	degradation	in
the	performance	of	the	queries.	Because	of	this,	it	is	advised	to	have	enough	memory	to
keep	the	needed	cache	permanently	in	Elasticsearch	memory.	However,	we	understand
that	this	is	not	always	possible	because	of	hardware	costs.

Circuit	breakers
The	nice	thing	about	Elasticsearch	is	that	it	allows	us	to	achieve	a	similar	thing	in	multiple
ways	and	we	have	the	same	situation	when	it	comes	to	fielddata	and	limiting	the	memory
usage.	Elasticsearch	allows	us	to	use	a	functionality	called	circuit	breakers,	which	can
estimate	how	much	memory	a	request	or	a	query	will	use,	and	if	it	is	above	a	defined
threshold,	it	won’t	be	executed	at	all,	resulting	in	no	memory	usage	and	an	exception
thrown.	This	is	very	nice	when	we	don’t	want	to	limit	the	size	of	the	fielddata	cache	but
we	also	don’t	want	a	single	query	to	cause	memory	issues	and	make	the	cluster	unstable.
There	are	two	main	circuit	breakers:	the	field	data	circuit	breaker	and	the	request	circuit
breaker.

The	first	circuit	breaker,	the	field	data	one,	estimates	the	amount	of	memory	that	will	need
to	be	used	to	load	data	to	the	fielddata	cache	for	a	given	query.	We	can	configure	the
limit	by	using	the	indices.breaker.fielddata.limit	property,	which	is	by	default	set	to
60%,	which	means	that	a	fielddata	cache	for	a	single	query	can’t	use	more	than	60	percent

www.EBooksWorld.ir

of	the	memory	given	to	Elasticsearch.

The	second	circuit	breaker,	the	request	one,	estimates	the	memory	used	by	per	request	data
structures	and	prevents	them	from	using	more	than	the	amount	specified	by	the
indices.breaker.request.limit	property.	By	default,	the	mentioned	property	is	set	to
40%,	which	means	that	single	request	data	structures,	such	as	the	ones	used	for	aggregation
calculation,	can’t	use	more	than	40%	of	the	memory	given	to	Elasticsearch.

Finally,	there	is	one	more	circuit	breaker	that	is	defined	by	the
indices.breaker.limit.total	property	(by	default	set	to	70%).	This	circuit	breaker
defines	the	total	amount	of	memory	that	can	be	used	by	both	the	per	request	data
structures	and	fielddata.

Remember	that	the	settings	for	circuit	breakers	are	dynamic	and	can	be	updated	using
cluster	update	settings.

www.EBooksWorld.ir

Fielddata	and	doc	values
As	we	already	discussed,	instead	of	fielddata	cache,	doc	values	can	be	used.	Of	course,
this	is	only	true	for	not	analyzed	fields	and	ones	using	numeric	data	types	and	not
multivalued	ones.	This	will	save	memory	and	should	be	faster	than	the	fielddata	cache
during	query	time,	at	the	cost	of	slight	indexing	speed	degradations	(very	small)	and	a
slightly	larger	index.	If	you	can	use	doc	values,	do	that	–	it	will	help	your	Elasticsearch
cluster	to	maintain	stability	and	respond	to	queries	quickly.

www.EBooksWorld.ir

Shard	request	cache
The	first	of	the	caches	that	operates	on	the	queries.	The	shard	request	cache	caches	the
aggregations	and	suggestions	resulted	by	the	query,	but,	when	writing	this	book,	it	was	not
caching	query	hits.	When	Elasticsearch	executes	the	query,	this	cache	can	save	the
resource	consuming	aggregations	for	the	query	and	speed	up	the	subsequent	queries	by
retrieving	the	aggregations	or	suggestions	from	memory.

Note
During	the	writing	of	this	book,	the	shard	request	cache	was	only	used	when	the	size=0
parameter	was	set	for	the	query.	This	means	that	only	the	total	number	of	hits,	aggregation
results,	and	suggestions	will	be	cached.	Remember	that	when	running	queries	with	dates
and	using	the	now	constant,	the	shard	query	cache	won’t	also	be	used.

The	shard	request	cache,	as	its	name	says,	caches	the	results	of	the	queries	on	each	shard,
before	they	are	returned	to	the	node	that	aggregates	the	results.	This	can	be	very	good
when	your	aggregations	are	heavy,	like	the	ones	that	do	a	lot	of	computation	on	the	data
returned	by	the	query.	If	you	run	a	lot	of	aggregations	with	your	queries	and	the	queries
can	be	repeated,	think	about	using	the	shard	request	cache	as	it	should	help	you	with
queries	latency.

Enabling	and	configuring	the	shard	request	cache
The	shard	request	cache	is	disabled	by	default,	but	can	be	easily	enabled.	To	enable	it,	we
should	set	the	index.requests.cache.enable	property	to	true	when	creating	the	index.
For	example,	to	enable	the	shard	request	cache	for	an	index	called	new_library,	we	use
the	following	command:

curl	-XPUT	'localhost:9200/new_library'	-d	'{

	"settings":	{

		"index.requests.cache.enable":	true

	}

}'

One	thing	to	remember	is	that	the	mentioned	setting	is	not	dynamically	updatable.	We
need	to	include	it	in	the	index	creation	command	or	we	can	update	it	when	the	index	is
closed.

The	maximum	size	of	the	cache	is	specified	using	the	indices.requests.cache.size
property	and	is	set	to	1%	by	default	(which	means	1%	of	the	total	memory	given	to
Elasticsearch).	We	can	also	specify	how	long	each	entry	should	be	kept	by	using	the
indices.requests.cache.expire	property,	but	it	is	not	set	by	default.	Also,	the	cache	is
invalidated	once	the	index	is	refreshed	(during	index	searcher	reopening),	which	makes
the	setting	useless	most	of	the	time.

Note
Note	that	in	the	earlier	versions	of	Elasticsearch,	for	example	in	the	1.x	branch,	to	enable
or	disable	this	cache,	the	index.cache.query.enable	property	was	used.	This	may	be

www.EBooksWorld.ir

important	when	migrating	from	older	Elasticsearch	versions.

Per	request	shard	request	cache	disabling
Elasticsearch	allows	us	to	control	the	request	shard	cache	used	on	a	per	request	basis.	If
we	have	the	mentioned	cache	enabled,	we	can	still	force	the	search	engine	to	omit	caching
for	such	requests.	This	is	done	by	using	the	request_cache	parameter.	If	set	to	true,	the
request	will	be	cached	and,	if	set	to	false,	the	request	won’t	be	cached.	This	is	especially
useful	when	we	want	to	cache	our	requests	in	general	but	omit	caching	for	some	queries
that	are	rare	and	not	used	often.	It	is	also	wise	for	requests	that	use	non-deterministic
scripts	and	time	ranges	to	not	be	cached.

Shard	request	cache	usage	monitoring
If	we	don’t	use	any	monitoring	software	that	allows	monitoring	the	caches	usage,	we	can
use	Elasticsearch	API	to	check	the	metrics	around	the	shard	request	cache.	This	can	be
done	both	at	the	indices	level	or	at	the	nodes	level.

To	check	the	metrics	for	the	shard	request	cache	for	all	the	indices,	we	should	use	the
indices	stats	API	and	run	the	following	command:

curl	'localhost:9200/_stats/request_cache?pretty'

To	check	the	request	cache	metrics,	but	in	per	node	view,	we	run	the	following	command:

curl	'localhost:9200/_nodes/stats/indices/request_cache?pretty'

www.EBooksWorld.ir

Node	query	cache
The	node	query	cache	is	responsible	for	holding	the	results	of	queries	for	the	whole	node.
Its	size	is	defined	using	indices.queries.cache.size,	defaulting	to	10%,	and	is	sharable
across	all	the	shards	present	on	the	node.	We	can	set	it	both	to	the	percentage	of	the	heap
memory	given	to	Elasticsearch,	like	the	default	one,	or	to	an	explicit	value,	like	1024mb.
One	thing	to	remember	about	the	cache	is	that	its	configuration	is	static,	it	can’t	be
updated	dynamically	and	should	be	set	in	the	elasticsearch.yml	file.	The	node	query
cache	uses	the	least	recent	used	eviction	policy,	which	means	that,	when	full,	it	removes
the	data	that	was	used	the	least.

This	cache	is	very	useful	when	you	run	queries	that	are	repetetive	and	heavy,	such	as	the
ones	used	to	generate	category	pages	or	the	main	page	in	an	e-commerce	application.

www.EBooksWorld.ir

Indexing	buffers
The	last	cache	we	want	to	discuss	is	the	indexing	buffer	that	allows	us	to	improve
indexing	throughput.	The	indexing	buffer	is	divided	between	all	the	shards	on	the	node
and	is	used	to	store	newly	indexed	documents.	Once	the	cache	fills	up,	Elasticsearch
flushes	the	data	from	the	cache	to	disk,	creating	a	new	Lucene	segment	in	the	index.

There	are	four	static	properties	that	allow	us	to	configure	the	indexing	buffer	size.	They
need	to	be	set	in	the	elasticsearch.yml	file	and	can’t	be	changed	dynamically	using	the
Settings	API.	These	properties	are:

indices.memory.index_buffer_size:	This	property	defines	the	amount	of	memory
used	by	a	node	for	the	indexing	buffer.	It	accepts	both	a	percentage	value	as	well	as
an	explicit	value	in	bytes.	It	defaults	to	10%,	which	means	that	10%	of	the	heap
memory	given	to	a	node	will	be	used	as	the	indexing	buffer.
indices.memory.min_index_buffer_size:	This	property	defaults	to	48mb	and
specifies	the	minimum	memory	that	will	be	used	by	the	indexing	buffer.	It	is	useful
when	indices.memory.index_buffer_size	is	defined	as	a	percentage	value,	so	that
the	indexing	buffer	is	never	smaller	than	the	value	defined	by	this	property.
indices.memory.max_index_buffer_size:	This	property	specifies	the	maximum
memory	that	will	be	used	by	the	indexing	buffer.	It	is	useful	when
indices.memory.index_buffer_size	is	defined	as	a	percentage	value,	so	that	the
indexing	buffer	never	crosses	a	certain	amount	of	memory	usage.
indices.memory.min_shard_index_buffer_size:	This	property	defaults	to	4mb	and
sets	the	hard	minimum	limit	of	the	indexing	buffer	that	is	given	to	each	shard	on	a
node.	The	indexing	buffer	for	each	shard	will	not	be	lower	than	the	value	set	by	this
property.

When	it	comes	to	indexing	performance,	if	you	need	higher	indexing	throughput,	consider
setting	the	indexing	buffer	size	to	a	value	higher	than	the	default	size.	It	will	allow
Elasticsearch	to	flush	the	data	to	disk	less	often	and	create	fewer	segments.	This	will	result
in	less	merges,	thus	less	I/O	and	CPU	intensive	operations.	Because	of	that,	Elasticsearch
will	be	able	to	use	more	resources	for	indexing	purposes.

www.EBooksWorld.ir

When	caches	should	be	avoided
The	usual	question	that	may	be	asked	by	users	is	if	they	should	really	cache	all	their
requests.	The	answer	is	obvious	–	of	course,	caches	are	not	the	tool	for	everyone.	Using
caching	is	not	free	–	it	requires	memory	and	additional	operations	to	put	the	data	to	cache
or	get	the	data	out	of	there.

What’s	more,	you	should	remember	that	Elasticsearch	round	robins	queries	between
primary	shards	are	replicas,	so,	if	you	have	replicas,	not	every	request	after	the	first	one
will	use	the	cache.	Imagine	that	you	have	an	index	which	has	a	single	primary	shard	and
two	replicas.	When	the	first	request	comes,	it	will	hit	a	random	shard,	but	the	next	request,
even	with	the	same	query,	will	hit	another	shard,	not	the	same	one	(unless	routing	is	used).
You	should	take	this	into	consideration	when	using	caches,	because	if	your	queries	are	not
repeated,	you	may	have	them	running	longer	because	of	a	cache	being	used.

So	to	answer	the	question	if	you	should	use	caching	or	not,	we	would	advise	taking	your
data,	taking	your	queries,	and	running	performance	tests	using	tools	such	as	JMeter
(http://jmeter.apache.org).	This	will	let	you	see	how	your	cluster	behaves	with	real	data
under	a	test	load	and	see	if	the	queries	are	actually	faster	with	or	without	the	caches.

www.EBooksWorld.ir

http://jmeter.apache.org

www.EBooksWorld.ir

The	update	settings	API
Elasticsearch	lets	us	tune	itself	by	specifying	the	various	parameters	in	the
elasticsearch.yml	file.	But	you	should	treat	this	file	as	the	set	of	default	values	that	can
be	changed	in	the	runtime	using	the	Elasticsearch	REST	API.	We	can	change	both	the	per
index	setting	and	the	cluster	wide	settings.	However,	you	should	remember	that	not	all
properties	can	be	dynamically	changed.	If	you	try	to	alter	these	parameters,	Elasticsearch
will	respond	with	a	proper	error.

www.EBooksWorld.ir

The	cluster	settings	API
In	order	to	set	one	of	the	cluster	properties,	we	need	to	use	the	HTTP	PUT	method	and	send
a	proper	request	to	the	_cluster/settings	URI.	However,	we	have	two	options:	adding
the	changes	as	transient	or	permanent.

The	first	one,	transient,	will	set	the	property	only	until	the	first	restart.	In	order	to	do	this,
we	send	the	following	command:

curl	-XPUT	'localhost:9200/_cluster/settings'	-d	'{

		"transient"	:	{

				"PROPERTY_NAME"	:	"PROPERTY_VALUE"

		}

}'

As	you	can	see,	in	the	preceding	command,	we	used	the	object	named	transient	and	we
added	our	property	definition	there.	This	means	that	the	property	will	be	valid	only	until
the	restart.	If	we	want	our	property	settings	to	persist	between	restarts,	instead	of	using	the
object	named	transient,	we	use	the	one	named	persistent.

At	any	moment,	you	can	fetch	these	settings	using	the	following	command:

curl	-XGET	localhost:9200/_cluster/settings

www.EBooksWorld.ir

The	indices	settings	API
To	change	the	indices	related	settings,	Elasticsearch	provides	the	/_settings	endpoint	for
changing	the	parameters	for	all	the	indices	and	the	/index_name/_settings	endpoint	for
modifying	the	settings	of	a	single	index.	When	compared	to	the	cluster	wide	settings,	all
the	changes	done	to	indices	using	the	API	are	always	persistent	and	valid	after
Elasticsearch	restarts.	To	change	the	settings	for	all	the	indices,	we	send	the	following
command:

curl	-XPUT	'localhost:9200/_settings'	-d	'{

		"index"	:	{

				"PROPERTY_NAME"	:	"PROPERTY_VALUE"

		}

}'

The	current	settings	for	all	the	indices	can	be	listed	using	the	following	command:

curl	-XGET	localhost:9200/_settings

To	set	a	property	for	a	single	index,	we	run	the	following	command:

curl	-XPUT	'localhost:9200/index_name/_settings'	-d	'{

		"index"	:	{

				"PROPERTY_NAME"	:	"PROPERTY_VALUE"

		}

}'

The	get	the	settings	for	the	library	index,	we	run	the	following	command:

curl	-XGET	localhost:9200/library/_settings

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	the	chapter	we	just	finished,	we	learned	a	few	very	important	things	about
Elasticsearch.	First	of	all,	we	learned	how	we	can	configure	the	node	discovery
mechanism.	In	addition	to	that,	we	learned	to	control	what	happens	after	the	cluster	is
initially	formed	using	the	recovery	and	gateway	modules.	We	used	dynamic	and	non-
dynamic	templates	to	handle	our	indices	more	easily,	and	we	learned	what	type	of	caches
Elasticsearch	has	and	how	to	control	them.	Finally,	we	used	the	update	settings	API	to
update	the	various	Elasticsearch	configuration	variables	on	an	already	live	cluster.

In	the	next	chapter,	we	will	focus	on	cluster	administration.	We	will	start	with	learning
how	to	backup	our	data	and	how	to	monitor	the	key	cluster	metrics.	We’ll	see	the	way	to
control	cluster	rebalancing	and	shard	allocation,	and	we	will	use	a	human	friendly	Cat	API
that	allows	us	to	get	varied	information	about	the	cluster.	Finally,	we	will	learn	about
warming	up	our	indices	and	aliasing.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	10.	Administrating	Your	Cluster
In	the	previous	chapter,	we	focused	on	Elasticsearch	nodes	and	cluster	configuration.	We
started	by	discussing	the	node	discovery	process,	what	it	is	and	how	to	configure	it.	We’ve
discussed	gateway	and	recovery	modules	and	tuned	them	to	match	our	needs.	We’ve	used
templates	and	dynamic	templates	to	manage	data	structure	easily	and	learned	how	to
install	plugins	to	extend	the	functionalities	of	Elasticsearch.	Finally,	we’ve	learned	about
the	caches	of	Elasticsearch	and	how	to	update	indices	and	cluster	settings	using	a
dedicated	API.	By	the	end	of	this	chapter,	you	will	have	learned	the	following	topics:

Backing	up	your	indices	in	Elasticsearch
Monitoring	your	clusters
Controlling	shards	and	rebalancing	replicas
Controlling	shards	and	allocating	replicas
Using	CAT	API	to	learn	about	cluster	state
Warming	up
Aliasing

www.EBooksWorld.ir

Elasticsearch	time	machine
A	good	piece	of	software	is	a	one	that	can	manage	exceptional	situations	such	as	hardware
failure	or	human	error.	Even	though	a	cluster	of	a	few	servers	is	less	dependent	on
hardware	problems,	bad	things	can	still	happen.	For	example,	let’s	imagine	that	you	need
to	restore	your	indices.	One	possible	solution	is	to	reindex	all	your	data	from	a	primary
data	store	such	as	a	SQL	database.	But	what	will	you	do	if	it	takes	too	long	or,	even	worse,
the	only	data	store	is	Elasticsearch?	Before	Elasticsearch	1.0,	creating	backups	of	indices
was	not	easy.	The	procedure	included	stopping	indexation,	flushing	the	data	to	disk,
shutting	down	the	cluster,	and,	finally,	copying	the	data	to	a	backup	device.

Fortunately,	now	we	can	take	snapshots	and	this	section	will	guide	you	and	show	how	this
functionality	works.

www.EBooksWorld.ir

Creating	a	snapshot	repository
A	snapshot	keeps	all	the	data	related	to	the	cluster	from	the	time	the	snapshot	creation
starts	and	it	includes	information	about	the	cluster	state	and	indices.	Before	we	create
snapshots,	at	least	the	first	one,	a	snapshot	repository	must	be	created.	Each	repository	is
recognized	by	its	name	and	should	define	the	following	aspects:

name:	A	unique	name	of	the	repository;	we	will	need	it	later.
type:	The	type	of	the	repository.	The	possible	values	are	fs	(a	repository	on	a	shared
file	system)	and	url	(a	read-only	repository	available	via	URL)
settings:	Additional	information	needed	depending	on	the	repository	type

Now,	let’s	create	a	file	system	repository.	Before	this,	we	have	to	make	sure	that	the
directory	for	our	backups	fulfils	two	requirements.	The	first	is	related	to	security.	Every
repository	has	to	be	placed	in	the	path	defined	in	the	Elasticsearch	configuration	file	as
path.repo.	For	example,	our	elasticsearch.yml	includes	a	line	similar	to	the	following
one:

path.repo:	["/tmp/es_backup_folder",	"/tmp/backup/es"]

The	second	requirement	says	that	every	node	in	the	cluster	should	be	able	to	access	the
directory	we	set	for	the	repository.

So	now,	let’s	create	a	new	file	system	repository	by	running	the	following	command:

curl	-XPUT	localhost:9200/_snapshot/backup	-d	'{

		"type":	"fs",

		"settings":	{

				"location":	"/tmp/es_backup_folder/cluster1"

		}

}'

The	preceding	command	creates	a	repository	named	backup,	which	stores	the	backup	files
in	the	directory	given	by	the	location	attribute.	Elasticsearch	responds	with	the	following
information:

{"acknowledged":true}

At	the	same	time,	es_backup_folder	on	the	local	file	system	is	created—without	any
content	yet.

Note
You	can	also	set	a	relative	path	with	the	location	parameter.	In	this	case,	Elasticsearch
determines	the	absolute	path	by	first	getting	the	directory	defined	in	path.repo.

As	we	said,	the	second	repository	type	is	url.	It	requires	a	url	parameter	instead	of	the
location,	which	points	to	the	address	where	the	repository	resides,	for	example,	the	HTTP
address.	As	in	the	previous	case,	the	address	should	be	defined	in	the
repositories.url.allowed_urls	parameter	in	the	Elasticsearch	configuration.	The
parameter	allows	the	use	of	wildcards	in	the	address.

www.EBooksWorld.ir

Note
Note	that	file://	addresses	are	checked	against	the	paths	defined	in	the	path.repo
parameter.

You	can	also	store	snapshots	in	Amazon	S3,	HDFS,	or	Azure	using	the	additional	plugins
available.	To	learn	about	these,	please	visit	the	following	pages:

https://github.com/elastic/elasticsearch-cloud-aws#s3-repository
https://github.com/elastic/elasticsearch-hadoop/tree/master/repository-hdfs
https://github.com/elastic/elasticsearch-cloud-azure#azure-repository

Now	that	we	have	our	first	repository,	we	can	see	its	definition	using	the	following
command:

curl	-XGET	localhost:9200/_snapshot/backup?pretty

We	can	also	check	all	the	repositories	by	running	a	command	like	the	following:

curl	-XGET	localhost:9200/_snapshot/_all?pretty

Or	simply,	we	can	use	this:

curl	-XGET	localhost:9200/_snapshot/_all?pretty

curl	-XGET	localhost:9200/_snapshot/?pretty

If	you	want	to	delete	a	snapshot	repository,	the	standard	DELETE	command	helps:

curl	-XDELETE	localhost:9200/_snapshot/backup?pretty

www.EBooksWorld.ir

https://github.com/elastic/elasticsearch-cloud-aws#s3-repository
https://github.com/elastic/elasticsearch-hadoop/tree/master/repository-hdfs
https://github.com/elastic/elasticsearch-cloud-azure#azure-repository

Creating	snapshots
By	default,	Elasticsearch	takes	all	the	indices	and	cluster	settings	(except	the	transient
ones)	when	creating	snapshots.	You	can	create	any	number	of	snapshots	and	each	will
hold	information	available	right	from	the	time	when	the	snapshot	was	created.	The
snapshots	are	created	in	a	smart	way;	only	new	information	is	copied.	This	means	that
Elasticsearch	knows	which	segments	are	already	stored	in	the	repository	and	doesn’t	have
to	save	them	again.

To	create	a	new	snapshot,	we	need	to	choose	a	unique	name	and	use	the	following
command:

curl	-XPUT	'localhost:9200/_snapshot/backup/bckp1'

The	preceding	command	defines	a	new	snapshot	named	bckp1	(you	can	only	have	one
snapshot	with	a	given	name;	Elasticsearch	will	check	its	uniqueness)	and	data	is	stored	in
the	previously	defined	backup	repository.	The	command	returns	an	immediate	response,
which	looks	as	follows:

{"accepted":true}

The	preceding	response	means	that	the	process	of	snapshot-ing	has	started	and	continues
in	the	background.	If	you	would	like	the	response	to	be	returned	only	when	the	actual
snapshot	is	created,	you	can	add	the	wait_for_completion=true	parameter	as	shown	in
the	following	example:

curl	-XPUT	'localhost:9200/_snapshot/backup/bckp2?

wait_for_completion=true&pretty'

The	response	to	the	preceding	command	shows	the	status	of	a	created	snapshot:

{

		"snapshot"	:	{

				"snapshot"	:	"bckp2",

				"version_id"	:	2000099,

				"version"	:	"2.2.0",

				"indices"	:	["news"],

				"state"	:	"SUCCESS",

				"start_time"	:	"2016-01-07T21:21:43.740Z",

				"start_time_in_millis"	:	1446931303740,

				"end_time"	:	"2016-01-07T21:21:44.750Z",

				"end_time_in_millis"	:	1446931304750,

				"duration_in_millis"	:	1010,

				"failures"	:	[],

				"shards"	:	{

						"total"	:	5,

						"failed"	:	0,

						"successful"	:	5

				}

		}

}

As	you	can	see,	Elasticsearch	presents	information	about	the	time	taken	by	the	snapshot-

www.EBooksWorld.ir

ing	process,	its	status,	and	the	indices	affected.

Additional	parameters
The	snapshot	command	also	accepts	the	following	additional	parameters:

indices:	The	names	of	the	indices	of	which	we	want	to	take	snapshots.
ignore_unavailable:	When	this	is	set	to	false	(the	default),	Elasticsearch	will
return	an	error	if	any	index	listed	using	the	indices	parameter	is	missing.	When	set	to
true,	Elasticsearch	will	just	ignore	the	missing	indices	during	backup.
include_global_state:	When	this	is	set	to	true	(the	default),	the	cluster	state	is	also
written	to	the	snapshot	(except	for	the	transient	settings).
partial:	The	snapshot	operation	success	depends	on	the	availability	of	all	the	shards.
If	any	of	the	shards	is	not	available,	the	snapshot	operation	will	fail.	Setting	partial	to
true	causes	Elasticsearch	to	save	only	the	available	shards	and	omit	the	lost	ones.

An	example	of	using	additional	parameters	can	look	as	follows:

curl	-XPUT	'localhost:9200/_snapshot/backup/bckp3?

wait_for_completion=true&pretty'	-d	'{

		"indices":	"b*",

		"include_global_state":	"false"

}'

www.EBooksWorld.ir

Restoring	a	snapshot
Now	that	we	have	our	snapshots	done,	we	will	also	learn	how	to	restore	data	from	a	given
snapshot.	As	we	said	earlier,	a	snapshot	can	be	addressed	by	its	name.	We	can	list	all	the
snapshots	using	the	following	command:

curl	-XGET	'localhost:9200/_snapshot/backup/_all?pretty'

The	response	returned	by	Elasticsearch	to	the	preceding	command	shows	the	list	of	all
available	backups.	Every	list	item	is	similar	to	the	following:

{

		"snapshot"	:	{

				"snapshot"	:	"bckp2",

				"version_id"	:	2000099,

				"version"	:	"2.2.0",

				"indices"	:	["news"],

				"state"	:	"SUCCESS",

				"start_time"	:	"2016-01-07T21:21:43.740Z",

				"start_time_in_millis"	:	1446931303740,

				"end_time"	:	"2016-01-07T21:21:44.750Z",

				"end_time_in_millis"	:	1446931304750,

				"duration_in_millis"	:	1010,

				"failures"	:	[],

				"shards"	:	{

						"total"	:	5,

						"failed"	:	0,

						"successful"	:	5

				}

		}

}

The	repository	we	created	earlier	is	called	backup.	To	restore	a	snapshot	named	bckp1
from	our	snapshot	repository,	run	the	following	command:

curl	-XPOST	'localhost:9200/_snapshot/backup/bckp1/_restore'

During	the	execution	of	this	command,	Elasticsearch	takes	the	indices	defined	in	the
snapshot	and	creates	them	with	the	data	from	the	snapshot.	However,	if	the	index	already
exists	and	is	not	closed,	the	command	will	fail.	In	this	case,	you	may	find	it	convenient	to
only	restore	certain	indices,	for	example:

curl	-XPOST	'localhost:9200/_snapshot/backup/bckp1/_restore?pretty'	-d	'{

"indices":	"c*"}'

The	preceding	command	restores	only	the	indices	that	begin	with	the	letter	c.	The	other
available	parameters	are	as	follows:

ignore_unavailable:	This	parameter	when	set	to	false	(the	default	behavior),	will
cause	Elasticsearch	to	fail	the	restore	process	if	any	of	the	expected	indices	is	not
available.
include_global_state:	This	parameter	when	set	to	true	will	cause	Elasticsearch	to
restore	the	global	state	included	in	the	snapshot,	which	is	also	the	default	behavior.

www.EBooksWorld.ir

rename_pattern:	This	parameter	allows	the	renaming	of	the	index	during	a	restore
operation.	Thanks	to	this,	the	restored	index	will	have	a	different	name.	The	value	of
this	parameter	is	a	regular	expression	that	defines	the	source	index	name.	If	a	pattern
matches	the	name	of	the	index,	name	substitution	will	occur.	In	the	pattern,	you
should	use	groups	limited	by	parentheses	used	in	the	rename_replacement
parameter.
rename_replacement:	This	parameter	along	with	rename_pattern	defines	the	target
index	name.	Using	the	dollar	sign	and	number,	you	can	recall	the	appropriate	group
from	rename_pattern.

For	example,	due	to	rename_pattern=products_(.*),	only	the	indices	with	names	that
begin	with	products_	will	be	restored.	The	rest	of	the	index	name	will	be	used	during
replacement.	rename_pattern=products_(.*)	together	with
rename_replacement=items_$1	causes	the	products_cars	index	to	be	restored	to	an
index	called	items_cars.

www.EBooksWorld.ir

Cleaning	up	–	deleting	old	snapshots
Elasticsearch	leaves	snapshot	repository	management	up	to	you.	Currently,	there	is	no
automatic	clean-up	process.	But	don’t	worry;	this	is	simple.	For	example,	let’s	remove	our
previously	taken	snapshot:

curl	-XDELETE	'localhost:9200/_snapshot/backup/bckp1?pretty'

And	that’s	all.	The	command	causes	the	snapshot	named	bckp1	from	the	backup
repository	to	be	deleted.

www.EBooksWorld.ir

www.EBooksWorld.ir

Monitoring	your	cluster’s	state	and	health
Monitoring	is	essential	when	it	comes	to	handling	your	cluster	and	ensuring	it	is	in	a
healthy	state.	It	allows	administrators	and	develops	to	detect	possible	problems	and
prevent	them	before	they	occur	or	to	act	as	soon	as	they	start	showing.	In	the	worst	case,
monitoring	allows	us	to	do	a	post	mortem	analysis	of	what	happened	to	the	application—
in	this	case,	our	Elasticsearch	cluster	and	each	of	the	nodes.

Elasticsearch	provides	very	detailed	information	that	allows	us	to	check	and	monitor	our
nodes	or	the	cluster	as	a	whole.	This	includes	statistics	and	information	about	the	servers,
nodes,	indices,	and	shards.	Of	course,	we	are	also	able	to	get	information	about	the	entire
cluster	state.	Before	we	get	into	the	details	about	the	mentioned	API,	please	remember	that
the	API	is	complex	and	we	are	only	describing	the	basics.	We	will	try	to	show	you	where
to	start	so	you’ll	be	able	to	know	what	to	look	for	when	you	need	very	detailed
information.

www.EBooksWorld.ir

Cluster	health	API
One	of	the	most	basic	APIs	is	the	cluster	health	API,	which	allows	us	to	get	information
about	the	entire	cluster	state	with	a	single	HTTP	command.	For	example,	let’s	run	the
following	command:

curl	-XGET	'localhost:9200/_cluster/health?pretty'

A	sample	response	returned	by	Elasticsearch	for	the	preceding	command	looks	as	follows:

{

		"cluster_name"	:	"elasticsearch",

		"status"	:	"yellow",

		"timed_out"	:	false,

		"number_of_nodes"	:	1,

		"number_of_data_nodes"	:	1,

		"active_primary_shards"	:	11,

		"active_shards"	:	11,

		"relocating_shards"	:	0,

		"initializing_shards"	:	0,

		"unassigned_shards"	:	11,

		"delayed_unassigned_shards"	:	0,

		"number_of_pending_tasks"	:	0,

		"number_of_in_flight_fetch"	:	0,

		"task_max_waiting_in_queue_millis"	:	0,

		"active_shards_percent_as_number"	:	50.0

}

The	most	important	information	is	about	the	status	of	the	cluster.	In	our	example,	we	see
that	the	cluster	is	in	yellow	status.	This	means	that	all	the	primary	shards	have	been
allocated	properly,	but	the	replicas	were	not	(because	of	a	single	node	in	the	cluster,	but
that	doesn’t	matter	for	now).

Of	course,	apart	from	the	cluster	name	and	status,	we	can	see	how	the	request	was	timed
out,	how	many	nodes	there	are,	how	many	data	nodes,	primary	shards,	initializing	shards,
unassigned	ones,	and	so	on.

Let’s	stop	here	and	talk	about	the	cluster	and	when	the	cluster,	as	a	whole,	is	fully
operational.	Cluster	is	fully	operational	when	Elasticsearch	is	able	to	allocate	all	the
shards	and	replicas	according	to	the	configuration.	This	is	when	the	cluster	is	in	the	green
state.	The	yellow	state	means	that	we	are	ready	to	handle	requests	because	the	primary
shards	are	allocated,	but	some	(or	all)	replicas	are	not.	The	last	state,	the	red	one,	means
that	at	least	one	primary	shard	was	not	allocated	and	because	of	this,	the	cluster	is	not
ready	yet.	That	means	that	the	queries	may	return	errors	or	not	complete	results.

