

C#	6	and	.NET	Core	1.0Modern	Cross-
Platform	Development

Table	of	Contents

C#	6	and	.NET	Core	1.0

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Hello,	C#!	Welcome,	.NET	Core!

Setting	up	your	development	environment

Using	alternative	C#	IDEs

Using	Visual	Studio	2015	on	Windows	10

Installing	Microsoft	Visual	Studio	2015

Choosing	the	default	installation

Choosing	the	custom	installation

Completing	the	installation

Signing	in	to	Visual	Studio

Choosing	development	settings

Updating	extensions	and	products

Using	older	versions	of	Visual	Studio

Understanding	.NET	Framework,	.NET	Core,	and	.NET	Native

Understanding	.NET	Framework	platform

Understanding	the	Mono	project

Understanding	the	.NET	Core	platform

Streamlining	.NET

The	future	of	.NET

Understanding	the	.NET	Native	platform

Comparing	.NET	technologies

Writing	and	compiling	code	using	the	Developer	Command	Prompt

Writing	code	using	Notepad

Compiling	code	using	the	Developer	Command	Prompt

Fixing	compiler	errors

Decompiling	code	using	ILDASM

Disassembling	compiled	assemblies

Writing	and	compiling	code	using	Microsoft	Visual	Studio	2015

Writing	code	using	Visual	Studio	2015

Compiling	code	using	Visual	Studio

Fixing	mistakes	with	the	error	list

Experimenting	with	C#	Interactive

Other	useful	windows

Targeting	the	.NET	Core

Understanding	the	.NET	Portability	Analyzer

Installing	the	.NET	Portability	Analyzer

Configuring	the	.NET	Portability	Analyzer

Analyzing	a	solution

.NET	Portability	and	this	book

Creating	new	projects	for	the	.NET	Core

Managing	.NET	Core	development	with	Command	Line	Tools

Installing	the	.NET	Command	Line	Tools

Creating	a	.NET	Core	application	using	Command	Line	Tools

Creating	a	.NET	Core	application	using	Visual	Studio	2015

Managing	source	code	with	GitHub

Using	the	Team	Explorer	window

Cloning	a	GitHub	repository

Managing	a	GitHub	repository

Practicing	and	exploring

Exercise	1.1	–	test	your	knowledge

Exercise	1.2	–	practice	managing	Visual	Studio	Windows

Exercise	1.3	–	practice	coding	anywhere

Exercise	1.4	–	explore	topics

Summary

2.	Speaking	C#

Understanding	C#	basics

The	C#	grammar

Statements

Blocks

The	C#	vocabulary

Writing	the	code

Verbs	are	methods

Nouns	are	types,	fields,	and	variables

Counting	types	and	methods

Declaring	variables

Naming	variables

Storing	text

Storing	numbers

Storing	whole	numbers

Storing	real	numbers

Sizes	of	numbers	in	memory

Comparing	double	and	decimal

Storing	Booleans

The	object	type

The	dynamic	type

Local	variables

Inferring	the	type	of	a	local	variable

Making	a	value	type	nullable

Storing	multiple	values	in	an	array

Building	console	applications

Displaying	output	to	the	user

Getting	input	from	the	user

Importing	a	namespace

Simplifying	the	usage	of	the	console	in	C#	6

Reading	arguments	and	working	with	arrays

Operating	on	variables

Experimenting	with	unary	operators

Experimenting	with	arithmetic	operators

Comparison	and	Boolean	operators

Practicing	and	exploring

Exercise	2.1	–	test	your	knowledge

Exercise	2.2	–	practice	number	sizes	and	ranges

Exercise	2.3	–	explore	topics

Summary

3.	Controlling	the	Flow,	Converting	Types,	and	Handling	Exceptions

Selection	statements

The	if-else	statement

The	switch-case	statement

Autoformatting	code

Iteration	statements

The	while	statement

The	do-while	statement

The	for	statement

The	foreach	statement

How	does	the	foreach	statement	actually	work?

Casting	and	converting	between	types

Casting	from	numbers	to	numbers

Using	the	Convert	type

Rounding	numbers

Converting	from	any	type	to	a	string

Parsing	from	strings	to	numbers	or	dates	and	times

Handling	exceptions

The	try-catch	statement

Catching	all	exceptions

Catching	specific	exceptions

The	finally	statement

Simplifying	disposal	with	the	using	statement

Checking	for	overflow

The	checked	statement

The	unchecked	statement

Looking	for	help

MSDN

Getting	the	definition	of	code

StackOverflow

Google

Design	patterns

Practice	and	explore

Exercise	3.1	–	test	your	knowledge

Exercise	3.2	–	explore	loops	and	overflow

Exercise	3.3	–	practice	loops	and	operators

Exercise	3.4	–	practice	exception	handling

Exercise	3.5	–	explore	topics

Summary

4.	Using	Common	.NET	Types

Using	assemblies	and	namespaces

Comparing	.NET	Framework	with	.NET	Core

Base	Class	Libraries	and	CoreFX

Assemblies

Namespaces

Referencing	an	assembly

Referencing	Microsoft	Core	Library

An	example	of	assembly	references

Relating	assemblies	and	namespaces

Importing	a	namespace

Browsing	assemblies	and	namespaces

Relating	C#	keywords	to	.NET	types

Storing	and	manipulating	text

Getting	the	length	of	a	string

Getting	the	characters	of	a	string

Splitting	a	string

Extracting	part	of	a	string

Checking	a	string	for	content

Other	string	members

Building	strings	efficiently

Validating	input	with	regular	expressions

The	syntax	of	a	regular	expression

Examples	of	regular	expressions

Storing	data	with	collections

Understanding	collections

Lists

Dictionaries

Stacks

Queues

Sets

Working	with	lists

Working	with	dictionaries

Sorting	collections

Avoiding	old	collections

Using	specialized	collections

Practicing	and	exploring

Exercise	4.1	–	test	your	knowledge

Exercise	4.2	–	practice	regular	expressions

Exercise	4.3	–	explore	topics

Summary

5.	Using	Specialized	.NET	Types

Debugging	and	diagnostics

Debugging	an	application

Setting	a	breakpoint

The	debugging	toolbar

Debugging	windows

Stepping	through	code

Customizing	breakpoints

Monitoring	performance	and	resource	usage

Evaluating	the	efficiency	of	types

Monitoring	performance	and	memory	use

Measuring	the	efficiency	of	processing	strings

Monitoring	with	Debug	and	Trace

Writing	to	the	default	trace	listener

Configuring	trace	listeners

Configuring	compiler	symbols	for	.NET	Framework

Defining	compiler	symbols	for	.NET	Core

Checking	compiler	symbols

Switching	trace	levels

Unit	testing	an	application

Creating	a	unit	of	code	that	needs	testing

Creating	a	unit	test	project

Running	unit	tests

Internationalizing	an	application

Globalizing	an	application

Localizing	an	application

Interoperating	with	unmanaged	code

Automating	Microsoft	Excel	using	COM	Interop

Accessing	the	Win32	API	with	P/Invoke

Practicing	and	exploring

Exercise	5.1	–	test	your	knowledge

Exercise	5.2	–	practice	using	Debug	and	Trace

Exercise	5.3	–	explore	topics

Summary

6.	Building	Your	Own	Types	with	Object-Oriented	Programming

Talking	about	OOP

Building	class	libraries

Creating	a	class	library	to	share	code

Defining	a	class

Instantiating	a	class

Storing	data	with	fields

Defining	fields

Storing	a	value	using	the	enum	keyword

Storing	multiple	values	using	collections

Making	a	field	static

Making	a	field	constant

Making	a	field	read	only

Initializing	fields	with	constructors

Writing	and	calling	methods

Overloading	methods

Optional	parameters	and	named	arguments

Splitting	classes	using	partial

Controlling	access	with	properties	and	indexers

Defining	read-only	properties

Defining	settable	properties

Defining	indexers

Simplifying	methods	with	operators

Raising	and	handling	events

Calling	methods	using	delegates

Defining	events

Practicing	and	exploring

Exercise	6.1	–	test	your	knowledge

Exercise	6.2	–	practice	writing	mathematical	methods

Exercise	6.3	–	explore	topics

Summary

7.	Implementing	Interfaces	and	Inheriting	Classes

Implementing	interfaces

Common	interfaces

Comparing	objects	when	sorting

Defining	a	separate	comparer

Managing	memory	with	reference	and	value	types

Defining	a	type	using	the	struct	keyword

Releasing	unmanaged	resources

Ensuring	that	dispose	is	called

Inheriting	from	classes

Extending	classes

Hiding	members

Overriding	members

Preventing	inheritance	and	overriding

Polymorphism

Casting	within	inheritance	hierarchies

Implicit	casting

Explicit	casting

Handling	casting	exceptions

Documenting	your	types

Inheriting	and	extending	.NET	types

Inheriting	from	the	Exception	class

Extending	types	when	you	can’t	inherit

Using	static	methods	to	reuse	functionality

Using	extension	methods	to	reuse	functionality

Practice	and	explore

Exercise	7.1	–	test	your	knowledge

Exercise	7.2	–	practice	creating	an	inheritance	hierarchy

Exercise	7.3	–	explore	topics

Summary

8.	Working	with	Relational	Data	Using	the	Entity	Framework

Relational	Database	Management	Systems

Connecting	to	Microsoft	SQL	Server	LocalDb

The	Northwind	sample	database

Choosing	a	.NET	data	provider

Using	ADO.NET

Connecting	to	the	database

Executing	commands	and	reading	result	sets

Loading	a	connection	string	from	configuration

Using	Entity	Framework	6

Building	an	Entity	Framework	6	model

Entity	Framework	Code	First	models

EF	Code	First	conventions

EF	annotation	attributes

EF	Fluent	API

Querying	an	Entity	Data	Model

Logging	SQL	statements

Manipulating	data	with	Entity	Data	Models

Inserting	entities

Updating	entities

Transactions

Defining	an	explicit	transaction

Loading	patterns	with	EF

Lazy	loading	entities

Eager	loading	entities

Explicit	loading	entities

Using	Entity	Framework	Core

Practicing	and	exploring

Exercise	8.1	–	test	your	knowledge

Exercise	8.2	–	explore	the	EF	Core	documentation

Exercise	8.3	–	explore	topics

Summary

9.	Querying	and	Manipulating	Data	with	LINQ

Writing	LINQ	queries

Extending	sequences	with	the	Enumerable	class

Filtering	entities	with	Where

Targeting	a	named	method

Simplifying	the	code	by	removing	the	explicit	delegate	instantiation

Targeting	a	lambda	expression

Sorting	sequences	with	OrderBy

Sorting	by	multiple	properties	with	the	ThenBy	method

Working	with	sets

Projecting	entities	with	Select	statement

Joining	and	grouping

Sweetening	the	syntax	with	syntactic	sugar

Using	multiple	threads	with	Parallel	LINQ

Creating	your	own	LINQ	extension	methods

Working	with	LINQ	to	XML

Generating	XML	using	LINQ	to	XML

Reading	XML	by	using	LINQ	to	XML

Practicing	and	exploring

Exercise	9.1	–	test	your	knowledge

Exercise	9.2	–	practice	querying	with	LINQ

Exercise	9.3	–	explore	topics

Summary

10.	Working	with	Files,	Streams,	and	Serialization

Managing	the	filesystem

Managing	directories

Managing	files

Managing	paths

Getting	file	information

Reading	and	writing	with	streams

Writing	to	text	and	XML	streams

Compressing	streams

Encoding	text

Encoding	strings	as	byte	arrays

Encoding	and	decoding	text	in	files

Serializing	object	graphs

Serializing	with	XML

Deserializing	with	XML

Customizing	the	XML

Serializing	with	JSON

Serializing	with	other	formats

Serializing	with	runtime	serializers

Practice	and	explore

Exercise	10.1	–	test	your	knowledge

Exercise	10.2	–	practice	serializing	as	XML

Exercise	10.3	–	explore	serialization	formats

Exercise	10.4	–	explore	Microsoft’s	System.IO	types

Exercise	10.5	–	explore	topics

Summary

11.	Protecting	Your	Data	and	Applications

Understanding	the	vocabulary	of	protection

Keys	and	key	sizes

IVs	and	block	sizes

Salts

Generating	keys	and	IVs

Encrypting	and	decrypting	data

Encrypting	symmetrically	with	AES

Hashing	data

Hashing	with	SHA256

Signing	data

Signing	with	SHA256	and	RSA

Authenticating	and	authorizing	users

Managing	local	accounts

Authenticating	with	Windows

Authorizing	with	Windows

Practicing	and	exploring

Exercise	11.1	–	test	your	knowledge

Exercise	11.2	–	practice	protecting	data	with	encryption	and	hashing

Exercise	11.3	–	practice	protecting	data	with	decryption

Exercise	11.4	–	explore	topics

Summary

12.	Improving	Performance	and	Scalability	with	Multitasking

Understanding	processes	and	threads

Running	tasks	asynchronously

Running	multiple	actions	synchronously

Running	multiple	actions	asynchronously	using	tasks

Waiting	for	tasks

Continuing	with	another	task

Nested	and	child	tasks

The	async	and	await	keywords

Creating	a	GUI	that	blocks

Creating	a	GUI	that	doesn’t	block

Other	types	with	Async	methods

await	in	catch	blocks

Improving	scalability	for	client-server	applications

Synchronizing	access	to	shared	resources

Accessing	a	resource	from	multiple	threads

Applying	a	mutually	exclusive	lock	to	a	resource

Understanding	the	lock	statement

Making	operations	atomic

Applying	other	types	of	synchronization

Practicing	and	exploring

Exercise	12.1	–	test	your	knowledge

Exercise	12.2	–	explore	topics

Summary

13.	Building	Universal	Windows	Platform	Apps	Using	XAML

Understanding	the	UWP

Adapting	your	app’s	layout

Taking	advantage	of	unique	device	capabilities

Understanding	XAML

Simplifying	code	using	XAML

Creating	a	Windows	desktop	application	using	WPF

Choosing	common	controls

Creating	an	app	for	the	Universal	Windows	Platform

Analyzing	UWP	portability

Using	resources	and	templates 

Sharing	resources

Replacing	a	control	template

Data	binding

Binding	to	elements

Binding	to	data

Animating	with	storyboards

Testing	in	emulators

Practicing	and	exploring

Exercise	13.1	–	test	your	knowledge

Exercise	13.2	–	practice	building	a	universal	tip	calculator

Exercise	13.3	–	explore	topics

Summary

14.	Building	Web	Applications	and	Services	Using	ASP.NET	Core

Understanding	ASP.NET	Core

Classic	ASP.NET	versus	modern	ASP.NET	Core

Client-side	web	development

Install	Web	Essentials	2015

The	HyperText	Transfer	Protocol	(HTTP)

Create	a	web	application	project

Exploring	the	parts	of	an	ASP.NET	Core	web	application

ASP.NET	Core	startup

Understanding	the	default	route

ASP.NET	Core	controllers

Defining	the	Home	controller’s	actions

ASP.NET	Core	models

Create	Entity	models	for	Northwind

Configure	Entity	Framework	Core	as	a	service

Create	view	models	for	requests

Fetch	the	model	in	the	controller

ASP.NET	Core	views

Rendering	the	Home	controller’s	views

Sharing	layouts	between	views

Defining	custom	styles

Defining	a	typed	view

Taking	ASP.NET	Core	further

Passing	parameters	using	a	route	value

Passing	parameters	using	a	query	string

Annotating	models

ASP.NET	Core	Web	API

Scaffolding	an	API	controller

Calling	a	Web	API	service	from	a	UWP	app

Practicing	and	exploring

Exercise	14.1	–	test	your	knowledge

Exercise	14.2	–	practice	building	a	data-driven	web	application

Exercise	14.3	–	explore	topics

Summary

15.	Taking	C#	Cross-Platform

Understanding	cross-platform	development

Visual	Studio	Code

.NET	Core	1.0

ASP.NET	Core	1.0

Entity	Framework	Core	1.0

.NET	Native

Xamarin

Cross-device	Universal	Windows	Platform	(UWP)

Installing	Visual	Studio	Code	and	ASP.NET	Core

Installing	Visual	Studio	Code

Managing	development	from	the	terminal

Installing	Homebrew

Installing	ASP.NET	Core	and	the	.NET	Version	Manager

Listing	the	installed	versions	of	.NET

Switching	from	Mono	to	.NET	Core

Building	a	console	application

Creating	the	source	files

Editing	the	code

Downloading	dependency	packages	and	compiling

Building	cross-platform	web	applications	using	ASP.NET	Core

Creating	the	simplest	ASP.NET	Core	web	application

Installing	Yeoman	and	related	tools

Scaffolding	projects	using	Yeoman

Editing	projects	using	Visual	Studio	Code

Understanding	the	.NET	Core	command-line	tools

Understanding	the	DNX	tools

Understanding	the	CLI	tools

Common	DNX	commands

Common	CLI	commands

Practicing	and	exploring

Exercise	15.1	–	test	your	knowledge

Exercise	15.2	–	practice	transferring	an	existing	ASP.NET	application

Exercise	15.3	–	explore	topics

Summary

16.	Building	a	Quiz

Designing	the	quiz	application

Choosing	the	platform

Deciding	the	functional	requirements

Separating	concerns

Building	the	quiz	solution

Defining	the	entity	models

Creating	the	data	repository

Creating	the	web	application

Defining	view	models

Adding	sample	quiz	questions

Configuring	session	state

Adding	custom	controller	actions

Adding	custom	views

Running	the	quiz

Configuring	the	project	to	use	Kestrel	and	.NET	Core

Hosting	ASP.NET	Core	web	apps	in	Microsoft	Azure

Register	an	Azure	account

Create	an	Azure	web	app

Publishing	an	ASP.NET	web	application	to	the	Web	App

Practicing	and	exploring

Exercise	16.1	–	test	your	knowledge

Exercise	16.2	–	practice	by	extending	the	quiz	web	app

Exercise	16.3	–	explore	topics

Summary

A.	Answers	to	the	Test	Your	Knowledge	Questions

Chapter	1	–	Hello,	C#!	Welcome,	.NET	Core!

Chapter	2	–	Speaking	C#

Chapter	3	–	Controlling	the	Flow,	Converting	Types,	and	Handling	Exceptions

Exercise	3.2

Chapter	4	–	Using	Common	.NET	Types

Chapter	5	–	Using	Specialized	.NET	Types

Chapter	6	–	Building	Your	Own	Types	with	Object-Oriented	Programming

Chapter	7	–	Implementing	Interfaces	and	Inheriting	Classes

Chapter	8	–	Working	with	Relational	Data	Using	the	Entity	Framework

Chapter	9	–	Querying	and	Manipulating	Data	with	LINQ

Chapter	10	–	Working	with	Files,	Streams,	and	Serialization

Chapter	11	–	Protecting	Your	Data	and	Applications

Chapter	12	–	Improving	Performance	and	Scalability	with	Multitasking

Chapter	13	–	Building	Universal	Windows	Platform	Apps	Using	XAML

Chapter	14	–	Building	Web	Applications	and	Services	Using	ASP.NET	Core

Chapter	15	–	Taking	C#	Cross-Platform

Chapter	16	–	Building	a	Quiz

B.	Creating	a	Virtual	Machine	for	Your	Development	Environment

Signing	up	for	a	Microsoft	account

Creating	a	Microsoft	Azure	subscription

Managing	your	Microsoft	Azure	account

Creating	a	virtual	machine

Connecting	to	your	virtual	machine	using	remote	desktop

Supporting	other	platforms

Summary

Index

C#	6	and	.NET	Core	1.0Modern	Cross-
Platform	Development

C#	6	and	.NET	Core	1.0
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1180316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-569-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Mark	J.	Price

Reviewers

Dustin	Heffron

Liviu	Ignat

Efraim	Kyriakidis

Commissioning	Editor

Edward	Gordon

Acquisition	Editor

Kirk	D’Costa

Content	Development	Editor

Pooja	Mhapsekar

Technical	Editor

Vivek	Pala

Copy	Editor

Pranjali	Chury

Project	Coordinator

Francina	Pinto

Proofreader

Safis	Editing

Indexer

Tejal	Soni

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Mark	J.	Price	is	a	Microsoft	Certified	Trainer	(MCT)	and	Microsoft	Specialist,
Programming	in	C#	and	Architecting	Microsoft	Azure	Solutions,	with	more	than	20	years
of	educational	and	programming	experience.

Since	1993,	Mark	has	passed	more	than	90	Microsoft	programming	exams	and	specializes
in	preparing	others	to	pass	them	too.	His	students	range	from	professionals	with	decades
of	experience	to	16-year-old	apprentices	with	no	experience	at	all.	He	successfully	guides
all	of	them	by	combining	educational	skills	with	real-world	experience,	consulting	on	and
developing	systems	for	enterprises	worldwide.

Between	2001	and	2003,	Mark	was	employed	full-time	to	write	official	courseware	for
Microsoft	in	Redmond,	USA.	His	team	wrote	the	first	training	courses	for	C#	and	.NET
while	they	were	still	an	early	alpha	version.	While	with	Microsoft,	he	delivered	“train-the-
trainer”	classes	to	get	other	MCTs	up	to	speed	in	C#	and	.NET.

In	2010,	Mark	took	a	postgraduate	certificate	in	education	(PGCE).	He	taught	GCSE	and
A-level	mathematics	in	two	secondary	schools	in	London.	Mark	holds	a	Computer
Science	BSc	(Hons)	degree	from	the	University	of	Bristol,	UK.

I’d	like	to	thank	my	parents,	Pamela	and	Ian,	for	raising	me	to	be	polite,	hardworking,	and
curious	about	the	world.	I’m	grateful	to	my	sisters,	Emily	and	Juliet,	for	loving	me	despite
being	their	awkward	older	brother.	I’d	also	like	to	express	my	gratitude	to	my	friends	and
colleagues	who	inspire	me	technically	and	creatively.	Lastly,	thanks	to	all	the	students	I
have	taught	over	the	years	for	making	me	strive	to	be	a	better	teacher,	especially	Jared.

About	the	Reviewers
Dustin	Heffron	is	a	software	engineer	by	day	and	an	independent	game	developer	by
night.	He	has	over	10	years	of	experience	programming	in	various	languages	and	7	years
of	experience	working	with	C#	and	.NET.

Currently,	Dustin	works	as	a	software	engineer	for	Johnson	Controls	Inc.	He	is	also	the
cofounder	and	CEO	of	SunFlake	Studios,	which	was	founded	in	late	2015.	He	released	his
first	commercial	game,	Squash	Master,	in	early	2016	and	is	planning	to	develop	additional
games	in	the	coming	months	and	years.

Dustin	has	a	long	history	of	reviewing	for	Packt	Publishing,	including	the	book	XNA	4.0
Game	Development	by	Example:	Beginner’s	Guide	and	the	video	tutorial	series	XNA	3D
Programming	by	Example.	He	also	coauthored	the	video	tutorial	series	XNA	3D	Toolkit
with	Larry	Louisiana.

Liviu	Ignat	is	a	full-stack	developer	and	architect,	technology	geek,	and	entrepreneur,
who	has	been	writing	commercial	software	since	2004.	He	started	with	VB6,	soon	moved
to	.NET	Java,	and	then	continued	by	moving	to	front-end	web	development.	He	has	fun
with	everything	that	is	a	functional	language,	such	as	F#,	Scala,	Swift,	JavaScript,	and	so
on.

Currently,	he	is	a	senior	software	engineer	at	AppDirect	(http://appdirect.com),	Munich,
and	he	is	also	the	CTO	of	his	own	startup	(http://giftdoodle.com).	He	has	been	involved	in
building	distributed	backend	services,	mostly	with	.NET	and	complex	single-page	web
apps.	He	is	a	big	fan	of	microservices	with	C#,	NodeJS,	Scala,	and	Docker,	single-page
apps,	and	native	apps	with	Android	and	IOS.

When	he	is	not	coding,	Liviu	loves	snowboarding	during	the	winter,	sailing	to	exotic
places	during	the	summer,	or	just	traveling	the	world.	You	can	find	and	contact	him	at
http://ignat.email/.

Efraim	Kyriakidis	is	a	skilled	software	engineer	with	over	10	years	of	experience	in
developing	and	delivering	software	solutions	for	diverse	customers	and	projects.	He’s
well-versed	in	all	stages	of	the	software	development	lifecycle.	His	first	acquaintance	with
computers	and	programming	was	a	state	of	the	art	Commodore	64,	back	in	the	’80s	as	a
kid.	Since	then,	he	has	grown	up	and	received	his	diploma	as	Electro	technic	engineer
from	Aristotle	University	Thessaloniki	in	Greece.	Through	out	his	career	he	has	mainly
worked	with	Microsoft	technologies,	using	C#	and	.NET	since	.NET	1.0.	He	currently
works	for	Siemens	AG	in	Germany	as	a	software	developer.

http://appdirect.com
http://giftdoodle.com
http://ignat.email/

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
There	are	many	C#	books,	some,	more	than	a	thousand	pages	long,	that	aim	to	be
comprehensive	references	to	the	C#	programming	language	and	the	.NET	Framework.

This	book	is	different—it	is	concise	and	aims	to	be	a	fast-paced	read	that	is	packed	with
hands-on	walkthroughs.	I	wrote	this	book	to	be	the	best	step-by-step	guide	to	modern
cross-platform	C#	and	.NET	proven	practices.

I	will	point	out	the	cool	corners	and	gotchas	of	C#	so	you	can	impress	colleagues	and
employers	and	quickly	get	productive.	Rather	than	slowing	down	and	boring	some	of	you
by	explaining	every	little	thing,	I	assume	that	if	a	term	I	use	is	new	to	you,	then	you	know
how	to	Google	it	with	a	search	engine	such	as	DuckDuckGo.

At	the	end	of	each	chapter,	there	is	a	section	entitled	Practicing	and	Exploring,	which
contains	questions	to	test	your	knowledge,	and	usually	a	hands-on	practical	exercise,	and
you	will	explore	topics	in	depth	on	your	own	with	a	little	nudge	in	the	right	direction	from
me.

You	can	download	solutions	for	the	exercises	from	the	GitHub	repository	at
https://github.com/markjprice/cs6dotnetcore.	I	will	provide	instructions	on	how	to	do	this
using	Visual	Studio	2015	at	the	end	of	Chapter	1,	Hello	C#!,	Welcome	.NET	Core!.

https://github.com/markjprice/cs6dotnetcore

What	this	book	covers
Chapter	1,	Hello	C#!,	Welcome	.NET	Core!,	is	about	setting	up	your	development
environment	and	using	various	tools	to	create	the	simplest	application	possible	with	C#.
You	will	learn	how	to	compile	C#	code	at	the	Command	Prompt	and	how	to	write	and
compile	code	using	Visual	Studio.	You	will	also	learn	about	the	different	.NET	platforms:
.NET	Framework,	.NET	Core,	and	.NET	Native.

Chapter	2,	Speaking	C#,	is	about	the	C#	language,	the	grammar	and	vocabulary	that	you
will	use	every	day	to	write	the	source	code	for	your	applications.	In	particular,	you	will
learn	how	to	declare	and	work	with	variables	of	different	types.

Chapter	3,	Controlling	the	Flow,	Converting	Types,	and	Handling	Exceptions,	is	about
writing	code	that	makes	decisions,	repeats	blocks	of	statements,	converts	between	types,
and	handles	errors.	You	will	also	learn	the	best	places	to	look	for	help.

Chapter	4,	Using	Common	.NET	Types,	is	about	how	.NET	types	are	related	to	C#.	You
will	learn	about	.NET	Framework,	.NET	Core,	and	their	class	library	assemblies	of	types
that	allow	your	applications	to	connect	together	existing	components	to	perform	common
practical	tasks.

Chapter	5,	Using	Specialized	.NET	Types,	is	about	.NET	types	used	to	diagnose	problems,
support	multiple	languages	and	cultures,	and	access	features	and	applications	outside	of
.NET.

Chapter	6,	Building	Your	Own	Types	with	Object-Oriented	Programming,	is	about	all	the
different	categories	of	members	that	a	type	can	have,	including	fields	for	storing	data	and
methods	for	performing	actions.	You	will	use	OOP	concepts	such	as	aggregation	and
encapsulation.

Chapter	7,	Implementing	Interfaces	and	Inheriting	Classes,	is	about	deriving	new	types
from	existing	ones	using	OOP.	You	will	learn	how	to	implement	interfaces,	about	base	and
derived	classes,	how	to	override	a	type	member,	how	to	use	polymorphism,	and	how	to
cast	between	classes	in	an	inheritance	hierarchy.

Chapter	8,	Working	with	Relational	Data	Using	the	Entity	Framework,	is	about	reading
and	writing	to	Microsoft	SQL	Server	(and	other	databases)	using	classic	ADO.NET	and
the	object-relational	mapping	technology	known	as	Entity	Framework.

Chapter	9,	Querying	and	Manipulating	Data	with	LINQ,	is	about	Language	Integrated
Queries	(LINQ)—language	extensions	that	add	the	ability	to	work	with	sequences	of
items,	and	filter,	sort,	and	project	them	into	different	outputs.

Chapter	10,	Working	with	Files,	Streams,	and	Serialization,	is	about	reading	and	writing	to
files	and	streams,	text	encoding,	and	serialization.

Chapter	11,	Protecting	Your	Data	and	Applications,	is	about	protecting	your	data	using
encryption	and	hashing,	and	checking	who	is	running	your	application	and	what	they	are
allowed	to	do.

Chapter	12,	Improving	Performance	and	Scalability	with	Multitasking,	is	about	allowing
multiple	actions	to	be	executed	at	the	same	time	to	improve	performance,	scalability,	and
user	productivity.

Chapter	13,	Building	Universal	Windows	Platform	Apps	Using	XAML,	is	about	learning
the	basics	of	XAML,	which	can	be	used	to	define	the	user	interface	for	a	graphical	app	for
the	Universal	Windows	Platform	(UWP).	This	app	can	then	run	on	Windows	10,	Windows
10	Mobile,	Xbox	One,	and	even	HoloLens.

Chapter	14,	Building	Web	Applications	and	Services	Using	ASP.NET	Core,	is	about
building	web	applications	and	services	using	a	modern	HTTP	architecture	on	the	server
side	using	Microsoft	ASP.NET	Core	1.0.	You	will	learn	about	the	models,	views,	and
controllers	that	make	up	MVC	and	the	Web	API.

Chapter	15,	Taking	C#	Cross-Platform,	is	about	introducing	you	to	how	you	can	take	C#
cross-platform	using	.NET	Core,	ASP.NET	Core	1.0,	Entity	Framework	Core	1.0,	and
Visual	Studio	Code.

Chapter	16,	Building	a	Quiz,	is	about	designing	and	building	a	quiz	application	that	helps
students	learn	C#,	.NET	Core,	and	related	topics.

Appendix	A,	Answers	to	the	Test	Your	Knowledge	Questions,	has	the	answers	to	the	test
questions	at	the	end	of	each	chapter.

Appendix	B,	Creating	a	Virtual	Machine	for	Your	Development	Environment,	shows	how
to	set	up	a	virtual	machine	in	Microsoft	Azure	for	use	as	a	development	environment.

What	you	need	for	this	book
Although	you	can	develop	and	deploy	C#	on	many	platforms,	including	Mac	OS	X	and
Linux,	for	the	best	learning	experience,	you	need	two	pieces	of	software:

Microsoft	Windows	10
Microsoft	Visual	Studio	Community	2015	with	Update	1	(or	later)

The	best	version	of	Windows	to	use	is	Microsoft	Windows	10	because	you	need	this
version	to	create	Universal	Windows	Platform	apps	in	Chapter	13,	Building	Universal
Windows	Platform	Apps	Using	XAML.	Earlier	versions	of	Windows,	such	as	7	or	8.1,	will
work	for	all	other	chapters.	If	you	don’t	have	a	Windows	computer,	then	you	can	use	a
virtual	machine	running	Windows	in	the	cloud.	Refer	to	Appendix	B,	Creating	a	Virtual
Machine	for	Your	Development	Environment	for	instructions.

The	best	version	of	Visual	Studio	to	use	is	Microsoft	Visual	Studio	Community	2015	with
Update	1	(or	later),	which	is	the	version	I	used	while	writing	this	book.	In	Chapter	15,
Taking	C#	Cross-Platform,	I	will	introduce	you	to	Visual	Studio	Code,	which	runs	on
Windows,	Linux,	and	Mac	OS	X,	and	can	create	cross-platform	applications	for	all	these
OSes.

Who	this	book	is	for
If	you	have	heard	that	C#	is	a	popular	general-purpose,	cross-platform	programming
language	used	to	create	everything	from	business	applications,	websites,	and	services	to
games	for	mobile	devices,	Xbox	One,	and	the	Windows	10	desktop-to-tablet-to-phone
platform,	then	this	book	is	for	you.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	”	The
code	you	will	write	will	be	stored	in	the	file	named	Program.cs.”

A	block	of	code	is	set	as	follows:

//	the	best	nieces	and	nephews	in	the	world

names[0]	=	"Kate";

names[1]	=	"Jack";

names[2]	=	"Rebecca";

names[3]	=	"Tom";

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

//	the	best	nieces	and	nephews	in	the	world

names[0]	=	"Kate";

names[1]	=	"Jack";

names[2]	=	"Rebecca";

names[3]	=	"Tom";	

Any	command-line	input	or	output	is	written	as	follows:

csc	my.cs	/target:library

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“In	Visual	Studio,	from
the	View	menu,	choose	Other	Windows,	and	then	C#	Interactive.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Hello,	C#!	Welcome,	.NET
Core!
This	chapter	is	about	setting	up	your	development	environment,	understanding	the
similarities	and	differences	between	.NET	Core,	.NET	Framework,	and	.NET	Native,	and
using	various	tools	to	create	the	simplest	application	possible	with	C#.

Most	people	learn	complex	topics	by	imitation	and	repetition	rather	than	reading	a	detailed
explanation	of	theory.	So,	I	will	not	explain	every	keyword	and	step.	The	idea	is	to	get	you
to	write	some	code,	build	an	application,	and	see	it	run.	You	don’t	need	to	know	the	details
of	how	it	all	works	yet.

In	the	words	of	Samuel	Johnson,	author	of	the	English	dictionary	of	1755,	I	have	likely
committed	“a	few	wild	blunders,	and	risible	absurdities,	from	which	no	work	of	such
multiplicity	is	free.”	I	take	sole	responsibility	for	these	and	hope	you	appreciate	the
challenge	of	my	attempt	to	“lash	the	wind”	by	writing	this	book	about	.NET	Core	1.0
during	its	rocky	birth	in	the	early	months	of	2016.

This	chapter	covers	the	following	topics:

Setting	up	your	development	environment
Understanding	the	.NET	Framework,	.NET	Core,	and	.NET	Native
Writing	and	compiling	code	by	using	the	Developer	Command	Prompt
Writing	and	compiling	code	by	using	Microsoft	Visual	Studio	2015
Targeting	the	.NET	Core
Managing	source	code	with	GitHub

Setting	up	your	development	environment
Before	you	start	programming,	you	will	need	to	set	up	your	Interactive	Development
Environment	(IDE)	that	includes	a	code	editor	for	C#.	The	best	IDE	to	choose	is
Microsoft	Visual	Studio	2015,	but	it	only	runs	on	the	Windows	operating	system.

Using	alternative	C#	IDEs
There	are	alternative	IDEs	for	C#,	for	example,	MonoDevelop,	JetBrains	Project	Rider,
and	Microsoft	Visual	Studio	Code.	They	each	have	versions	available	for	Windows,
Linux,	and	Mac	OS	X,	allowing	you	to	write	code	on	one	operating	system	and	deploy	to
the	same,	or	a	different,	one:

For	MonoDevelop	IDE,	visit	http://www.monodevelop.com/
For	JetBrains	Project	Rider,	visit	http://blog.jetbrains.com/dotnet/2016/01/13/project-
rider-a-csharp-ide/
For	Microsoft	Visual	Studio	Code,	visit	https://code.visualstudio.com/

Cloud9	is	a	web	browser-based	IDE,	so	it’s	even	more	cross-platform	than	the	others.	here
is	the	link:

https://c9.io/web/sign-up/free

In	Chapter	15,	Taking	C#	Cross-Platform,	I	will	show	you	how	to	use	Visual	Studio	Code
running	on	Mac	OS	X	to	create	an	ASP.NET	Core	1.0	web	application	that	can	be
deployed	to	Windows,	Mac	OS	X,	or	Linux	operating	systems,	or	to	Docker	containers.

Tip
Linux	and	Docker	are	popular	server	host	platforms	because	they	are	relatively
lightweight	and	more	cost-effectively	scalable	when	compared	to	operating	system
platforms	that	are	designed	for	end	users,	such	as	Windows	and	Mac	OS	X.

http://www.monodevelop.com/
http://blog.jetbrains.com/dotnet/2016/01/13/project-rider-a-csharp-ide/
https://code.visualstudio.com/
https://c9.io/web/sign-up/free

Using	Visual	Studio	2015	on	Windows	10
You	can	use	Windows	7	or	later	to	complete	most	of	the	chapters	in	this	book,	but	you	will
have	a	better	experience	if	you	use	Windows	10.

Tip
If	you	don’t	have	Windows,	I	recommend	that	you	create	a	virtual	machine	(VM)	to	use
for	development.	You	can	choose	any	cloud	provider,	but	Microsoft	Azure	has
preconfigured	VMs	that	include	properly	licensed	Windows	and	Visual	Studio	2015.	You
only	pay	for	the	minutes	your	VM	is	running,	so	it	is	a	way	for	users	of	Linux,	Mac	OS	X,
and	older	Windows	versions	to	have	all	the	benefits	of	using	Visual	Studio	2015.	Refer	to
Appendix	B,	Creating	a	Virtual	Machine	for	Your	Development	Environment	for	more
information.

Since	October	2014,	Microsoft	has	made	a	professional-quality	edition	of	Visual	Studio
available	to	everyone	for	free.	It	is	called	the	Community	Edition.

Tip
Microsoft	has	combined	all	its	free	developer	offerings	in	a	program	called	Visual	Studio
Dev	Essentials.	This	includes	the	Community	Edition,	the	free	level	of	Visual	Studio
Team	Services,	Azure	credits	for	test	and	development,	and	free	training	from	Pluralsight,
Wintellect,	and	Xamarin.

Installing	Microsoft	Visual	Studio	2015
Download	and	install	Microsoft	Visual	Studio	Community	2015	with	Update	1	or
higher.

Choosing	the	default	installation
If	you	prefer	a	smaller,	faster	installation	then	choose	Default	because	it	only	requires	8
GB	and	should	complete	the	installation	in	about	an	hour.	With	this	choice,	as	shown	in
the	following	screenshot,	you	will	be	able	to	complete	the	first	two-thirds	of	this	book.	To
complete	the	rest	of	the	book,	you	can	later	add	additional	features,	such	as	support	for
building	Universal	Windows	Platform	(UWP)	apps,	via	Programs	and	Features	in	the
Control	Panel:

If	you	chose	Default,	then	skip	to	the	Completing	the	Installation	section.

Choosing	the	custom	installation

If	you	have	34	GB	of	free	disk	space	and	can	wait	for	several	hours,	then	in	the
installation	dialog,	choose	Custom,	and	then	click	on	Next.	Select	the	following	features:

Under	Windows	and	Web	Development,	tick	the	following	checkboxes:

Microsoft	SQL	Server	Data	Tools
Microsoft	Web	Developer	Tools
Universal	Windows	App	Development	Tools

Under	Cross	Platform	Mobile	Development,	tick	the	following	checkbox:

C#/.NET	(Xamarin)

Under	Common	Tools,	tick	the	following	checkboxes:

Git	for	Windows
GitHub	Extension	for	Visual	Studio

Click	on	Next:

Note
If	you	have	the	Home	edition	of	Windows	10,	then	you	will	not	be	able	to	install
emulators	for	Windows	Phone	because	they	require	Hyper-V	support.

Tip
You	can	choose	to	install	everything	if	you	want	support	for	languages	such	as	C++,
Python,	and	F#,	but	these	will	not	be	covered	in	this	book.

Completing	the	installation
On	the	license	terms	dialog,	click	on	Install.	Wait	for	the	files	to	download	and	install.

Tip
While	you	wait	for	Visual	Studio	to	install,	you	can	jump	to	the	Understanding	.NET
Framework,	.NET	Core,	and	.NET	Native	section	in	this	chapter.

Signing	in	to	Visual	Studio
The	first	time	that	you	run	Visual	Studio,	you	will	be	prompted	to	sign	in:

If	you	have	a	Microsoft	account,	for	example,	a	Hotmail,	MSN,	Live,	or	Outlook	e-mail
address,	you	can	use	that	account.	If	you	don’t,	then	register	for	a	new	one	at	the	following
link:

https://signup.live.com/

https://signup.live.com/

Choosing	development	settings
After	signing	in,	you	will	be	prompted	to	choose	Development	Settings.	Choose	Visual
C#	to	configure	keyboard	shortcuts	and	a	default	window	layout	that	works	best	for	C#
programmers,	as	shown	in	the	following	screenshot:

After	you	click	on	Start	Visual	Studio,	you	will	see	the	Visual	Studio	user	interface	with
the	Start	Page	open	in	the	central	area.	Like	most	Windows	desktop	applications,	Visual
Studio	has	a	menu	bar,	a	toolbar	for	common	commands,	and	a	status	bar	at	the	bottom.
On	the	right	is	the	Solution	Explorer	window	that	will	list	all	of	your	open	projects,	as
shown	in	the	following	screenshot:

To	have	quick	access	to	Visual	Studio	in	the	future,	right-click	on	its	entry	in	the	Windows
taskbar	and	select	Pin	this	program	to	taskbar:

Updating	extensions	and	products
In	the	top-right	corner	of	Visual	Studio,	you	will	see	a	flag	that	has	a	number	next	to	it.
These	are	notifications	of	extensions	and	product	updates.

Click	on	the	flag	to	display	the	Notifications	window,	as	shown	in	the	following
screenshot:

In	the	Notifications	window,	click	on	each	entry	to	install	the	update.	You	can	install	these
updates	at	a	later	time	if	you	prefer,	but	it	is	best	to	keep	your	software	up-to-date	to	avoid
bugs	and	security	holes.	The	following	screenshot	shows	an	extension	downloading	and
installing:

Using	older	versions	of	Visual	Studio
If	you	want	to	use	a	free	version	of	Visual	Studio	older	than	2015,	then	you	can	use	one	of
the	more	limited	Express	editions.	A	lot	of	the	code	in	this	book	will	work	with	older
versions	if	you	bear	in	mind	when	the	following	features	were	introduced:

Year C# Features

2005 2 Generics	with	<T>

2008 3 Lambda	expressions	with	=>	and	manipulating	sequences	with	LINQ	(from,	in,	where,	orderby,	ascending,
descending,	select,	group,	into)

2010 4 Dynamic	typing	with	dynamic	and	multithreading	with	Task

2012 5 Simplifying	multithreading	with	async	and	await

2015 6 string	interpolation	with	$"",	importing	static	types	with	using	static,	and	other	refinements.

Understanding	.NET	Framework,	.NET
Core,	and	.NET	Native
.NET	Framework,	.NET	Core,	and	.NET	Native	are	related	platforms	for	developers	to
build	applications	and	services	upon.

Understanding	.NET	Framework	platform
Microsoft’s	.NET	Framework	is	a	development	platform	that	includes	a	Common
Language	Runtime	(CLR)	that	manages	the	execution	of	code	and	a	rich	library	of	classes
for	building	applications.

Microsoft	designed	the	.NET	Framework	to	have	the	possibility	of	being	cross-platform,
but	Microsoft	put	their	implementation	effort	into	making	it	work	best	with	Windows.

Practically	speaking,	the	.NET	Framework	is	Windows-only.

Understanding	the	Mono	project
The	open	source	community	developed	a	cross-platform	.NET	implementation	named	the
Mono	project	(http://www.mono-project.com/).

Mono	is	cross-platform,	but	it	fell	well	behind	Microsoft’s	implementation	of	.NET
Framework.	It	has	found	a	niche	as	the	foundation	of	the	Xamarin	mobile	platform.

http://www.mono-project.com/

Understanding	the	.NET	Core	platform
Today,	we	live	in	a	truly	cross-platform	world.	Modern	mobile	and	cloud	development
have	made	Windows	a	much	less	important	operating	system.	So,	Microsoft	has	been
working	on	an	effort	to	decouple	the	.NET	Framework	from	its	close	ties	with	Windows.

While	rewriting	.NET	to	be	truly	cross-platform,	Microsoft	has	taken	the	opportunity	to
refactor	.NET,	to	remove	major	parts	that	are	no	longer	considered	“core”.

This	new	product	is	branded	as	the	.NET	Core	1.0,	which	includes	a	cross-platform
implementation	of	the	CLR,	known	as	CoreCLR	,	and	a	streamlined	library	of	classes
known	as	CoreFX.

Streamlining	.NET
.NET	Core	1.0	is	much	smaller	than	the	current	version	of	the	.NET	Framework	because	a
lot	has	been	removed.

For	example,	Windows	Forms	and	Windows	Presentation	Foundation	(WPF)	can	be	used
to	build	graphical	user	interface	(GUI)	applications,	but	they	are	tightly-bound	to
Windows,	so	they	have	been	removed	from	the	.NET	Core.	The	latest	technology	for
building	Windows	apps	is	the	Universal	Windows	Platform	(UWP).	You	will	learn	about
it	in	Chapter	13,	Building	Universal	Windows	Platform	Apps	Using	XAML.

ASP.NET	Web	Forms	and	Windows	Communication	Foundation	(WCF)	are	old	web
applications	and	service	technologies	that	fewer	developers	choose	to	use	today,	so	they
have	also	been	removed	from	the	.NET	Core.	Instead,	developers	prefer	to	use	ASP.NET
MVC	and	ASP.NET	Web	API.	These	two	technologies	have	been	refactored	and
combined	into	a	new	product	that	runs	on	the	.NET	Core,	named	ASP.NET	Core	1.0.	You
will	learn	about	it	in	Chapter	14,	Building	Web	Applications	and	Services	Using	ASP.NET
Core.

The	Entity	Framework	(EF)	6.x	is	an	object-relational	mapping	technology	for	working
with	data	stored	in	relational	databases,	such	as	Oracle	and	Microsoft	SQL	Server.	It	has
gained	baggage	over	the	years,	so	the	cross-platform	version	has	been	slimmed	down	and
named	Entity	Framework	Core	1.0.	You	will	learn	about	it	in	Chapter	8,	Working	with
Relational	Data	Using	the	Entity	Framework.

Some	data	types	in	.NET	that	are	included	with	both	the	.NET	Framework	and	the	.NET
Core	have	been	simplified	by	removing	some	members.	For	example,	in	the	.NET
Framework,	the	File	class	has	both	a	Close	and	Dispose	method,	and	either	can	be	used
to	release	the	file	resources.	In	.NET	Core,	there	is	only	the	Dispose	method.	This	reduces
the	memory	footprint	of	the	assembly	and	simplifies	the	API.

Tip
The	.NET	Framework	4.6	is	about	200	MB.	The	.NET	Core	1.0	is	about	11	MB.
Eventually,	the	.NET	Core	may	grow	to	a	similar	larger	size.	Microsoft’s	goal	is	not	to
make	the	.NET	Core	smaller	than	the	.NET	Framework.	The	goal	is	to	componentize
.NET	Core	to	support	modern	technologies	and	to	have	fewer	dependencies	so	that

deployment	requires	only	those	components	that	your	application	really	needs.

The	future	of	.NET
The	.NET	Core	is	the	future	of	.NET,	but	in	my	opinion,	we	are	not	there	yet.	.NET	Core
1.0	is	a	great	start,	but	it	will	take	another	version	or	two	to	become	as	mature	as	the
current	version	of	the	.NET	Framework.

This	book	will	focus	features	available	in	.NET	Core,	but	will	use	the	.NET	Framework
when	features	have	not	(yet)	been	implemented	in	the	.NET	Core.

Tip
One	of	the	reasons	we	picked	this	cover	image	for	this	book	is	that	you	can	think	of	.NET
Core	as	a	new	dawn	for	.NET.	The	.NET	Framework	has	become	overgrown,	like	a	dense
forest,	and	the	.NET	Core	is	like	finding	a	clearing	or	glade	within	it.	It’s	a	fresh	start.

Understanding	the	.NET	Native	platform
Another	.NET	initiative	is	.NET	Native	which	compiles	C#	code	to	native	CPU
instructions	ahead-of-time	(AoT)	rather	than	using	the	CLR	to	compile	IL	just-in-time
(JIT)	to	native	code	later.

The	.NET	Native	compiler	improves	execution	speed	and	reduces	the	memory	footprint
for	applications.	It	supports	the	following:

UWP	apps	for	Windows	10,	Windows	10	Mobile,	Xbox	One,	HoloLens,	and	Internet
of	Things	(IoT)	devices	such	as	Raspberry	Pi
Server-side	web	development	with	ASP.NET	Core	1.0
Console	applications	for	use	on	the	command	line

Comparing	.NET	technologies
The	following	table	summarizes	and	compares	Microsoft’s	three	.NET	technologies:

Platform Feature	set C#	compiles	to Host	OSes

.NET
Framework Mature	and	extensive

Intermediate	Language	(IL)
code

Windows	only

.NET	Core Brand-new	and	somewhat
limited Windows,	Linux,	Mac	OS	X,

Docker
.NET	Native Brand-new	and	very	limited Native	code

Writing	and	compiling	code	using	the
Developer	Command	Prompt
When	you	install	Visual	Studio,	other	tools	are	installed	too.	One	of	those	tools	is	the
Developer	Command	Prompt	for	VS2015	that	has	its	path	set	to	find	developer	tools
such	as	the	C#	compiler.

Writing	code	using	Notepad
Start	Notepad	(or	your	favorite	text	editor)	and	enter	the	following	code:

class	Program	{	static	void	Main()	{	System.Console.

WriteLine("Hello	C#!");	}	}

You	can	type	the	code	all	on	one	line	or	spread	it	out	over	multiple	lines	and	indent	your
lines	to	make	it	easier	to	read.

Note
C#	is	case	sensitive,	meaning	that	you	must	type	uppercase	and	lowercase	characters
exactly	as	shown	in	the	preceding	code.	C#	is	not	whitespace	sensitive,	meaning	that	it
does	not	care	if	you	use	tabs	and	spaces	and	carriage-returns	to	lay	out	your	code	however
you	like.

From	the	File	menu,	choose	Save	As.

In	the	dialog	box,	change	to	drive	C:	(or	any	drive	that	you	want	to	use	to	save	your
projects),	click	on	the	New	Folder	button,	and	name	the	folder	Code.

In	the	Save	as	type	field,	select	All	Files	from	the	drop-down	list	to	avoid	appending	the
.txt	file	extension,	and	enter	the	file	name	as	myfirstapp.cs,	as	shown	in	the	following
screenshot:

Your	code	in	Notepad	should	look	something	like	the	following	screenshot:

Compiling	code	using	the	Developer	Command
Prompt
Start	the	Developer	Command	Prompt	for	VS2015	by	typing	the	letters	deve	in	the
Windows	10	Search	box,	as	you	can	see	in	the	following	screenshot.	You	will	also	find	it
on	the	Start	Menu	or	Start	Screen	listed	in	All	apps	in	the	Visual	Studio	2015	folder:

At	the	Command	Prompt,	enter	the	commands	to	do	the	following:

Change	to	the	C:\Code	folder
Compile	the	source	code	using	the	C#	compiler
Request	a	directory	listing
Run	the	application	by	entering	the	name	of	the	EXE

Here	are	the	commands:

cd	C:\Code

csc	myfirstapp.cs

dir

myfirstapp

The	output	in	the	Command	Prompt	window	should	look	like	this:

Note	that	your	source	code,	the	file	named	myfirstapp.cs,	has	been	compiled	into	an
assembly	named	myfirstapp.exe.	When	you	enter	the	name	of	the	assembly,	it	is	loaded
and	executed	by	.NET	Framework	4.6	and	its	CLR.

You	can	copy	the	myfirstapp.exe	file	onto	any	computer	with	Windows	10	and	it	will
run	correctly	because	all	copies	of	Windows	10	have	.NET	Framework	4.6	installed.
Actually,	you	can	copy	the	file	onto	a	computer	with	an	older	version	of	Windows	as	long
as	it	has	.NET	Framework	4.0	or	later	installed.

Fixing	compiler	errors
If	the	compiler	displays	errors,	read	them	carefully,	and	fix	them	in	Notepad.	Save	your
changes	and	recompile.

Tip
At	the	Command	Prompt,	you	can	press	the	up	and	down	arrows	on	your	keyboard	to
cycle	through	previous	commands	you	have	entered.

A	typical	error	might	be	using	the	wrong	case,	a	missing	semi-colon	at	the	end	of	a	line,	or
a	mismatched	pair	of	curly	braces.	For	example,	if	you	had	mistyped	a	lowercase	m	for	the
Main	method	you	would	see	this	error	message:

error	CS5001:	Program	does	not	contain	a	static	'Main'	method	suitable	for	

an	entry	point

Decompiling	code	using	ILDASM
The	C#	compiler	converts	your	source	code	into	Intermediate	Language	(IL)	code	and
stores	the	IL	in	an	assembly	(a	DLL	or	EXE	file).

IL	code	statements	are	like	assembly	language	instructions,	but	they	are	executed	by	the
.NET	virtual	machine	known	as	the	Common	Language	Runtime	(CLR).

At	runtime,	the	CLR	loads	the	IL	code	from	the	assembly,	JIT	compiles	it	into	native	CPU
instructions,	and	then	it	is	executed	by	the	CPU	on	your	machine.

The	benefit	of	this	two-step	compilation	process	is	that	Microsoft	can	create	CLRs	for
Linux	and	Mac	OS	X	as	well	as	for	Windows.	The	same	IL	code	runs	everywhere	because
of	the	second	compilation	process	that	generates	code	for	the	native	operating	system	and
CPU	instruction	set.

Regardless	of	which	language	the	source	is	written	in,	all	.NET	applications	use	IL	code
for	their	instructions,	stored	in	an	assembly.	Microsoft	provides	a	tool	that	can	open	an
assembly	and	reveal	this	IL	code.

Tip
Actually,	not	all	.NET	applications	use	IL	code!	Some	use	the	new	.NET	Native	compiler
to	generate	native	code	instead	of	IL	code,	improving	performance	and	reducing	memory
footprint,	but	at	the	cost	of	portability.

Disassembling	compiled	assemblies
Disassembling	a	compiled	assembly	is	an	advanced	technique.	I	will	walk	you	through	the
process,	but	do	not	worry	about	fully	understanding	what	you	are	seeing	yet!

Start	the	IL	Disassembler	by	entering	the	following	at	the	Developer	Command	Prompt:

ildasm	myfirstapp.exe

You	will	see	the	IL	DASM	tool	with	the	compiled	EXE	assembly	loaded:

Double-click	on	MANIFEST	in	the	tree	view	to	show	the	metadata	version	(4.0.30319)	of
.NET	and	the	Microsoft	Core	Library	(mscorlib)	assembly	version	(4.0.0.0)	that	this
assembly	needs	to	run.	The	following	screenshot	tells	us	that	to	run	this	assembly,	we
would	need	.NET	Framework	4.0	or	later	installed:

Close	the	MANIFEST	window,	expand	Program,	and	then	double-click	on	the	Main
method.	Note	the	IL	instructions:	ldstr	(load	string),	nop	(no	operation),	and	ret	(return).
Remember	that	IL	is	an	assembly	language	that	is	executed	by	the	.NET	CLR:

Anyone	can	use	this	tool	to	see	any	.NET	assembly’s	IL	code.	Don’t	panic!	This	is	not	a
reason	to	avoid	C#.

All	applications	are	lists	of	instructions	that	must	be	visible	to	the	machine	that	runs	it.	If
the	machine	can	read	these	instructions,	so	can	anything	else.	Therefore,	all	software	can
be	reverse-engineered.	It’s	just	a	matter	of	the	effort	required.	.NET	just	happens	to	make
it	very	easy!

Tip
ILSpy	is	a	popular	open	source	tool	that	does	everything	IL	DASM	does	and	can	also

reverse-engineer	the	IL	code	into	C#	or	Visual	Basic	.NET	source	code.	I	used	this	tool	for
a	client	who	had	lost	the	source	code	for	an	assembly	and	needed	to	recover	it!

Writing	and	compiling	code	using
Microsoft	Visual	Studio	2015
We	will	now	recreate	the	same	application	using	Microsoft	Visual	Studio	2015.

I	have	been	training	students	to	use	Visual	Studio	for	over	a	decade,	and	I	am	always
surprised	at	how	many	programmers	fail	to	use	the	tool	to	their	advantage.

Over	the	next	few	pages,	I	will	slowly	walk	you	through	typing	a	line	of	code.	It	may
seem	redundant,	but	you	will	benefit	from	seeing	what	help	and	information	Visual	Studio
provides	as	you	enter	your	code.	If	you	want	to	become	a	fast,	accurate	coder,	letting
Visual	Studio	write	most	of	your	code	for	you	is	a	huge	benefit!

Writing	code	using	Visual	Studio	2015
Start	Microsoft	Visual	Studio	2015.

Navigate	to	File	|	New	|	Project	menu	or	press	Ctrl	+	Shift	+	N.

At	the	top	of	the	New	Project	dialog	box,	choose	.NET	Framework	4.6.1	(or	later).	From
the	Installed	Templates	list	on	the	left,	choose	Visual	C#.	In	the	list	at	the	center,	choose
Console	Application.	Enter	the	name	Ch01_MyFirstApp,	set	the	location	to	C:\Code,
enter	Chapter01	as	the	solution	name,	and	click	on	OK	or	press	Enter:

In	the	code	editor,	inside	the	Main	method,	press	Enter	to	insert	a	new	line	between	the
innermost	braces	{	},	and	then	type	the	letters	sy,	as	you	can	see	in	the	following
screenshot:

Note	that	IntelliSense	shows	a	list	of	keywords,	namespaces,	and	types	that	contain	the
letters	sy,	and	highlights	the	first	one	that	starts	with	sy,	which	happens	to	be	the
namespace	that	we	want—System.

Type	a	dot	(also	known	as	decimal	point	or	full	stop).	IntelliSense	automatically	completes
the	word	System	for	you,	enters	the	dot,	and	displays	a	list	of	types	and	namespaces,	such
as	AccessViolationException	and	Action,	in	the	System	namespace,	as	shown	in	the
following	screenshot:

Type	the	letters	con	and	IntelliSense	shows	a	list	of	matching	types	and	namespaces:

Press	the	down	arrow	on	your	keyboard	to	highlight	Console,	and	then	type	a	dot.

IntelliSense	shows	a	list	of	the	members	of	the	Console	class:

Tip

Members	include	properties	(attributes	of	an	object,	such	as	BackgroundColor),	methods
(actions	the	object	can	perform,	such	as	Beep),	and	other	related	things.

Type	the	letters	wr.	IntelliSense	shows	two	matching	members	containing	these	letters:

Use	the	down	arrow	to	highlight	WriteLine	and	then	type	an	open	parenthesis	(.

IntelliSense	autocompletes	WriteLine	and	enters	a	pair	of	parentheses.

You	will	also	see	a	tooltip	telling	you	that	the	WriteLine	method	has	19	variations:

Type	a	double	quote	(").	IntelliSense	enters	a	pair	of	double	quotes	for	you	and	leaves	the
keyboard	cursor	in	between	them.

Type	the	text	Hello	C#!,	as	shown	in	the	following	screenshot:

The	red	squiggle	at	the	end	of	the	line	indicates	an	error,	because	every	C#	statement	must
end	in	a	semicolon.	Move	the	cursor	to	the	end	of	the	line	by	pressing	End,	and	type	a
semicolon	to	fix	the	error.

Compiling	code	using	Visual	Studio
From	the	Debug	menu,	choose	Start	Without	Debugging	or	press	Ctrl	+	F5.	Your
completed	application	runs	in	a	console	window	and	closes	when	you	press	any	key:

To	save	space	and	to	make	the	output	clearer,	I	will	usually	not	include	screenshots	of
output	from	console	applications	as	I	did	previously.	Instead,	I	will	show	the	output	like
this:

Hello	C#!

Fixing	mistakes	with	the	error	list
Let’s	make	two	deliberate	errors.

Change	the	M	of	the	Main	method	to	the	lowercase	letter	m.

Delete	the	e	at	the	end	of	the	method	name	WriteLine.

On	the	Build	menu,	choose	Build	Ch01_MyFirstApp	or	press	Shift	+	F6.

After	a	few	seconds,	the	status	bar	tells	us	that	the	build	failed	and	the	error	list	is
activated.	You	can	also	view	the	error	list	by	pressing	Ctrl	+	W,	E:

The	Error	List	can	be	filtered	to	show	Errors,	Warnings,	and	informational	Messages
by	clicking	on	the	toggle	buttons	at	the	top	of	the	window.

If	an	error	shows	the	line	number,	for	example	Line	13	in	the	preceding	screenshot,	then
you	can	double-click	on	the	error	to	jump	to	the	line	causing	the	problem.

If	it’s	a	more	general	error,	such	as	the	missing	Main	method,	the	compiler	can’t	tell	you
the	line	number.	You	might	want	a	method	named	main	as	well	as	a	method	named	Main
(remember	that	C#	is	case	sensitive	so	you’re	allowed	to	do	that).

Fix	the	two	(as	shown	in	the	preceding	screenshot)	errors	before	you	continue.	Note	that
the	error	list	updates	to	show	no	errors.

Experimenting	with	C#	Interactive
Although	Visual	Studio	has	always	had	an	Immediate	window	with	limited	REPL	(read-
eval-print	loop)	support,	Visual	Studio	2015	with	Update	1	includes	an	enhanced	window
with	full	IntelliSense	and	color	syntax	code,	named	C#	Interactive.

On	the	View	menu,	choose	Other	Windows,	and	then	C#	Interactive.

We	will	write	some	interactive	code	to	download	the	About	page	from	Microsoft’s	public
website.

Tip
This	is	just	an	example.	You	don’t	need	to	understand	the	code	yet!

At	the	C#	Interactive	prompt,	we	will	enter	commands	to	do	the	following:

Reference	the	System.Net.Http	assembly
Import	the	System.Net.Http	namespace
Declare	and	instantiate	an	HTTP	client	variable
Set	the	client’s	base	address	to	Microsoft’s	website
Wait	asynchronously	for	a	response	to	a	GET	request	for	the	About	page
Read	the	status	code	returned	by	the	web	server
Read	the	content	type	header
Read	the	contents	of	the	HTML	page	as	a	string

Type	each	of	the	following	commands	after	the	>	prompt	and	then	press	Enter:

>	#r	"System.Net.Http"

>	using	System.Net.Http;

>	var	client	=	new	HttpClient();

>	client.BaseAddress	=	new	Uri("http://www.microsoft.com/");

>	var	response	=	await	client.GetAsync("about");

>	response.StatusCode

OK

>	response.Content.Headers.GetValues("Content-Type")

string[1]	{	"text/html"	}

>	await	response.Content.ReadAsStringAsync()

"<!DOCTYPE	html	><html	

xmlns:mscom=\"http://schemas.microsoft.com/CMSvNext\"	

xmlns:md=\"http://schemas.microsoft.com/mscom-data\"	lang=\"en\"	

xmlns=\"http://www.w3.org/1999/xhtml\"><head><meta	http-equiv=\"X-UA-

Compatible\"	content=\"IE=edge\"	/><meta	charset=\"utf-8\"	/><meta	

name=\"viewport\"	content=\"width=device-width,	initial-scale=1.0\"	/><link	

rel=\"shortcut	icon\"	href=\"//www.microsoft.com/favicon.ico?v2\"	/><script	

type=\"text/javascript\"	

src=\"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.min.js\">\r\n								

//	Third	party	scripts	and	code	linked	to	or	referenced	from	this	website	

are	licensed	to	you	by	the	parties	that	own	such	code,	not	by	Microsoft.	

See	ASP.NET	Ajax	CDN	Terms	of	Use	-	

http://www.asp.net/ajaxlibrary/CDN.ashx.\r\n				</script><script	

type=\"text/javascript\"	language=\"javascript\">/*<!

[CDATA[*/if($(document).bind(\"mobileinit\",function()

{$.mobile.autoInitializePage=!1}),navigator.userAgent.match(/IEMobile\\/10\

\.0/)){var	msViewportStyle=document.createElement(\"style…

Other	useful	windows
Visual	Studio	has	lots	of	other	useful	windows,	including	the	following:

The	Solution	Explorer	window	for	managing	all	the	projects	and	files	you	work	on
The	Team	Explorer	window	for	source	code	management	tools,	such	as	GitHub
The	Server	Explorer	window	for	managing	database	connections

If	you	ever	can’t	see	a	window	you	need,	go	to	the	View	menu	to	make	it	reappear	or	learn
its	keyboard	shortcut,	as	shown	here:

Tip
If	your	keyboard	shortcuts	are	different	from	the	ones	in	the	preceding	screenshot,	it	is
because	you	picked	a	different	set	when	you	installed	Visual	Studio.	You	can	reset	your
keyboard	shortcuts	to	match	the	ones	used	in	this	book	by	clicking	on	the	Tools	menu,
then	clicking	on	Import	and	Export	Settings…,	choosing	Reset	all	settings,	and	then
choosing	to	reset	to	the	Visual	C#	settings	collection.

Targeting	the	.NET	Core
For	15	years,	.NET	programmers	have	been	targeting	the	.NET	Framework,	so	there	are
many	projects	that	may	need	to	move	from	Windows-only	to	cross-platform	by	retargeting
to	the	.NET	Core.

Understanding	the	.NET	Portability	Analyzer
To	ensure	that	a	project	will	work	cross-platform,	we	can	install	and	run	the	Visual	Studio
2015	extension	named	.NET	Portability	Analyzer.

It	allows	you	to	choose	multiple	platforms	that	you	would	like	to	target	and	then	scans
your	compiled	assemblies,	passes	a	list	of	the	types	and	methods	that	you	use	to	a	web
service,	and	produces	a	report	that	lists	which	ones	are	not	supported	on	each	platform
along	with	recommendations	for	fixes.

Installing	the	.NET	Portability	Analyzer
In	Visual	Studio,	go	to	the	Tools	menu	and	choose	Extensions	and	Updates….

On	the	left-hand	side	of	the	dialog,	click	on	Online.	In	the	Search	Visual	Studio	Gallery
box,	type	portability	and	press	Enter.

Click	on	the	.NET	Portability	Analyzer	entry	and	then	click	on	the	Download	button.
Once	the	extension	is	installed,	restart	Visual	Studio:

Configuring	the	.NET	Portability	Analyzer
In	Visual	Studio,	go	to	the	Tools	menu	and	choose	Options.

In	the	Options	dialog	box,	scroll	down	through	the	left-hand	side	list	and	choose	.NET
Portability	Analyzer.	In	the	Target	Platforms	section,	deselect	everything	except	for	the
following:

.NET	Core	(Cross-platform)	1.0	(shown	as	5.0	in	the	following	screenshot)

.NET	Framework	4.5

.NET	Native	1.0
ASP.NET	Core	1.0	(shown	as	ASP.NET	5	in	the	screenshot	below):

Tip
Microsoft	Azure	has	a	Platform-as-a-Service	(PaaS)	feature	named	Cloud	Services,	which
is	limited	to	the	.NET	Framework	4.5;	this	is	why	it	is	a	common	target	platform	to	check
with	the	analyzer.

Analyzing	a	solution
In	Visual	Studio,	open	the	previous	solution,	named	Chapter01.	In	the	Solution	Explorer
window,	right-click	on	the	project	named	Ch01_MyFirstApp	(not	the	solution),	choose
Analyze,	and	then	choose	Analyze	Assembly	Portability.

After	a	few	seconds,	a	report	will	display	in	the	main	area.

Tip
Be	patient	with	the	.NET	Portability	Analyzer	because	it	has	to	send	data	to	a	web	service
and	wait	for	a	response.

Note	that	the	Console	class	in	the	System	namespace	and	its	WriteLine	method	are
supported	by	the	following:

.NET	Core	(Cross-Platform)	1.0	(shown	as	5.0	in	the	following	screenshot)

.NET	Framework	4.5
ASP.NET	Core	1.0	(shown	as	ASP.NET	5	in	the	following	screenshot)

However,	it	is	not	supported	by	.NET	Native	1.0:

Note
At	the	time	of	writing	this,	the	.NET	Portability	Analyzer	has	not	been	updated	to	show
the	new	version	branding	for	.NET	Core	and	related	products,	which	can	be	found	at
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx

Press	Ctrl	+	W,	E	to	view	the	error	list,	which	has	also	been	populated.	As	we	saw	earlier,
double-clicking	on	an	error	will	jump	the	code	editor	to	the	line	that	could	cause	an	issue:

.NET	Portability	and	this	book

http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx

I	used	the	.NET	Portability	Analyzer	while	writing	all	the	code	in	this	book	to	ensure	that,
whenever	possible,	I	can	show	you	code	that	will	work	cross-platform	using	the	.NET
Core	1.0.	If	there	are	useful	features	that	aren’t	cross-platform	yet,	then	I	will	point	that
out	in	the	text.	Hopefully,	they	will	be	implemented	in	.NET	Core	in	future	versions.

Creating	new	projects	for	the	.NET	Core
Let’s	recreate	the	console	application,	but	this	time,	target	the	.NET	Core	from	the	start.

Managing	.NET	Core	development	with	Command	Line	Tools
There	are	two	sets	of	command-line	tools	that	you	can	use	to	manage	the	.NET	Core:

.NET	Version	Manager,	.NET	Execution	Environment,	.NET	Development
Utilities	(dnvm,	dnx,	dnu):	These	were	used	by	Microsoft	during	the	initial
development	of	the	.NET	Core	between	2013	and	2015.	They	are	installed	as	part	of
Visual	Studio	2015.	These	tools	will	be	deprecated	with	the	final	release	of	the	.NET
Core.
.NET	CLI	(dotnet):	This	is	a	driver,	which	will	be	used	by	the	final	release	of	the
.NET	Core.	It	provides	a	simplified	layer	on	top	of	other	underlying	tools.	The	.NET
CLI	must	be	installed	separately.

Tip
At	the	time	of	writing,	the	DNX	tools	are	more	advanced	than	the	.NET	CLI,	so	in
Chapter	15,	Taking	C#	Cross-Platform,	I	will	need	to	show	you	how	to	use	both	sets	of
tools.	For	this	chapter,	we	can	use	the	newer	CLI	tool	because	we	are	only	using	basic
features.	I	recommend	that	you	browse	http://cs6dotnetcore.azurewebsites.net/	for
information	about	changes	between	the	time	of	writing	this	book	and	the	release	of	the
final	versions	of	.NET	Core	1.0	and	its	related	technologies	and	tools.

Installing	the	.NET	Command	Line	Tools
First,	we	must	install	the	.NET	Command	Line	Tools	(CLI).

Start	Microsoft	Edge	and	go	to	the	https://github.com/dotnet/cli.

Scroll	down	the	page	to	find	the	Installers	section	and	click	on	the	link	to	download	the
MSI	file	for	Windows.	Open	the	file	and	install.

Creating	a	.NET	Core	application	using	Command	Line	Tools
Start	the	Developer	Command	Prompt	for	VS2015.	At	the	prompt,	enter	the	following
command:

dotnet

You	should	see	the	following	output:

http://cs6dotnetcore.azurewebsites.net/
https://github.com/dotnet/cli

Enter	the	following	at	the	prompt	to	create	a	new	directory,	change	to	it,	create	a	new
console	application	in	the	directory,	and	then	list	the	files	it	created:

cd	C:\Code\Chapter01

mkdir	Ch01_MySecondApp

cd	Ch01_MySecondApp

dotnet	new

dir

You	should	see	that	the	dotnet	tool	has	created	three	new	files	for	you:	NuGet.Config,
Program.cs,	and	project.json.

At	the	prompt,	enter	the	following	to	start	Notepad	for	editing	the	Program	class:

notepad	Program.cs

In	Notepad,	modify	the	WriteLine	statement	as	follows:

Console.WriteLine("Hello	C#,	Welcome	.NET	Core!");

Save	changes	and	exit	Notepad.

At	the	prompt,	enter	the	following	commands:

dotnet	restore

dotnet	run

After	a	few	seconds,	all	the	dependency	packages	will	be	downloaded	and	your
application	will	run,	showing	the	following	output:

To	compile	the	source	code	into	an	assembly	containing	IL	code,	enter	the	following
command:

dotnet	build

The	output	in	the	Command	Prompt	window	should	look	like	this:

Enter	the	following	commands	to	change	to	a	subdirectory,	list	the	files	in	it,	and	execute
the	compiled	console	application:

cd	bin\Debug\dnxcore50

dir

Ch01_MySecondApp

Tip
The	Debug	is	the	name	of	the	configuration	and	dnxcore50	is	the	name	of	the	framework.
This	will	change	in	the	release	version	of	the	.NET	Core.