The	preceding	command	can	also	be	executed	to	check	the	health	state	of	certain	indices.
For	example,	if	we	would	like	to	check	the	health	of	the	library	and	map	indices,	we
would	run	the	following	command:

curl	-XGET	'localhost:9200/_cluster/health/library,map/?pretty'

Controlling	information	details

www.EBooksWorld.ir

Elasticsearch	allows	us	to	specify	a	special	level	parameter,	which	can	take	the	value	of
cluster	(default),	indices,	or	shards.	This	allows	us	to	control	the	details	of	information
returned	by	the	health	API.	We’ve	already	seen	the	default	behavior.	When	setting	the
level	parameter	to	indices,	apart	from	the	cluster	information,	we	will	also	get	per	index
health.	Setting	the	mentioned	parameter	to	shards	tells	Elasticsearch	to	return	per	shard
information	in	addition	to	what	we’ve	seen	in	the	example.

Additional	parameters
In	addition	to	the	level	parameter,	we	have	a	few	additional	parameters	that	can	control
the	behavior	of	the	health	API.

The	first	of	the	mentioned	parameters	is	timeout	and	allows	us	to	control	how	long	at	the
most,	the	command	execution	will	wait	when	one	of	the	following	parameters	is	used:
wait_for_status,	wait_for_nodes,	wait_for_relocating_shards,	and
wait_for_active_shards.	By	default,	it	is	set	to	30s	and	means	that	the	health	command
will	wait	30	seconds	maximum	and	return	the	response	by	then.

The	wait_for_status	parameter	allows	us	to	tell	Elasticsearch	which	health	status	the
cluster	should	be	at	to	return	the	command.	It	can	take	the	values	of	green,	yellow,	and
red.	For	example,	when	set	to	green,	the	health	API	call	will	return	the	results	until	the
green	status	or	timeout	is	reached.

The	wait_for_nodes	parameter	allows	us	to	set	the	required	number	of	nodes	available	to
return	the	health	command	response	(or	until	a	defined	timeout	is	reached).	It	can	be	set	to
an	integer	number	like	3	or	to	a	simple	equation	like	>=3	(means,	greater	than	or	equal	to
three	nodes)	or	<=3	(means	less	than	or	equal	to	three	nodes).

The	wait_for_active_shards	parameter	means	that	Elasticsearch	will	wait	for	a
specified	number	of	active	shards	to	be	present	before	returning	the	response.

The	last	parameter	is	the	wait_for_relocating_shard,	which	is	by	default	not	specified.
It	allows	us	to	tell	Elasticsearch	how	many	relocating	shards	it	should	wait	for	(or	until	the
timeout	is	reached).	Setting	this	parameter	to	0	means	that	Elasticsearch	should	wait	for	all
the	relocating	shards.

An	example	usage	of	the	health	command	with	some	of	the	mentioned	parameters	is	as
follows:

curl	-XGET	'localhost:9200/_cluster/health?

wait_for_status=green&wait_for_nodes=>=3&timeout=100s'

www.EBooksWorld.ir

Indices	stats	API
Elasticsearch	index	is	the	place	where	our	data	lives	and	it	is	a	crucial	part	for	most
deployments.	With	the	use	of	the	indices	stats	API	available	using	the	_stats	endpoint,
we	can	get	a	lot	of	information	about	the	indices	living	inside	our	cluster.	Of	course,	as
with	most	of	the	API’s	in	Elasticsearch,	we	can	send	a	command	to	get	the	information
about	all	the	indices	(using	the	pure	_stats	endpoint),	about	one	particular	index	(for
example	library/_stats)	or	several	indices	at	the	same	time	(for	example
library,map/_stats).	For	example,	to	check	the	statistics	for	the	map	and	library
indices	we’ve	used	in	the	book,	we	could	run	the	following	command:

curl	-XGET	'localhost:9200/library,map/_stats?pretty'

The	response	to	the	preceding	command	has	more	than	700	lines,	so	we	only	describe	its
structure	omitting	the	response	itself.	Apart	from	the	information	about	the	response	status
and	the	response	time,	we	can	see	three	objects	named	primaries,	total	(in	_all	object),
and	indices.	The	indices	object	contains	information	about	the	library	and	map	indices.
The	primaries	object	contains	information	about	the	primary	shards	allocated	to	the
current	node,	and	the	total	object	contains	information	about	all	the	shards	including
replicas.	All	these	objects	can	contain	objects	describing	a	particular	statistic	such	as	the
following:	docs,	store,	indexing,	get,	search,	merges,	refresh,	flush,	warmer,
query_cache,	fielddata,	percolate,	completion,	segments,	translog,	suggest,
request_cache,	and	recovery.

We	can	limit	the	amount	of	information	that	we	get	from	the	indices	stats	API	by
providing	the	type	of	data	we	are	interested	in	using	the	names	of	the	statistics	mentioned
previously.	For	example,	if	we	want	to	get	information	about	indexing	and	searching,	we
can	run	the	following	command:

curl	-XGET	'localhost:9200/library,map/_stats/indexing,search?pretty'

Let’s	discuss	the	information	stored	in	those	objects.

Docs
The	docs	section	of	the	response	shows	information	about	indexed	documents.	For
example,	it	could	look	as	follows:

"docs"	:	{

	"count"	:	4,

	"deleted"	:	0

}

The	main	information	is	the	count,	indicating	the	number	of	documents	in	the	described
index.	When	we	delete	documents	from	the	index,	Elasticsearch	doesn’t	remove	these
documents	immediately	and	only	marks	them	as	deleted.	Documents	are	physically
deleted	during	the	segment	merge	process.	The	number	of	documents	marked	as	deleted	is
presented	by	the	deleted	attribute	and	should	be	0	right	after	the	merge.

Store

www.EBooksWorld.ir

The	next	statistic,	the	store	one,	provides	information	regarding	storage.	For	example,
such	a	section	could	look	as	follows:

"store"	:	{

	"size_in_bytes"	:	6003,

	"throttle_time_in_millis"	:	0

}

The	main	information	is	about	the	index	(or	indices)	size.	We	can	also	look	at	throttling
statistics.	This	information	is	useful	when	the	system	has	problems	with	the	I/O
performance	and	has	configured	limits	on	an	internal	operation	during	segment	merging.

Indexing,	get,	and	search
The	indexing,	get,	and	search	sections	of	the	response	provide	information	about	data
manipulation	indexing	with	delete	operations,	using	real-time	get	and	searching.	Let’s
look	at	the	following	example	returned	by	Elasticsearch:

"indexing"	:	{

	"index_total"	:	0,

	"index_time_in_millis"	:	0,

	"index_current"	:	0,

	"delete_total"	:	0,

	"delete_time_in_millis"	:	0,

	"delete_current"	:	0,

	"noop_update_total"	:	0,

	"is_throttled"	:	false,

	"throttle_time_in_millis"	:	0

},

"get"	:	{

	"total"	:	0,

	"time_in_millis"	:	0,

	"exists_total"	:	0,

	"exists_time_in_millis"	:	0,

	"missing_total"	:	0,

	"missing_time_in_millis"	:	0,

	"current"	:	0

},

"search"	:	{

	"open_contexts"	:	0,

	"query_total"	:	0,

	"query_time_in_millis"	:	0,

	"query_current"	:	0,

	"fetch_total"	:	0,

	"fetch_time_in_millis"	:	0,

	"fetch_current"	:	0,

	"scroll_total"	:	0,

	"scroll_time_in_millis"	:	0,

	"scroll_current"	:	0

}

As	you	can	see,	all	of	these	statistics	have	similar	structures.	We	can	read	the	total	time
spent	in	various	request	types	(in	milliseconds),	the	number	of	requests	(which	with	the
total	time	allows	us	to	calculate	the	average	time	of	a	single	query).	In	the	case	of	get
requests,	valuable	information	is	how	many	fetches	were	unsuccessful	(missing

www.EBooksWorld.ir

documents);	an	indexing	request	has	information	about	throttling,	and	search	includes
information	regarding	scrolling.

Additional	information
In	addition	to	the	previously	described	section,	Elasticsearch	provides	the	following
information:

merges:	This	section	contains	information	about	Lucene	segment	merges
refresh:	This	section	contains	information	about	the	refresh	operation
flush:	This	section	contains	information	about	flushes
warmer:	This	section	contains	information	about	warmers	and	for	how	long	they	were
executed
query_cache:	This	query	caches	statistics
fielddata:	This	field	data	caches	statistics
percolate:	This	section	contains	information	about	the	percolator	usage
completion:	This	section	contains	information	about	the	completion	suggester
segments:	This	section	contains	information	about	Lucene	segments
translog:	This	section	contains	information	about	the	transaction	logs	count	and	size
suggest:	This	section	contains	suggesters-related	statistics
request_cache:	This	contains	shard	request	caches	statistics
recovery:	This	contains	shards	recovery	information

www.EBooksWorld.ir

Nodes	info	API
The	nodes	info	API	provides	us	with	information	about	the	nodes	in	the	cluster.	To	get
information	from	this	API,	we	need	to	send	the	request	to	the	_nodes	REST	endpoints.
The	simplest	command	to	retrieve	nodes	related	information	from	Elasticsearch	would	be
as	follows:

curl	-XGET	'localhost:9200/_nodes?pretty'

This	API	can	be	used	to	fetch	information	about	particular	nodes	or	a	single	node	using
the	following:

Node	name:	If	we	would	like	to	get	information	about	the	node	named	Pulse,	we
could	run	a	command	to	the	following	REST	endpoint:	_nodes/Pulse
Node	identifier:	If	we	would	like	to	get	information	about	the	node	with	an	identifier
equal	to	ny4hftjNQtuKMyEvpUdQWg,	we	could	run	a	command	to	the	following	REST
endpoint:	_nodes/ny4hftjNQtuKMyEvpUdQWg
IP	address:	We	can	use	IP	addresses	to	get	information	about	the	nodes.	For
example,	if	we	would	like	to	get	information	about	the	node	with	an	IP	address	equal
to	192.168.1.103,	we	could	run	a	command	to	the	following	REST	endpoint:
_nodes/192.168.1.103

Parameters	from	the	Elasticsearch	configuration:	If	we	would	like	to	get
information	about	all	the	nodes	with	the	node.rack	property	set	to	2,	we	could	run	a
command	to	the	following	REST	endpoint:	/_nodes/rack:2

This	API	also	allows	us	to	get	information	about	several	nodes	at	once	using	these:

Patterns,	for	example:	_nodes/192.168.1.*	or	_nodes/P*
Nodes	enumeration,	for	example:	_nodes/Pulse,Slab
Both	patterns	and	enumerations,	for	example:	/_nodes/P*,S*

Returned	information
By	default,	the	nodes	API	will	return	extensive	information	about	each	node	along	with
the	name,	identifier,	and	addresses.	This	extensive	information	includes	the	following:

settings:	The	Elasticsearch	configuration
os:	Information	about	the	server	such	as	processor,	RAM,	and	swap	space
process:	Process	identifier	and	refresh	interval
jvm:	Information	about	Java	Virtual	Machine	such	as	memory	limits,	memory	pools,
and	garbage	collectors
thread_pool:	The	configuration	of	thread	pools	for	various	operations transport:
Listening	addresses	for	the	transport	protocol
http:	Information	about	listening	addresses	for	an	HTTP-based	API
plugins:	Information	about	the	plugins	installed	by	the	user
modules:	Information	about	the	built-in	plugins

An	example	usage	of	this	API	can	be	illustrated	by	the	following	command:

curl	'localhost:9200/_nodes/Pulse/os,jvm,plugins'

www.EBooksWorld.ir

The	preceding	command	will	return	the	basic	information	about	the	node	named	Pulse
and,	in	addition	to	this,	it	will	include	the	operating	system	information,	java	virtual
machine	information,	and	plugins-related	information.

www.EBooksWorld.ir

Nodes	stats	API
The	nodes	stats	API	is	similar	to	the	nodes	info	API	described	in	the	preceding	section.
The	main	difference	is	that	the	previous	API	provided	information	about	the	environment
in	which	the	node	is	running,	while	the	one	we	are	currently	discussing	tells	us	about	what
happened	with	the	cluster	during	its	work.	To	use	the	nodes	stats	API,	you	need	to	send	a
command	to	the	/_nodes/stats	REST	endpoint.	However,	similar	to	the	nodes	info	API,
we	can	also	retrieve	information	about	specific	nodes	(for	example:
_nodes/Pulse/stats).

The	simplest	command	to	retrieve	nodes	related	information	from	Elasticsearch	would	be
as	follows:

curl	-XGET	'localhost:9200/_nodes/stats?pretty'

By	default,	Elasticsearch	returns	all	the	available	statistics	but	we	can	limit	the	ones	we
are	interested	in.	The	available	options	are	as	follows:

indices:	Information	about	the	indices	including	size,	document	count,	indexing
related	statistics,	search	and	get	time,	caches,	segment	merges,	and	so	on
os:	Operating	system	related	information	such	as	free	disk	space,	memory,	swap
usage,	and	so	on
process:	Memory,	CPU,	and	file	handler	usage	related	to	the	Elasticsearch	process
jvm:	Java	virtual	machine	memory	and	garbage	collector	statistics
transport:	Information	about	data	sent	and	received	by	the	transport	module
http:	Information	about	http	connections
fs:	Information	about	available	disk	space	and	I/O	operations	statistics
thread_pool:	Information	about	the	state	of	the	threads	assigned	to	various
operations
breakers:	Information	about	circuit	breakers
script:	Scripting	engine	related	information

An	example	usage	of	this	API	can	be	illustrated	by	the	following	command:

curl	'localhost:9200/_nodes/Pulse/stats/os,jvm,breaker'

www.EBooksWorld.ir

Cluster	state	API
Another	API	provided	by	Elasticsearch	is	the	cluster	state	API.	As	its	name	suggests,	it
allows	us	to	get	information	about	the	entire	cluster	(we	can	also	limit	the	returned
information	to	a	local	node	by	adding	the	local=true	parameter	to	the	request).	The	basic
command	used	to	get	all	the	information	returned	by	this	API	looks	as	follows:

curl	-XGET	'localhost:9200/_cluster/state?pretty'

We	can	also	limit	the	provided	information	to	the	given	metrics	in	comma–separated	form,
specified	after	the	_cluster/state	part	of	the	REST	call.	For	example:

curl	-XGET	'localhost:9200/_cluster/state/version,nodes?pretty'

We	can	also	limit	the	information	to	the	given	metrics	and	indices.	For	example,	if	we
would	like	to	get	the	metadata	for	the	library	index,	we	could	run	the	following
command:

curl	-XGET	'localhost:9200/_cluster/state/metadata/library?pretty'

The	following	metrics	are	allowed	to	be	used:

version:	This	returns	information	about	the	cluster	state	version.
master_node:	This	returns	information	about	the	elected	master	node.
nodes:	This	returns	nodes	information.
routing_table:	This	returns	routing	related	information.
metadata:	This	returns	metadata	related	information.	When	specifying	retrieving	the
metadata	metric	we	can	also	include	an	additional	parameter	such	as
index_templates=true,	which	will	result	in	including	the	defined	index	templates.
blocks:	This	returns	the	blocks	part	of	the	response.

www.EBooksWorld.ir

Cluster	stats	API
The	cluster	stats	API	allows	us	to	get	statistics	about	the	indices	and	nodes	from	the
cluster	wide	perspective.	To	use	this	API,	we	need	to	run	the	GET	request	to	the
/_cluster/stats	REST	endpoint,	for	example:

curl	-XGET	'localhost:9200/_cluster/stats?pretty'

The	response	size	depends	on	the	number	of	shards,	indices,	and	nodes	in	the	cluster.	It
will	include	basic	indices	information	such	as	shards,	their	state,	recovery	information,
caches	information,	and	node	related	information.

www.EBooksWorld.ir

Pending	tasks	API
One	of	the	API’s	that	helps	us	in	seeing	what	Elasticsearch	is	doing;	it	allows	us	to	check
which	tasks	are	waiting	to	be	executed.	To	retrieve	this	information,	we	need	to	send	a
request	to	the	/_cluster/pending_tasks	REST	endpoint.	In	this	response,	we	will	see	an
array	of	tasks	with	information	about	them,	such	as	task	priority	and	time	in	queue.

www.EBooksWorld.ir

Indices	recovery	API
The	recovery	API	gives	us	insight	about	the	recovery	status	of	the	shards	that	are	building
indices	in	our	cluster	(learn	more	about	recovery	in	The	gateway	and	recovery	modules
section	of	Chapter	9,	Elasticsearch	Cluster	in	Detail).

The	simplest	command	that	would	return	the	information	about	the	recovery	of	all	the
shards	in	the	cluster	would	look	as	follows:

curl	-XGET	'http://localhost:9200/_recovery?pretty'

We	can	also	get	information	about	recovery	for	particular	indices,	such	as	the	library
index	for	example:

curl	-XGET	'http://localhost:9200/library/_recovery?pretty'

The	response	returned	by	Elasticsearch	is	divided	by	indices	and	shards.	A	response	for	a
single	shard	could	look	as	follows:

{

	"id"	:	2,

	"type"	:	"STORE",

	"stage"	:	"DONE",

	"primary"	:	true,

	"start_time_in_millis"	:	1446132761730,

	"stop_time_in_millis"	:	1446132761734,

	"total_time_in_millis"	:	4,

	"source"	:	{

		"id"	:	"DboTibRlT1KJSQYnDPxwZQ",

		"host"	:	"127.0.0.1",

		"transport_address"	:	"127.0.0.1:9300",

		"ip"	:	"127.0.0.1",

		"name"	:	"Plague"

	},

	"target"	:	{

		"id"	:	"DboTibRlT1KJSQYnDPxwZQ",

		"host"	:	"127.0.0.1",

		"transport_address"	:	"127.0.0.1:9300",

		"ip"	:	"127.0.0.1",

		"name"	:	"Plague"

	},

	"index"	:	{

		"size"	:	{

			"total_in_bytes"	:	156,

			"reused_in_bytes"	:	156,

			"recovered_in_bytes"	:	0,

			"percent"	:	"100.0%"

		},

		"files"	:	{

			"total"	:	1,

			"reused"	:	1,

			"recovered"	:	0,

			"percent"	:	"100.0%"

		},

		"total_time_in_millis"	:	0,

www.EBooksWorld.ir

		"source_throttle_time_in_millis"	:	0,

		"target_throttle_time_in_millis"	:	0

	},

	"translog"	:	{

		"recovered"	:	0,

		"total"	:	-1,

		"percent"	:	"-1.0%",

		"total_on_start"	:	-1,

		"total_time_in_millis"	:	3

	},

	"verify_index"	:	{

		"check_index_time_in_millis"	:	0,

		"total_time_in_millis"	:	0

	}

}

In	the	preceding	response,	we	can	see	information	about	the	shard	identifier,	the	stage	of
recovery,	information	whether	the	shard	is	a	primary	or	a	replica,	the	timestamps	of	the
start	and	end	of	recovery,	and	the	total	time	the	recovery	process	took.	We	can	see	the
source	node,	target	node,	and	information	about	the	shard’s	physical	statistics,	such	as
size,	number	of	files,	transaction	log-related	statistics,	and	index	verification	time.

It	is	worth	knowing	the	information	about	the	stages	of	recovery	and	types.	When	it	comes
to	the	types	of	recovery	(the	type	attribute	in	the	response),	we	can	expect	the	following:
the	STORE,	SNAPSHOT,	REPLICA,	and	RELOCATING	values.	When	it	comes	to	the	stage	of
recovery	(the	stage	attribute	in	the	response),	we	can	expect	values	such	as	INIT
(recovery	has	not	started),	INDEX	(Elasticsearch	copies	metadata	information	and	data
from	source	to	destination),	START	(Elasticsearch	is	opening	the	shard	for	use),	FINALIZE
(final	stage,	which	cleans	up	garbage),	and	DONE	(recovery	has	ended).

We	can	limit	the	response	returned	by	the	indices	recovery	API	to	only	the	shards	that	are
currently	in	active	recovery	by	including	the	active_only=true	parameter	in	the	request.
Finally,	we	can	request	more	detailed	information	by	adding	the	detailed=true	parameter
in	the	API	call.

www.EBooksWorld.ir

Indices	shard	stores	API
The	indices	shard	stores	API	gives	us	information	about	the	store	for	the	shards	of	our
indices.	We	use	this	API	by	running	a	simple	command	to	the	/_shard_stores	REST
endpoint	and	providing	or	not	providing	the	comma-separated	indices	names.

For	example,	to	get	information	about	all	the	indices,	we	would	run	the	following
command:

curl	-XGET	'http://localhost:9200/_shard_stores?pretty'

We	can	also	get	information	about	particular	indices,	such	as	the	library	and	map	ones:

curl	-XGET	'http://localhost:9200/library,map/_shard_stores?pretty'

The	response	returned	by	Elasticsearch	contains	information	about	the	store	for	each
shard.	For	example,	this	is	what	Elasticsearch	returned	for	one	of	the	shards	of	the
library	index:

"0"	:	{

	"stores"	:	[{

		"DboTibRlT1KJSQYnDPxwZQ"	:	{

			"name"	:	"Plague",

			"transport_address"	:	"127.0.0.1:9300",

			"attributes"	:	{	}

		},

		"version"	:	6,

		"allocation"	:	"primary"

	}]

}

We	can	see	information	about	the	node	in	the	stores	arrays.	Each	entry	contains	node
related	information	(the	node	where	the	shard	is	physically	located),	the	version	of	the
store	copy,	and	the	allocation,	which	can	take	the	values	of	primary	(for	primary	shards),
replica	(for	replicas),	and	unused	(for	unassigned	shards).

www.EBooksWorld.ir

Indices	segments	API
The	last	API	we	want	to	mention	is	the	Lucene	segments	API	that	can	be	availed	by	using
the	/_segments	endpoint.	We	can	either	run	it	for	the	entire	cluster,	for	example	like	this:

curl	-XGET	'localhost:9200/_segments?pretty'

We	can	also	run	the	command	for	individual	indices.	For	example,	if	we	would	like	to	get
segments	related	information	for	the	map	and	library	indices,	we	would	use	the	following
command:

curl	-XGET	'localhost:9200/library,map/_segments?pretty'

This	API	provides	information	about	shards,	their	placements,	and	information	about
segments	connected	with	the	physical	index	managed	by	the	Apache	Lucene	library.

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling	the	shard	and	replica
allocation
The	indices	that	live	inside	your	Elasticsearch	cluster	can	be	built	from	many	shards	and
each	shard	can	have	many	replicas.	The	ability	to	divide	a	single	index	into	multiple
shards	gives	us	the	possibility	of	dividing	the	data	into	multiple	physical	instances.	The
reasons	why	we	want	to	do	this	may	be	different.	We	may	want	to	parallelize	indexing	to
get	more	throughput,	or	we	may	want	to	have	smaller	shards	so	that	our	queries	are	faster.
Of	course,	we	may	have	too	many	documents	to	fit	them	on	a	single	machine	and	we	may
want	a	shard	because	of	this.	With	replicas,	we	can	parallelize	the	query	load	by	having
multiple	physical	copies	of	each	shard.	We	can	say	that,	using	shards	and	replicas,	we	can
scale	out	Elasticsearch.	However,	Elasticsearch	has	to	figure	out	where	in	the	cluster	it
should	place	shards	and	replicas.	It	needs	to	figure	out	on	which	server/nodes	each	shard
or	replica	should	be	placed.

www.EBooksWorld.ir

Explicitly	controlling	allocation
One	of	the	most	common	use	cases	that	use	explicit	controlling	of	shards	and	replicas
allocation	in	Elasticsearch	is	time-based	data,	that	is,	logs.	Each	log	event	has	a	timestamp
associated	with	it;	however,	the	amount	of	logs	in	most	organizations	is	just	enormous.
The	thing	is	that	you	need	a	lot	of	processing	power	to	index	them,	but	you	don’t	usually
search	historical	data.	Of	course,	you	may	want	to	do	that,	but	it	will	be	done	less
frequently	than	the	queries	for	the	most	recent	data.

Because	of	this,	we	can	divide	the	cluster	into	so	called	two	tiers—the	cold	and	the	hot
tier.	The	hot	tier	contains	more	powerful	nodes,	ones	that	have	very	fast	disks,	lots	of	CPU
processing	power,	and	memory.	These	nodes	will	handle	both	a	lot	of	indexing	as	well	as
queries	for	recent	data.	The	cold	tier,	on	the	other	hand,	will	contain	nodes	that	have	very
large	disks,	but	are	not	very	fast.	We	won’t	be	indexing	into	the	cold	tier;	we	will	only
store	our	historical	indices	here	and	search	them	from	time	to	time.	With	the	default
Elasticsearch	behavior,	we	can’t	be	sure	where	the	shards	and	replicas	will	be	placed,	but
luckily	Elasticsearch	allows	us	to	control	this.

Note
The	main	assumption	when	it	comes	to	time	series	data	is	that	once	they	are	indexed,	they
are	not	being	updated.	This	is	true	for	log	indexing	use	cases	and	we	assume	we	create
Elasticsearch	deployment	for	such	a	use	case.

The	idea	is	to	create	the	indices	that	index	today’s	data	on	the	hot	nodes	and,	when	we
stop	using	it	(when	another	day	starts),	we	update	the	index	settings	so	that	it	is	moved	to
the	tier	called	cold.	Let’s	now	see	how	we	can	do	this.

Specifying	node	parameters
So	let’s	divide	our	cluster	into	two	tiers.	We	say	tiers,	but	they	can	be	any	name	you	want,
we	just	like	the	term	“tier”	and	it	is	commonly	used.	We	assume	that	we	have	six	nodes.
We	want	our	more	powerful	nodes	numbered	1	and	2	to	be	placed	in	the	tier	called	hot
and	the	nodes	numbered	3,	4,	5,	and	6,	which	are	smaller	in	terms	of	CPU	and	memory,
but	very	large	in	terms	of	disk	space,	to	be	placed	in	a	tier	called	cold.

Configuration
To	configure,	we	add	the	following	property	to	the	elasticsearch.yml	configuration	file
on	nodes	1	and	2	(the	ones	that	are	more	powerful):

node.tier:	hot

Of	course,	we	will	add	a	similar	property	to	the	elasticsearch.yml	configuration	file	on
nodes	3,	4,	5,	and	6	(the	less	powerful	ones):

node.tier:	cold

Index	creation
Now	let’s	create	our	daily	index	for	today’s	data,	one	called	logs_2015-12-10.	As	we	said

www.EBooksWorld.ir

earlier,	we	want	this	to	be	placed	on	the	nodes	in	the	hot	tier.	We	do	this	by	running	the
following	commands:

curl	-XPUT	'http://localhost:9200/logs_2015-12-10'	-d	'{

	"settings"	:	{

		"index"	:	{

			"routing.allocation.include.tier"	:	"hot"

		}

	}

}'

The	preceding	command	will	result	in	the	creation	of	the	logs_2015-12-10	index	and
specification	of	the	index.routing.allocation.include.tier	property	to	it.	We	set	this
property	to	the	hot	value,	which	means	that	we	want	to	place	the	logs_2015-12-10	index
on	the	nodes	that	have	the	node.tier	property	set	to	hot.

Now,	when	the	day	ends	and	we	need	to	create	a	new	index,	we	again	put	it	on	the	hot
nodes.	We	do	this	by	running	the	following	command:

curl	-XPUT	'http://localhost:9200/logs_2015-12-11'	-d	'{

	"settings"	:	{

		"index"	:	{

			"routing.allocation.include.tier"	:	"hot"

		}

	}

}'

Finally,	we	need	to	tell	Elasticsearch	to	move	the	index	holding	the	data	for	the	previous
day	to	the	cold	tier.	We	do	this	by	updating	the	index	settings	and	setting	the
index.routing.allocation.include.tier	property	to	cold.	This	is	done	using	the
following	command:

curl	-XPUT	'http://localhost:9200/logs_2015-12-10/_settings'	-d	'{

	"index.routing.allocation.include.tier"	:	"cold"

}'

After	running	the	preceding	command,	Elasticsearch	will	start	relocating	the	index	called
logs_2015-12-10	to	the	nodes	that	have	the	node.tier	property	set	to	cold	in	the
elasticsearch.yml	file	without	any	manual	work	needed	from	us.

Excluding	nodes	from	allocation
In	the	same	manner	as	we	specified	on	which	nodes	the	index	should	be	placed,	we	can
also	exclude	nodes	from	index	allocation.	Referring	to	the	previously	shown	example.	if
we	want	the	index	called	logs_2015-12-10	to	not	be	placed	on	the	nodes	with	the
node.tier	property	set	to	cold,	we	would	run	the	following	command:

curl	-XPUT	'localhost:9200/logs_2015-12-10/_settings'	-d	'{

	"index.routing.allocation.exclude.tier"	:	"cold"

}'

Notice	that	instead	of	the	index.routing.allocation.include.tier	property,	we’ve
used	the	index.routing.allocation.exclude.tier	property.

www.EBooksWorld.ir

Requiring	node	attributes
In	addition	to	inclusion	and	exclusion	rules,	we	can	also	specify	the	rules	that	must	match
in	order	for	a	shard	to	be	allocated	to	a	given	node.	The	difference	is	that	when	using	the
index.routing.allocation.include	property,	the	index	will	be	placed	on	any	node	that
matches	at	least	one	of	the	provided	property	values.	Using
index.routing.allocation.require,	Elasticsearch	will	place	the	index	on	a	node	that
has	all	the	defined	values.	For	example,	let’s	assume	that	we’ve	set	the	following	settings
for	the	logs_2015-12-10	index:

curl	-XPUT	'localhost:9200/logs_2015-12-10/_settings'	-d	'{

	"index.routing.allocation.require.tier"	:	"hot",

	"index.routing.allocation.require.disk_type"	:	"ssd"

}'

After	running	the	preceding	command,	Elasticsearch	would	only	place	the	shards	of	the
logs_2015-12-10	index	on	a	node	with	the	node.tier	property	set	to	hot	and	the
node.disk_type	property	set	to	ssd.

Using	the	IP	address	for	shard	allocation
Instead	of	adding	a	special	parameter	to	the	nodes	configuration,	we	are	allowed	to	use	IP
addresses	to	specify	which	nodes	we	want	to	include	or	exclude	from	the	shards	and
replicas	allocation.	In	order	to	do	this,	instead	of	using	the	tier	part	of	the
index.routing.allocation.include.tier	or
index.routing.allocation.exclude.tier	properties,	we	should	use	the	_ip.	For
example,	if	we	would	like	our	logs_2015-12-10	index	to	be	placed	only	on	the	nodes	with
the	10.1.2.10	and	10.1.2.11	IP	addresses,	we	would	run	the	following	command:

curl	-XPUT	'localhost:9200/logs_2015-12-10/_settings'	-d	'{

	"index.routing.allocation.include._ip"	:	"10.1.2.10,10.1.2.11"

}'

Note
In	addition	to	_ip,	Elasticsearch	also	allows	us	to	use	_name	to	specify	allocation	rules
using	node	names	and	_host	to	specify	allocation	rules	using	host	names.

Disk-based	shard	allocation
In	addition	to	the	already	described	allocation	filtering	methods,	Elasticsearch	gives	us
disk-based	shard	allocation	rules.	It	allows	us	to	set	allocation	rules	based	on	the	nodes’
disk	usage.

Configuring	disk	based	shard	allocation

There	are	four	properties	that	control	the	behavior	of	a	disk-based	shard	allocation.	All	of
them	can	be	updated	dynamically	or	set	in	the	elasticsearch.yml	configuration	file.

The	first	of	these	is	cluster.info.update.interval,	which	is	by	default	set	to	30
seconds	and	defines	how	often	Elasticsearch	updates	information	about	disk	usage	on
nodes.

www.EBooksWorld.ir

The	second	property	is	the	cluster.routing.allocation.disk.watermark.low,	which	is
by	default	set	to	0.85.	This	means	that	Elasticsearch	will	not	allocate	new	shards	to	a	node
that	uses	more	than	85%	of	its	disk	space.

The	third	property	is	the	cluster.routing.allocation.disk.watermark.high,	which
controls	when	Elasticsearch	will	start	relocating	shards	from	a	given	node.	It	defaults	to
0.90	and	means	that	Elasticsearch	will	start	reallocating	shards	when	the	disk	usage	on	a
given	node	is	equal	to	or	more	than	90%.

Both	the	cluster.routing.allocation.disk.watermark.low	and
cluster.routing.allocation.disk.watermark.high	properties	can	be	set	to	a
percentage	value	(such	as	0.60,	meaning	60%)	and	to	an	absolute	value	(such	as	600mb,
meaning	600	megabytes).

Finally,	the	last	property	is	cluster.routing.allocation.disk.include_relocations,
which	by	default	is	set	to	true.	It	tells	Elasticsearch	to	take	into	account	the	shards	that	are
not	yet	copied	to	the	node	but	Elasticsearch	is	in	the	process	of	doing	that.	Having	this
behavior	turned	on	by	default	means	that	the	disk-based	allocation	mechanism	will	be
more	pessimistic	when	it	comes	to	available	disk	spaces	(when	shards	are	relocating),	but
we	won’t	run	into	situations	where	shards	can’t	be	relocated	because	the	assumptions
about	disk	space	were	wrong.