Creating	a	.NET	Core	application	using	Visual	Studio	2015
Start	Visual	Studio	2015	and	open	the	Chapter01	solution.

In	Visual	Studio,	navigate	to	File	|	Add	|	New	Project.

In	the	Add	New	Project	dialog	box,	in	the	Installed	Templates	list	on	the	left-hand	side,
choose	Visual	C#.	In	the	list	at	the	center,	choose	Console	Application	(Package).	Enter
the	name	Ch01_DotNetCore,	and	click	on	OK	or	press	Enter:

In	the	Solution	Explorer	window,	right-click	on	the	solution	named	Chapter01	and
choose	Properties.

Set	the	Startup	Project	to	Current	selection	and	click	on	OK.

Inside	the	Main	method	of	the	Program	class,	enter	the	following	statements:

Console.WriteLine("Welcome,	.NET	Core!");

Console.ReadLine();

As	you	type	code,	you	will	notice	that	Visual	Studio	shows	you	which	types	and	methods
might	not	be	available	when	targeting	.NET	Core.	For	example,	the	BufferHeight
property	is	available	when	targeting	the	.NET	Framework	but	not	the	.NET	Core,	as
shown	in	the	following	screenshot	as	DNX	4.5.1	and	DNX	Core	5.0	respectively:

You	can	tell	the	compiler	to	include	statements	available	only	when	.NET	Framework	is
available	by	using	conditional	compilation	symbols,	as	follows:

#if	DNX451

				Console.BufferHeight	=	300;

#elseif	DNXCORE50

				//	some	alternative	for	.NET	Core

#endif

Tip
In	Chapter	5,	Using	Specialized	.NET	Types,	you	will	learn	more	about	conditional
compilation	symbols	so	that	you	can	create	projects	that	target	both	the	.NET	Framework
and	the	.NET	Core	with	a	single	code	base.

Note
The	names	of	the	conditional	compilation	symbols	will	change	in	the	future.	Visit
https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-
standard.md	for	more	information.

In	the	Solution	Explorer	window,	double-click	on	Properties	for	the	Ch01_DotNetCore
project.

In	the	Properties	window,	click	on	the	Debug	tab,	select	the	Use	Specific	Runtime
checkbox,	and	select	the	latest	version	of	the	.NET	Core	platform	for	the	x64	CPU
architecture,	as	shown	in	the	following	screenshot:

https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md

In	the	Visual	Studio	Debug	menu,	choose	Start	or	press	F5.

Note	that	the	Command	Prompt	window	shows	that	the	console	application	is	running	the
dnx-coreclr-win-x64.1.0.0-rc1-update1	runtime:

Tip
Throughout	the	first	half	of	this	book,	I	will	show	example	code	by	creating	console
applications,	so	you	can	decide	if	you	want	to	target	the	.NET	Framework	by	choosing
Console	Application,	or	target	the	.NET	Core	by	choosing	Console	Application
(Package).

Managing	source	code	with	GitHub
Git	is	a	commonly	used	source	code	management	system.	GitHub	is	a	company,	website,
and	desktop	application	that	makes	it	easier	to	manage	Git.

Visual	Studio	2015	has	built-in	support	for	using	Git	with	GitHub	as	well	as	Microsoft’s
own	source	code	management	system,	named	Visual	Studio	Team	Services.

I	used	GitHub	to	store	solutions	to	all	the	practical	exercises	at	the	end	of	each	chapter.

Using	the	Team	Explorer	window
In	Visual	Studio,	navigate	to	View	|	Team	Explorer	menu	to	see	the	Team	Explorer
window:

Although	it	is	a	good	idea	to	sign	up	with	an	online	source	code	management	system
provider,	you	can	clone	a	GitHub	repository	without	signing	up	for	an	account.

Cloning	a	GitHub	repository
In	the	Team	Explorer	window,	expand	Local	Git	Repositories,	click	on	the	Clone	menu,
and	then	enter	the	following	URL	of	a	Git	repository	to	clone	it:

https://github.com/markjprice/cs6dotnetcore.git

Enter	a	path	for	the	cloned	Git	repository:
C:\Code\Repos\cs6dotnetcore

Click	on	the	Clone	button:

Wait	for	the	Git	repository	to	clone	locally:

https://github.com/markjprice/cs6dotnetcore.git

You	will	now	have	a	local	copy	of	the	complete	solutions	to	all	the	hands-on	practice
exercises	for	this	book.

Managing	a	GitHub	repository
Double-click	on	the	cs6dotnetcore	repo	to	open	a	detail	view.

You	can	click	on	the	options	in	the	Project	section	to	view	Pull	Requests	and	Issues,	and
other	aspects	of	a	repository.

You	can	double-click	on	an	entry	in	the	Solutions	section	to	open	it	in	the	Solution
Explorer:

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore,	with	deeper	research	into	the	topics	covered	in	this	chapter.

Exercise	1.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 Why	can	a	programmer	use	different	languages	to	write	applications	that	run	on
.NET?

2.	 What	do	you	type	at	the	Command	Prompt	to	compile	the	C#	source	code?
3.	 What	is	the	Visual	Studio	2015	keyboard	shortcut	to	save,	compile,	and	run	an

application,	without	attaching	the	debugger?
4.	 What	is	the	Visual	Studio	2015	keyboard	shortcut	to	view	the	error	list?
5.	 What	does	ildasm.exe	do?
6.	 Is	the	.NET	Core	better	than	the	.NET	Framework?
7.	 How	is	.NET	Native	different	from	the	.NET	Core?
8.	 What	does	the	.NET	Portability	Analyzer	do?
9.	 What	is	the	difference	between	Git	and	GitHub?
10.	 What	is	the	name	of	the	entry-point	method	of	a	.NET	application	and	how	should	it

be	declared?

Exercise	1.2	–	practice	managing	Visual	Studio
Windows
Practice	closing	and	viewing	windows,	such	as	Error	List	and	Toolbox.

You	can	pin,	unpin,	float,	and	rearrange	windows	by	dragging	their	title	bars.	As	you	do
so,	Visual	Studio	will	show	blue	tinted	boxes	and	overlays	to	help	you	to	understand
where	the	window	will	be	moved	when	you	release	the	mouse	button.

Tip
You	can	always	reset	Visual	Studio	back	to	one	of	the	default	layouts	by	clicking	on	the
Tools	menu	and	Import	and	Export	Settings….

Exercise	1.3	–	practice	coding	anywhere
You	do	not	need	Visual	Studio	to	practice	writing	C#.	Simply	go	to	the	.NET	Fiddle
website	(https://dotnetfiddle.net/)	and	start	coding.	It’s	also	a	great	way	to	share	snippets
of	C#	code	with	other	developers:

https://dotnetfiddle.net/

Exercise	1.4	–	explore	topics
Use	the	following	links	to	read	more	details	about	the	topics	covered	in	this	chapter:

Visual	Studio	IDE	User’s	Guide:	https://msdn.microsoft.com/en-
us/library/dn762121.aspx
Solutions	and	Projects:	https://msdn.microsoft.com/en-us/library/b142f8e7.aspx
Using	IntelliSense:	https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
Identifying	and	Customizing	Keyboard	Shortcuts	in	Visual	Studio:
https://msdn.microsoft.com/en-us/library/5zwses53.aspx
Making	your	libraries	compatible	with	.NET	Core	and	other	.NET	Platforms:
https://github.com/dotnet/corefx/blob/master/Documentation/project-docs/support-
dotnet-core-instructions.md
.NET	Core:	A	general	purpose	managed	framework:	http://dotnet.github.io
Leveraging	existing	code	across	.NET	platforms:
http://blogs.msdn.com/b/dotnet/archive/2014/08/06/leveraging-existing-code-across-
net-platforms.aspx
.NET	Command	Line	Interface	(CLI):	https://github.com/dotnet/cli
Use	Visual	Studio	and	Team	Foundation	Server	with	Git:
https://msdn.microsoft.com/Library/vs/alm/Code/git/overview
The	easiest	way	to	connect	to	your	GitHub	repositories	in	Visual	Studio:
https://visualstudio.github.com/

https://msdn.microsoft.com/en-us/library/dn762121.aspx
https://msdn.microsoft.com/en-us/library/b142f8e7.aspx
https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
https://msdn.microsoft.com/en-us/library/5zwses53.aspx
https://github.com/dotnet/corefx/blob/master/Documentation/project-docs/support-dotnet-core-instructions.md
http://dotnet.github.io
http://blogs.msdn.com/b/dotnet/archive/2014/08/06/leveraging-existing-code-across-net-platforms.aspx
https://github.com/dotnet/cli
https://msdn.microsoft.com/Library/vs/alm/Code/git/overview
https://visualstudio.github.com/

Summary
In	this	chapter,	we	set	up	the	development	environment,	we	used	the	Developer	Command
Prompt	to	compile	and	decompile	an	application,	we	used	Visual	Studio	to	create	the	same
application	and	explore	the	features	that	make	it	so	easy	to	use	for	development,	and	we
discussed	the	differences	between	the	.NET	Framework,	the	.NET	Core,	and	.NET	Native.

In	the	next	chapter,	you	will	learn	to	speak	C#.

Chapter	2.	Speaking	C#
This	chapter	is	about	the	C#	language—the	grammar	and	vocabulary	that	you	will	use
every	day	to	write	the	source	code	for	your	applications.

Programming	languages	have	many	similarities	to	human	languages,	except	that	in
programming	languages,	you	can	make	up	our	own	words,	just	like	Dr.	Seuss!

“And	then,	just	to	show	them,	I’ll	sail	to	Ka-Troo

And	bring	back	an	It-Kutch	a	Preep	and	a	Proo

A	Nerkle	a	Nerd	and	a	Seersucker,	too!”

If	I	Ran	the	Zoo

To	learn	to	speak	C#,	you	need	to	create	some	simple	applications.	To	avoid	overloading
you	with	too	much	information	too	soon,	the	first	few	chapters	of	this	book	will	use	the
simplest	type	of	application:	a	console	application.

This	chapter	covers	the	following	topics:

Understanding	C#	basics
Declaring	variables
Building	console	applications
Operating	on	variables

Understanding	C#	basics
Let’s	start	with	looking	at	the	basics	of	the	grammar	and	vocabulary	of	C#.	In	this	chapter,
you	will	create	multiple	console	applications,	each	showing	a	feature	of	the	C#	language.
To	manage	these	projects,	we	will	put	them	all	in	a	single	solution.	Visual	Studio	2015	can
only	have	one	solution	open	at	any	one	time,	but	each	solution	can	group	together	multiple
projects.	A	project	can	build	a	console	application,	a	Windows	desktop	application,	a	web
application,	and	dozens	of	others.

Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	choose	the
File	|	New	|	Project…	menu.

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	expand	Other	Project	Types,
and	select	Visual	Studio	Solutions.	In	the	list	at	the	center,	select	Blank	Solution,	type
the	name	Chapter02,	change	the	location	to	C:\Code,	and	then	click	on	OK,	as	shown	in
the	following	screenshot:

If	you	were	to	run	File	Explorer,	you	would	see	that	Visual	Studio	has	created	a	folder
named	Chapter02	with	a	Visual	Studio	solution	named	Chapter02	inside	it,	as	follows:

In	Visual	Studio,	navigate	to	File	|	Add	|	New	Project…,	as	shown	in	the	following
screenshot.	This	will	add	a	new	project	to	the	blank	solution:

In	the	Add	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the
list	at	the	center,	select	Console	Application,	type	the	name	Ch02_Basics,	ensure	that
.NET	Framework	4.6	(or	later)	is	selected	at	the	top,	and	then	click	on	OK.

If	you	were	to	run	File	Explorer,	you	would	see	that	Visual	Studio	has	created	a	new
folder	with	some	files	and	subfolders	inside	it.	You	don’t	need	to	know	what	all	these	do
yet.	The	code	you	will	write	will	be	stored	in	the	file	named	Program.cs,	as	shown	in	the
following	screenshot:

In	Visual	Studio,	the	Solution	Explorer	window	on	the	right-hand	side	shows	the	same
files	as	the	ones	in	the	preceding	screenshot	of	the	file	system:

Tip
Some	folders	and	files,	for	example,	the	bin	folder,	are	hidden	by	default	in	Solution
Explorer.	At	the	top	of	the	window	is	a	toolbar	button	named	Show	All	Files.	Toggle	this
button	to	show	and	hide	folders	and	files.

The	C#	grammar
The	grammar	of	C#	includes	statements	and	blocks.

Statements
In	English,	we	indicate	the	end	of	a	sentence	with	a	full	stop.	A	sentence	can	be	composed
of	multiple	words	and	phrases.	The	order	of	words	is	part	of	the	grammar.	For	example,	in
English,	we	say:	the	black	cat.	The	adjective,	black,	comes	before	the	noun,	cat.	French
grammar	has	a	different	order;	the	adjective	comes	after	the	noun,	“le	chat	noir”.

C#	indicates	the	end	of	a	statement	with	a	semicolon.	A	statement	can	be	composed	of
multiple	variables	and	expressions.	In	the	following	statement,	FullName	is	a	variable	and
FirstName	+	LastName	is	an	expression:

var	FullName	=	FirstName	+	LastName;

You	can	add	comments	to	explain	your	code	using	a	double	slash	//.

The	compiler	ignores	everything	after	the	//	until	the	end	of	the	line;	for	example:

var	TotalPrice	=	Cost	+	Tax;	//	Tax	is	20%	of	the	Cost

Tip
Visual	Studio	will	add	or	remove	the	comment	(double	slashes)	at	the	start	of	the	currently
selected	line(s)	if	you	press	Ctrl	+	K	+	C	or	Ctrl	+	K	+	U.

To	write	a	multi-line	comment,	use	/*	at	the	beginning	and	*/	at	the	end	of	comment,	as
shown	in	the	following	code:

/*

This	is	a	multi-line	

comment.

*/

Blocks
In	English,	we	indicate	a	paragraph	with	blank	lines.	C#	indicates	a	block	of	code	with
curly	brackets	{	}.	Blocks	often	start	with	a	declaration	to	indicate	what	the	block	is
defining.	For	example,	a	block	can	define	a	namespace,	a	class,	a	method,	or	a	statement.
You	will	learn	what	these	are	later.

In	your	current	project,	note	the	grammar	of	C#	written	for	you	by	the	Visual	Studio
template.	If	you	are	using	Visual	Studio	2015,	the	first	five	lines	will	be	slightly	faded	out
in	your	editor	window	to	indicate	that	they	aren’t	necessary	(but	leave	them	in	for	now).

In	the	following	code	block,	I	have	added	some	comments	and	a	single	statement	inside
the	Main	method:

using	System;

using	System.Collections.Generic;	

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;	//	;	is	the	end	of	a	statement

namespace	Ch02_Basics

{

				class	Program

				{

								static	void	Main(string[]	args)

								{	//	the	start	of	a	block

												Console.WriteLine("Hello	C#");	//	a	statement

								}	//	the	end	of	a	block

				}

}

The	C#	vocabulary
Some	of	the	79	predefined,	reserved	keywords	that	you	will	see	in	this	chapter	include
using,	namespace,	class,	static,	int,	string,	double,	bool,	var,	if,	switch,	break,
while,	do,	for,	and	foreach.

Visual	Studio	shows	C#	keywords	in	blue	to	make	them	easier	to	spot.	In	the	following
screenshot,	namespace,	class,	static,	void,	and	string	are	part	of	the	vocabulary	of	C#:

There	are	another	25	contextual	keywords	that	only	have	a	special	meaning	in	a	specific
context.	But	that	still	means	there	are	only	104	actual	C#	keywords	in	the	language.

English	has	more	than	250,000	distinct	words.	How	does	C#	get	away	with	only	having
104	keywords?	Why	is	C#	so	difficult	to	learn	if	it	has	so	few	words?

One	of	the	key	differences	between	a	human	language	and	a	programming	language	is	that
developers	need	to	be	able	to	define	new	“words”	with	new	meanings.

Apart	from	the	104	keywords	in	the	C#	language,	this	book	will	teach	you	about	some	of
the	hundreds	of	thousands	of	“words”	that	other	developers	have	defined.	You	will	also

learn	how	to	define	your	own	“words”.

Tip
Programmers	all	over	the	world	have	to	learn	English	because	most	programming
languages	use	English	words	like	namespace	and	class.	There	are	programming
languages	that	use	other	human	languages,	such	as	Arabic,	but	they	are	rare.	This
YouTube	video	shows	a	demonstration	of	an	Arabic	programming	language:
https://www.youtube.com/watch?v=77KAHPZUR8g.

https://www.youtube.com/watch?v=77KAHPZUR8g

Writing	the	code
Simple	editors	such	as	Notepad	don’t	help	you	write	correct	English,	as	shown	in	the
following	screenshot:

Notepad	won’t	help	you	write	correct	C#	either.

Microsoft	Word	helps	you	write	English	by	highlighting	spelling	mistakes	with	red
squiggles	(it	should	be	ice	cream)	and	grammatical	errors	with	blue	squiggles	(sentences
should	have	an	upper-case	first	letter).

Similarly,	Visual	Studio	helps	you	write	C#	code	by	highlighting	spelling	mistakes	(the
method	name	should	be	WriteLine	with	an	uppercase	L)	and	grammatical	errors
(statements	must	end	with	a	semicolon).

Visual	Studio	constantly	watches	what	you	type	and	gives	you	feedback	by	highlighting
problems	with	colored	squiggly	lines	under	your	code	and	showing	the	Error	List
window	as	you	can	see	in	the	following	screenshot.	You	can	ask	Visual	Studio	to	do	a
complete	check	of	your	code	by	choosing	Build-Solution	or	pressing	F6.

Verbs	are	methods
In	English,	verbs	are	doing	or	action	words.	In	C#,	doing	or	action	words	are	called
methods.	There	are	literally	hundreds	of	thousands	of	methods	available	to	C#.

In	English,	verbs	change	how	they	are	written	according	to	when	in	time	the	action
happens.	For	example,	Amir	was	jumping	in	the	past,	Beth	jumps	in	the	present,	they
jumped	in	the	past,	and	Daz	will	jump	in	the	future.

In	C#,	methods	such	as	WriteLine	change	how	they	are	called	or	executed	according	to
the	specifics	of	the	action.	This	is	called	overloading,	which	we	will	cover	in	more	detail
in	Chapter	6,	Building	Your	Own	Types	with	Object-Oriented	Programming.	Consider	the
following	example:

//	outputs	a	carriage-return

Console.WriteLine();	

//	outputs	the	greeting	and	a	carriage-return

Console.WriteLine("Hello	Ahmed");	

//	outputs	a	formatted	number	and	date

Console.WriteLine("Temperature	on	{0:D}	is	{1}°C.",

				DateTime.Today,	23.4);

A	different	analogy	is	that	some	words	are	spelled	the	same	but	have	different	meanings
depending	on	the	context.

Nouns	are	types,	fields,	and	variables
In	English,	nouns	are	names	that	refer	to	things.	In	C#,	their	equivalents	are	types,	fields,
and	variables.	There	are	tens	of	thousands	of	types	available	in	C#.

Counting	types	and	methods
Let’s	write	some	code	to	find	out	how	many	types	and	methods	are	available	to	C#	in	our
simple	console	application.

Don’t	worry	about	how	this	code	works.	It	uses	a	technique	called	reflection,	which	is
beyond	the	scope	of	this	book.

Start	by	adding	the	following	statement	at	the	top	of	the	Program.cs	file:

using	System.Reflection;

Inside	the	Main	method,	type	the	following	code:

//	loop	through	the	assemblies	that	this	application	references

foreach	(var	r	in	Assembly.GetExecutingAssembly()

				.GetReferencedAssemblies())

{

				//	load	the	assembly	so	we	can	read	its	details

				var	a	=	Assembly.Load(r.FullName);

				//	declare	and	set	a	variable	to	count	the	total	number	of	methods

				int	methodCount	=	0;

				//	loop	through	all	the	types	in	the	assembly

				foreach	(var	t	in	a.DefinedTypes)

				{

								//	add	up	the	counts	of	methods

								methodCount	+=	t.GetMethods().Count();

				}

				//	output	the	count	of	types	and	their	methods

				Console.WriteLine($"{a.DefinedTypes.Count():N0}	types	with	

{methodCount:N0}	methods	in	{r.Name}	assembly.");

}

Press	Ctrl	+	F5	to	save,	compile,	and	run	your	application	without	the	debugger	attached,
or	click	on	the	Debug	menu	and	then	Start	Without	Debugging.

You	will	see	the	following	output	that	shows	the	actual	number	of	types	and	methods	that
are	available	to	you	in	the	simplest	application:

3,233	types	with	38,529	methods	in	mscorlib	assembly.

974	types	with	9,301	methods	in	System.Core	assembly.

Tip
The	actual	numbers	displayed	may	be	different	depending	on	the	version	of	the	.NET
Framework	that	you	are	using.	The	numbers	we	see	here	are	for	version	4.6.1.

Add	the	following	four	lines	of	code	at	the	top	of	the	Main	method.	By	declaring	variables
that	use	types	in	other	assemblies,	those	assemblies	are	loaded	with	our	application.	This
allows	our	code	to	see	all	the	types	and	methods	in	them:

static	void	Main(string[]	args)

{

				System.Data.SqlClient.SqlConnection	connection;

				System.Xml.XmlReader	reader;

				System.Xml.Linq.XElement	element;

				System.Net.Http.HttpClient	client;

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

3,233	types	with	38,529	methods	in	mscorlib	assembly.

1,105	types	with	14,621	methods	in	System.Data	assembly.

1,247	types	with	19,139	methods	in	System.Xml	assembly.

91	types	with	1,632	methods	in	System.Xml.Linq	assembly.

102	types	with	1,201	methods	in	System.Net.Http	assembly.

974	types	with	9,301	methods	in	System.Core	assembly.

Now	you	have	a	better	sense	of	why	learning	C#	is	a	challenge.	There	are	many	types	with
many	methods	to	learn	about,	and	other	programmers	are	constantly	defining	new	ones!

Declaring	variables
All	applications	process	data.	Data	comes	in,	data	is	processed,	and	data	goes	out.

Data	usually	comes	into	our	program	from	files,	databases,	or	user	input.	Data	can	be	put
temporarily	in	variables	that	will	be	stored	in	the	memory	of	the	running	program.	When
the	program	ends,	the	data	in	memory	is	lost.	Data	is	usually	output	to	files	and	databases
or	to	the	screen	or	a	printer.

When	using	variables,	you	should	think	about,	first,	how	much	space	it	takes	in	memory,
and,	next,	how	fast	it	can	be	processed.

We	control	this	by	picking	an	appropriate	type.	You	can	think	of	simple	common	types
such	as	int	and	double	as	being	differently	sized	storage	boxes.	A	smaller	box	would	take
less	memory	but	may	not	be	processed	as	quickly.

Naming	variables
There	are	naming	conventions	for	variables	and	it	is	best	practice	to	follow	them,	as
shown	in	the	following	table:

Naming	convention Examples Usage

Camel	case cost,	orderDetail,	dateOfBirth Local	variables	and	private	members

Pascal/title	case Cost,	OrderDetail,	DateOfBirth Type	names	and	nonprivate	members

The	following	code	block	shows	an	example	of	declaring	and	initializing	a	local	variable.
Note	that	you	can	output	the	name	of	a	variable	using	a	keyword	introduced	in	C#	6,	that
is,	nameof:

double	heightInMetres	=	1.88;

Console.WriteLine($"The	variable	{nameof(heightInMetres)}	has	the	value	

{heightInMetres}.");

Storing	text
For	text,	a	single	letter	such	as	A	is	stored	as	a	char	type	and	is	assigned	using	single-
quotes	around	the	literal	value.

char	letter	=	'A';

Multiple	characters	like	Bob	are	stored	as	a	string	type	and	are	assigned	using	double
quotes	around	the	literal	value:

string	name	=	"Bob";

Storing	numbers
Numbers	are	data	that	we	want	to	perform	an	arithmetic	calculation	on	(for	example,
multiplying).

Tip
A	telephone	number	is	not	really	a	number.	To	decide	whether	a	variable	needs	to	be
stored	as	a	number	or	not,	ask	yourself	whether	you	need	to	multiply	two	telephone
numbers	together	or	whether	the	number	includes	special	characters	such	as	(414)-555-
1234.	In	these	cases,	the	number	is	really	a	sequence	of	characters	so	should	be	stored	as	a
string.

Numbers	can	be	natural	numbers,	such	as	42,	used	for	counting	(also	called	whole
numbers),	they	can	also	be	negative	numbers,	such	as	-42	(called	integers),	or	they	can	be
real	numbers,	such	as	3.9	(with	a	fractional	part),	which	are	called	single	or	double-
precision	floating	point	numbers	in	computing.

You	might	know	that	computers	store	everything	as	bits.	A	bit	is	either	0	or	1.	This	is
called	a	binary	number	system.	Humans	use	a	decimal	number	system.

Storing	whole	numbers
The	following	table	shows	how	computers	store	the	number	10.	Note	the	1	bits	in	the	8
and	the	2	columns;	8	+	2	=	10.

128 64 32 16 8 4 2 1

0 0 0 0 1 0 1 0

So,	10	in	decimal	is	00001010	in	binary.

Computers	can	always	exactly	represent	integers	(positive	and	negative	whole	numbers)
using	the	int	type	or	one	of	its	sibling	types	such	as	short.

Storing	real	numbers
Computers	cannot	always	exactly	represent	floating	point	numbers.	The	float	and	double
types	store	real	numbers	using	single	and	double	precision	floating	points.

The	following	table	shows	how	a	computer	stores	the	number	12.75.	Note	the	1	bits	in	the
8,	4,	½,	and	¼	columns.

8	+	4	+	½	+	¼	=	12¾	=	12.75.

128 64 32 16 8 4 2 1 . ½ ¼ 1/8 1/16

0 0 0 0 1 1 0 0 . 1 1 0 0

So,	12.75	in	decimal	is	00001100.1100	in	binary.

As	you	can	see,	the	number	12.75	can	be	exactly	represented	using	bits.	But	some

numbers	can’t,	as	you	will	see	shortly.

Sizes	of	numbers	in	memory

In	Visual	Studio,	click	on	File	|	Add	|	New	Project….	In	the	Add	New	Project	dialog,	in
the	Installed	Templates	list,	select	Visual	C#.	In	the	list	at	the	center,	select	Console
Application,	type	the	name	Ch02_Numbers,	and	then	click	on	OK.

In	the	Solution	Explorer	window,	right-click	on	the	solution	and	select	Properties	or
press	Alt	+	Enter.	For	Startup	Project,	select	Current	selection.	From	now	on	you	can
simply	click	on	a	project	in	the	Solution	Explorer	and	then	press	Ctrl	+	F5	to	save,
compile,	and	run	that	project.

Type	the	following	code	inside	the	Main	method:

Console.WriteLine($"int	uses	{sizeof(int)}	bytes	and	can	store	numbers	in	

the	range	{int.MinValue:N0}	to	{int.MaxValue:N0}.");

Console.WriteLine($"double	uses	{sizeof(double)}	bytes	and	can	store	

numbers	in	the	range	{double.MinValue:N0}	to	{double.MaxValue:N0}.");

Console.WriteLine($"decimal	uses	{sizeof(decimal)}	bytes	and	can	store	

numbers	in	the	range	{decimal.MinValue:N0}	to	{decimal.MaxValue:N0}.");

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

int	uses	4	bytes	and	can	store	numbers	in	the	range	-2,147,483,648	to	

2,147,483,647.

double	uses	8	bytes	and	can	store	numbers	in	the	range	

-179,769,313,486,232,000,000,000,000,000,000,000,000,000,000,000,000,000,00

0,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0

00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00

0,000,000,000,000,000,000,000,000,000	to	

179,769,313,486,232,000,000,000,000,000,000,000,000,000,000,000,000,000,000

,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00

0,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0

00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

,000,000,000,000,000,000,000,000,000.

decimal	uses	16	bytes	and	can	store	numbers	in	the	range	

-79,228,162,514,264,337,593,543,950,335	to	

79,228,162,514,264,337,593,543,950,335.

Note	that	an	int	variable	uses	four	bytes	of	memory	and	can	store	positive	or	negative
numbers	up	to	about	2	billion.

A	double	variable	uses	eight	bytes	of	memory	and	can	store	much	bigger	values!	A
decimal	variable	uses	16	bytes	of	memory	and	can	store	big	numbers,	but	not	as	big	as	a
double.

Why	might	a	double	variable	be	able	to	store	bigger	numbers	than	a	decimal	variable	yet
use	half	the	space	in	memory?	Let’s	find	out!

Comparing	double	and	decimal

In	Visual	Studio,	click	on	File	|	Add	|	New	Project….	In	the	Add	New	Project	dialog,	in
the	Installed	Templates	list,	select	Visual	C#.	In	the	list	at	the	center,	select	Console
Application,	type	the	name	Ch02_NumberAccuracy,	and	then	click	on	OK.

Enter	the	following	code.	Do	not	worry	about	understanding	the	syntax	right	now,
although	it	isn’t	too	hard	to	follow:

double	a	=	0.1;

double	b	=	0.2;

if	(a	+	b	==	0.3)

{

				Console.WriteLine($"{a}	+	{b}	equals	0.3");

}

else

{

				Console.WriteLine($"{a}	+	{b}	does	NOT	equal	0.3");

}

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

0.1	+	0.2	does	NOT	equal	0.3

The	double	type	is	NOT	guaranteed	to	be	accurate.	Only	use	double	when	accuracy,
especially	when	comparing	two	numbers,	is	not	important,	for	example,	when	measuring	a
person’s	height.

The	problem	with	the	preceding	code	is	how	the	computer	stores	the	number	0.1	or
multiples	of	0.1.	To	represent	0.1	in	binary,	the	computer	stores	1	in	the	1/16	column,	1	in
the	1/128	column,	1	in	the	1/1024	column,	and	so	on.	The	number	0.1	in	decimal	is
0.0001001001001	repeating	forever:

4 2 1 . ½ ¼ 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048

0 0 0 . 0 0 0 1 0 0 1 0 0 1 0

Tip
Never	compare	double	values	using	==.	During	the	First	Gulf	War,	an	American	patriot

missile	battery	used	double	values	in	its	calculations.	The	inaccuracy	caused	it	to	fail	to
track	and	intercept	an	incoming	Iraqi	Scud	missile,	and	28	soldiers	were	killed,	as	you	can
read	about	at	this	link:	https://www.ima.umn.edu/~arnold/disasters/patriot.html.

Copy	and	paste	the	code	you	wrote	before	that	used	doubles	and	then	modify	it	to	look
like	the	following	code:

decimal	c	=	0.1M;	//	M	indicates	a	decimal	literal	value

decimal	d	=	0.2M;

if	(c	+	d	==	0.3M)

{

				Console.WriteLine($"{c}	+	{d}	equals	0.3");

}

else

{

				Console.WriteLine($"{c}	+	{d}	does	NOT	equal	0.3");

}

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

0.1	+	0.2	equals	0.3

The	decimal	type	is	accurate	because	it	actually	stores	the	number	as	a	large	integer	and
shifts	the	decimal	point.	For	example,	0.1	is	stored	as	1	with	a	note	to	shift	the	decimal
point	one	place	to	the	left.	12.75	is	stored	as	1275	with	a	note	to	shift	the	decimal	point
two	places	to	the	left.

Tip
Best	Practice

Use	int	for	whole	numbers	and	double	for	real	numbers.	Use	decimal	for	money,	CAD
drawings,	general	engineering,	and	wherever	accuracy	of	a	real	number	is	important.

The	double	type	has	some	useful	special	values:	double.NaN	means	not-a-number	and
double.Infinity	means	an	infinitely	large	value.	You	can	use	these	special	values	when
comparing	the	value	of	double	variables.

https://www.ima.umn.edu/~arnold/disasters/patriot.html

Storing	Booleans
Booleans	(bool)	can	only	contain	one	of	the	two	values:	true	or	false,	as	shown	in	the
following	code.	They	are	most	commonly	used	to	branch	and	loop,	as	you	will	see	in
Chapter	3,	Controlling	the	Flow,	Converting	Types,	and	Handling	Exceptions:

bool	happy	=	true;

bool	sad	=	false;

The	object	type
There	is	a	special	type	named	object	that	can	store	any	type	of	data,	but	its	flexibility
comes	at	the	cost	of	messier	code	and	poor	performance	due	to	boxing	and	unboxing
operations	when	storing	a	value	type.	You	should	avoid	it	whenever	possible.

Add	a	new	Console	Application	project	named	Ch02_SpecialTypes	and	add	the
following	code	to	the	Main	method:

object	height	=	1.88;	//	storing	a	double	in	an	object

object	name	=	"Amir";	//	storing	a	string	in	an	object

int	length1	=	name.Length;	//	gives	compile	error!

int	length2	=	((string)name).Length;	//	cast	to	access	members

The	object	type	has	been	available	since	the	first	version	of	C#	but	C#	2	and	higher
versions	have	better	alternatives,	which	we	will	cover	later,	that	provide	the	flexibility	we
want	without	the	performance	overhead.

The	dynamic	type
There	is	another	special	type	named	dynamic	that	can	also	store	any	type	of	data,	and,	like
object,	its	flexibility	comes	at	the	cost	of	performance.	Unlike	object,	the	value	stored	in
the	variable	can	have	its	members	invoked	without	an	explicit	cast,	as	shown	in	the
following	code:

dynamic	anotherName	=	"Ahmed";	//	storing	a	string	in	a	dynamic	object

int	length	=	anotherName.Length;	//	this	compiles	but	might	throw	an	

exception	at	run-time!

The	limitation	of	dynamic	is	that	Visual	Studio	cannot	show	IntelliSense	to	help	you	write
the	code	because	the	compiler	doesn’t	check	at	build	time.	Instead,	the	CLR	checks	for	the
member	at	runtime.	The	dynamic	keyword	was	introduced	in	C#	4.

Local	variables
Local	variables	are	declared	inside	methods	and	they	only	exist	during	the	call	to	that
method.	Once	the	method	returns,	the	memory	allocated	to	any	local	variables	is	released.

Add	a	new	Console	Application	project	named	Ch02_Variables.	Enter	the	following
code	to	declare	and	assign	values	to	some	local	variables	inside	the	Main	method.	Note
that	we	specify	the	type	before	the	name	of	each	variable:

int	population	=	66000000;

double	weight	=	1.88;	//	in	kilograms

decimal	price	=	4.99M;	//	in	pounds	sterling

string	fruit	=	"Apples";	//	strings	use	double-quotes

char	letter	=	'Z';	//	chars	use	single-quotes

Tip
Visual	Studio	2015	will	show	green	squiggles	under	each	of	the	variable	names	to	warn
you	that	the	variable	is	assigned	but	its	value	is	never	used.

Inferring	the	type	of	a	local	variable
You	can	use	the	var	keyword	to	declare	local	variables.	The	compiler	will	infer	the	type
from	the	literal	value	you	assign	after	the	assignment	=	operator.

A	literal	number	without	a	decimal	point	is	inferred	as	an	int	variable	unless	you	add	the
L	suffix,	in	which	case	it	infers	a	long	variable.	A	literal	number	with	a	decimal	point	is
inferred	as	a	double	unless	you	add	the	M	suffix,	in	which	case	it	infers	a	decimal	variable,
or	the	F	suffix,	in	which	case	it	infers	a	float	variable.	Double	quotes	indicate	a	string
variable,	single	quotes	indicate	a	char,	and	the	true	and	false	values	indicates	a	bool.

Modify	your	code	to	use	var:

var	population	=	66000000;

var	weight	=	1.88;	//	in	kilograms

var	price	=	4.99M;	//	in	pounds	sterling

var	fruit	=	"Apples";	//	strings	use	double-quotes

var	letter	=	'Z';	//	chars	use	single-quotes

var	happy	=	true;

Tip
Although	using	var	is	convenient,	some	developers	avoid	using	it	to	make	it	easier	for	a
code	reader	to	understand	the	types	in	use	in	the	code.	Personally,	I	use	it	whenever	the
type	is	obvious.	For	example,	the	first	statement	is	just	as	clear	as	the	second	in	stating
what	the	type	of	the	xml	variable	is	but	is	shorter	than	the	second	statement:

var	xml	=	new	XmlDocument();

XmlDocument	xml	=	new	XmlDocument();

Making	a	value	type	nullable
Most	of	the	primitive	types	except	string	are	value	types.	This	means	they	must	have	a
value.	You	can	determine	the	default	value	of	a	type	using	the	default()	operator.	The
default	value	of	an	int	variable	is	0	(zero):

int	defaultValueOfInt	=	default(int);	//	0

Strings	are	reference	types.	This	means	that	they	can	have	a	null	value.	The	null	value	is
a	special	value	that	indicates	that	the	variable	does	not	reference	anything	(yet).

Sometimes	it	is	convenient	to	allow	a	value	type	to	be	null.	You	can	do	this	by	adding	a
question	mark	as	a	suffix	to	the	type	when	declaring	a	variable,	as	shown	in	the	following
code:

int	ICannotBeNull	=	4;

ICannotBeNull	=	default(int);	//	0

int?	ICouldBeNull	=	null;

int	result1	=	ICouldBeNull.GetValueOrDefault();	//	0

ICouldBeNull	=	4;

int	result2	=	ICouldBeNull.GetValueOrDefault();	//	4	

Storing	multiple	values	in	an	array
When	you	need	to	store	multiple	values	of	the	same	type,	you	can	declare	an	array.	For
example,	you	might	need	to	store	four	names	in	a	string	array.

Add	the	following	lines	of	code	to	the	end	of	the	Main	method.	It	declares	an	array	for
storing	four	strings.	Then,	it	stores	strings	at	index	positions	0	to	3	(note	that	arrays	count
from	zero,	so	the	last	item	is	one	less	than	the	length	of	the	array).	Finally,	it	loops	through
each	item	in	the	array	using	a	for	statement	that	we	cover	in	more	detail	in	Chapter	3,
Controlling	the	Flow,	Converting	Types,	and	Handling	Exceptions:

//	declaring	the	size	of	the	array

string[]	names	=	new	string[4];

//	storing	items	at	index	positions

names[0]	=	"Kate";

names[1]	=	"Jack";

names[2]	=	"Rebecca";

names[3]	=	"Tom";

for	(int	i	=	0;	i	<	names.Length;	i++)

{

				Console.WriteLine(names[i]);	//	read	the	item	at	this	index

}

Tip
Arrays	are	always	of	a	fixed	size,	so	you	need	to	decide	how	many	items	you	want	to	store
before	instantiating	them.	Arrays	are	useful	for	temporarily	storing	multiple	items,	but
collections	are	more	flexible	when	adding	and	removing	items	dynamically.	We	cover
collections	in	Chapter	4,	Using	Common	.NET	Types.

Building	console	applications
Console	applications	are	text	based	and	are	run	at	the	Command	Prompt.	They	typically
perform	simple	tasks	that	need	to	be	scripted	such	as	compiling	a	file	or	encrypting	a
section	of	a	configuration	file.	They	can	have	arguments	passed	to	them	to	control	their
behavior,	for	example,	to	compile	a	source	file	into	a	shared	library:

csc	my.cs	/target:library

To	encrypt	the	database	connection	strings	section	in	a	Web.config	file,	use	the	following
command:

aspnet_regiis	–pdf	"connectionStrings"	"c:\mywebsite\"

Displaying	output	to	the	user
The	two	most	common	tasks	that	a	console	application	performs	are	writing	and	reading
lines.	We	have	already	been	using	the	WriteLine	method	to	output.	If	we	didn’t	want	a
carriage	return	at	the	end	of	lines,	we	could	have	used	the	Write	method.

C#	6	has	a	handy	new	feature	named	string	interpolation.	This	allows	us	to	easily	output
one	or	more	variables	in	a	nicely	formatted	manner.	A	string	prefixed	with	$	can	use	curly
braces	around	the	name	of	a	variable	to	output	the	current	value	of	that	variable	at	that
position	in	the	string.

In	the	Ch02_Variables	project,	enter	the	following	code	in	the	Main	method:

Console.Write($"The	population	of	the	UK	is	{population}.	");

Console.WriteLine($"The	population	of	the	UK	is	{population:N0}.	");

Console.WriteLine($"{weight}kg	of	{fruit}	costs	{price:C}.");

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

The	population	of	the	UK	is	66000000.	The	population	of	the	UK	is	

66,000,000.

1.88kg	of	Apples	costs	£4.99.

The	variable	can	be	formatted	using	special	format	codes.	N0	means	a	number	with
commas	for	thousands	and	no	decimal	places.	C	means	currency.	The	currency	format	will
be	determined	by	the	current	thread.	If	you	run	this	code	on	a	PC	in	the	UK,	you	get
pounds	sterling.	If	you	run	this	code	on	a	PC	in	Germany,	you	get	Euros.

Getting	input	from	the	user
We	can	get	input	from	the	user	using	the	ReadLine	method.	This	method	waits	for	the	user
to	type	some	text.	As	soon	as	the	user	presses	Enter,	whatever	the	user	has	typed	is
returned	as	a	string.

Let’s	ask	the	user	for	their	name	and	age.	Later,	we	will	convert	the	age	into	a	number,	but
we	will	leave	it	as	a	string	for	now:

Console.Write("Type	your	name	and	press	ENTER:	");

string	name	=	Console.ReadLine();

Console.Write("Type	your	age	and	press	ENTER:	");

string	age	=	Console.ReadLine();

Console.WriteLine($"Hello	{name},	you	look	good	for	{age}.");

Press	Ctrl	+	F5	and	view	the	output	in	the	console.	Enter	a	name	and	an	age:

Type	your	name	and	press	ENTER:	Gary

Type	your	age	and	press	ENTER:	34

Hello	Gary,	you	look	good	for	34.

Importing	a	namespace
You	might	have	noticed	that	unlike	our	very	first	application	we	have	not	been	typing
System	before	Console.

System	is	a	namespace.	Namespaces	are	like	an	address	for	a	type.	To	refer	to	someone
exactly,	you	might	use	Oxford.HighStreet.BobSmith,	which	tells	us	to	look	for	a	person
named	Bob	Smith	on	the	High	Street	in	the	city	of	Oxford.

The	line	System.Console.WriteLine	tells	the	compiler	to	look	for	a	method	named
WriteLine	in	a	type	named	Console	in	a	namespace	named	System.

To	simplify	our	code,	Visual	Studio	added	a	line	at	the	top	of	the	code	file	to	tell	the
compiler	to	always	look	in	the	System	namespace	for	types	that	haven’t	been	prefixed
with	their	namespace.	We	call	this	importing	the	namespace.

using	System;

Simplifying	the	usage	of	the	console	in	C#	6
In	C#	6,	the	using	statement	can	be	used	to	further	simplify	our	code.

Add	the	following	line	to	the	top	of	the	file:

using	static	System.Console;

Now,	we	don’t	need	to	enter	the	Console	type	throughout	our	code.	We	can	use	Find	and
Replace	to	remove	it.	Select	the	first	Console.	line	in	your	code	(ensure	that	you	select	the
dot	after	the	word	Console).

Press	Ctrl	+	H	to	do	a	Quick	Replace	(ensure	that	the	Replace…	box	is	empty).

Press	Alt	+	A	to	replace	all	and	then	click	on	OK.

Close	the	replace	box	by	clicking	on	the	cross	in	its	top-right	corner.

We	can	use	a	Visual	Studio	feature	to	clean	up	the	extra	using	statements	that	we	don’t
need.

Click	on	the	using	statements,	click	on	the	light	bulb	icon	that	appears	(or	press	Ctrl	+	.),
and	then	select	Remove	Unnecessary	Usings:

Our	complete	application	now	looks	like	the	following	code:

using	static	System.Console;

namespace	Ch02_Variables

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												var	population	=	66000000;

												var	weight	=	1.88;	//	in	kilograms

												var	price	=	4.99M;	//	in	pounds	sterling

												var	fruit	=	"Apples";	//	strings	use	double-quotes

												var	letter	=	'Z';	//	chars	use	single-quotes

												var	happy	=	true;

												int	ICannotBeNull	=	4;

												ICannotBeNull	=	default(int);	//	0

												int?	ICouldBeNull	=	null;

												var	result1	=	ICouldBeNull.GetValueOrDefault();	//	0

												ICouldBeNull	=	4;

												var	result2	=	ICouldBeNull.GetValueOrDefault();	//	4	

												//	declaring	the	size	of	the	array

												string[]	names	=	new	string[4];

												//	storing	items	at	index	positions

												names[0]	=	"George";

												names[1]	=	"Jerry";

												names[2]	=	"Elaine";

												names[3]	=	"Cosmo";

												for	(int	i	=	0;	i	<	names.Length;	i++)

												{

																WriteLine(names[i]);	//	read	the	item	at	this	index

												}

												Write($"The	population	of	the	UK	is	{population}.	");

												WriteLine($"The	population	of	the	UK	is	{population:N0}.	");

												WriteLine($"{weight}kg	of	{fruit}	costs	{price:C}.	");

												Write("Type	your	name	and	press	ENTER:	");

												string	name	=	ReadLine();

												Write("Type	your	age	and	press	ENTER:	");

												string	age	=	ReadLine();

												WriteLine($"Hello	{name},	you	look	good	for	{age}.");

								}

				}

}

Reading	arguments	and	working	with	arrays
You	have	probably	been	wondering	what	the	string[]	args	argument	is	in	the	Main
method.	It	is	an	array	used	to	pass	arguments	into	a	console	application.

Add	a	new	Console	Application	project	named	Ch02_Arguments.

Remember	how	we	could	pass	the	name	of	the	file	we	wanted	to	compile	to	the	compiler
when	we	used	the	C#	compiler	at	the	Command	Prompt?	We	can	do	the	same	thing	with
our	own	applications.	For	example,	we	can	enter	the	following	at	the	Command	Prompt:

Ch02_Arguments	apples	bananas	cherries

We	would	be	able	to	read	the	fruit	names	by	reading	them	from	the	args	array.

Remember	that	arrays	use	the	square	bracket	syntax	to	indicate	multiple	values.	Arrays
have	a	property	named	Length	that	tells	us	how	many	items	are	currently	in	the	array.	If
there	is	at	least	one	item,	then	we	can	access	it	by	knowing	its	index.	Indexes	start
counting	from	zero	so	the	first	item	in	an	array	is	item	0.

Add	a	statement	to	statically	import	the	System.Console	type.	Write	a	statement	to	output
the	number	of	arguments	passed	to	the	application.	Remove	the	unnecessary	using
statements.	Your	code	should	now	look	like	this:

using	static	System.Console;

namespace	Ch02_Arguments

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												WriteLine($"There	are	{args.Length}	arguments.");

								}

				}

}

Tip
Remember	to	statically	import	the	System.Console	type	to	simplify	your	code,	as	these
instructions	will	not	be	repeated.

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

There	are	0	arguments.

To	pass	in	some	arguments,	view	the	Solution	Explorer	window,	and	inside	the
Ch02_Arguments	project,	double-click	on	Properties:

In	the	Properties	window,	select	the	Debug	tab,	and	in	the	Command	line	arguments
box,	enter	a	space-separated	list	of	four	arguments	as	shown	in	the	code	and	screenshot
that	follows:

firstarg	second-arg	third:arg	"fourth	arg"

Note	that	you	can	use	almost	any	character	in	an	argument	including	hyphens	and	colons.
If	you	need	to	use	a	space	inside	an	argument,	you	must	wrap	it	in	double	quotes.

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

There	are	4	arguments.

To	enumerate	or	iterate	(that	is,	loop	through)	the	values	of	those	four	arguments,	add
these	three	lines	of	highlighted	code	after	outputting	the	length	of	the	array:

WriteLine($"There	are	{args.Length}	arguments.");

foreach	(string	arg	in	args)

{

				WriteLine(arg);

}

We	will	now	use	these	arguments	to	allow	the	user	to	pick	a	color	for	the	background,
foreground,	width	and	height	of	the	console	window.

Change	the	arguments	in	the	Properties	window	to	look	like	this:

Import	the	System	namespace	by	adding	the	following	line	to	the	top	of	the	code	file	if	it
is	not	already	there:

using	System;

Add	the	highlighted	code	on	top	of	the	existing	code	like	this:

ForegroundColor	=	(ConsoleColor)Enum.Parse(typeof(ConsoleColor),	args[0],	

true);

BackgroundColor	=	(ConsoleColor)Enum.Parse(typeof(ConsoleColor),	args[1],	

true);

WindowWidth	=	int.Parse(args[2]);

WindowHeight	=	int.Parse(args[3]);

WriteLine($"There	are	{args.Length}	arguments.");

foreach	(var	arg	in	args)

{

				WriteLine(arg);

}

We	needed	to	import	the	System	namespace	so	that	the	compiler	knows	about	the
ConsoleColor	and	Enum	types.	If	you	cannot	see	either	of	these	types	in	the	IntelliSense
list,	it	is	because	you	are	missing	the	using	System;	statement.

Press	Ctrl	+	F5.	The	console	window	is	now	a	different	size	and	uses	different	colors	for
the	foreground	and	background	text.

Operating	on	variables
Operators	apply	simple	operations,	such	as	addition	and	multiplication,	to	operands,	such
as	numbers.	They	usually	return	a	new	value	that	is	the	result	of	the	operation.

Most	operators	are	binary,	meaning	that	they	work	on	two	operands:

var	result	=	FirstOperand	operator	SecondOperand;

Some	operators	are	unary	meaning	they	work	on	a	single	operand.	A	ternary	operator
works	on	three	operands.

Experimenting	with	unary	operators
Two	common	unary	operators	are	used	to	increment	++	and	decrement	--	a	number.

In	Visual	Studio,	from	the	View	menu,	choose	Other	Windows,	and	then	C#	Interactive.
Enter	the	following	code:

>	int	i	=	3;

>	i

3

Note	that	when	you	enter	a	full	statement	ending	in	a	semicolon,	it	is	executed	when	you
press	Enter.

The	first	statement	uses	the	assignment	operator	=	to	assign	the	value	3	to	the	variable	i.
When	you	enter	a	variable	name	at	the	prompt,	it	returns	the	variable’s	current	value.

Enter	the	following	statements	and	before	pressing	Enter,	try	to	guess	what	the	value	of	x
and	y	will	be:

>	int	x	=	3;

>	int	y	=	x++;

Now	check	the	values	of	x	and	y.	You	might	be	surprised	to	see	that	y	has	the	value	3:

>	x

4

>	y

3

The	variable	y	has	the	value	3	because	the	++	operator	executes	after	the	assignment.	This
is	known	as	postfix.	If	you	need	to	increment	before	assignment,	use	prefix,	as	follows:

>	int	x	=	3;

>	int	y	=	++x;

>	x

4

>	y

4

You	can	decrement	a	variable	using	the	--	operator.

Tip
Best	Practice

Due	to	the	confusion	between	prefix	and	postfix	for	the	increment	and	decrement
operators	when	combined	with	assignment,	the	Swift	programming	language	designers
plan	to	drop	support	for	this	operator	in	version	3.	My	recommendation	for	usage	in	C#	is
to	never	combine	the	use	of	++	and	--	operators	with	an	assignment	=.	Perform	the
operations	as	separate	statements.

Experimenting	with	arithmetic	operators
Arithmetic	operators	allow	you	to	perform	arithmetics	on	numbers.	Enter	the	following	in
the	C#	Interactive	window:

>	11	+	3

14

>	11	-	3

8

>	11	*	3

33

>	11	/	3

3

>	11	%	3

2

>	11.0	/	3

3.6666666666666665

To	understand	the	divide	(/)	and	modulus	(%)	operators	when	applied	to	integers	(whole
numbers),	you	need	to	think	back	to	primary	school.

Imagine	you	have	eleven	sweets	and	three	friends.	How	can	you	divide	the	sweets
between	your	friends?	You	can	give	three	sweets	to	each	of	your	friends	and	there	will	be
two	left	over.	Those	two	are	the	modulus,	also	known	as	remainder.	If	you	have	twelve
sweets,	then	each	friend	gets	four	of	them	and	there	are	none	left	over.	So	the	remainder	is
0.

If	you	start	with	a	real	number	(such	as	11.0),	then	the	divide	operator	returns	a	floating
point	value,	such	as	3.6666666666665,	rather	than	a	whole	number.

Comparison	and	Boolean	operators
Comparison	and	Boolean	operators	either	return	true	or	false.	In	the	next	chapter,	we
will	use	comparison	operators	in	the	if	and	while	statements	to	check	for	conditions.

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	the	topics	covered	in	this	chapter	with	deeper	research.

Exercise	2.1	–	test	your	knowledge
What	type	would	you	choose	for	the	following	“numbers”?

1.	 A	person’s	telephone	number
2.	 A	person’s	height
3.	 A	person’s	age
4.	 A	person’s	salary
5.	 A	book’s	ISBN
6.	 A	book’s	price
7.	 A	book’s	shipping	weight
8.	 A	country’s	population
9.	 The	number	of	stars	in	the	Universe
10.	 The	number	of	employees	in	each	of	the	small	or	medium	businesses	in	the	UK	(up

to	about	50,000	employees	per	business)

Exercise	2.2	–	practice	number	sizes	and	ranges
Create	a	Console	Application	project	named	Ch02_Exercise02	that	outputs	the	number
of	bytes	in	memory	that	each	of	the	following	number	types	use	and	the	minimum	and
maximum	possible	values	they	can	have:	sbyte,	byte,	short,	ushort,	int,	uint,	long,
ulong,	float,	double,	and	decimal.

Tip
Read	the	online	MSDN	documentation	for	Composite	Formatting,	available	at
https://msdn.microsoft.com/en-us/library/txafckwd(v=vs.110).aspx,	to	learn	how	to	align
text	in	a	console	application.

The	output	of	your	application	should	look	something	like	the	following	screenshot:

https://msdn.microsoft.com/en-us/library/txafckwd(v=vs.110).aspx

Exercise	2.3	–	explore	topics
Use	the	following	links	to	read	more	about	the	topics	covered	in	this	chapter:

C#	Keywords:	https://msdn.microsoft.com/en-us/library/x53a06bb.aspx
Integral	Types	Table	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/exx3b86w.aspx
Floating-Point	Types	Table	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/9ahet949.aspx
decimal	(C#	Reference):	https://msdn.microsoft.com/en-us/library/364x0z75.aspx
bool	(C#	Reference):	https://msdn.microsoft.com/en-us/library/c8f5xwh7.aspx
char	(C#	Reference):	https://msdn.microsoft.com/en-us/library/x9h8tsay.aspx
string	(C#	Reference):	https://msdn.microsoft.com/en-us/library/362314fe.aspx
var	(C#	Reference):	https://msdn.microsoft.com/en-us/library/bb383973.aspx
Nullable	Types	(C#	Programming	Guide):	https://msdn.microsoft.com/en-
us/library/1t3y8s4s.aspx
Standard	Numeric	Format	Strings:	https://msdn.microsoft.com/en-
us/library/dwhawy9k(v=vs.110).aspx
Custom	Numeric	Format	Strings:	https://msdn.microsoft.com/en-
us/library/0c899ak8(v=vs.110).aspx
Custom	Date	and	Time	Format	Strings:	https://msdn.microsoft.com/en-
us/library/8kb3ddd4(v=vs.110).aspx
Composite	Formatting:	https://msdn.microsoft.com/en-
us/library/txafckwd(v=vs.110).aspx
Console	Class:	https://msdn.microsoft.com/en-
us/library/system.console(v=vs.110).aspx
C#	Operators:	https://msdn.microsoft.com/en-us/library/6a71f45d.aspx
Languages	features	in	C#	6	and	VB	14:
https://github.com/dotnet/roslyn/wiki/Languages-features-in-C%23-6-and-VB-14

https://msdn.microsoft.com/en-us/library/x53a06bb.aspx
https://msdn.microsoft.com/en-us/library/exx3b86w.aspx
https://msdn.microsoft.com/en-us/library/9ahet949.aspx
https://msdn.microsoft.com/en-us/library/364x0z75.aspx
https://msdn.microsoft.com/en-us/library/c8f5xwh7.aspx
https://msdn.microsoft.com/en-us/library/x9h8tsay.aspx
https://msdn.microsoft.com/en-us/library/362314fe.aspx
https://msdn.microsoft.com/en-us/library/bb383973.aspx
https://msdn.microsoft.com/en-us/library/1t3y8s4s.aspx
https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/0c899ak8(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/txafckwd(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.console(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/6a71f45d.aspx
https://github.com/dotnet/roslyn/wiki/Languages-features-in-C%23-6-and-VB-14

Summary
In	this	chapter,	you	learned	how	to	declare	variables	with	an	explicit	type	or	inferred	with
the	var	keyword,	we	discussed	some	of	the	built-in	types	for	numbers,	text,	and	Booleans,
we	covered	how	to	choose	between	number	types,	and	we	experimented	with	some
operators.

In	the	next	chapter,	you	will	learn	about	branching,	looping,	converting	between	types,
and	handling	exceptions.

Chapter	3.	Controlling	the	Flow,
Converting	Types,	and	Handling
Exceptions
This	chapter	is	about	writing	code	that	makes	decisions,	repeats	blocks	of	statements,
converts	between	types,	and	handles	errors	(known	as	exceptions).	You	will	also	learn
about	the	best	places	to	look	for	help.

This	chapter	covers	the	following	topics:

Selection	statements
Iteration	statements
Casting	and	converting	between	types
Handling	exceptions
Checking	for	overflow
Looking	for	help

Selection	statements
Every	application	needs	to	be	able	to	select	from	choices	and	branch	along	different	code
paths.	The	two	selection	statements	in	C#	are	if	and	switch,	also	known	as	if-else	and
switch-case.	You	can	use	if	for	all	your	code	but	switch	can	simplify	your	code	in	some
common	scenarios.

Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	choose	File
|	New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	list	at
the	center,	select	Console	Application,	type	the	name	Ch03_SelectionStatements,	change
the	location	to	C:\Code,	type	the	solution	name	Chapter03,	and	then	click	on	OK.

At	the	top	of	the	Program.cs	file,	statically	import	the	System.Console	type,	as	follows:

using	static	System.Console;

The	if-else	statement
The	if-else	statement	determines	which	branch	to	follow	by	evaluating	a	Boolean
expression.	The	else	block	is	optional.	if-else	statements	can	be	nested	and	combined.
Each	Boolean	expression	can	be	independent	of	the	others.

Add	the	following	statements	to	the	Main	method	to	check	whether	this	console
application	has	any	arguments	passed	to	it:

if	(args.Length	==	0)

{

				WriteLine("There	are	no	arguments.");

}

else

{

				WriteLine("There	is	at	least	one	argument.");

}

Since	there	is	only	a	single	statement	inside	each	block,	this	code	can	be	written	without
the	curly	braces,	as	follows:

if	(args.Length	==	0)

				WriteLine("There	are	no	arguments.");

else

				WriteLine("There	is	at	least	one	argument.");

This	style	of	the	if-else	statement	is	not	recommended	because	it	can	introduce	serious
bugs,	for	example,	the	infamous	#gotofail	bug	in	Apple’s	iPhone	operating	system.	For	18
months	after	Apple’s	iOS	6	was	released,	it	had	a	bug	in	its	Secure	Sockets	Layer	(SSL)
encryption	code,	which	meant	that	any	user	running	Safari	to	connect	to	secure	websites,
such	as	their	bank,	for	the	purpose	of	payment	transactions	and	other	online	banking
activities,	were	not	properly	secure	because	an	important	check	was	being	accidently
skipped.

https://gotofail.com/

Just	because	you	can	leave	out	the	curly	braces,	doesn’t	mean	you	should.	Your	code	is
not	“more	efficient”	without	them,	instead,	it	is	less	maintainable	and	potentially	more
dangerous,	as	this	tweet	points	out:

https://gotofail.com/

The	switch-case	statement
The	switch-case	statement	is	different	from	the	if-else	statement	because	it	compares	a
single	expression	against	a	list	of	possible	cases.	Every	case	is	related	to	the	single
expression.	Every	case	must	end	with	the	break	keyword	(such	as	case	1	in	the	following
code)	or	the	goto	case	keywords,	(such	as	case	2	in	the	following	code)	or	they	should
have	no	statements	(such	as	case	3	in	the	following	code).

Enter	the	following	code	after	the	if-else	statement	you	wrote	previously.	Note	that	the
first	line	is	a	label	that	can	be	jumped	to	and	the	second	line	generates	a	random	number.
The	switch	statement	branches	based	on	the	value	of	this	random	number:

A_label:

				var	number	=	(new	Random()).Next(1,	7);

				WriteLine($"My	random	number	is	{number}");

				switch	(number)

				{

								case	1:	//	must	be	a	literal	value

												WriteLine("One");

												break;	//	jumps	to	end	of	switch	statement

								case	2:

												WriteLine("Two");

												goto	case	1;

								case	3:

								case	4:

												WriteLine("Three	or	four");

												goto	case	1;

								case	5:

												//	go	to	sleep	for	half	a	second

												System.Threading.Thread.Sleep(500);	

												goto	A_label;

								default:

												WriteLine("Default");

												break;

				}	//	end	of	switch	statement

You	can	use	the	goto	keyword	to	jump	to	another	case	or	a	label.	The	goto	keyword	is
frowned	upon	by	most	programmers	but	can	be	the	best	solution	in	some	scenarios.	Use	it
sparingly.

Run	the	program	by	pressing	Ctrl	+	F5.	Run	it	multiple	times	to	see	what	happens	in
various	cases	of	random	numbers,	as	shown	in	the	following	output:

There	are	no	arguments.

My	random	number	is	5

My	random	number	is	3

Three	or	four

One

Autoformatting	code
Let’s	take	a	diversion	for	a	minute	to	talk	about	formatting.	Code	is	easier	to	read	and
understand	if	it	is	consistently	indented	and	spaced	out.

If	your	code	can	compile,	then	Visual	Studio	can	automatically	format	it	so	it’s	nicely
spaced	and	indented.

Type	the	following	code	(Visual	Studio	will	autoformat	even	at	the	end	of	each	line	so
when	it	does	so,	force	the	code	to	be	improperly	spaced	out	as	shown):

var	x				=3;

if(x==3)

{	WriteLine("three");

}

Press	Shift	+	F6	and	wait	for	your	code	to	build,	and	then	press	Ctrl	+	K,	D.	Your	code
will	now	look	like	this:

var	x	=	3;

if	(x	==	3)

{

				WriteLine("three");

}

Iteration	statements
Iteration	statements	repeat	a	block	either	while	a	condition	is	true	or	for	each	item	in	a
sequence.	The	choice	of	which	statement	to	use	is	based	on	a	combination	of	ease	of
understanding	to	solve	the	logic	problem	and	personal	preference.

Add	a	new	Console	Application	project	named	Ch03_IterationStatements.

Set	the	solution’s	startup	project	to	be	the	current	selection.

The	while	statement
The	while	statement	evaluates	a	Boolean	expression	and	continues	to	loop	while	it	is
true.

Type	the	following	code	inside	the	Main	method	(remember	to	statically	import	the
System.Console	type!):

int	x	=	0;

while	(x	<	10)

{

				WriteLine(x);

				x++;

}

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

0

1

2

3

4

5

6

7

8

9

The	do-while	statement
The	do-while	statement	is	like	while	except	the	Boolean	expression	is	checked	at	the
bottom	of	the	block	instead	of	the	top,	which	means	that	it	always	executes	at	least	once.

If	you	want	to	try	the	code	for	the	do-while	statement,	then	select	all	the	previous
statements	and	press	Ctrl	+	K,	C	to	comment	them	out	and	then	enter	the	following	code
and	run	it:

int	x	=	0;

do

{

				WriteLine(x);

				x++;

}	while	(x	<	10);

When	you	then	press	Ctrl	+	F5,	you	will	see	that	the	results	are	the	same	as	those	we	got
earlier.

The	for	statement
The	for	statement	is	like	while	except	that	it	is	more	succinct.	It	combines	an	initializer
statement	that	executes	once	at	the	start	of	the	loop,	a	Boolean	expression	to	check
whether	the	loop	should	continue,	and	an	incrementer	that	executes	at	the	bottom	of	the
loop.

The	for	statement	is	commonly	used	with	an	integer	counter,	although	it	doesn’t	have	to
be	as	shown	in	the	following	code:

for	(int	y	=	0;	y	<	10;	y++)

{

				WriteLine(y);

}

The	foreach	statement
The	foreach	statement	is	a	bit	different	from	the	other	three.	It	is	used	to	perform	a	block
of	statements	on	each	item	in	a	sequence	(for	example,	an	array	or	collection).	Each	item
is	read-only	and	if	the	sequence	is	modified	during	iteration,	for	example,	by	adding	or
removing	an	item,	then	an	exception	will	be	thrown.

Type	the	following	code	inside	the	Main	method,	which	creates	an	array	of	string
variables	and	then	uses	a	foreach	statement	to	enumerate	and	output	the	length	of	each	of
them:

string[]	names	=	{	"Adam",	"Barry",	"Charlie"	};

foreach	(string	name	in	names)

{

				WriteLine($"{name}	has	{name.Length}	characters.");

}

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

Adam	has	4	characters.

Barry	has	5	characters.

Charlie	has	7	characters.

How	does	the	foreach	statement	actually	work?
Technically,	the	foreach	statement	will	work	on	any	type	that	implements	an	interface
called	IEnumerable,	but	you	don’t	need	to	worry	about	what	an	interface	is	for	now.	You
will	learn	about	interfaces	in	Chapter	7,	Implementing	Interfaces	and	Inheriting	Classes.

If	you	use	a	tool	like	ildasm,	then	you	will	see	that	the	compiler	turns	the	foreach
statement	in	the	preceding	code	into	something	like	this:

IEnumerator	e	=	names.GetEnumerator();

while(e.MoveNext())

{

				string	name	=	(string)e.Current;	//	Current	is	read-only!

				WriteLine($"{name}	has	{name.Length}	characters.");

}

Tip
Due	to	the	use	of	an	iterator,	the	variable	declared	in	a	foreach	statement	cannot	be	used
to	modify	the	value	of	the	current	item.

Casting	and	converting	between	types
You	will	often	need	to	convert	between	different	types.

Add	a	new	Console	Application	project	named	Ch03_CastingConverting.

Casting	from	numbers	to	numbers
It	is	safe	to	implicitly	cast	an	int	variable	into	a	double	variable.

In	the	Main	method,	enter	the	following	statements:

int	a	=	10;

double	b	=	a;

WriteLine(b);

You	cannot	implicitly	cast	a	double	variable	into	an	int	variable	because	it	is	potentially
unsafe	and	would	lose	data.

In	the	Main	method,	enter	the	following	statements:

double	c	=	9.8;

int	d	=	c;	//	compiler	gives	an	error	for	this	line

WriteLine(d);

Press	Ctrl	+	W,	E	to	view	the	Error	List,	as	shown	in	the	following	screenshot:

You	must	explicitly	cast	a	double	into	an	int	variable	using	a	pair	of	round	brackets
around	the	type	you	want	to	cast	the	double	into.	The	pair	of	round	brackets	is	the	cast
operator.	Even	then	you	must	beware	that	the	part	after	the	decimal	point	will	be	trimmed
off	without	warning.

Modify	the	assignment	statement	for	the	variable	d,	as	shown	in	the	following	code:

double	c	=	9.8;

int	d	=	(int)c;

WriteLine(d);	//	d	is	9	losing	the	.8	part

We	must	do	a	similar	operation	when	moving	values	between	larger	integers	and	smaller
integers.	Again,	beware	that	you	might	lose	information	because	any	value	too	big	will	get
set	to	-1!

Enter	the	following	code:

long	e	=	10;

int	f	=	(int)e;

WriteLine($"e	is	{e}	and	f	is	{f}");

e	=	long.MaxValue;

f	=	(int)e;

WriteLine($"e	is	{e}	and	f	is	{f}");

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

e	is	10	and	f	is	10

e	is	9223372036854775807	and	f	is	-1

Using	the	Convert	type
An	alternative	to	using	the	casting	operator	is	to	use	the	System.Convert	type.

At	the	top	of	the	Program.cs	file,	type	the	following	code:

using	static	System.Convert;

We	can	now	use	a	lot	of	ToSomeType	methods.

double	g	=	9.8;

int	h	=	ToInt32(g);

WriteLine($"g	is	{g}	and	h	is	{h}");

Note	that	one	difference	between	casting	and	converting	is	that	converting	rounds	the
double	value	up	to	10	instead	of	trimming	the	part	after	the	decimal	point.

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

g	is	9.8	and	h	is	10

The	System.Convert	type	can	convert	to	and	from	all	the	C#	number	types	as	well	as
Booleans,	strings,	and	dates	and	times.

Rounding	numbers
You	have	now	seen	that	the	cast	operator	trims	the	decimal	part	of	a	real	number	and	that
the	convert	methods	round	up	or	down.	But	what	is	the	rule	for	rounding?

In	British	primary	schools,	children	are	taught	to	round	up	if	the	decimal	part	is	.5	or
higher	and	round	down	if	the	decimal	part	is	less.

Enter	the	following	code	beneath	the	code	that	you	have	already	written	to	see	the	effect
of	converting	four	double	variables	to	int	variables:

double	i	=	9.49;

double	j	=	9.5;

double	k	=	10.49;

double	l	=	10.5;

WriteLine($"i	is	{i},	ToInt(i)	is	{ToInt32(i)}");

WriteLine($"j	is	{j},	ToInt(j)	is	{ToInt32(j)}");

WriteLine($"k	is	{k},	ToInt(k)	is	{ToInt32(k)}");

WriteLine($"l	is	{l},	ToInt(l)	is	{ToInt32(l)}");

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

i	is	9.49,	ToInt(i)	is	9

j	is	9.5,	ToInt(j)	is	10

k	is	10.49,	ToInt(k)	is	10

l	is	10.5,	ToInt(l)	is	10

Note	that	the	rule	for	rounding	in	C#	is	subtly	different.	It	will	round	up	if	the	decimal	part
is	.5	or	higher	and	the	non-decimal	part	is	odd,	but	it	will	round	down	if	the	non-decimal
part	is	even.	It	always	rounds	down	if	the	decimal	part	is	less	than	.5.

This	rule	is	known	as	Banker’s	Rounding	and	it	is	preferred	because	it	reduces	bias.
Sadly,	other	languages	such	as	JavaScript	use	the	primary	school	rule.

Tip
Best	Practice

For	every	programming	language	that	you	use,	check	its	rounding	rules.	They	may	not
work	the	way	you	expect!

Converting	from	any	type	to	a	string
The	most	common	conversion	is	from	any	type	into	a	string	variable,	so	all	types	have	a
method	named	ToString	that	they	inherit	from	the	System.Object	class	(which	can	be
simplified	using	the	object	keyword).

The	ToString	method	converts	the	current	value	of	any	variable	into	a	textual
representation.	Some	types	can’t	be	sensibly	represented	as	text	so	they	return	their
namespace	and	type	name.	Enter	the	following	statements	beneath	the	code	that	you	have
already	written	to	declare	four	variables	of	types	int,	bool,	DateTime,	and	object,	and
see	what	their	implementations	of	ToString	return:

int	number	=	12;

WriteLine(number.ToString());

bool	boolean	=	true;

WriteLine(boolean.ToString());

DateTime	now	=	DateTime.Now;

WriteLine(now.ToString());

object	me	=	new	object();

WriteLine(me.ToString());

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

12

True

04/03/2016	13:48:54

System.Object

Parsing	from	strings	to	numbers	or	dates	and	times
The	second	most	common	conversion	is	from	strings	to	numbers	or	dates	and	times.	The
opposite	of	ToString	is	Parse.	Only	a	few	types	have	a	Parse	method.

Add	a	new	Console	Application	project	named	Ch03_Parsing.

Add	the	following	statements	to	the	bottom	of	the	Main	method:

int	age	=	int.Parse("27");

DateTime	birthday	=	DateTime.Parse("4	July	1980");

WriteLine($"I	was	born	{age}	years	ago.");

WriteLine($"My	birthday	is	{birthday}.");

WriteLine($"My	birthday	is	{birthday:D}.");

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

I	was	born	27	years	ago.

My	birthday	is	04/07/1980	00:00:00.

My	birthday	is	04	July	1980.

One	problem	with	the	Parse	method	is	that	it	gives	errors	if	the	string	cannot	be
converted.

Add	the	following	statements	to	the	bottom	of	the	Main	method:

int	count	=	int.Parse("abc");

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

Unhandled	Exception:	System.FormatException:	Input	string	was	not	in	a	

correct	format.

To	avoid	errors,	you	can	use	the	TryParse	method	instead.	TryParse	attempts	to	convert
the	input	string	and	returns	true	if	it	can	convert	it	and	false	if	it	cannot.	The	out
keyword	is	required	to	allow	the	TryParse	method	to	set	the	count	variable	when	the
conversion	works.

Replace	the	int	count	declaration	with	the	following	statements:

Write("How	many	eggs	are	there?	");

int	count;

string	input	=	Console.ReadLine();

if	(int.TryParse(input,	out	count))

{

				WriteLine($"There	are	{count}	eggs.");

}

else

{

				WriteLine("I	could	not	parse	the	input.");

}

Run	the	application	twice.	The	first	time,	enter	12.	You	will	see	the	following	output:

How	many	eggs	are	there?	12

There	are	12	eggs.

The	second	time,	enter	twelve.	You	will	see	the	following	output:

How	many	eggs	are	there?	twelve

I	could	not	parse	the	count.

Tip
You	can	also	use	the	Convert	type,	but	like	the	Parse	method,	it	gives	an	error	if	it	cannot
convert.

Handling	exceptions
You’ve	seen	several	scenarios	when	errors	have	occurred.	C#	calls	that	an	exception	being
thrown.	A	best	practice	is	to	avoid	writing	code	that	will	throw	an	exception	whenever
possible,	but	sometimes	you	can’t.	In	those	scenarios,	you	must	catch	the	exception	and
handle	it.

As	you	have	seen,	the	default	behavior	of	a	console	application	is	to	display	details	about
the	exception	in	the	console	window	and	then	stop	running	the	application.

The	default	behavior	of	a	Windows	desktop	application	is	to	display	details	about	the
exception	in	a	dialog	box	and	allow	the	user	to	choose	to	either	continue	or	stop	running
the	application.

You	can	have	more	control	over	how	you	want	to	handle	exceptions	using	the	try-catch
statement.

Add	a	new	Console	Application	project	named	Ch03_HandlingExceptions.

The	try-catch	statement
When	you	know	that	a	statement	can	cause	an	error,	you	should	wrap	that	statement	in	a
try	block.	For	example,	parsing	from	a	string	to	a	number	can	cause	an	error.	We	do	not
have	to	do	anything	inside	the	catch	block.	When	the	following	code	executes,	the	error
will	get	caught	and	not	displayed	and	the	Console	Application	will	continue	running.

In	the	Main	method,	add	the	following	statements:

WriteLine("Before	parsing");

Write("What	is	your	age?	");

string	input	=	Console.ReadLine();

try

{

				int	age	=	int.Parse(input);

				WriteLine($"You	are	{age}	years	old.");

}

catch

{

}

WriteLine("After	parsing");

Run	the	program	by	pressing	Ctrl	+	F5	and	enter	a	valid	age,	for	example,	43:

Before	parsing

What	is	your	age?	43

You	are	43	years	old.

After	parsing

Run	the	program	and	enter	an	invalid	age,	for	example,	kermit;

Before	parsing

What	is	your	age?	kermit

After	parsing

It	can	be	useful	to	see	the	type	of	error	that	occurred.

Catching	all	exceptions
Modify	the	catch	statement	to	look	like	this:

catch(Exception	ex)

{

				WriteLine($"{ex.GetType()}	says	{ex.Message}");

}

Run	the	program	and	again	enter	an	invalid	age,	for	example,	kermit:

Before	parsing

What	is	your	age?	kermit

System.FormatException	says	Input	string	was	not	in	a	correct	format.

After	parsing

Catching	specific	exceptions
Now	that	we	know	which	specific	type	of	exception	occurred,	we	can	improve	our	code

by	catching	just	that	type	of	exception	and	customizing	the	message	that	we	display	to	the
user.

Leave	the	existing	catch	block	but	add	the	following	code	above	it:

catch	(FormatException)

{

				WriteLine("The	age	you	entered	is	not	a	valid	number	format.");

}

catch	(Exception	ex)

{

				WriteLine($"{ex.GetType()}	says	{ex.Message}");

}

Run	the	program	and	again	enter	an	invalid	age,	for	example,	kermit:

Before	parsing

What	is	your	age?	kermit

The	age	you	entered	is	not	a	valid	number	format.

After	parsing

The	reason	we	want	to	leave	the	more	general	catch	below	is	because	there	might	be	other
types	of	exception	that	can	occur.	Run	the	program	and	enter	a	number	that	is	too	big	for
an	integer,	for	example,	9876543210:

Before	parsing

What	is	your	age?	9876543210

System.OverflowException	says	Value	was	either	too	large	or	too	small	for	

an	Int32.

After	parsing

Let’s	add	another	catch	for	this	new	type	of	exception:

catch(OverflowException)

{

				WriteLine("Your	age	is	a	valid	number	format	but	it	is	either	too	big	

or	small.");

}

catch	(FormatException)

{

				WriteLine("The	age	you	entered	is	not	a	valid	number	format.");

}

Rerun	the	program	one	more	time	and	enter	a	number	that	is	too	big:

Before	parsing

What	is	your	age?	9876543210

Your	age	is	a	valid	number	format	but	it	is	either	too	big	or	small.

After	parsing

Tip
The	order	in	which	you	catch	exceptions	is	important.	The	correct	order	is	related	to	the
inheritance	hierarchy	of	the	exception	types.	You	will	learn	about	inheritance	in	Chapter	6,
Building	Your	Own	Types	with	Object-Oriented	Programming.	But	don’t	worry	too	much
about	this—the	compiler	will	give	you	build	errors	if	you	catch	exceptions	in	the	wrong

order	anyway.

The	finally	statement
Sometimes	we	would	want	to	ensure	that	some	code	executes	regardless	of	whether	an
exception	occurs	or	not.	To	do	this,	we	use	a	finally	statement.

Add	a	new	Console	Application	project	named	Ch03_Finally.

A	common	scenario	in	which	you	would	want	to	use	finally	is	when	working	with	files
and	databases.	When	you	open	a	file	or	a	database,	you	are	using	resources	outside	of
.NET.	These	are	called	unmanaged	resources	and	must	be	disposed	of	when	you	are
done	working	with	them.	To	guarantee	that	they	are	disposed	of,	we	can	call	the	Dispose
method	inside	of	a	finally	block.

Tip
You	will	learn	about	files	and	databases	in	more	detail	in	later	chapters.	For	now,	focus	on
the	code	that	we	write	in	the	finally	block.

Import	the	System.IO	namespace	at	the	top	of	the	code	file:

using	System.IO;

Type	the	following	code	in	the	Main	method:

FileStream	file	=	null;

StreamWriter	writer	=	null;

try

{

				file	=	File.OpenWrite(@"c:\Code\file.txt");

				writer	=	new	StreamWriter(file);

				writer.WriteLine("Hello	C#!");

}

catch	(Exception	ex)

{

				//	if	the	folder	doesn't	exist	the	exception	will	be	caught

				WriteLine($"{ex.GetType()}	says	{ex.Message}");

}

finally

{

				if(writer	!=	null)

				{

								writer.Dispose();

								WriteLine("The	writer's	unmanaged	resources	have	been	disposed.");

				}

				if	(file	!=	null)

				{

								file.Dispose();

								WriteLine("The	file's	unmanaged	resources	have	been	disposed.");

				}

}

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

The	writer's	unmanaged	resources	have	been	disposed.

The	file's	unmanaged	resources	have	been	disposed.

Simplifying	disposal	with	the	using	statement
If	you	don’t	need	to	catch	any	exceptions,	then	you	can	simplify	the	code	that	needs	to
check	for	a	non-null	object	and	then	call	its	Dispose	method,	as	follows:

using	(FileStream	file2	=	File.OpenWrite(@"c:\Code\file2.txt"))

{

				using	(StreamWriter	writer2	=	new	StreamWriter(file2))

				{

								writer.WriteLine("Hello	C#!");

				}	//	automatically	calls	Dispose	if	the	object	is	not	null

}	//	automatically	calls	Dispose	if	the	object	is	not	null

The	compiler	changes	your	code	into	the	longer	version	but	without	a	catch	block.	You
are	allowed	to	use	nested	try-catch	statements,	so	if	you	do	want	to	catch	any	exceptions
you	can	do	this.

Add	this	code	after	the	existing	code.	It	will	create	a	file	named	file2.txt:

using	(FileStream	file2	=	File.OpenWrite(@"c:\Code\file2.txt"))

{

				using	(StreamWriter	writer2	=	new	StreamWriter(file2))

				{

								try

								{

												Writer2.WriteLine("Hello	C#!");

								}

								catch	(Exception	ex)

								{

												WriteLine($"{ex.GetType()}	says	{ex.Message}");

								}

				}	

}

Tip
Many	types,	including	FileStream	and	StreamWriter	mentioned	earlier,	provide	a	Close
method	as	well	as	a	Dispose	method.	In	the	.NET	Framework,	you	can	use	either	because
they	do	the	same	thing.	In	the	.NET	Core,	Microsoft	has	simplified	the	API	so	you	must
use	Dispose.

Checking	for	overflow
Earlier,	we	saw	that	when	casting	between	number	types	it	was	possible	to	lose
information,	for	example,	when	casting	from	a	long	variable	to	an	int	variable.	If	the
value	stored	in	a	type	is	too	big,	it	will	overflow.

Add	a	new	Console	Application	project	named	Ch03_CheckingForOverflow.

The	checked	statement
The	checked	statement	tells	.NET	to	throw	an	exception	when	an	overflow	happens
instead	of	allowing	to	it	happen	silently.

We	set	the	initial	value	of	an	int	variable	to	its	maximum	value	minus	one.	Then,	we
increment	it	several	times,	outputting	its	value	each	time.	Note	that	once	x	gets	above	its
maximum	value,	it	overflows	to	its	minimum	value	and	continues	incrementing	from
there.

Type	the	following	code	in	the	Main	method	and	run	the	program:

int	x	=	int.MaxValue	-	1;

WriteLine(x);

x++;

WriteLine(x);

x++;

WriteLine(x);

x++;

WriteLine(x);

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

2147483646

2147483647

-2147483648

-2147483647

Now	let’s	get	the	compiler	to	warn	us	about	the	overflow	using	the	checked	statement:

checked

{

				int	x	=	int.MaxValue	-	1;

				WriteLine(x);

				x++;

				WriteLine(x);

				x++;

				WriteLine(x);

				x++;

				WriteLine(x);

}

Press	Ctrl+F5	and	view	the	output	in	the	console:

2147483646

2147483647

Unhandled	Exception:	System.OverflowException:	Arithmetic	operation	

resulted	in	an	overflow.

Just	like	any	other	exception,	we	could	wrap	these	statements	in	a	try-catch	block	and
display	a	nicer	error	message	for	the	user:

try

{

				//	previous	code	goes	here

}

catch(OverflowException)

{

				WriteLine("The	code	overflowed	but	I	caught	the	exception.");

}

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

2147483646

2147483647

The	code	overflowed	but	I	caught	the	exception.

The	unchecked	statement
A	related	keyword	is	unchecked.	Type	the	following	statement	at	the	end	of	the	previous
statements.	The	compiler	will	not	compile	this	statement	because	it	knows	it	would
overflow:

int	x	=	int.MaxValue	+	1;

Press	F6	to	build	and	notice	the	error,	as	shown	in	the	following	screenshot:

Note	that	this	is	a	compile-time	check.	To	disable	compile-time	checks,	we	can	wrap	the
statement	in	an	unchecked	block,	as	shown	in	the	following	code:

unchecked

{

				int	x	=	int.MaxValue	+	1;

				WriteLine(x);

				x--;

				WriteLine(x);

				x--;

}

Press	Ctrl	+	F5	and	view	the	output	in	the	console:

2147483646

2147483647

The	code	overflowed	but	I	caught	the	exception.

-2147483648

2147483647

2147483646

Of	course	it	would	be	pretty	rare	that	you	would	want	to	explicitly	switch	off	a	check	like
this	because	it	allows	an	overflow	to	occur.	But,	perhaps,	you	can	think	of	a	scenario
where	you	might	want	that	behavior.

Looking	for	help
This	section	is	about	how	to	find	quality	information	about	programming	on	the	Web.

MSDN
The	definitive	resource	for	getting	help	about	C#	and	.NET	is	the	Microsoft	Developer
Network	(MSDN).

Visual	Studio	is	integrated	with	MSDN,	so	if	you	press	F1	inside	a	C#	keyword	or	type,
then	it	will	open	your	browser	and	take	you	to	the	official	documentation.

Almost	all	the	reference	URLs	at	the	end	of	chapters	in	this	book	will	take	you	to	MSDN.

Getting	the	definition	of	code
Another	useful	keystroke	is	F12.	This	will	show	what	the	original	source	code	looks	like.
It	uses	a	similar	technique	as	IL	DASM	to	reverse	engineer	the	source	code	from
Microsoft	assemblies.

Enter	the	following	code,	click	inside	int,	and	then	press	F12	(or	right-click	and	choose
Go	To	Definition):

int	x;

In	the	new	code	window	that	appears,	you	can	see	that	int	is	in	the	mscorlib.dll
assembly,	it	is	named	Int32,	it	is	in	the	System	namespace,	and	int	is	therefore	an	alias
for	System.Int32.

Microsoft	defined	Int32	using	a	struct	keyword,	meaning	that	it	is	a	value	type	stored	on
the	stack.	You	can	also	see	that	Int32	implements	interfaces	such	as	IComparable	and	has
constants	for	its	maximum	and	minimum	possible	values.

In	the	code	editor	window,	find	the	Parse	methods	and	click	on	the	small	box	with	a	plus
symbol	in	the	Parse	methods	to	expand	the	code	like	I	have	done	in	the	following
screenshot:

In	the	comment,	you	will	see	that	Microsoft	has	documented	what	exceptions	might	occur
if	you	call	this	method	(ArgumentNullException,	FormatException,	and
OverflowException).

Now	we	know	that	we	need	to	wrap	a	call	to	this	method	in	a	try-catch	statement	and
which	exceptions	to	catch.

StackOverflow
StackOverflow	is	the	most	popular	third-party	website	for	getting	answers	to	difficult
programming	questions.	It	is	so	popular	that	search	engines	such	as	DuckDuckGo	have	a
special	way	to	write	a	query	to	search	the	site.

Go	to	DuckDuckGo.com	and	enter	the	following	query:

!so	securestring

You	will	get	the	following	results:

http://DuckDuckGo.com

Google
You	can	search	Google	with	advanced	search	options	to	increase	the	likelihood	of	finding
what	you	need.

For	example,	if	you	are	searching	for	information	about	garbage	collection	using	a	simple
Google	query,	you	would	see	a	Wikipedia	definition	of	garbage	collection	in	computer
science	and	then	a	list	of	garbage	collection	services	in	your	local	area.

We	can	improve	the	search	by	restricting	it	to	a	useful	site	like	StackOverflow,	as	shown
in	the	following	screenshot:

We	can	improve	the	search	even	more	by	removing	languages	that	we	might	not	care
about,	such	as	C++,	as	shown	in	the	following	screenshot:

Design	patterns
A	design	pattern	is	a	general	solution	to	a	common	problem.	Programmers	have	been
solving	the	same	problems	over	and	over.	When	the	community	discovers	a	good	reusable
solution,	we	call	it	a	design	pattern.	Many	design	patterns	have	been	documented	over	the
years.

Microsoft	has	a	group	called	patterns	&	practices	that	specializes	in	documenting	and
promoting	design	patterns	for	Microsoft	products.

Tip
Best	Practice

Before	writing	new	code,	search	to	see	if	someone	else	has	already	solved	the	problem	in
a	general	way.

Practice	and	explore
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	with	deeper	research	into	this	chapter’s	topics.

Exercise	3.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 What	happens	when	you	divide	an	int	variable	by	0?
2.	 What	happens	when	you	divide	a	double	variable	by	0?
3.	 What	happens	when	you	overflow	an	int	variable,	that	is,	set	it	to	a	value	beyond	its

range?
4.	 What	is	the	difference	between	x	=	y++;	and	x	=	++y;?
5.	 What	is	the	difference	between	break,	continue,	and	return	when	used	inside	a

loop	statement?
6.	 What	are	the	three	parts	of	a	for	statement	and	which	of	them	are	required?
7.	 What	is	the	difference	between	the	=	and	==	operators?

Exercise	3.2	–	explore	loops	and	overflow
What	will	happen	if	this	code	executes?

int	max	=	500;

for	(byte	i	=	0;	i	<	max;	i++)

{

				WriteLine(i);

}

Add	a	new	Console	Application	named	Ch03_Exercise02	and	enter	the	preceding	code.
Run	the	application	by	pressing	Ctrl	+	F5.	What	happens?

What	code	could	you	add	(don’t	change	any	of	the	preceding	code)	to	warn	us	about	the
problem?

Exercise	3.3	–	practice	loops	and	operators
FizzBuzz	is	a	group	word	game	for	children	to	teach	them	about	division.	Players	take
turns	to	count	incrementally,	replacing	any	number	divisible	by	three	with	the	word	“fizz”,
any	number	divisible	by	five	with	the	word	“buzz”,	and	any	number	divisible	by	both	with
“fizzbuzz”.

Some	interviewers	give	applicants	simple	FizzBuzz-style	problems	to	solve	during
interviews.	Most	good	programmers	should	be	able	to	write	out	on	paper	or	whiteboard	a
program	to	output	a	simulated	FizzBuzz	game	in	under	a	couple	of	minutes.

Want	to	know	something	worrisome?	Many	computer	science	graduates	can’t.	You	can
even	find	senior	programmers	who	take	more	than	10-15	minutes	to	write	a	solution.

	 “199	out	of	200	applicants	for	every	programming	job	can’t	write	code	at	all.	I	repeat:	they	can’t	write	any	code
whatsoever.”

	

	 —Reginald	Braithwaite

This	quote	is	taken	from	http://blog.codinghorror.com/why-cant-programmers-program/.

Refer	to	the	following	link	for	more	information:

http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/

Create	a	Console	Application	named	Ch03_Exercise03	that	outputs	a	simulated	FizzBuzz
game	counting	up	to	100.	The	output	should	look	something	like	this:

1,	2,	Fizz,	4,	Buzz,	Fizz,	7,	8,	Fizz,	Buzz,	11,	Fizz,	13,	14,	FizzBuzz,	

16,	17,	Fizz,	19,	Buzz,	Fizz,	22,	23,	Fizz,	Buzz,	26,	Fizz,	28,	29,	

FizzBuzz,	31,	32,	Fizz,	34,	Buzz,	Fizz,	37,	38,	Fizz,	Buzz,	41,	Fizz,	43,	

44,	FizzBuzz,	46,	47,	Fizz,	49,	Buzz,	Fizz,	52,	53,	Fizz,	Buzz,	56,	Fizz,	

58,	59,	FizzBuzz,	61,	62,	Fizz,	64,	Buzz,	Fizz,	67,	68,	Fizz,	Buzz,	71,	

Fizz,	73,	74,	FizzBuzz,	76,	77,	Fizz,	79,	Buzz,	Fizz,	82,	83,	Fizz,	Buzz,	

86,	Fizz,	88,	89,	FizzBuzz,	91,	92,	Fizz,	94,	Buzz,	Fizz,	97,	98,	Fizz,	

Buzz

http://blog.codinghorror.com/why-cant-programmers-program/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/

Exercise	3.4	–	practice	exception	handling
Create	a	Console	Application	named	Ch03_Exercise04	that	asks	the	user	for	two	numbers
in	the	range	0-255	and	then	divides	the	first	number	by	the	second:

Enter	a	number	between	1	and	255:	100

Enter	another	number	between	1	and	255:	8

100	divided	by	8	is	12

Write	exception	handlers	to	catch	any	thrown	errors:

Enter	a	number	between	1	and	255:	apples

Enter	another	number	between	1	and	255:	bananas

FormatException:	Input	string	was	not	in	a	correct	format.

Exercise	3.5	–	explore	topics
Use	the	following	links	to	read	in	more	detail	about	the	topics	covered	in	this	chapter:

Selection	Statements	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/676s4xab.aspx
Iteration	Statements	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/32dbftby.aspx
Jump	Statements	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/d96yfwee.aspx
Casting	and	Type	Conversions	(C#	Programming	Guide):
https://msdn.microsoft.com/en-us/library/ms173105.aspx
Exception	Handling	Statements	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/s7fekhdy.aspx
Checked	and	Unchecked	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/khy08726.aspx
Namespace	Keywords	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/cxtk6h5e.aspx
StackOverflow:	http://stackoverflow.com/
Google	Advanced	Search:	http://www.google.com/advanced_search
Design	Patterns:	https://msdn.microsoft.com/en-us/library/ff649977.aspx
patterns	&	practices:	https://msdn.microsoft.com/en-us/library/ff921345.aspx

https://msdn.microsoft.com/%E2%80%A8en-us/library/676s4xab.aspx
https://msdn.microsoft.com/%E2%80%A8en-us/library/32dbftby.aspx
https://msdn.microsoft.com/en-us/library/d96yfwee.aspx
https://msdn.microsoft.com/en-us/library/ms173105.aspx
https://msdn.microsoft.com/en-us/library/s7fekhdy.aspx
https://msdn.microsoft.com/en-us/library/khy08726.aspx
https://msdn.microsoft.com/%E2%80%A8en-us/library/cxtk6h5e.aspx
http://stackoverflow.com/
http://www.google.com/advanced_search
https://msdn.microsoft.com/en-us/library/ff649977.aspx
https://msdn.microsoft.com/en-us/library/ff921345.aspx

Summary
In	this	chapter,	you	learned	how	to	branch	and	loop,	how	to	convert	between	types,	how	to
handle	exceptions,	and	most	importantly,	how	to	find	help!

You	are	now	ready	to	learn	more	about	what	is	underneath	C#—	.NET	types.

Chapter	4.	Using	Common	.NET	Types
This	chapter	is	about	.NET	types	and	how	they	are	related	to	C#.	You	will	learn	about
.NET	Framework	and	.NET	Core,	and	their	class	library	assemblies	of	common	types	that
allow	your	applications	to	connect	existing	components	together	to	perform	common
practical	tasks.

This	chapter	covers	the	following	topics:

Using	assemblies	and	namespaces
Storing	and	manipulating	text
Storing	data	with	collections

Using	assemblies	and	namespaces
The	.NET	Framework	and	the	.NET	Core	are	made	up	of	several	pieces,	which	are	as
follows:

Language	compilers:	These	turn	your	source	code	(written	with	languages	such	as
C#,	F#,	Visual	Basic,	and	others)	into	intermediate	language	(IL)	code	stored	in
assemblies	(applications	and	class	libraries).	C#	6	introduced	a	completely	rewritten
compiler	known	as	Roslyn.
Common	Language	Runtimes	(CLR	and	CoreCLR):	These	runtimes	load
assemblies,	compile	the	IL	code	stored	in	them	into	native	code	instructions	for	your
computer’s	CPU,	and	execute	the	code	within	an	environment	that	manages	resources
such	as	threads	and	memory.
Base	Class	Libraries	(BCL	and	CoreFX):	These	are	prebuilt	assemblies	of	types	for
performing	common	tasks	when	building	applications.	You	can	use	them	to	quickly
build	anything	you	want,	rather	like	combining	LEGO	pieces.

Comparing	.NET	Framework	with	.NET	Core
The	.NET	Framework	is	a	superset	of	.NET	Core.

Although	.NET	Core	has	less	functionality	today,	going	forward,	Microsoft	has	said	that
new	features	will	be	first	added	to	.NET	Core	and	then	ported	back	to	.NET	Framework.

In	this	book,	I	will	use	the	term	.NET	when	introducing	features	that	apply	to	both	the
.NET	Framework	and	the	.NET	Core.

Base	Class	Libraries	and	CoreFX
The	.NET	Framework’s	BCL	and	the	.NET	Core’s	CoreFX	are	libraries	of	prebuilt	code
that	are	divided	into	assemblies	and	namespaces	that	make	it	easier	to	manage	the	tens	of
thousands	of	types	available.	It	is	important	to	understand	the	difference	between	an
assembly	and	a	namespace.

Assemblies
An	assembly	is	where	a	type	is	stored	in	the	filesystem.	Assemblies	are	a	mechanism	for
deploying	code.	For	example,	the	System.Data.dll	assembly	contains	types	for	managing
databases.

When	using	the	.NET	Framework,	the	System.Data.dll	assembly	can	be	found	in	the
Global	Assembly	Cache	(GAC)	centralized	folder	C:\Program	Files	(x86)\Reference
Assemblies\Microsoft\Framework\.NETFramework\v4.6\.

When	using	.NET	Core,	the	equivalent	assembly	would	be	found	in	a	private	subfolder
alongside	other	dependency	assemblies.

Namespaces
A	namespace	is	the	address	of	a	type.	Namespaces	are	a	mechanism	to	uniquely	identify	a
type	by	providing	a	full	address	rather	than	just	a	short	name.

In	the	real	world,	Bob	of	34	Sycamore	Street	is	different	from	Bob	of	12	Willow	Drive.

In	.NET,	the	IActionFilter	interface	of	the	System.Web.Mvc	namespace	is	different	from
the	IActionFilter	interface	of	the	System.Web.Http.Filters	namespace.

Referencing	an	assembly
If	an	assembly	is	compiled	as	a	class	library	(it	provides	types	for	other	assemblies	to	use),
then	it	has	the	file	extension	DLL	(dynamic	link	library)	and	cannot	be	executed
standalone.

If	an	assembly	is	compiled	as	an	application,	then	it	has	the	file	extension	EXE
(executable)	and	can	be	executed	standalone.

Any	assembly	(both	applications	and	class	libraries)	can	reference	one	or	more	class
library	assemblies,	but	you	cannot	have	circular	references,	so	assembly	B	cannot
reference	assembly	A	if	assembly	A	already	references	assembly	B.	Visual	Studio	will
warn	you	if	you	attempt	to	add	a	reference	that	would	cause	a	circular	reference.

Referencing	Microsoft	Core	Library
Every	application	compiled	for	.NET	has	an	automatic	reference	to	Microsoft	Core
Library	(mscorlib.dll).	This	special	assembly	contains	types	that	almost	all	applications
would	need,	such	as	the	int	and	string	types.

Tip
The	name	Microsoft	Core	Library	has	nothing	to	do	with	.NET	Core.

To	use	types	in	other	assemblies,	they	must	be	manually	referenced.	Most	Visual	Studio
project	templates	add	some	common	assembly	references	for	you,	for	example,	the
System.Xml.dll	assembly	for	working	with	XML.

An	example	of	assembly	references
The	following	diagram	shows	a	console	application	that	needs	to	connect	to	a	database,
process	an	XML	file,	connect	to	an	HTTP	server,	and	query	data	using	LINQ	so	that	it	has
references	to	the	assemblies	that	contain	types	to	perform	those	tasks:

Relating	assemblies	and	namespaces
The	following	steps	will	help	you	to	relate	assemblies	and	namespaces:

1.	 Start	Microsoft	Visual	Studio	2015.
2.	 In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	navigate	to	File	|	New	|	Project….
3.	 In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the

list	at	the	center,	select	Console	Application,	type	the	name
Ch04_AssembliesAndNamespaces,	change	the	location	to	C:\Code,	type	the
solution	name	Chapter04,	and	then	click	on	OK.

4.	 In	the	Solution	Explorer	window,	expand	References.	Note	that	a	console
application	project	already	has	references	to	several	assemblies,	including
System.Xml.

If	you	don’t	need	any	of	these	assemblies,	then	you	can	remove	the	reference	by
selecting	it	and	pressing	Del,	or	right-clicking	and	choosing	Remove:

5.	 Inside	the	Main	method,	type	the	following	code:

var	doc	=	new	XmlDocument();

The	XmlDocument	type	is	not	recognized	because	we	have	not	told	the	compiler	what
the	namespace	of	the	type	is.	Although	this	project	already	has	a	reference	to	the
assembly	that	contains	the	type,	we	also	need	to	either	prefix	the	type	name	with	its
namespace,	or	import	the	namespace.	We	can	get	Visual	Studio	to	fix	this	problem
for	us.

Importing	a	namespace
You	need	to	perform	the	following	steps	to	import	a	namespace:

1.	 Click	inside	the	XmlDocument	type.	Visual	Studio	displays	a	light	bulb	showing	that	it
recognizes	the	type	and	can	automatically	fix	the	problem	for	you,	as	shown	in	the
following	screenshot:

2.	 Click	on	the	light	bulb	or	press	Ctrl+.
3.	 Choose	using	System.Xml;	from	the	menu	showing	several	other	options	as	well.

This	will	import	the	namespace	by	adding	a	using	statement	to	the	top	of	the	file:

Once	a	namespace	is	imported	for	a	code	file,	then	all	the	types	within	the	namespace	are
available	for	use	in	that	code	file	just	by	typing	their	name.

Add	another	line	of	code	to	create	an	XmlDataDocument	instance:

var	data	=	new	XmlDataDocument();

Note
You	will	see	a	green	squiggle	under	the	type	name,	which	is	a	warning	telling	us	that	this
type	is	obsolete	and	will	be	removed	in	a	future	release.	Ignore	that	because	it’s	not
relevant	to	what	you	are	learning	now.	As	long	as	a	type	name	is	teal	(bluish-green)	it
means	the	compiler	understands	it.

In	the	Solution	Explorer	window,	inside	References,	right-click	on	System.Xml,	and
choose	Remove.

After	a	few	seconds,	Visual	Studio	displays	a	red	squiggle	under	XmlDocument,	as	shown
in	the	following	screenshot,	and	the	text	turns	black	instead	of	teal.	This	indicates	that
Visual	Studio	doesn’t	recognize	the	XmlDocument	type:

This	is	because	we	no	longer	have	a	reference	to	the	assembly	that	contains	the
XmlDocument	type.	Just	having	the	import	statement	(using	System.Xml;)	is	not	enough
to	find	the	type.

Tip
The	color	syntax	highlighting	behavior	may	be	different	in	older	versions	of	Visual	Studio.

However,	the	XmlDataDocument	type	is	not	affected	(it	is	still	teal).	This	is	because
XmlDataDocument	is	not	in	the	System.Xml	assembly.	It	is	actually	in	the	System.Data
assembly	and	our	project	still	has	a	reference	to	that	assembly.

Tip
A	type	can	be	in	any	assembly	and	any	namespace.	They	do	not	have	to	be	related.	It	is	up
to	the	creator	of	a	type	to	decide	what	makes	most	sense	for	the	type.	For	example,	the
Microsoft	employee	who	was	responsible	for	the	XmlDataDocument	type	decided	that	it
should	be	stored	in	the	System.Data	assembly	but	logically	grouped	with	types	in	the
System.Xml	namespace.

The	following	table	summarizes	the	assembly	and	namespace	locations	of	the	two	types
that	we	have	been	looking	at:

Type Assembly Namespace

XmlDocument System.Xml System.Xml

XmlDataDocument System.Data System.Xml

To	fix	the	current	compile	error,	we	need	to	add	back	the	reference	to	the	System.Xml
assembly.

In	the	Solution	Explorer	window,	right-click	on	References,	choose	Add	Reference…,
and	in	the	Reference	Manager	dialog	box	that	appears,	select	Assemblies	on	the	left-
hand	side,	scroll	down	through	the	list,	select	the	checkbox	next	to	System.Xml,	and	then
click	on	OK:

Browsing	assemblies	and	namespaces
A	useful	tool	for	understanding	the	relationship	between	assemblies	and	namespaces	is	the
Object	Browser.

On	the	View	menu,	choose	Object	Browser,	or	press	Ctrl	+	W,	J.

Note
Remember	that	keyboard	shortcuts	are	dependent	upon	your	settings.	If	you	have	chosen
an	option	other	than	Visual	C#	for	your	development	settings,	then	your	keyboard	shortcut
for	the	Object	Browser	window	may	be	different!

The	Object	Browser	window	shows	that	inside	the	System.Data	assembly	is	the
namespace	System.Xml,	and	that	contains	the	XmlDataDocument	type:

If	you	expand	the	System.Xml	assembly,	you	will	see	that	it	adds	far	more	types	to	the
System.Xml	namespace.

If	you	select	an	assembly,	you	will	see	its	location	in	the	file	system,	for	example,
C:\Program	Files	(x86)\Reference

Assemblies\Microsoft\Framework\.NETFramework\v4.6\System.Xml.dll:

Tip
Best	Practice

Use	class	library	assemblies	to	group	together	types	with	related	functionality.	Carefully
consider	the	namespace	that	your	types	should	belong	to.	Although	Microsoft	puts	all
.NET	types	underneath	the	System	namespace,	they	often	put	other	types	underneath	a

Microsoft.ApplicationName	namespace.	You	should	follow	their	example	and	therefore
use	your	organization	name	and	application	names.	For	example,	Packt.Publishing
might	be	a	good	namespace	for	a	Book	type.

Relating	C#	keywords	to	.NET	types
One	of	the	common	questions	I	get	from	new	C#	programmers	is,	“What	is	the	difference
between	string	with	a	lowercase	and	String	with	an	uppercase?”

The	short	answer	is	easy:	none.

The	long	answer	is	that	all	C#	type	keywords	are	aliases	for	a	.NET	type	in	a	class	library
assembly.

When	you	use	the	keyword	string,	the	compiler	turns	it	into	a	System.String	type.
When	you	use	the	type	int,	the	compiler	turns	it	into	a	System.Int32	type.	You	can	even
see	this	if	you	hover	your	mouse	over	an	int	type,	as	follows:

Tip
Best	Practice

Use	the	C#	keyword	instead	of	the	actual	type	because	the	keywords	do	not	need	the
namespace	imported.

The	following	table	shows	the	16	C#	type	keywords	and	their	actual	.NET	types:

Keyword .NET	type Keyword .NET	type

string System.String char System.Char

sbyte System.SByte byte System.Byte

short System.Int16 ushort System.UInt16

int System.Int32 uint System.UInt32

long System.Int64 ulong System.UInt64

float System.Single double System.Double

decimal System.Decimal bool System.Boolean

object System.Object dynamic System.Dynamic.DynamicObject

Tip
Other	.NET	programming	language	compilers	can	do	the	same	thing.	For	example,	the

Visual	Basic	.NET	language	has	a	type	named	Integer	that	is	its	alias	for	System.Int32.

Storing	and	manipulating	text
The	most	common	type	of	data	for	variables	is	text.	The	most	common	types	in	.NET	for
working	with	text	are	shown	in	the	following	table:

Namespace Type

System Char

System String

System.Text StringBuilder

System.Text.RegularExpressions Regex

Getting	the	length	of	a	string
Add	a	new	console	application	project	named	Ch04_ManipulatingText.	Set	the
solution’s	startup	project	to	be	the	current	selection.

Sometimes,	you	need	to	find	out	the	length	of	a	piece	of	text	stored	in	a	string	variable.
Modify	the	code	to	look	like	this:

using	static	System.Console;

namespace	Ch04_ManipulatingText

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												string	city	=	"London";

												WriteLine($"{city}	is	{city.Length}	characters	long.");

								}

				}

}

Getting	the	characters	of	a	string
A	string	variable	uses	an	array	of	char	internally	to	store	the	text.	It	also	has	an	indexer,
which	means	that	we	can	use	the	array	syntax	to	read	its	characters.	Add	the	following
statement:

WriteLine($"First	char	is	{city[0]}	and	third	is	{city[2]}.");

Splitting	a	string
Sometimes	you	need	to	split	some	text	wherever	there	is	a	character	such	as	a	comma.

Add	more	lines	of	code	to	define	a	single	string	with	comma-separated	city	names.	You
can	use	the	Split	method	and	specify	a	character	that	you	want	to	treat	as	the	separator.
An	array	of	strings	is	then	created	which	you	can	enumerate	using	a	foreach	statement:

string	cities	=	"Paris,Berlin,Madrid,New	York";

string[]	citiesArray	=	cities.Split(',');

foreach	(string	item	in	citiesArray)

{

				WriteLine(item);

}

Extracting	part	of	a	string
Sometimes	you	need	to	get	part	of	some	text.	For	example,	if	you	had	a	person’s	full	name
stored	in	a	string	with	a	space	character	between	the	first	and	last	name,	then	you	could
find	the	position	of	the	space	using	the	IndexOf	method,	and	then	extract	the	first	name
and	last	name	as	two	parts	using	the	Substring	method	shown	as	follows:

string	fullname	=	"Alan	Jones";

int	indexOfTheSpace	=	fullname.IndexOf('	');

string	firstname	=	fullname.Substring(0,	indexOfTheSpace);

string	lastname	=	fullname.Substring(indexOfTheSpace	+	1);

WriteLine($"{lastname},	{firstname}");

Tip
If	the	format	of	the	full	name	was	different,	for	example,	“Lastname,	Firstname”,	then	the
code	would	be	slightly	different.

Checking	a	string	for	content
Sometimes	you	need	to	check	whether	a	piece	of	text	starts	or	ends	with	some	characters
or	contains	some	characters.	For	example,	the	following	code	checks	whether	the
company	variable	starts	with	the	letter	M	and	contains	the	letter	N:

string	company	=	"Microsoft";

bool	startsWithM	=	company.StartsWith("M");

bool	containsN	=	company.Contains("N");

WriteLine($"Starts	with	M:	{startsWithM},	contains	an	N:	{containsN}");

Press	Ctrl	+	F5	to	run	the	application	and	check	the	output:

London	is	6	characters	long.

First	char	is	L	and	third	is	n.

Paris

Berlin

Madrid

New	York

Jones,	Alan

Starts	with	M:	True,	contains	an	N:	False

Other	string	members
Here	are	some	other	string	members:

Member Description

Trim,	TrimStart,	and
TrimEnd

These	trim	whitespace	characters	such	as	spaces,	tabs,	and	new	lines

ToUpper	and	ToLower These	convert	to	uppercase	or	lowercase

Insert	and	Remove These	insert	or	remove	some	text

Replace This	replaces	some	text

String.Concat	(or	use
+) This	concatenates	two	strings

String.Join This	concatenates	strings	with	a	character	in	between	each	one

String.IsEmptyOrNull This	checks	whether	a	string	is	empty	or	null

String.Empty
This	can	be	used	instead	of	allocating	memory	each	time	you	use	a	literal	string	value	using
an	empty	pair	of	double	quotes	(””)

Building	strings	efficiently
You	can	concatenate	two	strings	to	make	a	new	string	using	the	String.Concat	method	or
simply	using	the	+	operator.	But,	this	is	a	bad	practice	because	.NET	must	create	a
completely	new	string	in	memory.	This	might	not	be	noticeable	if	you	are	only
concatenating	two	strings	but	if	you	concatenate	inside	a	loop,	it	can	have	a	significant
negative	impact	on	performance	and	memory	use.

Validating	input	with	regular	expressions
Regular	expressions	are	useful	for	validating	input	from	the	user.	They	are	very	powerful
and	can	get	very	complicated.	Almost	all	programming	languages	have	support	for	regular
expressions,	and	use	a	common	set	of	special	characters	to	define	them.

Add	a	new	console	application	project	named	Ch04_RegularExpressions.	At	the	top	of
the	file,	import	the	following	namespace	and	type:

using	System.Text.RegularExpressions;

using	static	System.Console;

In	the	Main	method,	add	the	following	statements:

Write("Enter	your	age:	");

string	input	=	ReadLine();

Regex	ageChecker	=	new	Regex(@"\d");

if(ageChecker.IsMatch(input))

{

				WriteLine("Thank	you!");

}

else

{

				WriteLine($"This	is	not	a	valid	age:	{input}");

}

Tip
The	@	character	in	front	of	a	string	switches	off	the	ability	to	enter	escape	characters	in	a
string	variable.	Escape	characters	are	prefixed	with	a	backslash	(\).	For	example,	\t
means	a	tab	and	\n	means	new	line.	When	writing	regular	expressions,	we	can	disable	this
feature.	Prefixing	a	string	with	@	allows	a	backslash	to	be	a	backslash.

Press	Ctrl	+	F5,	and	see	the	output.	If	you	enter	a	valid	age,	it	will	say	“Thank	you!”

Enter	your	age:	34

Thank	you!

If	you	enter	carrots,	you	will	see	the	error	message:

Enter	your	age:	carrots

This	is	not	a	valid	age:	carrots

However,	if	you	enter	bob30smith	it	says	“Thank	you!”

Enter	your	age:	bob30smith

Thank	you!

The	regular	expression	we	used	is	\d,	which	means	one	digit.	However,	it	does	not	limit
what	is	entered	before	and	after	the	digit.

Change	the	regular	expression	to	^\d$,	like	this:

Regex	ageChecker	=	new	Regex(@"^\d$");

Rerun	the	application.	Now,	it	rejects	anything	except	a	single	digit.

We	want	to	allow	one	or	more	digits.	To	do	this,	we	add	a	+	(plus)	after	the	\d.	Change	the
regular	expression	to	look	like	this:

Regex	ageChecker	=	new	Regex(@"^\d+$");

Rerun	the	application	and	see	how	the	regular	expression	now	only	allows	positive	whole
numbers	of	any	length.

The	syntax	of	a	regular	expression
Here	are	some	common	special	symbols	that	you	can	use	in	regular	expressions:

Symbol Meaning Symbol Meaning

^ Start	of	input $ End	of	input

\d A	single	digit \D A	single	NON-digit

\w Whitespace \W NON-whitespace

[A-Za-z0-9] Range(s)	of	characters [AEIOU] Set	of	characters

+ One	or	more ? One	or	none

. A	single	character 	 	

{3} Exactly	three {3,5} Three	to	five

{3,} Three	or	more {,3} Up	to	three

Examples	of	regular	expressions
Here	are	some	examples	of	regular	expressions:

Expression Meaning

\d A	single	digit	somewhere	in	the	input

a The	a	character	somewhere	in	the	input

Bob The	word	Bob	somewhere	in	the	input

^Bob The	word	Bob	at	the	start	of	the	input

Bob$ The	word	Bob	at	the	end	of	the	input

^\d{2}$ Exactly	two	digits

^[0-9]{2}$ Exactly	two	digits

^[A-Z]{4,}$ At	least	four	uppercase	letters	only

^[A-Za-z]

{4,}$
At	least	four	upper	or	lowercase	letters	only

^[A-Z]

{2}\d{3}$
Two	uppercase	letters	and	three	digits	only

^d.g$
The	letter	d,	then	any	character,	and	then	the	letter	g,	so	it	would	match	both	dig	and	dog	or	any
character	between	the	d	and	g

^d\.g$ The	letter	d,	then	a	dot	(.),	and	then	the	letter	g,	so	it	would	match	d.g	only

Tip
Best	Practice

Use	regular	expressions	to	validate	input	from	the	user.	The	same	regular	expressions	can
be	reused	in	C#	and	other	languages,	such	as	JavaScript.

Storing	data	with	collections
If	you	need	to	store	multiple	values,	you	can	use	a	collection.	A	collection	is	a	data
structure	in	memory	that	can	manage	multiple	items	in	different	ways,	although	all
collections	have	some	shared	functionality.

There	are	two	main	namespaces	for	collections:

System.Collections:	Avoid	the	types	in	this	namespace	because	they	store	any	type
that	derives	from	System.Object,	that	is,	every	type	(which	is	flexible	but	not	type
safe,	thus	leading	to	errors	and	boxing	of	value	types,	which	can	be	slow	and
inefficient).
System.Collections.Generic:	The	types	in	this	namespace	were	introduced	in	C#	2
with	.NET	2.0	and	are	better	because	they	allow	you	to	specify	the	type	you	want	to
store	(which	is	safer,	faster,	and	more	efficient).

All	collections	have	a	Count	property	to	tell	you	how	many	items	are	in	it.	For	example,	if
we	had	a	collection	named	passengers	we	could	do	this:

int	howMany	=	passengers.Count;

All	collections	can	be	iterated	using	the	foreach	statement.	To	perform	some	action	on	all
the	items	in	the	passengers	collection,	we	can	do	this:

foreach	(var	passenger	in	passengers)

{

				//	do	something	with	each	passenger

}

Understanding	collections
There	are	several	different	collection	categories:	lists,	dictionaries,	stacks,	queues,	sets,
and	many	other	more	specialized	collections.

Lists
Lists	are	best	when	you	want	to	manually	control	the	order	of	items	in	a	collection.	Each
item	in	a	list	has	a	unique	index	(or	position)	that	is	automatically	assigned.	Items	can	be
any	type	(although	they	should	all	be	the	same	type)	and	items	can	be	duplicated.	Indexes
are	int	types	and	start	from	0,	so	the	first	item	in	a	list	is	at	index	0,	as	shown	in	the
following	table:

Index Item

0 London

1 Paris

2 London

3 Sydney

If	a	new	item	(for	example,	Santiago)	is	inserted	between	London	and	Sydney,	the	index
of	Sydney	is	automatically	incremented.	Therefore,	you	must	be	aware	that	an	item’s
index	can	change	after	inserting	or	removing	items,	as	shown	in	the	following	table:

Index Item

0 London

1 Paris

2 London

3 Santiago

4 Sydney

Dictionaries
Dictionaries	are	best	when	each	value	(or	item)	has	a	unique	subvalue	(or	a	made-up
value)	that	can	be	used	as	a	key	to	quickly	find	the	value	in	the	collection	later	on.	The
key	must	be	unique.	If	you	are	storing	a	list	of	people,	you	can	use	a	government-issued
identity	number	as	the	key.

Think	of	the	key	as	being	like	an	index	entry	in	a	real-world	dictionary.	It	allows	you	to
quickly	find	the	definition	of	a	word	because	the	words	(that	is,	keys)	are	kept	sorted,	and
if	we	know	we’re	looking	for	the	definition	of	Manatee,	we	would	jump	to	the	middle	of
the	dictionary	to	start	looking,	because	the	letter	M	is	in	the	middle	of	the	alphabet.

Dictionaries	in	programming	are	similarly	optimized	when	looking	something	up.

Both	the	key	and	the	value	can	be	any	type.	This	example	uses	strings	for	both:

Key Value

BSA Bob	Smith

MW Max	Williams

BSB Bob	Smith

AM Amir	Mohammed

Stacks
Stacks	are	best	when	you	want	to	implement	the	last-in,	first-out	(LIFO)	behavior.	With	a
stack,	you	can	only	directly	access	the	one	item	at	the	top	of	the	stack,	although	you	can
enumerate	to	read	through	the	whole	stack	of	items.	You	cannot,	for	example,	access	the
second	item	in	a	stack.

For	example,	word	processors	use	a	stack	to	remember	the	sequence	of	actions	you	have
recently	performed,	so	that	when	you	press	Ctrl	+	Z,	it	will	undo	the	last	action	in	the
stack,	and	then	the	next	last	action,	and	so	on.

Queues
Queues	are	best	when	you	want	to	implement	the	first-in,	first	out	(FIFO)	behavior.	With
a	queue	you	can	only	directly	access	the	one	item	at	the	front	of	the	queue,	although	you
can	enumerate	to	read	through	the	whole	queue	of	items.	You	cannot,	for	example,	access
the	second	item	in	a	queue.

For	example,	background	processes	use	a	queue	to	process	work	items	in	the	order	that
they	arrive,	just	like	people	standing	in	line	at	the	post	office.

Sets
Sets	are	best	when	you	want	to	perform	set	operations	between	two	collections.	For
example,	you	may	have	two	collections	of	city	names	and	you	want	to	know	which	names
appear	in	both	sets	(known	as	the	intersect	between	the	sets).

Working	with	lists
Add	a	new	console	application	project	named	Ch04_Lists.

In	the	Main	method,	type	the	following	code,	which	illustrates	some	of	the	common	ways
of	working	with	lists:

var	cities	=	new	List<string>();

cities.Add("London");

cities.Add("Paris");

cities.Add("Milan");

WriteLine("Initial	list");

foreach	(string	city	in	cities)

{

				WriteLine($"		{city}");

}

WriteLine($"The	first	city	is	{cities[0]}.");	

WriteLine($"The	last	city	is	{cities[cities.Count	-	1]}.");

cities.Insert(0,	"Sydney");

WriteLine("After	inserting	Sydney	at	index	0");

foreach	(string	city	in	cities)

{

				WriteLine($"		{city}");

}

cities.RemoveAt(1);

cities.Remove("Milan");

WriteLine("After	removing	two	cities");

foreach	(string	city	in	cities)

{

				WriteLine($"		{city}");

}

Tip
The	angle	brackets	after	the	List<T>	type	are	a	feature	of	C#	called	generics.	It’s	just	a
fancy	term	for	making	a	collection	strongly	typed,	that	is,	the	compiler	knows	more
specifically	what	type	of	object	is	allowed	to	be	stored	in	the	collection.	Generics	improve
the	performance	and	correctness	of	your	code.	Strongly	typed	collections	are	different
from	statically	typed	collections.	The	old	System.Collection	types	are	statically	typed
to	contain	weakly	typed	System.Object	items.	The	newer	System.Collection.Generic
types	are	statically	typed	to	contain	strongly	typed	<T>	instances.	Ironically,	the	term
“generics”	just	means	a	more	specific	static	type!

Press	Ctrl	+	F5	to	see	the	output:

Initial	list

		London

		Paris

		Milan

The	first	city	is	London.

The	last	city	is	Milan.

After	inserting	Sydney	at	index	0

		Sydney

		London

		Paris

		Milan

After	removing	two	cities

		Sydney

		Paris

Working	with	dictionaries
Add	a	new	console	application	project	named	Ch04_Dictionaries.

In	the	Main	method,	type	the	following	code	that	illustrates	some	of	the	common	ways	of
working	with	dictionaries:

var	keywords	=	new	Dictionary<string,	string>();

keywords.Add("int",	"32-bit	integer	data	type");

keywords.Add("long",	"64-bit	integer	data	type");

keywords.Add("float",	"Single	precision	floating	point	number");

WriteLine("Keywords	and	their	definitions");

foreach	(KeyValuePair<string,	string>	item	in	keywords)

{

				WriteLine($"		{item.Key}:	{item.Value}");

}

WriteLine($"The	definition	of	long	is	{keywords["long"]}");

Run	the	application	by	pressing	Ctrl	+	F5.

Keywords	and	their	definitions

		int:	32-bit	integer	data	type

		long:	64-bit	integer	data	type

		float:	Single	precision	floating	point	number

The	definition	of	long	is	64-bit	integer	data	type

Sorting	collections
A	List<T>	class	can	be	sorted	by	calling	its	Sort	method	(but	remember	that	the	indexes
of	each	item	will	change).

Tip
Sorting	a	list	of	strings	or	other	built-in	types	works	automatically,	but	if	you	create	a
collection	of	your	own	type,	then	that	type	must	implement	an	interface	named
IComparable.	You	will	learn	how	to	do	this	in	Chapter	7,	Implementing	Interfaces	and
Inheriting	Classes.

The	Dictionary<T>,	Stack<T>,	or	Queue<T>	classes	cannot	be	sorted,	because	you
wouldn’t	usually	want	that	functionality.	For	example,	you	would	never	sort	a	queue	of
guests	checking	into	a	hotel.	But	sometimes,	you	might	want	to	sort	a	dictionary	or	a	set.

The	differences	between	these	sorted	collections	are	often	subtle,	but	can	have	an	impact
on	the	memory	requirements	and	performance	of	your	application,	so	it	is	worth	putting
some	effort	into	picking	the	best	for	your	requirements.	The	following	table	summarizes
some	examples	of	sorted	collection:

Collection Description

SortedDictionary<TKey,

TValue>
This	represents	a	collection	of	key/value	pairs	that	are	sorted	on	the	key

SortedList<TKey,

TValue>

This	represents	a	collection	of	key/value	pairs	that	are	sorted	by	key,	based	on	the
associated	IComparer<T>	implementation

SortedSet<T> This	represents	a	collection	of	objects	that	is	maintained	in	a	sorted	order

Avoiding	old	collections
Avoid	the	old	collections,	listed	in	the	following	table,	and	use	the	more	modern
equivalents	instead.

In	2005,	Microsoft	introduced	generics	that	can	be	used	to	control	more	specifically	which
types	can	be	stored	in	a	collection.	A	collection	that	can	only	contain	the	int	types	is	safer
than	one	that	can	contain	any	object.	The	<T>	parameter	should	be	replaced	with	the	type
you	want	to	store.

Avoid	these	collections

Namespaces:	System.Collections,	System.Collections.Specialized

Use	these	collections	instead

Namespace:	System.Collections.Generics

ArrayList List<T>

Hashtable,	HybridDictionary,	ListDictionary Dictionary<TKey,	TValue>

Stack Stack<T>

Queue Queue<T>

SortedList SortedList<T>

StringCollection List<string>

StringDictionary Dictionary<string,	string>

Using	specialized	collections
There	are	a	few	other	collections	for	special	situations.	For	example,	the
NameValueCollection	can	be	used	to	automate	filling	in	a	form	on	a	web	page	and
posting	the	named	values	to	the	web	server:

Collection Description

System.Collections.BitArray
This	manages	a	compact	array	of	bit	values,	which	are	represented	as	Booleans,
where	true	indicates	that	the	bit	is	on	(1)	and	false	indicates	the	bit	is	off	(0)

System.Collections.Specialized.
NameValueCollection

This	represents	a	collection	of	associated	string	keys	and	string	values	that	can	be
accessed	either	with	the	key	or	with	the	index

System.Collections.Generics.
LinkedList<T>

This	represents	a	doubly-linked	list	where	every	item	has	a	reference	to	its
previous	and	next	item

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	with	deeper	research	into	topics	of	this	chapter.

Exercise	4.1	–	test	your	knowledge
Use	the	Web	to	answer	the	following	questions:

1.	 Does	every	assembly	you	create	have	a	reference	to	the	mscorlib.dll	assembly?
2.	 What	is	the	maximum	number	of	characters	that	can	be	stored	in	a	string?
3.	 When	and	why	should	you	use	a	SecureString?
4.	 When	should	you	use	a	LinkedList?
5.	 When	should	you	use	a	SortedDictionary	class	rather	than	a	SortedList	class?
6.	 Why	should	you	not	use	the	official	standard	for	e-mail	addresses	to	create	a	regular

expression	for	validating	a	user’s	e-mail	address?

Exercise	4.2	–	practice	regular	expressions
Create	a	console	application	named	Ch04_Exercise02	that	prompts	the	user	to	enter	a
regular	expression,	and	then	prompts	the	user	to	enter	some	input	and	compare	the	two	for
a	match	until	the	user	presses	Esc:

The	default	regular	expression	checks	for	at	least	one	digit.

Enter	a	regular	expression	(or	press	ENTER	to	use	the	default):	^[a-z]+$

Enter	some	input:	apples

apples	matches	^[a-z]+$?	True

Press	ESC	to	end	or	any	key	to	try	again.

Enter	a	regular	expression	(or	press	ENTER	to	use	the	default):	^[a-z]+$

Enter	some	input:	abc123xyz

abc123xyz	matches	^[a-z]+$?	False

Press	ESC	to	end	or	any	key	to	try	again.

Exercise	4.3	–	explore	topics
Use	the	following	links	to	read	in	more	detail	the	topics	covered	in	this	chapter:

.NET	Blog:	A	first	hand	look	from	the	.NET	engineering	team:
http://blogs.msdn.com/b/dotnet/
Assemblies	and	the	Global	Assembly	Cache	(C#	and	Visual	Basic):
https://msdn.microsoft.com/en-us/library/ms173099.aspx
String	Class:	https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
StringBuilder	Class:	https://msdn.microsoft.com/en-
us/library/system.text.stringbuilder(v=vs.110).aspx
Regex	Class:	https://msdn.microsoft.com/en-
us/library/system.text.regularexpressions.regex(v=vs.110).aspx
How	to:	Search	Strings	Using	Regular	Expressions	(C#	Programming	Guide):
https://msdn.microsoft.com/en-us/library/ms228595.aspx
Regular	Expression	Language	-	Quick	Reference:	https://msdn.microsoft.com/en-
us/library/az24scfc(v=vs.110).aspx
RegExr:	Learn,	Build,	&	Test	RegExr:	http://regexr.com/
Collections	(C#	and	Visual	Basic):	https://msdn.microsoft.com/en-
us/library/ybcx56wz.aspx
List<T>	Class:	https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
Dictionary<TKey,	TValue>	Class:	https://msdn.microsoft.com/en-
us/library/xfhwa508(v=vs.110).aspx
Stack<T>	Class:	https://msdn.microsoft.com/en-us/library/3278tedw(v=vs.110).aspx
Queue<T>	Class:	https://msdn.microsoft.com/en-
us/library/7977ey2c(v=vs.110).aspx
SortedList<TKey,	TValue>	Class:	https://msdn.microsoft.com/en-
us/library/ms132319(v=vs.110).aspx
SortedDictionary<TKey,	TValue>	Class:	https://msdn.microsoft.com/en-
us/library/f7fta44c(v=vs.110).aspx

http://blogs.msdn.com/b/dotnet/
https://msdn.microsoft.com/en-us/library/ms173099.aspx
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.text.stringbuilder(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms228595.aspx
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
http://regexr.com/
https://msdn.microsoft.com/en-us/library/ybcx56wz.aspx
https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/3278tedw(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/7977ey2c(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms132319(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/f7fta44c(v=vs.110).aspx

Summary
In	this	chapter,	you	explored	the	relationship	between	assemblies	and	namespaces,	you
learned	about	the	best	types	to	use	for	storing	and	manipulating	text,	and	which	collections
to	use	for	storing	multiple	items.

In	the	next	chapter,	you	will	learn	about	more	specialized	.NET	types.

Chapter	5.	Using	Specialized	.NET	Types
This	chapter	is	about	specialized	.NET	types	used	to	debug	and	diagnose	problems,	unit
test	your	code,	support	multiple	languages	and	cultures,	and	access	features	and
applications	outside	of	.NET.

This	chapter	covers	the	following	topics:

Debugging	and	diagnostics
Unit	testing	an	application
Internationalizing	an	application
Interoperating	with	unmanaged	code

Debugging	and	diagnostics
In	this	section,	you	will	learn	how	to	debug	problems	at	design	time,	trace	problems	at
runtime,	and	use	types	such	as	Debug,	Trace,	Process,	and	Stopwatch	that	are	in	the
System.Diagnostics	namespace.

Debugging	an	application
In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	navigate	to	File	|	New	|	Project….

In	the	New	Project	dialog,	from	the	Installed	Templates	list,	select	Visual	C#.	In	the	list
at	the	center,	select	Console	Application,	type	the	name	Ch05_Debugging,	change	the
location	to	C:\Code,	type	the	solution	name	Chapter05,	and	then	click	on	OK.

Modify	the	template	code	to	look	like	this:

using	static	System.Console;

namespace	Ch05_Debugging

{

				class	Program

				{

								static	double	Add(double	a,	double	b)

								{

												return	a	*	b;	//	deliberate	bug!

								}

								static	void	Main(string[]	args)

								{

												double	a	=	4.5;	//	or	use	var

												double	b	=	2.5;

												double	answer	=	Add(a,	b);

												WriteLine($"{a}	+	{b}	=	{answer}");

												ReadLine();	//	wait	for	user	to	press	ENTER

								}

				}

}

Press	Ctrl	+	F5	and	take	a	look	at	the	output:

4.5	+	2.5	=	11.25

There	is	a	bug!	4.5	added	to	2.5	should	be	7	and	not	11.25.	We	will	use	the	debugging
tools	in	Visual	Studio	2015	to	squash	the	bug.

Setting	a	breakpoint
Breakpoints	allow	us	to	mark	a	line	of	code	that	we	want	to	pause	at	to	find	bugs.	Click	on
the	open	curly	bracket	at	the	beginning	of	the	Main	method	and	go	to	the	Debug	|	Toggle
Breakpoint	menu,	or	press	F9.

A	red	highlight	will	appear	with	a	red	circle	in	the	grey	margin	bar	on	the	left-hand	side,	to
indicate	that	a	breakpoint	has	been	set.	Breakpoints	can	be	toggled	off	with	the	same
command.	You	can	also	click	in	the	margin	to	toggle	the	breakpoint	on	and	off,	as	shown
in	the	following	screenshot:

Go	to	Debug	|	Start	Debugging,	or	press	the	Start	toolbar	button,	or	press	F5.	Visual
Studio	starts	and	then	pauses	when	it	hits	the	breakpoint.	This	is	known	as	break	mode.
The	line	that	will	be	executed	next	is	highlighted	in	yellow,	and	a	yellow	arrow	points	at
the	line	from	the	grey	margin	bar,	as	shown	in	the	following	screenshot:

Tip
You	can	drag	the	yellow	arrow	and	its	highlight.	When	you	continue	executing,	it	will	run
from	the	new	position.	This	is	useful	for	moving	back	a	few	statements	to	rerun	them	or	to
skip	over	some	statements.

The	debugging	toolbar
Visual	Studio	enables	some	extra	toolbar	buttons	to	make	it	easy	to	access	debugging
features.	Here	are	a	few	of	those:

Continue	/	F5	(green	triangle):	This	button	will	run	the	code	at	full	speed	from	the
current	position
Stop	Debugging	/	Shift	+	F5	(red	square):	This	button	will	stop	the	program
Restart	/	Ctrl	+	Shift	+	F5	(circular	black	arrow):	This	button	will	stop	and	then
immediately	restart	the	program
Step	into	/	F11,	Step	over	/	F10,	and	Step	out	/	Shift	+	F11	(blue	arrows	over	dots):
These	buttons	will	step	through	the	code	in	various	ways

The	following	screenshot	illustrates	Visual	Studio’s	extra	toolbar	buttons:

Debugging	windows

Visual	Studio	makes	some	extra	windows	visible	so	that	you	can	monitor	useful
information	such	as	variables	while	you	step	through	your	code.	If	you	cannot	find	one	of
these	windows,	then	on	the	Debug	menu,	choose	Windows,	and	then	select	the	window
you	want	to	view.

Tip
Most	of	the	debug	windows	are	only	available	when	you	are	in	the	Break	mode.

The	Locals	window	shows	the	name,	value,	and	type	for	any	local	variables.	Keep	an	eye
on	this	window	while	you	step	through	your	code:

In	Chapter	1,	Hello,	C#!	Welcome,	.NET	Core!,	I	introduced	you	to	the	C#	Interactive
window.	The	similar,	but	more	basic,	Immediate	Window	also	allows	live	interaction
with	your	code.

For	example,	you	can	ask	a	question	such	as,	“What	is	1+2?”	by	typing	?1+2	and	pressing
Enter.	You	can	also	use	the	question	mark	to	find	out	the	current	value	of	a	variable:

You	can	execute	statements	of	code:

As	long	as	you	have	Visual	Studio	2015	with	Update	1,	the	C#	Interactive	window	is
better.

Stepping	through	code
From	the	Debug	menu,	choose	Debug	|	Step	Into,	or	click	on	the	Step	Into	button	in	the
toolbar,	or	press	F11.	The	yellow	highlight	steps	forward	one	line,	as	shown	in	the
following	screenshot:

Choose	Debug	|	Step	Over	or	press	F10.	The	yellow	highlight	steps	forward	one	line.	At
the	moment,	there	is	no	difference	between	using	Step	Into	or	Step	Over.

Press	F10	again	so	that	the	yellow	highlight	is	on	the	line	that	calls	the	Add	method:

The	difference	between	Step	Into	or	Step	Over	can	be	seen	when	you	are	about	to
execute	a	method	call.	If	you	press	Step	Into,	the	debugger	steps	into	the	method	so	that
you	can	step	through	every	line	in	that	method.	If	you	press	Step	Over,	the	whole	method
is	executed	in	one	go	(it	does	not	skip	over	the	method!).

Use	Step	Into	to	step	inside	the	method.	Hover	your	mouse	over	the	multiply	(*)	operator.
A	tooltip	will	appear	showing	that	this	operator	is	multiplying	a	by	b	to	give	the	result

11.25.	We	can	see	that	this	is	the	bug.	You	can	pin	the	tooltip	by	clicking	on	the	pin	icon
as	I	have	done	here:

Fix	the	bug	by	changing	the	*	to	+.

We	don’t	need	to	step	through	all	the	lines	in	the	Add	method,	so	choose	Step	Out	or	press
Shift	+	F11.	Press	F11	or	choose	Step	Into	to	assign	the	return	value	of	the	Add	method	to
the	variable	answer.

The	Locals	window	highlights	the	most	recent	change	in	red	text.	The	answer	is	correct,
so	choose	Continue	or	press	F5:

Customizing	breakpoints
You	can	also	right-click	on	a	breakpoint	and	choose	additional	options,	such	as
Conditions,	as	shown	in	the	following	screenshot:

The	conditions	for	a	breakpoint	include	an	expression	that	must	be	true	and	a	hit	count	to
reach	for	the	breakpoint	to	apply.

In	the	example,	as	you	can	see	in	the	following	screenshot,	I	have	set	a	condition	to	only
apply	the	breakpoint	if	both	the	answer	variable	is	greater	than	9	and	we	have	hit	the
breakpoint	three	times:

You	have	now	fixed	a	bug	using	some	of	Visual	Studio’s	debugging	features.

Monitoring	performance	and	resource	usage
To	write	the	best	applications,	we	need	to	be	able	to	monitor	the	speed	and	efficiency	of
our	code.

Evaluating	the	efficiency	of	types
What	is	the	best	type	to	use	for	a	particular	scenario?	To	answer	this	question,	we	need	to
carefully	consider	what	we	mean	by	best.	We	should	consider	the	following	four	factors:

Functionality:	This	can	be	decided	by	checking	whether	the	type	provides	the
features	you	need
Memory	size:	This	can	be	decided	by	the	number	of	bytes	of	memory	the	type	takes
up
Performance:	This	can	be	decided	by	how	fast	the	type	is
Future	needs:	This	depends	on	the	changes	in	requirements	and	maintainability

There	will	be	scenarios,	such	as	storing	numbers,	where	multiple	types	have	the	same
functionality,	so	we	would	need	to	consider	the	memory	and	performance	in	order	to	make
a	choice.

If	we	need	to	store	millions	of	numbers,	then	the	best	type	to	use	would	be	the	one	that
requires	the	least	number	of	bytes	of	memory.	If	we	only	need	to	store	a	few	numbers	but
we	need	to	perform	lots	of	calculations	on	them,	then	the	best	type	to	use	would	be	the	one
that	runs	fastest	on	a	particular	CPU.

You	have	seen	the	use	of	the	sizeof()	operator	to	show	the	number	of	bytes	a	single
instance	of	a	type	uses	in	memory.	When	we	are	storing	lots	of	values	in	more	complex
data	structures,	such	as	arrays	and	lists,	then	we	need	a	better	way	of	measuring	memory
usage.

You	can	read	lots	of	advice	online	and	in	books,	but	the	only	way	to	know	for	sure	what
the	best	type	would	be	for	your	code	is	to	compare	the	types	yourself.	In	the	next	section,
you	will	learn	how	to	write	the	code	to	monitor	the	actual	memory	requirements	and	the
actual	performance	when	using	different	types.

Although	today	a	short	variable	might	be	the	best	choice,	it	might	be	a	better	choice	to
use	an	int	variable,	even	though	it	takes	twice	as	much	space	in	memory,	because	we
might	need	a	wider	range	of	values	to	be	stored	in	the	future.

There	is	another	metric	we	should	consider:	maintenance.	This	is	a	measure	of	how	much
effort	another	programmer	would	have	to	put	in,	to	understand	and	modify	your	code.	If
you	use	a	nonobvious	type	choice,	it	might	confuse	the	programmer	who	comes	along
later	and	needs	to	fix	a	bug	or	add	a	feature.	There	are	analyzing	tools	that	will	generate	a
report	that	shows	how	easily	maintainable	your	code	is.

Monitoring	performance	and	memory	use
The	System.Diagnostics	namespace	has	lots	of	useful	types	for	monitoring	your	code.
The	first	one	we	will	look	at	is	the	Stopwatch	type.

Add	a	new	console	application	project	named	Ch05_Monitoring.	Set	the	solution’s	start
up	project	to	be	the	current	selection.

Modify	the	template	code	to	look	like	this:

using	System;

using	System.Diagnostics;

using	System.Linq;

using	static	System.Console;

using	static	System.Diagnostics.Process;

namespace	Ch05_Monitoring

{

				class	Recorder

				{

								static	Stopwatch	timer	=	new	Stopwatch();

								static	long	bytesPhysicalBefore	=	0;

								static	long	bytesVirtualBefore	=	0;

								public	static	void	Start()

								{

												GC.Collect();

												GC.WaitForPendingFinalizers();

												GC.Collect();

												bytesPhysicalBefore	=	GetCurrentProcess().WorkingSet64;

												bytesVirtualBefore	=	GetCurrentProcess().VirtualMemorySize64;

												timer.Restart();

								}

								public	static	void	Stop()

								{

												timer.Stop();

												long	bytesPhysicalAfter	=	GetCurrentProcess().WorkingSet64;

												vlong	bytesVirtualAfter	=	

GetCurrentProcess().VirtualMemorySize64;

												WriteLine("Stopped	recording.");

												WriteLine($"{bytesPhysicalAfter	-	bytesPhysicalBefore:N0}	

physical	bytes	used.");

												WriteLine($"{bytesVirtualAfter	-	bytesVirtualBefore:N0}	virtual	

bytes	used.");

												WriteLine($"{timer.Elapsed}	time	span	ellapsed.");

												WriteLine($"{timer.ElapsedMilliseconds:N0}	total	milliseconds	

ellapsed.");

								}

				}

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Write("Press	ENTER	to	start	the	timer:	");

												ReadLine();

												Recorder.Start();

												int[]	largeArrayOfInts	=	Enumerable.Range(1,	10000).ToArray();

												Write("Press	ENTER	to	stop	the	timer:	");

												ReadLine();

												Recorder.Stop();

												ReadLine();

								}

				}

}

Tip
The	Start	method	of	the	Recorder	class	uses	the	garbage	collector	(GC)	type	to	ensure
that	all	the	currently	allocated	memory	is	collected	before	recording	the	amount	of	used
memory.	This	is	an	advanced	technique	that	you	should	almost	never	use	in	production
code.

You	have	created	a	class	named	Recorder	with	two	methods	to	start	and	stop	recording
the	time	and	memory	used	by	any	code	you	run.	The	Main	method	starts	recording	when
the	user	presses	Enter,	creates	an	array	of	ten	thousand	int	variables,	and	then	stops
recording	when	the	user	presses	Enter	again.

The	Stopwatch	type	has	some	useful	members,	as	shown	in	the	following	table:

Member Description

The	Restart	method This	resets	the	elapsed	time	to	zero	and	then	starts	the	stopwatch

The	Stop	method This	stops	the	stopwatch

The	Elapsed	property This	is	the	elapsed	time	stored	as	a	TimeSpan	(hours:minutes:seconds)

The	ElapsedMilliseconds	property This	is	the	elapsed	time	in	milliseconds	stored	as	a	long	integer

The	Process	type	has	some	useful	members:

Member Description

VirtualMemorySize64 This	displays	the	amount	of	the	virtual	memory,	in	bytes,	allocated	for	the	process

WorkingSet64 This	displays	the	amount	of	physical	memory,	in	bytes,	allocated	for	the	process

Press	Ctrl	+	F5	to	start	the	application	without	the	debugger	attached.	The	application	will
start	recording	the	time	and	memory	used	when	you	press	Enter,	and	then	stop	recording
when	you	press	Enter	again:

Press	ENTER	to	start	the	timer:

Press	ENTER	to	stop	the	timer:

Stopped	recording.

942,080	physical	bytes	used.

0	virtual	bytes	used.

00:00:03.1166037	time	span	ellapsed.

3,116	total	milliseconds	ellapsed.

Measuring	the	efficiency	of	processing	strings
Now	that	you’ve	seen	how	the	Stopwatch	and	Process	types	can	be	used	to	monitor	your
code,	we	will	use	them	to	evaluate	the	best	way	to	process	string	variables.

Add	a	new	console	application	project	named	Ch05_BuildingStrings.	Add	the	following

using	statements:

using	System;

using	System.Diagnostics;

using	System.Linq;

using	System.Text;

using	static	System.Console;

using	static	System.Diagnostics.Process;

Copy	and	paste	the	class	definition	for	the	Recorder	class	from	the	earlier	project.

Tip
Best	Practice

Although	copy	and	paste	is	a	valid	technique	for	code	reuse	in	some	scenarios,	it	would	be
better	to	create	a	class	library	assembly	for	the	Recorder	class	so	that	we	can	share	it
between	multiple	projects	without	maintaining	multiple	copies.	You	will	learn	how	to	do
this	in	Chapter	6,	Building	Your	Own	Types	with	Object-Oriented	Programming.