Disabling	disk	based	shard	allocation

The	disk	based	shard	allocation	is	enabled	by	default.	We	can	disable	it	by	specifying	the
cluster.routing.allocation.disk.threshold_enabled	property	and	setting	it	to
false.	We	can	do	this	in	the	elasticsearch.yml	file	or	dynamically	using	the	cluster
settings	API:

curl	-XPUT	localhost:9200/_cluster/settings	-d	'{

	"transient"	:	{

		"cluster.routing.allocation.disk.threshold_enabled"	:	false

	}

}'

www.EBooksWorld.ir

The	number	of	shards	and	replicas	per	node
In	addition	to	specifying	shards	and	replicas	allocation,	we	are	also	allowed	to	specify	the
maximum	number	of	shards	that	can	be	placed	on	a	single	node	for	a	single	index.	For
example,	if	we	would	like	our	logs_2015-12-10	index	to	have	only	a	single	shard	per
node,	we	would	run	the	following	command:

curl	-XPUT	'localhost:9200/logs_2015-12-10/_settings'	-d	'{

	"index.routing.allocation.total_shards_per_node"	:	1

}'

This	property	can	be	placed	in	the	elasticsearch.yml	file	or	can	be	updated	on	live
indices	using	the	preceding	command.	Please	remember	that	your	cluster	can	stay	in	the
red	state	if	Elasticsearch	won’t	be	able	to	allocate	all	the	primary	shards.

www.EBooksWorld.ir

Allocation	throttling
The	Elasticsearch	allocation	mechanism	can	be	throttled,	which	means	that	we	can	control
how	much	resources	Elasticsearch	will	use	during	the	shard	allocation	and	recovery
process.	We	are	given	five	properties	to	control,	which	are	as	follows:

cluster.routing.allocation.node_concurrent_recoveries:	This	property
defines	how	many	concurrent	shard	recoveries	may	be	happening	at	the	same	time	on
a	node.	This	defaults	to	2	and	should	be	increased	if	you	would	like	more	shards	to
be	recovered	at	the	same	time	on	a	single	node.	However,	increasing	this	value	will
result	in	more	resource	consumption	during	recovery.	Also,	please	remember	that
during	the	replica	recovery	process,	data	will	be	copied	from	the	other	nodes	over	the
network,	which	can	be	slow.
cluster.routing.allocation.node_initial_primaries_recoveries:	This
property	defaults	to	4	and	defines	how	many	primary	shards	are	recovered	at	the
same	time	on	a	given	node.	Because	primary	shard	recovery	uses	data	from	local
disks,	this	process	should	be	very	fast.
cluster.routing.allocation.same_shard.host:	A	Boolean	property	that	defaults
to	false	and	is	applicable	only	when	multiple	Elasticsearch	nodes	are	started	on	the
same	machine.	When	set	to	true,	this	will	force	Elasticsearch	to	check	whether
physical	copies	of	the	same	shard	are	present	on	a	single	physical	machine.	The
default	false	value	means	no	check	is	done.
indices.recovery.concurrent_streams:	This	is	the	number	of	network	streams
used	to	copy	data	from	other	nodes	that	can	be	used	concurrently	on	a	single	node.
The	more	the	streams,	the	faster	the	data	will	be	copied,	but	this	will	result	in	more
resource	consumption.	This	property	defaults	to	3.
indices.recovery.concurrent_small_file_streams:	This	is	similar	to	the
indices.recovery.concurrent_streams	property,	but	defines	how	many	concurrent
data	streams	Elasticsearch	will	use	to	copy	small	files	(ones	that	are	under	5mb	in
size).	This	property	defaults	to	2.

This	allows	us	to	perform	a	check	to	prevent	the	allocation	of	multiple	instances	of	the
same	shard	on	a	single	host,	based	on	host	name	and	host	address.	This	defaults	to	false,
meaning	that	no	check	is	performed	by	default.	This	setting	only	applies	if	multiple	nodes
are	started	on	the	same	machine.

www.EBooksWorld.ir

Cluster-wide	allocation
In	addition	to	the	per	indices	allocation	settings,	Elasticsearch	also	allows	us	to	control
shard	and	indices	allocation	on	a	cluster-wide	basis—so	called	shard	allocation	awareness.
This	is	especially	useful	when	we	have	nodes	in	different	physical	racks	and	we	would
like	to	place	shards	and	replicas	in	different	physical	nodes.

Let’s	start	with	a	simple	example.	We	assume	that	we	have	a	cluster	built	of	four	nodes.
Each	node	in	a	different	physical	rack.	The	simple	graphic	that	illustrates	this	is	as
follows:

As	you	can	see,	our	cluster	is	built	from	four	nodes.	Each	node	was	bound	to	a	specific	IP
address	and	each	node	was	given	the	tag	property	and	a	group	property	(added	to
elasticsearch.yml	as	the	node.tag	and	node.group	properties).	This	cluster	will	serve
the	purpose	of	showing	how	shard	allocation	filtering	works.	The	group	and	tag
properties	can	be	given	whatever	names	you	want,	you	just	need	to	prefix	your	desired
property	name	with	the	node	name,	for	example,	if	you	would	like	to	use	a	party	property
name,	you	would	just	add	node.party:	party1	to	your	elasticsearch.yml.

Allocation	awareness
Allocation	awareness	allows	us	to	configure	shards	and	their	replicas	allocation	with	the
use	of	generic	parameters.	In	order	to	illustrate	how	allocation	awareness	works,	we	will
use	our	example	cluster.	For	the	example	to	work,	we	should	add	the	following	property	to
the	elasticsearch.yml	file:

www.EBooksWorld.ir

cluster.routing.allocation.awareness.attributes:	group

This	will	tell	Elasticsearch	to	use	the	node.group	property	as	the	awareness	parameter.

Note
You	can	specify	multiple	attributes	when	setting	the
cluster.routing.allocation.awareness.attributes	property.	For	example:
cluster.routing.allocation.awareness.attributes:	group,	node

After	this,	let’s	start	the	first	two	nodes,	the	ones	with	the	node.group	parameter	equal	to
groupA,	and	let’s	create	an	index	by	running	the	following	command:

curl	-XPOST	'localhost:9200/awarness'	-d	'{

	"settings"	:	{

		"index"	:	{

			"number_of_shards"	:	1, 
			"number_of_replicas"	:	1

		}

	}

}'

After	this	command,	our	two-node	cluster	will	look	more	or	less	like	this:

As	you	can	see,	the	index	was	divided	between	the	two	nodes	evenly.	Now	let’s	see	what
happens	when	we	launch	the	rest	of	the	nodes	(the	ones	with	node.group	set	to	groupB):

www.EBooksWorld.ir

Notice	the	difference—the	primary	shards	were	not	moved	from	their	original	allocation
nodes,	but	the	replica	shards	were	moved	to	the	nodes	with	a	different	node.group	value.
That’s	exactly	right;	when	using	shard	allocation	awareness,	Elasticsearch	won’t	allocate
the	primary	shards	and	replicas	of	the	same	index	to	the	nodes	with	the	same	value	of	the
property	used	to	determine	the	allocation	awareness	(which	in	our	case	is	the
node.group).

Note
Please	remember	that	when	using	allocation	awareness,	shards	will	not	be	allocated	to	the
node	that	doesn’t	have	the	expected	attributes	set.	So	in	our	example,	a	node	without	the
node.group	property	set	will	not	be	taken	into	consideration	by	the	allocation	mechanism.

Forcing	allocation	awareness
Forcing	allocation	awareness	can	come	in	handy	when	we	know,	in	advance,	how	many
values	our	awareness	attributes	can	take	and	we	don’t	want	more	replicas	than	needed	to
be	allocated	in	our	cluster,	for	example,	not	to	overload	our	cluster	with	too	many	replicas.
For	this,	we	can	force	the	allocation	awareness	to	be	active	only	for	certain	attributes.	We
can	specify	these	values	using	the
cluster.routing.allocation.awareness.force.zone.values	property	and	providing	a
list	of	comma-separated	values	to	it.	For	example,	if	we	would	like	the	allocation
awareness	to	use	only	the	groupA	and	groupB	values	of	the	node.group	property,	we
would	add	the	following	to	the	elasticsearch.yml	file:

www.EBooksWorld.ir

cluster.routing.allocation.awareness.attributes:	group

cluster.routing.allocation.awareness.force.zone.values:	groupA,	groupB

Filtering
Elasticsearch	allows	us	to	configure	allocation	for	the	entire	cluster	or	for	the	index	level.
In	the	case	of	cluster	allocation,	we	can	use	the	properties	prefixes:

cluster.routing.allocation.include

cluster.routing.allocation.require

cluster.routing.allocation.exclude

When	it	comes	to	index-specific	allocation,	we	can	use	the	following	properties	prefixes:

index.routing.allocation.include

index.routing.allocation.require

index.routing.allocation.exclude

The	previously	mentioned	prefixes	can	be	used	with	the	properties	that	we’ve	defined	in
the	elasticsearch.yml	file	(our	tag	and	group	properties)	and	with	a	special	property
called	_ip	that	allows	us	to	match	or	exclude	the	use	of	the	nodes’	IP	addresses,	for
example,	like	this:

cluster.routing.allocation.include._ip:	192.168.2.1

If	we	would	like	to	include	nodes	with	a	group	property	matching	the	groupA	value,	we
would	set	the	following	property:

cluster.routing.allocation.include.group:	groupA

Notice	that	we’ve	used	the	cluster.routing.allocation.include	prefix	and	we’ve
concatenated	it	with	the	name	of	the	property,	which	is	group	in	our	case.

What	do	include,	exclude,	and	require	mean

If	you	look	closely	at	the	preceding	parameters,	you	will	notice	that	there	are	three	kinds:

include:	This	type	will	result	in	including	all	the	nodes	with	this	parameter	defined.
If	multiple	include	conditions	are	visible	than	all	the	nodes	that	match	at	least	a	one
of	these	conditions	will	be	taken	into	consideration	when	allocating	shards.	For
example,	if	we	add	two	cluster.routing.allocation.include.tag	parameters	to
our	configuration,	one	with	a	property	with	the	value	of	node1	and	second	with	the
node2	value,	we	would	end	up	with	indices	(actually	their	shards)	being	allocated	to
the	first	and	second	node	(counting	from	left	to	right).	To	sum	up	the	nodes	that	have
the	include	allocation	parameter	type	will	be	taken	into	consideration	by
Elasticsearch	when	choosing	the	nodes	to	place	shards	on,	but	this	doesn’t	mean	that
Elasticsearch	will	put	shards	in	them.
require:	This	parameter,	which	was	introduced	in	the	Elasticsearch	0.90	type	of
allocation	filter,	requires	all	the	nodes	to	have	a	value	that	matches	the	value	of	this
property.	For	example,	if	we	add	one	cluster.routing.allocation.require.tag
parameter	to	our	configuration	with	the	value	of	node1	and	a
cluster.routing.allocation.require.group	parameter	with	the	value	of	groupA,

www.EBooksWorld.ir

we	would	end	up	with	shards	allocated	only	to	the	first	node	(the	one	with	an	IP
address	of	192.168.2.1).
exclude:	This	parameter	allows	us	to	exclude	nodes	with	given	properties	from	the
allocation	process.	For	example,	if	we	set
cluster.routing.allocation.include.tag	to	groupA,	we	would	end	up	with
indices	being	allocated	only	to	the	nodes	with	IP	addresses	192.168.3.1	and
192.168.3.2	(the	third	and	fourth	nodes	in	our	example).

Note
The	property	value	can	use	simple	wildcard	characters.	For	example,	if	we	want	to
include	all	the	nodes	that	have	the	group	parameter	value	beginning	with	group,	we
could	set	the	cluster.routing.allocation.include.group	property	to	group*.	In
the	example	cluster	case,	this	would	result	in	matching	nodes	with	the	groupA	and
groupB	group	parameter	values.

www.EBooksWorld.ir

Manually	moving	shards	and	replicas
The	last	thing	we	wanted	to	discuss	is	the	ability	to	manually	move	shards	between	nodes.
Elasticsearch	exposes	the	_cluster/reroute	REST	end-point,	which	allows	us	to	control
that.	The	following	operations	are	available:

Moving	a	shard	from	node	to	node
Cancelling	shard	allocation
Forcing	shard	allocation

Now	let’s	look	closely	at	all	of	the	preceding	operations.

Moving	shards
Let’s	say	we	have	two	nodes	called	es_node_one	and	es_node_two,	and	we	have	two
shards	of	the	shop	index	placed	by	Elasticsearch	on	the	first	node	and	we	would	like	to
move	the	second	shard	to	the	second	node.	In	order	to	do	this,	we	can	run	the	following
command:

curl	-XPOST	'localhost:9200/_cluster/reroute'	-d	'{

	"commands"	:	[{	

		"move"	:	{

			"index"	:	"shop",	

			"shard"	:	1,	

			"from_node"	:	"es_node_one",	

			"to_node"	:	"es_node_two"	

		}

	}]

}'

We’ve	specified	the	move	command,	which	allows	us	to	move	shards	(and	replicas)	of	the
index	specified	by	the	index	property.	The	shard	property	is	the	number	of	shards	we
want	to	move.	And,	finally,	the	from_node	property	specifies	the	name	of	the	node	we
want	to	move	the	shard	from	and	the	to_node	property	specifies	the	name	of	the	node	we
want	the	shard	to	be	placed	on.

Canceling	shard	allocation
If	we	would	like	to	cancel	an	on-going	allocation	process,	we	can	run	the	cancel
command	and	specify	the	index,	node,	and	shard	we	want	to	cancel	the	allocation	for.	For
example:

curl	-XPOST	'localhost:9200/_cluster/reroute'	-d	'{

	"commands"	:	[{

		"cancel"	:	{

			"index"	:	"shop",	

			"shard"	:	0,	

			"node"	:	"es_node_one"

		}

	}]

}'

The	preceding	command	would	cancel	the	allocation	of	shard	0	of	the	shop	index	on	the

www.EBooksWorld.ir

es_node_one	node.

Forcing	shard	allocation
In	addition	to	cancelling	and	moving	shards	and	replicas,	we	are	also	allowed	to	allocate
an	unallocated	shard	to	a	specific	node.	For	example,	if	we	have	an	unallocated	shard
numbered	0	for	the	users	index	and	we	would	like	it	to	be	allocated	to	es_node_two	by
Elasticsearch,	we	would	run	the	following	command:

curl	-XPOST	'localhost:9200/_cluster/reroute'	-d	'{

	"commands"	:	[{

		"allocate"	:	{

			"index"	:	"users",	

			"shard"	:	0,	

			"node"	:	"es_node_two"

		}

	}]

}'

Multiple	commands	per	HTTP	request
We	can,	of	course,	include	multiple	commands	in	a	single	HTTP	request.	For	example:

curl	-XPOST	'localhost:9200/_cluster/reroute'	-d	'{

	"commands"	:	[

		{"move"	:	{"index"	:	"shop",	"shard"	:	1,	"from_node"	:	"es_node_one",	

"to_node"	:	"es_node_two"}},

		{"cancel"	:	{"index"	:	"shop",	"shard"	:	0,	"node"	:	"es_node_one"}}

]

}'

Allowing	operations	on	primary	shards
The	cancel	and	allocate	commands	accept	an	additional	allow_primary	parameter.	If
set	to	true,	it	tells	Elasticsearch	that	the	operation	can	be	performed	on	the	primary	shard.
Please	be	advised	that	operations	with	the	allow_primary	parameter	set	to	true	may
result	in	data	loss.

www.EBooksWorld.ir

Handling	rolling	restarts
There	is	one	more	thing	that	we	would	like	to	discuss	when	it	comes	to	shard	and	replica
allocation—handling	rolling	restarts.	When	Elasticsearch	is	restarted,	it	may	take	some
time	to	get	it	back	to	the	cluster.	During	this	time,	the	rest	of	the	cluster	may	decide	to	do
rebalancing	and	move	shards	around.	When	we	know	we	are	doing	rolling	restarts,	for
example,	to	update	Elasticsearch	to	a	new	version	or	install	a	plugin,	we	may	want	to	tell
this	to	Elasticsearch.	The	procedure	for	restarting	each	node	should	be	as	follows:

First,	before	you	do	any	maintenance,	you	should	stop	the	allocation	by	sending	the
following	command:

curl	-XPUT	'localhost:9200/_cluster/settings'	-d	'{

	"transient"	:	{

		"cluster.routing.allocation.enable"	:	"none"

	}

}'

This	will	tell	Elasticsearch	to	stop	allocation.	After	this,	we	will	stop	the	node	we	want	to
do	maintenance	on	and	start	it	again.	After	it	joins	the	cluster,	we	can	enable	the	allocation
again	by	running	the	following:

curl	-XPUT	'localhost:9200/_cluster/settings'	-d	'{

	"transient"	:	{

		"cluster.routing.allocation.enable"	:	"all"

	}

}'

This	will	enable	the	allocation	again.	This	procedure	should	be	repeated	for	each	node	we
want	to	perform	maintenance	on.

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling	cluster	rebalancing
By	default,	Elasticsearch	tries	to	keep	the	shards	and	their	replicas	evenly	balanced	across
the	cluster.	Such	behavior	is	good	in	most	cases,	but	there	are	times	when	we	want	to
control	this	behavior—for	example,	during	rolling	restarts.	We	don’t	want	to	rebalance	the
entire	cluster	when	one	or	two	nodes	are	restarted.	In	this	section,	we	will	look	at	how	to
avoid	cluster	rebalance	and	control	this	process’	behavior	in	depth.

Imagine	a	situation	where	you	know	that	your	network	can	handle	very	high	amounts	of
traffic	or	the	opposite	of	this—	your	network	is	used	extensively	and	you	want	to	avoid
too	much	load	on	it.	The	other	example	is	that	you	may	want	to	decrease	the	pressure	that
is	put	on	your	I/O	subsystem	after	a	full-cluster	restart	and	you	want	to	have	less	shards
and	replicas	being	initialized	at	the	same	time.	These	are	only	two	examples	where
rebalance	control	may	be	handy.

www.EBooksWorld.ir

Understanding	rebalance
Rebalancing	is	the	process	of	moving	shards	between	different	nodes	in	our	cluster.	As	we
have	already	mentioned,	it	is	fine	in	most	situations,	but	sometimes	you	may	want	to
completely	avoid	this.	For	example,	if	we	define	how	our	shards	are	placed	and	we	want
to	keep	it	this	way,	we	may	want	to	avoid	rebalancing.	However,	by	default,	Elasticsearch
will	try	to	rebalance	the	cluster	whenever	the	cluster	state	changes	and	Elasticsearch
thinks	a	rebalance	is	needed	(and	the	delayed	timeout	has	passed	as	discussed	in	The
gateway	and	recovery	modules	section	of	Chapter	9,	Elasticsearch	Cluster	in	Detail).

www.EBooksWorld.ir

Cluster	being	ready
We	already	know	that	our	indices	are	built	from	shards	and	replicas.	Primary	shards	or	just
shards	are	the	ones	that	get	the	data	first.	The	replicas	are	physical	copies	of	the	primaries
and	get	the	data	from	them.	You	can	think	of	the	cluster	as	being	ready	to	be	used	when	all
the	primary	shards	are	assigned	to	their	nodes	in	your	cluster	–	as	soon	as	the	yellow
health	state	is	achieved.	However,	Elasticsearch	may	still	initialize	other	shards	–	the
replicas.	However,	you	can	use	your	cluster	and	be	sure	that	you	can	search	your	entire
data	set	and	send	index	change	commands.	Then	the	commands	will	be	processed
properly.

www.EBooksWorld.ir

The	cluster	rebalance	settings
Elasticsearch	lets	us	control	the	rebalance	process	with	the	use	of	a	few	properties	that	can
be	set	in	the	elasticsearch.yml	file	or	by	using	the	Elasticsearch	REST	API	(as
described	in	The	update	settings	API	section	of	Chapter	9,	Elasticsearch	Cluster	in
Detail).

Controlling	when	rebalancing	will	be	allowed
The	cluster.routing.allocation.allow_rebalance	property	allows	us	to	specify	when
rebalancing	is	allowed.	This	property	can	take	the	following	values:

always:	Rebalancing	will	be	allowed	as	soon	as	it’s	needed
indices_primaries_active:	Rebalancing	will	be	allowed	when	all	the	primary
shards	are	initialized
indices_all_active:	The	default	one,	which	means	that	rebalancing	will	be	allowed
when	all	the	shards	and	replicas	are	initialized

The	cluster.routing.allocation.allow_rebalance	property	can	be	set	in	the
elasticsearch.yml	configuration	file	and	updated	dynamically	as	well.

Controlling	the	number	of	shards	being	moved	between	nodes
concurrently
The	cluster.routing.allocation.cluster_concurrent_rebalance	property	allows	us
to	specify	how	many	shards	can	be	moved	between	nodes	at	once	in	the	entire	cluster.	If
you	have	a	cluster	that	is	built	from	many	nodes,	you	can	increase	this	value.	This	value
defaults	to	2.	You	can	increase	the	default	value	if	you	would	like	the	rebalancing	to	be
performed	faster,	but	this	will	put	more	pressure	on	your	cluster	resources	and	will	affect
indexing	and	querying.	The
cluster.routing.allocation.cluster_concurrent_rebalance	property	can	be	set	in
the	elasticsearch.yml	configuration	file	and	updated	dynamically	as	well.

Controlling	which	shards	may	be	rebalanced
The	cluster.routing.allocation.enable	property	allows	us	to	specify	when	which
shards	will	be	allowed	to	be	rebalanced	by	Elasticsearch.	This	property	can	take	the
following	values:

all:	The	default	behavior,	which	tells	Elasticsearch	to	rebalance	all	the	shards	in	the
cluster
primaries:	This	value	allows	the	rebalancing	of	the	primary	shards	only
replicas:	This	value	allows	the	rebalancing	of	the	replica	shards	only
none:	This	value	disables	the	rebalancing	of	all	type	of	shards	for	all	indices	in	the
cluster

The	cluster.routing.allocation.enable	property	can	be	set	in	the
elasticsearch.yml	configuration	file	and	updated	dynamically	as	well.

www.EBooksWorld.ir

www.EBooksWorld.ir

The	Cat	API
The	Elasticsearch	Admin	API	is	quite	extensive	and	covers	almost	every	part	of
Elasticsearch	architecture:	from	low-level	information	about	Lucene	to	high-level	ones
about	the	cluster	nodes	and	their	health.	All	this	information	is	available	using	the
Elasticsearch	Java	API	as	well	as	the	REST	API.	However,	the	returned	data,	even	though
it	is	a	JSON	document,	is	not	very	readable	by	a	user,	at	least	when	it	comes	to	the	amount
of	information	given.

Because	of	this,	Elasticsearch	provides	us	with	a	more	human-friendly	API	–	the	Cat	API.
The	special	Cat	API	returns	data	in	a	simple	text,	tabular	format	and	what’s	more	–	it
provides	aggregated	data	that	is	usually	usable	without	any	further	processing.

www.EBooksWorld.ir

The	basics
The	base	endpoint	for	the	Cat	API	is	quite	obvious:	it	is	/_cat.	Without	any	parameters,	it
shows	all	the	available	endpoints	for	this	API.	We	can	check	this	by	running	the	following
command:

curl	-XGET	'localhost:9200/_cat'

The	response	returned	by	Elasticsearch	should	be	similar	or	identical	(depending	on	your
Elasticsearch	version)	to	the	following	one:

=^.^=

/_cat/allocation

/_cat/shards

/_cat/shards/{index}

/_cat/master

/_cat/nodes

/_cat/indices

/_cat/indices/{index}

/_cat/segments

/_cat/segments/{index}

/_cat/count

/_cat/count/{index}

/_cat/recovery

/_cat/recovery/{index}

/_cat/health

/_cat/pending_tasks

/_cat/aliases

/_cat/aliases/{alias}

/_cat/thread_pool

/_cat/plugins

/_cat/fielddata

/_cat/fielddata/{fields}

/_cat/nodeattrs

/_cat/repositories

/_cat/snapshots/{repository}

So	looking	from	the	top	Elasticsearch	allows	us	to	get	the	following	information	using	the
Cat	API:

Shard	allocation-related	information
All	shards-related	information	(also	one	limited	to	a	given	index)
Information	about	the	master	node
Nodes	information
Indices	statistics	(also	one	limited	to	a	given	index)
Segments	statistics	(also	one	limited	to	a	given	index)
Documents	count	(also	one	limited	to	a	given	index)
Recovery	information	(also	one	limited	to	a	given	index)
Cluster	health
Tasks	pending	for	execution
Index	aliases	and	indices	for	a	given	alias
Thread	pool	configuration

www.EBooksWorld.ir

Plugins	installed	on	each	node
Field	data	cache	size	and	field	data	cache	sizes	for	individual	fields
Node	attributes	information
Defined	backup	repositories
Snapshots	created	in	the	backup	repository

www.EBooksWorld.ir

Using	Cat	API
Using	the	Cat	API	is	as	simple	as	running	the	GET	request	to	the	one	of	the	previously
mentioned	REST	end-points.	For	example,	to	get	information	about	the	cluster	state,	we
could	run	the	following	command:

curl	-XGET	'localhost:9200/_cat/health'

The	response	returned	by	Elasticsearch	for	the	preceding	command	should	be	similar	to
the	following	one,	but,	of	course,	will	be	dependent	on	your	cluster:

1446292041	12:47:21	elasticsearch	yellow	1	1	21	21	0	0	21	0	-	50.0%

This	is	clean	and	nice.	Because	it	is	in	tabular	format,	it	is	also	easy	to	use	the	response	in
tools	such	as	grep,	awk,	or	sed	–	a	standard	set	of	tools	for	every	administrator.	It	is	also
more	readable	once	you	know	what	it	is	all	about.

To	add	a	header	describing	each	column	purpose,	we	just	need	to	add	an	additional	v
parameter,	just	like	this:

curl	-XGET	'localhost:9200/_cat/health?v'

Common	arguments
Every	Cat	API	endpoint	has	its	own	arguments,	but	there	are	a	few	common	options	that
are	shared	among	all	of	them:

v:	This	adds	a	header	line	to	the	response	with	the	names	of	presented	items.
h:	This	allows	us	to	show	only	the	chosen	columns,	for	example
h=status,node.total,shards,pri.
help:	This	lists	all	the	possible	columns	that	this	particular	endpoint	is	able	to	show.
The	command	shows	the	name	of	the	parameter,	its	abbreviation,	and	description.
bytes:	This	is	the	format	for	the	information	representing	the	values	in	bytes.	As	we
said	earlier,	the	Cat	API	is	designed	to	be	used	by	humans	and	because	of	this,	by
default,	these	values	are	represented	in	human-readable	form,	for	example:	3.5kB	or
40GB.	The	bytes	option	allows	the	setting	of	the	same	base	for	all	the	numbers,	so
sorting	or	numerical	comparison	will	be	easier.	For	example,	bytes=b	presents	all
values	in	bytes,	bytes=k	in	kilobytes,	and	so	on.

Note
For	the	full	list	of	arguments	for	each	Cat	API	endpoint,	please	refer	to	the	official
Elasticsearch	documentation	available	at:
https://www.elastic.co/guide/en/elasticsearch/reference/2.2/cat.html.

www.EBooksWorld.ir

https://www.elastic.co/guide/en/elasticsearch/reference/2.2/cat.html

The	examples
When	we	wrote	this	book,	the	Cat	API	had	twenty-two	endpoints.	We	don’t	want	to
describe	them	all	–it	would	be	a	repeat	of	information	contained	in	the	documentation	and
it	doesn’t	make	sense.	However,	we	didn’t	want	to	leave	this	section	without	an	example
regarding	the	usage	of	the	Cat	API.	Because	of	this,	we	decided	to	show	how	easily	you
can	get	information	using	the	Cat	API	compared	to	the	standard	JSON	API	exposed	by
Elasticsearch.

Getting	information	about	the	master	node
The	first	example	shows	how	easy	it	is	to	get	information	about	which	node	in	our	cluster
is	the	master	node.	By	calling	the	/_cat/master	REST	endpoint	we	can	get	information
about	the	nodes	and	which	one	of	them	is	currently	being	elected	as	a	master.	For
example,	let’s	run	the	following	command:

curl	-XGET	'localhost:9200/_cat/master?v'

The	response	returned	by	Elasticsearch	for	my	local	two-node	cluster	looks	as	follows:

id																					host						ip								node

Cfj3tzqpSNi5SZx4g8osAg	127.0.0.1	127.0.0.1	Skin

As	you	can	see	in	response,	we’ve	got	the	information	about	which	node	is	currently
elected	as	the	master:	we	can	see	its	identifier,	IP	address,	and	name.

Getting	information	about	the	nodes
The	/_cat/nodes	REST	endpoint	provides	information	about	all	the	nodes	in	the	cluster.
Let’s	see	what	Elasticsearch	will	return	after	running	the	following	command:

curl	-XGET	'localhost:9200/_cat/nodes?v&h=name,node.role,load,uptime'

In	the	preceding	example,	we	have	used	the	possibility	of	choosing	what	information	we
want	to	get	from	the	approximately	seventy	options	of	this	endpoint.	We	have	chosen	to
get	only	the	node	name,	its	role—	whether	the	node	is	a	data	or	client	node	-,	node	load,
and	its	uptime.

And	the	response	returned	by	Elasticsearch	looks	as	follows:

name	node.role	load	uptime

Skin	d									2.00			1.3h

As	you	can	see,	the	/_cat/nodes	REST	endpoint	provides	all	the	requested	information
about	the	nodes	in	the	cluster.

Retrieving	recovery	information	for	an	index
Another	nice	example	of	using	the	Cat	API	is	getting	information	about	the	recovery	of	a
single	index	or	all	the	indices.	In	our	case,	we	will	retrieve	recovery	information	for	a
single	library	index	by	running	the	following	command:

curl	-XGET	'localhost:9200/_cat/recovery/library?

www.EBooksWorld.ir

v&h=index,shard,time,type,stage,files_percent'	

The	response	for	the	preceding	command	looks	as	follows:

index			shard	time	type		stage	files_percent

library	0					75			store	done		100.0%

library	1					83			store	done		100.0%

library	2					88			store	done		100.0%

library	3					79			store	done		100.0%

library	4					5				store	done		100.0%

www.EBooksWorld.ir

www.EBooksWorld.ir

Warming	up
Sometimes,	there	may	be	a	need	to	prepare	Elasticsearch	to	handle	your	queries.	Maybe
it’s	because	you	heavily	rely	on	the	field	data	cache	and	you	want	it	to	be	loaded	before
your	production	queries	arrive,	or	maybe	you	want	to	warm	up	your	operating	system’s
I/O	cache	so	that	the	data	indices	files	are	read	from	the	cache.	Whatever	the	reason,
Elasticsearch	allows	us	to	use	so	called	warming	queries	for	our	types	and	indices.

www.EBooksWorld.ir

Defining	a	new	warming	query
A	warming	query	is	nothing	more	than	the	usual	query	stored	in	a	special	type	called
_warmer	in	Elasticsearch.	Let’s	assume	that	we	have	the	following	query	that	we	want	to
use	for	warming	up:

curl	-XGET	localhost:9200/library/_search?pretty	-d	'{

		"query"	:	{

				"match_all"	:	{}

		},

		"aggs"	:	{

				"warming_aggs"	:	{

						"terms"	:	{

								"field"	:	"tags"

						}

				}

		}

}'

To	store	the	preceding	query	as	a	warming	query	for	our	library	index,	we	will	run	the
following	command:

curl	-XPUT	'localhost:9200/library/_warmer/tags_warming_query'	-d	'{

		"query"	:	{

				"match_all"	:	{}

		},

		"aggs"	:	{

				"warming_aggs"	:	{

						"terms"	:	{

								"field"	:	"tags"

						}

				}

		}

}'

The	preceding	command	will	register	our	query	as	a	warming	query	with	the
tags_warming_query	name.	You	can	have	multiple	warming	queries	for	your	index,	but
each	of	these	queries	needs	to	have	a	unique	name.

We	can	not	only	define	warming	queries	for	the	entire	index,	but	also	for	the	specific	type
in	it.	For	example,	to	store	our	previously	shown	query	as	the	warming	query	only	for	the
book	type	in	the	library	index,	run	the	preceding	command	not	to	the	/library/_warmer
URI	but	to	/library/book/_warmer.	So,	the	entire	command	will	be	as	follows:

curl	-XPUT	'localhost:9200/library/book/_warmer/tags_warming_query'	-d	'{

		"query"	:	{

				"match_all"	:	{}

		},

		"aggs"	:	{

				"warming_aggs"	:	{

						"terms"	:	{

								"field"	:	"tags"

						}

				}

www.EBooksWorld.ir

		}

}'

After	adding	a	warming	query,	before	Elasticsearch	allows	a	new	segment	to	be	searched
on,	it	will	be	warmed	up	by	running	the	defined	warming	queries	on	that	segment.	This
allows	Elasticsearch	and	the	operating	system	to	cache	data	and,	thus,	speed	up	searching.