Add	the	following	code	to	the	Main	method.	It	creates	an	array	of	ten	thousand	int
variables	and	then	concatenates	them	with	commas	for	separators	using	a	string	and	a
StringBuilder:

int[]	numbers	=	Enumerable.Range(1,	10000).ToArray();

Recorder.Start();

WriteLine("Using	string");

string	s	=	"";

for	(int	i	=	0;	i	<	numbers.Length;	i++)

{

				s	+=	numbers[i]	+	",	";

}

Recorder.Stop();

Recorder.Start();

WriteLine("Using	StringBuilder");

StringBuilder	builder	=	new	StringBuilder();

for	(int	i	=	0;	i	<	numbers.Length;	i++)

{

				builder.Append(numbers[i]);

				builder.Append(",	");

}

Recorder.Stop();

ReadLine();

Press	Ctrl	+	F5	to	see	the	output:

Using	string

Stopped	recording.

7,540,736	physical	bytes	used.

69,632	virtual	bytes	used.

00:00:00.0871730	time	span	ellapsed.

87	total	milliseconds	ellapsed.

Using	StringBuilder

Stopped	recording.

8,192	physical	bytes	used.

0	virtual	bytes	used.

00:00:00.0015680	time	span	ellapsed.

1	total	milliseconds	ellapsed.

We	can	summarize	the	results	as	follows:

The	string	class	used	about	7.5	MB	of	memory	and	took	87	milliseconds
The	StringBuilder	class	used	8	KB	of	memory	and	took	1.5	milliseconds

In	this	scenario,	StringBuilder	is	about	one	hundred	times	faster	and	about	one	thousand
times	more	memory	efficient	when	concatenating	text!

Tip
Best	Practice

Avoid	using	the	String.Concat	method	or	the	+	operator	with	string	variables.	Instead,
use	StringBuilder	or	the	C#	6	$	string	interpolation	to	concatenate	variables	together,
especially	inside	loops.

Monitoring	with	Debug	and	Trace
You	have	seen	the	use	of	the	Console	type	and	its	WriteLine	method	to	provide	output	to
the	console	window.	We	also	have	a	pair	of	types	named	Debug	and	Trace	that	have	more
flexibility	in	where	they	write	out	to.

The	Debug	and	Trace	classes	can	write	to	any	trace	listener.	A	trace	listener	is	a	type	that
can	be	configured	to	write	output	anywhere	you	like	when	the	Trace.WriteLine	method
is	called.	There	are	several	trace	listeners	provided	by	.NET,	and	you	can	even	make	your
own	by	inheriting	from	the	TraceListener	type.

Writing	to	the	default	trace	listener
One,	the	DefaultTraceListener,	is	configured	automatically	and	writes	to	Visual
Studio’s	output	window;	you	can	configure	others	manually	using	code	or	a	configuration
file.

Add	a	new	console	application	project	named	Ch05_Tracing.	Modify	the	template	code
to	look	like	this:

using	System.Diagnostics;

using	static	System.Console;

namespace	Ch05_Tracing

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Debug.WriteLine("Debug	says	Hello	C#!");

												Trace.WriteLine("Trace	says	Hello	C#!");

												WriteLine("Press	ENTER	to	close.");

												ReadLine();

								}

				}

}

Press	F5	to	start	Visual	Studio	with	the	debugger	attached.	In	Visual	Studio’s	output
window,	you	will	see	the	two	messages.	If	you	cannot	see	the	output	window,	press	Ctrl	+
W,	O	or	navigate	to	View	|	Output	menu.

Ensure	that	you	show	output	from	Debug,	as	shown	in	the	following	screenshot:

Configuring	trace	listeners

Now,	we	will	configure	some	trace	listeners	that	will	also	write	to	a	text	file	and	to	the
Windows	application	event	log.

In	Visual	Studio’s	Solution	Explorer,	double-click	on	the	file	named	App.config	and
modify	it	to	look	like	this:

<?xml	version="1.0"	encoding="utf-8"	?>

<configuration>

		<system.diagnostics>

				<sharedListeners>

						<add	name="file"	type="System.Diagnostics.TextWriterTraceListener"	

initializeData="C:\Code\Trace.txt"	/>

						<add	name="appeventlog"	

type="System.Diagnostics.EventLogTraceListener"	

initializeData="Application"	/>

				</sharedListeners>

				<trace	autoflush="true">

						<listeners>

								<add	name="file"	/>

								<add	name="appeventlog"	/>

						</listeners>

				</trace>

		</system.diagnostics>

		<startup>

				<supportedRuntime	version="v4.0"	sku=".NETFramework,Version=v4.6"	/>

		</startup>

</configuration>

You	have	configured	two	shared	listeners—one	that	writes	to	a	text	file	and	another	that
writes	to	the	application	event	log.

Press	F5	to	start	Visual	Studio	with	the	debugger	attached.	In	the	console	application,
press	Enter	to	close	it.	This	will	release	the	file	that	it	is	writing	to.	Click	on	the	Windows
Start	menu,	type	event,	and	then	click	on	Event	Viewer:

In	the	Event	Viewer	window,	expand	Windows	Logs,	choose	Application,	choose	the
most	recent	log	entry,	and	then	click	on	the	Details	tab.	You	should	see	that	the	Friendly
View	option	of	the	EventData	is	the	message	we	output:

Run	File	Explorer,	look	in	the	C:\Code	folder,	and	open	the	file	named	Trace.txt.	If	you
open	it	with	Notepad,	it	will	look	like	this:

Configuring	compiler	symbols	for	.NET	Framework
You	might	be	wondering	what	the	difference	between	Debug	and	Trace	is.	When	you
compile	and	run	any	application,	it	can	be	configured	with	the	debug	or	trace	compiler
symbols	on	or	off.	By	default,	both	are	enabled.	You	can	see	this	by	double-clicking	on
Properties	in	the	Solution	Explorer	window,	and	then	clicking	on	the	Debug	tab.

You	can	see	that	both	the	debug	and	trace	symbols	are	enabled.	You	can	define	your	own
symbols	by	entering	them	in	the	Conditional	compilation	symbols	box,	as	shown	in	the
following	screenshot,	where	I	have	defined	two	symbols	named	KERMIT	and	FOZZIE:

Defining	compiler	symbols	for	.NET	Core
If	you	chose	to	create	a	Console	Application	(Package)	project	to	target	the	.NET	Core,
then	you	must	define	compiler	symbols	using	the	project.json	file.

In	the	project.json	file,	add	the	configurations	section,	as	shown	in	the	following
code,	that	specifies	options	for	the	two	possible	solution	configurations—Debug	and
Release:

{

		"version":	"1.0.0-*",

		"description":	"Ch05_Tracing	Console	Application",

		"authors":	["markjprice"],

		"tags":	[""],

		"projectUrl":	"",

		"licenseUrl":	"",

		"configurations":	{

				"Debug":	{

						"compilationOptions":	{

								"define":	["DEBUG",	"TRACE",	"KERMIT",	"FOZZIE"]

						}

				},

				"Release":	{

						"compilationOptions":	{

								"define":	["RELEASE",	"TRACE"],

								"optimize":	true

						}

				}

		},

Checking	compiler	symbols
Modify	the	content	of	the	Main	method	to	look	like	this.	We	are	using	conditional
compilation	#if	statements	to	only	write	to	the	trace	listeners	if	the	KERMIT	and
FOZZIE	symbols	have	been	defined.	Note	that	they	are	Booleans	so	we	can	use	operators
like	AND	(&&)	on	them:

namespace	Ch05_Tracing

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Debug.WriteLine("Debug	says	Hello	C#!");

												Trace.WriteLine("Trace	says	Hello	C#!");

#if	KERMIT

												Trace.WriteLine("KERMIT	is	on!");

#endif

#if	KERMIT	&&	FOZZIE

												Trace.WriteLine("KERMIT	and	FOZZIE	are	on!");

#endif

Press	F5	to	start	Visual	Studio	with	the	debugger	attached.

In	Visual	Studio’s	output	window,	you	will	see	all	the	messages:

Debug	says	Hello	C#!

Trace	says	Hello	C#!

KERMIT	is	on!

KERMIT	and	FOZZIE	are	on!

In	Visual	Studio’s	toolbar,	go	to	the	drop-down	menu	that	shows	the	list	of	configurations
and	choose	Release.	In	this	configuration,	only	the	TRACE	directive	is	set:

Press	F5	to	start	Visual	Studio	with	the	debugger	attached.	If	you	see	a	warning	message,
choose	Continue	Debugging.	In	Visual	Studio’s	Output	window,	you	will	see	only	the
Trace	message:

The	idea	is	that	you	can	safely	put	as	many	Debug.WriteLine	statements	throughout	your
code,	knowing	that	when	you	finally	compile	and	deploy	the	release	version	of	your
application	they	will	all	be	automatically	removed.

Tip
Best	Practice

Use	Debug.WriteLine	statements	liberally	throughout	your	code,	knowing	that	they	will
be	stripped	out	automatically	when	you	compile	the	release	version	of	your	application.

If	you	need	more	flexibility,	then	you	can	also	define	your	own	symbols,	but	for	these,	you
must	manually	check	that	your	own	symbol	has	been	defined	using	#if	statements.

But	what	about	the	Trace.WriteLine	statements?	They	are	left	in	your	release	code,	so
they	should	be	used	more	sparingly.	Even	these	can	be	configured	using	trace	switches.

Switching	trace	levels
In	the	App.config	file,	add	the	following	section	inside	<system.diagnostics>.	It	can	go
before	or	after	the	<trace>	and	<sharedListeners>	sections:

<switches>

		<add	name="PacktSwitch"	value="3"/>

</switches>

The	value	of	a	switch	can	be	set	using	a	number	or	a	word.	For	example,	the	number	3	can
be	replaced	with	the	word	Info,	as	shown	in	the	following	table:

Number Word Description

0 Off This	will	output	nothing

1 Error This	will	output	only	errors

2 Warning This	will	output	errors	and	warnings

3 Info This	will	output	errors,	warnings,	and	info	messages

4 Verbose This	will	output	all	levels

In	the	Main	method,	add	the	following	statements	before	prompting	the	user	to	press
Enter:

var	ts	=	new	TraceSwitch("PacktSwitch",	"");

Trace.WriteLineIf(ts.TraceError,	"TraceError");

Trace.WriteLineIf(ts.TraceWarning,	"TraceWarning");

Trace.WriteLineIf(ts.TraceInfo,	"TraceInfo");

Trace.WriteLineIf(ts.TraceVerbose,	"TraceVerbose");

Trace.Close();	//	release	any	file	or	database	listeners

WriteLine("Press	ENTER	to	close.");

ReadLine();

This	code	will	check	the	value	of	the	switch	named	PacktSwitch	and	only	output	if	the
level	has	been	set.

Tip
Best	Practice

Call	the	Close	method	of	the	Trace	type	to	release	any	locks	that	might	be	held	after
writing	to	a	text	file	trace	listener.	This	is	necessary	only	if	you	are	writing	to	listeners	that
are	buffered	or	apply	locking,	such	as	files	and	databases.	However,	it	doesn’t	hurt	to	do
this	every	time.

Press	F5	to	start	Visual	Studio	with	the	debugger	attached.	If	you	see	a	warning	message,
choose	Continue	Debugging.	In	Visual	Studio’s	Output	window,	you	will	see	only	the
Trace	messages	up	to	level	3	(Info):

Unit	testing	an	application
Microsoft	has	a	proprietary	unit	testing	framework	known	as	MS	Test,	which	is	closely
integrated	with	Visual	Studio.	However,	to	use	a	unit	testing	framework	that	is	compatible
with	.NET	Core,	we	will	use	the	third-party	framework	xUnit.net.

Creating	a	unit	of	code	that	needs	testing
Add	a	new	Class	Library	project	named	Ch05_Calculator.	In	the	Solution	Explorer
window,	right-click	on	the	Class1.cs	file	and	choose	Rename.	Change	its	name	to
Calculator.

Modify	the	code	to	look	like	this:

namespace	Ch05_Calculator

{

				public	class	Calculator

				{

								public	double	Add(double	a,	double	b)

								{

												return	a	*	b;

								}

				}

}

Creating	a	unit	test	project
Add	a	new	Class	Library	project	named	Ch05_CalculatorUnitTests.	In	the	Solution
Explorer,	right-click	on	References	and	choose	Manage	NuGet	Packages.

In	the	NuGet	Package	Manager	window,	click	on	the	Browse	tab,	and	then	search	for
xunit.	Click	on	Install	for	the	latest	stable	version:

In	the	Solution	Explorer,	right-click	on	References	and	choose	Add	Reference….	In	the
Reference	Manager	window,	select	the	checkbox	for	Ch05_Calculator	and	then	click	on
OK.	In	the	Solution	Explorer	window,	right-click	on	the	Class1.cs	file	and	choose
Rename.	Change	its	name	to	CalculatorUnitTests.

Modify	the	code	to	look	like	this:

using	Ch05_Calculator;

using	Xunit;

namespace	Ch05_CalculatorUnitTests

{

				public	class	CalculatorUnitTests

				{

								[Fact]

								public	void	TestAdding2And2()

								{

												//	arrange

												double	a	=	2;

												double	b	=	2;

												double	expected	=	4;

												var	calc	=	new	Calculator();

												//	act

												double	actual	=	calc.Add(a,	b);

												//	assert

												Assert.Equal(expected,	actual);

								}

								[Fact]

								public	void	TestAdding2And3()

								{

												//	arrange

												double	a	=	2;

												double	b	=	3;

												double	expected	=	5;

												var	calc	=	new	Calculator();

												//	act

												double	actual	=	calc.Add(a,	b);

												//	assert

												Assert.Equal(expected,	actual);

								}

				}

}

A	well-written	unit	test	will	have	three	parts:

Arrange:	This	part	will	declare	and	instantiate	variables	for	input	and	output
Act:	This	part	will	execute	the	unit	that	you	are	testing
Assert:	This	part	will	make	one	or	more	assertions	about	the	output

Running	unit	tests
You	must	install	a	runner	to	execute	your	tests.	There	is	a	runner	for	Visual	Studio,	but	we
will	use	the	one	that	executes	in	a	console	application	because	it	is	cross-platform.

In	the	Solution	Explorer	window,	right-click	on	References	and	choose	Manage	NuGet
Packages.	In	the	NuGet	Package	Manager,	click	on	the	Browse	tab,	and	then	search	for
xunit.runner.console.	Click	on	Install	for	the	latest	stable	version.

Open	a	Command	Prompt	and	navigate	to	C:\Code\Chapter05\.	Enter	the	following
command	at	the	prompt	to	run	your	tests:

packages\xunit.runner.console.2.1.0\tools\xunit.console	

Ch05_CalculatorUnitTests\bin\Debug\Ch05_CalculatorUnitTests.dll

You	should	see	the	following	results:

Fix	the	bug	in	the	Add	method,	rebuild	the	unit	test	project,	and	then	rerun	the	unit	tests	at
the	Command	Prompt.	You	should	see	the	following	results:

Internationalizing	an	application
Internationalization	is	the	process	of	enabling	your	application	to	run	correctly	all	over
the	world.	It	has	two	parts:	globalization	and	localization.

Globalization	is	about	writing	your	code	to	accommodate	multiple	languages	and	regions.
The	combination	of	a	language	and	a	region	is	known	as	a	culture.	It	is	important	for	your
code	to	know	both	the	language	and	region	because	date	and	currency	formats	are
different	in	Quebec	and	Paris	despite	them	both	using	French.

There	are	International	Standards	Organization	(ISO)	codes	for	all	culture
combinations.	For	example,	in	the	code	da-DK,	da	indicates	the	Danish	language	and	DK
indicates	the	country	of	Denmark.

Localization	is	about	customizing	the	user	interface	to	support	a	particular	language.	Since
localization	is	just	about	the	language,	it	doesn’t	need	to	know	about	the	region.

Internationalization	is	a	huge	topic	that	entire	books	have	been	written	about.	In	this
section,	you	will	get	a	brief	introduction	to	the	basics	using	the	CultureInfo	type	in	the
System.Globalization	namespace.

Tip
.NET	Core	1.0	does	not	currently	allow	threads	to	get	or	set	their	CurrentCulture	or
CurrentUICulture	properties.	An	alternative	for	getting	these	two	properties	(but	not
setting)	is	to	use	the	CultureInfo	class’s	static	properties,	but	you	cannot	set	them.

Globalizing	an	application
Add	a	new	console	application	project	named	Ch05_Internationalization.	At	the	top	of
the	file,	import	the	following	types	and	namespaces:

using	static	System.Console;

using	System;

using	System.Threading;

using	System.Globalization;

In	the	Main	method,	enter	the	following	statements:

Thread	t	=	Thread.CurrentThread;

WriteLine($"The	current	globalization	culture	is	{t.CurrentCulture.Name}:	

{t.CurrentCulture.DisplayName}");

WriteLine($"The	current	localization	culture	is	{t.CurrentUICulture.Name}:	

{t.CurrentUICulture.DisplayName}");

WriteLine();

WriteLine("en-US:	English	(United	States)");

WriteLine("da-DK:	Danish	(Denmark)");

WriteLine("fr-CA:	French	(Canada)");

Write("Enter	an	ISO	culture	code:	");

string	newculture	=	ReadLine();

if(!string.IsNullOrEmpty(newculture))

{

				var	ci	=	new	CultureInfo(newculture);

				Thread.CurrentThread.CurrentCulture	=	ci;

				Thread.CurrentThread.CurrentUICulture	=	ci;

}

Write("Enter	your	name:	");

string	name	=	ReadLine();

Write("Enter	your	date	of	birth:	");

string	dob	=	ReadLine();

Write("Enter	your	salary:	");

string	salary	=	ReadLine();

DateTime	date	=	DateTime.Parse(dob);

int	minutes	=	(int)DateTime.Today.Subtract(date).TotalMinutes;

decimal	earns	=	decimal.Parse(salary);

WriteLine($"{name}	was	born	on	a	{date:dddd}	and	is	{minutes:N0}	minutes	

old	and	earns	{earns:C}.");

When	you	run	an	application,	it	automatically	sets	its	thread	to	use	the	culture	of	the
operating	system.	I	am	running	my	code	in	London,	UK,	so	the	thread	is	already	set	to
English	(United	Kingdom).

The	code	prompts	the	user	to	enter	an	alternative	ISO	code.	This	allows	your	applications
to	replace	the	default	culture	at	runtime.

The	application	then	uses	standard	format	codes	to	output	the	day	of	the	week	dddd,	the
number	of	minutes	with	thousand	separators	N0,	and	the	salary	with	the	currency	symbol
C.	These	adapt	automatically	based	on	the	thread’s	culture.

Press	Ctrl	+	F5.	Enter	en-GB	for	the	ISO	code	and	then	enter	some	sample	data.	You	will
need	to	enter	a	date	in	a	format	valid	for	British	English:

Enter	an	ISO	culture	code:	en-GB

Enter	your	name:	Alice

Enter	your	date	of	birth:	30/3/1967

Enter	your	salary:	23500

Alice	was	born	on	a	Thursday,	is	25,469,280	minutes	old	and	earns	

£23,500.00.

Rerun	the	application	and	try	a	different	culture	such	as	Danish	in	Denmark	(da-DK).	You
will	need	to	enter	a	date	in	a	format	valid	for	the	culture	you	chose:

Enter	an	ISO	culture	code:	da-DK

Enter	your	name:	Mikkel

Enter	your	date	of	birth:	12.3.1980

Enter	your	salary:	34000

Mikkel	was	born	on	a	onsdag,	is	18.656.640	minutes	old	and	earns	kr.	

34.000,00.

Localizing	an	application
The	application	does	not	currently	change	the	prompts.	They	have	been	hardcoded	to
always	ask	in	English.	We	can	improve	this	using	localization.	Choose	Project	|	Add	New
Item…	or	press	Ctrl	+	Shift	+	A.

In	the	dialog	box,	type	resource	into	the	search	box,	change	the	name	of	the	resources	file
that	you	are	adding	to	Prompts.resx,	and	then	click	on	Add:

Add	the	following	entries	and	then	close	the	resource	editor:

In	the	Solution	Explorer	window,	copy	and	paste	the	Prompts.resx	file	by	selecting	it
and	pressing	Ctrl	+	C	and	then	Ctrl	+	V.

Rename	the	new	copy	to	Prompts.fr.resx.	The	fr	indicates	that	this	new	copy	should	be
used	for	French.	Open	it	and	modify	the	entry	values	as	follows:

Modify	the	following	statements	in	the	Main	method:

Write($"{Prompts.EnterYourName}	");

string	name	=	ReadLine();

Write($"{Prompts.EnterYourDOB}	");

string	dob	=	ReadLine();

Write($"{Prompts.EnterYourSalary}	");

string	salary	=	ReadLine();

Press	Ctrl	+	F5.	With	an	ISO	culture	code	of	fr-FR,	this	will	load	the	French	prompts:

Enter	an	ISO	culture	code:	fr-FR

Entrez	votre	nom:	Michel

Entrez	votre	date	de	naissance:	4	5	1967

Entrez	votre	salaire:	72000

Michel	was	born	on	a	jeudi,	is	25	418	880	minutes	old	and	earns	72	000,00	

?.

With	any	other	ISO	code,	it	will	load	English	prompts	(think	of	a	resource	file	without	an
ISO	code	in	its	name	as	being	the	default).	You	could	use	Microsoft	Bing	or	Google
Translate	to	create	your	resource	files.

Tip
Best	Practice

Consider	whether	your	application	needs	to	be	internationalized	and	plan	for	that	before
you	start	coding!	Write	down	all	the	pieces	of	text	in	the	user	interface	that	will	need	to	be
localized.	Think	about	all	the	data	that	will	need	to	be	globalized	(date	formats,	number
formats,	and	sorting	text	behavior).

Interoperating	with	unmanaged	code
.NET	applications	are	loaded,	executed,	and	managed	by	the	CLR.	We	use	the	term
unmanaged	to	refer	to	any	code	that	is	outside	the	control	of	the	CLR.

If	a	.NET	developer	needs	to	interact	with	unmanaged	code,	they	can	use	two
technologies:	Component	Object	Model	(COM)	Interop	and	Platform	Invoke	(also
known	as	P/Invoke).

Tip
Both	of	these	technologies	are	specific	to	Windows	and,	therefore,	are	only	supported	by
the	.NET	Framework,	not	by	the	.NET	Core.

Automating	Microsoft	Excel	using	COM	Interop
Most	of	the	popular	Microsoft	Office	products	support	being	automated	using	COM.	If
you	have	Microsoft	Excel	(for	Windows)	installed,	then	you	can	complete	this	exercise.

Add	a	new	console	application	project	named	Ch05_AutomatingExcel.	In	the	Solution
Explorer	window,	right-click	on	References	and	choose	Add	Reference….

In	the	Reference	Manager	window,	on	the	left-hand	side,	click	on	COM,	and	then	select
the	checkbox	for	Microsoft	Excel	16.0	Object	Library	(or	the	latest	version	that	you
have	installed).	Click	on	OK:

At	the	top	of	the	code,	import	the	following	types	and	namespaces:

using	static	System.Console;

using	static	System.Convert;

using	Microsoft.Office.Interop.Excel;

In	the	Main	method,	enter	the	following	statements:

const	int	xlPie	=	5;

Write("Enter	a	number:	");

double	number	=	ToDouble(ReadLine());

var	excel	=	new	Application();

excel.Visible	=	true;

excel.Workbooks.Add();

excel.Range["A1"].Value	=	number;

excel.Range["A2"].Formula	=	"=A1*2";

excel.Range["A1:A2"].Select();

excel.ActiveSheet.Shapes.AddChart2(251,	xlPie).Select();

excel.ActiveChart.SetSourceData(Source:	excel.Range["Sheet1!A1:A2"]);

When	you	run	the	console	application,	it	starts	Excel,	makes	it	visible	(because	it	runs
hidden	in	the	background	by	default),	adds	a	blank	new	workbook,	sets	the	cell	A1	to
contain	the	number	the	user	entered,	doubles	it	using	a	formula,	then	selects	the	cells	and

uses	the	numbers	as	a	source	for	a	pie	chart:

Tip
To	make	it	even	easier	to	learn	how	to	automate	Excel,	switch	on	the	Developer	tab	in
Excel	and	then	use	it	to	record	a	macro.	The	code	recorded	is	Visual	Basic	for
Applications,	but	that	is	easy	to	translate	to	C#.

Accessing	the	Win32	API	with	P/Invoke
All	Windows	applications	make	calls	to	the	Win32	API	to	provide	their	functionality.
That’s	what	makes	them	Windows	applications.

Technologies	such	as	.NET	are	layers	on	top	of	the	Win32	API.	Most	of	the	Win32	API
functions	have	been	exposed	via	.NET	types,	but	not	all.	If	a	.NET	developer	needs	to
access	a	Win32	API	that	isn’t	already	exposed,	then	they	can	use	P/Invoke.

Add	a	new	console	application	project	named	Ch05_HackNotepad.	At	the	top	of	the	file,
import	the	following	types	and	namespaces:

using	static	System.Console;

using	static	System.Diagnostics.Process;

using	System.Runtime.InteropServices;

using	System;

In	the	Program	class,	enter	the	following	statements:

[DllImport("user32.dll",	SetLastError	=	true)]

static	extern	IntPtr	FindWindow(string	lpClassName,	string	lpWindowName);

[DllImport("user32.dll",	SetLastError	=	true,	CharSet	=	CharSet.Auto)]

public	static	extern	bool	SetWindowText(IntPtr	hwnd,	string	lpString);

In	the	Main	method,	enter	the	following	statements:

Write("Enter	a	message:	");

string	message	=	ReadLine();

WriteLine("Press	any	key	to	start	Notepad.");

ReadKey();

Start("notepad.exe").WaitForInputIdle();

//	use	a	Win32	API	call	to	get	reference	to	Notepad

IntPtr	notepad	=	FindWindow("Notepad",	null);

if	(notepad	!=	IntPtr.Zero)

{

				//	if	it	is	running,	set	it's	window	text	with	a	message

				SetWindowText(notepad,	"Notepad	has	been	hacked!	"	+	message);

}

else

{

				WriteLine("Notepad	is	not	running!");

}

When	you	run	the	console	application,	it	prompts	the	user	to	enter	a	message,	starts	an
instance	of	Notepad,	finds	the	Notepad	window,	and	sets	its	title	to	a	customized	message.

Tip
A	more	practical	example	would	be	impersonating	a	user	other	than	the	current	one	while
executing	some	statements.	To	do	this,	you	would	need	to	use	P/Invoke	to	import	the
LogonUser	function	from	advapi32.dll	and	the	CloseHandle	function	from
kernel32.dll.	For	more	details,	visit	https://msdn.microsoft.com/en-
us/library/w070t6ka(v=vs.110).aspx.

https://msdn.microsoft.com/en-us/library/w070t6ka(v=vs.110).aspx

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	with	deeper	research	into	the	topics	covered	in	this	chapter.

Exercise	5.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 What	is	the	difference	between	pressing	F5,	Ctrl	+	F5,	Shift	+	F5,	and	Ctrl	+	Shift	+
F5?

2.	 Want	is	the	ISO	culture	code	for	Welsh?
3.	 Which	information	can	you	find	out	about	a	process?
4.	 Can	your	applications	write	to	the	security	event	log	in	Windows?
5.	 How	accurate	is	the	Stopwatch?
6.	 What	is	the	difference	between	localization,	globalization,	and	internationalization?

Exercise	5.2	–	practice	using	Debug	and	Trace
Create	a	console	application	named	Ch05_Exercise02	that	writes	the	message	“I	am
debugging.”	only	when	the	DEBUG	symbol	is	set,	writes	the	message	“I	am	tracing.”	only
when	the	TRACE	symbol	is	set,	and	the	message	“I	am	confused!”	only	when	TRACE
and	a	custom	conditional	compilation	symbol	named	CONFUSED	is	set.

Exercise	5.3	–	explore	topics
Use	the	following	links	to	read	more	about	the	topics	covered	in	this	chapter:

Debugging	in	Visual	Studio:	https://msdn.microsoft.com/en-
us/library/sc65sadd.aspx
Start,	Break,	Step,	Run	through	Code,	and	Stop	Debugging	in	Visual	Studio:
https://msdn.microsoft.com/en-us/library/y740d9d3.aspx
Breakpoints	and	Tracepoints:	https://msdn.microsoft.com/en-
us/library/ktf38f66.aspx
System.Diagnostics	Namespaces:	https://msdn.microsoft.com/en-
us/library/gg145030(v=vs.110).aspx
Stopwatch	Class:	https://msdn.microsoft.com/en-
us/library/system.diagnostics.stopwatch(v=vs.110).aspx
Process	Class:	https://msdn.microsoft.com/en-
us/library/system.diagnostics.process(v=vs.110).aspx
Debug	Class:	https://msdn.microsoft.com/en-
us/library/system.diagnostics.debug(v=vs.110).aspx
xUnit.net:	http://xunit.github.io/
Globalizing	and	Localizing	.NET	Framework	Applications:
https://msdn.microsoft.com/en-us/library/h6270d0z(v=vs.110).aspx
System.Globalization	Namespace:	https://msdn.microsoft.com/en-
us/library/system.globalization.aspx

https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
https://msdn.microsoft.com/en-us/library/y740d9d3.aspx
https://msdn.microsoft.com/en-us/library/ktf38f66.aspx
https://msdn.microsoft.com/en-us/library/gg145030(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.process(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.debug(v=vs.110).aspx
http://xunit.github.io/
https://msdn.microsoft.com/en-us/library/h6270d0z(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.globalization.aspx

Summary
In	this	chapter,	you	learned	how	to	use	the	Visual	Studio	debugging	and	diagnostic
features,	how	to	unit	test	your	code,	how	to	internationalize	your	code,	and	how	to
interoperate	with	code	outside	of	.NET.

In	the	next	chapter,	you	will	learn	how	to	build	your	own	types	using	object-oriented
programming	techniques.

Chapter	6.	Building	Your	Own	Types	with
Object-Oriented	Programming
This	chapter	is	about	making	your	own	types	using	object-oriented	programming	(OOP).
You	will	learn	about	all	the	different	categories	of	members	that	a	type	can	have,	including
fields	to	store	data	and	methods	to	perform	actions.	You	will	use	OOP	concepts	such	as
aggregation	and	encapsulation.

This	chapter	will	cover	the	following	topics:

Talking	about	OOP
Building	class	libraries
Storing	data	with	fields
Writing	and	calling	methods
Controlling	access	with	properties	and	indexers
Simplifying	methods	with	operators
Raising	and	handling	events

Talking	about	OOP
An	object	in	the	real	world	is	a	thing,	like	a	car	or	a	person.	An	object	in	programming
often	represents	something	in	the	real	world,	such	as	a	product	or	bank	account,	but	can
also	be	something	more	abstract.

In	C#,	we	use	a	class	(usually)	or	a	struct	(rarely)	to	define	each	type	of	object.	You	can
think	of	a	type	as	being	a	blueprint	or	template	for	an	object.

Encapsulation	is	the	combination	of	the	data	and	actions	that	are	related	to	an	object.	For
example,	a	BankAccount	type	might	have	data	such	as	Balance	and	AccountName,	as	well
as	actions	such	as	Deposit	and	Withdraw.	When	encapsulating,	you	often	want	to	control
what	is	allowed	to	access	those	data	and	actions.

Composition	is	about	what	an	object	is	made	of.	For	example,	a	car	is	composed	of
different	parts	such	as	four	wheels,	several	seats,	an	engine,	and	so	on.

Aggregation	is	about	what	is	related	to	an	object.	For	example,	a	person	could	sit	in	the
driver’s	seat	and	becomes	the	car’s	driver.

Inheritance	is	about	reusing	code	by	having	a	subclass	derive	from	a	base	or	super	class.
All	functionality	in	the	base	class	becomes	available	in	the	derived	class.

Abstraction	is	about	capturing	the	core	idea	of	an	object	and	ignoring	the	details	or
specifics.	Abstraction	is	a	tricky	balance.	If	you	make	a	class	more	abstract,	more	classes
would	be	able	to	inherit	from	it,	but	there	will	be	less	functionality	share.

Polymorphism	is	about	allowing	a	derived	class	to	override	an	inherited	action	to	provide
custom	behavior.

Building	class	libraries
Class	library	assemblies	group	types	together	into	easily	deployable	units	(DLL	files).	So
far,	you	have	only	created	console	applications	to	contain	all	your	code.	To	make	the	code
that	you	write	reusable	across	multiple	projects,	you	should	put	it	in	class	library
assemblies,	just	like	Microsoft	does.

Tip
Put	types	that	you	might	reuse	in	a	class	library.

Creating	a	class	library	to	share	code
Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	go	to	File	|
New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	center
list,	select	Class	Library,	type	Name	as	Ch06_PacktLibrary,	change	Location	to
C:\Code,	type	Solution	name	as	Chapter06,	and	then	click	on	OK.

Note
Make	sure	you	choose	class	library	and	not	a	console	application!

Defining	a	class
In	Solution	Explorer,	right-click	on	the	file	named	Class1.cs	and	choose	Rename.	Type
the	name	as	Person.	When	you	are	prompted	to	rename	all	other	references	to	the	class,
click	on	Yes:

Change	the	namespace	to	Packt.CS6	because	it	is	important	to	put	your	classes	in	a
logically	named	namespace.	Your	code	should	now	look	like	this:

namespace	Packt.CS6

{

				public	class	Person

				{

				}

}

Notice	that	I	chose	to	apply	the	C#	keyword	public	before	the	class.	This	allows	all	code
to	access	this	class.	If	you	do	not	explicitly	apply	the	public	keyword,	then	it	would	only
be	accessible	within	the	assembly	that	defined	it.	We	need	it	to	be	accessible	outside	the
assembly	too.	This	type	does	not	yet	have	any	members	encapsulated	within	it.	We	will
create	some	soon.

Members	can	be	fields,	methods,	or	specialized	versions	of	both.	They	are	described	here:

Fields	are	used	to	store	data.	These	are	the	three	specialized	fields:

Constants:	The	data	in	this	field	never	changes
Read-only	fields:	The	data	in	this	field	cannot	change	after	the	class	is
instantiated
Events:	These	point	to	methods	that	you	want	to	call	automatically	when
something	happens,	such	as	clicking	on	a	button

Methods	are	used	to	execute	statements.	These	are	the	four	specialized	methods:

Constructors:	These	are	a	type	of	method	that	execute	when	you	use	the	new
keyword	to	allocate	memory	and	instantiate	a	class

Properties:	These	are	a	type	of	method	that	execute	when	you	want	to	control
access	to	fields
Indexers:	These	are	a	type	of	method	that	execute	when	you	want	to	control
access	to	fields
Operators:	These	are	a	type	of	method	that	execute	when	you	want	to	apply	an
operator

Instantiating	a	class
In	this	section,	we	will	make	an	instance	of	the	Person	class.

Add	a	new	console	application	project	named	Ch06_PeopleApp.

Note
Make	sure	you	choose	console	application	and	not	a	class	library!

This	project	needs	a	reference	to	the	class	library	we	just	made.

In	Solution	Explorer,	right-click	on	References	and	choose	Add	Reference…:

In	the	Reference	Manager	dialog	box,	in	the	list	on	the	left-hand	side,	choose	Projects,
select	the	Ch06_PacktLibrary	assembly,	and	then	click	on	OK:

At	the	top	of	the	file,	type	the	following	code	to	import	the	namespace	for	our	class	and	to
statically	import	the	Console	type:

using	Packt.CS6;

using	static	System.Console;

In	the	Main	method,	type	the	following	code	to	create	an	instance	of	the	Person	type	by
using	the	new	keyword.	The	new	keyword	allocates	memory	for	the	object	and	initializes
any	internal	data.	We	could	use	Person	in	place	of	the	var	keyword,	but	the	use	of	var
involves	less	typing	and	is	just	as	clear:

var	p1	=	new	Person();

WriteLine(p1.ToString());

Press	Ctrl	+	F5.	If	you	see	the	following	dialog	box,	then	dismiss	it:

Set	the	solution’s	startup	project	to	the	current	selection.	Click	inside	the
Ch06_PeopleApp	project	or	inside	the	Program.cs	file,	and	press	Ctrl	+	F5	again.

Although	our	Person	class	did	not	explicitly	choose	to	inherit	from	a	type,	all	types
indirectly	inherit	from	a	special	type	named	System.Object.	The	implementation	of	the
ToString	method	in	the	System.Object	type	simply	outputs	the	full	namespace	and	type
name	like	this:

Packt.CS6.Person

Back	in	the	original	Person	class,	we	could	have	explicitly	told	the	compiler	that	Person
inherits	from	the	System.Object	type	like	this:

public	class	Person	:	System.Object

Tip
When	class	A	inherits	from	class	B,	we	say	that	B	is	the	base	or	super	class	and	A	is	the
derived	or	subclass.	In	this	case,	System.Object	is	the	base	or	super	class	and	Person	is
the	derived	or	subclass.

You	can	also	use	the	C#	alias	object	keyword:

public	class	Person	:	object

Modify	the	code	to	explicitly	inherit	from	the	object	type.	Then,	click	inside	the	keyword
and	press	F12.	You	will	see	the	Microsoft-defined	System.Object	type	and	its	members.
You	do	not	need	to	understand	any	of	this	yet,	but	notice	that	it	has	a	method	named
ToString,	as	you	can	see	in	the	following	screenshot:

Tip
Assume	other	programmers	know	that	if	inheritance	is	not	specified,	the	class	will	inherit
from	System.Object.

Storing	data	with	fields
Next,	we	will	define	some	fields	in	the	class	to	store	information	about	a	person.

Defining	fields
Inside	the	Person	class,	write	the	following	code.	At	this	point,	we	have	decided	that	a
person	is	composed	of	a	name	and	a	date	of	birth.	We	have	encapsulated	these	two	values
inside	the	person.	We	have	also	made	the	fields	public	so	that	they	are	visible	outside	the
class	itself:

public	class	Person

{

				//	fields

				public	string	Name;

				public	DateTime	DateOfBirth;

}

Tip
You	can	use	any	type	for	a	field,	including	arrays	and	collections;	for	example,	if	you	need
to	store	multiple	values.

You	might	want	to	click,	hold,	and	drag	the	tab	for	one	of	your	open	files	to	arrange	them
so	that	you	can	see	both	files	at	once,	like	this:

Notice,	that	like	we	did	with	the	class,	we	applied	the	public	keyword	to	these	fields.	If
we	hadn’t,	then	they	would	be	private	to	the	class,	which	means	they	are	accessible	only
inside	the	class.

There	are	four	access	modifier	keywords	that	you	can	apply	to	a	class	member	such	as	a
field	or	method.	Part	of	encapsulation	is	choosing	how	visible	the	members	are:

Access	Modifier Description

private	(default) Member	is	accessible	inside	the	type	only

internal Member	is	accessible	inside	the	type	and	any	type	in	the	same	assembly

protected Member	is	accessible	inside	the	type	and	any	type	that	inherits	from	the	type

internal

protected

Member	is	accessible	inside	the	type,	any	type	in	the	same	assembly,	and	any	type	that	inherits
from	the	type

public Member	is	accessible	everywhere

Tip
Explicitly	apply	one	of	the	access	modifiers	to	all	type	members	rather	than	use	the
default,	which	is	private.

Inside	the	Main	method,	change	the	code	to	look	like	this:

var	p1	=	new	Person();

p1.Name	=	"Bob	Smith";

p1.DateOfBirth	=	new	DateTime(1965,	12,	22);

WriteLine($"{p1.Name}	was	born	on	{p1.DateOfBirth:dddd,	d	MMMM	yyyy}");

Run	the	application	by	pressing	Ctrl	+	F5,	and	view	the	output:

Bob	Smith	was	born	on	Wednesday,	22	December	1965

You	can	also	initialize	fields	using	a	short-hand	object	initializer	syntax	using	curly
brackets.

Add	the	following	code	underneath	the	existing	code	to	create	another	new	person.	Note
the	different	format	code	for	the	date	of	birth	when	writing	to	the	console:

var	p2	=	new	Person	{	Name	=	"Alice	Jones",	DateOfBirth	=	new	

DateTime(1998,	3,	17)	};

WriteLine($"{p2.Name}	was	born	on	{p2.DateOfBirth:d	MMM	yy}");

Run	the	application	and	view	the	output:

Alice	Jones	was	born	on	17	Mar	98

Storing	a	value	using	the	enum	keyword
Sometimes,	a	value	needs	to	be	one	of	a	limited	list	of	options.	For	example,	a	person	may
have	a	favorite	ancient	world	wonder.	Sometimes,	a	value	needs	to	be	combination	of	a
limited	list	of	options.	For	example,	a	person	may	have	a	bucket	list	of	ancient	world
wonders	they	want	to	visit.	We	can	store	this	data	using	an	enum	type.

An	enum	is	a	very	efficient	way	of	storing	one	or	more	choices,	because	internally,	it	uses
int	values	in	combination	with	a	lookup	table	of	string	descriptions.

Add	a	new	class	to	the	Ch06_PacktLibrary	project	named
WondersOfTheAncientWorld	by	pressing	Shift	+	Alt	+	C	or	going	to	Project	|	Add
Class….

Modify	the	code	file	to	make	it	look	like	this.	Notice	that	the	class	keyword	has	been
changed	to	enum	and	made	public:

namespace	Packt.CS6

{

				public	enum	WondersOfTheAncientWorld

				{

								GreatPyramidOfGiza,

								HangingGardensOfBabylon,

								StatueOfZeusAtOlympia,

								TempleOfArtemisAtEphesus,

								MausoleumAtHalicarnassus,

								ColossusOfRhodes,

								LighthouseOfAlexandria

				}

}

In	the	Person	class,	add	the	following	statement	to	your	list	of	fields:

public	WondersOfTheAncientWorld	FavouriteAncientWonder;

Back	in	the	Main	method	of	Ch06_PeopleApp,	add	the	following	statements:

p1.FavouriteAncientWonder	=	WondersOfTheAncientWorld.StatueOfZeusAtOlympia;

WriteLine($"{p1.Name}'s	favourite	wonder	is	{p1.FavouriteAncientWonder}");

Run	the	application	and	view	the	output:

Bob	Smith's	favourite	wonder	is	StatueOfZeusAtOlympia

For	the	bucket	list,	we	could	create	a	collection	of	instances	of	the	enum,	but	there	is	a
better	way.	We	can	combine	multiple	choices	into	a	single	value	using	flags.

Modify	the	enum	to	look	like	this.	Notice	that	I	have	used	the	left	shift	operator	(<<)	to	set
individual	bits	within	the	flag.	I	could	also	have	set	the	values	to	1,	2,	4,	8,	16,	32,	and	so
on:

namespace	Packt.CS6

{

				[System.Flags]

				public	enum	WondersOfTheAncientWorld	:	byte

				{

								None	=	0,

								GreatPyramidOfGiza	=	1,

								HangingGardensOfBabylon	=	1	<<	1,

								StatueOfZeusAtOlympia	=	1	<<	2,

								TempleOfArtemisAtEphesus	=	1	<<	3,

								MausoleumAtHalicarnassus	=	1	<<	4,

								ColossusOfRhodes	=	1	<<	5,

								LighthouseOfAlexandria	=	1	<<	6

				}

}

Notice	that	we	are	assigning	explicit	values	for	each	choice	that	would	not	overlap	when
looking	at	the	bits	stored	in	memory.	We	must	also	mark	the	enum	with	the	System.Flags
attribute.	Normally,	an	enum	uses	an	int	variable	internally,	but	since	we	don’t	need	values
that	big,	we	can	make	it	more	efficient	by	telling	it	to	use	a	byte	variable	(with	8	bit
columns).

If	we	want	to	indicate	that	our	bucket	list	includes	the	Hanging	Gardens	and	the
Mausoleum	at	Halicarnassus,	then	we	would	want	the	16	and	2	bits	set	to	1.	In	other
words,	we	would	store	the	value	18:

128 64 32 16 8 4 2 1

0 0 0 1 0 0 1 0

In	the	Person	class,	add	the	following	statement	to	your	list	of	fields:

public	WondersOfTheAncientWorld	BucketList;

Back	in	the	Main	method	of	Ch06_PeopleApp,	add	the	following	statements	to	set	the
bucket	list	using	the	|	operator	(logical	OR)	to	combine	enum	values.	We	could	also	set	the
value	using	the	number	18	cast	into	the	enum	type	as	in	the	comment:

p1.BucketList	=	WondersOfTheAncientWorld.HangingGardensOfBabylon	|	

WondersOfTheAncientWorld.MausoleumAtHalicarnassus;

//	p1.BucketList	=	(WondersOfTheAncientWorld)18;

WriteLine($"{p1.Name}'s	bucket	list	is	{p1.BucketList}");

Run	the	application	and	view	the	output:

Bob	Smith's	bucket	list	is	HangingGardensOfBabylon,	

MausoleumAtHalicarnassus

Tip
Use	enum	values	to	store	combinations	of	discreet	options.	Derive	an	enum	from	byte	if
there	are	up	to	eight	options,	from	short	if	there	are	up	to	16	options,	from	int	if	there	are
up	to	32	options,	and	from	long	if	there	are	up	to	64	options.

Storing	multiple	values	using	collections
Let’s	add	a	field	to	store	a	person’s	children.	This	is	an	example	of	aggregation	because
children	are	instances	of	a	class	that	is	related	to	the	current	person,	but	are	not	part	of	the
person	themselves:

public	List<Person>	Children	=	new	List<Person>();

Note	that	we	need	to	ensure	the	collection	is	initialized	to	a	new	instance	of	a	collection
before	we	can	add	items	to	the	collection.

In	the	Main	method,	add	the	following	code:

p1.Children.Add(new	Person());

p1.Children.Add(new	Person());

WriteLine($"{p1.Name}	has	{p1.Children.Count}	children.");

Run	the	application	and	view	the	output:

Bob	Smith	has	2	children.

Making	a	field	static
The	fields	that	we	have	created	so	far	have	all	been	instance	members,	meaning	that	a
copy	of	each	field	exists	for	each	instance	of	the	class	that	is	created.

Sometimes,	you	want	to	define	a	field	that	only	has	one	copy,	which	is	shared	across	all
instances.	These	are	called	static	members.

In	the	Ch06_PacktLibrary	project,	add	a	new	class	named	BankAccount.	Modify	the
code	as	follows:

namespace	Packt.CS6

{

				public	class	BankAccount

				{

								public	string	AccountName;

								public	decimal	Balance;

								public	static	decimal	InterestRate;

				}

}

Notice	that	each	instance	of	BankAccount	will	have	its	own	AccountName	and	Balance,	but
all	instances	will	share	a	single	InterestRate	field.

In	Ch06_PeopleApp	and	its	Main	method,	add	the	following	code,	where	we	will	set	the
shared	interest	rate	and	then	create	two	instances	of	the	BankAccount	type:

BankAccount.InterestRate	=	0.012M;

var	ba1	=	new	BankAccount();

ba1.AccountName	=	"Mrs.	Jones";

ba1.Balance	=	2400;

WriteLine($"{ba1.AccountName}	earned	{ba1.Balance	*	

BankAccount.InterestRate}	interest.");

var	ba2	=	new	BankAccount();

ba2.AccountName	=	"Ms.	Gerrier";

ba2.Balance	=	98;

WriteLine($"{ba2.AccountName}	earned	{ba2.Balance	*	

BankAccount.InterestRate}	interest.");

Run	the	application	and	view	the	output:

Mrs.	Jones	earned	£28.80	interest.

Ms.	Gerrier	earned	£1.18	interest.

Making	a	field	constant
If	the	value	of	a	field	will	never	ever	change,	you	can	use	const	and	assign	the	value	at
compile	time.

Inside	the	Person	class,	add	the	following	code:

//	constants

public	const	string	Species	=	"Homo	Sapien";

Inside	the	Main	method,	change	the	code	to	look	like	the	following	statement.	Note	that	to
read	a	constant	field,	you	must	write	the	name	of	the	class,	not	the	name	of	an	instance	of
the	class:

WriteLine($"{p1.Name}	is	a	{Person.Species}");

Run	the	application	and	view	the	output:

Bob	Smith	is	a	Homo	Sapien

Examples	of	const	fields	in	Microsoft	types	include	System.Int32.MaxValue	and
System.Math.PI,	because	neither	value	will	ever	change,	as	you	can	see	in	the	following
screenshot:

Tip
Constants	should	be	avoided	for	two	important	reasons:

The	value	must	be	known	at	compile	time,	and	it	must	be	expressible	as	a	literal
string,	Boolean,	or	number	value
Every	reference	to	the	const	field	is	replaced	with	the	literal	value	at	compile	time,
which	will,	therefore,	not	be	reflected	if	the	value	changes	in	a	future	version

Making	a	field	read	only
A	better	choice	for	fields	that	should	not	change	is	to	mark	them	as	read-only.

Inside	the	Person	class,	write	the	following	code:

//	read-only	fields

public	readonly	string	HomePlanet	=	"Earth";

Inside	the	Main	method,	add	the	following	code	statement.	Notice	that	to	get	a	read-only
field,	you	must	write	the	name	of	an	instance	of	the	class,	not	the	type	name,	unlike
constants:

WriteLine($"{p1.Name}	was	born	on	{p1.HomePlanet}");

Run	the	application	and	view	the	output:

Bob	Smith	was	born	on	Earth

Tip
Use	read-only	fields	over	const	fields	for	two	important	reasons:

The	value	can	be	calculated	or	loaded	at	runtime	and	can	be	expressed	using	any
executable	statement.	So,	a	read-only	field	can	be	set	using	a	constructor.
Every	reference	to	the	field	is	a	live	reference,	so	any	future	changes	will	be	correctly
reflected	by	calling	code.

Initializing	fields	with	constructors
Fields	often	need	to	be	initialized	at	runtime.	You	do	this	in	a	constructor	that	will	be
called	when	you	make	an	instance	of	the	class	using	the	new	keyword.	Constructors
execute	before	any	fields	are	set	by	the	code	that	is	using	the	type.

Inside	the	Person	class,	add	the	following	code:

//	read-only	fields

public	readonly	string	HomePlanet	=	"Earth";

public	readonly	DateTime	Instantiated;

//	constructors

public	Person()

{

				Name	=	"Unknown";	//	set	a	default	name

				Instantiated	=	DateTime.Now;

}

Inside	the	Main	method,	add	the	following	code:

var	p3	=	new	Person();

WriteLine($"{p3.Name}	was	instantiated	at	{p3.Instantiated:hh:mm:ss}	on	

{p3.Instantiated:dddd,	d	MMMM	yyyy}");

Run	the	application	and	view	the	output:

Unknown	was	instantiated	at	11:58:12	on	Sunday,	3	January	2016

You	can	have	multiple	constructors	in	a	type.	Inside	the	Person	class,	add	the	following
code:

public	Person(string	initialName)

{

				Name	=	initialName;

				Instantiated	=	DateTime.Now;

}

Inside	the	Main	method,	add	the	following	code:

var	p4	=	new	Person("Aziz");

WriteLine($"{p4.Name}	was	instantiated	at	{p4.Instantiated:hh:mm:ss}	on	

{p4.Instantiated:dddd,	d	MMMM	yyyy}");

Notice	that	when	you	enter	the	statement	to	call	the	constructor,	it	shows	the	name	of	the
parameter	to	be	passed,	as	shown	in	the	following	screenshot:

Run	the	application	and	view	the	output:

Aziz	was	instantiated	at	11:59:25	on	Sunday,	3	January	2016

Constructors	are	a	special	category	of	method.	Let’s	look	at	methods	in	more	detail.

Writing	and	calling	methods
Methods	are	type	members	that	execute	a	block	of	statements.	A	method	that	performs
some	actions	but	does	not	return	a	value	is	marked	as	returning	void.	A	method	that
performs	some	actions	and	returns	a	value	is	marked	as	returning	the	type	of	that	return
value.

Inside	the	Person	class,	statically	import	the	System.Console	type	and	then	add	the
following	code:

//	methods

public	void	WriteToConsole()

{

				WriteLine($"{Name}	was	born	on	{DateOfBirth:dddd,	d	MMMM	yyyy}");

}

public	string	GetOrigin()

{

				return	$"{Name}	was	born	on	{HomePlanet}";

}

Inside	the	Main	method,	add	the	following	code:

p1.WriteToConsole();

WriteLine(p1.GetOrigin());

Run	the	application	and	view	the	output:

Bob	Smith	was	born	on	Wednesday,	22	December	1965

Bob	Smith	was	born	on	Earth

Methods	can	have	parameters	passed	to	them	in	order	to	change	their	behavior.	Parameters
are	defined	a	bit	like	variable	declarations	but	inside	the	parentheses	of	the	method.

Inside	the	Person	class,	add	the	following	code:

public	string	SayHello()

{

				return	$"{Name}	says	'Hello!'";

}

public	string	SayHelloTo(string	name)

{

				return	$"{Name}	says	'Hello	{name}!'";

}

Inside	the	Main	method,	add	the	following	code:

WriteLine(p1.SayHello());

WriteLine(p1.SayHelloTo("Emily"));

Run	the	application	and	view	the	output:

Bob	Smith	says	'Hello!'

Bob	Smith	says	'Hello	Emily!'

Overloading	methods
When	typing	a	statement	that	calls	a	method,	you	can	press	Ctrl	+	K,	I	or	go	to	the	Edit	|
IntelliSense	|	Quick	Info	to	see	Quick	Info	of	a	method:

Here	is	the	SayHelloTo	method’s	Quick	Info:

Instead	of	having	two	different	method	names,	we	could	give	both	methods	the	same
name.	This	is	allowed	because	the	methods	each	have	a	different	signature.	A	method
signature	is	the	list	of	parameter	types	that	can	be	passed	when	calling	the	method.

In	the	Person	class,	change	the	name	of	the	SayHelloTo	method	to	SayHello.	Now,	when
you	view	the	quick	info	for	the	method,	it	tells	you	that	it	has	one	additional	overload:

Tip
Use	overloaded	methods	to	simplify	your	class	by	making	it	appear	to	have	fewer
methods.

Optional	parameters	and	named	arguments
Another	way	to	simplify	methods	is	to	make	parameters	optional.	You	make	a	parameter
optional	by	assigning	a	default	value	inside	the	method	parameter	list.	Optional
parameters	must	always	come	last	in	the	list	of	parameters.

You	will	now	create	a	method	with	three	optional	parameters.

Inside	the	Person	class,	add	the	following	code:

public	void	OptionalParameters(string	command	=	"Run!",	double	number	=	

0.0,	bool	active	=	true)

{

				WriteLine($"command	is	{command},	number	is	{number},	active	is	

{active}");

}

Inside	the	Main	method,	add	the	following	code.	Notice	IntelliSense	Quick	Info,	that
appears	as	you	call	the	method,	showing	the	three	optional	parameters	in	square	brackets:

p1.OptionalParameters();

Watch	Visual	Studio	as	you	type	the	code	and	you	will	see	a	tooltip	as	in	the	following
screenshot:

When	you	run	the	application,	you	will	see	the	following	output:

command	is	Run!,	number	is	0,	active	is	True

Add	the	following	line	that	passes	a	string	for	the	command	and	a	double	for	the	number
parameters:

p1.OptionalParameters("Jump!",	98.5);

Run	the	application	and	see	the	output:

command	is	Jump!,	number	is	98.5,	active	is	True

The	default	values	for	command	and	number	have	been	replaced,	but	the	default	for	active
is	still	true.

Optional	parameters	are	often	combined	with	naming	parameters	when	you	call	the
method,	because	naming	a	parameter	allows	the	values	to	be	passed	in	a	different	order
than	how	they	were	declared:

p1.OptionalParameters(number:	52.7,	command:	"Hide!");

Run	the	application	and	see	the	output:

command	is	Hide!,	number	is	52.7,	active	is	True

You	can	even	use	named	parameters	to	skip	over	optional	parameters:

p1.OptionalParameters("Poke!",	active:	false);

Run	the	application	and	see	the	output:

command	is	Poke!,	number	is	0,	active	is	False

Splitting	classes	using	partial
When	working	on	large	projects	with	multiple	team	members,	it	is	useful	to	be	able	to
split	the	definition	of	a	complex	class	across	multiple	files.	You	do	this	using	the	partial
keyword.

Imagine	we	want	to	add	a	new	method	to	the	Person	class	without	having	to	ask	another
programmer	to	close	the	Person.cs	file.	If	the	class	is	defined	as	partial,	then	we	can
split	it	over	as	many	separate	files	as	we	like.

In	the	Person	class,	add	the	partial	keyword:

namespace	Packt.CS6

{

				public	partial	class	Person

				{

In	the	Project	menu,	go	to	Add	Class…	or	press	Shift	+	Alt	+	C.	Enter	the	name	Person2.

We	cannot	enter	Person	because	Visual	Studio	isn’t	smart	enough	to	understand	what	we
want	to	do.	Instead,	we	must	now	rename	the	new	class	to	Person,	change	the	namespace,
and	add	the	public	partial	keywords:

namespace	Packt.CS6

{

				public	partial	class	Person

				{

The	rest	of	the	code	we	write	can	now	be	put	in	this	new	Person2.cs	file.

Controlling	access	with	properties	and
indexers
Earlier,	you	created	a	method	named	GetOrigin	that	returned	a	string	containing	the
name	and	origin	of	the	person.	Languages	such	as	Java	do	this	a	lot.	C#	has	a	better	way:
properties.

A	property	is	simply	a	method	(or	pair	of	methods)	that	act	like	a	field	when	you	want	to
get	or	set	a	value,	thereby	simplifying	the	syntax.

Defining	read-only	properties
In	the	Person2.cs	file,	inside	the	Person	class,	add	the	following	code	to	define	three
properties.

The	first	property	will	perform	the	same	role	as	the	GetOrigin	method,	using	the
property	syntax	that	works	with	all	versions	of	C#	(although	it	uses	the	C#	6-only	string
interpolation	syntax).

The	second	property	will	return	a	greeting	message	using	the	new	C#	6	lambda	expression
(=>)	syntax.

The	third	property	will	calculate	the	person’s	age.

Here	is	the	code:

//	property	defined	using	C#	1	-	5	syntax

public	string	Origin

{

				get

				{

								return	$"{Name}	was	born	on	{HomePlanet}";

				}

}

//	two	properties	defined	using	C#	6	lambda	expression	syntax

public	string	Greeting	=>	$"{Name}	says	'Hello!'";	

public	int	Age	=>	(int)(DateTime.Today.Subtract(DateOfBirth).TotalDays	/	

365.25);

In	the	Main	method,	add	the	following	code.	You	can	see	that	to	get	(or	read)	a	property,
you	need	to	treat	it	like	a	field:

var	max	=	new	Person	{	Name	=	"Max",	DateOfBirth	=	new	DateTime(1972,	1,	

27)	};

WriteLine(max.Origin);

WriteLine(max.Greeting);

WriteLine(max.Age);

Run	the	application	and	view	the	output:

Max	was	born	on	Earth

Max	says	'Hello!'

43

Defining	settable	properties
To	create	a	settable	property,	you	must	use	the	older	syntax	and	provide	a	pair	of	methods,
not	just	a	get	part	but	also	a	set	part.

In	the	Person2.cs	file,	add	the	following	code	to	define	a	string	property	that	has	both	a
get	and	set	method	(aka	getter	and	setter).	Although	you	have	not	manually	created	a
field	to	store	the	person’s	favorite	ice	cream,	it	is	there,	automatically	created	by	the
compiler	for	you:

public	string	FavouriteIceCream	{	get;	set;	}	//	auto-syntax

Sometimes,	you	need	more	control	over	what	happens	when	a	property	is	set.	In	this
scenario,	you	must	use	a	more	detailed	syntax	and	manually	create	a	private	field	to	store
the	value	for	the	property:

private	string	favouritePrimaryColour;

public	string	FavouritePrimaryColour

{

				get

				{

								return	favouritePrimaryColour;

				}

				set

				{

								switch	(value.ToLower())

								{

												case	"red":

												case	"green":

												case	"blue":

																favouritePrimaryColour	=	value;

																break;

												default:

																throw	new	ArgumentException($"{value}	is	not	a	primary	

colour.	Choose	from:	red,	green,	blue.");

								}

				}

}

In	the	Main	method	add	the	following	code:

max.FavouriteIceCream	=	"Chocolate	Fudge";

WriteLine($"Max's	favourite	ice-cream	flavour	is	

{max.FavouriteIceCream}.");

max.FavouritePrimaryColour	=	"Red";

WriteLine($"Max's	favourite	primary	colour	is	

{max.FavouritePrimaryColour}.");

Run	the	application	and	view	the	output:

Max's	favourite	ice-cream	flavour	is	Chocolate	Fudge.

Max's	favourite	primary	colour	is	Red.

If	you	try	to	set	the	color	to	any	value	other	than	red,	green,	or	blue,	then	the	code	will
throw	an	exception.	The	calling	code	could	then	use	a	try-catch	statement	to	display	the

error	message.

Tip
Use	properties	instead	of	fields	when	you	want	to	validate	what	value	can	be	stored,	when
you	want	to	data	bind	in	XAML	(we	will	cover	this	in	Chapter	13,	Building	Universal
Windows	Platform	Apps	Using	XAML),	and	when	you	want	to	read	and	write	to	fields
without	using	methods.

Defining	indexers
Indexers	allow	the	calling	code	to	use	the	array	syntax	to	access	a	property.	For	example,
the	string	class	defines	an	indexer	so	that	the	calling	code	can	access	individual	characters
in	the	string	individually.	We	will	define	an	indexer	to	simplify	access	to	the	children	of	a
person.

In	the	Person2.cs	file,	add	the	following	code	to	define	an	indexer	to	get	and	set	a	child
using	the	index	(position)	of	the	child:

//	indexers

public	Person	this[int	index]

{

				get

				{

								return	Children[index];

				}

				set

				{

								Children[index]	=	value;

				}

}

Tip
You	can	overload	indexers	so	that	different	types	can	be	used	to	call	them.	For	example,	as
well	as	passing	an	int,	you	could	also	pass	a	string.

In	the	Main	method,	add	the	following	code.	After	adding	two	children,	we	will	access	the
first	and	second	child	using	the	longer	Children	field	and	the	shorter	indexer	syntax:

max.Children.Add(new	Person	{	Name	=	"Charlie"	});

max.Children.Add(new	Person	{	Name	=	"Ella"	});

WriteLine($"Max's	first	child	is	{max.Children[0].Name}");

WriteLine($"Max's	second	child	is	{max.Children[1].Name}");

WriteLine($"Max's	first	child	is	{max[0].Name}");

WriteLine($"Max's	second	child	is	{max[1].Name}");

Run	the	application	and	view	the	output:

Max's	first	child	is	Charlie

Max's	second	child	is	Ella

Max's	first	child	is	Charlie

Max's	second	child	is	Ella

Tip
Only	use	indexers	if	it	makes	sense	to	use	the	square	bracket/array	syntax.	For	example,	a
Microsoft	type	that	uses	indexers	is	DbDataReader.	It	loads	one	record	at	a	time	from	a
database	table	and	allows	you	to	use	the	indexer	syntax	to	read	column	values	based	on
the	index	or	name	of	the	column.

Simplifying	methods	with	operators
We	might	want	two	instances	of	a	person	to	be	able	to	procreate.	We	could	do	this	with	the
following	method:

//	method	to	"multiply"

public	Person	Procreate(Person	partner)

{

				var	baby	=	new	Person("Baby");

				Children.Add(baby);

				partner.Children.Add(baby);

				return	baby;

}

Now,	we	can	get	two	people	to	make	a	baby:

var	harry	=	new	Person	{	Name	=	"Harry"	};

var	mary	=	new	Person	{	Name	=	"Mary"	};

var	baby1	=	harry.Procreate(mary);

WriteLine($"{mary.Name}	has	{mary.Children.Count}	children.");

WriteLine($"{harry.Name}	has	{harry.Children.Count}	children.");

Run	the	application	and	view	the	output:

Mary	has	1	children.

Harry	has	1	children.

An	alternative	would	be	to	define	an	operator	to	allow	two	people	to	“multiply”.	To	allow
this,	we	need	to	define	a	static	operator	for	the	*	symbol:

//	operator	to	"multiply"

public	static	Person	operator	*(Person	p1,	Person	p2)

{

				return	p1.Procreate(p2);

}

Add	the	following	code	at	the	end	of	the	Main	method,	but	before	writing	the	children
count	to	the	console:

var	baby1	=	harry.Procreate(mary);

var	baby2	=	harry	*	mary;

WriteLine($"{mary.Name}	has	{mary.Children.Count}	children.");

Run	the	application	and	view	the	output:

Mary	has	2	children.

Harry	has	2	children.

Raising	and	handling	events
Methods	are	often	described	as	actions	that	an	object	can	do.	For	example,	a	List	class
can	add	an	item	to	itself	or	clear	itself.

Events	are	often	described	as	actions	that	happen	to	an	object.	For	example,	in	a	user
interface,	a	Button	has	a	Click	event,	click	being	something	that	happens	to	a	button.

Another	way	of	thinking	of	events	is	a	way	of	exchanging	messages	between	two	objects.

Calling	methods	using	delegates
You	have	already	seen	the	most	common	way	to	call	or	execute	a	method:	use	the	“dot”
syntax	to	access	the	method	using	its	name.

The	other	way	to	call	or	execute	a	method	is	to	use	a	delegate.	If	you	have	used	languages
that	support	function	pointers,	then	you	can	think	of	a	delegate	as	being	a	type-safe
method	pointer.	In	other	words,	a	delegate	is	just	the	memory	address	of	a	method	that
matches	the	same	signature	as	the	delegate.

For	example,	imagine	there	is	a	method	that	must	have	a	string	passed	as	its	only
parameter	and	it	returns	an	int:

public	int	MethodIWantToCall(string	input)

{

				return	input.Length;

}

I	could	call	this	method	directly	like	this:

int	answer	=	p1.MethodIWantToCall("Frog");

Alternatively,	I	could	define	a	delegate	with	a	matching	signature	to	call	the	method
indirectly.	Notice	that	the	names	of	parameters	do	not	have	to	match.	Only	the	types	of
parameters	and	return	values	must	match:

delegate	int	DelegateWithMatchingSignature(string	s);

Now,	I	can	create	an	instance	of	the	delegate,	point	it	at	the	method,	and	finally	call	the
delegate	(which	calls	the	method!):

var	d	=	new	DelegateWithMatchingSignature(p1.MethodIWantToCall);

int	answer2	=	d("Frog");

You	are	probably	thinking,	“What’s	the	point	of	that?”	Well,	it	provides	flexibility.

We	could	use	delegates	to	create	a	queue	of	methods	that	need	to	be	called	in	order.
Delegates	have	built-in	support	for	asynchronous	operations	that	run	on	a	different	thread
for	better	performance.	Most	importantly,	delegates	allow	us	to	create	events.

Tip
Delegates	and	events	are	one	of	the	most	advanced	features	of	C#	and	can	take	a	few
attempts	to	understand,	so	don’t	worry	if	you’re	feeling	lost!

Defining	events
Microsoft	has	predefined	two	delegates	for	use	as	events.	They	look	like	this:

public	delegate	void	EventHandler(object	sender,	EventArgs	e);

public	delegate	void	EventHandler<TEventArgs>(object	sender,	TEventArgs	e);

Tip
When	you	want	to	define	an	event	in	your	own	type,	you	should	use	one	of	these	two
predefined	delegates.

Add	the	following	code	to	Person2.cs.	The	code	defines	an	event	named	Shout.	It	also
defines	a	field	to	store	AngerLevel	and	a	method	named	Poke.

Each	time	a	person	is	poked,	their	anger	level	increments.	Once	their	anger	level	reaches
three,	they	raise	the	Shout	event,	but	only	if	the	event	delegate	is	pointing	at	a	method
(that	is,	NOT	null):

//	events

public	event	EventHandler	Shout;

public	int	AngerLevel;

public	void	Poke()

{

				AngerLevel++;

				if	(AngerLevel	>=	3)

				{

								if	(Shout	!=	null)

								{

												Shout(this,	EventArgs.Empty);

								}

				}

}

In	the	Main	method,	start	typing	the	following	code	to	assign	an	event	handler:

p1.Shout	+=

Notice	the	IntelliSense	that	appears	when	you	type	the	+=	operator,	as	shown	in	the
following	screenshot:

Press	Tab	and	then	Enter	to	accept	the	name	of	the	method.	Visual	Studio	inserts	a	method
that	correctly	matches	the	signature	of	the	event	delegate.	This	method	will	be
automatically	called	when	the	event	is	raised.

Tip

In	older	versions	of	Visual	Studio,	you	had	to	press	the	Tab	key	twice.

Scroll	down	to	find	the	method	Visual	Studio	created	for	you	and	delete	the	statement	that
throws	a	NotImplementedException.	Replace	it	with	the	following	code:

private	static	void	P1_Shout(object	sender,	EventArgs	e)

{

				Person	p	=	(Person)sender;

				WriteLine($"{p.Name}	is	this	angry:	{p.AngerLevel}.");

}

Back	in	the	Main	method,	add	the	following	code	after	handling	the	Shout	event:

p1.Shout	+=	P1_Shout;

p1.Poke();

p1.Poke();

p1.Poke();

p1.Poke();

Run	the	application.	Notice	that	Bob	only	gets	angry	enough	to	shout	once	he’s	been
poked	three	times:

Bob	Smith	is	this	angry:	3.

Bob	Smith	is	this	angry:	4.

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	this	chapter’s	topics	with	deeper	research.

Exercise	6.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 What	are	the	four	access	modifiers	and	what	do	they	do?
2.	 What	is	the	difference	between	the	static,	const,	and	readonly	keywords?
3.	 How	many	parameters	can	a	method	have?
4.	 What	does	a	constructor	do?
5.	 Why	do	you	need	to	apply	the	[Flags]	attribute	to	an	enum	keyword	when	you	want

to	store	combined	values?
6.	 What	is	a	delegate?
7.	 What	is	an	event?
8.	 Why	is	the	partial	keyword	useful?

Exercise	6.2	–	practice	writing	mathematical
methods
Create	a	console	application	named	Ch06_Exercise02	and	add	three	static	methods	to	the
Program	class	to	perform	the	following	tasks:

Numbers	used	to	count	are	called	“cardinal”	numbers,	for	example,	1,	2,	3.	Numbers
used	to	order	are	“ordinal”	numbers,	for	example,	1st,	2nd,	3rd.	Write	a	method
named	CardinalToOrdinal	that	converts	a	cardinal	int	into	an	ordinal	string,	for
example,	converts	1	into	1st,	2	into	2nd,	and	so	on.
The	factorial	of	5	is	120,	because	factorials	are	calculated	by	multiplying	the	number
by	one	less	than	itself	and	so	on	like	this:	5	x	4	x	3	x	2	x	1	=	120.	The	factorial	of	3	is
6	because	it	is	3	x	2	x	1	=	6.	Write	a	method	named	Factorial	that	calculates	the
factorial	for	an	int	variable	passed	to	it	as	a	parameter.	You	could	either	use	a	loop	or
a	technique	called	recursion,	which	means	a	method	that	calls	itself.
Prime	factors	are	the	combination	of	smallest	prime	numbers	that	when	multiplied
together	will	produce	the	original	number.	For	example,	the	prime	factors	of	30	are	2
x	3	x	5.	The	prime	factors	of	4	are	2	x	2.	Write	a	method	named	PrimeFactors	that,
when	passed	an	int	variable	as	a	parameter,	returns	a	string	showing	the	prime
factors	as	stated	earlier.

In	the	Main	method,	prompt	the	user	to	press	A,	B,	or	C	to	choose	between	the	three
mathematical	functions.	Then,	prompt	the	user	to	enter	a	number	as	input	and	then	show
the	output.

Exercise	6.3	–	explore	topics
Use	the	following	links	to	read	more	about	this	chapter’s	topics:

.NET	Framework	class	library:	https://msdn.microsoft.com/en-
us/library/gg145045(v=vs.110).aspx
Framework	design	guidelines:	https://msdn.microsoft.com/en-
us/library/vstudio/ms229042(v=vs.110).aspx
Fields	(C#	programming	guide):	https://msdn.microsoft.com/en-
us/library/ms173118.aspx
Access	modifiers	(C#	programming	guide):	https://msdn.microsoft.com/en-
us/library/ms173121.aspx
Constructors	(C#	programming	guide):	https://msdn.microsoft.com/en-
us/library/ace5hbzh.aspx
Methods	(C#	programming	guide):	https://msdn.microsoft.com/en-
us/library/ms173114.aspx
Named	and	optional	arguments	(C#	programming	guide):
https://msdn.microsoft.com/en-us/library/dd264739.aspx
Method	parameters	(C#	reference):	https://msdn.microsoft.com/en-
us/library/8f1hz171(v=vs.140).aspx
Properties	(C#	programming	guide):	https://msdn.microsoft.com/en-
us/library/x9fsa0sw.aspx
Indexers	(C#	programming	guide):	https://msdn.microsoft.com/en-
us/library/6x16t2tx.aspx
Operator	(C#	reference):	https://msdn.microsoft.com/en-us/library/s53ehcz3.aspx
Delegates	(C#	programming	guide):	https://msdn.microsoft.com/en-
us/library/ms173171.aspx
Events	(C#	programming	guide):	https://msdn.microsoft.com/en-
us/library/awbftdfh.aspx

https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/vstudio/ms229042(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms173118.aspx
https://msdn.microsoft.com/en-us/library/ms173121.aspx
https://msdn.microsoft.com/en-us/library/ace5hbzh.aspx
https://msdn.microsoft.com/en-us/library/ms173114.aspx
https://msdn.microsoft.com/en-us/library/dd264739.aspx
https://msdn.microsoft.com/en-us/library/8f1hz171(v=vs.140).aspx
https://msdn.microsoft.com/en-us/library/x9fsa0sw.aspx
https://msdn.microsoft.com/en-us/library/6x16t2tx.aspx
https://msdn.microsoft.com/en-us/library/s53ehcz3.aspx
https://msdn.microsoft.com/en-us/library/ms173171.aspx
https://msdn.microsoft.com/en-us/library/awbftdfh.aspx

Summary
In	this	chapter,	you	learned	about	making	your	own	types	using	OOP.	You	learned	about
all	the	different	categories	of	members	that	a	type	can	have,	including	fields	to	store	data
and	methods	to	perform	actions.	You	used	OOP	concepts	such	as	aggregation	and
encapsulation.