Just	as	we	read	in	the	Full	text	searching	section	of	Chapter	1,	Getting	Started	with
Elasticsearch	Cluster,	Lucene	divides	the	index	into	parts	called	segments,	which	once
written	can’t	be	changed.	Every	new	commit	operation	creates	a	new	segment	(which	is
eventually	merged	if	the	number	of	segments	is	too	high),	which	Lucene	uses	for
searching.

Note
Please	note	that	the	Warmer	API	will	be	removed	in	the	future	versions	of	Elasticsearch.

www.EBooksWorld.ir

Retrieving	the	defined	warming	queries
In	order	to	get	a	specific	warming	query	for	our	index,	we	just	need	to	know	its	name.	For
example,	if	we	want	to	get	the	warming	query	named	as	tags_warming_query	for	our
library	index,	we	will	run	the	following	command:

curl	-XGET	'localhost:9200/library/_warmer/tags_warming_query?pretty'

The	result	returned	by	Elasticsearch	will	be	as	follows:

{

		"library"	:	{

				"warmers"	:	{

						"tags_warming_query"	:	{

								"types"	:	["book"],

								"source"	:	{

										"query"	:	{

												"match_all"	:	{	}

										},

										"aggs"	:	{

												"warming_aggs"	:	{

														"terms"	:	{

																"field"	:	"tags"

														}

												}

										}

								}

						}

				}

		}

}

We	can	also	get	all	the	warming	queries	for	the	index	and	type	using	the	following
command:

curl	-XGET	'localhost:9200/library/_warmer?pretty'

And	finally,	we	can	also	get	all	the	warming	queries	that	start	with	a	given	prefix.	For
example,	if	we	want	to	get	all	the	warming	queries	for	the	library	index	that	start	with
the	tags	prefix,	we	will	run	the	following	command:

curl	-XGET	'localhost:9200/library/_warmer/tags*?pretty'

www.EBooksWorld.ir

Deleting	a	warming	query
Deleting	a	warming	query	is	very	similar	to	getting	one;	we	just	need	to	use	the	DELETE
HTTP	method.	To	delete	a	specific	warming	query	from	our	index,	we	just	need	to	know
its	name.	For	example,	if	we	want	to	delete	the	warming	query	named
tags_warming_query	for	our	library	index,	we	will	run	the	following	command:

curl	-XDELETE	'localhost:9200/library/_warmer/tags_warming_query'

We	can	also	delete	all	the	warming	queries	for	the	index	using	the	following	command:

curl	-XDELETE	'localhost:9200/library/_warmer/_all'

And	finally,	we	can	also	remove	all	the	warming	queries	that	start	with	a	given	prefix.	For
example,	if	we	want	to	remove	all	the	warming	queries	for	the	library	index	that	start
with	the	tags	prefix,	we	will	run	the	following	command:

curl	-XDELETE	'localhost:9200/library/_warmer/tags*'

www.EBooksWorld.ir

Disabling	the	warming	up	functionality
To	disable	the	warming	queries	totally	but	to	save	them	in	the	_warmer	index,	you	should
set	the	index.warmer.enabled	configuration	property	to	false	(setting	this	property	to
true	will	result	in	enabling	the	warming	up	functionality).	This	setting	can	be	either	put	in
the	elasticsearch.yml	file	or	just	set	using	the	REST	API	on	a	live	cluster.

For	example,	if	we	want	to	disable	the	warming	up	functionality	for	the	library	index,
we	will	run	the	following	command:

curl	-XPUT	'localhost:9200/library/_settings'	-d	'{

		"index.warmer.enabled"	:	false

}'

www.EBooksWorld.ir

Choosing	queries	for	warming
Finally,	we	should	ask	ourselves	one	question:	which	queries	should	be	considered	as
candidates	for	warming.	Typically,	you’ll	want	to	choose	ones	that	are	expensive	to
execute	and	ones	that	require	caches	to	be	populated.	So	you’ll	probably	want	to	choose
queries	that	include	aggregations	and	sorting	based	on	the	fields	in	your	index.	This	will
force	the	operating	system	to	load	the	part	of	the	indices	that	hold	the	data	related	to	such
queries	and	improve	the	performance	of	consecutive	queries	that	are	run.	In	addition	to
this,	parent-child	queries	and	nested	queries	are	also	potential	candidates	for	warming.
You	may	also	choose	other	queries	by	looking	at	the	logs,	and	finding	where	your
performance	is	not	as	great	as	you	want	it	to	be.	Such	queries	may	also	be	perfect
candidates	for	warming	up.

For	example,	let’s	say	that	we	have	the	following	logging	configuration	set	in	the
elasticsearch.yml	file:

			index.search.slowlog.threshold.query.warn:	10s

			index.search.slowlog.threshold.query.info:	5s

			index.search.slowlog.threshold.query.debug:	2s

			index.search.slowlog.threshold.query.trace:	1s

And	we	have	the	following	logging	level	set	in	the	logging.yml	configuration	file:

	logger:	

				index.search.slowlog:	TRACE,	index_search_slow_log_file

Notice	that	the	index.search.slowlog.threshold.query.trace	property	is	set	to	1s	and
the	index.search.slowlog	logging	level	is	set	to	TRACE.	This	means	that	whenever	a
query	is	executed	for	longer	than	one	second	(on	a	shard,	not	in	total),	it	will	be	logged
into	the	slow	log	file	(the	name	of	which	is	specified	by	the	index
_search_slow_log_file	configuration	section	of	the	logging.yml	configuration	file).	For
example,	the	following	can	be	found	in	a	slow	log	file:

[2015-11-25	19:53:00,248][TRACE][index.search.slowlog.query]	

took[340000.2ms],	took_millis[3400],	types[],	stats[],	

search_type[QUERY_THEN_FETCH],	total_shards[5],	source[{"query":

{"match_all":{}},"aggs":{"warming_aggs":{"terms":{"field":"tags"}}}}],	

extra_source[],

As	you	can	see,	in	the	preceding	log	line,	we	have	the	query	time,	search	type,	and	the
query	source,	which	shows	us	the	executed	query.

Of	course,	the	values	can	be	different	in	your	configuration	but	the	slow	log	can	be	a
valuable	source	of	the	queries	that	have	been	running	too	long	and	may	need	to	have	some
warm	up	defined;	maybe	these	are	parent-child	queries	and	need	some	identifiers	to	be
fetched	to	perform	better,	or	maybe	you	are	using	a	filter	that	is	expensive	when	you
execute	it	for	the	first	time.

There	is	one	thing	you	should	remember:	don’t	overload	your	Elasticsearch	cluster	with
too	many	warming	queries	because	you	may	end	up	spending	too	much	time	in	warming
up	instead	of	processing	your	production	queries.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Index	aliasing	and	using	it	to	simplify
your	everyday	work
When	working	with	multiple	indices	in	Elasticsearch,	you	can	sometimes	lose	track	of
them.	Imagine	a	situation	where	you	store	logs	in	your	indices	or	time-based	data	in
general.	Usually,	the	amount	of	data	in	such	cases	is	quite	large	and,	therefore,	it	is	a	good
solution	to	have	the	data	divided	somehow.	A	logical	division	of	such	data	is	obtained	by
creating	a	single	index	for	a	single	day	of	logs	(if	you	are	interested	in	an	open	source
solution	used	to	manage	logs,	look	at	the	Logstash	from	the	Elasticsearch	suite	at
https://www.elastic.co/products/logstash).

However,	after	some	time,	if	we	keep	all	the	indices,	we	will	start	having	a	problem	in
taking	care	of	all	that.	An	application	needs	to	take	care	of	all	the	information,	such	as
which	index	to	send	data	to,	which	to	query,	and	so	on.	With	the	help	of	aliases,	we	can
change	this	to	work	with	a	single	name	just	as	we	would	use	a	single	index,	but	we	will
work	with	multiple	indices.

www.EBooksWorld.ir

https://www.elastic.co/products/logstash

An	alias
What	is	an	index	alias?	It’s	an	additional	name	for	one	or	more	indices	that	allows	us	to
use	these	indices	by	referring	to	them	with	those	additional	names.	A	single	alias	can	have
multiple	indices	as	well	as	the	other	way	round;	a	single	index	can	be	a	part	of	multiple
aliases.

However,	please	remember	that	you	can’t	use	an	alias	that	has	multiple	indices	for
indexing	or	for	real-time	GET	operations.	Elasticsearch	will	throw	an	exception	if	you	do
this.	We	can	still	use	an	alias	that	links	to	only	a	single	index	for	indexing,	though.	This	is
because	Elasticsearch	doesn’t	know	in	which	index	the	data	should	be	indexed	or	from
which	index	the	document	should	be	fetched.

www.EBooksWorld.ir

Creating	an	alias
To	create	an	index	alias,	we	need	to	run	the	HTTP	POST	method	to	the	_aliases	REST
end-point	with	a	defined	action.	For	example,	the	following	request	will	create	a	new	alias
called	week12	that	will	include	the	indices	named	day10,	day11,	and	day12	(we	need	to
create	those	indices	first):

curl	-XPOST	'localhost:9200/_aliases'	-d	'{

		"actions"	:	[

				{	"add"	:	{	"index"	:	"day10",	"alias"	:	"week12"	}	},

				{	"add"	:	{	"index"	:	"day11",	"alias"	:	"week12"	}	},

				{	"add"	:	{	"index"	:	"day12",	"alias"	:	"week12"	}	}

]

}'

If	the	week12	alias	isn’t	present	in	our	Elasticsearch	cluster,	the	preceding	command	will
create	it.	If	it	is	present,	the	command	will	just	add	the	specified	indices	to	it.

We	would	run	a	search	across	the	three	indices	as	follows:

curl	-XGET	'localhost:9200/day10,day11,day12/_search?q=test'

If	everything	goes	well,	we	can	instead	run	it	as	follows:

curl	-XGET	'localhost:9200/week12/_search?q=test'

Isn’t	this	better?

Sometimes	we	have	a	set	of	indices	where	every	index	serves	independent	information	but
some	queries	should	go	across	all	of	them;	for	example,	we	have	dedicated	indices	for
countries	(country_en,	country_us,	country_de,	and	so	on).	In	this	case,	we	would	create
the	alias	by	grouping	them	all:

curl	-XPOST	'localhost:9200/_aliases'	-d	'{

		"actions"	:	[

				{	"add"	:	{	"index"	:	"country_*",	"alias"	:	"countries"	}	}

]

}'

The	last	command	created	only	one	alias.	Elasticsearch	allows	you	to	rewrite	this	to
something	less	verbose:

curl	-XPUT	'localhost:9200/country_*/_alias/countries'

www.EBooksWorld.ir

Modifying	aliases
Of	course,	you	can	also	remove	indices	from	an	alias.	We	can	do	this	similarly	to	how	we
add	indices	to	an	alias,	but	instead	of	the	add	command,	we	use	the	remove	one.	For
example,	to	remove	the	index	named	day9	from	the	week12	index,	we	will	run	the
following	command:

curl	-XPOST	'localhost:9200/_aliases'	-d	'{

	"actions"	:	[

				{	"remove"	:	{	"index"	:	"day9",	"alias"	:	"week12"	}	}

]

}'

www.EBooksWorld.ir

Combining	commands
The	add	and	remove	commands	can	be	sent	as	a	single	request.	For	example,	if	you	would
like	to	combine	all	the	previously	sent	commands	into	a	single	request,	you	will	have	to
send	the	following	command:

curl	-XPOST	'localhost:9200/_aliases'	-d	'{

		"actions"	:	[

				{	"add"	:	{	"index"	:	"day10",	"alias"	:	"week12"	}	},

				{	"add"	:	{	"index"	:	"day11",	"alias"	:	"week12"	}	},

				{	"add"	:	{	"index"	:	"day12",	"alias"	:	"week12"	}	},

				{	"remove"	:	{	"index"	:	"day9",	"alias"	:	"week12"	}	}

]

}'

www.EBooksWorld.ir

Retrieving	aliases
In	addition	to	adding	or	removing	indices	to	or	from	aliases,	we	and	our	applications	that
use	Elasticsearch	may	need	to	retrieve	all	the	aliases	available	in	the	cluster	or	all	the
aliases	that	an	index	is	connected	to.	To	retrieve	these	aliases,	we	send	a	request	using	the
HTTP	GET	command.	For	example,	the	following	command	gets	all	the	aliases	for	the
day10	index	and	the	second	one	will	get	all	the	available	aliases:

curl	-XGET	'localhost:9200/day10/_aliases'

curl	-XGET	'localhost:9200/_aliases'

The	response	from	the	second	command	is	as	follows:

{

		"day12"	:	{

				"aliases"	:	{

						"week12"	:	{	}

				}

		},

		"library"	:	{

				"aliases"	:	{	}

		},

		"day11"	:	{

				"aliases"	:	{

						"week12"	:	{	}

				}

		},

		"day9"	:	{

				"aliases"	:	{	}

		},

		"day10"	:	{

				"aliases"	:	{

						"week12"	:	{	}

				}

		}

}

You	can	also	use	the	_alias	endpoint	to	get	all	aliases	from	the	given	index:

curl	-XGET	'localhost:9200/day10/_alias/*'

To	get	a	particular	alias	definition,	you	can	use	the	following:

curl	-XGET	'localhost:9200/day10/_alias/day12'

www.EBooksWorld.ir

Removing	aliases
You	can	also	remove	an	alias	using	the	_alias	endpoint.	For	example,	sending	the
following	command	will	remove	the	client	alias	from	the	data	index:

curl	-XDELETE	localhost:9200/data/_alias/client

www.EBooksWorld.ir

Filtering	aliases
Aliases	can	be	used	in	a	way	similar	to	how	views	are	used	in	SQL	databases.	You	can	use
a	full	Query	DSL	(discussed	in	detail	in	Chapter	3,	Searching	Your	Data)	and	have	your
filter	applied	to	all	count,	search,	delete	by	query,	and	so	on.

Let’s	look	at	an	example.	Imagine	that	we	want	to	have	aliases	that	return	data	for	a
certain	client	so	we	can	use	it	in	our	application.	Let’s	say	that	the	client	identifier	we	are
interested	in	is	stored	in	the	clientId	field	and	we	are	interested	in	the	12345	client.	So,
let’s	create	the	alias	named	client	with	our	data	index,	which	will	apply	a	query	for
clientId	automatically:

curl	-XPOST	'localhost:9200/_aliases'	-d	'{

		"actions"	:	[

				{

						"add"	:	{

								"index"	:	"data",

								"alias"	:	"client",

								"filter"	:	{	"term"	:	{	"clientId"	:	12345	}	}

						}

				}

]

}'

So	when	using	the	defined	alias,	you	will	always	get	your	request	filtered	by	a	term	query
that	ensures	that	all	the	documents	have	the	12345	value	in	the	clientId	field.

www.EBooksWorld.ir

Aliases	and	routing
In	the	Introduction	to	routing	section	of	Chapter	2,	Indexing	Your	Data,	we	talked	about
routing.	Similar	to	aliases	that	use	filtering,	we	can	add	routing	values	to	the	aliases.
Imagine	that	we	are	using	routing	on	the	basis	of	user	identifier	and	we	want	to	use	the
same	routing	values	with	our	aliases.	So,	for	the	alias	named	client,	we	will	use	the
routing	values	of	12345,	12346,	and	12347	for	querying,	and	only	12345	for	indexing.	To
do	this,	we	will	create	an	alias	using	the	following	command:

curl	-XPOST	'localhost:9200/_aliases'	-d	'{

		"actions"	:	[

				{

						"add"	:	{

								"index"	:	"data",

								"alias"	:	"client",

								"search_routing"	:	"12345,12346,12347",

								"index_routing"	:	"12345"

						}

				}

]

}'

This	way,	when	we	index	our	data	using	the	client	alias,	the	values	specified	by	the
index_routing	property	will	be	used.	At	the	time	of	querying,	the	values	specified	by	the
search_routing	property	will	be	used.

There	is	one	more	thing.	Please	look	at	the	following	query	sent	to	the	previously	defined
alias:

curl	-XGET	'localhost:9200/client/_search?q=test&routing=99999,12345'

The	value	used	as	a	routing	value	will	be	12345.	This	is	because	Elasticsearch	will	take	the
common	values	of	the	search_routing	attribute	and	the	query	routing	parameter,	which
in	our	case	is	12345.

www.EBooksWorld.ir

Zero	downtime	reindexing	and	aliases
One	of	the	greatest	advantages	of	using	aliases	is	the	ability	to	re-index	the	data	without
any	downtime	from	the	system	using	Elasticsearch.	To	achieve	this,	you	would	need	to
interact	with	your	indices	only	through	aliases—both	for	indexing	and	querying.	In	such	a
case,	you	can	just	create	a	new	index,	index	the	data	here,	and	switch	aliases	when	needed.
During	indexing,	aliases	would	still	point	to	the	old	index,	so	the	application	could	work
as	usual.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In	this	chapter,	we	discussed	Elasticsearch	administration.	We	started	by	learning	how	to
perform	backups	of	our	indices	and	how	to	monitor	our	cluster	health	and	state	using	its
API.	We	controlled	cluster	shard	rebalancing	and	learned	how	to	adjust	shard	allocation
according	to	our	needs.	We’ve	used	the	CAT	API	to	get	information	about	Elasticsearch	in
human-readable	form	and	we’ve	warmed	up	our	queries	to	make	them	faster.	Finally,
we’ve	used	aliases	to	allow	a	better	management	of	our	indices	and	to	have	more
flexibility.

In	the	next	and	final	chapter	of	the	book,	we	will	focus	on	a	hypothetical	online	library
store	to	see	how	to	make	Elasticsearch	work	in	practice.	We	will	start	with	a	brief
introduction	and	hardware	considerations.	We	will	tune	a	single	instance	of	Elasticsearch
and	properly	configure	our	cluster	by	discussing	each	of	its	parts	and	providing	a	proper
architecture.	We	will	vertically	expand	the	cluster	and	prepare	it	for	both	high	querying
and	high	indexing	load.	Finally,	we	will	learn	how	to	monitor	such	a	prepared	cluster.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter	11.	Scaling	by	Example
In	the	previous	chapter,	we	discussed	Elasticsearch	administration.	We	started	with
discussion	about	backups	and	how	we	can	do	them	by	using	available	API.	We	monitored
the	health	and	state	of	our	clusters	and	nodes	and	we	learned	how	to	control	shard
rebalancing.	We	controlled	the	shard	and	replicas	allocation	and	used	human	friendly	Cat
API	to	get	information	about	the	cluster	and	nodes.	We	saw	how	to	use	warmers	to	speed
up	potentially	heavy	queries	and	we	used	index	aliasing	to	manage	our	indices	more
easily.	By	the	end	of	this	chapter,	you	will	have	learned	the	following	topics:

Hardware	preparations	for	running	Elasticsearch
Tuning	a	single	Elasticsearch	node
Preparing	highly	available	and	fault	tolerant	clusters
Expanding	Elasticsearch	vertically
Preparing	Elasticsearch	for	high	query	and	indexing	throughput
Monitoring	Elasticsearch

www.EBooksWorld.ir

Hardware
One	of	the	first	decisions	that	we	need	to	make	when	starting	every	serious	software
project	is	a	set	choices	related	to	hardware.	And	believe	us,	this	is	not	only	a	very
important	choice,	but	also	one	of	the	most	difficult	ones.	Often	the	decisions	are	made	at
early	project	stages,	when	only	the	basic	architecture	is	known	and	we	don’t	have	precise
information	regarding	the	queries,	data	load,	and	so	on.	Project	architect	has	to	balance
precaution	and	projected	cost	of	the	whole	solution.	Too	many	times	it	is	an	intersection	of
experience	and	clairvoyance,	which	can	lead	to	either	great	or	terrible	results.

www.EBooksWorld.ir

Physical	servers	or	a	cloud
Let’s	start	with	a	decision:	a	cloud,	virtual,	or	physical	machines.	Nowadays,	these	are	all
valid	options,	but	it	was	not	always	the	case.	Sometime	ago	the	only	option	was	to	buy
new	servers	for	each	environment	part	or	share	resources	with	the	other	applications	on
the	same	machine.	The	second	option	makes	perfect	sense	as	it	is	more	cost-effective	but
introduces	risk.	Problems	with	one	application,	especially	when	they	are	hardware	related,
will	result	in	problems	for	another	application.	You	can	imagine	one	of	your	applications
using	most	of	the	I/O	subsystem	of	the	physical	machine	and	all	the	other	applications
struggling	with	lots	of	I/O	waits	and	performance	problems	because	of	that.	Virtualization
promises	application	separation	and	a	more	convenient	way	of	managing	resources,	but
you	are	still	limited	by	the	underlying	hardware.	Every	unexpected	traffic	could	be	a
problem	and	affect	service	availability.	Imagine	that	your	ecommerce	site	suddenly	gains
massive	number	of	customers.	Instead	of	being	glad	that	the	spike	appeared	and	you	have
more	potential	customers,	you	search	for	a	place	where	you	can	buy	additional	hardware
that	will	be	supplied	as	soon	as	possible.

Cloud	computing	on	the	other	hand	means	a	more	flexible	cost	model.	We	can	easily	add
new	machines	whenever	we	need.	We	can	add	them	temporarily	when	we	expect	a	greater
load	(for	example,	before	Christmas	for	an	ecommerce	site)	and	pay	only	for	the	actually
used	processing	power.	It	is	just	a	few	clicks	in	the	admin	panel.	Even	more,	we	can	also
setup	automatic	scaling,	that	is	new	virtual	machines	can	appear	automatically	when	we
need	them.	Cloud-based	software	can	also	shut	them	down	when	we	do	not	need	them
anymore.	The	cloud	has	many	advantages,	such	as	lower	initial	cost,	ability	to	easily	grow
your	business,	and	insensitivity	to	temporal	fluctuations	of	resource	requirements,	but	it
also	has	several	flaws.	The	costs	of	cloud	servers	rise	faster	than	that	of	physical
machines.	Also,	mass	storage,	although	practically	unlimited,	has	worse	characteristics
(number	of	operations	per	seconds)	than	physical	servers.	This	is	sometimes	a	great
problem	for	us,	especially	with	disk	based	storage	such	as	Elasticsearch.

In	practice,	as	usual,	the	choice	can	be	hard	but	going	through	a	few	points	can	help	you
with	your	decision:

Business	requirements	may	directly	point	for	your	own	servers;	for	example,	some
procedures	related	to	financial	or	medical	data	automatically	exclude	cloud	solutions
hosted	by	third-party	vendors
For	proof	of	concept	and	low/medium	load	services,	the	cloud	can	be	a	good	choice
because	of	simplicity,	scalability,	and	low	cost
Solutions	with	strong	requirements	connected	with	I/O	subsystems	will	probably
work	better	on	bare	metal	machines	where	you	have	greater	influence	what	storage
type	is	available	to	you
When	the	traffic	can	greatly	change	within	a	short	time,	the	cloud	is	a	perfect	place
for	you

For	the	purpose	of	further	discussion,	let’s	assume	that	we	want	to	buy	our	own	servers.
We	are	in	the	computer	store	now	and	let’s	buy	something!

www.EBooksWorld.ir

CPU
In	most	cases,	this	is	the	least	important	part.	You	can	choose	any	modern	CPU	model	but
you	should	know	that	more	number	of	cores	means	a	higher	number	of	concurrent	queries
and	indexing	threads.	That	will	lead	to	being	able	to	index	data	faster,	especially	with
complicated	analysis	and	lots	of	merges.

www.EBooksWorld.ir

RAM	memory
More	gigabytes	of	RAM	is	always	better	than	less	gigabytes	of	RAM.	Memory	is
necessary,	especially	for	aggregation	and	sorting.	It	is	less	of	a	problem	now,	with
Elasticsearch	2.0	and	doc	values,	but	still	complicated	queries	with	lots	of	aggregation
require	memory	to	process	the	data.	Memory	is	also	used	for	indexing	buffers	and	can	lead
to	indexing	speed	improvements,	because	more	data	can	be	buffered	in	memory	and	thus
disks	will	be	used	less	frequently.	If	you	try	to	use	more	memory	than	available,	the
operating	system	will	use	the	hard	disks	as	temporary	space	(it	starts	swapping)	and	you
should	avoid	this	at	all	cost.	Note	that	you	should	never	try	to	force	Elasticsearch	to	use	as
much	as	possible	memory.	The	first	reason	is	Java	garbage	collector	–	less	memory	is
more	GC	friendly.	The	second	reason	is	that	the	unused	memory	is	actually	used	by	the
operating	system	for	buffers	and	disk	cache.	In	fact,	when	your	index	can	fit	in	this	space,
all	data	is	read	from	these	caches	and	not	from	the	disks	directly.	This	can	drastically
improve	the	performance.	By	default,	Elasticsearch	and	the	I/O	subsystem	share	the	same
I/O	cache,	which	gives	another	reason	to	leave	even	more	memory	for	the	operating
system	itself.

In	practice,	8GB	is	the	lowest	requirement	for	memory.	It	does	not	mean	that	Elasticsearch
will	never	work	with	less	memory,	but	for	most	situations	and	data	intensive	applications,
it	is	the	reasonable	minimum.	On	the	other	hand,	more	than	64GB	is	rarely	needed.	In
lieu,	think	about	scaling	the	system	horizontally	instead	of	assigning	such	amounts	of
memory	to	a	single	Elasticsearch	node.

www.EBooksWorld.ir

Mass	storage
We	said	that	we	are	in	a	good	situation	when	the	whole	index	fits	into	memory.	In	practice
this	can	be	difficult	to	achieve,	so	good	and	fast	disks	are	very	important.	It	is	even	more
important	if	one	of	the	requirements	is	high	indexing	throughput.	In	such	a	case,	you	may
consider	fast	SSD	disks.	Unfortunately,	these	disks	are	expensive	if	your	data	volume	is
big.	You	can	improve	the	situation	by	avoiding	using	RAID	(see
https://en.wikipedia.org/wiki/RAID),	except	RAID	0.	In	most	cases,	when	you	handle
fault	tolerance	by	having	multiple	servers,	the	additional	level	of	security	on	the	RAID
level	is	unnecessary.	The	last	thing	is	to	avoid	using	external	storage,	such	as	network
attached	storage	(NAS)	or	NFS	volumes.	The	network	latency	in	such	cases	always	kills
all	the	advantages	of	these	solutions.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/RAID

The	network
When	you	use	Elasticsearch	cluster,	each	node	opens	several	connections	to	other	nodes
for	various	uses.	When	you	index,	the	data	is	forwarded	to	different	shards	and	replicas.
When	you	query	for	data,	the	node	used	for	querying	can	run	multiple	partial	queries	to
the	other	nodes	and	compose	reply	from	the	data	fetched	from	the	other	nodes.	This	is
why	you	should	make	sure	that	your	network	is	not	the	bottleneck.	In	practice,	use	one
network	for	all	the	servers	in	the	cluster	and	avoid	solutions	in	which	the	nodes	in	the
cluster	are	spread	between	data	centers.

www.EBooksWorld.ir

How	many	servers
The	answer	is	always	the	same,	as	it	depends.	It	depends	on	many	factors:	the	number	of
request	per	seconds,	the	data	volume,	the	level	of	the	query’s	complexity,	the	aggregations
and	sorting	usage,	the	number	of	new	documents	per	unit	of	time,	how	fast	new	data
should	be	available	for	searching	(the	refresh	time),	the	average	document	size,	and	the
analyzers	used.	In	practice,	the	handiest	answer	is	-	test	it	and	approximate.

The	one	thing	that	is	often	underestimated	is	data	security.	When	you	think	about	fault
tolerance	and	availability,	you	should	start	from	three	servers.	Why?	We	talked	about	the
split	brain	situation	in	the	Master	election	configuration	section	of	Chapter	9,
Elasticsearch	Cluster	in	Detail.	Starting	from	three	servers	we	are	able	to	handle	a	single
Elasticsearch	node	failure	without	taking	down	the	whole	cluster.

www.EBooksWorld.ir

Cost	cutting
You	did	some	tests,	considered	carefully	planned	functionalities,	estimated	volumes	and
load,	and	went	to	the	project	owner	with	an	architecture	draft.	“Its	too	expensive”,	he	said
and	asked	you	to	think	about	servers	once	again.	What	can	we	do?

Let’s	think	about	server	roles	and	try	to	introduce	some	differences	between	them.	If	one
of	the	requirements	is	indexing	massive	amounts	of	data	connected	with	time	(maybe
logs),	the	possible	way	is	having	two	groups	of	servers:	hot	nodes,	when	new	data	arrives,
and	cold	nodes,	when	old	data	is	moved.	Thanks	to	this	approach,	hot	nodes	may	have
faster	but	smaller	disks	(that	is,	solid	state	drives)	in	opposite	to	the	cold	nodes,	when	fast
disks	are	not	so	important	but	space	is.	You	can	also	divide	your	architecture	in	to	several
groups	as	master	servers	(less	powerful,	with	relativly	small	disks),	data	nodes	(bigger
disks),	and	query	aggregator	nodes	(more	RAM).	We	will	talk	about	this	in	the	following
sections.

www.EBooksWorld.ir

www.EBooksWorld.ir

Preparing	a	single	Elasticsearch	node
When	we	talk	about	vertical	scaling,	we	often	mean	adding	more	resources	to	the	server
Elasticsearch	is	running	on.	We	can	add	memory	or	we	can	switch	to	a	machine	with	a
better	CPU	or	faster	disk	storage.	Of	course,	with	better	machines	we	can	expect	an
increase	in	performance;	depending	on	our	deployment	and	its	bottlenecks,	it	can	be	a
small	or	large	improvement.	However,	there	are	limitations	when	it	comes	to	vertical
scaling.	For	example,	one	of	the	limitations	is	the	maximum	amount	of	physical	memory
available	for	your	servers	or	the	total	memory	required	by	the	JVM	to	operate.	When
having	large	data	and	complicated	queries,	you	can	very	soon	run	into	memory	issues	and
adding	new	memory	may	not	help	at	all.	In	this	section,	we	will	try	to	give	you	general
advice	on	where	to	look	and	what	to	tune	when	it	comes	to	a	single	Elasticsearch	node.

The	thing	to	remember	when	tuning	your	system	is	performance	tests,	ones	that	can	be
repeated	under	the	same	circumstances.	Once	you	make	a	change,	you	need	to	be	able	to
see	how	it	affects	the	overall	performance.	In	addition	to	that,	Elasticsearch	scales	great.
Using	that	knowledge,	we	can	run	performance	tests	on	a	single	machine	(or	a	few	of
them)	and	extrapolate	the	results.	Such	observations	may	be	a	good	starting	point	for
further	tuning.

Also	keep	in	mind	that	this	section	doesn’t	contain	a	deep	dive	into	all	performance
related	topics,	but	is	dedicated	to	showing	you	the	most	common	things.

www.EBooksWorld.ir

The	general	preparations
Apart	from	all	the	things	we	will	discuss	in	this	section,	there	are	three	major,	operating
system	related	things	you	need	to	remember:	the	number	of	allowed	file	descriptors,	the
virtual	memory,	and	avoiding	swapping.

Note	that	the	following	section	contains	information	for	Linux	operating	systems,	but	you
can	also	achieve	similar	options	on	Microsoft	Windows.

Avoiding	swapping
Let’s	start	with	the	third	one.	Elasticsearch	and	Java	Virtual	Machine	based	applications,
in	general,	don’t	like	to	be	swapped.	This	means	that	these	applications	work	best	if	the
operating	system	doesn’t	put	the	memory	that	they	use	in	the	swap	space.	This	is	very
simple,	because,	to	access	the	swapped	memory,	the	operating	system	will	have	to	read	it
from	the	disk,	which	is	slow	and	which	would	affect	the	performance	in	a	very	bad	way.

If	we	have	enough	memory,	and	we	should	have	if	we	want	our	Elasticsearch	instance	to
perform	well,	we	can	configure	Elasticsearch	to	avoid	swapping.	To	do	that,	we	just	need
to	modify	the	elasticsearch.yml	file	and	include	the	following	property:

bootstrap.mlockall:	true

This	is	one	of	the	options.	The	second	one	is	to	set	the	property	vm.swappiness	in	the
/etc/sysctl.conf	file	to	0	(for	complete	swap	disabling)	or	1	for	swapping	only	in
emergency	(for	Kernel	versions	3.5	and	above).

The	third	option	is	to	disable	swapping	by	editing	/etc/fstab	and	removing	the	lines	that
contain	the	swap	word.	The	following	is	an	example	/etc/fstab	content:

LABEL=cloudimg-rootfs		/			ext4		defaults,discard		0	0

/dev/xvdb	swap	swap	defaults	0	0

To	disable	swapping	we	would	just	remove	the	second	line	from	the	above	contents.	We
could	also	run	the	following	command	to	disable	swapping:

sudo	swapoff	-a

However,	remember	that	this	effect	won’t	persist	between	logging	off	and	back	in	to	the
system,	so	this	is	only	a	temporary	solution.

Also,	remember	that	if	you	don’t	have	enough	memory	to	run	Elasticsearch,	the	operating
system	will	just	kill	the	process	when	swapping	is	disabled.

File	descriptors
Make	sure	you	have	enough	limits	related	to	file	descriptors	for	the	user	running
Elasticsearch	(when	installing	from	official	packages,	that	user	will	be	called
elasticsearch).	If	you	don’t,	you	may	end	up	with	problems	when	Elasticsearch	tries	to
flush	the	data	and	create	new	segments	or	merge	segments	together,	which	can	result	in
index	corruption.

To	adjust	the	number	of	allowed	file	descriptors,	you	will	need	to	adjust	the
www.EBooksWorld.ir

/etc/security/limits.conf	file	(at	least	on	most	common	Linux	systems)	and	adjust	or
add	an	entry	related	to	a	given	user	(for	both	soft	and	hard	limits).	For	example:

elasticsearch	soft	nofile	65536

elasticsearch	hard	nofile	65536

It	is	advised	to	set	the	number	of	allowed	file	descriptors	to	at	least	65536,	but	even	more
can	be	needed,	depending	on	your	index	size.

On	some	Linux	systems,	you	may	also	need	to	load	an	appropriate	limits	module	for	the
preceding	setting	to	take	effect.	To	load	that	module,	you	need	to	adjust	the
/etc/pam.d/login	file	and	add	or	uncomment	the	following	line:

session	required	pam_limits.so

There	is	also	a	possibility	to	display	the	number	of	file	descriptors	available	for
Elasticsearch	by	adding	the	-Des.max-open-files=true	parameter	to	Elasticsearch
startup	parameters.	For	example,	like	this:

bin/elasticsearch	-Des.max-open-files=true

When	doing	that,	Elasticsearch	will	include	information	about	the	file	descriptors	in	the
logs:

[2015-12-20	00:22:19,869][INFO][bootstrap]	max_open_files	

[10240]

Virtual	memory
Elasticsearch	2.2	uses	hybrid	directory	implementation,	which	is	a	combination	of	mmapfs
and	niofs	directories.	Because	of	that,	especially	when	your	indices	are	large,	you	may
need	a	lot	of	virtual	memory	on	your	system.	By	default,	the	operating	system	limits	the
amount	of	memory	mapped	files	and	that	can	cause	errors	when	running	Elasticsearch.
Because	of	that,	we	recommend	increasing	the	default	values.	To	do	that,	you	just	need	to
edit	the	/etc/sysctl.conf	file	and	set	the	vm.max_map_count	property;	for	example,	to	a
value	equal	to	262144.

You	can	also	change	the	value	temporarily	by	running	the	following	command:

sysctl	-w	vm.max_map_count=262144

www.EBooksWorld.ir

The	memory
Before	thinking	about	Elasticsearch	configuration	related	things,	we	should	remember
about	giving	enough	memory	to	Elasticsearch.	In	general,	we	shouldn’t	give	more	than
50-60	percent	of	the	total	available	memory	to	the	JVM	process	running	Elasticsearch.	We
do	that	because	we	want	to	leave	memory	for	the	operating	system	and	for	the	operating
system	I/O	cache.	However,	we	need	to	remember	that	the	50-60	percent	figure	is	not
always	true.	You	can	imagine	having	nodes	with	256GB	of	RAM	and	having	indices	of
30GB	in	total	on	such	a	node.	In	such	circumstances,	even	assigning	more	than	60	percent
of	physical	RAM	to	Elasticsearch	would	leave	plenty	of	RAM	for	the	operating	system.	It
is	also	a	good	idea	to	set	the	Xmx	and	Xms	properties	to	the	same	values	to	avoid	JVM	heap
size	resizing.

Another	thing	to	remember	are	the	so	called	compressed	oops
(http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-
7.html#compressedOop),	the	ordinary	object	pointers.	Java	virtual	machine	can	be	told	to
use	them	by	adding	the	-XX:+UseCompressedOops	switch.	This	allows	Java	virtual
machine	to	use	less	memory	to	address	the	objects	on	the	heap.	However,	this	is	only	true
for	heap	sizes	less	than	or	equal	to	31GB.	Going	for	a	larger	heap	means	no	compressed
oops	and	higher	memory	usage	for	addressing	the	objects	on	the	heap.

www.EBooksWorld.ir

http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html#compressedOop

Field	data	cache	and	breaking	the	circuit
As	we	know,	by	default	the	field	data	cache	in	Elasticsearch	is	unbounded.	This	can	be
very	dangerous,	especially	when	you	are	using	aggregations	and	sorting	on	many	fields
that	are	analysed,	because	they	don’t	use	doc	values	by	default.	If	those	fields	are	high
cardinality	ones,	then	you	can	run	into	even	more	trouble.	By	trouble	we	mean	running	out
of	memory.

We	have	two	different	factors	we	can	tune	to	be	sure	that	we	don’t	run	into	out	of	memory
errors.	First	of	all,	we	can	limit	the	size	of	the	field	data	cache	and	we	should	do	that.	The
second	thing	is	the	circuit	breaker,	which	we	can	easily	configure	to	just	throw	exceptions
instead	of	loading	too	much	data.	Combining	these	two	things	together	will	ensure	that	we
don’t	run	into	memory	issues.

However,	we	should	also	remember	that	Elasticsearch	will	evict	data	from	the	field	data
cache	if	its	size	is	not	enough	to	handle	aggregation	requests	or	sorting.	This	will	affect
the	query	performance	because	loading	the	field	data	information	is	not	very	efficient	and
is	resource	intensive.	However,	in	our	opinion,	it	is	better	to	have	our	queries	slower	than
having	our	cluster	blown	up	because	of	out	of	memory	errors.

The	field	data	cache	and	caches	in	general	were	discussed	in	the	Elasticsearch	caches
section	of	Chapter	9,	Elasticsearch	Cluster	in	Detail.

www.EBooksWorld.ir

Use	doc	values
Whenever	you	plan	to	use	sorting,	aggregations,	or	scripting	heavily,	you	should	use	doc
values	whenever	you	can.	This	will	not	only	save	you	the	memory	needed	for	the	field
data	cache,	because	of	fewer	objects	produced,	it	will	also	make	the	Java	virtual	machine
work	better	with	lower	garbage	collector	time.	Doc	values	were	discussed	in	the	Mappings
Configuration	section	of	Chapter	2,	Indexing	Your	Data.

www.EBooksWorld.ir

RAM	buffer	for	indexing
In	the	Elasticsearch	caches	section	of	Chapter	9,	Elasticsearch	Cluster	in	Detail,	we	also
discussed.	There	are	a	few	things	we	would	like	to	mention.	First	of	all,	the	more	RAM
for	the	indexing	buffer,	the	more	documents	Elasticsearch	will	be	able	to	hold	in	memory.
So	the	more	memory	we	have	for	indexing,	the	less	often	the	flush	to	disk	will	happen	and
fewer	segments	will	be	created.	Because	of	that,	your	indexing	will	be	faster.	But	of
course,	we	don’t	want	Elasticsearch	to	occupy	100	percent	of	the	available	memory.	Keep
in	mind	that	the	RAM	buffers	are	set	per	shard,	so	the	amount	of	memory	that	will	be	used
depends	on	the	number	of	shards	and	replicas	that	are	assigned	on	the	given	node	and	on
the	number	of	documents	you	index.	You	should	set	the	upper	limits	so	your	node	doesn’t
blow	up	when	it	has	multiple	shards	assigned.

www.EBooksWorld.ir

Index	refresh	rate
Elasticsearch	uses	Lucene	and	we	know	it	by	now.	The	thing	with	Lucene	is	that	the	view
of	the	index	is	not	refreshed	when	new	data	is	indexed	or	segments	are	created.	To	see	the
newly	indexed	data,	we	need	to	refresh	the	index.	By	default,	Elasticsearch	does	that	once
every	second	and	the	period	of	refresh	is	controlled	by	using	the
index.refresh_interval	property,	specified	per	index.	The	lower	the	refresh	rate,	the
sooner	the	documents	will	be	visible	for	search	operations.	However,	that	also	means	that
Elasticsearch	will	need	to	put	more	resources	in	to	refreshing	the	index	view,	meaning	that
the	indexing	and	searching	operations	will	be	slower.	The	higher	the	refresh	rate,	the	more
time	you	will	have	to	wait	before	being	able	to	see	the	data	in	the	search	results,	but	your
indexing	and	querying	will	be	faster.

www.EBooksWorld.ir

Thread	pools
We	haven’t	talked	about	thread	pools	until	now,	but	we	would	like	to	mention	them	now.
Each	Elasticsearch	node	holds	several	thread	pools	that	control	the	execution	queues	for
operations	such	as	indexing	or	querying.	Elasticsearch	uses	several	pools	to	allow	control
over	how	the	threads	are	handled	and	much	the	memory	consumption	is	allowed	for	user
requests.

Note
Java	virtual	machine	allows	applications	to	use	multiple	threads	-	concurrently	running
multiple	application	tasks.	For	more	information	about	Java	threads,	refer	to
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html.

There	are	many	thread	pools	(we	can	specify	the	type	we	are	configuring	by	specifying	the
type	property).	However,	for	performance,	the	most	important	are:

generic:	This	is	the	thread	pool	for	generic	operations,	such	as	node	discovery.	By
default,	the	generic	thread	pool	is	of	type	cached.
index:	This	is	the	thread	pool	used	for	indexing	and	deleting	operations.	Its	type
defaults	to	fixed,	its	size	to	the	number	of	available	processors,	and	the	size	of	the
queue	to	200.
search:	This	is	the	thread	pool	used	for	search	and	count	requests.	Its	type	defaults	to
fixed	and	its	size	to	the	number	of	available	processors	multiplied	by	3	and	divided
by	2,	with	the	size	of	the	queue	defaulting	to	1000.
suggest:	This	is	the	thread	pool	used	for	suggest	requests.	Its	type	defaults	to	fixed,
its	size	to	the	number	of	available	processors,	and	the	size	of	the	queue	to	1000.
get:	This	is	the	thread	pool	used	for	real	time	get	requests.	Its	type	defaults	to	fixed,
its	size	to	the	number	of	available	processors,	and	the	size	of	the	queue	to	1000.
bulk:	As	you	can	guess,	this	is	the	thread	pool	used	for	bulk	operations.	Its	type
defaults	to	fixed,	its	size	to	the	number	of	available	processors,	and	the	size	of	the
queue	to	50.
percolate:	This	is	the	thread	pool	for	percolation	requests.	Its	type	defaults	to	fixed,
its	size	to	the	number	of	available	processors,	and	the	size	of	the	queue	to	1000.

Note
Before	Elasticsearch	2.1,	we	could	control	the	type	of	the	thread	pool.	Starting	with
Elasticsearch	2.1	we	can	no	longer	do	that.	For	more	information	please	refer	to	the
official	documentation	-
https://www.elastic.co/guide/en/elasticsearch/reference/2.1/breaking_21_removed_features.html

For	example,	if	we	want	to	configure	the	thread	pool	for	indexing	operations	to	have	a	size
of	100	and	a	queue	of	500,	we	will	set	the	following	in	the	elasticsearch.yml
configuration	file:

threadpool.index.size:	100

threadpool.index.queue_size:	500

www.EBooksWorld.ir

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.1/breaking_21_removed_features.html

Also	remember	that	the	thread	pool	configuration	can	be	updated	using	the	cluster	update
API.	For	example,	like	this:

curl	-XPUT	'localhost:9200/_cluster/settings'	-d	'{

	"transient"	:	{

		"threadpool.index.size"	:	100,

		"threadpool.index.queue_size"	:	500

	}

}'

In	general,	you	don’t	need	to	work	with	the	thread	pools	and	their	configuration.	However,
when	configuring	your	cluster,	you	may	want	to	put	more	emphasis	on	indexing	or
querying	and,	in	such	cases,	giving	more	threads	or	larger	queues	to	the	prioritized
operation	may	result	in	more	resources	being	used	for	such	operations.

www.EBooksWorld.ir

www.EBooksWorld.ir

Horizontal	expansion
Elasticsearch	is	a	highly	scalable	search	and	analytics	platform.	We	can	scale	it	both
horizontally	and	vertically.	We	discussed	how	to	tune	a	single	node	in	the	Preparing	a
single	Elasticsearch	node	section	earlier	in	this	chapter	and	we	would	like	to	focus	on
horizontal	scaling	now;	how	to	handle	multiple	nodes	in	the	same	cluster,	what	roles
should	they	have,	and	how	to	tune	the	configuration	to	have	a	highly	reliable,	available,
and	fault	tolerant	cluster.

You	can	imagine	vertical	scaling	like	building	a	sky	scrapper	–	we	have	limited	space
available	and	we	need	to	go	as	high	as	we	can.	Of	course,	that	is	expensive	and	requires	a
lot	of	engineering	done	right.	On	the	other	hand,	we	have	horizontal	scaling,	which	is	like
having	many	houses	in	a	residential	area.	Instead	of	investing	into	hardware	and	having
powerful	machines,	we	choose	to	have	multiple	machines	and	our	data	split	between	them.
Horizontal	scaling	gives	us	virtually	unlimited	scaling	possibilities.	Even	with	the	most
powerful	hardware,	the	time	comes	when	a	single	machine	is	not	enough	to	handle	the
data,	the	queries,	or	both	of	them.	In	such	cases,	spreading	the	data	among	multiple
servers	is	what	saves	us	and	allows	us	to	have	terabytes	of	data	in	multiple	indices	spread
across	the	whole	cluster,	just	like	the	one	in	the	following	image:

We	have	our	4	nodes	cluster	with	the	library	index	created	and	built	of	four	shards.

If	we	want	to	increase	the	querying	capabilities	of	our	cluster,	we	can	just	add	additional
nodes,	for	example,	four	of	them.	After	adding	new	nodes	to	the	cluster,	we	can	either
create	new	indices	that	will	be	built	of	more	shards	to	spread	the	load	more	evenly	or	add
replicas	to	the	already	existing	shards.	Both	options	are	viable.	This	is	because	we	don’t
have	the	possibility	of	splitting	shards	or	adding	more	primary	shards	to	an	existing	index.
We	should	go	for	having	more	primary	shards	when	our	hardware	is	not	enough	to	handle
the	amount	of	data	it	holds.	In	such	cases,	we	usually	run	into	out	of	memory	situations,
long	shard	query	execution	time,	swapping,	or	high	I/O	waits.	The	second	option,	that	is
having	replicas,	is	the	way	to	go	when	our	hardware	is	happily	handling	the	data	we	have
but	the	traffic	is	so	high	that	the	nodes	just	can’t	keep	up.

www.EBooksWorld.ir

The	first	option	is	simple,	but	let’s	looks	at	the	second	case	-	having	more	replicas.	So
with	four	additional	nodes,	our	cluster	would	look	as	follows:

Now,	let’s	run	the	following	command	to	add	a	single	replica:

curl	-XPUT	'localhost:9200/library/_settings'	-d	'{

	"index"	:	{

		"number_of_replicas"	:	1

	}

}'

Our	cluster	view	would	look	more	or	less	as	follows:

As	you	can	see,	each	of	the	initial	shards	building	the	library	index	has	a	single	replica
stored	on	another	node.	The	nice	thing	about	shards	and	their	replicas	is	that	Elasticsearch
is	smart	enough	to	balance	the	shards	in	a	single	index	and	put	them	on	separate	nodes.
For	example,	you	won’t	ever	end	up	in	a	situation	where	you	have	a	shard	and	its	replicas
on	the	same	node.	Also,	Elasticsearch	is	able	to	round	robin	the	queries	between	the
shards	and	their	replicas,	which	means	that	all	the	nodes	will	be	hit	by	the	queries	and	we
don’t	have	to	care	about	that.	Because	of	that,	we	are	able	to	handle	almost	double	the
query	load	compared	to	our	initial	deployment.

www.EBooksWorld.ir

Automatically	creating	the	replicas
Let’s	stay	a	bit	longer	around	replicas.	Elasticsearch	allows	us	to	automatically	expand
replicas	when	the	cluster	is	big	enough.	This	means	that	the	replicas	can	be	created
automatically	when	new	nodes	are	added	to	the	cluster.	You	can	wonder	where	such
functionality	can	be	useful.	Imagine	a	situation	where	you	have	a	small	index	that	you
would	like	to	be	present	on	every	node	so	that	your	plugins	don’t	have	to	run	distributed
queries	just	to	get	the	data	from	it.	In	addition	to	that,	your	cluster	is	dynamically
changing,	that	is	you	add	and	remove	nodes	from	it.	The	simplest	way	to	achieve	such
functionality	is	to	allow	Elasticsearch	to	automatically	expand	the	replicas.	To	do	that,	we
need	to	set	index.auto_expand_replicas	to	0-all,	which	means	that	the	index	can	have
0	replicas	or	be	present	on	all	the	nodes.	So	if	our	small	index	is	called	shops	and	we
would	like	Elasticsearch	to	automatically	expand	its	replicas	to	all	the	nodes	in	the	cluster,
we	would	use	the	following	command	to	create	the	index:

curl	-XPOST	'localhost:9200/shops/'	-d	'{

	"settings"	:	{

		"index"	:	{

			"auto_expand_replicas"	:	"0-all"

		}

	}

}'

We	can	also	update	the	settings	of	that	index	if	it	is	already	created	by	running	the
following	command:

curl	-XPUT	'localhost:9200/shops/_settings'	-d	'{

	"index"	:	{

		"auto_expand_replicas"	:	"0-all"

	}

}'

www.EBooksWorld.ir

Redundancy	and	high	availability
The	Elasticsearch	replication	mechanism	not	only	gives	us	ability	to	handle	higher	query
throughput,	but	also	gives	us	redundancy	and	high	availability.	Imagine	an	Elasticsearch
cluster	hosting	a	single	index	called	library	that	is	built	of	2	shards	and	0	replicas.	Such	a
cluster	would	look	as	follows:

Now	what	happens	when	one	of	the	nodes	fail?	The	simplest	answer	is	that	we	lose	about
50	percent	of	the	data	and,	if	the	failure	is	fatal,	we	lose	that	data	forever.	Even	when
having	backups,	we	would	need	to	spin	up	another	node	and	restore	the	backup	and	that
takes	time.	During	that	time,	your	application,	or	parts	of	it	that	are	based	on
Elasticsearch,	can’t	work	correctly.	If	your	business	relies	on	Elasticsearch,	downtime
means	money	loss.	Of	course,	we	can	use	replicas	to	create	more	reliable	clusters	that	can
handle	the	hardware	and	software	failures.	And	one	thing	to	remember	is	that	everything
will	fail	eventually	–	if	the	software	won’t,	hardware	will.	For	example,	some	time	ago
Google	said	that	in	each	of	their	clusters,	during	the	first	year	at	least	1000	machines	will
fail	(you	can	read	more	on	that	topic	at	http://www.cnet.com/news/google-spotlights-data-
center-inner-workings/).	Because	of	that,	we	need	to	be	ready	to	handle	such	cases.

Let’s	look	at	the	same	cluster	but	with	one	replica:

Now	losing	a	single	Elasticsearch	node	means	that	we	still	have	the	whole	data	available
and	we	can	work	on	restoring	the	full	cluster	structure	without	downtime.	Of	course,	this
is	only	a	very	small	cluster	built	of	two	Elasticsearch	nodes	clusters.	The	larger	the	cluster,
the	more	replicas,	the	more	failure	you	will	be	able	to	handle	without	worrying	about	the
data	loss.	Of	course	you	will	have	lower	performance,	depending	on	the	percentage	of
nodes	that	fail,	but	the	data	will	still	be	there	and	the	cluster	will	be	operational.

That’s	why,	when	designing	your	architecture	and	deciding	on	the	number	of	nodes	and
indices	and	their	architecture,	you	should	take	into	consideration	how	many	nodes,	failure

www.EBooksWorld.ir

http://www.cnet.com/news/google-spotlights-data-center-inner-workings/

you	want	to	live	with.	Of	course,	you	can’t	forget	about	the	performance	part	of	the
equation,	but	redundancy	and	high	availability	should	be	one	of	the	factors	of	the	scaling
equation.

www.EBooksWorld.ir

Cost	and	performance	flexibility
The	default	distributed	nature	of	Elasticsearch	and	its	ability	to	scale	horizontally	allows
us	to	be	flexible	when	it	comes	to	performance	and	costs	that	we	have	when	running	our
environment.	First	of	all,	high	end	servers	with	high	performance	disks,	numerous	CPU
cores,	and	a	lot	of	RAM	are	still	expensive.	In	addition	to	that,	cloud	computing	is	getting
more	and	more	popular	and	if	you	need	a	lot	of	flexibility	and	don’t	want	to	have	your
own	hardware,	you	can	choose	solutions	such	as	Amazon	(http://aws.amazon.com/),
Rackspace	(http://www.rackspace.com/),	DigitalOcean	(https://www.digitalocean.com/),
and	so	on.	They	do	not	only	allow	us	to	run	our	software	on	rented	machines,	but	also
allow	us	to	scale	on	demand.	We	just	need	to	add	more	machines	which	is	a	few	clicks
away	or	can	even	be	automated	with	some	degree	of	work.

Using	a	hosted	solution	with	one	click	machine	renting	allows	having	a	truly	horizontally
scalable	solution.	Of	course,	that’s	not	cheap	–	you	pay	for	the	flexibility.	But	we	can
easily	sacrifice	performance	if	costs	are	the	most	crucial	factor	in	our	business	plan.	Of
course,	we	can	also	go	the	other	way.	If	we	can	afford	large	bare	metal	machines,
Elasticsearch	clusters	can	be	pushed	to	hundreds	of	terabytes	of	data	stored	in	the	indices
and	still	get	decent	performance	(of	course	with	a	proper	hardware	and	property
distributed).

www.EBooksWorld.ir

http://aws.amazon.com/
http://www.rackspace.com/
https://www.digitalocean.com/

Continuous	upgrades
High	availability,	cost	and	performance	flexibility,	and	virtually	endless	growth	are	not	the
only	things	worth	talking	about	when	discussing	the	scalability	side	of	Elasticsearch.	At
some	point	in	time,	you	will	want	to	have	your	Elasticsearch	cluster	upgraded	to	a	new
version.	It	can	be	because	of	bug	fixes,	performance	improvements,	new	features,	or
anything	that	you	can	think	of.	The	thing	is	that	when	you	have	a	single	instance	of	each
shard,	without	replicas,	an	upgrade	means	unavailability	of	Elasticsearch	(or	at	least	its
parts)	and	that	may	mean	downtime	of	the	applications	that	use	Elasticsearch.	This	is
another	reason	why	horizontal	scaling	is	so	important;	you	can	perform	upgrades,	at	least
to	the	point	where	software	such	as	Elasticsearch	supports.	For	example,	you	can	take
Elasticsearch	2.0	and	upgrade	to	Elasticsearch	2.1	with	only	rolling	restarts	(getting	one
node	out	of	the	cluster,	upgrading	it,	bringing	it	back,	and	continuing	with	the	next	node
until	all	the	nodes	are	done),	thus	having	all	the	data	still	available	for	searching	and
indexing	happening	at	the	same	time.

www.EBooksWorld.ir

Multiple	Elasticsearch	instances	on	a	single
physical	machine
Having	a	large	physical	machine	with	lot	of	memory	and	CPU	cores	has	advantages	and
some	challenges.	First	of	all,	if	you	decide	to	run	a	single	Elasticsearch	node	on	that
machine,	you	will	sooner	or	later	run	into	garbage	collection	issues,	you	will	have	lots	of
shards	on	a	single	node	which	will	require	a	high	number	of	I/O	operations	for	the	internal
Elasticsearch	communication	(retrieving	cluster	statistics),	and	so	so.	What’s	more,	you
usually	shouldn’t	go	above	31GB	of	heap	memory	for	a	single	JVM	process	because	you
can’t	use	compressed	ordinary	object	pointers
(https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-
7.html).

In	such	cases,	you	can	either	run	multiple	Elasticsearch	instances	on	the	same	bare	metal
machine,	run	multiple	virtual	machines	and	a	single	Elasticsearch	inside	each	one,	or	run
Elasticsearch	in	a	container,	such	as	Docker	(http://www.docker.com/).	This	is	out	of	the
scope	of	the	book,	but,	because	we	are	talking	about	scaling,	we	thought	it	may	be	a	good
thing	to	mention	what	can	be	done	in	such	cases.

Note
There	is	also	the	possibility	of	running	multiple	Elasticsearch	servers	on	a	single	physical
machine	without	running	multiple	virtual	machines.	Which	road	to	take	-	virtual	machines
or	multiple	instances	-	is	really	your	choice.	However,	we	like	to	keep	things	separate	and
because	of	that	we	usually	go	for	dividing	any	large	server	into	multiple	virtual	machines.
When	dividing	one	large	server	into	multiple	smaller	virtual	machines,	remember	that	the
I/O	subsystem	will	be	shared	across	those	smaller	virtual	machines.	Because	of	that,	it
may	be	good	to	wisely	divide	the	disks	between	the	virtual	machines.

Preventing	a	shard	and	its	replicas	from	being	on	the	same	node
There	is	one	additional	thing	worth	mentioning.	When	you	have	multiple	physical	servers
divided	into	virtual	machines,	it	is	crucial	to	ensure	that	the	shard	and	its	replica	don’t	end
up	on	the	same	physical	machine.	By	default,	Elasticsearch	is	smart	enough	to	not	put	the
shard	and	its	replica	on	the	same	Elasticsearch	instance,	but	it	doesn’t	know	anything
about	bare	metal	machines,	so	we	need	to	tell	it.	We	can	tell	Elasticsearch	to	separate	the
shards	and	replicas	by	using	cluster	allocation	awareness.	In	our	previous	case,	we	had
three	physical	servers.	Let’s	call	them:	server1,	server2,	and	server3.

Now	for	each	Elasticsearch	on	a	physical	server,	we	define	the	node.server_name
property	and	we	set	it	to	the	identifier	of	the	server	(the	name	of	the	property	can	be
anything	we	want).	So	for	example,	for	all	Elasticsearch	nodes	on	the	first	physical	server,
we	would	set	the	following	property	in	the	elasticsearch.yml	configuration	file:

node.server_name:	server1

In	addition	to	that,	each	Elasticsearch	node	(no	matter	on	which	physical	server)	needs	to
have	the	following	property	added	to	the	elasticsearch.yml	configuration	file:

www.EBooksWorld.ir

https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
http://www.docker.com/

cluster.routing.allocation.awareness.attributes:	server_name

It	tells	Elasticsearch	not	to	put	the	primary	shard	and	its	replicas	on	the	nodes	with	the
same	value	in	the	node.server_name	property.	This	is	enough	for	us	and	Elasticsearch
will	take	care	of	the	rest.

www.EBooksWorld.ir

Designated	node	roles	for	larger	clusters
There	is	one	more	thing	that	we	want	to	discuss	and	emphasise.	When	it	comes	to	large
clusters,	it	is	important	to	assign	roles	to	all	the	nodes	in	the	cluster.	This	allows	for	a	truly
fully	fault	tolerant	and	highly	available	Elasticsearch	cluster.	The	roles	we	can	assign	to
each	Elasticsearch	node	are	as	follows:

Master	eligible	node
Data	node
Query	aggregator	node

By	default,	each	Elasticsearch	node	is	both	master	eligible	(it	can	serve	as	a	master	node),
can	hold	data,	and	work	as	a	query	aggregator	node.	You	may	wonder	why	that	is	needed.
Let	us	give	you	a	simple	example:	if	the	master	node	is	under	a	lot	of	stress,	it	may	not	be
able	to	handle	the	cluster	state	related	command	fast	enough	and	the	cluster	could	become
unstable.	This	is	only	a	single,	simple	example	and	you	can	think	of	numerous	others.

Because	of	that,	most	Elasticsearch	clusters	that	are	larger	than	a	few	nodes,	usually	look
like	the	one	presented	in	the	following	picture:

As	you	can	see,	our	hypothetical	cluster	contains	three	client	nodes	(because	we	know	that
there	will	be	a	lot	of	queries),	a	large	number	of	data	nodes	because	the	amount	of	data
will	be	large,	and	at	least	three	master	eligible	nodes	that	shouldn’t	be	doing	anything	else.
Why	three	master	nodes	when	Elasticsearch	will	only	use	a	single	one	at	any	given	time?
Again,	because	of	redundancy	and	to	be	able	to	prevent	split	brain	situations	by	setting
discovery.zen.minimum_master_nodes	to	2,	which	would	allow	us	to	easily	handle	the
failure	of	a	single	master	eligible	node	in	the	cluster.

Let	us	now	give	you	snippets	of	the	configuration	for	each	type	of	node	in	our	cluster.	We
already	talked	about	that	in	the	Understanding	node	discovery	section	in	Chapter	9,
Elasticsearch	Cluster	in	Detail,	but	we	would	like	to	mention	that	once	again.

www.EBooksWorld.ir

Query	aggregator	nodes
The	query	aggregator	nodes	configuration	is	quite	simple.	To	configure	those,	we	just
need	to	tell	Elasticsearch	that	we	don’t	want	those	nodes	to	be	master	eligible	or	to	hold
data.	This	corresponds	to	the	following	configuration	snippets	in	the	elasticsearch.yml
file:

node.master:	false

node.data:	false

Data	nodes
Data	nodes	are	also	very	simple	to	configure.	We	just	need	to	tell	that	they	should	not	be
master	eligible.	However,	we	are	not	big	fans	of	default	configurations	(because	they	tend
to	change)	and	thus	our	Elasticsearch	data	nodes	configuration	looks	as	follows:

node.master:	false

node.data:	true

Master	eligible	nodes
We’ve	left	the	master	eligible	nodes	to	the	end	of	the	general	scaling	section.	Of	course,
such	Elasticsearch	nodes	shouldn’t	be	allowed	to	hold	data,	but,	in	addition	to	that,	it	is	a
good	practice	to	disable	HTTP	protocol	on	such	nodes.	This	is	done	to	avoid	accidentally
querying	those	nodes.	Master	eligible	nodes	can	use	less	resources	than	data	and	query
aggregator	nodes	and	because	of	that	we	should	ensure	that	they	are	only	used	for	master
related	purpose.	So	our	configuration	for	master	eligible	nodes	looks	more	or	less	as
follows:

node.master:	true

node.data:	false

http.enabled:	false

www.EBooksWorld.ir

www.EBooksWorld.ir

Preparing	the	cluster	for	high	indexing
and	querying	throughput
Until	this	chapter,	we	mostly	talked	about	different	functionalities	of	Elasticsearch,	both	in
terms	of	handling	queries,	indexing	data,	and	tuning.	However,	running	a	cluster	in
production	is	not	only	about	using	this	great	search	engine,	but	also	about	preparing	the
cluster	to	handle	both	the	indexing	and	querying	load.	Let’s	now	summarize	the
knowledge	we	have	and	see	what	are	the	things	we	need	to	care	about	when	it	comes	to
preparing	the	cluster	for	high	indexing	and	querying	throughput.

www.EBooksWorld.ir

Indexing	related	advice
In	this	section,	we	will	look	at	the	indexing	related	advice	around	tuning	Elasticsearch.
Each	production	environment	data	is	different,	index	rate	is	different,	and	user’s	behavior
is	different.	Take	that	into	consideration	and	run	performance	tests	on	your	environment.
This	will	give	you	the	best	idea	about	what	to	expect	and	what	works	the	best	in	the	case
of	your	system.

Index	refresh	rate
One	of	the	general	things	you	should	pay	attention	to	is	the	index	refresh	rate.	We	know
that	refresh	rate	specifies	how	fast	the	documents	will	be	visible	for	search	operations.	The
equation	is	quite	simple	-	the	faster	the	refresh	rate,	the	slower	the	queries	will	be	and	the
lower	the	indexing	throughput.	If	we	can	allow	ourselves	to	have	a	slower	refresh	rate,
such	as	10s	or	30s,	go	for	it.	It	will	put	less	pressure	on	Elasticsearch,	Lucene,	and
hardware	in	general.	Remember	that	by	default	the	refresh	rate	is	set	to	1s,	which	basically
means	that	the	index	searcher	object	is	reopened	every	second.

To	give	you	a	bit	of	insight	into	what	performance	gains	we	are	talking	about,	we	did
some	performance	tests	including	Elasticsearch	and	different	refresh	rates.	With	the
refresh	rate	of	1s	we	were	able	to	index	about	1000	documents	per	second	using	a	single
Elasticsearch	node.	Increasing	the	refresh	rate	to	5s	gave	us	increase	in	indexing
throughput	of	more	than	25	percent	and	we	wereable	to	index	about	1250	documents	per
second.	Setting	the	refresh	rate	to	25s	gave	us	about	70	percent	of	more	throughput	as
compared	to	1s	refresh	rate,	which	was	about	1700	documents	per	second	on	the	same
infrastructure.	It	is	also	worth	remembering	that	increasing	the	time	indefinitely	doesn’t
make	much	sense,	because	after	a	certain	point	(depending	on	your	data	load	and	the
amount	of	data	you	have)	the	increase	of	performance	is	negligible.

Some	performance	comparisons	related	to	indexing	throughput	and	index	refresh	rate	can
be	found	in	the	blog	post	at	http://blog.sematext.com/2013/07/08/elasticsearch-refresh-
interval-vs-indexing-performance/.