In	the	next	chapter,	you	will	take	these	concepts	further	by	implementing	interfaces	and
inheriting	from	existing	classes.

Chapter	7.	Implementing	Interfaces	and
Inheriting	Classes
This	chapter	is	about	deriving	new	types	from	existing	ones	using	object-oriented
programming	(OOP).	You	will	learn	how	to	implement	interfaces,	about	base	and	derived
classes,	how	to	override	a	type	member,	how	to	use	polymorphism,	how	to	create
extension	methods,	and	how	to	cast	between	classes	in	an	inheritance	hierarchy.

This	chapter	covers	the	following	topics:

Implementing	interfaces
Managing	memory	with	reference	and	value	types
Inheriting	from	classes
Casting	within	inheritance	hierarchies
Documenting	your	types
Inheriting	and	extending	.NET	types

Implementing	interfaces
Interfaces	are	a	way	of	connecting	different	types	together	to	make	new	things.	Think	of
them	like	the	studs	on	top	of	LEGO	bricks	that	allow	them	to	“stick”	together,	or	electrical
standards	for	plugs	and	sockets.

If	a	type	implements	a	particular	interface,	then	it	is	making	a	promise	to	the	rest	of	.NET
that	it	supports	a	certain	feature.

Common	interfaces
Here	are	some	common	interfaces	that	your	types	might	want	to	implement:

Interface Method(s) Description

IComparable CompareTo(other)
This	defines	a	comparison	method	that	a	type	implements	to	order	or
sort	its	instances

IComparer Compare(first,	second)
This	defines	a	comparison	method	that	a	secondary	type	implements
to	order	or	sort	instances	of	a	primary	type

IDisposable Dispose()
This	defines	a	disposal	method	to	release	unmanaged	resources	more
efficiently	than	waiting	for	a	finalizer

IFormattable ToString(format,	culture)
This	defines	a	culture-aware	method	to	format	the	value	of	an	object
into	a	string	representation

IFormatter
Serialize(stream,	object),
Deserialize(stream)

This	defines	methods	to	convert	an	object	to	and	from	a	stream	of
bytes	for	storage	or	transfer

Comparing	objects	when	sorting
One	of	the	most	common	interfaces	that	you	will	want	to	implement	is	IComparable.	It
allows	arrays	and	collections	that	contain	instances	of	your	type	to	be	sorted.

In	Visual	Studio,	open	the	Chapter06	solution	and	the	Program.cs	file	in	the
Ch06_PeopleApp	project.	Add	the	following	code	to	the	Main	method.	It	creates	an	array
of	Person	instances,	attempts	to	sort	it,	and	then	outputs	the	array:

Person[]	people	=	

{

				new	Person	{	Name	=	"Simon"	},

				new	Person	{	Name	=	"Jenny"	},

				new	Person	{	Name	=	"Adam"	},

				new	Person	{	Name	=	"Richard"	}

};

Array.Sort(people);

foreach	(var	person	in	people)

{

				WriteLine($"{person.Name}");

}

Run	the	application	by	pressing	Ctrl	+	F5.	You	will	see	this	runtime	error:

Unhandled	Exception:	System.InvalidOperationException:	Failed	to	compare	

two	elements	in	the	array.	--->	System.ArgumentException:	At	least	one	

object	must	implement	IComparable.

As	the	error	explains,	to	fix	the	problem	our	type	must	implement	IComparable.

In	the	Ch06_PacktLibrary	project	in	the	Person2.cs	file,	add	the	following	code	to	the
end	of	the	class	definition:

public	partial	class	Person	:	IComparable<Person>

Visual	Studio	will	draw	a	red	squiggle	under	the	new	code	you	have	added	to	warn	you
that	you	have	not	yet	implemented	the	method	you	have	promised	to.

Visual	Studio	can	write	the	skeleton	implementation	for	you	if	you	click	on	the	light	bulb
and	choose	the	first	option,	that	is,	Implement	interface.

Scroll	down	to	find	the	method	that	Visual	Studio	wrote	for	you	and	delete	the	statement
that	throws	the	NotImplementedException	error.	Modify	the	method	to	look	like	this:

public	int	CompareTo(Person	other)

{

				return	Name.CompareTo(other.Name);

}

I	have	chosen	to	compare	two	Person	instances	by	comparing	their	name	fields.	People
will	therefore	be	sorted	alphabetically	by	their	name.

Run	the	application.	This	time	it	works:

Adam

Jenny

Richard

Simon

Defining	a	separate	comparer
Sometimes	you	won’t	have	access	to	the	source	code	for	a	type	and	it	might	not
implement	the	IComparable	interface.	Luckily,	there	is	another	way	to	sort	instances	of	a
type.	You	can	create	a	secondary	type	that	implements	a	slightly	different	interface	named
IComparer.

In	the	Ch06_PacktLibrary	project,	add	a	new	class	named	PersonComparer	that
implements	the	IComparer	interface,	as	shown	in	the	following	block	of	code.	It	will
compare	two	people	by	comparing	the	length	of	their	Name	field,	or	if	the	names	are	the
same	length,	then	by	comparing	the	names	alphabetically:

using	System.Collections.Generic;

namespace	Packt.CS6

{

				public	class	PersonComparer	:	IComparer<Person>

				{

								public	int	Compare(Person	x,	Person	y)

								{

												int	temp	=	x.Name.Length.CompareTo(y.Name.Length);

												if	(temp	==	0)

												{

															return	x.Name.CompareTo(y.Name);

												}

												else

												{

																return	temp;

												}

								}

				}

}

In	the	Main	method,	add	the	following	code:

Array.Sort(people,	new	PersonComparer());

foreach	(var	person	in	people)

{

				WriteLine($"{person.Name}");

}

Run	the	application.	This	time,	when	we	sort	the	people	array,	we	explicitly	ask	the
sorting	algorithm	to	use	the	PersonComparer	type	instead,	so	the	people	are	sorted	with
the	shortest	names	first:

Adam

Jenny

Simon

Richard

Tip
Best	Practice

If	anyone	might	want	to	sort	an	array	or	collection	of	instances	of	your	type,	then

implement	the	IComparable	interface.

Managing	memory	with	reference	and
value	types
There	are	two	categories	of	memory:	stack	memory	and	heap	memory.	Stack	memory	is
fast	but	limited	and	heap	memory	is	slower	but	plentiful.

There	are	two	C#	keywords	that	you	use	to	create	object	types:	class	and	struct.	Both
can	have	the	same	members.	The	difference	between	the	two	is	how	memory	is	allocated
and	the	lifetime	of	their	variables.

Note
Technically,	how	memory	is	allocated	is	an	implementation	detail	and	not	part	of	the	C#	or
.NET	specifications.	Alternative	implementations	could	choose	to	store	instances	of	a
struct	type	on	the	heap!	You	can	read	more	about	how	value	types	are	stored	here:
https://blogs.msdn.microsoft.com/ericlippert/2010/09/30/the-truth-about-value-types/.

When	you	define	a	type	using	class,	you	are	defining	a	reference	type.	This	means	that
the	memory	for	the	object	itself	is	allocated	on	the	heap	along	with	some	overhead
consisting	of	a	pointer	to	the	object’s	method	table	and	an	object	that	is	used	to
synchronize	access	from	multiple	threads,	and	only	the	memory	address	of	the	object	(and
a	little	overhead)	is	stored	on	the	stack.

When	you	define	a	type	using	struct,	you	are	defining	a	value	type.	This	means	that	the
memory	for	the	object	itself	is	allocated	on	the	stack.

Tip
If	your	type	defined	by	using	the	struct	keyword	uses	reference	types	for	any	of	its
fields,	then	those	fields	will	be	stored	on	the	heap!

These	are	most	of	the	struct	types,	that	is,	value	types	in	.NET:

These	are	number	value	types:	byte,	sbyte,	short,	ushort,	int,	uint,	long,	ulong,
float,	double,	decimal
These	are	character	and	Boolean	value	types:	char,	bool
These	are	System.Drawing	value	types:	Color,	Point,	Rectangle

Almost	all	the	other	types	in	.NET	are	classes,	that	is,	reference	types,	including	string.

Tip
You	cannot	inherit	from	a	struct.

https://blogs.msdn.microsoft.com/ericlippert/2010/09/30/the-truth-about-value-types/

Defining	a	type	using	the	struct	keyword
In	Solution	Explorer,	ensure	that	the	Ch06_PacktLibrary	project	has	the	focus.	Next,
from	the	Project	menu,	choose	Add	Class…	or	press	Shift	+	Alt	+	C.

In	the	dialog	box	enter	DisplacementVector	for	the	name.

Tip
There	isn’t	a	template	for	struct,	so	you	have	to	use	class	and	then	change	it	manually.

Modify	the	code	to	look	like	this:

namespace	Packt.CS6

{

				public	struct	DisplacementVector

				{

								public	int	X;

								public	int	Y;

								public	DisplacementVector(int	initialX,	int	initialY)

								{

												X	=	initialX;

												Y	=	initialY;

								}

								public	static	DisplacementVector	operator	+(DisplacementVector	

vector1,	DisplacementVector	vector2)

								{

												return	new	DisplacementVector(vector1.X	+	vector2.X,	vector1.Y	

+	vector2.Y);

								}

				}

}

In	the	Ch06_PeopleApp	project,	in	the	Main	method,	add	the	following	code:

var	dv1	=	new	DisplacementVector(3,	5);

var	dv2	=	new	DisplacementVector(-2,	7);

var	dv3	=	dv1	+	dv2;

WriteLine($"({dv1.X},	{dv1.Y})	+	({dv2.X},	{dv2.Y})	=	({dv3.X},	{dv3.Y})");

Run	the	application	and	view	the	output:

(3,	5)	+	(-2,	7)	=	(1,	12)

Tip
Best	Practice

If	your	type	uses	16	bytes	or	less	of	stack	memory,	only	uses	struct	keywords	for	its	field
types,	and	you	will	never	want	to	inherit	from	it,	then	Microsoft	recommends	that	you	use
a	struct	keyword.	If	your	type	uses	more	than	16	bytes	of	stack	memory,	uses	classes
for	its	field	types,	and	if	you	would	want	to	inherit	from	your	type,	then	use	a	class.	By
the	way,	if	you	are	wondering	what	I	mean	by	“inherit”,	then	read	on…

Releasing	unmanaged	resources
In	the	previous	chapter,	we	saw	that	constructors	can	be	used	to	initialize	fields.	A	type
may	have	multiple	constructors.

Imagine	that	a	constructor	allocates	an	unmanaged	resource	(that	is,	anything	that	is	not
controlled	by	.NET).	The	unmanaged	resource	must	be	manually	released	because	.NET
cannot	do	it	for	us.

Each	type	can	have	a	single	finalizer	(also	known	as	destructor)	that	will	be	called	by	the
CLR	when	the	resources	need	to	be	released.	A	finalizer	has	the	same	name	as	a
constructor	(that	is,	the	type	name)	but	it	is	prefixed	with	a	tilde	(~)	as	shown	in	the
following	code	example:

public	class	Animal

{

				public	Animal()

				{

								//	allocate	an	unmanaged	resource

				}

				~Animal()	//	Finalizer	aka	destructor

				{

								//	deallocate	the	unmanaged	resource

				}

}

This	is	the	minimum	you	should	do	in	this	scenario.	The	problem	with	just	providing	a
finalizer	is	that	the	.NET	garbage	collector	requires	two	garbage	collections	to	completely
release	the	allocated	resources	for	this	type.

Though	optional,	it	is	recommended	to	also	provide	a	method	to	allow	a	developer	who
uses	your	type	to	explicitly	release	resources	so	that	the	garbage	collector	can	then	release
the	object	in	a	single	collection.	There	is	a	standard	mechanism	to	do	this	in	.NET	by
implementing	the	IDisposable	interface,	as	shown	in	the	following	code	example:

public	class	Animal	:	IDisposable

{

				public	Animal()

				{

								//	allocate	unmanaged	resource

				}

				~Animal()	//	Finalizer	aka	destructor

				{

								if	(disposed)	return;

								Dispose(false);

				}

				bool	disposed	=	false;	//	have	resources	been	released?

				public	void	Dispose()

				{

								Dispose(true);

								GC.SuppressFinalize(this);

				}

				protected	virtual	void	Dispose(bool	disposing)

				{

								if	(disposed)	return;

								//	deallocate	the	*unmanaged*	resource

								//	...

								if	(disposing)

								{

												//	deallocate	any	other	*managed*	resources

												//	...

								}

								disposed	=	true;

				}

}

Note	that	there	are	two	Dispose	methods.	The	public	method	will	be	called	by	a	developer
using	your	type.	The	Dispose	method	with	a	bool	parameter	is	used	internally	to
implement	the	deallocation	of	resources,	both	unmanaged	and	managed.	When	the	public
Dispose	method	is	called,	both	unmanaged	and	managed	resources	need	to	be	deallocated,
but	when	the	finalizer	runs,	only	unmanaged	resources	need	to	be	deallocated.

Also,	note	the	call	to	GC.SuppressFinalize(this)—this	is	what	notifies	the	garbage
collector	that	it	no	longer	needs	to	run	the	finalizer	and	removes	the	need	for	a	second
collection.

Ensuring	that	dispose	is	called
When	someone	uses	a	type	that	implements	IDisposable,	they	can	ensure	that	the	public
Dispose	method	is	called	with	the	using	statement,	as	shown	in	the	following	code:

using(Animal	a	=	new	Animal())

{

				//	code	that	uses	the	Animal	instance

}

The	compiler	converts	your	code	into	something	like	the	following,	which	guarantees	that
even	if	an	exception	occurs,	the	Dispose	method	will	still	be	called:

Animal	a	=	new	Animal();

try

{

				//	code	that	uses	the	Animal	instance

}

finally

{

				if	(a	!=	null)	a.Dispose();

}

Inheriting	from	classes
Inheritance	is	a	mechanism	for	code	reuse	where	a	derived	(or	sub)	class	is	based	on	a
base	(or	super)	class	thereby	having	access	to	all	of	the	base	class’	members.	The	Person
type	we	created	earlier	implicitly	derived	(inherited)	from	System.Object.	Now,	we	will
create	a	new	class	that	explicitly	inherits	from	Person.

In	Solution	Explorer,	ensure	that	the	Ch06_PacktLibrary	project	has	the	focus.	Next,
from	the	Project	menu,	choose	Add	Class…	or	press	Shift	+	Alt	+	C.	Name	the	class
Employee.

Modify	its	code	as	follows:

using	System;

namespace	Packt.CS6

{

				public	class	Employee	:	Person

				{

				}

}

Add	a	new	console	application	named	Ch07_InheritanceApp.

Add	a	reference	to	the	Ch06_PacktLibrary	assembly.

Modify	the	Program.cs	file	to	import	the	Packt.CS6	namespace	and	add	statements	to	the
Main	method	to	create	an	instance	of	the	Employee	class:

using	Packt.CS6;

using	System;

using	static	System.Console;

namespace	Ch07_InheritanceApp

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Employee	e1	=	new	Employee	{	Name	=	"John	Jones",	DateOfBirth	=	

new	DateTime(1990,	7,	28)	};

												e1.WriteToConsole();

								}

				}

}

Run	the	application	and	view	the	output:

John	Jones	was	born	on	Saturday,	28	July	1990

Note	that	the	Employee	class	has	inherited	all	the	members	of	Person.

Extending	classes
Now,	we	will	add	some	employee-specific	members	to	extend	the	class.

In	the	Employee	class,	add	the	following	code	to	define	two	properties:

public	string	EmployeeCode	{	get;	set;	}

public	DateTime	HireDate	{	get;	set;	}

Back	in	the	Main	method,	add	the	following	code:

e1.EmployeeCode	=	"JJ001";

e1.HireDate	=	new	DateTime(2014,	11,	23);

WriteLine($"{e1.Name}	was	hired	on	{e1.HireDate:dd/MM/yy}");

Run	the	application	and	view	the	output:

John	Jones	was	hired	on	23/11/14

Hiding	members
So	far,	the	WriteToConsole	method	is	inherited	from	Person,	and	it	only	outputs	the
employee’s	name	and	date	of	birth.	We	might	want	to	change	what	this	method	does	for	an
employee.

In	the	Employee	class,	add	the	following	code	to	redefine	the	WriteToConsole	method:

using	System;

using	static	System.Console;

namespace	Packt.CS6

{

				public	class	Employee	:	Person

				{

								public	string	EmployeeCode	{	get;	set;	}

								public	DateTime	HireDate	{	get;	set;	}

								public	void	WriteToConsole()

								{

												WriteLine($"{Name}'s	birth	date	is	{DateOfBirth:dd/MM/yy}	and	

hire	date	was	{HireDate:dd/MM/yy}");

								}

				}

}

Run	the	application	and	view	the	output:

John	Jones's	birth	date	is	28/07/90	and	hire	date	was	01/01/01

John	Jones	was	hired	on	23/11/14

Note	that	Visual	Studio	warns	you	that	your	method	now	hides	the	method	with	the	same
name	that	you	inherited	from	the	Person	class.

You	can	remove	this	warning	by	applying	the	new	keyword	to	the	method:

Overriding	members
Rather	than	hiding	a	method,	it	is	usually	better	to	override	it.	You	can	only	override
members	if	the	base	class	chooses	to	allow	overriding	by	applying	the	virtual	keyword.

In	the	Main	method,	add	the	following	statement:

WriteLine(e1.ToString());

Run	the	application.	The	ToString	method	is	inherited	from	System.Object.	The
implementation	outputs	the	namespace	and	type	name,	as	follows:

Packt.CS6.Employee

Let’s	override	this	behavior	for	the	Person	class.

Open	the	Person.cs	file	and	at	the	bottom	of	the	Person.cs	file	(but	inside	the	class
brackets),	type	the	word	override	and	enter	a	space	after	the	word.	You	will	see	that
Visual	Studio	shows	a	list	of	methods	that	have	been	marked	as	virtual	so	that	they	can	be
overridden.

Use	the	arrow	keys	on	your	keyboard	to	choose	ToString	and	then	press	Enter.

Modify	the	code	to	look	like	this:

//	overridden	methods

public	override	string	ToString()

{

				return	$"{Name}	is	a	{base.ToString()}";

}

Run	the	application.	Now,	when	the	ToString	method	is	called,	it	outputs	the	person’s
name	as	well	as	the	base	class’s	implementation	of	ToString:

John	Jones	is	a	Packt.CS6.Employee

Preventing	inheritance	and	overriding
You	can	prevent	someone	from	inheriting	from	your	class	by	applying	the	sealed
keyword	to	its	definition.	No	one	can	inherit	from	Mr.	Money	Bags:

public	sealed	class	MrMoneyBags

{

}

You	can	prevent	someone	from	further	overriding	a	method	in	your	class	by	applying	the
sealed	keyword	to	the	method.	No	one	can	change	the	way	Lady	Gaga	sings:

public	class	Singer

{

				public	virtual	void	Sing()

				{

				}

}

public	class	LadyGaga	:	Singer

{

					public	override	sealed	void	Sing()

					{

					}

}

Note
You	can	only	seal	a	method	that	you	have	overridden	so	the	sealed	keyword	is	always
used	in	combination	with	the	override	keyword.

Polymorphism
You	have	now	seen	two	ways	to	change	the	behavior	of	an	inherited	method.	We	can	hide
an	inherited	method	using	new	(known	as	non-polymorphic	inheritance)	or	we	can
override	it	if	it	is	virtual	(polymorphic	inheritance).

Both	ways	can	call	the	base	class	using	the	base	keyword,	so	what	is	the	difference?

It	all	depends	on	the	type	of	the	variable	holding	a	reference	to	the	object.	For	example,	a
variable	of	the	Person	type	can	hold	a	reference	to	a	Person	class	or	any	type	that	derives
from	Person.

In	the	Employee	class,	add	the	following	code:

public	override	string	ToString()

{

				return	$"{Name}'s	code	is	{EmployeeCode}";

}

In	the	Main	method,	write	the	following	code:

Employee	aliceInEmployee	=	new	Employee	{	Name	=	"Alice",	EmployeeCode	=	

"AA123"	};

Person	aliceInPerson	=	aliceInEmployee;

aliceInEmployee.WriteToConsole();

aliceInPerson.WriteToConsole();

WriteLine(aliceInEmployee.ToString());

WriteLine(aliceInPerson.ToString());

Run	the	application	and	view	the	output:

Alice's	birth	date	is	01/01/01	and	hire	date	was	01/01/01

Alice	was	born	on	Monday,	1	January	0001

Alice's	code	is	AA123

Alice's	code	is	AA123

Note	that	when	a	method	is	hidden	with	new,	the	compiler	is	not	smart	enough	to	know
that	the	object	is	an	employee,	so	it	calls	the	WriteToConsole	method	in	Person.

When	a	method	is	overridden	with	virtual	and	override,	the	compiler	is	smart	enough
to	know	that	although	the	variable	is	declared	as	a	Person	class,	the	object	itself	is	an
Employee	and	therefore	the	Employee	implementation	of	ToString	is	called.

Variable	type Method	defined	with Method	executed

Person 	 WriteToConsole	in	Person

Employee new WriteToConsole	in	Employee

Person virtual ToString	in	Employee

Employee override ToString	in	Employee

Tip

Polymorphism	is	literally	academic	to	most	programmers.	If	you	grok	the	concept,	that’s
great,	but	if	not,	you	shouldn’t	worry	about	polymorphism.
http://www.urbandictionary.com/define.php?term=grok

http://www.urbandictionary.com/define.php?term=grok

Casting	within	inheritance	hierarchies
Casting	is	subtly	different	from	converting	between	different	types.

Implicit	casting
In	the	previous	example,	you	saw	how	an	instance	of	a	derived	type	can	be	stored	in	a
variable	of	its	base	type	(or	its	base’s	base	type	and	so	on).	When	we	do	this,	it	is	called
implicit	casting.

Explicit	casting
Going	the	other	way,	for	example,	attempting	to	store	an	instance	of	a	base	type	in	a
variable	of	a	derived	type,	is	an	explicit	cast	and	you	must	use	parentheses	to	do	it.

In	the	Main	method,	add	the	following	code:

Employee	e2	=	aliceInPerson;

Visual	Studio	gives	a	compile	error,	as	shown	in	the	following	screenshot:

Change	the	code	as	follows:

Employee	e2	=	(Employee)aliceInPerson;

Handling	casting	exceptions
The	compiler	is	now	happy	but	because	aliceInPerson	might	be	a	different	derived	type,
such	as	a	Student	instead	of	an	Employee,	we	need	to	be	careful.	This	statement	might
throw	an	InvalidCastException.

We	can	handle	this	by	writing	a	try-catch	statement,	but	there	is	a	better	way.	We	can
check	the	current	type	of	the	object	using	the	is	keyword.

Wrap	the	explicit	cast	statement	in	an	if	statement,	as	follows:

if	(aliceInPerson	is	Employee)

{

				WriteLine($"{nameof(aliceInPerson)}	IS	an	Employee");

				Employee	e2	=	(Employee)aliceInPerson;

				//	do	something	with	e2

}

Run	the	application	and	view	the	output:

aliceInPerson	IS	an	Employee

Alternatively,	you	can	use	the	as	keyword	to	cast.	Instead	of	throwing	an	exception,	the	as
keyword	returns	null	if	the	type	cannot	be	cast.

Employee	e3	=	aliceInPerson	as	Employee;

if	(e3	!=	null)

{

				WriteLine($"{nameof(aliceInPerson)}	AS	an	Employee");

				//	do	something	with	e3

}

Since	accessing	a	null	variable	can	throw	a	NullReferenceException	error,	you	should
always	check	for	null	before	using	the	result.

Run	the	application	and	view	the	output:

aliceInPerson	AS	an	Employee

Tip
Best	Practice

Use	the	is	and	as	keywords	to	avoid	throwing	exceptions	when	casting	between	derived
types.

Documenting	your	types
One	of	the	files	that	you	can	add	to	a	Visual	Studio	project	is	Class	Diagram.

From	the	Project	menu,	choose	Add	New	Item	or	press	Ctrl	+	Shift	+	A.	In	the	Search
box,	enter	diagram	and	change	the	filename	to	PacktLibrary.cd,	as	shown	in	the
following	screenshot:

In	the	View	menu,	choose	Class	View.	In	the	Class	View	window,	expand
Ch06_PacktLibrary,	expand	Packt.CS6,	and	then	drag	and	drop	the	Person	file	into	the
middle	of	the	class	diagram,	as	shown	in	the	following	screenshot:

In	the	following	diagram,	you	will	see	the	Person	class	and	the	interface	that	it
implements:

In	the	preceding	diagram,	right-click	on	the	background,	choose	Change	Members
Format,	and	then	Display	Full	Signature.

Click	on	the	downward	pointing	chevron	in	the	top-right	corner	of	the	class	to	expand	its
details	and	stretch	the	box	to	make	it	wide	enough	for	you	to	see	all	the	details.

Drag	and	drop	the	Employee	class	onto	the	diagram	to	show	the	inheritance	hierarchy.

Right-click	on	the	Employee	class	and	choose	Class	Details.	This	window	can	be	used	to
modify	or	add	new	members	to	a	class.

Inheriting	and	extending	.NET	types
.NET	has	prebuilt	class	libraries	containing	hundreds	of	thousands	of	types.	Rather	than
creating	your	own	completely	new	types,	you	can	often	start	by	inheriting	from	one	of
Microsoft’s.

Inheriting	from	the	Exception	class
In	the	Ch06_PacktLibrary	project,	add	a	new	class	named	BankAccountException,	as
shown	in	the	following	code:

using	System;

namespace	Packt.CS6

{

				public	class	BankAccountException	:	Exception

				{

								public	BankAccountException()	:	base()	{	}

								public	BankAccountException(string	message)	:	base(message)	{	}

								public	BankAccountException(string	message,	Exception	

innerException)	:	base(message,	innerException)	{	}

				}

}

In	the	BankAccount	class	that	you	created	in	the	previous	chapter,	add	the	following
method:

public	void	Withdraw(decimal	amount)

{

				if	((Balance	-	amount)	<	0M)

				{

								throw	new	BankAccountException("Balance	cannot	be	less	than	

zero!");

				}

				else

				{

								Balance	-=	amount;

				}

}

In	Ch07_InheritanceApp,	in	the	Main	method,	add	the	following	statements	to	test	what
happens	when	we	try	to	withdraw	too	much	from	a	bank	account:

try

{

				var	ba	=	new	BankAccount();

				ba.Balance	=	100;

				WriteLine($"Balance	is	{ba.Balance}");

				ba.Withdraw(150);

				WriteLine($"Balance	is	{ba.Balance}");

}

catch	(BankAccountException	ex)

{

				WriteLine($"{ex.GetType().Name}:	{ex.Message}");

}

Run	the	application	and	view	the	output:

Balance	is	100

BankAccountException:	Balance	cannot	be	less	than	zero!

Tip

Best	Practice

When	defining	your	own	exceptions,	give	them	the	three	conventional	constructors.

Extending	types	when	you	can’t	inherit
Earlier,	we	saw	how	the	sealed	modifier	can	be	used	to	prevent	inheritance.

Microsoft	has	applied	the	sealed	keyword	to	the	System.String	class	so	that	no	one	can
inherit	and	potentially	break	the	behavior	of	strings.

Can	we	still	add	new	methods	to	strings?	Yes,	we	can	if	we	use	a	language	feature	named
extension	methods	that	was	introduced	with	C#	3.

Using	static	methods	to	reuse	functionality
Since	the	first	version	of	C#,	we	have	been	able	to	create	static	methods	to	reuse
functionality,	such	as	the	ability	to	validate	that	a	string	contains	an	e-mail	address.

In	the	Ch06_PacktLibrary	project,	add	a	new	class	named	MyExtensions,	as	shown	in
the	following	code:

using	System.Text.RegularExpressions;

namespace	Packt.CS6

{

				public	class	MyExtensions

				{

								public	static	bool	IsValidEmail(string	input)

								{

												//	use	simple	regular	expression	to	check	

												//	that	the	input	string	is	a	valid	email	

												return	Regex.IsMatch(input,	

																@"[a-zA-Z0-9\.-_]+@[a-zA-Z0-9\.-_]+");

								}

				}

}

Add	a	new	Console	Application	named	Ch07_ExtensionMethods.

Add	a	reference	to	the	Ch06_PacktLibrary	assembly.

Modify	the	Program.cs	file	to	import	the	Packt.CS6	namespace	and	add	statements	to	the
Main	method	to	validate	two	examples	of	e-mail	addresses:

using	static	System.Console;

using	Packt.CS6;

namespace	Ch07_ExtensionMethods

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												string	email1	=	"pamela@test.com";

												string	email2	=	"ian&test.com";

												WriteLine($"{email1}	is	a	valid	e-mail	address:	

{MyExtensions.IsValidEmail(email1)}.");

												WriteLine($"{email2}	is	a	valid	e-mail	address:	

{MyExtensions.IsValidEmail(email2)}.");

								}

				}

}

Run	the	application	and	view	the	output:

pamela@test.com	is	a	valid	e-mail	address:	True.

ian&test.com	is	a	valid	e-mail	address:	False.

This	works,	but	extension	methods	can	reduce	the	amount	of	code	we	have	to	type	and
simplify	the	usage	of	this	function.

Using	extension	methods	to	reuse	functionality
In	the	MyExtensions	class,	add	the	static	modifier	before	the	class,	and	add	the	this
modifier	before	the	string	type,	like	this:

public	static	class	MyExtensions

{

				public	static	bool	IsValidEmail(this	string	input)

				{

These	two	changes	inform	the	compiler	that	it	should	treat	the	method	as	a	method	that
extends	the	System.String	type.

Back	in	the	Program	class,	add	some	new	statements	to	use	the	method	as	an	extension
method	for	strings:

WriteLine($"{email1}	is	a	valid	e-mail	address:	{email1.IsValidEmail()}.");

WriteLine($"{email2}	is	a	valid	e-mail	address:	{email2.IsValidEmail()}.");

Note	the	subtle	change	in	the	syntax.	The	IsValidEmail	method	now	appears	to	be	an
instance	member	of	the	string	type.

Tip
Extension	methods	cannot	replace	or	override	existing	instance	methods,	so	you	cannot,
for	example,	redefine	the	Insert	method	of	the	string	class.	The	extension	method	will
appear	as	an	overload	but	the	instance	method	will	be	called	in	preference	to	the	extension
method	with	the	same	name	and	signature.

Although	extension	methods	don’t	seem	to	give	a	big	benefit	compared	to	simply	using
static	methods,	in	Chapter	9,	Querying	and	Manipulating	Data	with	LINQ,	you	will	see
some	extremely	useful	examples	of	extension	methods.

Practice	and	explore
Test	your	knowledge	and	understanding	by	answering	some	questions.	Get	some	hands-on
practice	and	explore	with	deeper	research	into	this	chapter’s	topics.

Exercise	7.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 How	are	a	base	class	and	a	derived	class	related?
2.	 What	is	the	difference	between	is	and	as?
3.	 Which	keyword	is	used	to	prevent	a	class	from	being	derived	from	or	a	method	from

being	overridden?
4.	 Which	keyword	is	used	to	prevent	a	class	from	being	instantiated	with	the	new

keyword?
5.	 Which	keyword	is	used	to	allow	a	member	to	be	overridden?
6.	 What’s	the	deal	with	polymorphism?
7.	 What	are	the	signatures	of	the	constructors	that	all	exceptions	should	have?
8.	 What	is	an	extension	method	and	how	do	you	define	one?

Exercise	7.2	–	practice	creating	an	inheritance
hierarchy
Add	a	new	console	application	named	Ch07_Exercise02.

Create	a	class	named	Shape	with	properties	named	Height,	Width,	and	Area.

Add	three	classes	that	derive	from	it—Rectangle,	Square,	and	Circle—with	any
additional	members	you	feel	are	appropriate	and	that	override	and	implement	the	Area
property	correctly.

Exercise	7.3	–	explore	topics
Use	the	following	links	to	read	more	about	the	topics	covered	in	this	chapter:

Interfaces	(C#	Programming	Guide):	https://msdn.microsoft.com/en-
us/library/ms173156.aspx
IComparable<T>	Interface:	https://msdn.microsoft.com/en-
us/library/4d7sx9hd(v=vs.110).aspx
Classes	(C#	Programming	Guide):	https://msdn.microsoft.com/en-
us/library/x9afc042.aspx
Reference	Types	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/490f96s2(v=vs.140).aspx
Structs	(C#	Programming	Guide):	https://msdn.microsoft.com/en-
us/library/saxz13w4.aspx
Value	Types	(C#	Reference):	https://msdn.microsoft.com/en-
us/library/s1ax56ch(v=vs.140).aspx
Inheritance	(C#	Programming	Guide):	https://msdn.microsoft.com/en-
us/library/ms173149.aspx
Polymorphism	(C#	Programming	Guide):	https://msdn.microsoft.com/en-
us/library/ms173152.aspx
Cleaning	Up	Unmanaged	Resources:	http://msdn.microsoft.com/en-
us/library/498928w2.aspx
Destructors	(C#	Programming	Guide):	http://msdn.microsoft.com/en-
us/library/66x5fx1b.aspx
IDisposable	Interface:	http://msdn.microsoft.com/en-
us/library/system.idisposable.aspx

https://msdn.microsoft.com/en-us/library/ms173156.aspx
https://msdn.microsoft.com/en-us/library/4d7sx9hd(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/x9afc042.aspx
https://msdn.microsoft.com/en-us/library/490f96s2(v=vs.140).aspx
https://msdn.microsoft.com/en-us/library/saxz13w4.aspx
https://msdn.microsoft.com/en-us/library/s1ax56ch(v=vs.140).aspx
https://msdn.microsoft.com/%E2%80%A8en-us/library/ms173149.aspx
https://msdn.microsoft.com/en-us/library/ms173152.aspx
http://msdn.microsoft.com/%E2%80%A8en-us/library/498928w2.aspx
http://msdn.microsoft.com/%E2%80%A8en-us/library/66x5fx1b.aspx
http://msdn.microsoft.com/en-us/library/system.idisposable.aspx

Summary
In	this	chapter,	you	learned	about	deriving	types	using	inheritance	and	object-oriented
programming	(OOP).	You	learned	about	base	and	derived	classes,	how	to	override	a	type
member,	how	to	use	polymorphism,	and	how	to	cast	between	types.

In	the	next	chapter,	you	will	learn	about	working	with	relational	data	using	the	Entity
Framework.

Chapter	8.	Working	with	Relational	Data
Using	the	Entity	Framework
This	chapter	is	about	reading	and	writing	to	Microsoft	SQL	Server	(and	other	databases)
using	classic	ADO.NET	and	the	object-relational	mapping	technology	known	as	the	Entity
Framework.

This	chapter	will	cover	the	following	topics:

Relational	Database	Management	Systems
Using	ADO.NET
Using	Entity	Framework	6
Using	Entity	Framework	Core

Relational	Database	Management	Systems
One	of	the	most	common	places	to	store	data	is	in	a	Relational	Database	Management
System	(RDBMS).	Common	ones	include	Microsoft	SQL	Server,	Oracle,	and	MySQL.

Connecting	to	Microsoft	SQL	Server	LocalDb
Microsoft	offers	various	editions	of	its	SQL	Server	product.	We	will	use	a	free	version	that
can	run	standalone	and	is	known	as	LocalDb.	The	latest	version	of	LocalDb	is	installed	as
part	of	Visual	Studio	2015.

When	you	write	code	to	connect	to	a	database,	you	need	to	know	its	server	name.	The
name	depends	on	the	version	you	choose	to	use.	Here	are	some	examples:

Visual	Studio	2015	installs	SQL	Server	2014:	(localdb)\mssqllocaldb
Visual	Studio	2012/2013	installs	SQL	Server	2012:	(localdb)\v11.0
If	you	install	SQL	Server	Express:	.\sqlexpress

The	Northwind	sample	database
To	learn	how	to	manage	a	database,	it	would	be	useful	to	have	a	sample	one	to	practice	on
that	has	a	medium	complexity	and	a	decent	amount	of	sample	records.	Microsoft	offers
several	sample	databases,	most	of	which	are	too	complex	for	our	needs.	So,	we	will	use	a
database	that	was	first	created	in	the	early	1990s	known	as	Northwind.

Use	the	link	https://github.com/markjprice/cs6dotnetcore	to	download	the	Northwind.sql
file.

In	Microsoft	Visual	Studio	2015,	go	to	File	|	Open	|	File…	or	press	Ctrl	+	O.

Browse	to	the	Northwind.sql	file	and	choose	Open.

In	the	editor	window,	right-click	and	choose	Execute…	or	press	Ctrl	+	Shift	+	E.

In	the	dialog	box,	enter	the	server	name	as	(localdb)\mssqllocaldb	and	click	on
Connect,	as	shown	in	the	following	screenshot:

Note
LocalDb	sometimes	takes	too	long	to	start	the	first	time,	and	you	might	see	a	timeout
error.	Simply	click	on	Connect	again,	and	it	should	work.

https://github.com/markjprice/cs6dotnetcore

When	you	see	the	Command(s)	completed	successfully	message,	then	the	Northwind
database	has	been	created,	and	we	can	connect	to	it.

In	Microsoft	Visual	Studio	2015,	choose	View	|	Server	Explorer…	or	press	Ctrl	+	W,	L.

In	the	Server	Explorer	window,	right-click	on	Data	Connections	and	choose	Add
Connection.

In	the	dialog	box,	enter	the	server	name	as	(localdb)\mssqllocaldb,	enter	the	database
name	as	Northwind,	and	click	on	OK:

In	Server	Explorer	window,	expand	the	data	connection	and	its	tables.	You	should	see	a
dozen	tables,	including	the	Products	table:

Right-click	on	the	Products	table	and	choose	Show	Table	Data:

To	see	the	details	of	the	Products	table	columns	and	types,	right-click	on	Products	and
choose	Show	Table	Definition:

Here	is	a	diagram	of	Northwind	that	you	can	refer	to	as	we	write	queries:

Choosing	a	.NET	data	provider
Before	we	dive	into	the	practicalities	of	managing	data	in	a	RDBMS,	let’s	briefly	talk
about	choosing	between	.NET	data	providers.

To	manage	data,	we	need	classes	that	know	how	to	efficiently	“talk”	to	the	database.	.NET
data	providers	are	sets	of	classes	that	are	optimized	for	a	specific	RDBMS.

.NET	data	providers	are	native	if	they	are	optimized	for	one	type	of	RDBMS.	Some	.NET
data	providers	act	as	a	bridge	to	older	data	technologies	such	as	OLEDB.	The	following
table	summarizes	your	choices:

To	manage	this	RDBMS .NET	data	provider	namespace

Microsoft	SQL	Server	7.0	or	later System.Data.SqlClient

Oracle	8.1.7	or	later System.Data.OracleClient

Other	databases	with	native	providers Download	a	provider	from	the
manufacturer’s	website

Microsoft	SQL	Server	6.5	and	earlier,	Microsoft	Access	MDB	files,	or	any	other
RDBMS	that	does	not	have	a	native	provider

System.Data.OleDb

Only	an	RDBMS	that	does	not	have	an	OLE	DB	provider	or	a	native	provider System.Data.Odbc

Using	ADO.NET
When	Microsoft	first	created	.NET,	it	had	one	data	access	technology,	and	it	was	named
ADO.NET.	Since	then,	Microsoft	has	added	additional	technologies	but	reused	the	name
ADO.NET,	so	it	can	get	confusing.	The	following	are	your	two	main	choices	today:

ADO.NET:	This	is	the	original	.NET	data	access	technology	that	has	classes	that
inherit	from	abstract	base	classes	such	as	DbConnection	and	DbDataReader.	I	often
refer	to	this	as	classic	ADO.NET.
ADO.NET	Entity	Framework:	This	is	a	layer	on	top	of	ADO.NET	that	adds	object-
relational	mapping	(ORM)	capabilities.	I	often	refer	to	this	as	Entity	Framework	or
just	EF.

Tip
Both	are	supported	on	.NET	Core.	Use	classic	ADO.NET	for	performance,	to	maintain
existing	code	that	already	uses	it,	and	when	your	tables	must	always	be	accessed	through
stored	procedures	instead	of	directly.	Use	Entity	Framework	when	developer	productivity
is	more	important	than	performance	and	when	you	are	allowed	to	execute	dynamically
generated	SQL	statements	against	your	tables.

Connecting	to	the	database
To	connect	to	an	RDBMS,	we	need	to	know	some	information	about	it:

The	name	of	the	server	computer	that	is	running	the	RDBMS
The	name	of	the	database
Security	information	such	as	username	and	password	or	if	we	should	pass	the
currently	logged-on	user’s	credentials	automatically

We	specify	this	information	in	a	connection	string.	For	backward	compatibility,	there	are
multiple	possible	keywords	we	can	use.	Here	are	some	examples:

Data	Source	or	server	or	addr:	This	is	the	name	of	the	server	(and	optional
instance)
Initial	Catalog	or	database:	This	is	the	name	of	the	database
Integrated	Security	or	trusted_connection:	This	keyword	is	set	to	true	or	SSPI	to
pass	the	thread’s	current	user	credentials

Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	go	to	File	|
New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	center
list,	select	Console	Application,	type	name	as	Ch08_ADONET,	change	the	location	to
C:\Code,	type	solution	name	as	Chapter08,	and	then	click	on	OK.

To	connect	to	the	database,	we	need	a	class	that	inherits	from	DbConnection.	The	one	for
SQL	Server	is	named	SqlConnection.	To	use	it,	we	must	import	the
System.Data.SqlClient	namespace.

Add	the	following	code	to	the	top	of	the	Program.cs	file:

using	static	System.Console;

using	System.Data.SqlClient;

Add	the	following	code	inside	the	Main	method.	Note	the	@	symbol	at	the	beginning	of	the
connection	string.	This	disables	escape	characters	because	we	need	to	use	a	back	slash	(\)
in	the	server	and	instance	name:

var	connection	=	new	SqlConnection(@"Data	Source=

(localdb)\mssqllocaldb;Initial	Catalog=Northwind;Integrated	

Security=true;");

connection.Open();

WriteLine($"The	connection	is	{connection.State}.");

connection.Close();

WriteLine($"The	connection	is	{connection.State}.");

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

The	connection	is	Open.

The	connection	is	Closed.

If	you	see	an	exception	similar	to	the	following,	then	check	the	connection	string	for
typos.	If	you	enter	an	invalid	database	name,	you	will	see	this	exception:

Unhandled	Exception:	System.Data.SqlClient.SqlException:	Cannot	open	

database	"Northwnd"	requested	by	the	login.	The	login	failed.

Login	failed	for	user	'WIN81VM\Mark'.

If	you	enter	an	invalid	server	or	instance	name,	you	will	see	this	exception:

Unhandled	Exception:	System.Data.SqlClient.SqlException:	A	network-related	

or	instance-specific	error	occurred	while	establishing	a	connection	to	SQL	

Server.	The	server	was	not	found	or	was	not	accessible.	Verify	that	the	

instance	name	is	correct	and	that	SQL	Server	is	configured	to	allow	remote	

connections.	(provider:	SQL	Network	Interfaces,	error:	50	-	Local	Database	

Runtime	error	occurred.	The	specified	LocalDB	instance	does	not	exist.)

Note
If	you	make	a	mistake	in	the	server	or	instance	name,	then	the	connection	will	wait	for	30
seconds	before	returning	the	exception!

Executing	commands	and	reading	result	sets
Now	that	we	have	a	successful	connection	to	the	database	we	can	issue	SQL	statements
such	as	SELECT	to	query	records	and	INSERT	to	add	new	records.

Tip
This	book	does	not	teach	the	SQL	language.	To	learn	about	Microsoft	SQL	Server	and	the
SQL	language,	refer	to	SQL	Server	2014	Development	Essentials	at
https://www.packtpub.com/networking-and-servers/sql-server-2014-development-
essentials.

We	will	work	with	the	Categories	table	because	it	is	small	and	simple.	First,	we	will
execute	a	statement	to	get	all	the	categories.	Then,	we	will	add	a	new	category,	list	the
categories	again	to	see	the	new	category,	and	finally	delete	the	category	we	inserted.

Inside	the	Program	class,	add	a	method	shown	as	follows:

//	a	method	we	will	call	three	times	to	list	the	categories

private	static	void	ListCategories(SqlConnection	connection)

{

				var	getCategories	=	new	SqlCommand("SELECT	CategoryID,	CategoryName	

FROM	Categories",	connection);

												

				SqlDataReader	reader	=	getCategories.ExecuteReader();

				//	find	out	the	index	positions	of	the	columns	that	you	want	to	read

				int	indexOfID	=	reader.GetOrdinal("CategoryID");

				int	indexOfName	=	reader.GetOrdinal("CategoryName");

				while	(reader.Read())

				{

								//	use	the	typed	GetXxx	methods	to	efficiently	read	the	column	

values

								WriteLine($"{reader.GetInt32(indexOfID)}:	

{reader.GetString(indexOfName)}");

				}

				reader.Close();

}

Modify	the	code	in	the	Main	method	to	add	statements	between	the	Open	and	Close
method	calls	as	shown	in	the	following	code.	The	code:

Lists	the	eight	categories	in	the	original	table
Prompts	the	user	to	enter	a	new	category	name
Truncates	the	name	entered	down	to	a	maximum	of	15	characters
Inserts	the	new	category	using	a	parameter	to	avoid	SQL	injection	attacks
Lists	the	nine	categories	now	in	the	table
Deletes	the	new	category
Lists	the	eight	categories	in	the	original	table

WriteLine("Original	list	of	categories:");

ListCategories(connection);

https://www.packtpub.com/networking-and-servers/sql-server-2014-development-essentials

Write("Enter	a	new	category	name:	");

string	name	=	ReadLine();

//	the	category	name	column	only	allows	up	to	15	chars	so	truncate	if	

necessary

if	(name.Length	>	15)	name	=	name.Substring(0,	15);

var	insertCategory	=	new	SqlCommand($"INSERT	INTO	Categories(CategoryName)	

VALUES(@NewCategoryName)",	connection);

insertCategory.Parameters.AddWithValue("@NewCategoryName",	name);

int	rowsAffected	=	insertCategory.ExecuteNonQuery();

WriteLine($"{rowsAffected}	row(s)	were	inserted.");

WriteLine("List	of	categories	after	inserting:");

ListCategories(connection);

var	deleteCategory	=	new	SqlCommand($"DELETE	FROM	Categories	WHERE	

CategoryName	=	@DeleteCategoryName",	connection);

deleteCategory.Parameters.AddWithValue("@DeleteCategoryName",	name);

rowsAffected	=	deleteCategory.ExecuteNonQuery();

WriteLine($"{rowsAffected}	row(s)	were	deleted.");

WriteLine("List	of	categories	after	deleting:");

ListCategories(connection);

Press	Ctrl	+	F5.	When	prompted,	enter	a	new	category	name,	for	example,	Tasty	Treats:

The	connection	is	Open.

Original	list	of	categories:

1:	Beverages

2:	Condiments

3:	Confections

4:	Dairy	Products

5:	Grains/Cereals

6:	Meat/Poultry

7:	Produce

8:	Seafood

Enter	a	new	category	name:	Tasty	Treats

1	row(s)	were	inserted.

List	of	categories	after	inserting:

1:	Beverages

2:	Condiments

3:	Confections

4:	Dairy	Products

5:	Grains/Cereals

6:	Meat/Poultry

7:	Produce

8:	Seafood

9:	Tasty	Treats

1	row(s)	were	deleted.

List	of	categories	after	deleting:

1:	Beverages

2:	Condiments

3:	Confections

4:	Dairy	Products

5:	Grains/Cereals

6:	Meat/Poultry

7:	Produce

8:	Seafood

The	connection	is	Closed.

Loading	a	connection	string	from	configuration
Instead	of	hard	coding	the	connection	string	in	your	source	code,	it	is	better	to	load	it	from
a	file	so	that	it	can	be	easily	changed	in	the	future	without	recompiling.

In	Solution	Explorer	window,	inside	the	Ch08_ADONET	project,	right-click	on
References	and	choose	Add	Reference….	In	the	dialog	box,	select
System.Configuration	and	click	on	OK.

At	the	top	of	the	file,	import	the	System.Configuration	namespace,	as	shown	here:

using	System.Configuration;

Modify	the	existing	code	that	instantiates	SqlConnection	to	load	the	connection	string	at
runtime	from	the	configuration	file:

var	connection	=	new	

SqlConnection(ConfigurationManager.ConnectionStrings["Northwind"].Connectio

nString);

Double-click	on	the	App.config	file	to	open	it,	and	add	the	following	element	for
connectionStrings	inside	the	existing	configuration	element:

<?xml	version="1.0"	encoding="utf-8"	?>

<configuration>

		<connectionStrings>

				<add	name="Northwind"

									providerName="System.Data.SqlClient"

									connectionString="Data	Source=(localdb)\mssqllocaldb;Initial	

Catalog=Northwind;Integrated	Security=true;"	/>

		</connectionStrings>

Press	Ctrl	+	F5	and	check	whether	the	application	still	functions	as	it	did	earlier.

Note
Every	time	you	run	this	console	application,	you	will	notice	that	the	ID	for	the	new
category	increments	by	one.	This	is	because	Microsoft	SQL	Server	uses	an	IDENTITY
column,	which	remembers	if	a	previous	category	has	already	been	allocated	the	previous
ID	and	won’t	reuse	it	to	maintain	data	integrity.

Tip
In	Chapter	12,	Improving	Performance	and	Scalability	with	Multitasking,	you	will	see
how	you	can	improve	the	preceding	code	using	asynchronous	operations	to	prevent	the
current	thread	from	blocking.

Using	Entity	Framework	6
The	Entity	Framework	(EF)	was	first	released	as	part	of	.NET	Framework	3.5	with
Service	Pack	1	back	in	late	2008.	Since	then	it	has	evolved,	as	Microsoft	has	observed
how	programmers	use	an	object-relational	mapping	(ORM)	tool	in	the	real	world.

The	version	included	with	Visual	Studio	2015	is	Entity	Framework	6.1.3	(EF6).	It	is
mature,	stable,	and	supports	the	“old”	EDMX	design-time	way	of	defining	complex
inheritance	models,	and	a	few	other	advanced	features.	However,	EF6	is	only	supported
by	the	.NET	Framework,	not	by	the	.NET	Core.

The	next	version,	Entity	Framework	Core	1.0	(EF	Core),	has	been	renamed	and	had	its
version	reset	to	1.0	to	emphasize	that	it	is	a	reset	of	functionality.	Although	EF	Core	has	a
similar	name,	you	should	be	aware	that	it	is	different	in	many	ways	to	EF6.	Take	a	look	at
its	pros	and	cons:

Pros

EF	Core	is	available	for	the	.NET	Core	as	well	as	the	.NET	Framework,	which
means	it	can	be	used	cross-platform,	on	Linux	and	Max	OS	X	as	well	as
Windows
EF	Core	supports	modern	cloud-based,	non-relational,	schema-less	data	stores
such	as	Microsoft	Azure	Table	Storage	and	Redis

Cons

EF	Core	does	not	support	the	EDMX	design-time	XML	file	format
EF	Core	does	not	(yet)	support	complex	inheritance	models	and	other	advanced
features	of	EF6

Tip
Use	EF6	for	Windows	platform	applications	until	EF	Core	becomes	more	stable	and
implements	more	features.	Use	EF	Core	for	cross-platform	development.

Building	an	Entity	Framework	6	model
Using	EF6	is	easy	because	tooling	support	is	built	into	Visual	Studio	2015.

We	will	create	a	console	application	that	lists	the	details	of	every	product	that	costs	more
than	an	amount	entered	by	the	user.

Add	a	new	console	application	project	named	Ch08_EF6.

Set	the	solution’s	startup	project	to	be	the	current	selection.

On	the	Project	menu,	choose	Add	New	Item…,	and	in	the	dialog	box,	choose	ADO.NET
Entity	Data	Model	and	name	it	Northwind:

In	the	first	step	of	the	wizard,	choose	Code	First	from	database	and	then	click	on	Next:

Tip
Do	not	choose	either	of	the	first	two	options	because	those	use	the	EDMX	design-time	file

that	is	not	supported	in	EF	Core.	Even	when	using	EF6,	I	recommend	that	you	get	used	to
the	Code	First	way	of	defining	the	Entity	data	model.

In	the	second	step	of	the	wizard,	click	on	New	Connection:

In	the	Connection	Properties	dialog,	enter	server	name	as	(localdb)\mssqllocaldb	and
choose	database	name	as	Northwind.	Then,	click	on	OK:

Tip
If	you	have	connection	problems,	then	check	which	version	of	SQL	Server	LocalDb	you
have	installed,	and	use	the	appropriate	server	and	instance	name.

Click	on	Next	to	go	to	the	step	of	the	wizard	for	picking	database	objects,	check	the	box	to
choose	all	Tables,	and	then	click	on	Finish:

In	Solution	Explorer,	double-click	on	the	App.config	file	and	notice	that	a	connection
string	named	Northwind	has	been	defined:

<connectionStrings>

		<add	name="Northwind"	connectionString="data	source=

(localdb)\mssqllocaldb;initial	catalog=Northwind;integrated	

security=True;MultipleActiveResultSets=True;App=EntityFramework"	

providerName="System.Data.SqlClient"	/>

</connectionStrings>

In	Solution	Explorer,	double-click	on	the	Northwind.cs	file	and	notice	that	it	is	a	class
that	inherits	from	DbContext.	This	class	represents	the	context	of	all	interaction	with	the
database	and	will	track	any	changes	we	make	to	the	local	data	so	that	those	changes	can	be
saved	to	the	actual	database:

public	partial	class	Northwind	:	DbContext

Notice	that	the	Northwind	class	has	properties	that	represent	the	tables	within	the
database.	The	DbSet	type	has	built-in	methods	to	add,	delete,	and	find	records:

public	virtual	DbSet<Category>	Categories	{	get;	set;	}

Notice	the	overridden	method	named	OnModelCreating	that	adds	extra	information	to	the
model	that	cannot	be	inferred	using	conventions.	For	example,	the	following	statement
tells	the	model	that	the	CustomerID	column	is	of	fixed	length:

modelBuilder.Entity<Customer>()

				.Property(e	=>	e.CustomerID)

				.IsFixedLength();

In	Solution	Explorer,	double-click	on	the	Customer.cs	file	and	notice	that	it	is	a	normal
class.	We	call	this	a	POCO	(Plain	Old	CLR	Object)	class,	because	it	does	not	need	to
inherit	from	any	special	type.	It	represents	an	entity	(record	or	row)	in	a	table	in	the
database:

public	partial	class	Customer

Each	class	has	properties	that	represent	the	columns	in	the	Customer	table:

[StringLength(5)]

public	string	CustomerID	{	get;	set;	}

Entity	Framework	Code	First	models
The	Entity	Framework	uses	a	combination	of	conventions,	annotation	attributes,	and
Fluent	API	statements	to	build	a	model	at	runtime	so	that	any	actions	performed	using	the
classes	can	be	automatically	translated	into	actions	performed	on	the	actual	database.

EF	Code	First	conventions
The	code	generated	uses	the	following	conventions:

If	a	connection	string	exists	with	the	same	name	as	the	class	derived	from	DbContext,
then	it	is	loaded	and	used	to	connect	to	the	database	automatically.
The	name	of	a	table	is	assumed	to	match	the	name	of	a	DbSet<T>	property	in	the
DbContext	class,	for	example,	Customers.
The	names	of	the	columns	are	assumed	to	match	the	names	of	properties	in	the	class,
for	example,	CustomerID.
The	string	.NET	type	is	assumed	to	be	an	nvarchar	type	in	the	database.
The	int	.NET	type	is	assumed	to	be	an	int	type	in	the	database.
A	property	that	is	named	ID	or	the	name	of	the	class	has	ID	as	the	suffix,	it	is
assumed	to	be	a	primary	key.	If	this	property	is	any	integer	type	or	the	Guid	type,
then	it	is	also	assumed	to	be	an	IDENTITY	(automatically	assigned	value	when
inserting).

There	are	other	conventions,	and	you	can	even	define	your	own,	but	that	is	beyond	the
scope	of	this	book.

EF	annotation	attributes
Conventions	often	aren’t	enough	to	completely	map	the	classes	to	the	database	objects.	A
simple	way	of	adding	more	metadata	to	your	model	is	to	apply	annotation	attributes.

For	example,	in	the	database,	the	maximum	length	of	the	company	name	of	a	customer	is
40,	and	the	value	cannot	be	null	(empty).	In	the	class,	the	wizard	applies	attributes	to
specify	this:

[Required]

[StringLength(40)]

public	string	CompanyName	{	get;	set;	}

When	there	isn’t	an	obvious	map	between	.NET	types	and	database	types,	an	attribute	can
be	used.	For	example,	in	the	database,	the	column	type	of	UnitPrice	for	the	Products
table	is	money.	.NET	does	not	have	a	money	type,	so	it	should	use	decimal	instead:

[Column(TypeName	=	"money")]

public	decimal?	UnitPrice	{	get;	set;	}

In	the	Category	table,	Description	can	be	longer	than	the	8,000	characters	that	can	be
stored	in	an	nvarchar	variable,	so	it	needs	to	map	to	ntext	instead:

[Column(TypeName	=	"ntext")]

public	string	Description	{	get;	set;	}

There	are	other	attributes,	but	they	are	beyond	the	scope	of	this	book.

EF	Fluent	API
The	last	way	that	the	model	can	be	defined	is	using	the	Fluent	API.	It	can	be	used	instead
of	attributes	or	in	addition	to	them.	For	example,	look	at	the	following	two	attributes	in	the
Customer	class:

[Required]

[StringLength(40)]

public	string	CompanyName	{	get;	set;	}

They	could	be	deleted	and	replaced	with	this	Fluent	API	statement	in	the	Northwind	class’
OnModelBuilding	method:

modelBuilder.Entity<Customer>()

				.Property(customer	=>	customer.CompanyName)

				.IsRequired()

				.HasMaxLength(40);

Querying	an	Entity	Data	Model
In	the	Main	method,	add	the	following	statements	to:

Prompt	the	user	for	a	price
Create	an	instance	of	the	Northwind	class	that	will	manage	the	database
Write	a	simple	query	using	LINQ
Loop	through	the	results

WriteLine("List	of	products	that	cost	more	than	a	given	price	with	most	

expensive	first.");

string	input;

decimal	price;

do

{

				Write("Enter	a	product	price:	");

				input	=	ReadLine();

}	while	(!decimal.TryParse(input,	out	price));

var	db	=	new	Northwind();

IQueryable<Product>	query	=	db.Products

				.Where(product	=>	product.UnitPrice	>	price)

				.OrderByDescending(product	=>	product.UnitPrice);

foreach	(Product	item	in	query)	

{

				WriteLine($"{item.ProductID}:	{item.ProductName}	costs	

{item.UnitPrice:$#,##0.00}");

}

Tip
You	will	learn	much	more	about	LINQ	in	Chapter	9,	Querying	and	Manipulating	Data
with	LINQ.

Press	Ctrl	+	F5.	Enter	50	when	prompted	to	enter	a	product	price:

List	of	products	that	cost	more	than	a	given	price	with	most	expensive	

first.

Enter	a	product	price:	50

38:	Côte	de	Blaye	costs	$263.50

29:	Thüringer	Rostbratwurst	costs	$123.79

9:	Mishi	Kobe	Niku	costs	$97.00

20:	Sir	Rodney's	Marmalade	costs	$81.00

18:	Carnarvon	Tigers	costs	$62.50

59:	Raclette	Courdavault	costs	$55.00

51:	Manjimup	Dried	Apples	costs	$53.00

Logging	SQL	statements
There	are	two	ways	to	find	out	how	the	LINQ	query	is	being	translated	into	the	underlying
database’s	query	language.	The	first	is	to	convert	the	query	into	a	string.

Add	the	following	code	before	the	for	statement	that	loops	through	the	results:

WriteLine(query.ToString());

Rerun	the	application	with	Ctrl	+	F5	and	enter	50	again.	You	will	see	the	Transact-SQL
statement	that	was	dynamically	generated	at	runtime	and	then	executed	in	the	database	to
fetch	the	data	we	asked	for:

List	of	products	that	cost	more	than	a	given	price	with	most	expensive	

first.

Enter	a	product	price:	50

SELECT

				[Project1].[ProductID]	AS	[ProductID],

				[Project1].[ProductName]	AS	[ProductName],

				[Project1].[SupplierID]	AS	[SupplierID],

				[Project1].[CategoryID]	AS	[CategoryID],

				[Project1].[QuantityPerUnit]	AS	[QuantityPerUnit],

				[Project1].[UnitPrice]	AS	[UnitPrice],

				[Project1].[UnitsInStock]	AS	[UnitsInStock],

				[Project1].[UnitsOnOrder]	AS	[UnitsOnOrder],

				[Project1].[ReorderLevel]	AS	[ReorderLevel],

				[Project1].[Discontinued]	AS	[Discontinued]

				FROM	(SELECT

								[Extent1].[ProductID]	AS	[ProductID],

								[Extent1].[ProductName]	AS	[ProductName],

								[Extent1].[SupplierID]	AS	[SupplierID],

								[Extent1].[CategoryID]	AS	[CategoryID],

								[Extent1].[QuantityPerUnit]	AS	[QuantityPerUnit],

								[Extent1].[UnitPrice]	AS	[UnitPrice],

								[Extent1].[UnitsInStock]	AS	[UnitsInStock],

								[Extent1].[UnitsOnOrder]	AS	[UnitsOnOrder],

								[Extent1].[ReorderLevel]	AS	[ReorderLevel],

								[Extent1].[Discontinued]	AS	[Discontinued]

								FROM	[dbo].[Products]	AS	[Extent1]

								WHERE	[Extent1].[UnitPrice]	>	@p__linq__0

)		AS	[Project1]

				ORDER	BY	[Project1].[UnitPrice]	DESC

38:	Côte	de	Blaye	costs	$263.50

29:	Thüringer	Rostbratwurst	costs	$123.79

9:	Mishi	Kobe	Niku	costs	$97.00

20:	Sir	Rodney's	Marmalade	costs	$81.00

18:	Carnarvon	Tigers	costs	$62.50

59:	Raclette	Courdavault	costs	$55.00

51:	Manjimup	Dried	Apples	costs	$53.00

A	better	way	is	to	use	the	database	logging	feature.

Comment	out	the	previous	statement	to	output	the	query	as	a	string.	Then,	add	the
following	code	after	creating	the	db	variable:

var	db	=	new	Northwind();

db.Database.Log	=	new	Action<string>(message	=>	{	WriteLine(message);	});

Rerun	the	application	and	enter	50	again.

In	the	following	output,	you	will	see	all	the	activity	happening	between	our	application
and	the	database,	including	every	time	a	connection	is	opened	and	closed,	and	useful
timings	for	performance	testing.

Note
Ignore	the	statements	that	use	INFORMATION_SCHEMA.TABLES	and	[dbo].
[__MigrationHistory].	These	are	internal	checks	made	by	EF.

List	of	products	that	cost	more	than	a	given	price	with	most	expensive	

first.

Enter	a	product	price:	50

Opened	connection	at	30/08/2015	13:59:40	+01:00

SELECT

				[Project1].[ProductID]	AS	[ProductID],

				[Project1].[ProductName]	AS	[ProductName],

				[Project1].[SupplierID]	AS	[SupplierID],

				[Project1].[CategoryID]	AS	[CategoryID],

				[Project1].[QuantityPerUnit]	AS	[QuantityPerUnit],

				[Project1].[UnitPrice]	AS	[UnitPrice],

				[Project1].[UnitsInStock]	AS	[UnitsInStock],

				[Project1].[UnitsOnOrder]	AS	[UnitsOnOrder],

				[Project1].[ReorderLevel]	AS	[ReorderLevel],

				[Project1].[Discontinued]	AS	[Discontinued]

				FROM	(SELECT

								[Extent1].[ProductID]	AS	[ProductID],

								[Extent1].[ProductName]	AS	[ProductName],

								[Extent1].[SupplierID]	AS	[SupplierID],

								[Extent1].[CategoryID]	AS	[CategoryID],

								[Extent1].[QuantityPerUnit]	AS	[QuantityPerUnit],

								[Extent1].[UnitPrice]	AS	[UnitPrice],

								[Extent1].[UnitsInStock]	AS	[UnitsInStock],

								[Extent1].[UnitsOnOrder]	AS	[UnitsOnOrder],

								[Extent1].[ReorderLevel]	AS	[ReorderLevel],

								[Extent1].[Discontinued]	AS	[Discontinued]

								FROM	[dbo].[Products]	AS	[Extent1]

								WHERE	[Extent1].[UnitPrice]	>	@p__linq__0

)		AS	[Project1]

				ORDER	BY	[Project1].[UnitPrice]	DESC

--	p__linq__0:	'50'	(Type	=	Decimal,	IsNullable	=	false,	Precision	=	2)

--	Executing	at	30/08/2015	13:59:40	+01:00

--	Completed	in	7	ms	with	result:	SqlDataReader

38:	Côte	de	Blaye	costs	$263.50

29:	Thüringer	Rostbratwurst	costs	$123.79

9:	Mishi	Kobe	Niku	costs	$97.00

20:	Sir	Rodney's	Marmalade	costs	$81.00

18:	Carnarvon	Tigers	costs	$62.50

59:	Raclette	Courdavault	costs	$55.00

51:	Manjimup	Dried	Apples	costs	$53.00

Closed	connection	at	30/08/2015	13:59:40	+01:00

Tip
Notice	that	internally,	EF6	uses	classic	ADO.NET	types	such	as	SqlConnection	and
SqlDataReader.	For	this	reason,	EF	will	always	be	slower	than	using	classic	ADO.NET.	If
performance	is	your	goal,	then	use	classic	ADO.NET	in	preference	to	EF.

Manipulating	data	with	Entity	Data	Models
It	is	easy	to	insert,	update,	and	delete	entities	using	EF.

Inserting	entities
After	the	foreach	statement,	add	the	following	code	to	insert	a	product	and	relist	all
products:

var	newProduct	=	new	Product

{

				ProductName	=	"Bob's	Burger",

				UnitPrice	=	500M

};

//	mark	product	as	added	in	change	tracking

db.Products.Add(newProduct);

//	save	tracked	changes	to	database

db.SaveChanges();

foreach	(var	item	in	query)

{

				WriteLine($"{item.ProductID}:	{item.ProductName}	costs	

{item.UnitPrice:$#,##0.00}");

}

Rerun	the	application	and	enter	50.	You	will	see	that	the	product	has	been	inserted:

78:	Bob's	Burger	costs	$500.00

The	following	statement	is	logged,	showing	how	the	row	was	inserted	within	a
transaction:

Opened	connection	at	30/08/2015	14:04:22	+01:00

Started	transaction	at	30/08/2015	14:04:22	+01:00

INSERT	[dbo].[Products]([ProductName],	[SupplierID],	[CategoryID],	

[QuantityPerUnit],	[UnitPrice],	[UnitsInStock],	[UnitsOnOrder],	

[ReorderLevel],	[Discontinued])

VALUES	(@0,	NULL,	NULL,	NULL,	@1,	NULL,	NULL,	NULL,	@2)

SELECT	[ProductID]

FROM	[dbo].[Products]

WHERE	@@ROWCOUNT	>	0	AND	[ProductID]	=	scope_identity()

--	@0:	'Bob's	Burger'	(Type	=	String,	Size	=	40)

--	@1:	'500'	(Type	=	Decimal,	Precision	=	19,	Scale	=	4)

--	@2:	'False'	(Type	=	Boolean)

--	Executing	at	30/08/2015	14:04:22	+01:00

--	Completed	in	12	ms	with	result:	SqlDataReader

Committed	transaction	at	30/08/2015	14:04:22	+01:00

Closed	connection	at	30/08/2015	14:04:22	+01:00

Updating	entities
Add	the	following	code	to	increase	the	price	by	$20	of	the	product	with	a	primary	key
value	for	its	ProductID	of	78	and	then	relist	the	products:

Product	updateProduct	=	db.Products.Find(78);

updateProduct.UnitPrice	+=	20M;

db.SaveChanges();

foreach	(var	item	in	query)

{

				WriteLine($"{item.ProductID}:	{item.ProductName}	costs	

{item.UnitPrice:$#,##0.00}");

}

Rerun	the	application	and	notice	that	the	existing	entity	for	Bob's	Burger	has	increased	in
price	by	$20:

78:	Bob's	Burger	costs	$520.00

Did	you	see	the	update	statement	that	was	dynamically	generated	and	executed	against	the
database	and	logged	to	the	console?	It	looked	something	like	this:

Opened	connection	at	30/08/2015	14:10:07	+01:00

Started	transaction	at	30/08/2015	14:10:07	+01:00

UPDATE	[dbo].[Products]

SET	[UnitPrice]	=	@0

WHERE	([ProductID]	=	@1)

--	@0:	'520.0000'	(Type	=	Decimal,	Precision	=	19,	Scale	=	4)

--	@1:	'78'	(Type	=	Int32)

--	Executing	at	30/08/2015	14:10:07	+01:00

--	Completed	in	2	ms	with	result:	1

Committed	transaction	at	30/08/2015	14:10:07	+01:00

Closed	connection	at	30/08/2015	14:10:07	+01:00

Notice	the	following	aspects:

When	you	call	the	SaveChanges	method,	EF	implicitly	creates	a	transaction	so	that	if
something	goes	wrong,	it	would	automatically	rollback	all	the	changes,	and	if
everything	works	ok,	it	would	commit	the	transaction
EF	is	repeatedly	opening	and	closing	the	connection

We	can	improve	performance	by	manually	controlling	when	we	open	and	close	the
connection.

Add	the	following	code	immediately	after	creating	the	db	object:

var	db	=	new	Northwind();

//	if	you	manually	open	a	connection	it	will	stop	

//	automatically	opening	and	closing	repeatedly

db.Database.Connection.Open();

Add	the	following	code	at	the	end	of	the	Main	method:

db.Database.Connection.Close();

If	you	rerun	the	application,	you	will	see	that	the	connection	is	only	opened	and	closed
once.

Transactions
Every	time	you	call	the	SaveChanges	method,	an	implicit	transaction	is	started.	If	every
operation	succeeds,	then	the	transaction	is	committed.

Transactions	maintain	the	integrity	of	your	database	by	applying	locks	to	prevent	reads

and	writes	while	a	sequence	of	operations	is	occurring.

Transactions	are	ACID,	which	is	explained	here:

A	is	for	atomic.	Either	all	the	operations	in	the	transaction	commit	or	none	of	them
do.
C	is	for	consistent.	The	state	of	the	database	before	and	after	a	transaction	is
consistent.	This	is	dependent	on	your	code	logic.
I	is	for	isolated.	During	a	transaction,	changes	are	hidden	from	other	processes.	There
are	multiple	isolation	levels	that	you	can	pick	from	(see	the	following	table).	The
stronger	the	level,	the	better	the	integrity	of	the	data.	However,	more	locks	must	be
applied	which	will	negatively	affect	other	processes.	Snapshot	is	a	special	case,
because	it	creates	multiple	copies	of	rows	to	avoid	locks,	but	this	will	increase	the
size	of	your	database	while	transactions	occur.
D	is	for	durable.	If	a	failure	occurs	during	a	transaction,	it	can	be	recovered.	The
opposite	of	durable	is	volatile.