Thread	pools	tuning
By	default,	Elasticsearch	comes	with	very	good	defaults	when	it	comes	to	all	thread	pools
configuration.	You	should	remember	that	tuning	the	default	thread	pools	configuration
should	be	done	only	when	you	really	see	that	your	nodes	are	filling	up	the	queues	and	they
have	still	processing	power	left	that	could	be	designated	to	the	processing	of	the	waiting
operations	or	when	you	want	to	increase	the	priority	of	one	or	more	operations.

For	example,	if	you	did	your	performance	tests	and	you	saw	your	Elasticsearch	instances
not	being	saturated	100	percent,	but	on	the	other	hand	you	experienced	a	rejected
execution	error,	then	that	is	a	point	when	you	should	start	adjusting	the	thread	pools.	You
can	either	increase	the	amount	of	threads	that	are	allowed	to	be	executed	at	the	same	time
or	increase	the	queue.	Of	course,	you	should	also	remember	that	increasing	the	number	of
concurrently	running	threads	to	very	high	numbers	will	lead	to	many	CPU	context
switches	(http://en.wikipedia.org/wiki/Context_switch)	which	will	result	in	a	performance

www.EBooksWorld.ir

http://blog.sematext.com/2013/07/08/elasticsearch-refresh-interval-vs-indexing-performance/
http://en.wikipedia.org/wiki/Context_switch

drop.

Automatic	store	throttling
Before	Elasticsearch	2.0,	we	had	to	care	about	how	our	segment	process	was	configured
and	how	much	disk	I/O	merging	could	use	in	general,	but	that	changed.	Right	now
Elasticsearch	looks	at	how	I/O	subsystem	behaves	and	adjusts	the	throttling	and	merging
process	if	the	merges	are	falling	behind	the	indexing.	So,	we	no	longer	need	to
automatically	adjust	throttling	for	disk	based	operations.	You	can	read	more	about	the
related	changes	on	GitHub	at	https://github.com/elastic/elasticsearch/pull/9243.

Handling	time-based	data
When	you	have	time-based	data,	such	as	logs	for	example,	the	architecture	of	your	indices
plays	a	very	important	role.	Let’s	assume	that	we	have	logs	indexed	into	Elasticsearch.
These	usually	come	in	large	numbers,	are	constantly	indexed,	and	are	time	related	(an
event	that	is	logged	happened	at	a	certain	point	in	time).	The	assumption	is	that	you	have	a
certain	retention	to	your	data	and	a	time	that	you	would	like	the	data	to	be	present	and
searchable	in	Elasticsearch.	After	that	time,	you	just	delete	the	data	and	forget	about	it.

With	such	assumptions	in	mind,	you	could	just	create	a	single	index	with	lot	of	shards	and
try	to	index	large	amounts	of	logs	there.	However,	that’s	not	the	perfect	solution.	First	of
all,	because	of	merges	–	the	larger	the	index	gets,	the	more	expensive	the	merges	are.
Elasticsearch	needs	to	merge	larger	and	larger	segments	and	more	I/O	and	CPU	is	required
to	handle	them.	This	means	slowdowns.	In	addition	to	that,	deletes	will	be	expensive
because	you	will	have	to	delete	the	data	either	by	using	TTL	or	by	using	delete	by	query
plugin	–	both	expensive	to	use	in	terms	of	performance	and	will	cause	even	more	merging.
And	this	is	not	everything	–	during	querying	you	will	have	to	run	through	the	whole	index
to	get	even	the	smallest	slice	of	the	data.	So,	are	there	better	index	architectures	for	time-
based	data?

Yes,	one	of	the	most	common	and	best	solutions	is	to	use	time	based	indices.	Depending
on	the	data	volume,	you	can	have	daily,	weekly,	monthly,	or	even	hourly	indices.	The
downside	is	the	number	of	shards	you	will	have	when	the	number	of	indices	grow,	but
apart	from	that	there	are	only	pros:	you	can	control	each	index,	change	the	number	of
shards	if	that	is	needed,	and	have	faster	merging	because	the	indices	will	be	smaller
compared	to	only	one	big	index.	What’s	more,	deleting	data	won’t	be	painful	at	all	–	the
idea	is	to	delete	the	whole	indices;	for	example,	a	day	worth	of	data	in	case	of	daily
indices.	Queries	will	also	benefit	–	you	can	just	run	the	query	on	a	single	time	based	index
to	narrow	down	the	search	results.	Finally,	Elasticsearch,	by	default,	will	create	the	indices
for	us.	For	example,	when	using	daily	indices,	we	can	have	names	such	as	logs_2016-01-
01,	logs_2016-01-02,	and	so	on.

The	only	thing	we	need	to	care	about	is	providing	the	index	name	on	the	basis	of	the	date
and	creating	templates	to	configure	each	newly	created	index	and	Elasticsearch	will	do	the
rest.

Multiple	data	paths

www.EBooksWorld.ir

https://github.com/elastic/elasticsearch/pull/9243

With	the	release	of	Elasticsearch	2.0,	we	were	given	the	ability	to	specify	multiple
path.data	properties	in	our	elasticsearch.yml	pointing	to	different	directories	on
different	physical	devices.	Elasticsearch	can	now	leverage	that	by	putting	different	shards
on	different	devices	and	using	the	multiple	paths	in	the	most	efficient	way.	Because	of
that,	we	can	parallelize	writing	to	disks	if	we	have	more	than	a	single	disk.	This	is
especially	useful	for	high	indexing	use	cases	where	you	index	a	lot	of	data.

Data	distribution
As	we	know,	each	index	in	the	Elasticsearch	world	can	be	divided	into	multiple	shards	and
each	shard	can	have	multiple	replicas.	In	cases	when	you	have	multiple	Elasticsearch
nodes	(and	you	will	probably	have	in	production),	you	should	think	about	the	number	of
shards	and	replicas	and	how	that	will	affect	your	nodes.	Data	distribution	may	be	crucial
to	even	the	load	on	the	cluster	and	not	have	some	nodes	doing	more	work	than	the	other
ones.

Let’s	take	the	following	example.	Imagine	we	have	a	cluster	that	is	built	of	4	nodes	and	it
has	a	single	index	called	book	built	of	3	shards	and	one	replica.	Such	a	deployment	will
look	as	follows:

As	you	can	see,	the	first	two	nodes	have	two	physical	shards	allocated	to	them,	while	the
last	two	nodes	have	only	one	shard	allocated	each.	The	actual	data	allocation	is	not	even.
When	sending	the	queries	and	indexing	data,	we	will	have	the	first	two	nodes	do	more
work	than	the	other	two	-	this	is	what	we	want	to	avoid.	One	option	is	to	have	the	book
index	have	two	shards	and	one	replica,	so	it	looks	as	follows:

www.EBooksWorld.ir

This	architecture	will	work	and	it	is	perfectly	fine.	We	don’t	have	to	have	primary	shards
on	all	our	nodes,	we	can	have	replicas,	depending	on	what	bottle	neck	we	expect.	For
querying	we	may	want	to	have	more	replicas,	for	indexing	more	primaries.

We	can	also	have	our	primary	shards	split	evenly,	like	in	the	following	image:

The	thing	to	remember	though	is	that	in	both	cases	we	will	end	up	with	even	distribution
of	shards	and	replicas	and	Elasticsearch	will	do	similar	amount	of	work	on	all	the	nodes.
Of	course,	with	more	indices	(like	having	daily	indices)	it	may	be	trickier	to	get	the	data
evenly	distributed	and	it	may	not	be	possible	to	have	evenly	distributed	shards,	but	we
should	try	to	get	to	such	point.

One	more	thing	to	remember	when	it	comes	to	data	distribution	and	shards	and	replicas	is
that	when	designing	your	index	architecture,	you	should	remember	what	you	want	to
achieve.	If	you	are	going	for	a	very	high	indexing	use	case,	you	may	want	to	spread	the
index	into	multiple	shards	to	lower	the	pressure	that	is	put	on	the	CPU	and	the	I/O
subsystem	of	the	server.	This	is	also	true	for	running	expensive	queries,	because	with
more	shards	you	can	lower	the	load	on	a	single	server.	However,	with	the	queries	there	is

www.EBooksWorld.ir

one	more	thing	-	if	your	nodes	can’t	keep	up	with	the	load	caused	by	queries,	you	can	add
more	Elasticsearch	nodes	and	increase	the	number	of	replicas	so	that	the	physical	copies
of	the	primary	shards	are	placed	on	those	nodes.	That	will	make	indexing	a	bit	slower	but
will	give	you	the	capacity	to	handle	more	queries	at	the	same	time.

Bulk	indexing
This	is	very	obvious	advice,	but	you	would	be	surprised	how	many	Elasticsearch	users
forget	about	indexing	data	in	bulks	instead	of	sending	the	documents	one	by	one.	So	the
advice	here	is	to	do	bulks	instead	of	one	by	one	indexing	whenever	possible.	The	thing	to
remember	though	is	not	to	overload	Elasticsearch	with	too	many	bulk	requests	and	to	keep
them	under	a	reasonable	size	(do	not	push	millions	of	documents	in	a	single	request).
Remember	about	the	bulk	thread	pool	and	its	size	and	try	to	adjust	your	indexers	not	to	go
beyond	it	or	you	will	first	start	to	queue	these	requests	and,	if	Elasticsearch	will	not	be
able	to	process	them,	you	will	quickly	start	seeing	rejected	execution	exceptions	and	your
data	won’t	be	indexed.

Just	as	an	example,	we	would	like	to	show	results	of	tests	we	did	some	time	ago	for	the
two	types	of	indexing:	one	by	one	and	bulks.	In	the	following	image,	we	have	the
indexing	throughput	when	running	indexation	one	document	by	one:

In	this	next	image,	we	do	the	same,	but	instead	of	indexing	documents	one	by	one,	we
index	them	in	batches	of	10	documents	(which	is	still	a	relatively	low	number	of
documents	in	a	bulk):

www.EBooksWorld.ir

As	you	can	see,	when	indexing	documents	one	by	one,	we	were	able	to	index	about	30
documents	per	second	and	it	was	stable.	The	situation	changed	with	bulk	indexing	and
batches	of	10	documents;	we	were	able	to	index	slightly	more	than	200	documents	per
second.	So	the	difference	can	be	clearly	seen.

Of	course	this	is	a	very	basic	comparison	of	indexing	speed.	To	show	the	real	difference,
we	should	use	dozens	of	threads	and	push	Elasticsearch	to	its	limits.	However,	the
preceding	comparison	should	give	you	a	basic	view	of	the	indexing	throughput	gains
when	using	bulk	indexing.

RAM	buffer	for	indexing
Remember,	the	more	available	RAM	for	the	indexing	buffer	(the
indices.memory.index_buffer_size	property),	the	more	documents	Elasticsearch	can
hold	in	memory.	However,	we	don’t	want	to	have	Elasticsearch	occupy	100	percent	of	the
available	memory.	The	indexing	buffer	can	help	us	with	delaying	the	flush	to	disk,	which
will	mean	less	I/O	pressure	and	less	merges.	You	can	read	more	about	indexing	buffer
configuration	in	Chapter	9,	Elasticsearch	Cluster	in	Detail.

www.EBooksWorld.ir

Advice	for	high	query	rate	scenarios
One	of	the	great	features	of	Elasticsearch	is	its	ability	to	search	and	analyze	the	data	that
was	indexed.	However,	sometimes	it	is	necessary	to	adjust	Elasticsearch	and	our	queries
to	not	only	get	the	results	of	the	query,	but	also	get	them	fast	(or	in	a	reasonable	amount	of
time).	In	this	section,	we	will	look	at	the	possibilities	of	preparing	Elasticsearch	for	high
query	throughput	use	cases,	but	not	just	that.	We	will	also	look	at	general	performance	tips
when	it	comes	to	querying.

Shard	request	cache
The	purpose	of	the	shard	request	cache	is	to	cache	aggregations,	suggester	results,	and
numbers	of	hits	(it	will	not	cache	the	returned	documents	and	thus	only	works	with
size=0).	When	your	queries	use	aggregations	or	suggestions,	it	may	be	a	good	idea	to
enable	this	cache	(it	is	disabled	by	default)	so	that	Elasticsearch	can	re-use	the	data	stored
there.	The	best	thing	about	the	cache	is	that	it	promises	the	same	near	real-time	search	as	a
search	that	is	not	cached.	You	can	read	more	about	caches	and	the	shard	request	cache	in
particular	in	Chapter	9,	Elasticsearch	Cluster	in	Detail.

Think	about	the	queries
This	is	the	most	general	advice	we	can	actually	give	–	you	should	always	think	about
optimal	query	structure,	filter	usage,	and	so	on.	For	example,	let’s	look	at	the	following
query:

{

	"query"	:	{

		"bool"	:	{

			"must"	:	[

				{

					"query_string"	:	{

						"query"	:	"mastering	AND	department:it	AND	category:book",

						"default_field"	:	"name"

					}

				},

				{

					"term"	:	{

						"tag"	:	"popular"

					}

				},

				{

					"term"	:	{

						"tag"	:	"2014"

					}

				}

]

		}

	}

}

It	returns	the	book	matching	a	few	conditions.	However,	there	are	a	few	things	we	can
improve	in	the	preceding	query.	For	example,	we	can	move	the	static	things	such	as	the

www.EBooksWorld.ir

tag,	department,	and	category	field	related	conditions	to	the	filter	section	of	the
Boolean	query,	so	that	the	next	time	we	use	some	parts	of	the	query	we	save	CPU	cycles
and	re-use	the	information	stored	in	cache.	That	static	filtering	information	is	also	not
relevant	when	it	comes	to	scoring.	Because	of	that	we	can	move	those	static	elements	to
the	filter	section	and	omit	scoring	calculation	for	them.	For	example,	this	is	how	the
optimized	query	will	look	like:

{

	"query"	:	{

		"bool"	:	{

			"must"	:	[

				{

					"query_string"	:	{

						"query"	:	"mastering",

						"default_field"	:	"name"

					}

				}

],

			"filter"	:	[

				{

					"term"	:	{

						"tag"	:	"popular"

					}

				},

				{

					"term"	:	{

						"tag"	:	"2014"

					}

				},

				{

					"term"	:	{

						"department"	:	"it"

					}

				},

				{

					"term"	:	{

						"category"	:	"book"

					}

				}

]

		}

	}

}

As	you	can	see,	there	are	a	few	things	that	we	did.	We	still	used	the	bool	query,	but	we
introduced	the	use	of	the	filter	section.	We	used	filtering	for	the	static,	non-analyzed
fields.	This	allows	us	to	easily	re-use	the	filters	in	the	next	queries	that	we	execute.
Because	of	such	query	restructuring,	we	were	able	to	simplify	the	main	query.	This	is
exactly	what	you	should	be	doing	when	optimizing	your	queries	or	designing	them	-	have
optimization	and	performance	in	mind	and	try	to	keep	them	as	optimal	as	they	can	be.
This	will	result	in	faster	execution	of	the	queries,	lower	resource	consumption,	and	better
health	of	the	whole	Elasticsearch	cluster.

www.EBooksWorld.ir

Parallelize	your	queries
One	thing	that	is	usually	forgotten	is	the	need	of	parallelizing	queries.	Imagine	that	you
have	a	dozen	nodes	in	your	cluster	but	your	index	is	built	of	a	single	shard.	If	the	index	is
large,	your	queries	will	perform	worse	than	you	expect.	Of	course	you	can	increase	the
number	of	replicas,	but	that	won’t	help.	A	single	query	will	still	go	to	a	single	shard	in	that
index,	because	replicas	are	not	more	than	the	copies	of	the	primary	shard	and	they	contain
the	same	data	(or	at	least	they	should).	This	is	also	true	not	only	for	indices	having	one
shard	but	also	if	you	have	more	than	one	shard,	but	they	are	very	large,	you	can	still	have
performance	related	problems.	It	is	said	that	the	query	is	only	as	fast	as	the	slowest	partial
query	response.

Of	course,	the	parallelization	also	depends	on	the	use	case.	If	you	run	a	lot	of	queries	to
Elasticsearch,	you	may	not	need	to	parallelize	the	queries,	especially	when	the	shards	are
small	enough	and	you	don’t	see	problems	at	shard	level.	In	general,	look	at	your
Elasticsearch	nodes	and	see	if	they	have	unused	CPU	cores	and,	if	that’s	the	case,	you	may
have	room	for	improvement	and	parallelization.

Field	data	cache	and	breaking	the	circuit
We	have	two	different	factors	we	can	tune	to	be	sure	that	we	don’t	run	into	out	of	memory
errors.	First	of	all,	we	can	limit	the	size	of	the	field	data	cache.	The	second	thing	is	the
circuit	breaker,	which	we	can	easily	configure	to	just	throw	an	exception	instead	of
loading	too	much	data.	Combining	these	two	things	will	ensure	that	we	don’t	run	into
memory	issues.	Even	if	you	are	using	doc	values	a	lot,	you	may	still	run	into	out	of
memory	issues.	For	example,	for	analysed	fields,	which	can’t	use	doc	values	and	will	use,
field	data	cache	–	configure	the	field	data	cache	and	circuit	breakers	correctly.	You	can
read	more	about	how	to	configure	them	in	Chapter	9,	Elasticsearch	Cluster	in	Detail.

Keep	size	and	shard	size	under	control
When	dealing	with	some	of	the	queries	that	use	aggregations,	we	have	the	possibility	of
using	two	properties:	size	and	shard_size.	The	size	parameter	defines	how	many
buckets	should	be	returned	by	the	final	aggregation	results;	the	node	that	aggregates	the
final	results	will	get	the	top	buckets	from	each	shard	that	returns	the	result	and	will	only
return	the	top	size	of	them	to	the	client.	The	shard_size	parameter	tells	Elasticsearch
about	the	same	but	at	the	shard	level.	Increasing	the	value	of	the	shard_size	parameter
will	lead	to	more	accurate	aggregations	(like	in	the	case	of	significant	terms	aggregation)
at	the	cost	of	network	traffic	and	memory	usage.	Lowering	that	parameter	will	cause
aggregation	results	to	be	less	precise,	but	we	will	benefit	from	lower	memory
consumption	and	lower	network	traffic.	If	we	see	that	the	memory	usage	is	too	large,	we
can	lower	the	size	and	shard_size	properties	for	problematic	queries	and	see	if	the
quality	of	the	results	is	still	acceptable.

www.EBooksWorld.ir

www.EBooksWorld.ir

Monitoring
Elasticsearch	monitoring	APIs	expose	a	lot	of	information,	both	about	the	search	engine
itself	as	well	as	about	the	environment,	such	as	the	operating	system.	We	saw	that	in
Chapter	10,	Administrating	Your	Cluster.	Because	of	this	and	the	ease	of	retrieving	this
information,	numerous	applications	were	built	–	ones	that	allow	us	to	do	monitoring	and
beyond.	Some	of	these	applications	are	simple	and	just	read	the	data	in	real	time	without
any	persistent	storage,	while	others	allow	us	to	read	historical	data	about	our	cluster
behavior.	In	this	chapter,	we	will	only	slightly	touch	the	top	of	the	pile	of	information
about	such	applications,	but	we	strongly	advise	you	to	get	familiar	with	some	of	them	as
they	can	make	your	everyday	work	with	Elasticsearch	easier.

We	chose	three	examples	of	monitoring	solutions	which	take	a	different	approach	of
integration	with	Elasticsearch.	The	first	two	tools	are	available	as	Elasticsearch	plugins
and	the	third	takes	a	different	approach	to	integration.

www.EBooksWorld.ir

Elasticsearch	HQ
This	tool	is	available	as	an	Elasticsearch	plugin	but	can	also	be	downloaded	separately	as
a	JavaScript	application	run	in	a	browser.

Elasticsearch	HQ	uses	JavaScript	and	AJAX	techniques	where	data	is	fetched	periodically
from	the	cluster,	prepared	for	visualization	on	the	browser	side,	and	shown	to	the	user.

The	tool	allows	us	to	track	statistics	on	a	particular	node.	The	browser	can	present	vital
information	about	the	cluster	and	particular	nodes.	The	following	screenshot	shows	the
graphical	user	interface	from	Elasticsearch	HQ:

We	have	the	basic	information	about	the	cluster,	the	number	of	nodes,	and	Elasticsearch
health.	We	can	also	see	which	node	we	are	looking	at	and	some	statistics	about	the	node,
which	include	the	memory	usage	(both	heap	and	non-heap),	the	number	of	threads,	Java
virtual	machine	garbage	collector	work,	and	so	on.	The	plugin	also	presents	simplified
information	about	schema	and	shards	and	allows	execution	of	simple	queries.

In	order	to	install	Elasticsearch	HQ,	one	should	just	run	the	following	command:

bin/plugin	install	royrusso/elasticsearch-HQ

After	that,	the	GUI	will	be	available	at	http://localhost:9200/_plugin/hq/.

One	thing	to	remember	is	that	Elasticsearch	HQ	doesn’t	persist	the	fetched	data	anywhere,
so	the	data	is	only	fetched	when	your	browser	is	running	and	has	Elasticsearch	HQ
opened.	If	something	has	happened	in	the	past,	you	won’t	be	able	to	diagnose	it.

www.EBooksWorld.ir

Marvel
Marvel	is	the	tool	created	by	the	Elasticsearch	team.	In	the	current	version,	it	is	built	as	a
plugin	for	a	visualization	platform	called	Kibana	(https://www.elastic.co/products/kibana).

Note
Kibana	is	out	of	the	scope	of	this	book.	You	can	find	more	about	Kibana	on	official
product	page	available	at

https://www.elastic.co/.

Marvel	also	visualizes	basic	information	about	clusters	and	nodes	by	drawing	nice	graphs
that	are	dynamically	updated	over	time.	The	main	difference	from	Elasticsearch	HQ	is	that
the	performance	data	is	stored	on	the	server	side	(in	the	same	or	external	Elasticsearch
cluster),	so	historical	data	is	available.	The	example	screenshot	is	presented	next:

The	installation	procedure	for	Marvel	contains	three	steps:

bin/plugin	install	license

bin/plugin	install	marvel-agent

And	finally,	the	third	step	is	to	install	the	Marvel	plugin	in	Kibana	by	running	the
following	command:

bin/kibana	plugin	--install	elasticsearch/marvel/latest

www.EBooksWorld.ir

https://www.elastic.co/products/kibana
https://www.elastic.co/

SPM	for	Elasticsearch
This	tool	presents	a	different	approach	than	the	previously	mentioned	tools.	SPM	is	a
Software	as	a	Service	(SaaS)	solution	created	for	monitoring	Elasticsearch	installations
of	any	size	and	allows	monitoring	several	clusters	and	different	technologies.	Though	its
roots	are	SaaS-based,	it	is	also	available	on	premises,	which	means	that	you	can	run	SPM
on	your	own	machines	without	the	need	for	sending	your	metrics	to	cloud.

Information	is	sent	by	simple	client	software	installed	on	the	Elasticsearch	machine	to	the
SPM	servers.	The	main	advantage	is	the	possibility	of	storing	information	for	a	wider
range	of	time	and	seeing	what	was	happening	in	the	past.	You	can	create	your	own
dashboards	and	correlate	metrics	with	logs	between	multiple	applications	(SPM	allows
you	to	monitor	a	wide	variety	of	applications).

The	following	screenshot	shows	the	dashboard	of	SPM	for	Elasticsearch:

The	overview	dashboard	shown	in	the	preceding	screenshot	provides	information	about
the	cluster	nodes,	the	request	rate	and	latency,	the	number	of	documents	in	the	indices,
CPU	usage,	load,	memory	details,	Java	virtual	machine	memory,	the	disk	space	usage,	and
finally	network	traffic.	You	can	get	detailed	information	about	each	of	these	elements	by
going	into	the	tab	dedicated	to	it.

You	can	find	additional	information	about	SPM	installation	and	available	options	at
http://sematext.com/spm/index.html.

www.EBooksWorld.ir

http://sematext.com/spm/index.html

www.EBooksWorld.ir

Summary
In	this	chapter,	we	focused	on	scaling	and	tuning	Elasticsearch.	We	started	with	the
hardware	preparations	and	decisions	we	need	to	make.	Next,	we	tuned	a	single
Elasticsearch	node	as	much	as	we	could	and	after	that	we	configured	the	whole	cluster	to
work	as	well	as	it	could.	We	discussed	vertical	expansion	possibilities	and	we	learned	how
to	monitor	our	cluster	once	it	hits	the	production	environment.

So	now	we	have	reached	the	end	of	the	book.	We	hope	that	it	was	a	nice	reading
experience	and	that	you	found	the	book	interesting.	Since	the	previous	edition	of	the	book,
Elasticsearch	has	changed	a	lot.	Not	only	when	it	comes	to	versions,	but	also	when	it
comes	to	functionalities.	Some	of	the	features	are	no	longer	there,	some	of	them	were
moved	to	plugins,	and	of	course	new	features	were	added.	We	really	hope	that	you	have
learned	something	from	this	book	and	now	you	will	find	it	easier	to	use	Elasticsearch
every	day	–	no	matter	if	you	are	a	beginner	in	this	world	or	a	semi–experienced
Elasticsearch	user.	As	the	authors	of	this	book,	but	also	as	Elasticsearch	users	ourselves,
we	tried	to	bring	you,	our	readers,	the	best	reading	experience	we	could.	Of	course
Elasticsearch	is	more	than	we	described	in	the	book,	especially	when	it	comes	to
monitoring	and	administration	capabilities	and	API.	However,	the	number	of	pages	is
limited	and	if	we	were	to	describe	everything	in	great	details	we	would	have	ended	up
with	a	book	one	thousand	pages	long.	We	need	to	remember	that	Elasticsearch	is	not	only
user	friendly	but	also	provides	a	large	amount	of	configuration	options,	querying
possibilities,	and	so	on.	Due	to	that,	we	had	to	choose	which	functionalities	to	describe	in
greater	details,	which	had	to	be	only	mentioned,	and	which	had	to	be	totally	skipped.	As
with	the	two	previous	editions	of	the	book	you	are	holding,	we	hope	that	we	made	the
right	choice	and	that	you	are	happy	about	what	you’ve	read.

We	would	also	like	to	say	that	it	is	worth	remembering	that	Elasticsearch	is	constantly
evolving.	When	writing	this	book,	we	went	through	a	few	stable	versions	finally	making	it
to	the	release	of	Elasticsearch	2.2.	Even	back	then	we	knew	that	new	features	and
improvements	were	coming,	like	some	of	the	changes	mentioned	in	the	book	that	will	be
part	of	the	next	release,	or	at	least	they	are	planned	to	be.	Be	sure	to	check	the	official
documentation	of	Elasticsearch	periodically	for	the	release	notes	for	new	versions	of
Elasticsearch,	if	you	want	to	be	up	to	date	with	the	new	features	being	added.	We	will	also
be	writing	about	new	features	that	we	think	are	worth	mentioning	on
www.elasticsearchserverbook.com.	So	if	you	are	interested,	visit	the	site	from	time	to
time.

Once	again	thank	you	for	the	time	you’ve	spent	with	the	book.

www.EBooksWorld.ir

http://www.elasticsearchserverbook.com.

Index
A

advices,	for	high	query	rate	scenarios
about	/	Advice	for	high	query	rate	scenarios
shard	request	cache	/	Shard	request	cache
queries	/	Think	about	the	queries
queries,	parallelizing	/	Parallelize	your	queries
field	data	cache	/	Field	data	cache	and	breaking	the	circuit
circuit,	breaking	/	Field	data	cache	and	breaking	the	circuit
size,	controlling	/	Keep	size	and	shard	size	under	control
shard	size,	controlling	/	Keep	size	and	shard	size	under	control

aggregation	engine
working	/	Inside	the	aggregations	engine

aggregations
about	/	Aggregations
general	query	structure	/	General	query	structure
types	/	Aggregation	types
date_histogram	/	Date	histogram	aggregation
geo	distance	aggregations	/	Geo	distance	aggregations
geohash	grid	aggregation	/	Geohash	grid	aggregation
global	aggregation	/	Global	aggregation
significant_terms	aggregation	/	Significant	terms	aggregation
sampler	aggregation	/	Sampler	aggregation
children	aggregation	/	Children	aggregation
nested	aggregation	/	Nested	aggregation
reverse_nested	aggregation	/	Reverse	nested	aggregation
nesting	aggregations	/	Nesting	aggregations	and	ordering	buckets

aggregations,	types
metrics	/	Aggregation	types,	Metrics	aggregations
buckets	/	Aggregation	types,	Buckets	aggregations
pipeline	/	Aggregation	types

Amazon
URL	/	Cost	and	performance	flexibility

Amazon	S3
URL	/	Creating	a	snapshot	repository

Analyze	API
URL	/	Defining	your	own	analyzers

analyzers
using	/	Using	analyzers
out-of-the-box	analyzers	/	Out-of-the-box	analyzers
defining	/	Defining	your	own	analyzers
default	analyzers	/	Default	analyzers

www.EBooksWorld.ir

Apache	Lucene	/	Getting	back	to	Apache	Lucene
URL	/	Full	text	searching
glossary	/	The	Lucene	glossary	and	architecture
architecture	/	The	Lucene	glossary	and	architecture
document	/	The	Lucene	glossary	and	architecture
field	/	The	Lucene	glossary	and	architecture
term	/	The	Lucene	glossary	and	architecture
token	/	The	Lucene	glossary	and	architecture
tokenizer	/	Input	data	analysis
scoring	/	Introduction	to	Apache	Lucene	scoring

Apache	Lucene	Javadocs	for	the	TFIDF
URL	/	Scoring	and	query	relevance

Apache	Lucene	scoring
about	/	Introduction	to	Apache	Lucene	scoring
document	matching,	factors	/	When	a	document	is	matched
default	scoring	formula	/	Default	scoring	formula
relevant	documents	/	Relevancy	matters

Apache	Solr
URL	/	Using	Apache	Solr	synonyms

Apache	Solr	synonyms
using	/	Using	Apache	Solr	synonyms
explicit	synonyms	/	Explicit	synonyms
equivalent	synonyms	/	Equivalent	synonyms
expand	property	/	Expanding	synonyms

Apache	Tika
URL	/	Detecting	the	language	of	the	document

arbitrary	geo	shapes
about	/	Arbitrary	geo	shapes
point	/	Point
envelope	/	Envelope
polygon	/	Polygon
multipolygon	/	Multipolygon
example	usage	/	An	example	usage
storing,	in	index	/	Storing	shapes	in	the	index

arguments,	Cat	API
URL	/	Common	arguments

attributes,	index	structure	mapping
index_name	/	Common	attributes
index	/	Common	attributes
store	/	Common	attributes
doc_values	/	Common	attributes
boost	/	Common	attributes
null_value	/	Common	attributes
copy_to	/	Common	attributes

www.EBooksWorld.ir

include_in_all	/	Common	attributes
precision_step	/	Number,	Date
coerce	/	Number
ignore_malformed	/	Number,	Date
format	/	Date
format,	reference	link	/	Date
numeric_resolution	/	Date

available	objects,	script	execution
_doc	/	Objects	available	during	script	execution
_source	/	Objects	available	during	script	execution
_fields	/	Objects	available	during	script	execution

Azure
URL	/	Creating	a	snapshot	repository

www.EBooksWorld.ir

B
basic	queries

about	/	Basic	queries
term	query	/	The	term	query
terms	query	/	The	terms	query
match	all	query	/	The	match	all	query
type	query	/	The	type	query
exists	query	/	The	exists	query
missing	query	/	The	missing	query
common	terms	query	/	The	common	terms	query
match	query	/	The	match	query
multi	match	query	/	The	multi	match	query
query	string	query	/	The	query	string	query
simple	query	string	query	/	The	simple	query	string	query
identifiers	query	/	The	identifiers	query
prefix	query	/	The	prefix	query
fuzzy	query	/	The	fuzzy	query
wildcard	query	/	The	wildcard	query
range	query	/	The	range	query
regular	expression	query	/	Regular	expression	query
more	like	this	query	/	The	more	like	this	query

batch	indexing
used,	for	speeding	up	indexing	process	/	Batch	indexing	to	speed	up	your
indexing	process

Boolean	properties	set
node.master	/	Configuring	node	roles
node.data	/	Configuring	node	roles
node.client	/	Configuring	node	roles

bool	query
about	/	The	bool	query
should	section	/	The	bool	query
must	section	/	The	bool	query
must_not	section	/	The	bool	query
filter	parameter	/	The	bool	query
boost	parameter	/	The	bool	query
minimum_should_match	parameter	/	The	bool	query
disable_coord	parameter	/	The	bool	query
used,	for	explicit	filtering	/	Explicit	filtering	with	bool	query

boosting	query	/	The	boosting	query
boost_mode	parameter

multiply	value	/	Structure	of	the	function	query
replace	value	/	Structure	of	the	function	query
sum	value	/	Structure	of	the	function	query

www.EBooksWorld.ir

avg	value	/	Structure	of	the	function	query
max	value	/	Structure	of	the	function	query
min	value	/	Structure	of	the	function	query

bucket	aggregations
ordering	/	Nesting	aggregations	and	ordering	buckets,	Buckets	ordering

buckets	/	General	query	structure
buckets	aggregations

about	/	Buckets	aggregations
filter	aggregation	/	Filter	aggregation
filters	aggregation	/	Filters	aggregation
terms	aggregation	/	Terms	aggregation
range	aggregation	/	Range	aggregation
date_range	aggregation	/	Date	range	aggregation
ip_range	aggregation	/	IPv4	range	aggregation
missing	aggregation	/	Missing	aggregation
histogram	aggregation	/	Histogram	aggregation

bulk	indexing
data,	preparing	/	Preparing	data	for	bulk	indexing

www.EBooksWorld.ir

C
caches

about	/	Elasticsearch	caches
fielddata	cache	/	Fielddata	cache
fielddata,	using	with	doc	values	/	Fielddata	and	doc	values
shard	request	cache	/	Shard	request	cache
node	query	cache	/	Node	query	cache
indexing	buffers	/	Indexing	buffers
avoiding,	scenarios	/	When	caches	should	be	avoided

Cat	API
about	/	The	Cat	API
defining	/	The	basics
using	/	Using	Cat	API
common	arguments	/	Common	arguments
examples	/	The	examples,	Getting	information	about	the	nodes

children	aggregation
about	/	Children	aggregation

CIDR	notation
URL	/	IPv4	range	aggregation

Class	DateTimeFormat
URL	/	Tuning	the	type	determining	mechanism	for	dates

client	node
about	/	Node	roles,	Client	node

cluster
about	/	Nodes	and	clusters
installing	/	Installing	and	configuring	your	cluster
configuring	/	Installing	and	configuring	your	cluster
directory	layout	/	The	directory	layout
system-specific	installation	and	configuration	/	The	system-specific	installation
and	configuration

cluster	health	API
about	/	Cluster	health	API
information	details,	controlling	/	Controlling	information	details
additional	parameters	/	Additional	parameters

cluster	rebalancing
controlling	/	Controlling	cluster	rebalancing
defining	/	Understanding	rebalance
implementing	/	Cluster	being	ready
settings	/	The	cluster	rebalance	settings,	Controlling	the	number	of	shards	being
moved	between	nodes	concurrently

cluster	settings	API	/	The	cluster	settings	API
cluster	wide	allocation

about	/	Cluster-wide	allocation

www.EBooksWorld.ir

allocation	awareness	/	Allocation	awareness
allocation	awareness,	forcing	/	Forcing	allocation	awareness
filtering	/	Filtering

CMS	system
URL	/	Creating	a	new	document

common	terms	query	/	The	common	terms	query
completion	suggester

about	/	Completion	suggester
in	Elasticsearch	2.2	/	Completion	suggester

completion	suggester,	Elasticsearch	2.1
data,	indexing	/	Indexing	data
indexed	data,	querying	/	Querying	indexed	completion	suggester	data
custom	weights	/	Custom	weights

completion	suggester,	Elasticsearch	2.2
about	/	Completion	suggester

compound	queries
about	/	Compound	queries
bool	query	/	The	bool	query
dis_max	query	/	The	dis_max	query
boosting	query	/	The	boosting	query
constant_score	query	/	The	constant_score	query
indices	query	/	The	indices	query

compressed	oops
URL	/	The	memory

compressed	ordinary	object	pointers
reference	link	/	Multiple	Elasticsearch	instances	on	a	single	physical	machine

configuration	options,	phrase	suggester
max_errors	/	Configuration
separator	/	Configuration

configuration	options,	term	suggester
text	/	Term	suggester	configuration	options
field	/	Term	suggester	configuration	options
analyzer	/	Term	suggester	configuration	options
size	/	Term	suggester	configuration	options
suggest_mode	/	Term	suggester	configuration	options
sort	/	Term	suggester	configuration	options

constant_score	query	/	The	constant_score	query
content

searching,	in	different	languages	/	Searching	content	in	different	languages
content,	searching	in	different	languages

about	/	Searching	content	in	different	languages
languages,	handling	/	Handling	languages	differently
multiple	languages,	handling	/	Handling	multiple	languages
document	language,	detecting	/	Detecting	the	language	of	the	document

www.EBooksWorld.ir

sample	document	/	Sample	document
mappings	/	The	mappings
data,	querying	/	Querying
queries,	combining	/	Combining	queries

context	suggester
about	/	Context	suggester
types	/	Context	types
using	/	Using	context
geo	location	context,	using	/	Using	the	geo	location	context

context	switches
reference	link	/	Thread	pools	tuning

core	types,	index	structure	mapping
about	/	Core	types
common	attributes	/	Common	attributes
string	/	String
number	/	Number
boolean	/	Boolean
binary	/	Binary
date	/	Date

count	to	it	field	/	Adding	partial	documents
create,	retrieve,	update,	delete	(CRUD)

URL	/	Manipulating	data	with	the	REST	API
cURL	command

URL	/	Installing	Elasticsearch

www.EBooksWorld.ir

D
data

manipulating,	with	REST	API	/	Manipulating	data	with	the	REST	API
storing,	in	Elasticsearch	/	Storing	data	in	Elasticsearch
preparing,	for	bulk	indexing	/	Preparing	data	for	bulk	indexing
indexing	/	Indexing	the	data
_all	field	/	The	_all	field
_source	field	/	The	_source	field
internal	fields	/	Additional	internal	fields
sorting	/	Sorting	data
default	sorting	/	Default	sorting
querying,	in	child	documents	/	Querying	data	in	the	child	documents
querying,	in	parent	documents	/	Querying	data	in	the	parent	documents

data,	that	is	not	flat
indexing	/	Indexing	data	that	is	not	flat
data	/	Data
objects	/	Objects
arrays	/	Arrays
mappings	/	Mappings
dynamic	behavior	/	To	be	or	not	to	be	dynamic
object	indexing,	disabling	/	Disabling	object	indexing

data	node
about	/	Node	roles

data	querying,	cases
identified	language,	using	/	Queries	with	an	identified	language
unknown	language,	using	/	Queries	with	an	unknown	language

data	sets
foreground	sets	/	Choosing	significant	terms
background	sets	/	Choosing	significant	terms

data	sorting
about	/	Sorting	data
default	sorting	/	Default	sorting
fields,	selecting	/	Selecting	fields	used	for	sorting
mode	/	Sorting	mode
behavior	for	missing	fields,	specifying	/	Specifying	behavior	for	missing	fields
dynamic	criteria	/	Dynamic	criteria
scoring,	calculating	/	Calculate	scoring	when	sorting

date_histogram	aggregations
about	/	Date	histogram	aggregation
time	zones	/	Time	zones

DEB	package
used,	for	installing	Elasticsearch	/	Installing	Elasticsearch	using	the	DEB
package

www.EBooksWorld.ir

default	indexing	/	Default	indexing
derivative	aggregation

URL	/	Derivative	aggregation
designated	nodes	roles	for	larger	clusters

about	/	Designated	node	roles	for	larger	clusters
query	aggregator	nodes	/	Query	aggregator	nodes
data	nodes	/	Data	nodes
master	eligible	nodes	/	Master	eligible	nodes

DigitalOcean
URL	/	Cost	and	performance	flexibility

directory	layout,	cluster
bin	/	The	directory	layout
config	/	The	directory	layout
lib	/	The	directory	layout
modules	/	The	directory	layout
data	/	The	directory	layout
logs	/	The	directory	layout
plugins	/	The	directory	layout
work	/	The	directory	layout

disk-based	shard	allocation
about	/	Disk-based	shard	allocation
configuring	/	Configuring	disk	based	shard	allocation
disabling	/	Disabling	disk	based	shard	allocation

dis_max	query	/	The	dis_max	query
Docker

reference	link	/	Multiple	Elasticsearch	instances	on	a	single	physical	machine
document

about	/	Document
creating	/	Creating	a	new	document
automatic	identifier	creation,	creating	/	Automatic	identifier	creation
retrieving	/	Retrieving	documents
updating	/	Updating	documents
non-existing	documents,	dealing	with	/	Dealing	with	non-existing	documents
partial	documents,	adding	/	Adding	partial	documents
deleting	/	Deleting	documents

document	type	/	Document	type
double	type

URL	/	Number
dynamic	templates

about	/	Templates	and	dynamic	templates,	Dynamic	templates
matching	pattern	/	The	matching	pattern
target	field	definition,	writing	/	Field	definitions

www.EBooksWorld.ir

E
Elasticsearch

about	/	The	basics	of	Elasticsearch
key	concepts	/	Key	concepts	of	Elasticsearch
index	/	Index
document	/	Document
document	type	/	Document	type
mapping	/	Mapping
indexing	/	Indexing	and	searching,	Elasticsearch	indexing
searching	/	Indexing	and	searching
URL	/	Installing	Elasticsearch,	Available	similarity	models
installing	/	Installing	Elasticsearch
running	/	Running	Elasticsearch
shutting	down	/	Shutting	down	Elasticsearch
configuring	/	Configuring	Elasticsearch
installing,	with	RPM	package	/	Installing	Elasticsearch	using	RPM	packages
installing,	with	DEB	package	/	Installing	Elasticsearch	using	the	DEB	package
configuration	files,	localization	/	Elasticsearch	configuration	file	localization
querying	/	Querying	Elasticsearch,	A	simple	query
example	data	/	The	example	data
paging	/	Paging	and	result	size
result	size,	controlling	/	Paging	and	result	size
version	value,	returning	/	Returning	the	version	value
score,	limiting	/	Limiting	the	score
return	fields,	selecting	/	Choosing	the	fields	that	we	want	to	return
source	filtering	/	Source	filtering
script	fields,	using	/	Using	the	script	fields
parameters,	passing	to	script	fields	/	Passing	parameters	to	the	script	fields
parametrs,	passing	to	script	fields	/	Passing	parameters	to	the	script	fields
scripting	capabilities	/	Scripting	capabilities	of	Elasticsearch
spatial	capabilities	/	Elasticsearch	spatial	capabilities
reference	documentation,	URL	/	Configuration
plugins	/	Elasticsearch	plugins
caches	/	Elasticsearch	caches
hardware	preparations	/	Hardware
monitoring	/	Monitoring
Kibana,	URL	/	Marvel

Elasticsearch	2.1
URL	/	Thread	pools

Elasticsearch	2.2
completion	suggester	/	Completion	suggester

Elasticsearch	cluster
preparing,	for	high	indexing	/	Preparing	the	cluster	for	high	indexing	and

www.EBooksWorld.ir

querying	throughput
preparing,	for	high	querying	/	Preparing	the	cluster	for	high	indexing	and
querying	throughput

Elasticsearch	HQ	tool
using	/	Elasticsearch	HQ

Elasticsearch	indexing
about	/	Elasticsearch	indexing
shards	/	Shards	and	replicas
replicas	/	Shards	and	replicas
indices,	creating	/	Creating	indices

Elasticsearch	infrastructure
key	concepts	/	Key	concepts	of	the	Elasticsearch	infrastructure
node	/	Nodes	and	clusters
cluster	/	Nodes	and	clusters
shard	/	Shards
replica	/	Replicas
gateway	/	Gateway

Elasticsearch	monitoring
about	/	Monitoring
Elasticsearch	HQ	tool,	using	/	Elasticsearch	HQ
Marvel	tool,	using	/	Marvel
SPM	tool,	using	/	SPM	for	Elasticsearch

Elasticsearch	time	machine
about	/	Elasticsearch	time	machine
snapshot	repository,	creating	/	Creating	a	snapshot	repository
snapshots,	creating	/	Creating	snapshots
snapshot,	restoring	/	Restoring	a	snapshot
parameters	/	Restoring	a	snapshot
old	snapshots,	deleting	/	Cleaning	up	–	deleting	old	snapshots

exists	query	/	The	exists	query
Explain	API

URL	/	Explaining	the	query
explain	information

about	/	Understanding	the	explain	information
field	analysis	/	Understanding	field	analysis
query,	explaining	/	Explaining	the	query

www.EBooksWorld.ir

F
factors,	for	score	property	calculation

document	boost	/	When	a	document	is	matched
field	boost	/	When	a	document	is	matched
coord	/	When	a	document	is	matched
inverse	document	frequency	/	When	a	document	is	matched
length	norm	/	When	a	document	is	matched
term	frequency	/	When	a	document	is	matched
query	norm	/	When	a	document	is	matched

FastVectorHighlighter
URL	/	Under	the	hood

Fedora	Linux
URL	/	Installing	Elasticsearch	using	RPM	packages

fielddata	cache
about	/	Fielddata	cache
size,	controlling	/	Fielddata	size
circuit	breakers	/	Circuit	breakers

field	definition	variables,	dynamic	templates
{name}	/	Field	definitions
{dynamic_type}	/	Field	definitions

filtering
about	/	Filtering
include	/	What	do	include,	exclude,	and	require	mean
require	/	What	do	include,	exclude,	and	require	mean
exclude	/	What	do	include,	exclude,	and	require	mean

filters
lowercase	filter	/	Input	data	analysis
synonyms	filter	/	Input	data	analysis
language	stemming	filters	/	Input	data	analysis

filters	and	tokenizers
URL	/	Defining	your	own	analyzers

filter	types
URL	/	Defining	your	own	analyzers

full	text	searching
about	/	Full	text	searching
Apache	Lucene,	glossary	/	The	Lucene	glossary	and	architecture
Apache	Lucene,	architecture	/	The	Lucene	glossary	and	architecture
input	data	analysis	/	Input	data	analysis
indexing	/	Indexing	and	querying
querying	/	Indexing	and	querying
scoring	/	Scoring	and	query	relevance
query	relevance	/	Scoring	and	query	relevance

function	score	query

www.EBooksWorld.ir

about	/	The	function	score	query
structure	/	Structure	of	the	function	query
weight	factor	function	/	The	weight	factor	function
field_value_factor	function	/	Field	value	factor	function
script_score	function	/	The	script	score	function
random_score	function	/	The	random	score	function
decay	functions	/	Decay	functions

function_score	query
URL	/	Decay	functions

fuzzy	query
about	/	The	fuzzy	query

www.EBooksWorld.ir

G
gateway	/	Gateway
gateway	module

about	/	The	gateway	and	recovery	modules,	The	gateway
gateway	recovery	options

gateway.recover_after_master_nodes	/	Additional	gateway	recovery	options
gateway.recover_after_data_nodes	/	Additional	gateway	recovery	options
gateway.expected_master_nodes	/	Additional	gateway	recovery	options
gateway.expected_data_nodes	/	Additional	gateway	recovery	options

general	preparations,	single	Elasticsearch	node
about	/	The	general	preparations
swapping,	avoiding	/	Avoiding	swapping
file	descriptors	/	File	descriptors
virtual	memory	/	Virtual	memory,	The	memory

Geo	/	Geo	bounds	aggregation
geo	distance	aggregations

about	/	Geo	distance	aggregations
Geohash

URL	/	Geohash	grid	aggregation
geohash	grid	aggregation

about	/	Geohash	grid	aggregation
URL	/	Geohash	grid	aggregation

Geohash	value
URL	/	Example	data

GeoJSON
URL	/	Arbitrary	geo	shapes

geospatial	queries
URL	/	Sample	queries

geo_field	properties
geohash	/	Additional	geo_field	properties
geohash_precision	/	Additional	geo_field	properties
geohash_prefix	/	Additional	geo_field	properties
ignore_malformed	/	Additional	geo_field	properties
lat_lon	/	Additional	geo_field	properties
precision_step	/	Additional	geo_field	properties

GitHub
URL	/	Installing	plugins
automatic	store	throttling,	URL	/	Automatic	store	throttling

Github
issue,	URL	/	String

global	aggregation
about	/	Global	aggregation

Groovy

www.EBooksWorld.ir

URL	/	Scripting	capabilities	of	Elasticsearch

www.EBooksWorld.ir

H
hardware	preparations,	for	running	Elasticsearch

about	/	Hardware
physical	servers	/	Physical	servers	or	a	cloud
cloud	/	Physical	servers	or	a	cloud
CPU	/	CPU
RAM	memory	/	RAM	memory
mass	storage	/	Mass	storage
network	/	The	network
servers	counting	/	How	many	servers
cost	cutting	/	Cost	cutting

HDFS
URL	/	Creating	a	snapshot	repository

highlighted	fragments
controlling	/	Controlling	highlighted	fragments

highlighter	type
selecting	/	Forcing	highlighter	type

highlighting
about	/	Highlighting
using	/	Getting	started	with	highlighting
field	configuration	/	Field	configuration
Apache	Lucene,	using	/	Under	the	hood
highlighter	type,	selecting	/	Forcing	highlighter	type
HTML	tags,,	configuring	/	Configuring	HTML	tags
global	settings	/	Global	and	local	settings
local	settings	/	Global	and	local	settings
matching	need	/	Require	matching
custom	query	/	Custom	highlighting	query
Postings	highlighter	/	The	Postings	highlighter,	Validating	your	queries

horizontal	expansion
about	/	Horizontal	expansion
replicas,	automatic	creation	/	Automatically	creating	the	replicas
redundancy	/	Redundancy	and	high	availability
high	availability	/	Redundancy	and	high	availability
reference	links	/	Redundancy	and	high	availability
cost	and	performance	flexibility	/	Cost	and	performance	flexibility
continues	upgrades	/	Continuous	upgrades
multiple	Elasticsearch	instances,	on	single	physical	machine	/	Multiple
Elasticsearch	instances	on	a	single	physical	machine
designated	nodes	roles	for	larger	clusters	/	Designated	node	roles	for	larger
clusters

how	similar	phrase	/	Understanding	the	explain	information
HTTP	module

www.EBooksWorld.ir

properties,	URL	/	HTTP	host
HTTP	protocol

URL	/	Understanding	the	REST	API
HTTP	transport	settings,	adjusting

node	/	Adjusting	HTTP	transport	settings
HTTP,	disabling	/	Disabling	HTTP
HTTP	port	/	HTTP	port
HTTP	host	/	HTTP	host

HyperLogLog++	algorithm
URL	/	Field	cardinality

www.EBooksWorld.ir

I
identifiers	query

about	/	The	identifiers	query
index

segments	/	The	Lucene	glossary	and	architecture
about	/	Index

index-time	boosting
using	/	When	does	index-time	boosting	make	sense?
defining,	in	mappings	/	Defining	boosting	in	the	mappings

index	alias
about	/	Index	aliasing	and	using	it	to	simplify	your	everyday	work
defining	/	An	alias
creating	/	Creating	an	alias
modifying	/	Modifying	aliases
commands,	combining	/	Combining	commands
retrieving	/	Retrieving	aliases
removing	/	Removing	aliases
filtering	/	Filtering	aliases
and	routing	/	Aliases	and	routing
and	zero	downtime	reindexing	/	Zero	downtime	reindexing	and	aliases

indexation	/	Input	data	analysis
indexing	process

speeding	up,	batch	indexing	used	/	Batch	indexing	to	speed	up	your	indexing
process

indexing	related	advices
about	/	Indexing	related	advice
index	refresh	rate	/	Index	refresh	rate
thread	pools,	tuning	/	Thread	pools	tuning
automatic	store	throttling	/	Automatic	store	throttling
time-based	data,	handling	/	Handling	time-based	data
multiple	data	paths	/	Multiple	data	paths
data	distribution	/	Data	distribution
bulk	indexing	/	Bulk	indexing
RAM	buffer,	used	for	indexing	/	RAM	buffer	for	indexing

index	refresh	rate
reference	link	/	Index	refresh	rate

index	structure
modifying,	with	update	API	/	Modifying	your	index	structure	with	the	update
API

index	structure,	modifying
mappings	/	The	mappings
new	field,	adding	/	Adding	a	new	field	to	the	existing	index
existing	index	fields,	modifying	/	Modifying	fields	of	an	existing	index

www.EBooksWorld.ir

index	structure,	parent-child	relationship
about	/	Index	structure	and	data	indexing
child	mappings	/	Child	mappings
parent	mappings	/	Parent	mappings
parent	document	/	The	parent	document
children	documents	/	Child	documents

index	structure	mapping
about	/	Index	structure	mapping
types	/	Type	and	types	definition
types	definition	/	Type	and	types	definition
fields	/	Fields
core	types	/	Core	types
multi	fields	/	Multi	fields
IP	address	type	/	The	IP	address	type
token	count	type	/	Token	count	type

indices,	Elasticsearch	indexing
creating	/	Creating	indices
automatic	creation,	altering	/	Altering	automatic	index	creation
newly	created	index,	settings	/	Settings	for	a	newly	created	index
deleting	/	Index	deletion

indices	analyze	API
URL	/	Query	analysis

indices	query	/	The	indices	query
indices	settings	API	/	The	indices	settings	API
indices	stats	API

about	/	Indices	stats	API
docs	/	Docs
store	/	Store
indexing	/	Indexing,	get,	and	search
get	/	Indexing,	get,	and	search
search	/	Indexing,	get,	and	search
defining	/	Additional	information

internal	fields
_id	/	Additional	internal	fields
_uid	/	Additional	internal	fields
_type	/	Additional	internal	fields
_field_names	/	Additional	internal	fields

inverted	index
about	/	The	Lucene	glossary	and	architecture
URL	/	Index

www.EBooksWorld.ir

J
Java

URL	/	Full	text	searching
installing	/	Installing	Java

JavaScript	Object	Notation	(JSON)
URL	/	Running	Elasticsearch

Java	threads
URL	/	Thread	pools

Java	types
URL	/	Number

Java	Version	7
URL	/	Installing	Java

Java	Virtual	Machine	(JVM)	/	Configuring	Elasticsearch
JMeter

URL	/	When	caches	should	be	avoided
Joda	Time	library

URL	/	Date	range	aggregation
JSON

URL	/	Document

www.EBooksWorld.ir

K
Kibana

URL	/	Marvel

www.EBooksWorld.ir

L
language	analyzer

URL	/	Out-of-the-box	analyzers
language	analyzers

URL	/	Sample	document
language	detection

URL	/	Detecting	the	language	of	the	document
Levenshtein	algorithm

URL	/	The	Boolean	match	query
Linux

Elasticsearch,	installing	/	Installing	Elasticsearch	on	Linux
Elasticsearch,	configuring	as	system	service	/	Configuring	Elasticsearch	as	a
system	service	on	Linux

Logstash
URL	/	Index	aliasing	and	using	it	to	simplify	your	everyday	work

Lucene	Javadocs
URL	/	Default	scoring	formula

Lucene	query	syntax
about	/	Lucene	query	syntax

www.EBooksWorld.ir

M
mapping	/	Mapping
mappings

configuration	/	Mappings	configuration
type	determining	mechanism	/	Type	determining	mechanism
index	structure	mapping	/	Index	structure	mapping
analyzers,	using	/	Using	analyzers
similarity	models	/	Different	similarity	models
about	/	Mappings
final	mappings	/	Final	mappings
sending,	to	Elasticsearch	/	Sending	the	mappings	to	Elasticsearch
new	field,	adding	to	existing	index	/	Adding	a	new	field	to	the	existing	index
field	of	existing	index,	modifying	/	Modifying	fields	of	an	existing	index

Marvel	tool
using	/	Marvel

master	node
about	/	Node	roles,	Master	node

match	all	query	/	The	match	all	query
matching	pattern,	dynamic	templates

match	/	The	matching	pattern
unmatch	/	The	matching	pattern

match	query
about	/	The	match	query
Boolean	match	query	/	The	Boolean	match	query
phrase	match	query	/	The	phrase	match	query
match	phrase	prefix	query	/	The	match	phrase	prefix	query

Maven
URL	/	Installing	plugins

Maven	Central
URL	/	Installing	plugins

Maven	Sonatype
URL	/	Installing	plugins

merge	policy
about	/	The	merge	policy
properties	/	The	merge	policy

merge	scheduler	/	The	merge	scheduler
metrics	aggregations

about	/	Metrics	aggregations
min	/	Minimum,	maximum,	average,	and	sum
max	/	Minimum,	maximum,	average,	and	sum
avg	/	Minimum,	maximum,	average,	and	sum
sum	/	Minimum,	maximum,	average,	and	sum
missing	values	/	Missing	values

www.EBooksWorld.ir

scripts,	using	/	Using	scripts
field	value	statistics	/	Field	value	statistics	and	extended	statistics
extended_statistics	/	Field	value	statistics	and	extended	statistics
value_count	aggregation	/	Value	count
field	cardinality	aggregation	/	Field	cardinality
percentiles	aggregation	/	Percentiles
percentile_ranks	aggregation	/	Percentile	ranks
top_hits	aggregation	/	Top	hits	aggregation
top_hits	aggregation,	additional	parameters	/	Additional	parameters
geo_bounds	aggregation	/	Geo	bounds	aggregation
scripted	metrics	aggregation	/	Scripted	metrics	aggregation

Microsoft	Windows	platform
file	handles,	URL	/	Configuring	Elasticsearch

minimum_should_match	parameter
URL	/	The	bool	query

missing	query	/	The	missing	query
more	like	this	query

about	/	The	more	like	this	query
moving	averages	calculation

URL	/	Pipeline	aggregations
moving_avg	aggregation

URL	/	Moving	avg	aggregation
about	/	Moving	avg	aggregation
future	buckets,	predicting	/	Predicting	future	buckets
models	/	The	models
models,	URL	/	The	models

multi	match	query	/	The	multi	match	query
multiple	Elasticsearch	instances,	on	single	physical	machine

about	/	Multiple	Elasticsearch	instances	on	a	single	physical	machine
shard,	preventing	on	same	node	/	Preventing	a	shard	and	its	replicas	from	being
on	the	same	node
replicas,	preventing	on	same	node	/	Preventing	a	shard	and	its	replicas	from
being	on	the	same	node

multiple	indices
URL	/	URI	search

multiterm	/	Query	rewrite
multivalued	field	/	Document
Mustache

URL	/	Scripting	capabilities	of	Elasticsearch

www.EBooksWorld.ir

N
native	code,	using

factory	implementation	/	The	factory	implementation
native	script	implementation	/	Implementing	the	native	script
plugin	definition	/	The	plugin	definition
plugin,	installing	/	Installing	the	plugin
script,	running	/	Running	the	script

nested	aggregation
about	/	Nested	aggregation

nested	objects
using	/	Using	nested	objects
URL	/	Using	nested	objects
nested	queries	/	Scoring	and	nested	queries
score_mode	property,	setting	/	Scoring	and	nested	queries

nesting	aggregations
about	/	Nesting	aggregations	and	ordering	buckets

network	attached	storage	(NAS)	/	Mass	storage
node	/	Nodes	and	clusters

discoveryTopicnabout	/	Understanding	node	discovery
discovery	types	/	Understanding	node	discovery,	Discovery	types
roles	/	Node	roles
cluster	name,	setting	/	Setting	the	cluster’s	name
Zen	discovery	/	Zen	discovery
HTTP	transport	settings,	adjusting	/	Adjusting	HTTP	transport	settings

node	roles
master	node	/	Node	roles,	Master	node
data	node	/	Node	roles,	Data	node
client	node	/	Node	roles,	Client	node
configuring	/	Configuring	node	roles

nodes	info	API
about	/	Nodes	info	API
requisites	/	Nodes	info	API
extensive	information,	returning	/	Returned	information

NoSQL
URL	/	Manipulating	data	with	the	REST	API

number,	index	structure	mapping
byte	/	Number
short	/	Number
integer	/	Number
long	/	Number
float,URL	/	Number
float	/	Number
double	/	Number

www.EBooksWorld.ir

double,	URL	/	Number

www.EBooksWorld.ir

O
object	indexing

disabling	/	Disabling	object	indexing
official	repository

URL	/	Installing	plugins
OpenJDK

URL	/	Installing	Java
optimistic	locking

URL	/	Versioning
options,	term	suggester

lowercase_terms	/	Additional	term	suggester	options
max_edits	/	Additional	term	suggester	options
prefix_len	/	Additional	term	suggester	options
min_word_len	/	Additional	term	suggester	options
shard_size	/	Additional	term	suggester	options

out-of-the-box	analyzers
standard	/	Out-of-the-box	analyzers
simple	/	Out-of-the-box	analyzers
whitespace	/	Out-of-the-box	analyzers
stop	/	Out-of-the-box	analyzers
keyword	/	Out-of-the-box	analyzers
pattern	/	Out-of-the-box	analyzers
language	/	Out-of-the-box	analyzers
snowball	/	Out-of-the-box	analyzers

www.EBooksWorld.ir

P
parameters,	Boolean	match	query

operator	/	The	Boolean	match	query
analyzer	/	The	Boolean	match	query
fuzziness	/	The	Boolean	match	query
prefix_length	/	The	Boolean	match	query
max_expansions	/	The	Boolean	match	query
zero_terms_query	/	The	Boolean	match	query
cero_terms_query	/	The	Boolean	match	query
lenient	/	The	Boolean	match	query

parameters,	fuzzy	query
value	/	The	fuzzy	query
boost	/	The	fuzzy	query
fuzziness	/	The	fuzzy	query
prefix_length	/	The	fuzzy	query
max_expansions	/	The	fuzzy	query

parameters,	more	like	this	query
fields	/	The	more	like	this	query
like	/	The	more	like	this	query
unlike	/	The	more	like	this	query
in_term_freq	/	The	more	like	this	query
max_query_terms	/	The	more	like	this	query
stop_words	/	The	more	like	this	query
min_doc_freq	/	The	more	like	this	query
min_word_len	/	The	more	like	this	query
max_word_len	/	The	more	like	this	query
boost_terms	/	The	more	like	this	query
boost	/	The	more	like	this	query
include	/	The	more	like	this	query
minimum_should_match	/	The	more	like	this	query
analyzer	/	The	more	like	this	query

parameters,	query	string	query
query	/	The	query	string	query
default_field	/	The	query	string	query
default_operator	/	The	query	string	query
analyzer	/	The	query	string	query
allow_leading_wildcard	/	The	query	string	query
lowercase_expand_terms	/	The	query	string	query
enable_position_increments	/	The	query	string	query
fuzzy_max_expansions	/	The	query	string	query
fuzzy_prefix_length	/	The	query	string	query
phrase_slop	/	The	query	string	query
boost	/	The	query	string	query

www.EBooksWorld.ir

analyze_wildcard	/	The	query	string	query
auto_generate_phrase_queries	/	The	query	string	query
minimum_should_match	/	The	query	string	query
fuzziness	/	The	query	string	query
max_determined_states	/	The	query	string	query
locale	/	The	query	string	query
time_zone	/	The	query	string	query
lenient	/	The	query	string	query

parameters,	range	query
gte	/	The	range	query
gt	/	The	range	query
lte	/	The	range	query
lt	/	The	range	query

parent-child	relationship
using	/	Using	the	parent-child	relationship
index	structure	/	Index	structure	and	data	indexing
data	indexing	/	Index	structure	and	data	indexing
querying	/	Querying
performance	considerations	/	Performance	considerations

parent	aggregations	/	Available	types
pattern	analyzer

URL	/	Out-of-the-box	analyzers
percolator

about	/	Percolator
index	/	The	index
preparing	/	Percolator	preparation
exploring	/	Getting	deeper
returned	results	size,	controlling	/	Controlling	the	size	of	returned	results
using,	for	and	score	calculation	/	Percolator	and	score	calculation
combining,	with	other	functionalities	/	Combining	percolators	with	other
functionalities
matching	queries	count,	obtaining	/	Getting	the	number	of	matching	queries
indexed	documents	percolation	/	Indexed	document	percolation

phrase	match	query
slop	/	The	phrase	match	query
analyzer	/	The	phrase	match	query

phrase	suggester
about	/	Phrase	suggester
configuration	/	Configuration

pipeline	aggregations
about	/	Pipeline	aggregations
URL	/	Pipeline	aggregations
parent	aggregation	family	/	Available	types
sibling	aggregation	family	/	Available	types

www.EBooksWorld.ir

types	/	Available	types,	Pipeline	aggregation	types
other	aggregations,	referencing	/	Referencing	other	aggregations
data,	gaps	/	Gaps	in	the	data

pipeline	aggregations,	types
sum_bucket	/	Min,	max,	sum,	and	average	bucket	aggregations
min_bucket	/	Min,	max,	sum,	and	average	bucket	aggregations
max_bucket	/	Min,	max,	sum,	and	average	bucket	aggregations
avg_bucket	/	Min,	max,	sum,	and	average	bucket	aggregations
cumulative_sum	aggregation	/	Cumulative	sum	aggregation
bucket_selector	aggregation	/	Bucket	selector	aggregation
bucket_script	aggregation	/	Bucket	script	aggregation
serial_diff	aggregation	/	Serial	differencing	aggregation
derivative	aggregation	/	Derivative	aggregation
moving_avg	aggregation	/	Moving	avg	aggregation

plugins
about	/	Elasticsearch	plugins
basics	/	The	basics
installing	/	Installing	plugins
removing	/	Removing	plugins