Isolation	level Lock(s) Integrity	problems	allowed

ReadUncommitted None Dirty	reads,	non-repeatable
reads,	and	phantom	data

ReadCommitted
When	editing,	it	applies	read	lock(s)	to	block	other	users	from
reading	the	record(s)	until	the	transaction	ends

Non-repeatable	reads	and
phantom	data

RepeatableRead
When	reading,	it	applies	edit	lock(s)	to	block	other	users	from
editing	the	record(s)	until	the	transaction	ends Phantom	data

Serializable
Applies	key-range	locks	to	prevent	any	action	that	would	affect	the
results,	including	inserts	and	deletes None

Snapshot None None

Defining	an	explicit	transaction
You	can	define	an	explicit	transaction	using	the	TransactionScope	type.

Add	a	reference	to	the	System.Transactions	assembly	and	import	the
System.Transactions	namespace.

Before	the	instantiation	of	the	db	variable,	add	the	following	statement	to	instantiate	an
explicit	transaction	scope.	Also,	add	options	to	weaken	the	isolation	level	to	allow	dirty
reads	and	other	integrity	issues,	reduce	locks	to	improve	performance,	and	to
automatically	rollback	if	the	transaction	is	not	disposed	within	10	seconds,	to	prevent
deadlocks:

var	options	=	new	TransactionOptions

{

				IsolationLevel	=	IsolationLevel.ReadUncommitted,

				Timeout	=	TimeSpan.FromSeconds(10)

};

using	(var	scope	=	new	TransactionScope(TransactionScopeOption.Required,	

options))

{

				var	db	=	new	Northwind();

You	will	also	need	to	enter	a	close	brace,	},	after	you	close	the	database	connection.	When
the	close	brace	executes,	the	transaction	scope	will	dispose	and	check	whether	everything
worked.	If	it	did,	then	all	participants	in	the	transaction	would	be	asked	to	commit.	If	an
exception	occurs,	then	all	participants	would	be	asked	to	rollback:

				db.Database.Connection.Close();

}

Tip
Always	specify	a	transaction	timeout	so	that	deadlocks	cannot	occur.

Loading	patterns	with	EF
There	are	three	loading	patterns	that	can	be	used	with	EF:	lazy	loading,	eager	loading,
and	explicit	loading.

Lazy	loading	entities
Add	a	new	console	application	project	named	Ch08_LoadingPatterns.

Add	an	ADO.NET	Entity	Data	Model	for	the	Northwind	database,	as	we	did	earlier.

Back	in	Program.cs,	add	the	following	code	to	the	top	of	the	file:

using	System;

using	static	System.Console;

Add	the	following	code	to	the	Main	method:

var	db	=	new	Northwind();

db.Database.Log	=	new	Action<string>(message	=>	{	WriteLine(message);	});

var	query	=	db.Categories;

foreach	(var	item	in	query)

{

				WriteLine(item.CategoryName);

}

Press	Ctrl	+	F5	to	run	the	application	and	notice	that	Transact-SQL	queried	only	the
Categories	table:

SELECT

				[Extent1].[CategoryID]	AS	[CategoryID],

				[Extent1].[CategoryName]	AS	[CategoryName],

				[Extent1].[Description]	AS	[Description],

				[Extent1].[Picture]	AS	[Picture]

				FROM	[dbo].[Categories]	AS	[Extent1]

--	Executing	at	23/08/2015	12:17:02	+01:00

--	Completed	in	14	ms	with	result:	SqlDataReader

Beverages

Condiments

Confections

Dairy	Products

Grains/Cereals

Meat/Poultry

Produce

Seafood

Each	item	in	foreach	is	an	instance	of	the	Category	class,	which	has	a	property	named
Products,	that	is,	the	list	of	products	in	that	category.	Since	the	original	query	only
selected	from	the	Categories	table,	this	property	is	empty	for	each	category.

Let’s	see	what	happens	when	we	attempt	to	output	how	many	products	there	are	in	each
category.	Temporarily	comment	out	the	line	for	logging:

//	db.Database.Log	=	new	Action<string>(message	=>	{	WriteLine(message);	

});

Modify	the	WriteLine	statement	inside	foreach:

WriteLine($"{item.CategoryName}	has	{item.Products.Count}	products.");

Rerun	the	application.	Notice	that	the	correct	number	of	products	is	output:

Beverages	has	12	products.

Condiments	has	12	products.

Confections	has	13	products.

Dairy	Products	has	10	products.

Grains/Cereals	has	7	products.

Meat/Poultry	has	6	products.

Produce	has	5	products.

Seafood	has	12	products.

This	is	due	to	a	feature	of	EF	known	as	lazy	loading.

Uncomment	the	logging	line	and	rerun	the	application.	You	will	notice	that	when	the	code
accesses	the	Products	property,	EF	automatically	checks	to	see	whether	they	are	loaded.
If	not,	EF	loads	them	for	us	“lazily.”

For	example,	just	before	outputting	the	count	of	seafood	products,	this	query	is	executed:

SELECT

				[Extent1].[ProductID]	AS	[ProductID],

				[Extent1].[ProductName]	AS	[ProductName],

				[Extent1].[SupplierID]	AS	[SupplierID],

				[Extent1].[CategoryID]	AS	[CategoryID],

				[Extent1].[QuantityPerUnit]	AS	[QuantityPerUnit],

				[Extent1].[UnitPrice]	AS	[UnitPrice],

				[Extent1].[UnitsInStock]	AS	[UnitsInStock],

				[Extent1].[UnitsOnOrder]	AS	[UnitsOnOrder],

				[Extent1].[ReorderLevel]	AS	[ReorderLevel],

				[Extent1].[Discontinued]	AS	[Discontinued]

				FROM	[dbo].[Products]	AS	[Extent1]

				WHERE	[Extent1].[CategoryID]	=	@EntityKeyValue1

--	EntityKeyValue1:	'8'	(Type	=	Int32,	IsNullable	=	false)

--	Executing	at	30/08/2015	14:16:26	+01:00

--	Completed	in	0	ms	with	result:	SqlDataReader

Seafood	has	12	products.

The	problem	with	lazy	loading	is	that	multiple	round	trips	to	the	database	server	are
required	to	eventually	fetch	all	the	data.

Eager	loading	entities
Sometimes,	it	is	better	to	disable	lazy	loading	and	manually	specify	that	all	the	data	is
brought	across	the	network	immediately	using	eager	loading	(aka	early	loading).

Add	the	following	line	of	code	after	creating	the	db	variable	to	disable	lazy	loading:

db.Configuration.LazyLoadingEnabled	=	false;

If	you	rerun	the	application,	you	will	now	find	that	all	the	product	counts	are	zero:

Beverages	has	0	products.

Condiments	has	0	products.

Confections	has	0	products.

Dairy	Products	has	0	products.

Grains/Cereals	has	0	products.

Meat/Poultry	has	0	products.

Produce	has	0	products.

Seafood	has	0	products.

To	perform	eager	loading,	modify	the	query	line	to	make	it	look	like	this:

var	query	=	db.Categories.Include("Products");

Rerun	the	application.	You	will	see	that	EF	generates	a	SELECT	statement	with	a	subquery
in	order	to	fetch	the	related	products	for	each	category,	all	in	one	go:

SELECT

				[Project1].[CategoryID]	AS	[CategoryID],

				[Project1].[CategoryName]	AS	[CategoryName],

				[Project1].[Description]	AS	[Description],

				[Project1].[Picture]	AS	[Picture],

				[Project1].[C1]	AS	[C1],

				[Project1].[ProductID]	AS	[ProductID],

				[Project1].[ProductName]	AS	[ProductName],

				[Project1].[SupplierID]	AS	[SupplierID],

				[Project1].[CategoryID1]	AS	[CategoryID1],

				[Project1].[QuantityPerUnit]	AS	[QuantityPerUnit],

				[Project1].[UnitPrice]	AS	[UnitPrice],

				[Project1].[UnitsInStock]	AS	[UnitsInStock],

				[Project1].[UnitsOnOrder]	AS	[UnitsOnOrder],

				[Project1].[ReorderLevel]	AS	[ReorderLevel],

				[Project1].[Discontinued]	AS	[Discontinued]

				FROM	(SELECT

								[Extent1].[CategoryID]	AS	[CategoryID],

								[Extent1].[CategoryName]	AS	[CategoryName],

								[Extent1].[Description]	AS	[Description],

								[Extent1].[Picture]	AS	[Picture],

								[Extent2].[ProductID]	AS	[ProductID],

								[Extent2].[ProductName]	AS	[ProductName],

								[Extent2].[SupplierID]	AS	[SupplierID],

								[Extent2].[CategoryID]	AS	[CategoryID1],

								[Extent2].[QuantityPerUnit]	AS	[QuantityPerUnit],

								[Extent2].[UnitPrice]	AS	[UnitPrice],

								[Extent2].[UnitsInStock]	AS	[UnitsInStock],

								[Extent2].[UnitsOnOrder]	AS	[UnitsOnOrder],

								[Extent2].[ReorderLevel]	AS	[ReorderLevel],

								[Extent2].[Discontinued]	AS	[Discontinued],

								CASE	WHEN	([Extent2].[ProductID]	IS	NULL)	THEN	CAST(NULL	AS	int)	

ELSE	1

END	AS	[C1]

								FROM		[dbo].[Categories]	AS	[Extent1]

								LEFT	OUTER	JOIN	[dbo].[Products]	AS	[Extent2]	ON	[Extent1].

[CategoryID]

=	[Extent2].[CategoryID]

)		AS	[Project1]

				ORDER	BY	[Project1].[CategoryID]	ASC,	[Project1].[C1]	ASC

Explicit	loading	entities

The	last	type	of	loading	we	will	look	at	is	explicit	loading.	It	works	similar	to	lazy
loading,	but	you	are	in	control	of	exactly	which	related	data	is	loaded	and	when.

Modify	your	code	to	make	it	look	like	this:

using	System;

using	System.Linq;

using	static	System.Console;

namespace	Ch08_LoadingPatterns

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												WriteLine("Loading	Patterns	with	the	Entity	Framework");

												var	db	=	new	Northwind();

												IQueryable<Category>	query;

												Write("Enable	lazy	loading?	(Y/N):	");

												var	lazyloading	=	(ReadKey().Key	==	ConsoleKey.Y);

												db.Configuration.LazyLoadingEnabled	=	lazyloading;

												WriteLine();

												Write("Enable	logging?	(Y/N):	");

												var	logging	=	(ReadKey().Key	==	ConsoleKey.Y);

												if	(logging)

												{

																db.Database.Log	=	new	Action<string>(message	=>	{	

WriteLine(message);	});

												}

												WriteLine();

												Write("Enable	eager	loading?	(Y/N):	");

												var	eagerloading	=	(ReadKey().Key	==	ConsoleKey.Y);

												if	(eagerloading)

												{

																query	=	db.Categories.Include("Products");

												}

												else

												{

																query	=	db.Categories;

												}

												WriteLine();

												Write("Enable	explicit	loading?	(Y/N):	");

												var	explicitloading	=	(ReadKey().Key	==	ConsoleKey.Y);

												WriteLine();

												foreach	(var	item	in	query)

												{

																if	(explicitloading)

																{

																				Write($"Explicitly	load	products	for	

{item.CategoryName}?	(Y/N):	");

																				if	(ReadKey().Key	==	ConsoleKey.Y)

																				{

																								var	products	=	db.Entry(item).Collection(c	=>	

c.Products);

																								if	(!products.IsLoaded)	products.Load();

																				}

																				WriteLine();

																}

																WriteLine($"{item.CategoryName}	has	{item.Products.Count}	

products.");

												}

								}

				}

}

Rerun	the	application,	disable	lazy	loading,	disable	logging,	disable	eager	loading,	and
enable	explicit	loading.

For	each	category,	press	Y	or	N	to	load	its	products	as	you	wish.	For	example,	this	is	the
output	when	I	ran	it.	I	chose	to	load	products	for	only	four	of	the	eight	categories:

Enable	lazy-loading?	(Y/N):	n

Enable	logging?	(Y/N):	n

Enable	eager-loading?	(Y/N):	n

Enable	explicit-loading?	(Y/N):	y

Explicitly	load	products	for	Beverages?	(Y/N):	y

Beverages	has	12	products.

Explicitly	load	products	for	Condiments?	(Y/N):	n

Condiments	has	0	products.

Explicitly	load	products	for	Confections?	(Y/N):	n

Confections	has	0	products.

Explicitly	load	products	for	Dairy	Products?	(Y/N):	y

Dairy	Products	has	10	products.

Explicitly	load	products	for	Grains/Cereals?	(Y/N):	y

Grains/Cereals	has	7	products.

Explicitly	load	products	for	Meat/Poultry?	(Y/N):	y

Meat/Poultry	has	6	products.

Explicitly	load	products	for	Produce?	(Y/N):	n

Produce	has	0	products.

Explicitly	load	products	for	Seafood?	(Y/N):	n

Seafood	has	0	products.

Tip
Carefully	consider	which	loading	pattern	is	best	for	your	code.	The	default	of	lazy	loading
can	literally	make	you	into	a	lazy	database	developer!

Using	Entity	Framework	Core
Add	a	new	Console	Application	(Package)	project	named	Ch08_EFCore.

Tip
Notice	that	we	have	chosen	Console	Application	(Package)	to	target	.NET	Core.

To	use	EF	Core,	you	must	install	a	provider	for	the	RDBMS	you	want	to	use.	You	can	find
an	up-to-date	list	of	data	providers	here:

http://ef.readthedocs.org/en/latest/providers/index.html

To	install	the	provider	for	SQL	Server,	on	the	Tools	menu,	choose	NuGet	Package
Manager	and	then	choose	Package	Manager	Console.

In	Package	Manager	Console,	ensure	package	source	is	set	to	nuget.org	and	default
project	is	set	to	Ch08_EFCore.	Then,	enter	the	following	command	in	the	prompt:

install-package	entityframework.microsoftsqlserver

Tip
By	the	time	you	read	this	book,	the	final	release	version	should	be	available	so	that	the
preceding	command	will	work.	If	you	get	an	error	with	the	preceding	line,	add	the	–pre
flag	to	the	end	to	install	the	pre-release	version.

At	the	time	of	writing	this	book,	the	pre-release	version	of	EF	Core	is	7.0.0-rc1-final,	as
you	can	see	in	the	following	screenshot:

Later,	we	will	run	migration	commands,	so	you	will	need	to	install	the	following	package
too:

install-package	entityframework.commands

By	the	time	you	read	this	book,	the	final	release	version	should	be	available	so	that	the
preceding	command	will	work.	If	you	get	an	error	with	the	preceding	line,	add	the	–pre
flag	to	the	end	to	install	the	pre-release	version.

At	the	time	of	writing	this	book,	there	are	no	graphical	tools	or	wizards	to	help	you	write
the	code,	so	we	will	have	to	do	it	all	manually.

On	the	Project	menu,	choose	Add	Class…	or	press	Shift	+	Alt	+	C	and	name	it	Category.

Modify	its	code	to	look	like	the	following	code	block.	Note	the	following	aspects:

http://ef.readthedocs.org/en/latest/providers/index.html

The	initialization	of	the	Products	property	with	an	empty	Hashset	(to	avoid
NullReferenceExceptions	when	reading	its	Count	property)
The	Products	property	is	virtual	(so	that	EF	Core	can	inherit	from	our	class	and
implement	automatic	lazy	loading)

using	System.Collections.Generic;

using	System.ComponentModel.DataAnnotations.Schema;

namespace	Ch08_EFCore

{

				[Table("Categories")]

				public	class	Category

				{

								public	int	CategoryID	{	get;	set;	}

								public	string	CategoryName	{	get;	set;	}

								public	virtual	ICollection<Product>	Products	{	get;	set;	}

								public	Category()

								{

												Products	=	new	HashSet<Product>();

								}

				}

}

Tip
At	the	time	of	writing	this	book,	EF	Core	does	not	have	an	automatic	pluralizer	or
singularizer,	so	we	must	explicitly	specify	the	table	name	using	an	attribute	(or	we	could
have	used	the	Fluent	API).

Add	a	class	named	Product	and	modify	its	code	to	look	like	the	following	code	block.
Notice	the	attribute	to	explicitly	specify	the	column	to	use	for	the	relationship	between
Categories	and	Products:

using	System.ComponentModel.DataAnnotations.Schema;

namespace	Ch08_EFCore

{

				[Table("Products")]

				public	class	Product

				{

								public	int	ProductID	{	get;	set;	}

								public	string	ProductName	{	get;	set;	}

								public	decimal?	UnitPrice	{	get;	set;	}

								public	int	CategoryID	{	get;	set;	}

								[ForeignKey("CategoryID")]

								public	virtual	Category	Category	{	get;	set;	}

				}

}

Add	a	class	named	Northwind	and	modify	its	code	to	look	like	the	following	code	block:

using	Microsoft.Data.Entity;

namespace	Ch08_EFCore

{

				public	class	Northwind	:	DbContext

				{

								public	DbSet<Category>	Categories	{	get;	set;	}

								public	DbSet<Product>	Products	{	get;	set;	}

								protected	override	void	OnConfiguring(DbContextOptionsBuilder	

optionsBuilder)

								{

												optionsBuilder.UseSqlServer(@"Data	Source=

(localdb)\mssqllocaldb;initial	catalog=Northwind;integrated	

security=true;");

												base.OnConfiguring(optionsBuilder);

								}

				}

}

Tip
EF	Core	prefers	code	over	the	old	XML	.config	files	to	specify	the	connection	string.
This	is	because	it	removes	the	dependency	on	.config	XML	files.	You	should	still	load
the	connection	string	from	an	external	source,	but	you	can	now	store	it	wherever	you
want.

In	Program.cs	file,	import	the	Microsoft.Data.Entity	namespace,	statically	import	the
System.Console	type,	and	add	the	following	statements	inside	the	Main	method:

var	db	=	new	Northwind();

var	query	=	db.Categories.Include(c	=>	c.Products);

foreach	(var	item	in	query)

{

				WriteLine($"{item.CategoryName}	has	{item.Products.Count}	products.");

}

ReadLine();	//	wait	for	user	to	press	ENTER	when	debugging

Open	the	project’s	Properties	and	on	the	Debug	tab,	select	Use	Specific	Runtime	and
choose	.NET	Core	and	x64.

Run	the	application	with	F5,	and	view	the	output,	which	is	the	same	as	it	was	for	EF6:

Beverages	has	12	products.

Condiments	has	12	products.

Confections	has	13	products.

Dairy	Products	has	10	products.

Grains/Cereals	has	7	products.

Meat/Poultry	has	6	products.

Produce	has	5	products.

Seafood	has	12	products.

Note	that	this	console	application	has	a	titlebar	that	shows	that	it	targets	.NET	Core
executed	by	the	CoreCLR	and	the	64-bit	CPU	architecture,	so	it	could	be	deployed	to
Windows,	Max	OS	X,	and	Linux.

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	getting	some
hands-on	practice,	and	exploring	this	chapter’s	topics	with	deeper	research.

Exercise	8.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 Which	.NET	data	provider	would	you	use	to	work	with	Microsoft	Access	.MDB
database	files?

2.	 Which	.NET	data	provider	would	you	use	to	work	with	Microsoft	SQL	Server	2012
Express	Edition?

3.	 What	must	you	do	with	DbConnection	variable	before	executing	a	DbCommand
variable?

4.	 When	would	you	use	CommandBehavior.SequentialAccess?
5.	 When	would	you	use	classic	ADO.NET	instead	of	Entity	Framework?
6.	 When	defining	a	DbContext	class,	what	type	would	you	use	for	the	property	that

represents	a	table,	for	example,	the	Products	property	of	a	Northwind	context?
7.	 What	are	the	EF	conventions	for	primary	keys?
8.	 When	would	you	use	an	annotation	attribute	in	an	entity	class?
9.	 Why	might	you	choose	the	Fluent	API	in	preference	to	annotation	attributes?
10.	 What	is	the	difference	between	Database	First	and	Code	First	in	EF6?

Exercise	8.2	–	explore	the	EF	Core	documentation
Go	to	the	following	website	and	read	the	official	Entity	Framework	Core	1.0
documentation.	Follow	the	tutorials	to	create	Windows	desktop	and	web	applications	and
services.	If	you	have	a	Mac	or	a	Linux	virtual	machine,	follow	the	tutorials	to	use	EF	Core
on	those	alternative	platforms.

http://ef.readthedocs.org/en/latest/

http://ef.readthedocs.org/en/latest/

Exercise	8.3	–	explore	topics
Use	the	following	links	to	read	more	on	this	chapter’s	topics:

.NET	Framework	data	providers:	https://msdn.microsoft.com/en-
us/library/a6cd7c08(v=vs.110).aspx
Retrieving	and	modifying	data	in	ADO.NET:	https://msdn.microsoft.com/en-
us/library/ms254937(v=vs.110).aspx
Data	points	–	looking	ahead	to	Entity	Framework	7:
https://msdn.microsoft.com/en-us/magazine/dn890367.aspx

https://msdn.microsoft.com/en-us/library/a6cd7c08(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms254937(v=vs.110).aspx
https://msdn.microsoft.com/en-us/magazine/dn890367.aspx

Summary
In	this	chapter,	you	learned	how	to	connect	to	a	database,	how	to	execute	an	SQL
statement	and	process	the	results,	and	how	to	build	Code	First	data	models	for	an	existing
database	such	as	Northwind.

In	the	next	chapter,	you	will	learn	how	to	write	a	LINQ	query	to	select,	filter,	sort,	join,
and	group	data	of	all	types.

Chapter	9.	Querying	and	Manipulating
Data	with	LINQ
This	chapter	is	about	Language	Integrated	Queries	(LINQ),	language	extensions	that
add	the	ability	to	work	with	sequences	of	items	and	filter,	sort,	and	project	them	into
different	outputs.

This	chapter	covers	the	following	topics:

Writing	LINQ	queries
Using	multiple	threads	with	Parallel	LINQ
Creating	your	own	LINQ	extension	methods
Working	with	LINQ	to	XML

Writing	LINQ	queries
In	the	previous	chapter,	you	wrote	a	few	simple	LINQ	queries,	but	I	didn’t	properly
explained	how	LINQ	works.

LINQ	has	several	parts;	some	are	required	and	some	are	optional:

Extension	methods	(required):	These	are	Where,	OrderBy,	Select,	and	so	on.	These
provide	the	functionality	of	LINQ.
LINQ	providers	(required):	LINQ	to	Objects,	LINQ	to	Entities,	LINQ	to	XML,
LINQ	to	OData,	LINQ	to	Amazon,	and	so	on,	are	LINQ	providers.	These	convert
standard	LINQ	operations	into	specific	commands	for	different	types	of	data.
Lambda	expressions	(optional):	These	can	be	used	instead	of	named	methods	to
simplify	LINQ	extension	method	calls.
LINQ	query	comprehension	syntax	(optional):	These	include	from,	in,	where,
orderby,	descending,	select,	and	so	on.	These	are	C#	keywords	that	are	aliases	for
some	of	the	LINQ	extension	methods,	and	their	use	can	simplify	the	queries	you
write,	especially	if	you	already	have	experience	with	other	query	languages	such	as
Structured	Query	Language	(SQL).

Tip
When	programmers	are	first	introduced	to	LINQ,	they	often	believe	that	the	query
comprehension	syntax	is	LINQ,	but	ironically,	that	is	one	of	the	parts	of	LINQ	that	is
optional!

Extending	sequences	with	the	Enumerable	class
The	extension	methods,	such	as	Where	and	Select,	are	appended	by	the	Enumerable	static
class	to	any	type,	known	as	a	sequence,	that	implements	IEnumerable<T>.

For	example,	an	array	of	a	type	T	implements	the	IEnumerable<T>	class,	where	T	is	the
type	of	items	in	the	array,	so	all	arrays	support	LINQ	to	query	and	manipulate	them.

All	collections,	such	as	List<T>,	Dictionary<TKey,	TValue>,	Stack<T>,	and	Queue<T>
implement	IEnumerable<T>,	so	they	can	be	queried	and	manipulated	with	LINQ.

Filtering	entities	with	Where
The	most	common	reason	for	using	LINQ	is	to	filter	items	in	a	sequence	using	the	Where
extension	method.

Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	navigate	to
File	|	New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	list	at
the	center,	select	Console	Application,	type	the	name	Ch09_LinqToObjects,	change	the
location	to	C:\Code,	type	the	solution	name	Chapter09,	and	then	click	on	OK.

Statically	import	the	System.Console	type.

In	the	Main	method,	add	the	following	statements:

var	names	=	new	string[]	{	"Michael",	"Pam",	"Jim",	"Dwight",	"Angela",	

"Kevin",	"Toby",	"Creed"	};

var	query	=	names.Where(

As	you	type	the	open	parenthesis	after	Where,	note	the	IntelliSense.	It	tells	us	that	to	call
Where,	we	must	pass	in	an	instance	of	a	Func<string,	bool>	delegate.	This	delegate	must
target	a	method	with	a	matching	signature,	as	you	can	see	in	the	following	screenshot::

For	each	string	variable	passed	to	the	method,	the	method	must	return	a	Boolean	value.
If	the	method	returns	true,	it	indicates	that	we	should	include	the	string	in	the	results,
and	if	the	method	returns	false,	it	indicates	that	we	should	exclude	it.

Targeting	a	named	method
Let’s	define	a	method	that	only	includes	names	that	are	longer	than	four	characters.

Add	the	following	method	under	the	Main	method:

static	bool	NameLongerThanFour(string	name)

{

				return	name.Length	>	4;

}

Complete	the	Where	call	and	loop	through	the	query	items,	as	shown	in	the	following
code:

var	query	=	names.Where(new	Func<string,	bool>(NameLongerThanFour));

foreach	(var	item	in	query)

{

				WriteLine(item);

}

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

Michael

Dwight

Angela

Kevin

Creed

Simplifying	the	code	by	removing	the	explicit	delegate	instantiation
We	can	simplify	the	code	by	deleting	the	explicit	instantiation	of	the	Func<string,	bool>
delegate.	The	C#	compiler	will	instantiate	the	Func<string,	bool>	delegate	for	us,	so
you	never	need	to	explicitly	do	it.

Modify	the	query	to	look	like	this:

var	query	=	names.Where(NameLongerThanFour);

Rerun	the	application	and	note	that	the	output	is	the	same	as	before.

Targeting	a	lambda	expression
We	can	simplify	our	code	even	further	using	a	lambda	expression	in	place	of	the	named
method.

Although	it	can	look	complicated	and	magical	at	first,	a	lambda	expression	is	simply	a
nameless	function.	It	uses	the	=>	(read	as	“goes	to”)	symbol	to	indicate	the	return	value.

Modify	the	query	to	look	like	the	following	statement:

var	query	=	names.Where(name	=>	name.Length	>	4);

Note	that	the	syntax	for	a	lambda	expression	includes	all	the	important	parts	of	the
NameLongerThanFour	method,	but	nothing	extraneous.	A	lambda	expression	only	needs	to
define	the	following:

The	names	of	input	parameters
A	return	value	expression

The	type	of	the	name	input	parameter	is	inferred	from	the	fact	that	the	sequence	contains
strings	and	the	return	type	must	be	a	bool	value	for	Where	to	work,	so	the	expression	after
the	=>	symbol	must	return	a	bool	value.

The	compiler	does	most	of	the	work	for	us,	so	our	code	can	be	as	concise	as	possible.

Rerun	the	application	and	note	that	the	output	is	the	same	as	earlier.

Sorting	sequences	with	OrderBy
Extension	methods	can	be	chained	if	the	previous	method	returns	another	sequence,	that
is,	a	type	that	implements	the	IEnumerable<T>	class.

Append	a	call	to	OrderBy	to	the	end	of	the	existing	query	as	shown	here:

var	query	=	names

				.Where(name	=>	name.Length	>	4)

				.OrderBy(name	=>	name.Length);

Tip
I	like	to	format	the	line	so	that	each	extension	method	call	happens	on	its	own	line.	I	think
this	makes	LINQ	queries	easier	to	read.

Rerun	the	application	and	note	that	the	names	are	now	sorted	with	shortest	first:

Kevin

Creed

Dwight

Angela

Michael

Tip
To	put	the	longest	name	first,	you	would	use	OrderByDescending.

Sorting	by	multiple	properties	with	the	ThenBy	method
We	might	want	to	sort	the	array	of	names	by	more	than	one	property.

Append	a	call	to	ThenBy	to	the	end	of	the	existing	query	as	shown	here:

var	query	=	names

				.Where(name	=>	name.Length	>	4)

				.OrderBy(name	=>	name.Length)

				.ThenBy(name	=>	name);

Rerun	the	application	and	note	the	slight	difference	in	the	sort	order.	Within	a	group	of
names	of	the	same	length,	the	names	are	sorted	alphabetically	by	the	full	value	of	the
string,	so	Creed	comes	before	Kevin,	and	Angela	comes	before	Dwight:

Creed

Kevin

Angela

Dwight

Michael

Working	with	sets
Sets	are	one	of	the	most	fundamental	concepts	in	mathematics.	A	set	is	a	collection	of	one
or	more	objects.	You	might	remember	being	taught	about	Venn	diagrams	in	school.
Common	set	operations	include	the	intersect	or	union	between	sets.

Add	a	new	console	application	project	named	Ch09_Sets.	Set	the	solution’s	start	up
project	to	be	the	current	selection.

Statically	import	the	System.Console	type.

This	application	will	define	three	arrays	of	strings	for	cohorts	of	apprentices	and	then
perform	some	common	set	operations.

On	the	top	of	the	Main	method,	add	the	following	method,	that	outputs	any	sequence	of
string	variables	as	a	comma-separated	single	string	to	the	console	output	along	with	an
optional	description:

private	static	void	Output(IEnumerable<string>	cohort,	string	description	=	

"")

{

				WriteLine(description);

				WriteLine(string.Join(",	",	cohort.ToArray()));

}

In	the	Main	method,	write	the	following	statements:

var	cohort1	=	new	string[]	{	"Rachel",	"Gareth",	"Jonathan",	"George"	};

var	cohort2	=	new	string[]	{	"Jack",	"Stephen",	"Daniel",	"Jack",	"Jared"	

};

var	cohort3	=	new	string[]	{	"Declan",	"Jack",	"Jack",	"Jasmine",	"Conor"	

};

Output(cohort1,	"Cohort	1");

Output(cohort2,	"Cohort	2");

Output(cohort3,	"Cohort	3");

WriteLine();

Output(cohort2.Distinct(),	"cohort2.Distinct():	removes	duplicates");

Output(cohort2.Union(cohort3),	"cohort2.Union(cohort3):	combines	two	

sequences	and	removes	any	duplicates");

Output(cohort2.Concat(cohort3),	"cohort2.Concat(cohort3):	combines	two	

sequences	but	leaves	in	any	duplicates");

Output(cohort2.Intersect(cohort3),	"cohort2.Intersect(cohort3):	returns	

items	that	are	in	both	sequences");

Output(cohort2.Except(cohort3),	"cohort2.Except(cohort3):	removes	items	

from	the	first	sequence	that	are	in	the	second	sequence");

Output(cohort1.Zip(cohort2,	(c1,	c2)	=>	$"{c1}	matched	with	{c2}"),	

"cohort1.Zip(cohort2,	(c1,	c2)	=>	$\"{c1}	matched	with	{c2}\"):	matches	

items	based	on	position	in	the	sequence");

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

Cohort	1

Rachel,	Gareth,	Jonathan,	George

Cohort	2

Jack,	Stephen,	Daniel,	Jack,	Jared

Cohort	3

Declan,	Jack,	Jack,	Jasmine,	Conor

cohort2.Distinct():	removes	duplicates

Jack,	Stephen,	Daniel,	Jared

cohort2.Union(cohort3):	combines	two	sequences	and	removes	any	duplicates

Jack,	Stephen,	Daniel,	Jared,	Declan,	Jasmine,	Conor

cohort2.Concat(cohort3):	combines	two	sequences	but	leaves	in	any	

duplicates

Jack,	Stephen,	Daniel,	Jack,	Jared,	Declan,	Jack,	Jack,	Jasmine,	Conor

cohort2.Intersect(cohort3):	returns	items	that	are	in	both	sequences

Jack

cohort2.Except(cohort3):	removes	items	from	the	first	sequence	that	are	in	

the	second	sequence

Stephen,	Daniel,	Jared

cohort1.Zip(cohort2,	(c1,	c2)	=>	$"{c1}	matched	with	{c2}"):	matches	items	

based	on	position	in	the	sequence

Rachel	matched	with	Jack,	Gareth	matched	with	Stephen,	Jonathan	matched	

with	Daniel,	George	matched	with	Jack

Note	that	with	Zip,	if	there	are	unequal	numbers	of	items	in	the	two	sequences,	then	some
items	will	not	have	a	matching	partner,	like	poor	Jared.

Projecting	entities	with	Select	statement
To	learn	about	projection,	it	is	best	to	have	some	more	complex	sequences	to	work	with,
so	in	the	next	project,	we	will	use	the	Northwind	sample	database.

Add	a	new	console	application	project	named	Ch09_Projection.	Add	a	new	ADO.NET
Entity	Data	Model	item	named	Northwind.	Use	Code	First	from	database,	connect	to
the	Northwind	database	with	the	server	and	instance	name	(localdb)\mssqllocaldb,
and	select	all	the	tables.

In	the	Main	method,	write	the	following	statements:

var	db	=	new	Northwind();

var	query	=	db.Products

				.Where(product	=>	product.UnitPrice	<	10M)

				.OrderByDescending(product	=>	product.UnitPrice);

foreach	(var	item	in	query)

{

				WriteLine($"{item.ProductID}:	{item.ProductName}	costs	

{item.UnitPrice:$#,##0.00}");

}

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

41:	Jack's	New	England	Clam	Chowder	costs	$9.65

45:	Rogede	sild	costs	$9.50

47:	Zaanse	koeken	costs	$9.50

19:	Teatime	Chocolate	Biscuits	costs	$9.20

23:	Tunnbröd	costs	$9.00

75:	Rhönbräu	Klosterbier	costs	$7.75

54:	Tourtière	costs	$7.45

52:	Filo	Mix	costs	$7.00

13:	Konbu	costs	$6.00

24:	Guaraná	Fantástica	costs	$4.50

33:	Geitost	costs	$2.50

Although	this	query	outputs	the	information	we	want,	it	does	so	inefficiently	because	it
returns	entire	rows	of	all	columns	from	the	table.	We	can	see	this	by	outputting	the	query.

Add	the	following	statement	before	the	foreach	statement:

WriteLine(query.ToString());

Rerun	the	applications	and	note	that	the	SQL	logged	statement	includes	all	columns:

SELECT

				[Extent1].[ProductID]	AS	[ProductID],

				[Extent1].[ProductName]	AS	[ProductName],

				[Extent1].[SupplierID]	AS	[SupplierID],

				[Extent1].[CategoryID]	AS	[CategoryID],

				[Extent1].[QuantityPerUnit]	AS	[QuantityPerUnit],

				[Extent1].[UnitPrice]	AS	[UnitPrice],

				[Extent1].[UnitsInStock]	AS	[UnitsInStock],

				[Extent1].[UnitsOnOrder]	AS	[UnitsOnOrder],

				[Extent1].[ReorderLevel]	AS	[ReorderLevel],

				[Extent1].[Discontinued]	AS	[Discontinued]

				FROM	[dbo].[Products]	AS	[Extent1]

				WHERE	[Extent1].[UnitPrice]	<	cast(10	as	decimal(18))

				ORDER	BY	[Extent1].[UnitPrice]	DESC

Change	the	LINQ	to	call	the	Select	method	to	project	the	results	into	a	new	anonymous
type	with	only	the	three	columns	that	we	actually	need,	like	this:

var	query	=	db.Products

				.Where(product	=>	product.UnitPrice	<	10M)

				.OrderByDescending(product	=>	product.UnitPrice)

				.Select(product	=>	new	{	product.ProductID,	product.ProductName,	

product.UnitPrice	});

Rerun	the	application	and	note	that	the	SQL	now	only	includes	three	columns	that	we
need:

SELECT

				[Extent1].[ProductID]	AS	[ProductID],

				[Extent1].[ProductName]	AS	[ProductName],

				[Extent1].[UnitPrice]	AS	[UnitPrice]

				FROM	[dbo].[Products]	AS	[Extent1]

				WHERE	[Extent1].[UnitPrice]	<	cast(10	as	decimal(18))

				ORDER	BY	[Extent1].[UnitPrice]	DESC

Tip
You	might	also	have	noticed	that	the	sequences	implement	IQueryable<T>	instead	of
IEnumerable<T>.	This	is	an	indication	that	we	are	using	a	LINQ	provider	that	uses
deferred	execution	and	builds	the	query	in	memory	using	expression	trees.	The	query	will
not	be	executed	until	the	last	possible	moment	and	only	then	will	it	be	converted	into
another	query	language,	such	as	Transact-SQL	for	Microsoft	SQL	Server.	Enumerating	the
query	with	foreach	or	calling	a	method	such	as	ToArray	will	force	immediate	execution
of	the	query.

Joining	and	grouping
Add	a	new	console	application	project	named	Ch09_JoiningGrouping.

Add	a	new	ADO.NET	Entity	Data	Model	item	named	Northwind.	Use	Code	First	from
database,	connect	to	the	Northwind	database	with	the	server	and	instance	name
(localdb)\mssqllocaldb,	and	select	all	the	tables.

In	the	Main	method,	write	the	following	statements:

var	db	=	new	Northwind();

var	categories	=	db.Categories.Select(c	=>	new	{	c.CategoryID,	

c.CategoryName	}).ToArray();

var	products	=	db.Products.Select(p	=>	new	{	p.ProductID,	p.ProductName,	

p.CategoryID	}).ToArray();

//	join	every	product	to	its	category	to	return	77	matches

var	queryJoin	=	categories.Join(products,	

				category	=>	category.CategoryID,	

				product	=>	product.CategoryID,	

				(c,	p)	=>	new	{	c.CategoryName,	p.ProductName,	p.ProductID	});

foreach	(var	item	in	queryJoin)

{

				WriteLine($"{item.ProductID}:	{item.ProductName}	is	in	

{item.CategoryName}.");

}

Run	the	application	and	view	the	output.	Note	that	there	is	a	single	line	output	for	each	of
the	77	products,	and	the	results	show	all	products	in	the	Beverages	category	first,	then	the
Condiments	category,	and	so	on:

1:	Chai	is	in	Beverages.

2:	Chang	is	in	Beverages.

24:	Guaraná	Fantástica	is	in	Beverages.

34:	Sasquatch	Ale	is	in	Beverages.

35:	Steeleye	Stout	is	in	Beverages.

38:	Côte	de	Blaye	is	in	Beverages.

39:	Chartreuse	verte	is	in	Beverages.

43:	Ipoh	Coffee	is	in	Beverages.

67:	Laughing	Lumberjack	Lager	is	in	Beverages.

70:	Outback	Lager	is	in	Beverages.

75:	Rhönbräu	Klosterbier	is	in	Beverages.

76:	Lakkalikööri	is	in	Beverages.

3:	Aniseed	Syrup	is	in	Condiments.

4:	Chef	Anton's	Cajun	Seasoning	is	in	Condiments.

Change	the	query	to	sort	by	ProductID:

var	queryJoin	=	categories.Join(products,	

				category	=>	category.CategoryID,	

				product	=>	product.CategoryID,	

				(c,	p)	=>	new	{	c.CategoryName,	p.ProductName,	p.ProductID	})

				.OrderBy(cp	=>	cp.ProductID);

Rerun	the	application	and	view	the	output:

1:	Chai	is	in	Beverages.

2:	Chang	is	in	Beverages.

3:	Aniseed	Syrup	is	in	Condiments.

4:	Chef	Anton's	Cajun	Seasoning	is	in	Condiments.

5:	Chef	Anton's	Gumbo	Mix	is	in	Condiments.

6:	Grandma's	Boysenberry	Spread	is	in	Condiments.

7:	Uncle	Bob's	Organic	Dried	Pears	is	in	Produce.

8:	Northwoods	Cranberry	Sauce	is	in	Condiments.

9:	Mishi	Kobe	Niku	is	in	Meat/Poultry.

10:	Ikura	is	in	Seafood.

11:	Queso	Cabrales	is	in	Dairy	Products.

12:	Queso	Manchego	La	Pastora	is	in	Dairy	Products.

13:	Konbu	is	in	Seafood.

14:	Tofu	is	in	Produce.

15:	Genen	Shouyu	is	in	Condiments.

Add	some	new	statements,	as	shown	below,	to	the	existing	code	to	use	the	GroupJoin
method,	and	in	the	output,	show	the	group	name	and	then	all	the	items	within	each	group:

//	group	all	products	by	their	category	to	return	8	matches

var	queryGroup	=	categories.GroupJoin(products,

				category	=>	category.CategoryID,

				product	=>	product.CategoryID,

				(c,	Products)	=>	new	{	c.CategoryName,	Products	=	Products.OrderBy(p	=>	

p.ProductName)	});

foreach	(var	item	in	queryGroup)

{

				WriteLine($"{item.CategoryName}	has	{item.Products.Count()}	

products.");

				foreach	(var	product	in	item.Products)

				{

								WriteLine($"		{product.ProductName}");

				}

}

Rerun	the	application.	Note	that	the	products	inside	each	category	have	been	sorted	by
their	name	as	the	query	asked:

Beverages	has	12	products.

		Chai

		Chang

		Chartreuse	verte

		Côte	de	Blaye

		Guaraná	Fantástica

		Ipoh	Coffee

		Lakkalikööri

		Laughing	Lumberjack	Lager

		Outback	Lager

		Rhönbräu	Klosterbier

		Sasquatch	Ale

		Steeleye	Stout

Condiments	has	12	products.

		Aniseed	Syrup

		Chef	Anton's	Cajun	Seasoning

		Chef	Anton's	Gumbo	Mix

Sweetening	the	syntax	with	syntactic	sugar
C#	3	introduced	some	new	keywords	in	2008	to	make	it	easier	for	programmers	with
experience	in	SQL	to	write	LINQ	queries.	This	syntactic	sugar	is	sometimes	called	the
LINQ	query	comprehension	syntax.

Tip
LINQ	query	comprehension	syntax	is	limited	in	functionality.	You	must	use	extension
methods	to	access	all	the	features	of	LINQ.

Consider	the	following	code:

var	query	=	names

				.Where(name	=>	name.Length	>	4)

				.OrderBy(name	=>	name.Length)

				.ThenBy(name	=>	name);

Instead	of	writing	the	preceding	code,	you	can	write	this:

var	query	=	from	name	in	names

												where	name.Length	>	4

												orderby	name.Length,	name

												select	name;

C#	compiles	the	query	comprehension	syntax	into	the	equivalent	query	using	extension
methods	and	lambda	expressions.

Not	all	extension	methods	have	a	C#	keyword	equivalent,	for	example,	the	Skip	and	Take
extension	methods.	The	following	query	cannot	be	written	using	only	the	query	syntax:

var	query	=	names

				.Where(name	=>	name.Length	>	4)

				.OrderBy(name	=>	name.Length)

				.ThenBy(name	=>	name)

				.Skip(1)

				.Take(2);

Luckily,	you	can	wrap	query	syntax	in	parentheses	and	then	switch	to	using	extension
methods,	as	follows:

var	query	=	(from	name	in	names

												where	name.Length	>	4

												orderby	name.Length,	name

												select	name)

												.Skip(1)

												.Take(2);

Tip
Best	Practice

Learn	both	extension	methods	with	lambda	expressions	and	the	comprehension	syntax
ways	of	writing	LINQ	queries	because	you	are	likely	to	have	to	maintain	code	that	uses
both.

Using	multiple	threads	with	Parallel
LINQ
By	default,	only	one	thread	is	used	to	execute	a	LINQ	query.	Parallel	LINQ	(PLINQ)	is
an	easy	way	to	enable	multiple	threads	to	execute	a	query.

To	see	it	in	action,	we	will	start	with	some	code	that	only	uses	a	single	thread	to	double
200	million	integers.

Add	a	new	console	application	project	named	Ch09_PLINQ.	Import	the
System.Diagnostics	namespace	and	statically	import	the	System.Console	type.

Add	the	following	statements	to	the	Main	method:

var	watch	=	Stopwatch.StartNew();

Write("Press	ENTER	to	start.	");

ReadLine();

watch.Start();

IEnumerable<int>	numbers	=	Enumerable.Range(1,	200000000);

var	squares	=	numbers.Select(number	=>	number	*	2).ToArray();

watch.Stop();

WriteLine($"{watch.ElapsedMilliseconds:#,##0}	ellapsed	milliseconds.");

Press	Ctrl	+	F5	to	run	the	application,	but	do	not	press	Enter	yet.

Right-click	on	the	Windows	Taskbar	or	press	Ctrl	+	Alt	+	Delete,	and	then	click	on	Task
Manager.

At	the	bottom	of	the	Task	Manager	window,	click	on	the	More	details	button.	At	the	top
of	the	Task	Manager	window,	click	on	the	Performance	tab.

Right-click	on	the	CPU	Utilization	graph,	choose	Change	graph	to,	and	then	Logical
processors,	as	you	can	see	in	the	following	screenshot:

Note
If	you	do	not	have	multiple	CPUs,	then	this	exercise	won’t	show	much!

Rearrange	the	Task	Manager	window	and	your	console	application	so	that	they	are	side
by	side.

Wait	for	the	CPUs	to	settle	and	then	press	Enter	to	start	the	stopwatch	and	run	the	query.
Your	output	should	look	like	this:

Press	ENTER	to	start.

19,404	ellapsed	milliseconds.

The	Task	Manager	window	should	show	that	while	the	code	executed,	one	CPU	was
used	the	most.	However,	other	CPUs	could	execute	background	tasks,	such	as	the	garbage
collector,	so	they	won’t	be	completely	flat:

Close	the	console	application,	and	back	in	the	Main	method,	modify	the	query	to	make	a
call	to	the	AsParallel	extension	method	as	follows:

var	squares	=	numbers.AsParallel().Select(number	=>	number	*	2).ToArray();

Press	Ctrl	+	F5	to	run	the	application	again.	Wait	for	the	Task	Manager	window	to	settle
and	then	press	Enter	to	start	the	stopwatch	and	run	the	query.	This	time,	the	application
should	complete	in	less	time	(although	it	might	not	be	as	much	less	as	you	might	hope	for
—managing	those	multiple	threads	takes	extra	effort!),	as	shown	in	the	following	output:

Press	ENTER	to	start.

17,971	ellapsed	milliseconds.

The	Task	Manager	window	should	show	that	all	CPUs	were	used	equally	to	execute	the
LINQ	query,	as	shown	in	the	following	screenshot:

Tip
You	will	learn	more	about	managing	multiple	threads	in	Chapter	12,	Improving
Performance	and	Scalability	with	Multitasking.

Creating	your	own	LINQ	extension
methods
In	Chapter	7,	Implementing	Interfaces	and	Inheriting	Classes,	you	learned	how	to	create
your	own	extension	methods.	To	create	LINQ	extension	methods,	all	you	have	to	do	is
extend	the	IEnumerable<T>	type.

Add	a	new	Class	Library	project	named	Ch09_MyLINQExtensions.	Rename	the
Class1.cs	file	to	MyLINQExtensions.

Modify	the	class	to	look	like	the	following	code.	Note	that	the	ProcessSequence
extension	method	doesn’t	actually	modify	the	sequence	because	it	exists	only	as	an
example.	It	would	be	up	to	you	to	process	the	sequence	in	whatever	manner	you	want.	The
SummariseSequence	extension	method	also	doesn’t	do	anything	especially	useful.	It
simply	returns	the	number	of	items	in	the	sequence	by	using	the	built-in	LongCount
extension	method.	Again,	it	would	be	up	to	you	to	decide	exactly	what	this	method	should
do	and	what	type	it	should	return:

using	System.Collections.Generic;

namespace	System.Linq

{

				public	static	class	MyLINQExtensions

				{

								//	this	is	a	chainable	LINQ	extension	method

								public	static	IEnumerable<T>	ProcessSequence<T>(this	IEnumerable<T>	

sequence)

								{

												return	sequence;

								}

								//	this	is	a	scalar	LINQ	extension	method

								public	static	long	SummariseSequence<T>(this	IEnumerable<T>	

sequence)

								{

												return	sequence.LongCount();

								}

				}

}

To	use	your	LINQ	extension	methods	in	a	project,	you	would	simply	need	to	reference	the
class	library	assembly	because	the	System.Linq	namespace	is	usually	already	imported.

In	the	Ch09_LinqToObjects	project,	add	a	reference	to	the	Ch09_MyLINQExtensions
assembly.

Modify	the	LINQ	query	to	call	your	chainable	extension	method	as	follows:

var	query	=	names

				.ProcessSequence()

				.Where(name	=>	name.Length	>	4)

				.OrderBy(name	=>	name.Length)

				.ThenBy(name	=>	name);

If	you	run	the	console	application,	then	you	will	see	the	same	output	as	before	because
your	method	doesn’t	actually	modify	the	sequence.	But	you	now	know	how	to	extend
LINQ	with	your	own	functionality.

Working	with	LINQ	to	XML
LINQ	to	XML	is	a	provider	that	allows	you	to	use	LINQ	to	query	and	manipulate	XML.

Generating	XML	using	LINQ	to	XML
Add	a	new	console	application	project	named	Ch09_LINQandXML.	Add	a	new
ADO.NET	Entity	Data	Model	item	named	Northwind.	Use	Code	First	from	database,
connect	to	the	Northwind	database	on	the	server	named	(localdb)\mssqllocaldb,	and
select	all	the	tables.

Import	System.Xml.Linq.	In	the	Main	method,	write	the	following	statements:

var	db	=	new	Northwind();

var	products	=	db.Products.ToArray();

var	xml	=	new	XElement("products",

																from	p	in	products

																select	new	XElement("product",

																				new	XAttribute("id",	p.ProductID),

																				new	XAttribute("price",	p.UnitPrice),

																				new	XElement("name",	p.ProductName)));

Console.WriteLine(xml.ToString());

Run	the	application.	Notice	that	the	structure	of	the	XML	generated	matches	the	elements
and	attributes	that	the	LINQ	to	XML	statement	declaratively	described	in	the	preceding
code:

<products>

		<product	id="1"	price="18.0000">

				<name>Chai</name>

		</product>

		<product	id="2"	price="19.0000">

				<name>Chang</name>

		</product>

		<product	id="3"	price="10.0000">

				<name>Aniseed	Syrup</name>

		</product>

Reading	XML	by	using	LINQ	to	XML
The	.NET	Framework	uses	XML	to	store	its	configuration.	You	might	want	to	use	LINQ
to	XML	to	more	easily	query	those	files.

In	the	Solution	Explorer	window,	double-click	on	the	App.config	file	for	the
Ch09_LINQandXML	project	and	add	the	following	into	the	<configuration>	element:

<appSettings>

		<add	key="color"	value="red"	/>

		<add	key="size"	value="large"	/>

		<add	key="price"	value="23.99"	/>

</appSettings>

Back	in	the	Program	class,	add	the	following	statements	to	load	the	configuration	file	for
this	console	application,	use	LINQ	to	XML	to	search	for	an	element	named	appSettings
and	its	descendants	named	add,	then	project	the	XML	into	an	array	of	an	anonymous	type
with	a	Key	and	Value	property,	and	then	enumerate	through	the	array	to	show	the	results:

XDocument	doc	=	XDocument.Load("Ch09_LINQandXML.exe.config");

var	appSettings	=	doc.Descendants("appSettings").Descendants("add")

				.Select(node	=>	new

				{

								Key	=	node.Attribute("key").Value,

								Value	=	node.Attribute("value").Value

				})

				.ToArray();

foreach	(var	item	in	appSettings)

{

				WriteLine($"{item.Key}:	{item.Value}");

}

Press	Ctrl	+	F5	to	run	the	application	and	view	the	output:

color:	red

size:	large

price:	23.99

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore,	with	deeper	research	into	the	topics	covered	in	this	chapter.

Exercise	9.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 What	are	the	two	requirements	to	use	LINQ?
2.	 Which	LINQ	extension	method	would	you	use	to	return	a	subset	of	properties	from	a

type?
3.	 Which	LINQ	extension	method	would	you	use	to	filter	a	sequence?
4.	 List	five	LINQ	extension	methods	that	perform	aggregation.
5.	 What	is	the	difference	between	the	Select	and	SelectMany	extension	methods?

Exercise	9.2	–	practice	querying	with	LINQ
Create	a	console	application	named	Ch09_Exercise02	that	prompts	the	user	for	a	city	and
then	lists	the	company	names	for	Northwind	customers	in	that	city,	as	shown	in	the
following	output:

Enter	the	name	of	a	city:	London

There	are	6	customers	in	London:

Around	the	Horn

B's	Beverages

Consolidated	Holdings

Eastern	Connection

North/South

Seven	Seas	Imports

Enhance	the	application	by	displaying	a	list	of	all	unique	cities	that	customers	already
reside	in	as	a	prompt	to	the	user	before	they	enter	their	preferred	city:

Aachen,	Albuquerque,	Anchorage,	Århus,	Barcelona,	Barquisimeto,	Bergamo,	

Berlin,	Bern,	Boise,	Bräcke,	Brandenburg,	Bruxelles,	Buenos	Aires,	Butte,	

Campinas,	Caracas,	Charleroi,	Cork,	Cowes,	Cunewalde,	Elgin,	Eugene,	

Frankfurt	a.M.,	Genève,	Graz,	Helsinki,	I.	de	Margarita,	Kirkland,	

Kobenhavn,	Köln,	Lander,	Leipzig,	Lille,	Lisboa,	London,	Luleå,	Lyon,	

Madrid,	Mannheim,	Marseille,	México	D.F.,	Montréal,	München,	Münster,	

Nantes,	Oulu,	Paris,	Portland,	Reggio	Emilia,	Reims,	Resende,	Rio	de	

Janeiro,	Salzburg,	San	Cristóbal,	San	Francisco,	Sao	Paulo,	Seattle,	

Sevilla,	Stavern,	Strasbourg,	Stuttgart,	Torino,	Toulouse,	Tsawassen,	

Vancouver,	Versailles,	Walla	Walla,	Warszawa

Exercise	9.3	–	explore	topics
Use	the	following	links	to	read	more	details	about	the	topics	covered	in	this	chapter:

Query	Syntax	and	Method	Syntax	in	LINQ	(C#):	https://msdn.microsoft.com/en-
us/library/bb397947.aspx
101	LINQ	Samples:	https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
Parallel	LINQ	(PLINQ):	https://msdn.microsoft.com/en-
us/library/dd460688(v=vs.110).aspx
LINQ	to	XML:	https://msdn.microsoft.com/en-us/library/bb387098.aspx
LINQPad	–	The	.NET	Programmer’s	Playground:	https://www.linqpad.net/

https://msdn.microsoft.com/en-us/library/bb397947.aspx
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://msdn.microsoft.com/en-us/library/dd460688(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/bb387098.aspx
https://www.linqpad.net/

Summary
In	this	chapter,	you	learned	how	to	write	LINQ	queries	to	select,	project,	filter,	sort,	join,
and	group	data	in	many	different	formats,	including	XML,	which	are	tasks	you	will
perform	every	day.

In	the	next	chapter,	you	will	learn	how	to	manage	files	and	streams,	encode	and	decode
text,	and	perform	serialization.

Chapter	10.	Working	with	Files,	Streams,
and	Serialization
This	chapter	is	about	reading	and	writing	to	files	and	streams,	encoding	and	decoding	text,
and	serialization.

This	chapter	will	cover	the	following	topics:

Managing	the	filesystem
Reading	and	writing	with	streams
Encoding	text
Serializing	object	graphs

Managing	the	filesystem
Your	applications	will	often	need	to	perform	input	and	output	with	files	and	directories.
The	System.IO	namespace	contains	classes	for	this	purpose.

Managing	directories
Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	choose	File
|	New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	center
list,	select	Console	Application,	type	Name	as	Ch10_FileSystem,	change	location	to
C:\Code,	type	solution	name	as	Chapter10,	and	then	click	on	OK.

At	the	top	of	the	Program.cs	file,	add	the	following	import	statements:

using	static	System.Console;

using	System.IO;

In	the	Main	method,	write	the	following	statements	to	check	for	the	existence	of	a
directory,	and	then,	create	and	delete	it:

//	define	a	directory

string	dir	=	@"C:\Code\Ch10_Example\";

//	check	if	it	exists

WriteLine($"Does	{dir}	exist?	{Directory.Exists(dir)}");

//	create	a	directory

Directory.CreateDirectory(dir);

WriteLine($"Does	{dir}	exist?	{Directory.Exists(dir)}");

//	delete	a	directory

Directory.Delete(dir);

WriteLine($"Does	{dir}	exist?	{Directory.Exists(dir)}");

Run	the	application	by	pressing	Ctrl	+	F5	and	notice	the	output:

Does	C:\Code\Ch10_Example\	exist?	False

Does	C:\Code\Ch10_Example\	exist?	True

Does	C:\Code\Ch10_Example\	exist?	False

Managing	files
In	the	Main	method,	add	the	following	statements	to:

Check	for	the	existence	of	a	file
Create	a	text	file
Write	a	line	of	text	to	the	file
Copy	the	file	to	a	backup
Delete	the	original	file
Read	the	backup	file’s	contents

string	textFile	=	@"C:\Code\Ch10.txt";";

string	backupFile	=	@"C:\Code\Ch10.bak";

//	check	if	a	file	exists

WriteLine($"Does	{textFile}	exist?	{File.Exists(textFile)}");

//	create	a	new	text	file	and	write	a	line	to	it

StreamWriter	textWriter	=	File.CreateText(textFile);

textWriter.WriteLine("Hello	C#!");

textWriter.Dispose();

WriteLine($"Does	{textFile}	exist?	{File.Exists(textFile)}");

//	copy	a	file	and	overwrite	if	it	already	exists

File.Copy(textFile,	backupFile,	true);

WriteLine($"Does	{backupFile}	exist?	{File.Exists(backupFile)}");

//	delete	a	file

File.Delete(textFile);

WriteLine($"Does	{textFile}	exist?	{File.Exists(textFile)}");

//	read	from	a	text	file

string	textReader	=	File.OpenText(backupFile);

WriteLine(textReader.ReadToEnd());

textReader.Dispose();

Rerun	the	application	and	notice	the	output:

Does	C:\Code\Ch10.txt	exist?	False

Does	C:\Code\Ch10.txt	exist?	True

Does	C:\Code\Ch10.bak	exist?	True

Does	C:\Code\Ch10.txt	exist?	False

Hello	C#!

Note
In	the	.NET	Framework,	you	can	use	either	the	Close	or	Dispose	method	when	you	are
finished	with	StreamReader	or	StreamWriter.	In	the	.NET	Core,	you	can	only	use
Dispose,	because	Microsoft	has	simplified	the	API.

Managing	paths
Sometimes	you	need	to	work	with	paths,	for	example,	you	might	want	to	extract	just	the
folder	name,	just	the	file	name,	or	just	the	extension.	Sometimes,	you	need	to	generate
temporary	folders	and	file	names.	You	can	do	this	with	the	Path	class.

Add	the	following	statements	to	the	Main	method:

WriteLine($"File	Name:	{Path.GetFileName(textFile)}");

WriteLine($"File	Name	without	Extension:	

{Path.GetFileNameWithoutExtension(textFile)}");

WriteLine($"File	Extension:	{Path.GetExtension(textFile)}");

WriteLine($"Random	File	Name:	{Path.GetRandomFileName()}");

WriteLine($"Temporary	File	Name:	{Path.GetTempFileName()}");

Rerun	the	application:

File	Name:	Ch10.txt

File	Name	without	Extension:	Ch10

File	Extension:	.txt

Random	File	Name:	u45w1zki.co3

Temporary	File	Name:	C:\Users\Mark\AppData\Local\Temp\tmpDF0B.tmp

Getting	file	information
To	get	more	information	about	a	file	or	directory,	you	can	create	an	instance	of	the
FileInfo	or	DirectoryInfo	class.

Add	the	following	statements	to	the	end	of	the	Main	method:

string	backup	=	@"C:\Code\Ch10.bak";

string	info	=	new	FileInfo(backup);

WriteLine($"{backup}	contains	{info.Length}	bytes.");

WriteLine($"{backup}	was	last	accessed	{info.LastAccessTime}.");

WriteLine($"{backup}	has	readonly	set	to	{info.IsReadOnly}.");

Rerun	the	application	and	see	the	output.:

C:\Code\Ch10.bak	contains	11	bytes.

C:\Code\Ch10.bak	was	last	accessed	29/08/2015	16:25:47.

C:\Code\Ch10.bak	has	readonly	set	to	False.

Reading	and	writing	with	streams
A	stream	is	a	sequence	of	bytes.

There	is	an	abstract	class	named	Stream	that	represents	a	stream.	There	are	many	classes
that	inherit	from	this	base	class,	so	they	all	work	the	same	way.	In	the	following	table	are
some	of	the	common	members	of	the	Stream	class:

Member Description

CanRead,	CanWrite Determines	whether	you	can	read	to	and	write	from	the	stream

Length,	Position Determines	the	total	number	of	bytes	and	the	current	position	within	the	stream

Close() Closes	the	stream	and	releases	its	resources

Flush() If	the	stream	has	a	buffer,	then	it	is	cleared	and	written	to	the	underlying	stream

Read() Reads	a	specified	number	of	bytes	from	the	stream	into	a	byte	array	and	advances	the	position

ReadByte() Reads	the	next	byte	from	the	stream	and	advances	the	position

Seek() Moves	the	position	to	the	specified	position	(if	CanSeek	is	true)

Write() Writes	the	contents	of	a	byte	array	into	the	stream

WriteByte() Writes	a	byte	to	the	stream

Storage	streams	can	be	read	and	written	to,	and	the	bytes	will	be	stored	in	that	location.
The	following	table	has	examples	of	storage	stream	classes:

Class Description

FileStream Stored	in	the	filesystem

MemoryStream Stored	in	memory	in	the	current	process

NetworkStream Stored	at	a	network	location

Function	streams	can	only	be	“plugged	onto”	other	streams	to	add	functionality.	The
following	table	has	examples	of	function	stream	classes:

Class Description

CryptoStream Encrypts	and	decrypts	the	stream

GZipStream,	DeflateStream Compresses	and	decompresses	the	stream

AuthenticatedStream Sends	credentials	across	the	stream

Although	there	will	be	occasions	where	you	need	to	work	with	streams	at	a	low	level,

most	often,	you	can	plug	helper	classes	into	the	chain	to	make	things	easier.	Here	are	some
helper	classes	to	handle	common	scenarios:

Class Description

StreamReader Reads	from	streams	as	text

StreamWriter Writes	to	streams	as	text

XmlReader Reads	from	streams	as	XML

XmlWriter Writes	to	streams	as	XML

BinaryReader Reads	from	streams	as	.NET	types

BinaryWriter Writes	to	streams	as	.NET	types

Writing	to	text	and	XML	streams
Add	a	new	console	application	project	named	Ch10_Streams.	Set	the	solution’s	start-up
project	to	be	the	current	selection.

Import	the	System.IO	and	System.Xml	namespaces,	statically	import	the	System.Console
type,	and	add	the	following	statement	to	the	Main	method:

//	define	an	array	of	strings

string[]	callsigns	=	new	string[]	{	"Husker",	"Starbuck",	"Apollo",	

"Boomer",	"Bulldog",	"Athena",	"Helo",	"Racetrack"	};

//	define	a	file	to	write	to	using	a	text	writer	helper	

string	textFile	=	@"C:\Code\Ch10_Streams.txt";

StreamWriter	text	=	File.CreateText(textFile);

//	enumerate	the	strings	writing	each	one	to	the	stream

foreach	(string	item	in	callsigns)

{

				text.WriteLine(item);

}

text.Dispose();	//	release	the	stream	resources

//	output	all	the	contents	of	the	file	to	the	Console

WriteLine($"{textFile}	contains	{new	FileInfo(textFile).Length}	bytes.");

WriteLine(File.ReadAllText(textFile));

//	define	a	file	to	write	to	using	the	XML	writer	helper

string	xmlFile	=	@"C:\Code\Ch10_Streams.xml";

FileStream	xmlFileStream	=	File.Create(xmlFile);

XmlWriter	xml	=	XmlWriter.Create(xmlFileStream,	new	XmlWriterSettings	{	

Indent	=	true	});

//	write	the	XML	declaration

xml.WriteStartDocument();

//	write	a	root	element

xml.WriteStartElement("callsigns");

//	enumerate	the	strings	writing	each	one	to	the	stream

foreach	(string	item	in	callsigns)

{

				xml.WriteElementString("callsign",	item);

}

//	write	the	close	root	element

xml.WriteEndElement();

xml.Dispose();

//	output	all	the	contents	of	the	file	to	the	Console

WriteLine($"{xmlFile}	contains	{new	FileInfo(xmlFile).Length}	bytes.");

WriteLine(File.ReadAllText(xmlFile));

Run	the	application	using	Ctrl	+	F5:

C:\Code\Ch10_Streams.txt	contains	68	bytes.

Husker

Starbuck

Apollo

Boomer

Bulldog

Athena

Helo

Racetrack

C:\Code\Ch10_Streams.xml	contains	320	bytes.

<?xml	version="1.0"	encoding="utf-8"?>

<callsigns>

		<callsign>Husker</callsign>

		<callsign>Starbuck</callsign>

		<callsign>Apollo</callsign>

		<callsign>Boomer</callsign>

		<callsign>Bulldog</callsign>

		<callsign>Athena</callsign>

		<callsign>Helo</callsign>

		<callsign>Racetrack</callsign>

</callsigns>

Compressing	streams
XML	is	relatively	verbose,	so	it	takes	up	more	space	in	bytes	than	plain	text.	We	could
squeeze	the	XML	using	a	common	compression	algorithm	known	as	GZIP.

Import	the	following	namespace:

using	System.IO.Compression;

Add	the	following	code	to	the	end	of	the	Main	method:

//	compress	the	XML	output

string	gzipFilePath	=	@"C:\Code\Ch10.gzip";

FileStream	gzipFile	=	File.Create(gzipFilePath);

GZipStream	compressor	=	new	GZipStream(gzipFile,	CompressionMode.Compress);

XmlWriter	xmlGzip	=	XmlWriter.Create(compressor);

xmlGzip.WriteStartDocument();

xmlGzip.WriteStartElement("callsigns");

foreach	(string	item	in	callsigns)

{

				xmlGzip.WriteElementString("callsign",	item);

}

xmlGzip.Dispose();

compressor.Dispose();	//	also	closes	the	underlying	stream

//	output	all	the	contents	of	the	compressed	file	to	the	Console

WriteLine($"{gzipFilePath}	contains	{new	FileInfo(gzipFilePath).Length}	

bytes.");

WriteLine(File.ReadAllText(gzipFilePath));	

//	read	a	compressed	file

WriteLine("Reading	the	compressed	XML	file:");

gzipFile	=	File.Open(gzipFilePath,	FileMode.Open);

GZipStream	decompressor	=	new	GZipStream(gzipFile,	

CompressionMode.Decompress);

XmlReader	reader	=	XmlReader.Create(decompressor);

while	(reader.Read())

{

				//	check	if	we	are	currently	on	an	element	node	named	callsign

				if	((reader.NodeType	==	XmlNodeType.Element)	&&	(reader.Name	==	

"callsign"))

				{

								reader.Read();	//	move	to	the	Text	node	inside	the	element

								WriteLine($"{reader.Value}");	//	read	its	value

				}

}

reader.Dispose();

decompressor.Dispose();

Rerun	the	application	and	notice	that	the	compressed	XML	is	less	than	half	the	size	of	the
same	XML	without	compression:

C:\Code\Ch10.gzip	contains	144	bytes.

▼					♦	{?{??}En?BYjQqf~???????Bj^r~Jf^??RiI??????MrbNNqfz^1?i?QZ??Zd?

☼↨@H♣?$▬%?

&gc?t,?????*????H?????t?&?d??%b??H?aUPbrjIQ"?←?◄?♦	??9→∟☺

Reading	the	compressed	XML	file:

Husker

Starbuck

Apollo

Boomer

Bulldog

Athena

Helo

Racetrack

Encoding	text
Text	characters	can	be	represented	in	different	ways.	For	example,	the	Western	alphabet
can	be	encoded	using	Morse	code,	into	a	series	of	dots	and	dashes	for	transmission	over	a
telegraph	line.

In	a	similar	way,	text	inside	a	computer	is	stored	as	bits;	ones	and	zeros.	.NET	uses	a
standard	called	Unicode	to	encode	text	internally.	Sometimes,	you	will	need	to	move	text
outside	.NET	for	use	by	systems	that	do	not	use	Unicode	or	use	a	variation	of	Unicode.
The	following	table	shows	some	alternative	encodings:

Encoding Description

ASCII Encodes	a	limited	range	of	characters	using	the	lower	seven	bits	of	a	byte

UTF-8 Represents	each	Unicode	code	point	as	a	sequence	of	one	to	four	bytes

UTF-16 Represents	each	Unicode	code	point	as	a	sequence	of	one	or	two	16-bit	integers

ANSI/ISO
encodings

Provides	support	for	a	variety	of	code	pages	that	are	used	to	support	a	specific	language	or	group
of	languages

Encoding	strings	as	byte	arrays
Add	a	new	console	application	project	named	Ch10_Encoding.

Import	the	System.Text	namespace	and	add	the	following	statement	to	the	Main	method.
The	code	encodes	a	string	using	the	chosen	encoding,	loops	through	each	byte,	and	then
decodes	back	into	a	string	and	outputs	it:

WriteLine("Encodings");

WriteLine("[1]	ASCII");

WriteLine("[2]	UTF-7");

WriteLine("[3]	UTF-8");

WriteLine("[4]	UTF-16	(Unicode)");

WriteLine("[5]	UTF-32");

WriteLine("[any	other	key]	Default");

//	choose	an	encoding

Write("Press	a	number	to	choose	an	encoding:	");

ConsoleKey	number	=	ReadKey(false).Key;

WriteLine();

WriteLine();

Encoding	encoder;

switch	(number)

{

				case	ConsoleKey.D1:

								encoder	=	Encoding.ASCII;

								break;

				case	ConsoleKey.D2:

								encoder	=	Encoding.UTF7;

								break;

				case	ConsoleKey.D3:

								encoder	=	Encoding.UTF8;

								break;

				case	ConsoleKey.D4:

								encoder	=	Encoding.Unicode;

								break;

				case	ConsoleKey.D5:

								encoder	=	Encoding.UTF32;

								break;

				default:

								encoder	=	Encoding.GetEncoding(0);

								break;

}

//	define	a	string	to	encode

string	message	=	"A	pint	of	milk	is	£1.99";

//	encode	the	string	into	a	byte	array

byte[]	encoded	=	encoder.GetBytes(message);

//	check	how	many	bytes	the	encoding	needed

WriteLine($"{encoder.GetType().Name}	uses	{encoded.Length}	bytes.");

//	enumerate	each	byte

WriteLine($"Byte		Hex		Char");

foreach	(byte	b	in	encoded)

{

				WriteLine($"{b,4}	{b.ToString("X"),4}	{(char)b,5}");

}

//	decode	the	byte	array	back	into	a	string	and	display	it

string	decoded	=	encoder.GetString(encoded);

WriteLine(decoded);

Run	the	application	and	press	1	to	choose	ASCII.	Notice	that	when	outputting	the	bytes,
the	pound	sign	(£)	cannot	be	represented	in	ASCII,	so	it	uses	a	question	mark	(?)	instead:

Encodings

[1]	ASCII

[2]	UTF-7

[3]	UTF-8

[4]	UTF-16	(Unicode)

[5]	UTF-32

[any	other	key]	Default

Press	a	number	to	choose	an	encoding:	1

ASCIIEncoding	uses	23	bytes.

Byte		Hex		Char

		65			41					A

		32			20

	112			70					p

	105			69					i

	110			6E					n

	116			74					t

		32			20

	111			6F					o

	102			66					f

		32			20

	109			6D					m

	105			69					i

	108			6C					l

	107			6B					k

		32			20

	105			69					i

	115			73					s

		32			20

		63			3F					?

		49			31					1

		46			2E					.

		57			39					9

		57			39					9

A	pint	of	milk	is	?1.99

Rerun	the	application	and	press	3	to	choose	UTF-8.	Notice	that	UTF-8	requires	one	extra
byte	(24	bytes	instead	of	23	bytes),	but	it	can	store	the	£:

UTF8Encoding	uses	24	bytes.

Byte		Hex		Char

		65			41					A

		32			20

	112			70					p

	105			69					i

	110			6E					n

	116			74					t

		32			20

	111			6F					o

	102			66					f

		32			20

	109			6D					m

	105			69					i

	108			6C					l

	107			6B					k

		32			20

	105			69					i

	115			73					s

		32			20

	194			C2					Â

	163			A3					£

		49			31					1

		46			2E					.