PostingsHighlighter
URL	/	Under	the	hood
about	/	The	Postings	highlighter

prefix	query	/	The	prefix	query
properties,	fault	detection	ping	settings

discovery.zen.fd.ping_interval	/	Fault	detection	ping	settings
discovery.zen.fd.ping_timeout	/	Fault	detection	ping	settings
discovery.zen.fd.ping_retries	/	Fault	detection	ping	settings

properties,	merge	policy
index.merge.policy.expunge_deletes_allowed	/	The	merge	policy
index.merge.policy.max_merge_at_once	/	The	merge	policy
index.merge.policy.max_merge_at_once_explicit	/	The	merge	policy
index.merge.policy.max_merged_segment	/	The	merge	policy
index.merge.policy.segments_per_tier	/	The	merge	policy
index.merge.policy.reclaim_deletes_weight	/	The	merge	policy

www.EBooksWorld.ir

Q
queries

selecting,	for	warming	/	Choosing	queries	for	warming
query	boost

applying,	to	document	/	The	boost
query	boosts

used,	for	influencing	scores	/	Influencing	scores	with	query	boosts
about	/	The	boost
adding,	to	queries	/	The	boost,	Adding	the	boost	to	queries
score,	modifying	/	Modifying	the	score

querying
data,	in	child	documents	/	Querying	data	in	the	child	documents
data,	in	parent	documents	/	Querying	data	in	the	parent	documents

querying	process
about	/	Understanding	the	querying	process
query	logic	/	Query	logic
search	type,	specifying	/	Search	type
search	execution	preference,	specifying	/	Search	execution	preference
search	shards	API,	specifying	/	Search	shards	API

query	parser
URL	/	Lucene	query	syntax

query	rewrite
about	/	Query	rewrite
prefix	query,	example	/	Prefix	query	as	an	example
Apache	Lucene,	using	/	Getting	back	to	Apache	Lucene
properties	/	Query	rewrite	properties

query	string	query
about	/	The	query	string	query
running,	against	multiple	fields	/	Running	the	query	string	query	against
multiple	fields

www.EBooksWorld.ir

R
Rackspace

URL	/	Cost	and	performance	flexibility
RAID

URL	/	Mass	storage
range	aggregation

about	/	Range	aggregation
keyed	buckets	/	Keyed	buckets

range	query	/	The	range	query
recovery	modules

about	/	The	gateway	and	recovery	modules
recovery	process

about	/	Recovery	control
gateway	recovery	options	/	Additional	gateway	recovery	options
indices	recovery	API	/	Indices	recovery	API
delayed	allocation	/	Delayed	allocation
index	recovery	prioritization	/	Index	recovery	prioritization

regular	expression	query
about	/	Regular	expression	query
URL	/	Regular	expression	query

replica	/	Replicas
replicas,	Elasticsearch	indexing

about	/	Shards	and	replicas
write	consistency,	controlling	/	Write	consistency

REST	API
used,	for	data	manipulation	/	Manipulating	data	with	the	REST	API
about	/	Understanding	the	REST	API
URL	/	Understanding	the	REST	API
data,	storing	in	Elasticsearch	/	Storing	data	in	Elasticsearch
documents,	retrieving	/	Retrieving	documents
documents,	updating	/	Updating	documents
documents,	deleting	/	Deleting	documents
versioning	/	Versioning

results
filtering	/	Filtering	your	results
query	context	/	The	context	is	the	key
explicit	filtering,	bool	query	used	/	Explicit	filtering	with	bool	query

reverse_nested	aggregation
about	/	Reverse	nested	aggregation

rewrite	property,	values
scoring_boolean	/	Query	rewrite	properties
constant_score	/	Query	rewrite	properties
constant_score_boolean	/	Query	rewrite	properties

www.EBooksWorld.ir

top_terms	/	Query	rewrite	properties
top_terms_blended	freqs	/	Query	rewrite	properties
top_terms_boost_N	/	Query	rewrite	properties

right	query
selecting	/	Choosing	the	right	query
use	cases	/	The	use	cases
results,	limiting	to	given	tags	/	Limiting	results	to	given	tags
values	in	range,	searching	/	Searching	for	values	in	a	range

routing
about	/	Introduction	to	routing,	Routing
default	indexing	/	Default	indexing
default	searching	/	Default	searching
parameters	/	The	routing	parameters
fields	/	Routing	fields

RPM	package
used,	for	installing	Elasticsearch	/	Installing	Elasticsearch	using	RPM	packages

www.EBooksWorld.ir

S
sample

distance-based	sorting	/	Distance-based	sorting
bounding	box	filtering	/	Bounding	box	filtering
distance,	limiting	/	Limiting	the	distance

sample	queries
about	/	Sample	queries

sampler	aggregation
about	/	Sampler	aggregation

score
about	/	Introduction	to	Apache	Lucene	scoring
influencing,	with	query	boosts	/	Influencing	scores	with	query	boosts
modifying	/	Modifying	the	score

score,	modifying
about	/	Modifying	the	score
constant_score	query	/	Constant	score	query
boosting	query	/	Boosting	query
function	score	query	/	The	function	score	query

score_mode	parameter
about	/	Structure	of	the	function	query
multiple	value	/	Structure	of	the	function	query
sum	value	/	Structure	of	the	function	query
avg	value	/	Structure	of	the	function	query
first	value	/	Structure	of	the	function	query
max	value	/	Structure	of	the	function	query
min	value	/	Structure	of	the	function	query

script	fields
selecting	/	Using	the	script	fields
parameters,	passing	to	/	Passing	parameters	to	the	script	fields

scripting	capabilities
about	/	Scripting	capabilities	of	Elasticsearch
script	execution,	available	objects	/	Objects	available	during	script	execution
script,	types	/	Script	types
querying,	scripts	used	/	Querying	with	scripts
parameters,	using	/	Scripting	with	parameters
languages,	Groovy	/	Script	languages
other	than	embedded	languages,	using	/	Using	other	than	embedded	languages
native	code,	using	/	Using	native	code

script	properties
script	/	Querying	with	scripts
inline	/	Querying	with	scripts
id	/	Querying	with	scripts
file	/	Querying	with	scripts

www.EBooksWorld.ir

lang	/	Querying	with	scripts
params	/	Querying	with	scripts

scripts,	scripted_metric	aggregation
init_script	/	Scripted	metrics	aggregation
map_script	/	Scripted	metrics	aggregation
combine_script	/	Scripted	metrics	aggregation
reduce_script	/	Scripted	metrics	aggregation

script	types
about	/	Script	types
inline	scripts	/	Script	types,	Inline	scripts
in	file	scripts	/	In	file	scripts
indexed	scripts	/	Indexed	scripts

Scroll	API
about	/	The	Scroll	API
problem	definition	/	Problem	definition
problem	definition,	solution	/	Scrolling	to	the	rescue

searching	/	Default	searching
searching	request	execution	/	Indexing	and	searching
segment	merging

about	/	Introduction	to	segment	merging,	Segment	merging
need	for	/	The	need	for	segment	merging
merge	policy	/	The	merge	policy
merge	policy,	basic	properties	/	The	merge	policy
merge	scheduler	/	The	merge	scheduler
throttling	/	Throttling

shard	allocation
IP	address,	using	for	/	Using	the	IP	address	for	shard	allocation
cancelling	/	Canceling	shard	allocation
forcing	/	Forcing	shard	allocation
multiple	commands	per	HTTP	request	/	Multiple	commands	per	HTTP	request
operations,	allowing	on	primary	shards	/	Allowing	operations	on	primary	shards

shard	and	replica	allocation
controlling	/	Controlling	the	shard	and	replica	allocation
controlling,	explicitly	/	Explicitly	controlling	allocation
node	parameters,	specifying	/	Specifying	node	parameters
configuration	/	Configuration
index,	creating	/	Index	creation
nodes,	excluding	/	Excluding	nodes	from	allocation
node	attributes,	requiring	/	Requiring	node	attributes
number	of	shards	and	replicas	per	node	/	The	number	of	shards	and	replicas	per
node
allocation	throttling	/	Allocation	throttling
cluster	wide	allocation	/	Cluster-wide	allocation
shards	and	replicas,	moving	manually	/	Manually	moving	shards	and	replicas

www.EBooksWorld.ir

rolling	restarts,	handling	/	Handling	rolling	restarts
shard	request	cache

about	/	Shard	request	cache
enabling	/	Enabling	and	configuring	the	shard	request	cache
configuring	/	Enabling	and	configuring	the	shard	request	cache
per	request	shard	request	cache,	disabling	/	Per	request	shard	request	cache
disabling
usage	monitoring	/	Shard	request	cache	usage	monitoring

shards	/	Index,	Shards
moving	/	Moving	shards

shards,	Elasticsearch	indexing
about	/	Shards	and	replicas
write	consistency,	controlling	/	Write	consistency

sibling	aggregations	/	Available	types
significant_terms	aggregation

about	/	Significant	terms	aggregation
significant	terms,	selecting	/	Choosing	significant	terms
multiple	value,	analyzing	/	Multiple	value	analysis

similarity	models
about	/	Different	similarity	models
per-field	similarity,	setting	/	Setting	per-field	similarity
Okapi	BM25	model	/	Available	similarity	models
randomness	model,	divergence	/	Available	similarity	models
information-based	model	/	Available	similarity	models
default	similarity,	configuring	/	Configuring	default	similarity
BM25	similarity,	configuring	/	Configuring	BM25	similarity
DFR	similarity,	configuring	/	Configuring	DFR	similarity
IB	similarity,	configuring	/	Configuring	IB	similarity

simple	query	string	query
about	/	The	simple	query	string	query
URL	/	The	simple	query	string	query

single	Elasticsearch	node
tuning	/	Preparing	a	single	Elasticsearch	node
general	preparations	/	The	general	preparations
field	data	cache	/	Field	data	cache	and	breaking	the	circuit
circuit,	breaking	/	Field	data	cache	and	breaking	the	circuit
doc	values,	using	/	Use	doc	values
RAM	buffer,	used	for	indexing	/	RAM	buffer	for	indexing
index	refresh	rate	/	Index	refresh	rate
thread	pools	/	Thread	pools

snapshots
creating	/	Creating	snapshots
additional	parameters	/	Additional	parameters

snowball	analyzer

www.EBooksWorld.ir

URL	/	Out-of-the-box	analyzers
Software	as	a	Service	(SaaS)	/	SPM	for	Elasticsearch
source	filtering	/	Source	filtering
span	/	A	span
span	first	query	/	Span	first	query
span	near	query	/	Span	near	query
span	not	query	/	Span	not	query
span	or	query	/	Span	or	query
span	queries

using	/	Using	span	queries
span	/	A	span
span_term	query	/	Span	term	query
span	first	query	/	Span	first	query
span	near	query	/	Span	near	query
span	or	query	/	Span	or	query
span	not	query	/	Span	not	query
span_within	query	/	Span	within	query
span_containing	query	/	Span	containing	query
span_multi	query	/	Span	multi	query
performance	considerations	/	Performance	considerations

span_contaning	query	/	Span	containing	query
span_multi	query	/	Span	multi	query
span_term	query	/	Span	term	query
span_within	query	/	Span	within	query
spatial	capabilities

about	/	Elasticsearch	spatial	capabilities
mappings	preparation	/	Mapping	preparation	for	spatial	searches
example	data	/	Example	data
geo_field	properties	/	Additional	geo_field	properties

SPM	tool
URL	/	SPM	for	Elasticsearch

standard	analyzer
URL	/	Out-of-the-box	analyzers

state	and	health,	cluster
monitoring	/	Monitoring	your	cluster’s	state	and	health
cluster	health	API	/	Cluster	health	API
indices	stats	API	/	Indices	stats	API
nodes	info	API	/	Nodes	info	API
nodes	stats	API	/	Nodes	stats	API
cluster	state	API	/	Cluster	state	API
cluster	stats	API	/	Cluster	stats	API
pending	tasks	API	/	Pending	tasks	API
indices	recovery	API	/	Indices	recovery	API
indices	shard	stores	API	/	Indices	shard	stores	API

www.EBooksWorld.ir

indices	segments	API	/	Indices	segments	API
static	properties,	for	indexing	buffer	size	configuration

indices.memory.index_buffer_size	/	Indexing	buffers
indices.memory.min_index_buffer_size	/	Indexing	buffers
indices.memory.max_index_buffer_size	/	Indexing	buffers
indices.memory.min_shard_index_buffer_size	/	Indexing	buffers

status	code	definition
URL	/	Indexing	the	data

stemming
URL	/	Out-of-the-box	analyzers

stop	analyzer
URL	/	Out-of-the-box	analyzers

stop	words
URL	/	The	common	terms	query

string,	index	structure	mapping
term_vector	/	String
analyzer	/	String
search_analyzer	/	String
norms.enabled	/	String
norms.loading	/	String
position_offset_gap	/	String
index_options	/	String
ignore_above	/	String

suggesters
using	/	Using	suggesters
URL	/	Using	suggesters,	Additional	term	suggester	options
types	/	Available	suggester	types
suggestions,	including	/	Including	suggestions
response	/	Suggester	response
text	property	/	Suggester	response
score	property	/	Suggester	response
freq	property	/	Suggester	response

synonym	rules
defining	/	Defining	synonym	rules
Apache	Solr	synonyms,	using	/	Using	Apache	Solr	synonyms
WordNet	synonyms,	using	/	Using	WordNet	synonyms

synonyms
about	/	Words	with	the	same	meaning
filtering	/	Synonym	filter
in	mappings	/	Synonyms	in	the	mappings
storing,	in	filesystem	/	Synonyms	stored	on	the	file	system
rules,	defining	/	Defining	synonym	rules
index-time	synonyms	expansion	/	Query	or	index-time	synonym	expansion
query-time	synonym	expansion	/	Query	or	index-time	synonym	expansion

www.EBooksWorld.ir

synonyms	filter
using	/	Synonym	filter

system-specific	installation	and	configuration
about	/	The	system-specific	installation	and	configuration
Elasticsearch,	installing	on	Linux	/	Installing	Elasticsearch	on	Linux
Elasticsearch,	configuring	as	system	service	on	Linux	/	Configuring
Elasticsearch	as	a	system	service	on	Linux
Elasticsearch,	using	as	system	service	on	Windows	/	Elasticsearch	as	a	system
service	on	Windows

www.EBooksWorld.ir

T
T-Digest	algorithm

URL	/	Percentiles
templates

about	/	Templates
example	/	An	example	of	a	template

term	query	/	The	term	query
terms	aggregation

about	/	Terms	aggregation
approximate	counts	/	Counts	are	approximate
minimum	document	count	/	Minimum	document	count

terms	query	/	The	terms	query
term	suggester

about	/	Term	suggester
configuration	options	/	Term	suggester	configuration	options
options	/	Additional	term	suggester	options

thread	pools
about	/	Thread	pools
generic	/	Thread	pools
index	/	Thread	pools
search	/	Thread	pools
suggest	/	Thread	pools
get	/	Thread	pools
bulk	/	Thread	pools
percolate	/	Thread	pools

throttling,	adjusting
type	setting	/	Throttling
value	/	Throttling
none	value	/	Throttling
merge	value	/	Throttling
all	value	/	Throttling

time	zones
URL	/	Time	zones

tree-like	structures
indexing	/	Indexing	tree-like	structures
data	structure	/	Data	structure
analysis	/	Analysis

type	determining	mechanism
about	/	Type	determining	mechanism
disabling	/	Disabling	the	type	determining	mechanism
tuning,	for	numeric	types	/	Tuning	the	type	determining	mechanism	for	numeric
types
tuning,	for	dates	/	Tuning	the	type	determining	mechanism	for	dates

www.EBooksWorld.ir

type	property,	values
plain	/	Forcing	highlighter	type
fvh	/	Forcing	highlighter	type
postins	/	Forcing	highlighter	type

type	query	/	The	type	query
types,	suggesters

term	/	Available	suggester	types,	Term	suggester
phrase	/	Available	suggester	types,	Phrase	suggester
completion	/	Available	suggester	types,	Completion	suggester
context	/	Available	suggester	types,	Context	suggester

www.EBooksWorld.ir

U
Unicast

URL	/	Discovery	types
update	API

used,	for	modifying	index	structure	/	Modifying	your	index	structure	with	the
update	API

Update	API
URL	/	Adding	partial	documents

update	settings	API
about	/	The	update	settings	API
cluster	settings	API	/	The	cluster	settings	API
indices	settings	API	/	The	indices	settings	API

URI	query	string	parameters
about	/	URI	query	string	parameters
query	/	The	query
default	search	field	/	The	default	search	field
analyzer	property	/	Analyzer
default	operator	/	The	default	operator	property
explain	parameter	/	Query	explanation
fields	returned	/	The	fields	returned
results,	sorting	/	Sorting	the	results
search	timeout	/	The	search	timeout
results	window	/	The	results	window
per	shard	results,	limiting	/	Limiting	per-shard	results
unavailable	indices,	ignoring	/	Ignoring	unavailable	indices
search	type	/	The	search	type
lowercasing	terms	expansion	/	Lowercasing	term	expansion
wildcard	queries	analysis	/	Wildcard	and	prefix	analysis
analyze_wildcard	property	/	Wildcard	and	prefix	analysis
prefix	queries	analysis	/	Wildcard	and	prefix	analysis

URI	request	query
used,	for	searching	/	Searching	with	the	URI	request	query
sample	data	/	Sample	data
URI	search	/	URI	search
analyzing	/	Query	analysis
parameters	/	URI	query	string	parameters
Lucene	query	syntax	/	Lucene	query	syntax

URI	search
about	/	URI	search
Elasticsearch	query	response	/	Elasticsearch	query	response
URL	/	Wildcard	and	prefix	analysis

www.EBooksWorld.ir

V
Validate	API

using	/	Using	the	Validate	API
values,	has_child	query	parameter

none	/	Querying	data	in	the	child	documents
min	/	Querying	data	in	the	child	documents
max	/	Querying	data	in	the	child	documents
sum	/	Querying	data	in	the	child	documents
avg	/	Querying	data	in	the	child	documents

values,	in	range
searching	/	Searching	for	values	in	a	range
matched	documents,	boosting	/	Boosting	some	of	the	matched	documents
lower	scoring	partial	queries,	ignoring	/	Ignoring	lower	scoring	partial	queries
Lucene	query	syntax,	using	in	queries	/	Using	Lucene	query	syntax	in	queries
user	queries	without	errors,	handling	/	Handling	user	queries	without	errors
prefixes,	used	for	providing	autocomplete	functionality	/	Autocomplete	using
prefixes
similar	terms,	finding	/	Finding	terms	similar	to	a	given	one
spans	/	Spans,	spans	everywhere

values,	score_mode	property
avg	/	Scoring	and	nested	queries
sum	/	Scoring	and	nested	queries
min	/	Scoring	and	nested	queries
max	/	Scoring	and	nested	queries
none	/	Scoring	and	nested	queries

versioning
about	/	Versioning
usage	example	/	Usage	example
from	external	system	/	Versioning	from	external	systems

vertical	scaling	/	Preparing	a	single	Elasticsearch	node

www.EBooksWorld.ir

W
warming	query

about	/	Warming	up
defining	/	Defining	a	new	warming	query
defined	warming	queries,	retrieving	/	Retrieving	the	defined	warming	queries
deleting	/	Deleting	a	warming	query
warming	up	functionality,	disabling	/	Disabling	the	warming	up	functionality

wildcard	query	/	The	wildcard	query
Windows

Elasticsearch,	configuring	as	system	service	/	Elasticsearch	as	a	system	service
on	Windows

WordNet
URL	/	Using	WordNet	synonyms

www.EBooksWorld.ir

Z
Zen	discovery

about	/	Zen	discovery
master	election	configuration	/	Master	election	configuration
unicast,	configuring	/	Configuring	unicast
fault	detection	ping	settings	/	Fault	detection	ping	settings
cluster	state	updates	control	/	Cluster	state	updates	control
master	unavailability,	dealing	with	/	Dealing	with	master	unavailability

www.EBooksWorld.ir

	Elasticsearch Server Third Edition
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started with Elasticsearch Cluster
	Full text searching
	The Lucene glossary and architecture
	Input data analysis
	Indexing and querying
	Scoring and query relevance
	The basics of Elasticsearch
	Key concepts of Elasticsearch
	Index
	Document
	Document type
	Mapping
	Key concepts of the Elasticsearch infrastructure
	Nodes and clusters
	Shards
	Replicas
	Gateway
	Indexing and searching
	Installing and configuring your cluster
	Installing Java
	Installing Elasticsearch
	Running Elasticsearch
	Shutting down Elasticsearch
	The directory layout
	Configuring Elasticsearch
	The system-specific installation and configuration
	Installing Elasticsearch on Linux
	Installing Elasticsearch using RPM packages
	Installing Elasticsearch using the DEB package
	Elasticsearch configuration file localization
	Configuring Elasticsearch as a system service on Linux
	Elasticsearch as a system service on Windows
	Manipulating data with the REST API
	Understanding the REST API
	Storing data in Elasticsearch
	Creating a new document
	Automatic identifier creation
	Retrieving documents
	Updating documents
	Dealing with non-existing documents
	Adding partial documents
	Deleting documents
	Versioning
	Usage example
	Versioning from external systems
	Searching with the URI request query
	Sample data
	URI search
	Elasticsearch query response
	Query analysis
	URI query string parameters
	The query
	The default search field
	Analyzer
	The default operator property
	Query explanation
	The fields returned
	Sorting the results
	The search timeout
	The results window
	Limiting per-shard results
	Ignoring unavailable indices
	The search type
	Lowercasing term expansion
	Wildcard and prefix analysis
	Lucene query syntax
	Summary
	2. Indexing Your Data
	Elasticsearch indexing
	Shards and replicas
	Write consistency
	Creating indices
	Altering automatic index creation
	Settings for a newly created index
	Index deletion
	Mappings configuration
	Type determining mechanism
	Disabling the type determining mechanism
	Tuning the type determining mechanism for numeric types
	Tuning the type determining mechanism for dates
	Index structure mapping
	Type and types definition
	Fields
	Core types
	Common attributes
	String
	Number
	Boolean
	Binary
	Date
	Multi fields
	The IP address type
	Token count type
	Using analyzers
	Out-of-the-box analyzers
	Defining your own analyzers
	Default analyzers
	Different similarity models
	Setting per-field similarity
	Available similarity models
	Configuring default similarity
	Configuring BM25 similarity
	Configuring DFR similarity
	Configuring IB similarity
	Batch indexing to speed up your indexing process
	Preparing data for bulk indexing
	Indexing the data
	The _all field
	The _source field
	Additional internal fields
	Introduction to segment merging
	Segment merging
	The need for segment merging
	The merge policy
	The merge scheduler
	Throttling
	Introduction to routing
	Default indexing
	Default searching
	Routing
	The routing parameters
	Routing fields
	Summary
	3. Searching Your Data
	Querying Elasticsearch
	The example data
	A simple query
	Paging and result size
	Returning the version value
	Limiting the score
	Choosing the fields that we want to return
	Source filtering
	Using the script fields
	Passing parameters to the script fields
	Understanding the querying process
	Query logic
	Search type
	Search execution preference
	Search shards API
	Basic queries
	The term query
	The terms query
	The match all query
	The type query
	The exists query
	The missing query
	The common terms query
	The match query
	The Boolean match query
	The phrase match query
	The match phrase prefix query
	The multi match query
	The query string query
	Running the query string query against multiple fields
	The simple query string query
	The identifiers query
	The prefix query
	The fuzzy query
	The wildcard query
	The range query
	Regular expression query
	The more like this query
	Compound queries
	The bool query
	The dis_max query
	The boosting query
	The constant_score query
	The indices query
	Using span queries
	A span
	Span term query
	Span first query
	Span near query
	Span or query
	Span not query
	Span within query
	Span containing query
	Span multi query
	Performance considerations
	Choosing the right query
	The use cases
	Limiting results to given tags
	Searching for values in a range
	Boosting some of the matched documents
	Ignoring lower scoring partial queries
	Using Lucene query syntax in queries
	Handling user queries without errors
	Autocomplete using prefixes
	Finding terms similar to a given one
	Matching phrases
	Spans, spans everywhere
	Summary
	4. Extending Your Querying Knowledge
	Filtering your results
	The context is the key
	Explicit filtering with bool query
	Highlighting
	Getting started with highlighting
	Field configuration
	Under the hood
	Forcing highlighter type
	Configuring HTML tags
	Controlling highlighted fragments
	Global and local settings
	Require matching
	Custom highlighting query
	The Postings highlighter
	Validating your queries
	Using the Validate API
	Sorting data
	Default sorting
	Selecting fields used for sorting
	Sorting mode
	Specifying behavior for missing fields
	Dynamic criteria
	Calculate scoring when sorting
	Query rewrite
	Prefix query as an example
	Getting back to Apache Lucene
	Query rewrite properties
	Summary
	5. Extending Your Index Structure
	Indexing tree-like structures
	Data structure
	Analysis
	Indexing data that is not flat
	Data
	Objects
	Arrays
	Mappings
	Final mappings
	Sending the mappings to Elasticsearch
	To be or not to be dynamic
	Disabling object indexing
	Using nested objects
	Scoring and nested queries
	Using the parent-child relationship
	Index structure and data indexing
	Child mappings
	Parent mappings
	The parent document
	Child documents
	Querying
	Querying data in the child documents
	Querying data in the parent documents
	Performance considerations
	Modifying your index structure with the update API
	The mappings
	Adding a new field to the existing index
	Modifying fields of an existing index
	Summary
	6. Make Your Search Better
	Introduction to Apache Lucene scoring
	When a document is matched
	Default scoring formula
	Relevancy matters
	Scripting capabilities of Elasticsearch
	Objects available during script execution
	Script types
	In file scripts
	Inline scripts
	Indexed scripts
	Querying with scripts
	Scripting with parameters
	Script languages
	Using other than embedded languages
	Using native code
	The factory implementation
	Implementing the native script
	The plugin definition
	Installing the plugin
	Running the script
	Searching content in different languages
	Handling languages differently
	Handling multiple languages
	Detecting the language of the document
	Sample document
	The mappings
	Querying
	Queries with an identified language
	Queries with an unknown language
	Combining queries
	Influencing scores with query boosts
	The boost
	Adding the boost to queries
	Modifying the score
	Constant score query
	Boosting query
	The function score query
	Structure of the function query
	The weight factor function
	Field value factor function
	The script score function
	The random score function
	Decay functions
	When does index-time boosting make sense?
	Defining boosting in the mappings
	Words with the same meaning
	Synonym filter
	Synonyms in the mappings
	Synonyms stored on the file system
	Defining synonym rules
	Using Apache Solr synonyms
	Explicit synonyms
	Equivalent synonyms
	Expanding synonyms
	Using WordNet synonyms
	Query or index-time synonym expansion
	Understanding the explain information
	Understanding field analysis
	Explaining the query
	Summary
	7. Aggregations for Data Analysis
	Aggregations
	General query structure
	Inside the aggregations engine
	Aggregation types
	Metrics aggregations
	Minimum, maximum, average, and sum
	Missing values
	Using scripts
	Field value statistics and extended statistics
	Value count
	Field cardinality
	Percentiles
	Percentile ranks
	Top hits aggregation
	Additional parameters
	Geo bounds aggregation
	Scripted metrics aggregation
	Buckets aggregations
	Filter aggregation
	Filters aggregation
	Terms aggregation
	Counts are approximate
	Minimum document count
	Range aggregation
	Keyed buckets
	Date range aggregation
	IPv4 range aggregation
	Missing aggregation
	Histogram aggregation
	Date histogram aggregation
	Time zones
	Geo distance aggregations
	Geohash grid aggregation
	Global aggregation
	Significant terms aggregation
	Choosing significant terms
	Multiple value analysis
	Sampler aggregation
	Children aggregation
	Nested aggregation
	Reverse nested aggregation
	Nesting aggregations and ordering buckets
	Buckets ordering
	Pipeline aggregations
	Available types
	Referencing other aggregations
	Gaps in the data
	Pipeline aggregation types
	Min, max, sum, and average bucket aggregations
	Cumulative sum aggregation
	Bucket selector aggregation
	Bucket script aggregation
	Serial differencing aggregation
	Derivative aggregation
	Moving avg aggregation
	Predicting future buckets
	The models
	Summary
	8. Beyond Full-text Searching
	Percolator
	The index
	Percolator preparation
	Getting deeper
	Controlling the size of returned results
	Percolator and score calculation
	Combining percolators with other functionalities
	Getting the number of matching queries
	Indexed document percolation
	Elasticsearch spatial capabilities
	Mapping preparation for spatial searches
	Example data
	Additional geo_field properties
	Sample queries
	Distance-based sorting
	Bounding box filtering
	Limiting the distance
	Arbitrary geo shapes
	Point
	Envelope
	Polygon
	Multipolygon
	An example usage
	Storing shapes in the index
	Using suggesters
	Available suggester types
	Including suggestions
	Suggester response
	Term suggester
	Term suggester configuration options
	Additional term suggester options
	Phrase suggester
	Configuration
	Completion suggester
	Indexing data
	Querying indexed completion suggester data
	Custom weights
	Context suggester
	Context types
	Using context
	Using the geo location context
	The Scroll API
	Problem definition
	Scrolling to the rescue
	Summary
	9. Elasticsearch Cluster in Detail
	Understanding node discovery
	Discovery types
	Node roles
	Master node
	Data node
	Client node
	Configuring node roles
	Setting the cluster's name
	Zen discovery
	Master election configuration
	Configuring unicast
	Fault detection ping settings
	Cluster state updates control
	Dealing with master unavailability
	Adjusting HTTP transport settings
	Disabling HTTP
	HTTP port
	HTTP host
	The gateway and recovery modules
	The gateway
	Recovery control
	Additional gateway recovery options
	Indices recovery API
	Delayed allocation
	Index recovery prioritization
	Templates and dynamic templates
	Templates
	An example of a template
	Dynamic templates
	The matching pattern
	Field definitions
	Elasticsearch plugins
	The basics
	Installing plugins
	Removing plugins
	Elasticsearch caches
	Fielddata cache
	Fielddata size
	Circuit breakers
	Fielddata and doc values
	Shard request cache
	Enabling and configuring the shard request cache
	Per request shard request cache disabling
	Shard request cache usage monitoring
	Node query cache
	Indexing buffers
	When caches should be avoided
	The update settings API
	The cluster settings API
	The indices settings API
	Summary
	10. Administrating Your Cluster
	Elasticsearch time machine
	Creating a snapshot repository
	Creating snapshots
	Additional parameters
	Restoring a snapshot
	Cleaning up – deleting old snapshots
	Monitoring your cluster's state and health
	Cluster health API
	Controlling information details
	Additional parameters
	Indices stats API
	Docs
	Store
	Indexing, get, and search
	Additional information
	Nodes info API
	Returned information
	Nodes stats API
	Cluster state API
	Cluster stats API
	Pending tasks API
	Indices recovery API
	Indices shard stores API
	Indices segments API
	Controlling the shard and replica allocation
	Explicitly controlling allocation
	Specifying node parameters
	Configuration
	Index creation
	Excluding nodes from allocation
	Requiring node attributes
	Using the IP address for shard allocation
	Disk-based shard allocation
	Configuring disk based shard allocation
	Disabling disk based shard allocation
	The number of shards and replicas per node
	Allocation throttling
	Cluster-wide allocation
	Allocation awareness
	Forcing allocation awareness
	Filtering
	What do include, exclude, and require mean
	Manually moving shards and replicas
	Moving shards
	Canceling shard allocation
	Forcing shard allocation
	Multiple commands per HTTP request
	Allowing operations on primary shards
	Handling rolling restarts
	Controlling cluster rebalancing
	Understanding rebalance
	Cluster being ready
	The cluster rebalance settings
	Controlling when rebalancing will be allowed
	Controlling the number of shards being moved between nodes concurrently
	Controlling which shards may be rebalanced
	The Cat API
	The basics
	Using Cat API
	Common arguments
	The examples
	Getting information about the master node
	Getting information about the nodes
	Retrieving recovery information for an index
	Warming up
	Defining a new warming query
	Retrieving the defined warming queries
	Deleting a warming query
	Disabling the warming up functionality
	Choosing queries for warming
	Index aliasing and using it to simplify your everyday work
	An alias
	Creating an alias
	Modifying aliases
	Combining commands
	Retrieving aliases
	Removing aliases
	Filtering aliases
	Aliases and routing
	Zero downtime reindexing and aliases
	Summary
	11. Scaling by Example
	Hardware
	Physical servers or a cloud
	CPU
	RAM memory
	Mass storage
	The network
	How many servers
	Cost cutting
	Preparing a single Elasticsearch node
	The general preparations
	Avoiding swapping
	File descriptors
	Virtual memory
	The memory
	Field data cache and breaking the circuit
	Use doc values
	RAM buffer for indexing
	Index refresh rate
	Thread pools
	Horizontal expansion
	Automatically creating the replicas
	Redundancy and high availability
	Cost and performance flexibility
	Continuous upgrades
	Multiple Elasticsearch instances on a single physical machine
	Preventing a shard and its replicas from being on the same node
	Designated node roles for larger clusters
	Query aggregator nodes
	Data nodes
	Master eligible nodes
	Preparing the cluster for high indexing and querying throughput
	Indexing related advice
	Index refresh rate
	Thread pools tuning
	Automatic store throttling
	Handling time-based data
	Multiple data paths
	Data distribution
	Bulk indexing
	RAM buffer for indexing
	Advice for high query rate scenarios
	Shard request cache
	Think about the queries
	Parallelize your queries
	Field data cache and breaking the circuit
	Keep size and shard size under control
	Monitoring
	Elasticsearch HQ
	Marvel
	SPM for Elasticsearch
	Summary
	Index