		57			39					9

		57			39					9

A	pint	of	milk	is	£1.99

Rerun	the	application	and	press	4	to	choose	Unicode	(UTF-16).	Notice	that	UTF-16	requires
two	bytes	for	every	character,	but	it	can	store	the	£:

UnicodeEncoding	uses	46	bytes.

Encoding	and	decoding	text	in	files
When	using	stream	helper	classes	such	as	StreamReader	and	StreamWriter,	you	can
specify	the	encoding	you	want	to	use.	As	you	write	to	the	helper,	the	strings	will
automatically	be	encoded,	and	as	you	read	from	the	helper,	the	bytes	will	be	automatically
decided.	This	is	how	you	can	specify	the	encoding:

var	reader	=	new	StreamReader(stream,	Encoding.UTF7);

var	writer	=	new	StreamWriter(stream,	Encoding.UTF7);

Tip
Often,	you	won’t	have	a	choice	of	encoding	to	use,	because	you	will	be	generating	a	file
for	use	by	another	system.	However,	if	you	do,	pick	one	that	uses	the	least	amount	of
bytes	but	can	store	every	character	you	need.

Serializing	object	graphs
Serialization	is	the	process	of	converting	a	live	object	into	a	sequence	of	bytes	using	a
specified	format.	Deserialization	is	the	reverse	process.

There	are	dozens	of	formats	you	can	choose,	but	the	two	most	common	ones	are
eXtensible	Markup	Language	(XML)	and	JavaScript	Object	Notation	(JSON).

Tip
JSON	is	more	compact	and	is	best	for	web	and	mobile	applications.	XML	is	more
verbose,	but	is	better	supported	on	older	systems.

.NET	has	multiple	classes	that	will	serialize	to	and	from	XML	and	JSON.	We	will	start	by
looking	at	XmlSerializer	and	JavaScriptSerializer.

Serializing	with	XML
Add	a	new	console	application	project	named	Ch10_Serialization.

Note
If	you	are	targeting	the	.NET	Core,	then	you	would	need	to	manually	add	the	latest	version
of	the	System.Xml.XmlSerializer	NuGet	package.

To	show	a	common	example,	we	will	define	a	custom	class	to	store	information	about	a
person	and	then	create	an	object	graph	using	a	list	of	Person	instances	with	nesting.

Add	a	class	named	Person	with	the	following	definition.	Notice	that	the	Salary	property
is	protected,	meaning	it	is	only	accessible	to	itself	and	the	derived	classes.	To	populate
the	salary,	the	class	has	a	constructor	with	a	single	parameter	to	set	the	initial	salary:

public	class	Person

{

				public	Person(decimal	initialSalary)

				{

								Salary	=	initialSalary;

				}

				public	string	FirstName	{	get;	set;	}

				public	string	LastName	{	get;	set;	}

				public	DateTime	DateOfBirth	{	get;	set;	}

				public	HashSet<Person>	Children	{	get;	set;	}

				protected	decimal	Salary	{	get;	set;	}

}

Back	in	Program.cs,	import	the	following	namespaces:

using	System;

using	System.Collections.Generic;

using	System.Xml.Serialization;

using	System.IO;

using	static	System.Console;

Add	the	following	statements	to	the	Main	method:

//	create	an	object	graph

var	people	=	new	List<Person>

{

				new	Person(30000M)	{	FirstName	=	"Alice",	LastName	=	"Smith",	

DateOfBirth	=	new	DateTime(1974,	3,	14)	},

				new	Person(40000M)	{	FirstName	=	"Bob",	LastName	=	"Jones",	DateOfBirth	

=	new	DateTime(1969,	11,	23)	},

				new	Person(20000M)	{	FirstName	=	"Charlie",	LastName	=	"Rose",	

DateOfBirth	=	new	DateTime(1964,	5,	4),	Children	=	new	HashSet<Person>

								{	new	Person(0M)	{	FirstName	=	"Sally",	LastName	=	"Rose",	

DateOfBirth	=	new	DateTime(1990,	7,	12)	}	}	}

};

//	create	a	file	to	write	to

string	xmlFilepath	=	@"C:\Code\Ch10_People.xml";

FileStream	xmlStream	=	File.Create(xmlFilepath);

//	create	an	object	that	will	format	a	List	of	Persons	as	XML

var	xs	=	new	XmlSerializer(typeof(List<Person>));

												

//	serialize	the	object	graph	to	the	stream

xs.Serialize(xmlStream,	people);

												

//	you	must	dispose	the	stream	to	release	the	file	lock

xmlStream.Dispose();

WriteLine($"Written	{new	FileInfo(xmlFilepath).Length}	bytes	of	XML	to	

{xmlFilepath}");

WriteLine();

//	Display	the	serialized	object	graph

WriteLine(File.ReadAllText(xmlFilepath));

Run	the	application	with	Ctrl	+	F5.	Notice	that	an	exception	is	thrown:

Unhandled	Exception:	System.InvalidOperationException:	

Ch10_Serialization.Person	cannot	be	serialized	because	it	does	not	have	a	

parameterless	constructor.

Back	in	the	Person.cs	file,	add	the	following	statement	to	define	a	parameter-less
constructor.	Notice	that	the	constructor	does	not	need	to	do	anything,	but	it	must	exist	so
that	the	XmlSerializer	can	call	it	to	instantiate	new	Person	instances	when	deserializing:

public	Person()	{	}

Rerun	the	application	and	see	the	output.	Notice	that	the	object	graph	is	serialized	and	the
Salary	property	is	not	included:

Written	778	bytes	of	XML	to	C:\Code\Ch10_People.xml

<?xml	version="1.0"?>

<ArrayOfPerson	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

		<Person>

				<FirstName>Alice</FirstName>

				<LastName>Smith</LastName>

				<DateOfBirth>1974-03-14T00:00:00</DateOfBirth>

		</Person>

		<Person>

				<FirstName>Bob</FirstName>

				<LastName>Jones</LastName>

				<DateOfBirth>1969-11-23T00:00:00</DateOfBirth>

		</Person>

		<Person>

				<FirstName>Charlie</FirstName>

				<LastName>Rose</LastName>

				<DateOfBirth>1964-05-04T00:00:00</DateOfBirth>

				<Children>

						<Person>

								<FirstName>Sally</FirstName>

								<LastName>Rose</LastName>

								<DateOfBirth>1990-07-12T00:00:00</DateOfBirth>

						</Person>

				</Children>

		</Person>

</ArrayOfPerson>

We	could	make	the	XML	more	efficient	using	attributes	instead	of	elements	for	some
fields.

In	the	Person.cs	file,	import	the	System.Xml.Serialization	namespace	and	modify	all
the	properties,	except	Children,	with	the	[XmlAttribute]	attribute:

[XmlAttribute("fname")]

public	string	FirstName	{	get;	set;	}

[XmlAttribute("lname")]

public	string	LastName	{	get;	set;	}

[XmlAttribute("dob")]

public	DateTime	DateOfBirth	{	get;	set;	}

Rerun	the	application	and	notice	that	the	XML	is	now	more	efficient:

Written	473	bytes	of	XML	to	C:\Code\Ch10_People.xml

<?xml	version="1.0"?>

<ArrayOfPerson	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xmlns:xsd="

http://www.w3.org/2001/XMLSchema">

		<Person	fname="Alice"	lname="Smith"	dob="1974-03-14T00:00:00"	/>

		<Person	fname="Bob"	lname="Jones"	dob="1969-11-23T00:00:00"	/>

		<Person	fname="Charlie"	lname="Rose"	dob="1964-05-04T00:00:00">

				<Children>

						<Person	fname="Sally"	lname="Rose"	dob="1990-07-12T00:00:00"	/>

				</Children>

		</Person>

</ArrayOfPerson>

Deserializing	with	XML
Add	the	following	statements	to	the	end	of	the	Main	method:

FileStream	xmlLoad	=	File.Open(xmlFilepath,	FileMode.Open);

//	deserialize	and	cast	the	object	graph	into	a	List	of	Person

var	loadedPeople	=	(List<Person>)xs.Deserialize(xmlLoad);

foreach	(var	item	in	loadedPeople)

{

				WriteLine($"{item.LastName}	has	{item.Children.Count}	children.");

}

xmlLoad.Dispose();

Rerun	the	application	and	notice	that	the	people	are	loaded	successfully	from	the	XML
file:

Smith	has	0	children.

Jones	has	0	children.

Rose	has	1	children.

Customizing	the	XML
There	are	many	other	attributes	that	can	be	used	to	control	the	XML	generated.	See	the
references	at	the	end	of	this	chapter	for	more	information.

Tip
When	using	XmlSerializer,	remember	that	only	public	fields	and	properties	are
included,	and	the	type	must	have	a	parameter-less	constructor.	You	can	customize	the
output	with	attributes.

Serializing	with	JSON
Add	a	reference	to	the	System.Web.Extensions	assembly.

Note
The	System.Web.Extensions	assembly	is	supported	by	the	.NET	Framework	only.	Use
Newtonsoft’s	JSON.NET	if	you	need	to	serialize	cross	platform	with	the	.NET	Core,
which	can	be	found	at	http://www.newtonsoft.com/json

Import	the	following	namespace	at	the	top	of	the	Program.cs	file:

using	System.Web.Script.Serialization;

Add	the	following	statements	to	the	end	of	the	Main	method:

//	create	a	file	to	write	to

string	jsonFilepath	=	@"C:\Code\Ch10_People.json";

FileStream	jsonStream	=	File.Create(jsonFilepath);

//	create	an	object	that	will	format	as	JSON

var	jss	=	new	JavaScriptSerializer();

//	serialize	the	object	graph	into	a	string

string	json	=	jss.Serialize(people);

//	write	the	string	to	a	file

var	writer	=	new	StreamWriter(jsonStream);

writer.Write(json);

//	you	must	dispose	the	stream	to	release	the	file	lock

writer.Dispose();

WriteLine();

WriteLine($"Written	{new	FileInfo(jsonFilepath).Length}	bytes	of	JSON	to:	

{jsonFilepath}");

//	Display	the	serialized	object	graph

WriteLine(File.ReadAllText(jsonFilepath));

Rerun	the	application,	and	notice	that	JSON	requires	less	than	half	the	number	of	bytes
compared	to	XML	with	elements.	It’s	even	smaller	than	XML	that	uses	attributes:

Written	380	bytes	of	JSON	to:	C:\Code\Ch10_People.json

[{"FirstName":"Alice","LastName":"Smith","DateOfBirth":"\/Date(132451200000

)\/",	"Children":null},

{"FirstName":"Bob","LastName":"Jones","DateOfBirth":"\/Date(-3369600000)\/"

,"Children":null},

{"FirstName":"Charlie","LastName":"Rose","DateOfBirth":"\/Date(-17867880000

0)\/","Children":

[{"FirstName":"Sally","LastName":"Rose","DateOfBirth":"\/Date(647737200000)

\/","Children":null}]}]

Tip

http://www.newtonsoft.com/json

Use	JSON	to	minimize	the	size	of	serialized	object	graphs.	You	can	also	use	JSON	when
sending	object	graphs	to	web	applications	and	mobile	applications.

Serializing	with	other	formats
There	are	many	other	formats	built	into	.NET	that	you	can	use	for	serialization	and	even
more	if	you	purchase	additional	libraries.

Type Description

System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

This	uses	a	Microsoft	proprietary	binary	format,	so
it	should	only	be	used	when	a	.NET	application	is
both	serializing	and	deserializing	the	object	graph.

System.Runtime.Serialization.Formatters.Soap.SoapFormatter

This	is	used	by	ASP.NET	XML	web	services	to
serialize	with	the	SOAP	format.	To	use	it	yourself,
you	must	add	a	reference	to	the
System.Runtime.Serialization.Formatters.Soap

assembly	and	import	the
System.Runtime.Serialization.Formatters.Soap

namespace.

System.Runtime.Serialization.DataContractSerializer

This	is	used	by	Windows	Communication
Foundation	(WCF)	to	serialize	with	SOAP	format
(or	XML	when	an	endpoint	has	the	WebHttp
behavior).	To	use	it	yourself,	you	must	add	a
reference	to	the	System.Runtime.Serialization
assembly	and	import	the
System.Runtime.Serialization	namespace

System.Runtime.Serialization.DataContractJsonSerializer
This	is	used	by	WCF	to	serialize	into	the	JSON
format	when	an	endpoint	has	a	WebHttp	behavior.

System.Runtime.Serialization	.IFormatter
This	is	used	to	implement	your	own	custom	runtime
serializers.

Serializing	with	runtime	serializers
BinaryFormatter	type	is	one	of	the	serializers	that	can	be	used	only	with	.NET
Framework.	These	are	powerful,	but	they	have	the	special	requirement	that	the	type	being
serialized	must	be	marked	as	serializable	using	an	attribute.	Like	JavaScriptSerializer,
they	are	not	cross-platform!

Import	the	System.Runtime.Serialization.Formatters.Binary	namespace:

using	System.Runtime.Serialization.Formatters.Binary;

At	the	bottom	of	the	Main	method,	add	the	following	statements:

string	binaryFilepath	=	@"C:\Code\Ch10_People.bin";";

FileStream	binaryStream	=	File.Create(binaryFilepath);

var	bf	=	new	BinaryFormatter();

bf.Serialize(binaryStream,	people);

binaryStream.Dispose();

WriteLine($"Written	{new	FileInfo(binaryFilepath).Length}	bytes	of	

proprietary	binary	to	{binaryFilepath}");}");

WriteLine();

//	Display	the	serialized	object	graph

WriteLine(File.ReadAllText(binaryFilepath));

Rerun	the	application	and	notice	the	exception	that	is	thrown.:

Unhandled	Exception:	System.Runtime.Serialization.SerializationException:	

Type	'Ch10_Serialization.Person'	in	Assembly	'Ch10_Serialization,	

Version=1.0.0.0,	Culture=neutral,	PublicKeyToken=null'	is	not	marked	as	

serializable.

In	the	Person.cs,	add	the	[Serializable]	attribute	to	the	Person	class:

[Serializable]

public	class	Person

Rerun	the	application.	Now,	the	object	graph	is	successfully	serialized:

Written	1573	bytes	of	proprietary	binary	to	C:\Code\Ch10_People.bin

	☺			????☺							♀☻			ICh10_Serialization,	Version=1.0.0.0,	

Culture=neutral,	PublicKeyToken=null♦☺			?☺

System.Collections.Generic.List`1[[Ch10_Serialization.Person,	

Ch10_Serialization,	Version=1.0.0.0,	Culture=neutral,	PublicKeyToken=null]]	

♥			♠_items♣_siz_version♦		←Ch10_Serialization.Person[]	♥			♥			♥			♥				☺			

♦	♦↓Ch10_Serialization.Person☻											♦							♣							♠♀			NSystem.Core,	

Version=4.0.0.0,	Culture=neutral,	PublicKeyToken=b77a5c561934e089♣♦			

↓Ch10_Serialization.Person♣			

→<FirstName>k__BackingField↓<LastName>k__BackingField∟<DateOfBirth>k__Backi

ngField↓<Children>k__BackingField↨<Salary>k__Ba?☺

System.Collections.Generic.HashSet`1[[Ch10_Serialization.Person,	

Ch10_Serialization,	Version=1.0.0.0,	Culture=neutral,	PublicKeyToken=null]]			

♣☻					♣Alice♠			♣Smith	@??4?	♣30000☺♣			♦			♠			♥Bob♠♂			♣Jones	@??Pa?			

♦Rose	?rY?&		♫			♣20000♣♫			?☺

System.Collections.Generic.HashSet`1[[Ch10_Serialization.Person,	

Ch10_Serialization,	Version=1.0.0.0,	Culture=neutral,	

PublicKeyToken=null]]♦			VersioCompareCapacitElements	♥	?☺

System.Collections.Generic.ObjectEqualityComparer`1[[Ch10_Serialization.Per

son,	Ch10_Serialization,	Version=1.	0.0.0,	Culture=neutral,	

PublicKeyToken=null]←Ch10_Serialization.Person[]☻						☺								☼			♥											

►			♦☼			?☺

System.Collections.Generic.ObjectEqualityComparer`1[[Ch10_Serialization.Per

son,	Ch10_Serialization,	Version=1.0.0.0,	Culture=neutral,	

PublicKeyToken=null]]				►				☺			☺			♦↓Ch10_Serialization.Person☻				@?			

♦			♠↕			♣Sally!??	☺0♂

Tip
Use	the	BinaryFormatter	or	any	of	the	other	runtime	serializers	only	when	you	will
serialize	and	deserialize	with	.NET	Framework.

Practice	and	explore
Test	your	knowledge	and	understanding	by	answering	some	questions,	getting	some
hands-on	practice,	and	exploring	this	chapter’s	topics	with	deeper	research.

Exercise	10.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 What	is	the	difference	between	using	the	File	class	and	the	FileInfo	class?
2.	 What	is	the	difference	between	the	ReadByte	method	and	the	Read	method	of	a

stream?
3.	 When	would	you	use	StringReader,	TextReader,	and	StreamReader	classes?
4.	 What	does	the	DeflateStream	type	do?
5.	 How	many	bytes	per	character	does	the	UTF-8	encoding	use?
6.	 What	is	an	object	graph?
7.	 What	is	the	best	serialization	format	to	choose	for	minimizing	space	requirements?
8.	 What	is	the	best	serialization	format	to	choose	for	cross-platform	compatibility?
9.	 Which	Microsoft	technology	uses	the	DataContractSerializer	type	by	default?
10.	 Is	it	possible	to	create	your	own	custom	runtime	serializers?

Exercise	10.2	–	practice	serializing	as	XML
Create	a	console	application	named	Ch10_Exercise02	that	creates	a	list	of	shapes,	uses
serialization	to	save	it	to	the	filesystem	using	XML,	and	then	deserializes	it	back:

//	create	a	list	of	Shapes	to	serialize

var	listOfShapes	=	new	List<Shape>

{

				new	Circle	{	Colour	=	"Red",	Radius	=	2.5	},

				new	Rectangle	{	Colour	=	"Blue",	Height	=	20.0,	Width	=	10.0	},

				new	Circle	{	Colour	=	"Green",	Radius	=	8	},

				new	Circle	{	Colour	=	"Purple",	Radius	=	12.3	},

				new	Rectangle	{	Colour	=	"Blue",	Height	=	45.0,	Width	=	18.0		}

};

Shapes	should	have	a	read-only	property	named	Area	so	that	when	you	deserialize,	you
can	output	a	list	of	shapes,	including	their	areas,	as	shown	here:

List<Shape>	loadedShapesXml	=	serializerXml.Deserialize(fileXml)	as	

List<Shape>;

foreach	(Shape	item	in	loadedShapesXml)

{

				WriteLine($"{item.GetType().Name}	is	{item.Colour}	and	has	an	area	of	

{item.Area}");

}

This	is	what	your	output	should	look	like	when	you	run	the	application:

Loading	shapes	from	XML:

Circle	is	Red	and	has	an	area	of	19.6349540849362

Rectangle	is	Blue	and	has	an	area	of	200

Circle	is	Green	and	has	an	area	of	201.061929829747

Circle	is	Purple	and	has	an	area	of	475.2915525616

Rectangle	is	Blue	and	has	an	area	of	810

Exercise	10.3	–	explore	serialization	formats
Create	a	console	application	named	Ch10_Exercise03	that	queries	the	Northwind
database	for	all	the	categories	and	products,	and	then	serializes	the	data	using	all	the
formats	of	serialization	available	in	.NET.	Which	uses	the	least	number	of	bytes?

Exercise	10.4	–	explore	Microsoft’s	System.IO	types
Use	ILSpy	to	explore	the	Microsoft	.NET	Framework	implementations	of	the	Stream,
FileStream,	and	StreamWriter	classes.	You	will	find	those	classes	in	the	System.IO
namespace	in	the	mscorlib.dll	assembly.

In	particular,	look	at	the	Dispose	and	Close	methods.	My	students	often	ask	which	to	use
and	whether	there	is	a	difference.	By	viewing	the	actual	implementation,	you	can	find	out.

The	Close	method	looks	like	this:

The	Dispose	method	looks	like	this:

Tip
In	the	.NET	Core,	Microsoft	has	removed	the	Close	method	so	you	must	use	the	Dispose
method	instead.

Exercise	10.5	–	explore	topics
Use	the	following	links	to	read	more	on	this	chapter’s	topics:

File	and	Stream	I/O:	https://msdn.microsoft.com/en-
us/library/k3352a4t(v=vs.110).aspx
Character	encoding	in	the	.NET	Framework:	https://msdn.microsoft.com/en-
us/library/ms404377(v=vs.110).aspx
Serialization:	https://msdn.microsoft.com/en-us/library/7ay27kt9(v=vs.110).aspx
Introducing	XML	serialization:	https://msdn.microsoft.com/en-
us/library/182eeyhh(v=vs.110).aspx
Serialization	and	deserialization:	https://msdn.microsoft.com/en-
us/library/ms731073(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/k3352a4t(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms404377(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/7ay27kt9(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/182eeyhh(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms731073(v=vs.110).aspx

Summary
In	this	chapter,	you	learned	how	to	read	from	and	write	to	text	files	and	XML	files,	how	to
compress	and	decompress	files,	how	to	encode	and	decode	text,	and	how	to	serialize	an
object	into	JSON	and	XML	(and	deserialize	it	back	again).

In	the	next	chapter,	you	will	learn	how	to	protect	data	and	applications.

Chapter	11.	Protecting	Your	Data	and
Applications
This	chapter	is	about	protecting	your	data	from	being	viewed	by	malicious	users	using
encryption	and	from	being	manipulated	or	corrupted	using	hashing	and	signing.	It	is	also
about	checking	who	is	running	your	application	and	restricting	their	actions	to	only	those
that	they	are	given	permission	to	do.

Note
Security	is	tightly	bound	to	the	operating	system,	so	this	is	an	area	that	is	not	very	well
supported	by	the	.NET	Core	(at	least	for	now).	To	complete	the	exercises	in	this	chapter,	I
recommend	that	you	target	the	.NET	Framework	on	Windows	10.	Then,	once	you	have
learned	the	skills,	you	can	try	implementing	them	using	the	equivalent	.NET	Core	types.

This	chapter	covers	the	following	topics:

Understanding	the	vocabulary	of	protection
Encrypting	and	decrypting	data
Hashing	data
Signing	data
Authenticating	and	authorizing	users

Understanding	the	vocabulary	of
protection
There	are	many	techniques	to	protect	your	applications	and	data,	some	of	them	are	as
follows:

Encryption	and	decryption:	This	is	a	two-way	process	to	convert	cleartext	into
cryptotext	and	back	again
Hashes:	This	is	a	one-way	process	to;	generate	a	hash	to	securely	store	passwords,	or
a	hash	can	be	used	to	detect	malicious	changes	and	corruption	of	data
Signatures:	This	technique	is	used	to	ensure	that	data	has	come	from	someone	you
trust	by	validating	a	signature	against	someone’s	public	key
Authentication:	This	technique	is	used	to	identify	someone	by	checking	their
credentials
Authorization:	This	technique	is	used	to	ensure	someone	has	permission	to	perform
an	action,	or	work	with	some	data	by	checking	the	roles	or	groups	they	belong	to

Tip
Best	Practice

If	security	is	important	to	you,	then	hire	an	experienced	security	expert	for	guidance	rather
than	relying	on	advice	found	online.	It	is	very	easy	to	make	small	mistakes	and	leave	your
applications	and	data	vulnerable	without	realizing	until	it	is	too	late!

Keys	and	key	sizes
Protection	algorithms	often	use	a	key.	Keys	can	be	symmetric	(also	known	as	shared	or
secret	because	the	same	key	is	used	to	encrypt	and	decrypt)	or	asymmetric	(a	public-
private	key	pair	where	the	public	key	is	used	to	encrypt	and	only	the	private	key	can	be
used	to	decrypt).	Keys	are	represented	by	byte	arrays	of	varying	size.

Tip
Best	Practice

Choose	a	bigger	key	size	for	stronger	protection.

IVs	and	block	sizes
When	encrypting	large	amounts	of	data,	there	are	likely	to	be	repeating	sequences.	For
example,	in	an	English	document	the	sequence	of	characters	“the”	would	appear
frequently.	A	good	cracker	would	use	this	knowledge	to	make	it	easier	to	crack	the
encryption.	Note	the	becomes	hQ2	in	the	following	example:

When	the	wind	blew	hard	the	umbrella	broke.	

5:s4&hQ2aj#D	f9d1d£8fh"&hQ2s0)an	DF8SFd#][1

We	can	avoid	repeating	sequences	by	dividing	data	into	blocks.	After	encrypting	a	block,
a	byte	array	value	is	generated	from	that	block	and	this	value	is	fed	into	the	next	block	to
adjust	the	algorithm	so	that	“the”	isn’t	encrypted	in	the	same	way.	To	encrypt	the	first
block,	we	need	a	byte	array	to	feed	in.	This	is	called	the	initialization	vector	(IV).

Tip
Best	Practice

Choose	a	small	block	size	for	stronger	encryption.

Salts
A	salt	is	a	random	byte	array	that	is	used	as	an	additional	input	to	a	one-way	hash
function.	If	you	do	not	use	a	salt	when	generating	hashes,	then	when	many	of	your	users
register	with	“123456”	as	their	password	(about	8%	of	users	still	do	this!),	they	all	have
the	same	hashed	value,	and	their	account	will	be	vulnerable	to	a	dictionary	attack.

When	a	user	registers,	a	salt	should	be	randomly	generated	and	concatenated	with	their
chosen	password	before	being	hashed.	The	output	(but	not	the	original	password)	is	stored
with	the	salt	in	the	database.

When	the	user	next	logs	in	and	enters	their	password,	you	look	up	their	salt,	concatenate	it
with	the	entered	password,	regenerate	a	hash,	and	then	compare	its	value	with	the	hash
stored	in	the	database.	If	they	are	the	same,	you	know	they	entered	the	correct	password.

Generating	keys	and	IVs
Keys	and	IVs	are	byte	arrays.	You	can	reliably	generate	a	key	or	IV	using	a	password-
based	key	derivation	function	(PBKDF2).	A	good	one	is	the	Rfc2898DeriveBytes	class,
which	takes	a	password,	a	salt,	and	an	iteration	count,	and	then	generates	keys	and	IVs	by
making	calls	to	its	GetBytes	method.

Tip
Best	Practice

The	salt	size	should	be	8	bytes	or	larger	and	the	iteration	count	should	be	greater	than
zero.	The	minimum	recommended	number	of	iterations	is	1000.

Encrypting	and	decrypting	data
There	are	multiple	encryption	algorithms	you	can	choose	from	in	.NET.	Some	algorithms
are	implemented	by	the	operating	system	and	their	names	are	suffixed	with	the	text
CryptoServiceProvider,	some	are	implemented	in	managed	code	and	their	names	are
suffixed	with	the	text	Managed,	some	use	symmetric	keys,	and	some	use	asymmetric	keys.
The	following	table	summarizes	some	of	the	more	common	encryption	algorithms:

Type Description

RSACryptoServiceProvider

This	performs	asymmetric	encryption	and	decryption	using	the	implementation	of	the
RSA	algorithm.	RSA	stands	for	Ron	Rivest,	Adi	Shamir,	and	Leonard	Adleman,	who
described	it	in	1978.

AesManaged
This	provides	a	managed	implementation	of	the	Advanced	Encryption	Standard	(AES)
symmetric	algorithm	that	is	based	on	Rijndael.

RijndaelManaged This	provides	a	managed	implementation	of	the	Rijndael	symmetric	algorithm.

RC2CryptoServiceProvider
This	defines	a	wrapper	to	access	the	cryptographic	service	provider	(CSP)
implementation	of	the	RC2	symmetric	algorithm.

DESCryptoServiceProvider
This	defines	a	wrapper	to	access	the	CSP	version	of	the	Data	Encryption	Standard
(DES)	symmetric	algorithm.

Tip
Best	Practice

Choose	AES	for	symmetric	encryption	and	RSA	for	asymmetric	encryption.

Encrypting	symmetrically	with	AES
To	make	it	easier	to	reuse	your	protection	code	in	the	future,	we	will	create	a	static	class
named	Protector	in	its	own	class	library.

Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	navigate	to
File	|	New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	list	at
the	center,	select	Class	Library,	type	the	name	Ch11_Cryptography,	change	the	location
to	C:\Code,	type	the	solution	name	as	Chapter11,	and	then	click	on	OK.

Rename	Class1.cs	to	Protector.cs.	Change	its	contents	to	look	like	this:

using	System;

using	System.IO;

using	System.Security.Cryptography;

using	System.Text;

namespace	Ch11_Cryptography

{

				public	static	class	Protector

				{

								//	salt	size	must	be	at	least	8	bytes,	we	will	use	16	bytes

								private	static	readonly	byte[]	salt	=	

Encoding.Unicode.GetBytes("7BANANAS");

								//	iterations	must	be	at	least	1000,	we	will	use	2000

								private	static	readonly	int	iterations	=	2000;

								public	static	string	Encrypt(string	plainText,	string	password)

								{

												byte[]	plainBytes	=	Encoding.Unicode.GetBytes(plainText);

												var	aes	=	Aes.Create();

												var	pbkdf2	=	new	Rfc2898DeriveBytes(password,	salt,	

iterations);

												aes.Key	=	pbkdf2.GetBytes(32);	//	set	a	256-bit	key

												aes.IV	=	pbkdf2.GetBytes(16);	//	set	a	128-bit	IV

												var	ms	=	new	MemoryStream();

												using	(var	cs	=	new	CryptoStream(ms,	aes.CreateEncryptor(),	

CryptoStreamMode.Write))

												{

																cs.Write(plainBytes,	0,	plainBytes.Length);

												}

												return	Convert.ToBase64String(ms.ToArray());

								}

								public	static	string	Decrypt(string	cryptoText,	string	password)

								{

												byte[]	cryptoBytes	=	Convert.FromBase64String(cryptoText);

												var	aes	=	Aes.Create();

												var	pbkdf2	=	new	Rfc2898DeriveBytes(password,	salt,	

iterations);

												aes.Key	=	pbkdf2.GetBytes(32);

												aes.IV	=	pbkdf2.GetBytes(16);

												var	ms	=	new	MemoryStream();

												using	(var	cs	=	new	CryptoStream(ms,	aes.CreateDecryptor(),	

CryptoStreamMode.Write))

												{

																cs.Write(cryptoBytes,	0,	cryptoBytes.Length);

												}

												return	Encoding.Unicode.GetString(ms.ToArray());

								}

				}

}

Note	the	following	about	the	preceding	code:

We	used	double	the	recommended	salt	size	and	iteration	count
Although	the	salt	and	iteration	count	can	be	hardcoded,	the	password	must	be	passed
at	runtime	when	calling	Encrypt	and	Decrypt
We	use	a	temporary	MemoryStream	variable	to	store	the	results	of	encrypting	and
decrypting	and	then	call	ToArray	to	turn	the	stream	into	a	byte	array
We	convert	the	encrypted	byte	arrays	to	and	from	the	Base64	encoding	to	make	them
easier	to	read

Tip
Best	Practice

Never	hardcode	a	password	in	your	source	code	because	it	can	be	read	using	ILDASM
and	other	tools.

Add	a	new	Console	Application	project	named	Ch11_Encryption.	Add	a	reference	to	the
Ch11_Cryptography	assembly	and	then	import	the	following	namespaces:

using	Ch11_Cryptography;

using	static	System.Console;

In	the	Main	method,	add	the	following	statements	to	prompt	the	user	for	a	message	and	a
password	and	then	encrypt	and	decrypt:

Write("Enter	a	message	that	you	want	to	encrypt:	");

string	message	=	ReadLine();

Write("Enter	a	password:	");

string	password	=	ReadLine();

string	cryptoText	=	Protector.Encrypt(message,	password);

WriteLine($"Encrypted	text:	{cryptoText}");

string	clearText	=	Protector.Decrypt(cryptoText,	password);

WriteLine($"Decrypted	text:	{clearText}");

Run	the	application	and	try	entering	a	message	and	password,	and	see	the	output.

Enter	a	message	that	you	want	to	encrypt:	Hello	Bob

Enter	a	password:	secret

Encrypted	text:	pV5qPDf1CCZmGzUMH2gapFSkn573lg7tMj5ajice3cQ=

Decrypted	text:	Hello	Bob

Hashing	data
There	are	multiple	hash	algorithms	you	can	choose	from	in	.NET.	Some	do	not	use	any
key,	some	use	symmetric	keys,	and	some	use	asymmetric	keys.

There	are	two	important	factors	to	consider	when	choosing	a	hash	algorithm:

Collision	resistance:	How	rare	is	it	to	find	two	inputs	that	share	the	same	hash?
Preimage	resistance:	For	a	hash,	how	difficult	would	it	be	to	find	another	input	that
shares	the	same	hash?

Here	are	some	common	hashing	algorithms:

Algorithm Hash	size Description

MD5 16	bytes This	is	commonly	used	because	it	is	fast,	but	it	is	not	collision	resistant.

SHA1,	SHA256,
SHA384,
SHA512

20	bytes,	32
bytes,	48	bytes,
64	bytes

These	are	Secure	Hashing	Algorithm	2nd	generation	algorithms	(SHA2)	with
different	hash	sizes.	The	use	of	SHA1	on	the	Internet	has	been	deprecated	since
2011.

Note
Best	Practice

Avoid	MD5	and	SHA1	because	they	have	known	weaknesses.	Choose	a	larger	hash	size	to
improve	collision	and	preimage	resistance.

Hashing	with	SHA256
In	the	Ch11_Cryptography	class	library	project,	add	a	new	class	named	User.	This	will
represent	a	user	stored	in	memory,	a	file,	or	a	database.

public	class	User

{

				public	string	Name	{	get;	set;	}

				public	string	Salt	{	get;	set;	}

				public	string	SaltedHashedPassword	{	get;	set;	}

}

Add	the	following	code	to	the	Protector	class.	We	will	use	a	dictionary	to	store	multiple
users	in	memory.	There	are	two	methods,	one	to	register	a	new	user	and	one	to	validate
their	password	when	they	subsequently	log	in.

public	static	Dictionary<string,	User>	Users	=	new	Dictionary<string,	User>

();

public	static	User	Register(string	username,	string	password)

{

				//	generate	a	random	salt

				var	rng	=	RandomNumberGenerator.Create();

				var	saltBytes	=	new	byte[16];

				rng.GetBytes(saltBytes);

				var	saltText	=	Convert.ToBase64String(saltBytes);

				//	generate	the	salted	and	hashed	password

				var	sha	=	SHA256.Create();

				var	saltedPassword	=	password	+	saltText;

				var	saltedhashedPassword	=	

Convert.ToBase64String(sha.ComputeHash(Encoding.Unicode.GetBytes(saltedPass

word)));

				var	user	=	new	User

				{

								Name	=	username,

								Salt	=	saltText,

								SaltedHashedPassword	=	saltedhashedPassword

				};

				Users.Add(user.Name,	user);

				return	user;

}

public	static	bool	CheckPassword(string	username,	string	password)

{

				if	(!Users.ContainsKey(username))

				{

								return	false;

				}

				var	user	=	Users[username];

				//	re-generate	the	salted	and	hashed	password

				var	sha	=	SHA256.Create();

				var	saltedPassword	=	password	+	user.Salt;

				var	saltedhashedPassword	=	

Convert.ToBase64String(sha.ComputeHash(Encoding.Unicode.GetBytes(saltedPass

word)));

				return	(saltedhashedPassword	==	user.SaltedHashedPassword);

}

Add	a	new	Console	Application	project	named	Ch11_Hashing.	Add	a	reference	to	the
Ch11_Cryptography	assembly	and	then	import	the	following	namespaces:

using	Ch11_Cryptography;

using	static	System.Console;

In	the	Main	method,	add	the	following	statements	to	register	a	user	and	prompt	to	register
a	second	user,	and	then	prompt	to	log	in	as	one	of	those	users	and	validate	the	password.

WriteLine("A	user	named	Alice	has	been	registered	with	Pa$$w0rd	as	her	

password.");

var	alice	=	Protector.Register("Alice",	"Pa$$w0rd");

WriteLine($"Name:	{alice.Name}");

WriteLine($"Salt:	{alice.Salt}");

WriteLine($"Salted	and	hashed	password:	{alice.SaltedHashedPassword}");

WriteLine();

Write("Enter	a	different	username	to	register:	");

string	username	=	ReadLine();

Write("Enter	a	password	to	register:	");

string	password	=	ReadLine();

var	user	=	Protector.Register(username,	password);

WriteLine($"Name:	{user.Name}");

WriteLine($"Salt:	{user.Salt}");

WriteLine($"Salted	and	hashed	password:	{user.SaltedHashedPassword}");

bool	correctPassword	=	false;

while	(!correctPassword)

{

				Write("Enter	a	username	to	log	in:	");

				string	loginUsername	=	ReadLine();

				Write("Enter	a	password	to	log	in:	");

				string	loginPassword	=	ReadLine();

				correctPassword	=	Protector.CheckPassword(loginUsername,	

loginPassword);

				if	(correctPassword)

				{

								WriteLine($"Correct!	{loginUsername}	has	been	logged	in.");

				}

				else

				{

								WriteLine("Invalid	username	or	password.	Try	again.");

				}

}

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

A	user	named	Alice	has	been	registered	with	Pa$$w0rd	as	her	password.

Name:	Alice

Salt:	tLn3gRn9DXmp2oeuvBSxTg==

Salted	and	hashed	password:	w8Ub2aH5NNQ8MJarYsUgm29bbbl0lV/9dlozjWs2Ipk=

Enter	a	different	username	to	register:	Bob

Enter	a	password	to	register:	Pa$$w0rd

Name:	Bob

Salt:	zPU9YyFLaz0idhQkKpzY+g==

Salted	and	hashed	password:	8w14w8WNHoZddEeIx2+UJhpHQqSs4EmyoazqjbmmEz0=

Enter	a	username	to	log	in:	Bob

Enter	a	password	to	log	in:	secret

Invalid	username	or	password.	Try	again.

Enter	a	username	to	log	in:	Alice

Enter	a	password	to	log	in:	secret

Invalid	username	or	password.	Try	again.

Enter	a	username	to	log	in:	Bob

Enter	a	password	to	log	in:	Pa$$w0rd

Correct!	Bob	has	been	logged	in.

Note	that	even	if	two	users	register	with	the	same	password,	they	have	randomly
generated	salts	so	that	their	salted	and	hashed	passwords	are	different.

Signing	data
To	prove	that	some	data	has	come	from	someone	we	trust,	it	can	be	signed.	Actually,	you
don’t	sign	the	data	itself,	instead	you	sign	a	hash	of	the	data.	We	will	use	the	RSA
algorithm	combined	with	the	SHA256	algorithm.

Signing	with	SHA256	and	RSA
In	the	Ch11_Cryptography	class	library	project,	add	the	following	code	to	the	Protector
class:

public	static	string	PublicKey;

public	static	string	GenerateSignature(string	data)

{

				byte[]	dataBytes	=	Encoding.Unicode.GetBytes(data);

				var	sha	=	SHA256.Create();

				var	hashedData	=	sha.ComputeHash(dataBytes);

				var	rsa	=	RSA.Create();

				PublicKey	=	rsa.ToXmlString(false);	//	exclude	private	key

				var	signer	=	new	RSAPKCS1SignatureFormatter(rsa);

				signer.SetHashAlgorithm("SHA256");

				return	Convert.ToBase64String(signer.CreateSignature(hashedData));

}

public	static	bool	ValidateSignature(string	data,	string	signature)

{

				byte[]	dataBytes	=	Encoding.Unicode.GetBytes(data);

				var	sha	=	SHA256.Create();

				var	hashedData	=	sha.ComputeHash(dataBytes);

				byte[]	signatureBytes	=	Convert.FromBase64String(signature);

				var	rsa	=	RSA.Create();

				rsa.FromXmlString(PublicKey);

				var	checker	=	new	RSAPKCS1SignatureDeformatter(rsa);

				checker.SetHashAlgorithm("SHA256");

				return	checker.VerifySignature(hashedData,	signatureBytes);

}

Note	the	following	about	the	preceding	code:

Only	the	public	part	of	the	public-private	key	pair	needs	to	be	made	available	to	the
code	that	is	checking	the	signature,	so	we	can	pass	the	value	false	when	we	call	the
ToXmlString	method.
The	hash	algorithm	used	to	generate	the	hash	from	the	data	must	match	the	hash
algorithm	set	on	the	signer	and	checker.	In	the	preceding	code,	we	used	SHA256.

Add	a	new	Console	Application	project	named	Ch11_Signing.	Add	a	reference	to	the
Ch11_Cryptography	assembly,	and	then	import	the	following	namespaces:

using	static	System.Console;

using	Ch11_Cryptography;

In	the	Main	method,	add	the	following	code:

Write("Enter	some	text	to	sign:	");

string	data	=	ReadLine();

var	signature	=	Protector.GenerateSignature(data);

WriteLine($"Signature:	{signature}");

WriteLine("Public	key	used	to	check	signature:");

WriteLine(Protector.PublicKey);

if	(Protector.ValidateSignature(data,	signature))

{

				WriteLine("Correct!	Signature	is	valid.");

}

else

{

				WriteLine("Invalid	signature.");

}

Run	the	application	and	enter	some	text:

Enter	some	text	to	sign:	The	cat	sat	on	the	mat.

Signature:	

LSmfgRuRRvYzM1/jg7U7jkKINCU4KKGpFUCvCB87hmWpa3gDVLjLj0Wift+CktZuPSkc/gAnIzC

1bQCOyELsrNWzATnPDFa/B0Gpy0vAJ8VJ9FPs1vFy353mMnGcnQU8fOummKgEv4r1JpsnkJQ41M

GUMNCH9YVodO6Bn6o81g0=

Public	key	used	to	check	signature:

<RSAKeyValue>

<Modulus>qPnY4UHIqJMuUJ0CQ4F0Xy/fxaugNFFe/QNikGsufdKrwa1t+CcQqCmWso4zUDW3NT

FCWFGilisJ4SqTBgYee/VT9UGuFng68TrZXNiNJO8dP8OZHNBirWkhtsNQx9A6rq9bZ/9dsjY1h

YsWpGKCw4WhxsHjmGuevQew8C+I2z0=</Modulus><Exponent>AQAB</Exponent>

</RSAKeyValue>

Correct!	Signature	is	valid.

Authenticating	and	authorizing	users
Authentication	is	the	process	of	discovering	and	verifying	the	identity	of	a	user	by
validating	their	credentials	against	some	authority.

There	are	multiple	authentication	mechanisms	to	choose	from.	They	all	implement	a	pair
of	interfaces:	IIdentity	and	IPrincipal.	The	most	common	mechanism	is	Windows
authentication.

Tip
You	can	implement	your	own	authentication	mechanism	using	the	GenericIdentity	and
GenericPrincipal	classes,	but	that	is	beyond	the	scope	of	this	book.

Managing	local	accounts
For	testing	purposes,	we	will	create	a	new	local	user	account.

In	the	Windows	10	Start	Menu,	navigate	to	Settings	|	Accounts	|	Family	and	other	users.
In	the	Other	users	section,	click	on	Add	someone	else	to	this	PC,	as	shown	in	the
following	screenshot:

In	the	How	will	this	person	sign	in?	step,	click	on	The	person	who	I	want	to	add
doesn’t	have	an	email	address.	In	the	Let’s	create	an	account	step,	click	on	Add	a	user
without	a	Microsoft	account.

In	the	Create	an	account	for	this	PC	step,	enter	AliceJones	for	the	username	and
Pa$$w0rd	for	the	password,	and	then	click	Next.

Authenticating	with	Windows
Add	a	new	Console	Application	project	named	Ch11_Authentication.	Import	the
following	namespaces:

using	System;

using	System.Security.Permissions;

using	System.Security.Principal;

using	static	System.Console;

In	the	Main	method,	add	the	following	statements:

var	user	=	new	WindowsPrincipal(WindowsIdentity.GetCurrent());

WriteLine($"Name:	{user.Identity.Name}");

WriteLine($"IsAuthenticated:	{user.Identity.IsAuthenticated}");

WriteLine($"AuthenticationType:	{user.Identity.AuthenticationType}");

ReadLine();	//	keep	the	application	running

Run	the	application.	The	name	of	my	computer	is	DARKMATTER,	and	I	am	currently
logged	on	to	Windows	10	using	my	linked	MSN	account,	so	this	is	what	I	see:

Name:	DARKMATTER\markjprice

IsAuthenticated:	True

AuthenticationType:	CloudAP

In	the	Windows	10	start	menu,	click	on	your	username,	and	then	click	on	AliceJones.

Enter	Pa$$w0rd	and	wait	for	the	new	user	to	be	set	up.	It	should	only	take	a	minute	or

two.	Use	File	Explorer	to	open	the
C:\Code\Chapter11\Ch11_Authentication\bin\Debug	folder	and	then	double-click	on
the	Ch11_Authentication.exe	file	to	run	it.	You	will	see	the	following	output:

Name:	DARKMATTER\AliceJones

IsAuthenticated:	True

AuthenticationType:	NTLM

Note	that	local	users	are	authenticated	with	NTLM	(which	meant	New	Technology	LAN
Manager	back	in	the	1990s).

Switch	back	to	your	own	account	by	clicking	on	the	username	on	the	start	menu.

Authorizing	with	Windows
Authorization	is	usually	a	check	to	ensure	that	the	current	user	belongs	to	a	role	or	group.

In	the	Main	method,	add	the	following	statements:

//	to	check	if	the	current	user	belongs	to	a	specific	role

WriteLine($"Is	in	Administrators	group?	

{user.IsInRole("Administrators")}");

WriteLine($"Is	in	Users	group?	{user.IsInRole("Users")}");

WriteLine($"Is	in	Sales	group?	{user.IsInRole("Sales")}");

WriteLine();

WriteLine($"{user.Identity.Name}	belongs	to	these	roles/groups:");

foreach	(var	claim	in	user.Claims)

{

				if(claim.Type	==	

"http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid")

				{

								WriteLine($"{claim.Value}:	{(new	

SecurityIdentifier(claim.Value)).Translate(typeof(NTAccount)).Value}");

				}

}

Note	that	the	roles/groups	that	a	user	belongs	to	are	stored	in	the	user’s	Claims	collection
as	security	identifier	strings	(SIDs)	using	a	Type	of	groupsid,	for	example,	a	Group	SID
of	S-1-5-32-545	means	the	User’s	group.	To	see	the	group	name,	we	have	to	translate	the
SID	into	an	NTAccount	object.

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

Is	in	Administrators	group?	False

Is	in	Users	group?	True

Is	in	Sales	group?	False

DARKMATTER\markjprice	belongs	to	these	roles/groups:

S-1-1-0:	Everyone

S-1-5-32-559:	BUILTIN\Performance	Log	Users

S-1-5-32-545:	BUILTIN\Users

S-1-5-4:	NT	AUTHORITY\INTERACTIVE

S-1-2-1:	CONSOLE	LOGON

S-1-5-11:	NT	AUTHORITY\Authenticated	Users

S-1-5-15:	NT	AUTHORITY\This	Organization

S-1-11-96-3623454863-58364-18864-2661722203-1597581903-1800426060-

9997179511-9995030342-2042432011-970967485:	

MicrosoftAccount\markjprice@msn.com

S-1-5-113:	NT	AUTHORITY\Local	account

S-1-2-0:	LOCAL

S-1-5-64-36:	NT	AUTHORITY\Cloud	Account	Authentication

You	can	use	either	statements	or	attributes	to	prevent	the	current	user	from	accessing	parts
of	your	application.

Add	the	following	method	to	the	Program	class.	Note	that	the	attribute	demands	that	the
current	user	be	in	the	role	named	Users.	If	they	are	not,	then	a	SecurityException	will	be
thrown.

[PrincipalPermission(SecurityAction.Demand,	Role	=	"Users")]

public	static	void	SecureFeature()

{

				WriteLine("This	is	a	secure	feature!");

}

Add	the	following	statements	to	the	bottom	of	the	Main	method.	Note	that	we	must	set	the
principal	policy	to	ensure	that	the	current	thread	knows	about	the	current	user	in	order	for
the	PrincipalPermission	attribute	to	work	correctly.	This	only	has	to	be	done	once,	so	it
is	usually	executed	as	the	first	statement	in	a	Main	method.

if(user.IsInRole("Users"))

{

				WriteLine("You	are	in	the	role	so	you	are	allowed	access	to	this	

feature.");

}

else

{

				WriteLine("You	are	NOT	in	the	role	so	you	are	banned	from	this	

feature.");

}

//	copy	the	current	user	principal	to	the	current	thread

AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal

);

try

{

				SecureFeature();

}

catch(Exception	ex)

{

				WriteLine($"{ex.GetType()}:	{ex.Message}");

}

Run	the	application	and	view	the	output:

You	are	in	the	role	so	you	are	allowed	access	to	this	feature.

This	is	a	secure	feature!

Change	the	role	name	to	Administrators	in	the	if	statement	and	the	attribute,	and	then
rerun	the	application:

You	are	NOT	in	the	role	so	you	are	banned	from	this	feature.

System.Security.SecurityException:	Request	for	principal	permission	failed.

Unfortunately,	the	string	for	the	Role	in	the	PrincipalPermission	attribute	must	be	a
literal	value,	so	it	cannot	reference	a	variable.

Tip
Best	Practice

Use	the	IsInRole	method	to	check	whether	the	current	user	is	authorized	to	access	a
feature	of	your	application	rather	than	the	PrincipalPermission	attribute.

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	the	topics	covered	in	this	chapter	with	deeper	research.

Exercise	11.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 Of	the	encryption	algorithms	provided	by	.NET,	which	is	the	best	choice	for
symmetric	encryption?

2.	 Of	the	encryption	algorithms	provided	by	.NET,	which	is	the	best	choice	for
asymmetric	encryption?

3.	 For	encryption	algorithms,	is	it	better	to	have	a	larger	or	smaller	block	size?

Exercise	11.2	–	practice	protecting	data	with
encryption	and	hashing
Create	a	console	application	named	Ch11_Exercise02	that	protects	an	XML	file	similar	to
the	following	code.	Note	that	the	customer	record	credit	card	number	and	password	are
currently	stored	in	clear	text.	The	credit	card	must	be	encrypted	so	that	it	can	be	decrypted
and	used	later,	and	the	password	must	be	salted	and	hashed:

<?xml	version="1.0"	encoding="utf-8"	?>

<customers>

		<customer>

				<name>Bob	Smith</name>

				<creditcard>1234-5678-9012-3456</creditcard>

				<password>Pa$$w0rd</password>

		</customer>

</customers>

Exercise	11.3	–	practice	protecting	data	with
decryption
Create	a	console	application	named	Ch11_Exercise03	that	opens	the	XML	file	that	you
protected	in	the	preceding	code	and	decrypts	the	credit	card	number.

Exercise	11.4	–	explore	topics
Use	the	following	links	to	read	more	about	the	topics	covered	in	this	chapter:

Key	Security	Concepts:	https://msdn.microsoft.com/en-
us/library/z164t8hs(v=vs.110).aspx
Encrypting	Data:	https://msdn.microsoft.com/en-
us/library/as0w18af(v=vs.110).aspx
Cryptographic	Signatures:	https://msdn.microsoft.com/en-
us/library/hk8wx38z(v=vs.110).aspx
How	to:	Create	GenericPrincipal	and	GenericIdentity	Objects:
https://msdn.microsoft.com/en-us/library/y9dd5fx0(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/z164t8hs(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/as0w18af(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/hk8wx38z(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/y9dd5fx0(v=vs.110).aspx

Summary
In	this	chapter,	you	learned	how	to	encrypt	and	decrypt	using	symmetric	encryption,	how
to	generate	a	salted	hash,	how	to	find	out	who	is	running	the	application,	and	how	to	check
that	the	user	running	the	application	is	allowed	to	access	a	feature	of	the	application.

In	the	next	chapter,	you	will	use	the	Task	type	to	improve	the	performance	of	your
applications.

Chapter	12.	Improving	Performance	and
Scalability	with	Multitasking
This	chapter	is	about	allowing	multiple	actions	to	occur	at	the	same	time	to	improve
performance,	scalability,	and	user	productivity.

In	this	chapter,	we	will	cover	the	following	topics:

Understanding	processes	and	threads
Running	tasks	asynchronously
The	async	and	await	keywords
Synchronizing	access	to	shared	resources

Understanding	processes	and	threads
A	process,	like	each	of	the	console	applications	we	have	created,	has	resources	allocated
to	it,	such	as	memory	and	threads.	A	thread	executes	your	code,	statement	by	statement.

Windows	uses	pre-emptive	multitasking,	which	simulates	the	parallel	execution	of	tasks.
It	divides	the	processor	time	among	the	threads,	allocating	a	“time	slice”	to	each	thread,
one	after	another.	The	current	thread	is	suspended	when	its	time	slice	finishes.	The
processor	allows	another	thread	to	run	for	a	time	slice.

When	Windows	switches	from	one	thread	to	another,	it	saves	the	context	of	the	thread	and
reloads	the	previously	saved	context	of	the	next	thread	in	the	thread	queue.

Most	modern	operating	systems	work	the	same	as	Windows,	and	are	known	as	pre-
emptive	multitasking	OSes.

By	default,	each	process	only	has	one	thread,	and	this	can	cause	problems	when	we	need
to	do	more	than	one	thing	at	the	same	time.

Running	tasks	asynchronously
First,	we	will	write	a	simple	console	application	that	needs	to	execute	three	actions.

Running	multiple	actions	synchronously
Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	go	to	File	|
New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	center
list,	select	Console	Application,	type	the	name	as	Ch12_Tasks,	change	the	location	to
C:\Code,	type	the	solution	name	as	Chapter12,	and	then	click	on	OK.

Ensure	that	the	following	namespaces	have	been	imported:

using	System;

using	System.Threading;

using	System.Threading.Tasks;

using	System.Diagnostics;

using	static	System.Console;

In	the	Program	class,	add	the	following	code.	There	are	three	methods	that	need	to	be
executed:	the	first	takes	three	seconds,	the	second	takes	two	seconds,	and	the	third	takes
one	second.	To	simulate	work,	we	can	use	the	Thread	class	to	tell	the	current	thread	to	go
to	sleep	for	a	specified	number	of	milliseconds:

static	void	MethodA()

{

				WriteLine("Starting	Method	A…");

				Thread.Sleep(3000);	//	simulate	three	seconds	of	work

				WriteLine("Finished	Method	A.");

}

static	void	MethodB()

{

				WriteLine("Starting	Method	B…");

				Thread.Sleep(2000);	//	simulate	two	seconds	of	work

				WriteLine("Finished	Method	B.");

}

static	void	MethodC()

{

				WriteLine("Starting	Method	C…");

				Thread.Sleep(1000);	//	simulate	one	second	of	work

				WriteLine("Finished	Method	C.");

}

In	the	Main	method,	add	the	following	statements:

static	void	Main(string[]	args)

{

				var	timer	=	Stopwatch.StartNew();

				WriteLine("Running	methods	synchronously	on	one	thread.");

				MethodA();

				MethodB();

				MethodC();

				WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms	elapsed.");

				WriteLine("Press	ENTER	to	end.");

				ReadLine();

}

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output.	Since	there	is	only	one
thread,	the	total	time	required	is	just	over	six	seconds.

Running	methods	synchronously	on	one	thread.

Starting	Method	A…

Finished	Method	A.

Starting	Method	B…

Finished	Method	B.

Starting	Method	C…

Finished	Method	C.

6,047ms	elapsed.

Press	ENTER	to	end.

Running	multiple	actions	asynchronously	using
tasks
The	Thread	class	has	been	available	since	the	first	version	of	C#,	but	it	can	be	tricky	to
work	with	directly.	C#	4	introduced	the	Task	class,	which	is	a	wrapper	around	a	thread
that	enables	easier	management.	Creating	multiple	threads	wrapped	in	tasks	will	allow	our
code	to	execute	asynchronously	(at	the	same	time).

We	will	look	at	three	ways	to	start	the	methods	using	Task	instances.	Each	has	a	slightly
different	syntax,	but	they	all	define	a	task	and	start	it.	Comment	out	the	calls	to	the	three
methods	and	the	associated	console	message,	and	then	add	the	highlighted	statements	in
the	following	code:

static	void	Main(string[]	args)

{

				var	timer	=	Stopwatch.StartNew();

				//WriteLine("Running	methods	synchronously	on	one	thread.");

				//MethodA();

				//MethodB();

				//MethodC();

				WriteLine("Running	methods	asynchronously	on	multiple	threads.");

				var	taskA	=	new	Task(MethodA);

				taskA.Start();

				var	taskB	=	Task.Factory.StartNew(MethodB);

				var	taskC	=	Task.Run(new	Action(MethodC));

				WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms	elapsed.");

				WriteLine("Press	ENTER	to	end.");

				ReadLine();

}

Rerun	the	application	by	pressing	Ctrl	+	F5	and	view	the	output.

The	actual	elapsed	milliseconds	will	depend	on	the	performance	of	your	CPU,	so	you	are
likely	to	see	a	different	value	than	shown	in	the	following	example	output:

Running	methods	asynchronously	on	multiple	threads.

10	milliseconds	elapsed.

Press	ENTER	to	end.

Starting	Method	C…

Starting	Method	A…

Starting	Method	B…

Finished	Method	C.

Finished	Method	B.

Finished	Method	A.

Notice	that	the	stopwatch	displays	the	elapsed	time	almost	immediately,	because	each	of
the	three	methods	are	now	being	executed	by	three	new	threads.	The	original	thread
continues	executing	until	it	reaches	the	ReadLine	call	at	the	end	of	the	Main	method.

Meanwhile,	the	three	new	threads	execute	their	code	in	parallel,	and	they	start	in	any
order.	MethodC	will	usually	finish	first,	because	it	takes	only	one	second,	then	MethodB,
and	finally	MethodA,	because	it	takes	three	seconds.

However,	the	actual	CPU	used	has	a	big	effect	on	the	results.	It	is	the	CPU	that	allocates
time	slices	to	each	process	to	allow	them	to	execute	their	threads.	You	have	little	control
over	when	the	methods	run.

Waiting	for	tasks
Sometimes	you	need	to	wait	for	a	task	to	complete	before	continuing.	To	do	this,	you	can
use	the	Wait	method	on	a	Task	instance,	or	the	WaitAll	or	WaitAny	method	on	an	array	of
Task	instances,	as	shown	in	the	following	table:

Method Description

Wait Waits	for	this	instance	of	the	task	to	complete	execution

WaitAny Waits	for	any	of	the	provided	task	objects	to	complete	execution

WaitAll Waits	for	all	of	the	provided	task	objects	to	complete	execution

Add	the	following	statements	to	the	Main	method	immediately	after	creating	the	three
tasks.	This	will	combine	references	to	the	three	tasks	into	an	array	and	pass	them	to	the
WaitAll	method.	Now,	the	original	thread	will	pause	on	that	statement,	waiting	for	all
three	tasks	to	finish	before	outputting	the	elapsed	time:

Task[]	tasks	=	{	taskA,	taskB,	taskC	};

Task.WaitAll(tasks);

Rerun	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

Running	methods	asynchronously	on	multiple	threads.

Starting	Method	B…

Starting	Method	C…

Starting	Method	A…

Finished	Method	C.

Finished	Method	B.

Finished	Method	A.

3,024	milliseconds	elapsed.

Press	ENTER	to	end.

Note	that	the	total	time	is	now	slightly	more	than	the	time	to	run	the	longest	method.	If	all
three	tasks	can	be	performed	at	the	same	time,	then	this	would	be	all	we	need	to	do.

However,	often,	a	task	is	dependent	on	the	output	from	another	task.	To	handle	this
scenario,	we	need	to	define	continuation	tasks.

Continuing	with	another	task
Add	the	following	methods	to	the	Program	class:

static	decimal	CallWebService()

{

				WriteLine("Starting	call	to	web	service…");

				Thread.Sleep((new	Random()).Next(2000,	4000));

				WriteLine("Finished	call	to	web	service.");

				return	89.99M;

}

static	string	CallStoredProcedure(decimal	amount)

{

				WriteLine("Starting	call	to	stored	procedure…");

				Thread.Sleep((new	Random()).Next(2000,	4000));

				WriteLine("Finished	call	to	stored	procedure.");

				return	$"12	products	cost	more	than	{amount:C}.";

}

These	methods	simulate	a	call	to	a	web	service,	that	returns	a	monetary	amount	that	then
needs	to	be	used	to	retrieve	how	many	products	cost	more	than	that	amount	in	a	database.
The	result	returned	from	the	first	method	needs	to	be	fed	into	the	input	of	the	second
method.

Tip
I	have	used	the	Random	class	to	wait	for	a	random	interval	of	between	two	and	four
seconds	for	each	method.

Inside	the	Main	method,	comment	out	the	previous	tasks	by	highlighting	the	statements
and	pressing	Ctrl	+	K,	C.	Then,	add	the	following	statements	before	the	existing	statement
that	outputs	the	total	time	elapsed	and	then	calls	ReadLine	to	wait	for	the	user	to	press
Enter:

WriteLine("Passing	the	result	of	one	task	as	an	input	into	another.");

var	taskCallWebServiceAndThenStoredProcedure	=

Task.Factory.StartNew(CallWebService)

				.ContinueWith(previousTask	=>

CallStoredProcedure(previousTask.Result));

WriteLine($"{taskCallWebServiceAndThenStoredProcedure.Result}");

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

Passing	the	result	of	one	task	as	an	input	into	another.

Starting	call	to	web	service…

Finished	call	to	web	service.

Starting	call	to	stored	procedure…

Finished	call	to	stored	procedure.

12	products	cost	more	than	£89.99.

5,971	milliseconds	elapsed.

Press	ENTER	to	end.

Nested	and	child	tasks
Add	a	new	console	application	project	named	Ch12_NestedAndChildTasks.	In	the
solution’s	Properties,	remember	to	change	the	Startup	Project	to	Current	selection.

Ensure	the	following	namespaces	have	been	imported:

using	System;

using	System.Threading;

using	System.Threading.Tasks;

using	System.Diagnostics;

using	static	System.Console;

Inside	the	Main	method,	add	the	following	statements:

var	outer	=	Task.Factory.StartNew(()	=>

{

				WriteLine("Outer	task	starting…");

				var	inner	=	Task.Factory.StartNew(()	=>

				{

								WriteLine("Inner	task	starting…");

								Thread.Sleep(2000);

								WriteLine("Inner	task	finished.");

				});

});

outer.Wait();

WriteLine("Outer	task	finished.");

ReadLine();

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	output:

Outer	task	starting…

Outer	task	finished.

Inner	task	starting…

Inner	task	finished.

Notice	that	although	we	wait	for	the	outer	task	to	finish,	its	inner	task	does	not	have	to
finish	as	well.	To	link	the	two	tasks,	we	must	use	a	special	option.

Modify	the	code	that	defines	the	inner	task	to	add	TaskCreationOption	of
AttachedToParent:

var	inner	=	Task.Factory.StartNew(()	=>

{

				WriteLine("Inner	task	starting…");

				Thread.Sleep(2000);

				WriteLine("Inner	task	finished.");

},	TaskCreationOptions.AttachedToParent);

Rerun	the	application	by	pressing	Ctrl	+	F5.	Notice	that	the	inner	task	must	finish	before
the	outer	task	is	allowed	to:

Outer	task	starting…

Inner	task	starting…

Inner	task	finished.

Outer	task	finished.

The	async	and	await	keywords
C#	5	introduced	two	new	keywords	to	simplify	working	with	the	Task	type.	They	are
especially	useful	when	multitasking	with	graphical	user	interfaces.

Creating	a	GUI	that	blocks
In	Visual	Studio,	go	to	File	|	Add	|	New	Project….	In	the	Add	New	Project	dialog,	in	the
Installed	Templates	list,	select	Visual	C#.	In	the	center	list,	select	WPF	Application,
type	the	name	as	Ch12_GUITasks,	and	then	click	on	OK.

Tip
We	will	use	a	WPF	application	because	these	can	be	created	on	versions	of	Windows	older
than	10.	In	Chapter	13,	Building	Universal	Windows	Platform	Apps	Using	XAML,	you	will
learn	about	modern	Windows	apps.	However,	these	can	only	be	created	on	Windows	10.
Obviously,	Windows	applications	of	any	sort	are	not	cross-platform,	so	they	cannot	be
executed	by	the	.NET	Core!

You	will	learn	more	about	XAML	in	the	next	chapter,	but	for	now,	just	enter	the	following
code	in	the	XAML	view	inside	the	<Grid>	element:

<StackPanel>

				<Button	Name="GetProductsButton">Get	Products</Button>

				<TextBox>Type	in	here	while	the	products	load…</TextBox>

				<ListBox	Name="ProductsListBox"></ListBox>

</StackPanel>

Your	main	editor	window	should	now	look	like	this:

Inside	the	Button	element,	after	setting	the	Name,	enter	an	attribute	named	Click,	as
shown	in	the	following	screenshot,	and	when	the	IntelliSense	appears,	press	Enter	to	insert
a	new	event	handler:

Choose	the	View	|	Code	menu	or	press	F7.	Add	the	following	code	to	the	top	of	the	code
file:

using	System.Data.SqlClient;

Add	the	following	code	inside	the	GetProductsButton_Click	method.

Note	the	following:

The	database	connection	string	uses	Microsoft	SQL	Server	LocalDb	and	connects	to
the	Northwind	sample	database
The	SQL	statement	waits	for	five	seconds	before	returning	four	columns	from	the
Products	table

var	connection	=	new	SqlConnection(@"Data	Source=

(localdb)\mssqllocaldb;Initial	Catalog=Northwind;Integrated	

Security=true;");

connection.Open();

var	getProducts	=	new	SqlCommand("WAITFOR	DELAY	'00:00:05';SELECT	

ProductID,	ProductName,	UnitPrice	FROM	Products",	connection);

SqlDataReader	reader	=	getProducts.ExecuteReader();

int	indexOfID	=	reader.GetOrdinal("ProductID");

int	indexOfName	=	reader.GetOrdinal("ProductName");

int	indexOfPrice	=	reader.GetOrdinal("UnitPrice");

while	(reader.Read())

{

				ProductsListBox.Items.Add($"{reader.GetInt32(indexOfID)}:	

{reader.GetString(indexOfName)}	costs	

{reader.GetDecimal(indexOfPrice):C}");

}

reader.Dispose();

connection.Dispose();

Run	the	application	by	pressing	Ctrl	+	F5.

Click	inside	the	text	box	and	enter	some	text.	The	user	interface	is	responsive.	Click	on
the	Get	Products	button	and	then	try	to	enter	some	text	in	the	text	box.	The	user	interface
is	blocked	because	the	thread	is	busy	running	the	SQL	command:

Creating	a	GUI	that	doesn’t	block
The	types	in	the	SqlClient	namespace	have	been	improved	in	.NET	Framework	4.5	and
later	by	giving	any	method	that	might	take	a	long	time	an	asynchronous	equivalent	that
returns	a	Task.

For	example,	the	SqlConnection	class	has	both	an	Open	method,	that	returns	void,	and	an
OpenAsync	method,	that	returns	Task.	SqlCommand	has	both	an	ExecuteReader	method,
that	returns	SqlDataReader,	and	an	ExecuteReaderAsync	method,	that	returns
Task<SqlDataReader>.

We	can	use	these	Task	objects	as	we	did	earlier,	but	that	would	still	block	the	user
interface	when	we	call	any	of	the	Wait	methods.

Instead	we	can	use	await	keyword	for	any	Task.	This	means	that	the	main	thread	will	not
be	blocked	while	we	wait,	but	will	remember	its	current	position	within	the	statements	so
that	once	the	Task	has	completed,	the	main	thread	continues	executing	from	that	same
point.	This	allows	us	to	write	code	that	looks	as	simple	as	synchronous,	but	underneath,	it
is	actually	much	more	complex.

Tip
Internally,	await	creates	a	state	machine	to	manage	the	complexity	of	passing	state
between	any	worker	threads	and	the	user	interface	thread.

Modify	the	code	like	this.	Notice	that	to	use	the	await	keyword,	we	must	mark	any
method	that	contains	await	with	the	async	keyword.	They	always	work	as	a	pair:

private	async	void	GetProductsButton_Click(object	sender,	RoutedEventArgs	

e)

{

				var	connection	=	new	SqlConnection(@"Data	Source=

(localdb)\mssqllocaldb;Initial	Catalog=Northwind;Integrated	

Security=true;");

				await	connection.OpenAsync();

				var	getProducts	=	new	SqlCommand("WAITFOR	DELAY	'00:00:05';SELECT	

ProductID,	ProductName,	UnitPrice	FROM	Products",	connection);

				SqlDataReader	reader	=	await	getProducts.ExecuteReaderAsync();

				int	indexOfID	=	reader.GetOrdinal("ProductID");

				int	indexOfName	=	reader.GetOrdinal("ProductName");

				int	indexOfPrice	=	reader.GetOrdinal("UnitPrice");

				while	(await	reader.ReadAsync())

				{

								ProductsListBox.Items.Add($"{await	reader.GetFieldValueAsync<int>

(indexOfID)}:	{await	reader.GetFieldValueAsync<string>(indexOfName)}	costs	

{await	reader.GetFieldValueAsync<decimal>(indexOfPrice):C}");

				}

				reader.Dispose();

				connection.Dispose();

}

Run	the	application	by	pressing	Ctrl	+	F5.

This	time,	after	clicking	on	the	Get	Products	button,	you	will	be	able	to	enter	text	in	the

text	box	while	the	command	executes:

Other	types	with	Async	methods
Here	are	some	of	the	other	types	that	have	asynchronous	method	support:

Class Methods

HttpClient GetAsync,	PostAsync,	PutAsync,	DeleteAsync,	SendAsync

StreamReader ReadAsync,	ReadLineAsync,	ReadToEndAsync

StreamWriter WriteAsync,	WriteLineAsync,	FlushAsync.

SOAP	service
clients

When	you	generate	a	proxy	to	a	SOAP	service	using	Visual	Studio’s	Add	Service	Reference	dialog	or
the	svcutil.exe	command-line	tool,	the	class	created	can	include	Async	methods	for	the	service
operations

Tip
Any	time	you	see	a	method	that	ends	in	the	suffix	Async,	check	to	see	whether	it	returns
Task	or	Task<T>.	If	it	does,	then	you	can	call	it	using	await	if	you	mark	your	method
using	async.

await	in	catch	blocks
In	C#	5,	it	was	only	possible	to	use	the	await	keyword	in	a	try	exception	handling	block,
but	not	in	a	catch	block.

In	C#	6,	it	is	now	possible	to	use	await	in	both	try	and	catch	blocks.

Improving	scalability	for	client-server	applications
In	the	previous	example,	we	saw	how	using	the	async	and	await	keywords	can	improve
the	performance	of	a	client-side	graphical	application	by	preventing	the	blocking	of	the
user	interface	thread.

The	same	keywords	can	be	applied	on	the	server-side	when	building	web	applications	and
services.	From	the	client	application’s	point	of	view,	nothing	changes	(or	they	might	even
notice	a	small	increase	in	the	time	for	a	request	to	return).	So,	from	a	single	client’s	point
of	view,	the	use	of	async	on	the	server	side	makes	their	experience	worse!

On	the	server-side,	additional,	cheaper	worker	threads	are	created	to	wait	for	long-running
tasks	to	finish	so	that	expensive	I/O	threads	can	handle	other	clients’	requests	instead	of
being	blocked.	This	improves	the	overall	scalability	of	a	web	application	or	service.	More
clients	can	be	supported	simultaneously.

Tip
You	will	create	asynchronous	operations	on	the	server-side	in	Chapter	14,	Building	Web
Applications	and	Services	Using	ASP.NET	Core.

Synchronizing	access	to	shared	resources
When	you	have	multiple	threads	executing	at	the	same	time,	there	is	a	possibility	that	two
or	more	threads	may	access	the	same	variable	or	other	resource	at	the	same	time	and	cause
a	problem.

For	this	reason,	you	should	carefully	consider	how	to	make	your	code	“thread	safe”.

The	simplest	mechanism	for	implementing	thread	safety	is	to	use	an	object	variable	as	a
“flag”	or	“traffic	light”	to	indicate	when	a	shared	resource	has	an	exclusive	lock	applied.

Tip
In	William	Golding’s	Lord	of	the	Flies,	Piggy	and	Ralph	spot	a	conch	shell	and	use	it	to
call	a	meeting.	The	boys	impose	a	“rule	of	the	conch”	on	themselves,	deciding	that	no	one
can	speak	unless	he’s	holding	the	conch.	I	like	to	name	the	object	variable	I	use	the
“conch”.	When	a	thread	has	the	conch,	no	other	thread	can	access	the	shared	resource(s)
represented	by	that	conch.

Accessing	a	resource	from	multiple	threads
In	Visual	Studio,	go	to	File	|	Add	|	New	Project….	In	the	Add	New	Project	dialog,	in	the
Installed	Templates	list,	select	Visual	C#.	In	the	center	list,	select	Console	Application,
type	the	name	as	Ch12_LockAndMonitor,	and	then	click	on	OK.

Modify	the	Program	class	to:

Declare	and	instantiate	an	object	to	generate	random	wait	times
Declare	a	string	variable	to	store	a	message	(this	will	be	the	shared	resource)
Declare	two	methods	that	add	a	letter,	A	or	B,	to	the	shared	string	five	times	in	a
loop,	and	wait	for	a	random	interval	of	up	to	two	seconds	for	each	iteration
A	Main	method	that	starts	both	methods	on	separate	threads	using	a	pair	of	tasks	and
waits	for	them	to	complete	before	outputting	the	elapsed	milliseconds	they	took:

using	static	System.Console;

using	System.Threading;

using	System.Threading.Tasks;

using	System;

using	System.Diagnostics;

namespace	Ch12_LockAndMonitor

{

				class	Program

				{

								static	Random	r	=	new	Random();

								static	string	Message;	//	a	shared	resource

								static	void	MethodA()

								{

												for	(int	i	=	0;	i	<	5;	i++)

												{

																Thread.Sleep(r.Next(2000));

																Message	+=	"A";

																Write(".");

												}

								}

								static	void	MethodB()

								{

												for	(int	i	=	0;	i	<	5;	i++)

												{

																Thread.Sleep(r.Next(2000));

																Message	+=	"B";

																Write(".");

												}

								}

								static	void	Main(string[]	args)

								{

												WriteLine("Please	wait	for	the	tasks	to	complete.");

												Stopwatch	watch	=	Stopwatch.StartNew();

												Task	a	=	Task.Factory.StartNew(MethodA);

												Task	b	=	Task.Factory.StartNew(MethodB);

												Task.WaitAll(new	Task[]	{	a,	b	});

												WriteLine();

												WriteLine($"Results:	{Message}.");

												WriteLine($"{watch.ElapsedMilliseconds:#,##0}	elapsed	

milliseconds.");

								}

				}

}

Press	Ctrl	+	F5	to	run	the	application	and	view	the	output:

Please	wait	for	the	tasks	to	complete.

..........

Results:	BABBABBAAA.

6,099	elapsed	milliseconds.

Notice	that	the	results	show	that	both	threads	were	modifying	the	message	concurrently.	In
an	actual	application,	this	could	be	a	problem.	We	could	prevent	concurrent	access	by
using	a	mutually	exclusive	lock	or	conch.

Applying	a	mutually	exclusive	lock	to	a	resource
In	the	Program	class,	define	an	object	variable	for	the	conch:

static	object	conch	=	new	object();

In	both	the	methods,	add	a	lock	statement	around	the	for	statement:

lock(conch)

{

				for	(int	i	=	0;	i	<	5;	i++)

				{

								Thread.Sleep(r.Next(2000));

								Message	+=	"A";

								Write(".");

				}

}

Press	Ctrl	+	F5	and	view	the	output:

Please	wait	for	the	tasks	to	complete.

..........

Results:	AAAAABBBBB.

9,751	elapsed	milliseconds.

Notice	that	although	the	time	elapsed	was	longer,	only	one	method	at	a	time	could	access
the	shared	resource.

Understanding	the	lock	statement
The	compiler	changes	this:

lock(conch)

{

				//	access	shared	resource

}

Into	this:

try

{

				Monitor.Enter(conch);

				//	access	shared	resource

}

finally

{

				Monitor.Exit(conch);

}

Knowing	how	the	lock	statement	works	internally	is	important	because	using	the	lock
statement	can	cause	a	deadlock.

Deadlocks	occur	when	there	are	two	or	more	shared	resources	(and	therefore	conches),
and	the	following	sequence	of	events	happens:

Thread	X	locks	conch	A
Thread	Y	locks	conch	B
Thread	X	attempts	to	lock	conch	B,	but	is	blocked	because	thread	Y	already	has	it
Thread	Y	attempts	to	lock	conch	A,	but	is	blocked	because	thread	X	already	has	it

A	proven	way	to	prevent	deadlocks	is	to	specify	a	timeout	when	attempting	to	get	a	lock.
To	do	this,	you	must	manually	use	the	Monitor	class	instead	of	using	the	lock	statement.

Modify	your	code	to	replace	the	lock	statements	with	code	that	tries	to	enter	the	conch
with	a	timeout	like	this:

try

{

				Monitor.TryEnter(conch,	TimeSpan.FromSeconds(15));

				for	(int	i	=	0;	i	<	5;	i++)

				{

								Thread.Sleep(r.Next(2000));

								Message	+=	"A";

								Write(".");

				}

}

finally

{

				Monitor.Exit(conch);

}

Press	Ctrl	+	F5	and	view	the	output.	It	should	be	the	same	as	before.

Making	operations	atomic
Look	at	the	following	increment	operation:

int	x	=	3;

x++;

It	is	not	atomic!	Incrementing	an	integer	requires	three	CPU	operations:

Load	a	value	from	an	instance	variable	into	a	register
Increment	the	value
Store	the	value	back	into	the	instance	variable

A	thread	could	be	pre-empted	after	executing	the	first	two	steps.	A	second	thread	could
then	execute	all	three	steps.	When	the	first	thread	resumes	execution,	it	would	overwrite
the	value	in	the	variable,	and	the	effect	of	the	increment	or	decrement	performed	by	the
second	thread	would	be	lost!

Declare	another	shared	resource	that	will	count	how	many	operations	have	occurred:

static	int	Counter;	//	another	shared	resource

In	both	methods,	add	the	following	statement	to	safely	increment	the	counter:

Interlocked.Increment(ref	Counter);

After	outputting	the	elapsed	time,	output	the	counter:

WriteLine($"{Counter}	string	modifications.");

Press	Ctrl	+	F5	and	view	the	output:

10	string	modications.

Applying	other	types	of	synchronization
The	Monitor	and	Interlocked	mutually	exclusive	locks	are	simple	and	effective,	but
sometimes,	you	need	more	advanced	options	to	synchronize	access	to	shared	resources,	as
shown	in	the	following	table:

Type Description

ReaderWriterLock	and
ReaderWriterLockSlim

(recommended)

Allows	multiple	threads	to	be	in	the	shared	read	mode,	allows	one	thread	to	be	in	the	write
mode	with	exclusive	ownership	of	the	lock,	and	allows	one	thread	that	has	read	access	to	be
in	the	upgradeable	read	mode,	from	which	the	thread	can	upgrade	to	the	write	mode	without
having	to	relinquish	its	read	access	to	the	resource

Mutex
Similar	to	Monitor	in	that	it	provides	exclusive	access	to	a	shared	resource,	except	when	it	is
used	for	inter-process	synchronization

Semaphore	and
SemaphoreSlim

Limits	the	number	of	threads	that	can	access	a	resource	or	pool	of	resources	concurrently

AutoResetEvent	and
ManualResetEvent

Event	wait	handles	allow	threads	to	synchronize	activities	by	signaling	each	other	and	by
waiting	for	each	other’s	signals

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	this	chapter’s	topics	with	deeper	research.

Exercise	12.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 By	convention,	what	suffix	should	be	applied	to	a	method	that	returns	Task	or
Task<T>?

2.	 To	use	the	await	keyword	inside	a	method,	what	keyword	must	be	applied	to	the
method	declaration?

3.	 How	do	you	create	a	child	task?
4.	 Why	should	you	avoid	the	lock	keyword?
5.	 When	should	you	use	the	Interlocked	class?

Exercise	12.2	–	explore	topics
Use	the	following	links	to	read	more	about	this	chapter’s	topics:

Threads	and	threading:	https://msdn.microsoft.com/en-
us/library/6kac2kdh(v=vs.110).aspx
Task	parallelism	(task	parallel	library):	https://msdn.microsoft.com/en-
us/library/dd537609(v=vs.110).aspx
await	(C#	reference):	https://msdn.microsoft.com/en-GB/library/hh156528.aspx
Asynchronous	Programming	with	Async	and	Await	(C#	and	Visual	Basic):
https://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx
Interlocked	Operations:	https://msdn.microsoft.com/en-
us/library/sbhbke0y(v=vs.110).aspx
EventWaitHandle,	AutoResetEvent,	CountdownEvent,	ManualResetEvent:
https://msdn.microsoft.com/en-us/library/ksb7zs2x(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/6kac2kdh(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd537609(v=vs.110).aspx
https://msdn.microsoft.com/en-GB/library/hh156528.aspx
https://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx
https://msdn.microsoft.com/en-us/library/sbhbke0y(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ksb7zs2x(v=vs.110).aspx

Summary
In	this	chapter,	you	learned	how	to	define	and	start	a	task,	how	to	wait	for	one	or	more
tasks	to	finish,	and	how	to	control	task	completion	order.	You	also	learned	how	to	use
async	and	await	to	prevent	the	user	interface	thread	from	being	blocked,	and	how	to
synchronize	access	to	shared	resources.

In	the	next	chapter,	you	will	learn	how	to	create	apps	for	the	Universal	Windows	Platform.

Chapter	13.	Building	Universal	Windows
Platform	Apps	Using	XAML
This	chapter	is	about	seeing	what	can	be	achieved	with	XAML	when	defining	the	user
interface	for	a	graphical	app,	in	particular,	for	the	Universal	Windows	Platform	(UWP).

In	a	single	chapter,	we	will	only	be	able	to	scratch	the	surface	of	everything	that	can	be
done	with	UWP.	However,	I	hope	to	excite	you	into	wanting	to	learn	more	about	this	cool
technology	and	platform.

Think	of	this	chapter	as	a	whistle-stop	tour	of	the	coolest	parts	of	UWP	and	XAML,
including	template-able	controls,	data	binding,	and	animation!

Note
UWP	apps	are	not	cross-platform,	but	they	are	cross-device,	if	those	devices	run	a	modern
flavor	of	Windows.	You	will	need	Windows	10	to	create	the	examples	in	this	chapter.

In	this	chapter,	we	will	cover	the	following	topics:

Understanding	the	UWP
Understanding	XAML
Creating	a	Windows	Desktop	Application	using	WPF
Creating	an	app	for	the	UWP
Using	resources	and	templates
Data	binding
Animating	with	storyboards
Testing	in	emulators

Understanding	the	UWP
The	UWP	is	Microsoft’s	latest	technology	solution	to	build	applications	for	its	Windows
suite	of	operating	systems.

UWP	provides	a	guaranteed	API	layer	across	multiple	device	types.	You	can	create	a
single	app	package	that	can	be	uploaded	to	a	single	Windows	Store	to	be	distributed	to
reach	all	the	device	types	your	app	can	run	on.	These	devices	include	Windows	10,
Windows	10	Mobile,	Xbox	One,	and	Microsoft	HoloLens.

Adapting	your	app’s	layout
XAML	and	UWP	provide	layout	panels	that	adapt	how	they	display	their	child	controls	to
make	the	most	of	the	device	they	are	currently	running	on.	It	is	the	Windows	app
equivalent	of	web	page	responsive	design.

XAML	and	UWP	provide	visual	state	triggers	to	alter	the	layout,	based	on	dynamic
changes	such	as	the	horizontal	or	vertical	orientation	of	a	tablet.

Taking	advantage	of	unique	device	capabilities
UWP	provides	standard	mechanisms	to	detect	the	capabilities	of	the	current	device	and
then	activate	additional	features	of	your	app	to	fully	take	advantage	of	them.

Understanding	XAML
XAML	can	be	used	to	create:

UWP	apps	for	Windows	10
Windows	Store	apps	for	Windows	8	and	8.1
Windows	Presentation	Foundation	(WPF)	applications	for	the	Windows	desktop,
including	Windows	7	and	later
Silverlight	applications	for	web	browsers,	Windows	Phone,	and	desktop

Note
Although	Silverlight	is	still	supported	by	Microsoft,	it	is	not	being	actively
developed,	so	it	should	be	avoided.

Simplifying	code	using	XAML
XAML	simplifies	C#	code,	especially	when	building	a	user	interface.

Imagine	that	you	need	two	or	more	buttons	laid	out	horizontally	to	create	a	toolbar.	In	C#,
you	would	write	this	code:

var	toolbar	=	new	StackPanel();

toolbar.Orientation	=	Orientation.Horizontal;

var	newButton	=	new	Button();

newButton.Content	=	"New";

newButton.Background	=	new	SolidColorBrush(Colors.Pink);

toolbar.Children.Add(newButton);

var	openButton	=	new	Button();

openButton.Content	=	"Open";

openButton.Background	=	new	SolidColorBrush(Colors.Pink);

toolbar.Children.Add(openButton);

In	XAML,	it	would	be	simplified	to	the	following	lines	of	code.	When	this	XAML	is
processed,	the	equivalent	properties	are	set	and	methods	are	called,	to	achieve	the	same
goal	as	the	preceding	C#	code:

<StackPanel	Name="toolbar"	Orientation="Horizontal">

				<Button	Name="newButton"	Background="Pink">New</Button>

				<Button	Name="openButton"	Background="Pink">Open</Button>

</StackPanel>

XAML	is	an	alternative	(better)	way	of	declaring	and	instantiating	.NET	types.

Creating	a	Windows	desktop	application
using	WPF
In	2006,	Microsoft	released	WPF,	which	was	the	first	technology	to	use	XAML.	It	is	is
still	used	today	to	create	desktop	applications.

Tip
Microsoft	Visual	Studio	2015	and	Microsoft	Blend	are	WPF	applications.

Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N,	or	choose	File
|	New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	center
list,	select	WPF	Application,	type	the	name	as	Ch13_WPF,	change	the	location	to
C:\Code,	type	the	solution	name	as	Chapter13,	and	then	click	on	OK.

You	will	see	the	XAML	design	window	showing	a	graphical	view	and	an	XAML	view	of
the	MainWindow.xaml	file.	You	will	be	able	to	make	the	following	observations:

The	XAML	designer	is	split	horizontally,	but	you	can	toggle	to	vertical	split	and
collapse	one	side	by	clicking	the	buttons	on	the	right	edge	of	the	divider
You	can	swap	the	views	by	clicking	the	double-arrow	button	in	the	divider
You	can	scroll	and	zoom	both	views:

On	the	View	menu,	choose	Toolbox,	or	press	Ctrl	+	W,	X.	Notice	that	the	toolbox	has
sections	for	Common	WPF	Controls	and	All	WPF	Controls:

Drag	and	drop	the	Button	control	from	the	toolbox	onto	the	graphical	view.	Notice	that

the	button	is	given	a	fixed	width	and	margin	to	position	it	inside	the	grid:

Although	you	can	drag	and	drop	controls,	it	is	better	to	use	the	XAML	view	for	layout.

In	the	XAML	view,	find	the	Button	element	and	delete	it.

In	the	XAML	view,	inside	the	Grid	element,	type	the	following	line	of	code,	and	notice
that	the	button	stretches	to	take	up	the	whole	grid:

<Button	Margin="6"	Padding="6"	Name="clickMeButton">Click	Me</Button>

Modify	the	XAML	to	put	the	Button	element	inside	a	StackPanel,	and	notice	the	change
in	its	layout:

<StackPanel	Orientation="Horizontal"	VerticalAlignment="Top">

				<Button	Margin="6"	Padding="6"	Name="clickMeButton">Click	Me</Button>

</StackPanel>

Modify	the	Button	element	to	give	it	a	new	event	handler	for	its	Click	event:

<Button	Margin="6"	Padding="6"	Name="clickMeButton"	

Click="clickMeButton_Click">Click	Me</Button>

In	the	MainWindows.xaml.cs	file,	add	the	following	statement	to	the	event	handler:

clickMeButton.Content	=	DateTime.Now.ToLongTimeString();

Run	the	application	by	pressing	Ctrl	+	F5	and	view	the	window:

Click	on	the	Click	Me	button.	Every	time	you	click	the	button,	the	button’s	content
changes	to	show	the	current	time:

Choosing	common	controls
There	are	lots	of	predefined	controls	that	you	can	choose	from	for	common	user	interface
scenarios.	Almost	all	versions	of	XAML	support	the	controls	in	the	following	table:

Control(s) Description

Button,	Menu,	Toolbar Executing	actions

CheckBox,	RadioButton Choosing	options

Calendar,	DatePicker Choosing	dates

ComboBox,	ListBox,	ListView,	TreeView Choosing	items	from	lists	and	hierarchical	trees

Canvas,	DockPanel,	Grid,	StackPanel,	WrapPanel Layout	containers	that	affect	their	children	in	different	ways

Label,	TextBlock Displaying	read-only	text

RichTextBox,	TextBox Editing	text

Image,	MediaElement Embedding	images,	videos,	and	audio	files

DataGrid Viewing	and	editing	bound	data

Scrollbar,	Slider,	StatusBar Miscellaneous.	user	interface	elements

Tip
You	can	learn	more	about	the	controls	available	at	https://msdn.microsoft.com/en-
us/library/windows/apps/mt185405.aspx.

https://msdn.microsoft.com/en-us/library/windows/apps/mt185405.aspx

Creating	an	app	for	the	Universal
Windows	Platform
To	be	able	to	create	apps	for	the	UWP,	you	must	enable	the	developer	mode	in	Windows
10.

Go	to	the	Start	Menu	|	Settings	|	Update	&	Security,	and	then	click	on	Developer
mode.	Close	the	Settings	app:

Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	click	on	File	|	Add	|	New	Project….
In	the	Add	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the
center	list,	select	Blank	App	(Universal	Windows),	type	the	name	as	Ch13_UWP,	and
then	click	on	OK.

Set	the	solution’s	startup	project	to	be	the	current	selection.

In	the	Solution	Explorer	window,	double-click	on	the	MainPage.xaml	file	to	open	it	for
editing.

Modify	the	XAML	to	put	a	Button	element	inside	a	StackPanel.	Add	the	event	handler
by	choosing	New	Event	Handler,	so	that	a	method	is	created	in	the	code-behind	file:

<StackPanel	VerticalAlignment="Top">

				<StackPanel	Orientation="Horizontal">

								<Button	Margin="6"	Padding="6"	Name="clickMeButton"	

Click="clickMeButton_Click">Click	Me</Button>

				</StackPanel>

</StackPanel>

Right-click	and	chose	View	Code	or	press	F7.

In	the	clickMeButton_Click	method,	add	the	following	statement:

clickMeButton.Content	=	DateTime.Now.ToLongTimeString();

Run	the	application	by	pressing	Ctrl	+	F5,	and	notice	the	warning:

UWP	apps	have	extra	requirements	compared	to	console	and	WPF	applications.	They
must	be	deployed	before	being	run.

On	the	Build	menu,	choose	Deploy	Ch13_UWP.

You	will	see	a	compile	error.	This	is	because	UWP	apps	have	a	more	limited	version	of	the
base-class	libraries,	and	the	ToLongTimeString	method	has	not	been	implemented	for
instances	of	DateTime:

Note
UWP	apps	cannot	use	the	full	features	of	.NET.	because	they	use	a	custom	implementation

of	.NET	Core.

Modify	your	code	to	make	it	look	like	this:

clickMeButton.Content	=	DateTime.Now.ToString("hh:mm:ss");

Redeploy	the	application	and	then	run	it	by	pressing	Ctrl	+	F5.

This	time,	it	works	just	as	our	WPF	application	did	earlier,	except	that	this	app	will	also
run	on	Windows	10	Mobile	phones,	Xbox	One,	and	even	HoloLens:

Analyzing	UWP	portability
If	you	run	the	.NET	Portability	Analyzer	on	this	project,	you	will	see	the	following	report:

Note
Note	that	UWP	apps	do	not	support	cross-platform	.NET	Core	because	they	use	a	custom
implementation	of	.NET	Core.	However,	they	are	cross-device	if	that	device	runs	a
modern	flavor	of	Windows.	Also,	they	support	.NET	Native.	This	means	that	the	.NET
code	is	compiled	to	native	CPU	instructions	for	a	smaller	memory	footprint	and	faster
execution.

Using	resources	and	templates 
When	building	graphical	user	interfaces,	you	will	often	want	to	use	a	resource	such	as	a
brush	to	paint	the	background	of	controls.	These	resources	can	be	defined	in	a	single	place
and	shared	throughout	the	app.

Sharing	resources
In	the	Solution	Explorer	window,	double-click	on	the	App.xaml	file.	Add	the	following
statement	to	it:

<Application.Resources>

				<LinearGradientBrush	x:Key="rainbow">

								<GradientStop	Color="Red"	Offset="0"	/>

								<GradientStop	Color="Orange"	Offset="0.1"	/>

								<GradientStop	Color="Yellow"	Offset="0.3"	/>

								<GradientStop	Color="Green"	Offset="0.5"	/>

								<GradientStop	Color="Blue"	Offset="0.7"	/>

								<GradientStop	Color="Indigo"	Offset="0.9"	/>

								<GradientStop	Color="Violet"	Offset="1"	/>

				</LinearGradientBrush>

</Application.Resources>

In	the	MainPage.xaml	file,	modify	the	Grid	element	to	make	it	look	like	this:

<Grid	Background="{StaticResource	rainbow}">

Redeploy	and	run	the	application:

Tip
A	resource	can	be	an	instance	of	any	object.	To	share	it	within	an	application,	define	it	in
the	App.xaml	file	and	give	it	a	unique	Key.	To	set	an	element’s	property	to	apply	the
resource,	use	StaticResource	with	the	Key.

Replacing	a	control	template
You	can	redefine	how	a	control	looks	by	replacing	its	default	template.

One	of	the	most	common	resources	is	a	Style	that	can	set	multiple	properties	at	once.	If	a
style	has	a	unique	Key,	then	it	must	be	explicitly	set,	like	we	did	earlier	with	the	linear
gradient.	If	it	doesn’t	have	a	Key,	then	it	will	be	automatically	applied	based	on	the
TargetType.	For	example,	if	the	TargetType	is	Button	then	all	Buttons	will	have	the	style
applied.

In	App.xaml	file,	add	the	following	statements:

<ControlTemplate	x:Key="DarkGlassButton"	TargetType="Button">

				<Border	BorderBrush="#FFFFFFFF"	BorderThickness="1,1,1,1"	

CornerRadius="4,4,4,4">

								<Border	x:Name="border"	Background="#7F000000"	

BorderBrush="#FF000000"	BorderThickness="1,1,1,1"	CornerRadius="4,4,4,4">

												<Grid>

																<Grid.RowDefinitions>

																				<RowDefinition	Height="*"/>

																				<RowDefinition	Height="*"/>

																</Grid.RowDefinitions>

																<Border	Opacity="0"	HorizontalAlignment="Stretch"	

x:Name="glow"	Width="Auto"	Grid.RowSpan="2"	CornerRadius="4,4,4,4">

																</Border>

																<ContentPresenter	HorizontalAlignment="Center"	

VerticalAlignment="Center"	Width="Auto"	Grid.RowSpan="2"	Padding="4"/>

																<Border	HorizontalAlignment="Stretch"	Margin="0,0,0,0"	

x:Name="shine"	Width="Auto"	CornerRadius="4,4,0,0">

																				<Border.Background>

																								<LinearGradientBrush	EndPoint="0.5,0.9"	

StartPoint="0.5,0.03">

																												<GradientStop	Color="#99FFFFFF"	Offset="0"/>

																												<GradientStop	Color="#33FFFFFF"	Offset="1"/>

																								</LinearGradientBrush>

																				</Border.Background>

																</Border>

												</Grid>

								</Border>

				</Border>

</ControlTemplate>

<Style	TargetType="Button">

				<Setter	Property="Template"	Value="{StaticResource	DarkGlassButton}"	/>

				<Setter	Property="Foreground"	Value="White"	/>

</Style>

Redeploy	and	run	the	application:

Data	binding
When	building	graphical	user	interfaces,	you	will	often	want	to	bind	a	property	of	one
control	to	another	or	to	some	data.

Binding	to	elements
In	the	MainWindow.xaml	file,	add	the	following	elements	after	the	Button	element,	inside
the	horizontal	StackPanel:

<Slider	Value="50"	Maximum="100"	Minimum="0"	Width="200"	Name="slider"/>

<TextBlock	Text="{Binding	ElementName=slider,	Path=Value}"	

VerticalAlignment="Center"	Margin="10"/>

Redeploy	and	then	run	the	app.	Click	and	drag	the	slider,	and	notice	that	the	text	block
always	shows	the	current	value	of	the	slider:

Under	the	horizontal	stack	panel,	add	these	statements:

<Rectangle	Height="100"	Width="100"	Fill="Red">

				<Rectangle.RenderTransform>

								<RotateTransform	Angle="{Binding	ElementName=sliderRotation,	

Path=Value}"	/>

				</Rectangle.RenderTransform>

</Rectangle>

<TextBlock>Use	the	slider	to	rotate	the	square:</TextBlock>

<Slider	Value="0"	Minimum="0"	Maximum="360"	Name="sliderRotation"/>

Redeploy	and	run	the	app:

Binding	to	data
Add	a	new	Blank	App	(Universal	Windows)	project	named	Ch13_DataBinding.

In	the	Solution	Explorer	window,	right-click	on	the	new	project	and	add	a	new	folder
named	Models.

Right-click	on	the	Models	folder	and	add	a	new	class	named	Employee.	Add	the	following
statements	to	it:

public	class	Employee

{

				public	int	EmployeeID	{	get;	set;	}

				public	string	FirstName	{	get;	set;	}

				public	string	LastName	{	get;	set;	}

				public	DateTime	DOB	{	get;	set;	}

				public	decimal	Salary	{	get;	set;	}

}

Add	another	class	named	EmployeesViewModel:

public	class	EmployeesViewModel

{

				public	HashSet<Employee>	Employees	{	get;	set;	}

				public	EmployeesViewModel()

				{

								Employees	=	new	HashSet<Employee>();

								Employees.Add(new	Employee	{	EmployeeID	=	1,	FirstName	=	"Alice",	

LastName	=	"Smith",	DOB	=	new	DateTime(1972,	1,	27),	Salary	=	34000M	});

								Employees.Add(new	Employee	{	EmployeeID	=	2,	FirstName	=	"Bob",	

LastName	=	"Jones",	DOB	=	new	DateTime(1965,	4,	13),	Salary	=	64000M	});

				}

}

Open	MainPage.xaml.	Add	the	following	ListBox	element,	whose	items	are	bound	to	each
employee	instance	in	the	Employees	hash	set	of	the	view	model:

<ListBox	ItemsSource="{Binding	Employees}">

				<ListBox.ItemTemplate>

								<DataTemplate>

												<StackPanel	Orientation="Horizontal">

																<TextBox	Text="{Binding	EmployeeID}"	/>

																<TextBox	Text="{Binding	FirstName}"	/>

																<TextBox	Text="{Binding	LastName}"	/>

																<DatePicker	Date="{Binding	DOB}"	/>

																<TextBox	Text="{Binding	Salary}"	/>

												</StackPanel>

								</DataTemplate>

				</ListBox.ItemTemplate>

</ListBox>

Tip
Since	the	data	won’t	be	loaded	until	runtime,	you	won’t	see	a	preview	of	the	layout	in	the
design	window.	You	can	configure	a	UWP	project	with	sample	data	for	use	at	design	time,

but	that	is	beyond	the	scope	of	this	book.

In	the	XAML	for	the	Page	element,	insert	a	new	event	handler	for	the	Load	event:

Loading="Page_Loading"

Press	F7	to	view	the	code.

Add	the	following	statement	to	the	event	handler	for	Page_Loading.	The	DataContext
method	is	inherited	by	all	controls,	so	the	instance	of	the	view	model	can	be	easily	bound
to	by	everything	on	the	page:

DataContext	=	new	Models.EmployeesViewModel();

Deploy	and	run	the	application.

The	user	can	click	inside	each	box	to	modify	the	data	values.	Notice	the	date	picker.	This
looks	different	and	is	optimized	for	input	on	different	devices:

Tip
In	the	real	world,	you	would	load	the	data	from	a	file	or	service.	You	will	learn	how	to
build	services	in	Chapter	14,	Building	Web	Applications	and	Services	Using	ASP.NET
Core.

Animating	with	storyboards
You	can	make	your	application	feel	more	natural	and	organic	(and	fun)	using	storyboard
animations.

Add	a	new	Blank	App	(Universal	Windows)	project	named	Ch13_BouncingBall.

Open	the	MainPage.xaml	file,	change	Grid	into	Canvas	and	add	an	ellipse	to	make	a	red
ball.	Save	your	changes:

<Canvas	Background="{ThemeResource	ApplicationPageBackgroundThemeBrush}">

				<Ellipse	Fill="Red"	Height="100"	Width="100"/>

</Canvas>

In	the	Solution	Explorer	window,	right-click	on	the	Ch13_BouncingBall	project	and
choose	Design	in	Blend….

The	project	will	open	in	the	Microsoft	Blend	for	Visual	Studio	tool	that	is	used	by
designers,	because	it	has	better	support	for	graphical	effects	and	animation	than	Visual
Studio	does.

On	the	drawing	surface,	click	on	the	ellipse	to	select	it.

In	the	Objects	and	Timeline	window,	click	on	the	small	green	+	button	to	create	a	new
storyboard	resource:

Change	the	name	of	the	storyboard	resource	to	BounceBall	and	click	on	OK:

A	red	box	appears	around	the	drawing	surface,	and	you	will	see	in	the	top-right	corner	that
the	timeline	recording	is	on.	Later,	you	will	click	on	the	red	dot	to	stop	recording:

In	the	Objects	and	Timeline	window,	click	on	the	Record	Keyframe	button	(it	looks	like
a	green	+	symbol	combined	with	a	small	diamond,	and	it	is	to	the	left	of	the	current	time
indicator).	This	will	record	the	current	properties	of	the	ball	at	time	0:00.000:

On	the	timeline,	drag	the	down-pointing	orange	triangle	and	its	vertical	orange	line	to	time
position	0:00.800.	This	means	0.8	seconds	later:

On	the	drawing	surface,	drag	the	ball	down	and	a	little	to	the	right.	This	change	will	be
recorded	automatically:

Drag	the	orange	triangle	to	time	position	0:01.000.	Click	and	drag	the	resize	handle	at	the
top	of	the	ball	to	squash	it	down	a	little.

Drag	the	orange	triangle	to	time	position	0:01.200.	Resize	the	ball	to	stretch	it	back	to	its
original	height.

Drag	the	orange	triangle	to	time	position	0:02.000.	Click	in	the	middle	of	the	ball	and	drag
it	back	up	to	near	the	top	of	the	window	and	a	little	to	the	right.

Click	the	red	dot	to	stop	recording:

In	the	Objects	and	Timeline	window,	click	on	the	small	green	triangle	Play	button.

You	should	see	the	red	ball	smoothly	drop	down.	When	it	hits	the	bottom,	it	squashes
slightly	as	a	rubber	ball	would	in	real	life,	before	bouncing	back	up	to	the	top.

Exit	from	Blend.	When	you	return	to	Visual	Studio,	it	should	warn	you	that	the	file	has
changes	and	prompt	you	to	reload	it.	Click	on	Yes.

Notice	that	Blend	created	some	XAML	elements	to	define	a	storyboard	named
BounceBall	that	animates	properties	of	the	Ellipse	object.

In	the	toolbox,	choose	Button	and	draw	one	on	the	canvas	named	BounceBallButton.
Change	its	contents	to	Bounce	Ball.	Give	it	a	Click	event	handler.	Add	the	following
statement	to	the	event	handler	method:

BounceBall.Begin();

Deploy	and	run	the	application.	Click	on	the	Bounce	Ball	button	to	run	the	animation:

Testing	in	emulators
While	developing	a	UWP	app,	you	can	quickly	see	what	it	would	look	like	on	various
devices	in	the	XAML	design	window.	The	following	screenshot	is	showing	the	23”
Desktop	(1920	x	1080)	100%	scale	emulator:

Switch	to	a	phone	option	with	a	vertical	layout.	The	following	screenshot	is	showing	the
5”	Phone	(1920	x	1080)	300%	scale	emulator.	You	can	see	that	the	right-hand	edge	is
visible:

You	can	also	run	the	app	in	a	Simulator	rather	than	on	Local	Machine.	You	can	also
choose	Remote	Machine	or	Device:

The	Simulator	can	rotate,	and	change	input	modes	and	screen	resolution,	using	the	buttons
in	the	toolbar,	on	the	right-hand	edge	of	the	Simulator	window:

Tip
Test	your	apps	with	the	Simulator,	and	then	test	on	all	of	the	actual	devices	that	your	users
will	deploy	your	app	to.

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	this	chapter’s	topics	with	deeper	research.

Exercise	13.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 Which	control	would	you	choose	to	allow	the	user	to	easily	choose	their	date	of	birth
on	many	different	types	of	devices?

2.	 Which	XAML	element	would	you	use	to	adapt	the	layout	of	your	app	to	handle
different	device	families?

3.	 How	can	you	set	multiple	properties	on	an	XAML	element	as	a	single	group?
4.	 What	is	the	difference	between	a	control	template	and	a	data	template?
5.	 Can	XAML	bindings	be	two	way	or	just	one	way?

Exercise	13.2	–	practice	building	a	universal	tip
calculator
Create	an	app	for	UWP	that	calculates	a	tip	for	common	percentages.

Exercise	13.3	–	explore	topics
Use	the	following	links	to	read	more	about	this	chapter’s	topics.

Enable	your	device	for	development:	https://msdn.microsoft.com/en-
us/library/windows/apps/dn706236.aspx
Guide	to	UWP	apps:
https://msdn.microsoft.com/library/windows/apps/hh465424.aspx
How-to	guides	for	Windows	10	apps:
https://msdn.microsoft.com/library/windows/apps/xaml/mt244352.aspx

https://msdn.microsoft.com/en-us/library/windows/apps/dn706236.aspx
https://msdn.microsoft.com/library/windows/apps/hh465424.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt244352.aspx

Summary
In	this	chapter,	you	learned	how	to	build	a	graphical	user	interface	using	XAML,	how	to
share	resources	in	a	central	location,	how	to	replace	a	control’s	template,	how	to	bind	to
data	and	controls,	and	how	to	animate	properties.

In	the	next	chapter,	you	will	learn	how	to	build	web	applications	and	services.

Chapter	14.	Building	Web	Applications
and	Services	Using	ASP.NET	Core
This	chapter	is	about	building	web	applications	and	services	using	a	modern	HTTP
architecture	on	the	server-side	using	Microsoft	ASP.NET	Core	1.0.	You	will	learn	about
the	startup	configuration,	routes,	models,	views,	and	controllers	that	make	up	ASP.NET
Core.

This	chapter	will	cover	the	following	topics:

Understanding	ASP.NET	Core
ASP.NET	Core	startup
ASP.NET	Core	controllers
ASP.NET	Core	models
ASP.NET	Core	views
Taking	ASP.NET	Core	further
ASP.NET	Core	Web	API

Understanding	ASP.NET	Core
Microsoft	ASP.NET	Core	1.0	is	part	of	a	suite	of	Microsoft	technologies	to	build	web
applications	and	services	that	have	evolved	over	the	years	as	shown	in	the	following	bullet
points:

ASP.NET	Web	Forms	was	released	in	2002	and	is	designed	to	enable	non-web
developers,	such	as	those	familiar	with	Visual	Basic,	to	quickly	create	web
applications.	Web	Forms	can	only	be	hosted	on	Windows,	but	are	used	in	products
such	as	Microsoft	SharePoint.	It	should	be	avoided	for	new	projects	in	favor	of
ASP.NET	Core.
ASP.NET	XML	Web	Services	was	released	in	2002	and	enables	developers	to	build
SOAP	services.	It	should	be	avoided	for	new	projects	in	favor	of	WCF	or	ASP.NET
Web	API.
Windows	Communication	Foundation	(WCF)	was	released	in	2006	and	enables
developers	to	build	SOAP	and	REST	services.	SOAP	is	powerful	but	complex,	so	it
should	be	avoided	unless	you	need	advanced	features,	such	as	distributed	transactions
and	complex	messaging	topologies.
ASP.NET	MVC	was	released	in	2009	and	is	designed	to	cleanly	separate	the
concerns	of	web	developers	between	the	models	that	represent	the	data,	the	views
that	present	that	data,	and	the	controllers	that	fetch	the	model	and	pass	it	to	a	view.
This	separation	enables	improved	scalability	and	unit	testing.
ASP.NET	Web	API	was	released	in	2012	and	enables	developers	to	create	HTTP
services	that	are	simpler	and	more	scalable	than	SOAP	services.
ASP.NET	Core	was	released	in	2016,	and	combines	MVC	and	Web	API	running	on
the	.NET	Core.	Therefore,	it	is	cross-platform.

Tip
Best	Practice

Choose	ASP.NET	Core	to	develop	web	applications	and	services,	because	it	includes
MVC	and	Web	API,	which	are	modern	and	cross-platform.

Classic	ASP.NET	versus	modern	ASP.NET	Core
ASP.NET	is	almost	15	years	old.	Until	now,	it	has	been	built	on	top	of	a	major	part	of	the
.NET	Framework,	the	System.Web.dll	assembly.	Over	the	years,	it	has	accumulated	a	lot
of	features,	many	of	which	are	not	suitable	for	modern,	cross-platform	development.

ASP.NET	Core	is	a	major	redesign	of	ASP.NET.	It	removes	the	dependency	on	the
System.Web.dll	assembly,	and	is	composed	of	modular	lightweight	components.

You	can	develop	and	run	ASP.NET	Core	applications	cross-platform	on	Windows,	Mac
OS	X,	and	Linux.	The	entire	stack	is	open	source,	and	it	is	designed	to	integrate	with	a
variety	of	client-side	frameworks,	including	AngularJS,	KnockoutJS,	and	Bootstrap.

Client-side	web	development
When	building	web	applications,	a	developer	needs	to	know	more	than	just	C#	and	.NET.
On	the	client	(that	is,	in	the	web	browser),	you	will	use	a	combination	of	the	following
components	of	a	web	page:

HTML5:	This	is	used	for	the	content	and	semantics	of	elements
CSS3:	This	is	used	for	the	format	and	layout	applied	to	elements
JavaScript:	This	is	used	for	the	behavior	of	elements

Tip
This	book	is	about	C#,	so	we	will	cover	some	of	the	basics.	For	more	information	on
web	browser	technologies,	I	recommend	that	you	refer	to	the	book	HTML5	Web
Application	Development	By	Example	by	Packt	Publishing	at
https://www.packtpub.com/web-development/html5-web-application-development-
example-beginners-guide.

To	make	it	easier	to	work	with	HTML5,	CSS3,	and	JavaScript,	I	recommend	that
developers	install	the	free	Web	Essentials	extension	for	Visual	Studio.

Install	Web	Essentials	2015
Start	Microsoft	Visual	Studio	2015.	On	the	Tools	menu,	choose	Extensions	and	Updates.
In	the	left-hand	list,	select	Online.	In	the	search	box,	enter	web	essentials,	select	Web
Essentials	2015.1,	click	on	the	Download	button,	and	then	follow	the	instructions:

https://www.packtpub.com/web-development/html5-web-application-development-example-beginners-guide

The	HyperText	Transfer	Protocol	(HTTP)
To	communicate	with	a	server,	the	client	makes	calls	over	the	network	using	a	protocol
known	as	HTTP.	HTTP	is	the	technical	underpinning	of	the	“web”.	So	when	we	talk	about
“web”	applications	or	“web”	services,	we	mean	they	use	HTTP	to	communicate	between	a
client	(often	a	web	browser)	and	a	server.

A	client	makes	an	HTTP	request	for	a	resource,	such	as	a	page	identified	by	a	URL
(Uniform	Resource	Locator),	and	the	server	sends	back	an	HTTP	response.	You	can	use
Microsoft	Edge	and	other	browsers	to	record	requests	and	responses.

Start	Microsoft	Edge.	Press	F12	to	show	developer	tools.	Click	on	the	Network	tab.	If	the
Start	profiling	session	button	has	not	been	pressed,	click	on	it	to	start	recording,	or	press
Ctrl	+	E:

In	Microsoft	Edge’s	address	box,	enter	http://www.asp.net/mvc.

In	the	F12	Developer	Tools	window,	in	the	list	of	recorded	requests,	click	on	the	first
entry:

On	the	right-hand	side,	you	will	see	details	about	the	request	and	the	response:

http://www.asp.net/mvc

Note	the	following	aspects:

The	request	method	is	GET.	Other	methods	that	HTTP	defines	include	POST,	PUT,
DELETE,	HEAD,	and	PATCH.
The	response	status	code	is	200	OK.	This	means	the	server	found	the	resource	the
browser	requested.	Other	status	codes	include	404	Missing.
The	request	headers	include	what	formats	the	browser	will	accept.	In	this	case,	the
browser	is	saying	it	understands	HTML,	XHTML,	and	others.
The	browser	has	told	the	server	that	it	understands	the	GZIP	and	DEFLATE
compressions	algorithms.
The	browser	has	told	the	server	which	human	languages	it	would	prefer:	US	English,
British	English,	and	then	any	other	dialect	of	English.
I	have	been	to	this	site	before,	so	a	cookie	that	was	defined	by	the	site	is	being	sent	to
the	server	so	that	it	can	track	me.	Microsoft	has	named	it	omniID.	Does	that	sound
ominous	to	you?
The	server	has	sent	back	the	response,	compressed	using	the	GZIP	algorithm,
because	it	knows	that	the	client	can	decompress	that	format.

The	server	is	running	Internet	Information	Services	(IIS)	8.0.

Create	a	web	application	project
In	Visual	Studio,	press	Ctrl	+	Shift	+	N	or	choose	File	|	New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	center
list,	select	ASP.NET	Web	Application,	type	the	name	as	Ch14_WebApp,	type	the
solution	name	as	Chapter14,	and	then	click	on	OK:

In	the	New	ASP.NET	Project	dialog	box,	in	the	ASP.NET	Core	1.0	Templates	section,
select	the	Web	Application	template.

Note
At	the	time	of	writing	this	book,	the	final	version	of	ASP.NET	Core	1.0	and	its	Visual
Studio	project	templates	have	not	been	released.	So,	the	screenshots	in	this	book	show	the
old	branding,	ASP.NET	5!

Click	on	the	Change	Authentication	button	and	choose	No	Authentication.	Then,	click
on	OK.	This	tells	Visual	Studio	to	allow	all	users	access	to	the	application.	We	can	change
this	later	to	secure	our	web	application.

Uncheck	the	Host	in	the	cloud	box,	because	we	want	to	run	this	locally.	We	can	always
deploy	to	the	Microsoft	Azure	cloud	later.

Click	on	OK:

After	a	few	seconds,	your	Solution	Explorer	window	will	look	like	this:

Run	the	application	by	pressing	F5.	The	web	application	is	hosted	in	the	free	version	of
IIS	Express	using	a	random	port	number	for	local	testing.

Notice	that	the	home	page	has	a	black	navigation	bar	with	links	to	an	About	page	and	a
Contact	page.	The	home	page	has	a	carousel	with	four	rotating	items	and	four	columns	of
links	underneath:

Click	on	the	links	to	the	About	page	and	the	Contact	page,	and	notice	the	URLs	that	are
used.	To	get	to	the	About	page,	the	user	could	enter	/Home/About	in	the	browser	address
box:

Resize	the	width	of	the	browser	window	and	notice	that	the	navigation	bar	becomes	a
clickable	“hamburger”	menu	(three	horizontal	lines):

This	is	an	example	of	responsive	web	design.	The	page	looks	good	on	both	desktop	and
mobile	devices,	by	automatically	adapting	based	on	the	current	width	of	the	window:

Exploring	the	parts	of	an	ASP.NET	Core	web
application
Let’s	walk	through	the	parts	that	make	up	a	modern	ASP.NET	Core	application.

In	Visual	Studio,	look	at	Solution	Explorer	for	the	Ch14_WebApp	project	and	note	the
following	points:

wwwroot:	This	folder	contains	static	content,	such	as	stylesheets,	images,	scripts,	and
common	libraries,	that	combine	resources	such	as	jQuery	and	Bootstrap
Dependencies:	This	folder	contains	Bower	and	npm	for	modern	package	management
Controllers:	This	folder	contains	C#	classes	that	have	methods	(known	as	actions)
that	fetch	a	model	and	pass	it	to	a	view
Models:	This	(optional)	folder	contains	C#	classes	that	represent	all	the	data	required
for	a	request
Views:	This	folder	contains	.cshtml	files	that	combine	HTML	and	C#	code	to	enable
the	dynamic	generation	of	an	HTML	response
project.json:	This	file	contains	a	list	of	NuGet	packages	(such	as	the	Entity
Framework	Core)	that	your	project	requires	and	other	project	configuration
Startup.cs:	This	file	contains	the	Main	entry	point	for	your	application	and
configures	the	services,	pipeline,	and	routes	for	your	application

The	following	screenshot	shows	the	parts	of	a	typical	ASP.NET	Core	project:

ASP.NET	Core	startup
In	the	Solution	Explorer	window,	double-click	on	the	Startup.cs	file.

Notice	the	ConfigureServices	method	that	adds	support	for	MVC.	Later,	we	will	add
statements	here	to	add	support	for	the	Entity	Framework	Core:

public	void	ConfigureServices(IServiceCollection	services)

{

				//	Add	framework	services.

				services.AddMvc();

}

Next,	we	have	the	Configure	method.

The	most	important	statement	here	is	the	one	that	calls	UseMvc	and	maps	a	default	route.
This	route	is	very	flexible,	because	it	would	match	almost	any	incoming	URL:

public	void	Configure(IApplicationBuilder	app,	IHostingEnvironment	env,	

ILoggerFactory	loggerFactory)

{

				loggerFactory.AddConsole(Configuration.GetSection("Logging"));

				loggerFactory.AddDebug();

				if	(env.IsDevelopment())

				{

								app.UseBrowserLink();

								app.UseDeveloperExceptionPage();

				}

				else

				{

								app.UseExceptionHandler("/Home/Error");

				}

				app.UseIISPlatformHandler();

				app.UseStaticFiles();

				app.UseMvc(routes	=>

				{

								routes.MapRoute(

												name:	"default",

												template:	"{controller=Home}/{action=Index}/{id?}");

				});

}

Understanding	the	default	route
The	default	route	looks	at	any	URL	entered	by	the	user	in	the	address	bar	and	matches	it	to
extract	the	name	of	a	controller,	the	name	of	an	action,	and	an	optional	id	value	(the	?
symbol	makes	it	optional).	If	the	user	hasn’t	entered	these	names,	it	uses	defaults	of	Home
for	the	controller,	and	Index	for	the	action	(the	=	assignment	sets	a	default	for	a	named
segment).

Contents	in	curly	brackets	{}	are	called	segments,	and	they	are	like	a	named	parameter	of
a	method.	The	value	of	these	segments	can	be	any	string.

The	responsibility	of	a	route	is	to	discover	the	name	of	a	controller	and	an	action.

Here’s	a	table	of	example	URLs	and	how	MVC	would	work	out	the	names.	Notice	that	if
the	user	does	not	supply	a	name,	then	the	defaults	Home	and	Index	are	used,	as	specified
when	the	route	was	registered.	You	could	change	these	defaults	if	you	wanted:

URL Controller Action ID

/ Home Index 	

/Muppet Muppet Index 	

/Muppet/Kermit Muppet Kermit 	

/Muppet/Kermit/Green Muppet Kermit Green

/Products Products Index 	

/Products/Detail Products Detail 	

/Products/Detail/3 Products Detail 3

ASP.NET	Core	controllers
Now	that	MVC	knows	the	names	of	the	controller	and	action,	it	will	look	for	a	class	that
implements	an	interface	named	IController.	To	simplify	the	requirements,	Microsoft
supplies	a	class	named	Controller	that	your	classes	can	inherit	from.

The	responsibilities	of	a	controller	are	as	follows:

To	extract	parameters	from	the	HTTP	request
To	use	the	parameters	to	fetch	the	correct	model	and	pass	it	to	the	correct	view
To	return	the	results	from	the	view	to	the	client	as	an	HTTP	response

Defining	the	Home	controller’s	actions
In	the	Solution	Explorer	window,	expand	the	Controllers	folder	and	double-click	on	the
file	named	HomeController.cs:

public	class	HomeController	:	Controller

{

				public	IActionResult	Index()

				{

								return	View();

				}

				public	IActionResult	About()

				{

								ViewData["Message"]	=	"Your	application	description	page.";

								return	View();

				}

				public	IActionResult	Contact()

				{

								ViewData["Message"]	=	"Your	contact	page.";

								return	View();

				}

				public	IActionResult	Error()

				{

								return	View();

				}

}

Tip
If	the	user	enters	/,	or	/Home,	then	it	is	the	equivalent	of	/Home/Index	because	those	were
the	defaults.

Note	the	following	aspects:

None	of	the	action	methods	currently	use	a	model
Two	of	the	action	methods	use	a	dictionary	named	ViewData	to	store	a	string
message	that	can	then	be	read	inside	a	view
All	action	methods	execute	a	method	named	View	and	return	the	results	to	the	client

ASP.NET	Core	models
In	MVC,	the	model	represents	the	data	required	for	a	request.	For	example,	an	HTTP	GET
request	for	http://www.example.com/products/details/3	would	mean	you	are	asking
for	the	details	of	product	number	3.

The	controller	would	need	to	use	the	ID	value	3	to	retrieve	the	record	for	that	product	and
pass	it	to	a	view	that	can	then	turn	the	model	into	HTML	for	display	in	the	browser.

For	this	initial	example,	we	will	create	an	Entity	Data	Model	(EDM)	to	access	data	in	the
Northwind	database.

Tip
Best	Practice

Use	a	data	repository	(typically	implemented	as	a	service)	to	manage	your	data.

Create	Entity	models	for	Northwind
If	you	have	not	already	installed	the	Northwind	database,	then	follow	the	instructions	at
the	beginning	of	Chapter	8,	Working	with	Relational	Data	Using	the	Entity	Framework.

On	the	Tools	menu,	choose	NuGet	Package	Manager	and	then	Package	Manager
Console.

In	the	PM>	prompt,	enter	the	following	commands:

Install-Package	EntityFramework.MicrosoftSqlServer	

Install-Package	EntityFramework.Commands	

Install-Package	EntityFramework.MicrosoftSqlServer.Design	:

Tip
If	the	preceding	commands	give	errors,	then	add	-pre	to	the	end	of	each	command	to
install	the	pre-release	version	as	shown	in	the	following	screenshot.

In	the	Solution	Explorer	window,	double-click	on	project.json.	Notice	that	three
dependencies	have	been	added	for	the	Entity	Framework	Core:

{

		"version":	"1.0.0-*",

		"compilationOptions":	{

				"emitEntryPoint":	true

		},

		"dependencies":	{

				"EntityFramework.Commands":	"7.0.0-rc1-final",

				"EntityFramework.MicrosoftSqlServer":	"7.0.0-rc1-final",

				"EntityFramework.MicrosoftSqlServer.Design":	"7.0.0-rc1-final",

				"Microsoft.AspNet.Diagnostics":	"1.0.0-rc1-final",

In	the	commands	section,	add	a	new	command	for	ef,	as	follows:

		"commands":	{

				"web":	"Microsoft.AspNet.Server.Kestrel",

				"ef":	"EntityFramework.Commands"

		},

Save	project.json	file.

In	the	Solution	Explorer	window,	right-click	on	the	project	and	choose	Add,	New
Folder…,	and	then	enter	the	name	of	the	model.

Right-click	on	the	Ch14_WebApp	project	and	choose	Open	Folder	in	File	Explorer.
Click	in	the	address	box	and	copy	the	path	to	the	clipboard	by	pressing	Ctrl	+	C.

Click	the	Windows	Start	button	and	start	Command	Prompt.	In	Command	Prompt
window,	enter	cd,	and	then	right-click	to	paste	the	path	to	your	project.	Press	Enter	to
change	to	that	directory:

cd	C:\Code\Chapter14\src\Ch14_WebApp

Enter	the	following	command	to	tell	the	.NET	Version	Manager	to	use	the	latest	version	of
.NET	Core:

dnvm	use	1.0.0-rc1-update1

Note
At	the	time	of	writing	this	book,	.NET	Core	was	a	release	candidate.	By	the	time	you
follow	these	instructions,	the	final	version	should	be	available,	and	use	the	new	.NET	CLI
so	the	commands	dnvm	and	dnx	will	be	replaced	by	the	command	dotnet.

Enter	the	following	command	to	generate	classes	that	represent	entities	for	all	the	tables	in
the	Northwind	database	in	the	Models	subfolder:

dnx	ef	dbcontext	scaffold	"Server=

(localdb)\mssqllocaldb;Database=Northwind;Trusted_Connection=True;"	

EntityFramework.MicrosoftSqlServer	--outputDir	Models

In	the	Solution	Explorer	window,	expand	the	Models	folder.	You	will	see	that	a	class	has
been	created	for	each	entity,	and	a	class	named	NorthwindContext	has	been	created	to
represent	the	whole	database:

Tip
Best	Practice

Create	a	separate	class	library	project	for	your	entity	models.	This	allows	easier	sharing
between	servers	and	clients.	We	have	not	done	this	for	this	example	to	keep	it	simple	for
now.

Configure	Entity	Framework	Core	as	a	service
Dependency	injection	is	central	to	ASP.NET	Core.	Services,	such	as	the	Entity	Framework
Core	that	are	needed	by	MVC	controllers,	must	be	registered	as	a	service	during	startup.

In	the	Solution	Explorer	window,	open	the	Startup.cs	file.	Import	the	following
namespaces:

using	Ch14_WebApp.Models;

using	Microsoft.Data.Entity;

Add	the	following	statements	to	the	ConfigureServices	method:

var	connection	=	@"Server=

(localdb)\mssqllocaldb;Database=Northwind;Trusted_Connection=True;";

services.AddEntityFramework()

				.AddSqlServer()

				.AddDbContext<NorthwindContext>(options	=>	

options.UseSqlServer(connection));

Since	we	are	setting	the	database	connection	string	in	the	ASP.NET	Core	startup,	it	does
not	need	to	be	done	in	the	NorthwindContext	class.

In	the	Solution	Explorer	window,	in	the	Models	folder,	open	the	NorthwindContext.cs
file	and	delete	the	following	method:

protected	override	void	OnConfiguring(DbContextOptionsBuilder	options)

{

				options.UseSqlServer(@"Server=

(localdb)\mssqllocaldb;Database=Northwind;Trusted_Connection=True;");

}

Create	view	models	for	requests
Imagine	that	when	a	user	comes	to	our	website,	we	want	to	show	them	a	list	of	products
and	a	count	of	the	number	of	visitors	we	have	had	this	month.	All	the	data	that	we	want	to
show	in	response	to	a	request	is	the	MVC	model,	sometimes	called	a	view	model	because
it	is	a	model	that	is	passed	to	a	view.

In	the	Solution	Explorer	window,	select	the	Models	folder.	On	the	Project	menu,	choose
Add	Class…,	and	in	the	dialog	box,	choose	Class	and	name	it	HomeIndexViewModel.

Modify	the	class	definition	to	make	it	look	like	this:

public	class	HomeIndexViewModel

{

				public	int	VisitorCount;

				public	ICollection<Products>	Products	{	get;	set;	}

}

Fetch	the	model	in	the	controller
Open	the	HomeController	class.	Import	the	Ch14_WebApp.Models	namespace.

Add	a	field	to	store	a	reference	to	a	NorthwindContext	instance	and	initialize	it	in	a
constructor:

private	NorthwindContext	db;

public	HomeController(NorthwindContext	injectedContext)

{

				db	=	injectedContext;

}

Modify	the	contents	of	the	Index	action	method	to	make	it	look	like	this:

var	model	=	new	HomeIndexViewModel

{

				VisitorCount	=	(new	Random()).Next(1,	1001),

				Products	=	db.Products.ToArray()

};

return	View(model);	//	pass	model	to	view

Note	that	we	will	simulate	a	visitor	count	using	the	Random	class	to	generate	a	number
between	1	and	1000.

Note
If	you	build	the	project	now,	you	might	get	“CS0833	An	anonymous	type	cannot	have
multiple	properties	with	the	same	name”	errors	due	to	bugs	in	the	scaffolding	feature.	To
fix	the	errors,	simply	delete	the	duplicate	members.

ASP.NET	Core	views
The	responsibility	of	a	view	is	to	transform	a	model	into	HTML	or	other	formats.	There
are	multiple	view	engines	that	can	be	used	to	do	this.	The	default	view	engine	for
ASP.NET	MVC	3	and	later	is	called	Razor,	and	it	uses	the	@	symbol	to	indicate	server-
side	code	execution.

Rendering	the	Home	controller’s	views
In	the	Solution	Explorer	window,	expand	the	Views	folder.	Expand	the	Home	folder.
Note	the	three	files	with	the	.cshtml	file	extension.

Tip
The	.cshtml	file	extension	means	this	is	a	file	that	mixes	C#	and	HTML.

When	the	View	method	is	executed	in	a	controller	action,	MVC	looks	in	the	Views	folder
for	a	subfolder	with	the	same	name	as	the	current	controller,	that	is,	Home.	It	then	looks
for	a	file	with	the	same	name	as	the	current	action,	that	is,	Index,	About,	or	Contact.

In	the	Index.cshtml	file,	notice	the	block	of	code	wrapped	in	@{	}.	This	will	execute	first
and	can	be	used	to	store	data	that	needs	to	be	passed	into	a	shared	layout	file:

@{

				ViewData["Title"]	=	"Home	Page";

}

Note	the	static	HTML	content	in	several	DIV	elements	that	uses	Bootstrap	for	styling.

Tip
Best	Practice

Instead	of	defining	your	own	styles,	use	a	library,	such	as	Bootstrap,	that	implements
responsive	design	using	standard	CSS3	principles.

Sharing	layouts	between	views
There	is	a	file,	named	_ViewStart.cshtml,	that	gets	executed	by	the	View	method.	It	is
used	to	set	defaults	that	apply	to	all	views.

For	example,	it	sets	the	Layout	property	of	all	views	to	a	shared	layout	file:

@{

				Layout	=	"_Layout";

}

In	the	Shared	folder,	open	the	_Layout.cshtml	file.	Notice	that	the	title	is	being	read	from
the	ViewData	dictionary	that	was	set	earlier	in	the	Index.cshtml	view:

<title>@ViewData["Title"]	–	Ch14_WebApp</title>

Note	the	rendering	of	common	styles	to	support	Bootstrap	and	the	two	sections.	During
development,	the	fully-commented	and	nicely	formatted	versions	of	CSS	files	will	be
used.	For	staging	and	production,	the	minified	versions	will	be	used:

<environment	names="Development">

				<link	rel="stylesheet"	href="~/lib/bootstrap/dist/css/bootstrap.css"	/>

				<link	rel="stylesheet"	href="~/css/site.css"	/>

</environment>

<environment	names="Staging,Production">

				<link	rel="stylesheet"	

href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.5/css/bootstrap.min.css

"

												asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"

												asp-fallback-test-class="sr-only"	asp-fallback-test-

property="position"	asp-fallback-test-value="absolute"	/>

				<link	rel="stylesheet"	href="~/css/site.min.css"	asp-append-

version="true"	/>

</environment>

Note	the	rendering	of	hyperlinks	to	allow	users	to	click	between	pages	using	the
navigation	bar	at	the	top	of	every	page.	The	<a>	elements	use	“tag	helper”	attributes	to
specify	the	controller	name	and	action	name	that	will	execute	when	the	link	is	clicked:

<div	class="navbar-collapse	collapse">

				<ul	class="nav	navbar-nav">

								<a	asp-controller="Home"	asp-action="Index">Home

								<a	asp-controller="Home"	asp-action="About">About

								<a	asp-controller="Home"	asp-action="Contact">Contact

				

</div>

Note	the	rendering	of	the	body:

@RenderBody()

Note	the	rendering	of	script	blocks	at	the	bottom	of	the	page	(so	that	it	doesn’t	slow	down
the	display	of	the	page):

<environment	names="Development">

				<script	src="~/lib/jquery/dist/jquery.js"></script>

				<script	src="~/lib/bootstrap/dist/js/bootstrap.js"></script>

				<script	src="~/js/site.js"	asp-append-version="true"></script>

</environment>

<environment	names="Staging,Production">

				<script	src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-

2.1.4.min.js"

												asp-fallback-src="~/lib/jquery/dist/jquery.min.js"

												asp-fallback-test="window.jQuery">

				</script>

				<script	

src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.5/bootstrap.min.js"

												asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"

												asp-fallback-test="window.jQuery	&&	window.jQuery.fn	&&	

window.jQuery.fn.modal">

				</script>

				<script	src="~/js/site.min.js"	asp-append-version="true"></script>

</environment>

You	can	add	you	own	script	blocks	into	an	optional	defined	section	named	scripts:

@RenderSection("scripts",	required:	false)

Defining	custom	styles
In	the	wwwroot\css	folder,	open	the	site.css	file.

Add	a	new	style	that	will	apply	to	an	element	with	the	newspaper	ID,	like	this:

#newspaper	{

				column-count:	3;

}

Notice	that	the	column-count	property	has	a	purple	squiggle	under	it.	When	you	hover
over	it,	you	will	see	that	only	Internet	Explorer	10	(or	later)	and	Opera	11.6	(or	later)
currently	implement	this	standard.	Luckily,	Web	Essentials	can	fix	this	for	us.

Click	on	the	column-count	property,	hover	your	mouse	over	the	small	blue	bar,	click	on
the	button	to	pop	open	a	menu,	and	then	click	on	Add	missing	vendor	specifics.

You	will	see	that	Web	Essentials	has	added	two	extra	statements.	They	are	faded	out	to
indicate	that	they	will	automatically	change	when	you	change	the	value	for	the	original
column-count	property:

#newspaper	{

				-moz-column-count:	3;

				-webkit-column-count:	3;

				column-count:	3;

}

Tip
To	learn	more	about	CSS3	and	responsive	design,	read	the	book	Responsive	Web	Design
with	HTML5	and	CSS3	-	Second	Edition	by	Packt	Publishing	at
https://www.packtpub.com/web-development/responsive-web-design-html5-and-css3-
second-edition.

https://www.packtpub.com/web-development/responsive-web-design-html5-and-css3-second-edition

Defining	a	typed	view
To	improve	the	IntelliSense	when	writing	a	view,	you	can	define	the	type	the	view	can
expect	using	a	@model	directive	at	the	top.

Back	in	the	Index.cshtml	view,	enter	the	following	code	as	the	first	line	of	the	file:

@model	Ch14_WebApp.Models.HomeIndexViewModel

Now	whenever	we	enter	@Model,	Visual	Studio’s	code	editor	will	know	the	correct	type
and	will	provide	IntelliSense.

Tip
To	declare	the	type	of	the	model,	use	@model	(with	lowercase	m).	To	read	the	model,	use
@Model	(with	uppercase	M).

In	Index.cshtml,	delete	all	the	<div>	elements	and	replace	them	with	this	code:

<div	class="row">

				<div	class="col-md-12">

								<h1>Northwind</h1>

								<p	class="lead">We	have	had	@Model.VisitorCount	visitors	this	

month.</p>

								<h2>Products</h2>

								<div	id="newspaper">

												

												@foreach	(var	item	in	@Model.Products)

												{

																<a	asp-controller="Home"	asp-action="ProductDetail"	

asp-route-id="@item.ProductID">@item.ProductName	costs	

@item.UnitPrice.Value.ToString("C")

												}

												

								</div>

				</div>

</div>

Note	how	easy	it	is	to	mix	static	HTML	elements,	such	as		and	,	with	C#	code	to
output	the	list	of	product	names.

Note	the	<div>	element	with	the	id	attribute	of	newspaper.	This	will	use	the	custom	style
that	we	defined	earlier,	so	all	the	content	in	that	element	will	display	in	three	columns.

To	test	the	web	application,	press	F5.	The	results	in	Microsoft	Edge	will	look	something
like	this:

Taking	ASP.NET	Core	further
Now	that	you’ve	seen	the	basics	of	how	models,	views,	and	controllers	work	together	to
provide	a	web	application,	let’s	look	at	some	common	scenarios,	such	as	passing
parameters	and	annotating	models.

Passing	parameters	using	a	route	value
Back	in	the	HomeController	class,	add	the	following	action	method.	It	uses	something
called	the	default	model	binder	to	automatically	match	the	id	passed	in	the	route	to	the
parameter	named	id	in	the	method.

Tip
Model	binders	are	very	powerful,	and	the	default	one	does	a	lot	for	you.	For	advanced
scenarios,	you	can	create	your	own	by	implementing	the	IModelBinder	interface,	but	that
is	beyond	the	scope	of	this	book.

Inside	the	method,	we	check	to	see	whether	the	id	is	null,	and	if	so,	it	returns	a	404	status
code	and	message.	Otherwise,	we	can	connect	to	the	database	and	try	to	retrieve	a	product
using	the	id	variable.	If	we	find	a	product,	we	pass	it	to	a	view;	otherwise,	we	return	a
different	404	status	code	and	message:

public	IActionResult	ProductDetail(int?	id)

{

				if	(!id.HasValue)

				{

								return	HttpNotFound("You	must	pass	a	product	ID	in	the	route,	for	

example,	/Home/ProductDetail/21");

				}

				var	model	=	db.Products.SingleOrDefault(p	=>	p.ProductID	==	id);

				if	(model	==	null)

				{

								return	HttpNotFound($"A	product	with	the	ID	of	{id}	was	not	

found.");

				}

				return	View(model);	//	pass	model	to	view

}

Now	we	need	to	create	a	view	for	this	request.

Inside	the	Views	folder,	right-click	on	Home	and	choose	Add	|	New	Item….

Choose	MVC	View	Page	and	name	it	ProductDetail.cshtml:

Modify	the	contents	as	shown	here:

@model	Ch14_WebApp.Models.Products

@{

				ViewData["Title"]	=	"Product	Detail	-	"	+	Model.ProductName;

}

<h2>Product	Detail</h2>

<hr	/>

<div>

				<dl	class="dl-horizontal">

								<dt>Product	ID</dt>

								<dd>@Model.ProductID</dd>

								<dt>Product	Name</dt>

								<dd>@Model.ProductName</dd>

								<dt>Category	ID</dt>

								<dd>@Model.CategoryID</dd>

								<dt>Unit	Price</dt>

								<dd>@Model.UnitPrice.Value.ToString("C")</dd>

								<dt>Units	In	Stock</dt>

								<dd>@Model.UnitsInStock</dd>

				</dl>

</div>

Test	the	new	action	and	view	by	pressing	F5.

When	the	home	page	appears	with	the	list	of	products,	click	one	of	them,	for	example,
product	26.	The	result	should	look	something	like	this:

Passing	parameters	using	a	query	string
In	the	HomeController	class,	import	the	Microsoft.Data.Entity	namespace.

Add	a	new	action	method	like	this:

public	IActionResult	ProductsThatCostMoreThan(decimal?	price)

{

				if	(!price.HasValue)

				{

								return	HttpNotFound("You	must	pass	a	product	price	in	the	query	

string,	for	example,	/Home/ProductsThatCostMoreThan?price=50");

				}

				var	model	=	db.Products.Include(p	=>	p.Category).Include(p	=>	

p.Supplier).Where(p	=>	p.UnitPrice	>	price).ToArray();

				if	(model.Count()	==	0)

				{

								return	HttpNotFound($"No	products	cost	more	than	{price:C}.");

				}

				ViewData["MaxPrice"]	=	price.Value.ToString("C");

				return	View(model);	//	pass	model	to	view

}

Inside	the	Views	folder,	right-click	on	Home	and	choose	Add	|	New	Item….

Choose	MVC	View	Page	and	name	it	ProductsThatCostMoreThan.cshtml.

Modify	the	contents	like	this:

@model	IEnumerable<Ch14_WebApp.Models.Products>

@{

				ViewData["Title"]	=	"Products	That	Cost	More	Than	"	+	

ViewData["MaxPrice"];

}

<h2>Products	That	Cost	More	Than	@ViewData["MaxPrice"]</h2>

<table	class="table">

				<tr>

								<th>

												@Html.DisplayNameFor(model	=>	model.Category.CategoryName)

								</th>

								<th>

												@Html.DisplayNameFor(model	=>	model.Supplier.CompanyName)

								</th>

								<th>

												@Html.DisplayNameFor(model	=>	model.ProductName)

								</th>

								<th>

												@Html.DisplayNameFor(model	=>	model.UnitPrice)

								</th>

								<th>

												@Html.DisplayNameFor(model	=>	model.UnitsInStock)

								</th>

				</tr>

				@foreach	(var	item	in	Model)

				{

								<tr>

												<td>

																@Html.DisplayFor(modelItem	=>	item.Category.CategoryName)

												</td>

												<td>

																@Html.DisplayFor(modelItem	=>	item.Supplier.CompanyName)

												</td>

												<td>

																@Html.DisplayFor(modelItem	=>	item.ProductName)

												</td>

												<td>

																@Html.DisplayFor(modelItem	=>	item.UnitPrice)

												</td>

												<td>

																@Html.DisplayFor(modelItem	=>	item.UnitsInStock)

												</td>

								</tr>

				}

</table>

In	the	Views	folder,	in	the	Home	folder,	open	Index.cshtml	file	and	add	the	following
div	element	at	the	bottom	of	the	file.	This	will	provide	a	form	for	the	user	to	enter	a	price.
The	user	can	then	click	on	a	submit	button	to	call	the	action	method	that	shows	only
products	that	cost	more	than	the	entered	price:

<div	class="row">

				<form	asp-action="ProductsThatCostMoreThan"	method="get">

								<input	name="price"	placeholder="Enter	a	product	price"	/>

								<input	type="submit"	/>

				</form>

</div>

Run	the	web	application	by	pressing	F5.	On	the	home	page,	scroll	down	and	enter	a	price
in	the	form.	Then,	click	on	Submit	Query:

You	will	see	a	table	of	the	products	that	cost	more	than	the	price	you	entered:

Annotating	models
You	might	have	noticed	that	the	column	headings	in	the	table	used	the	names	of	the
properties	by	default.	This	means	that	if	the	property	is	multiple	words,	it	won’t	have
spaces.	We	can	use	data	annotations	to	improve	this.

In	the	Models	folder,	open	the	Products	class.	Import	the
System.ComponentModel.DataAnnotations	namespace.

Add	[Display]	attributes	before	each	property	if	you	want	to	have	a	different	label,	for
example,	Product	Name,	Unit	Price,	Units	In	Stock,	and	so	on:

[Display(Name	=	"Product	Name")]

public	string	ProductName	{	get;	set;	}

Apply	the	[Display]	attribute	to	the	properties	of	three	other	classes:	Category’s	Category
Name,	Customer’s	Company	Name,	and	Supplier’s	Company	Name.

Start	the	web	application	by	pressing	F5.

Enter	a	product	price	and	click	on	Submit	Query.	Notice	that	the	column	headings	now
reflect	the	display	attributes	and	not	the	actual	property	names:

ASP.NET	Core	Web	API
Although	HTTP	was	originally	designed	to	request	and	respond	with	HTML	and	other
resources	for	us	to	look	at,	it	is	also	good	for	building	services.	Roy	Fielding	stated,	in	his
doctoral	dissertation	describing	the	Representational	State	Transfer	(REST)
architectural	style,	that	the	HTTP	standard	defines:

URLs	to	uniquely	identify	resources
Methods	to	perform	common	tasks,	such	as	GET	and	DELETE
The	ability	to	negotiate	media	formats	such	as	XML	and	JSON

To	allow	the	easy	creation	of	services,	ASP.NET	Core	has	combined	what	used	to	be	two
types	of	controller.

In	earlier	versions	of	ASP.NET,	you	would	derive	from	ApiController	to	create	a	Web
API	service,	and	then	register	API	routes	in	the	same	route	table	that	MVC	uses.

With	ASP.NET	Core,	you	use	exactly	the	same	Controller	base	class	used	with	MVC,
except	the	routes	are	usually	configured	on	the	controller	itself,	using	attributes,	rather
than	in	the	route	table.

Scaffolding	an	API	controller
In	the	Solution	Explorer	window,	right-click	on	the	Controllers	folder	and	choose	Add	|
New	Item….	Choose	Web	API	Controller	Class,	enter	the	name	as	ShippersController,
and	then	click	on	Add:

API	controllers	do	not	have	views.	Instead,	they	use	automatic	content	negotiation	with
the	client	to	return	XML,	JSON,	or	X-WWW-FORMURLENCODED	data	formats.

In	ShippersController	class,	add	the	following	code:

[Route("api/[controller]")]

public	class	ShippersController	:	Controller

{

				private	NorthwindContext	db;

				public	ShippersController(NorthwindContext	injectedContext)

				{

								db	=	injectedContext;

				}

				//	GET:	api/shippers

				[HttpGet]

				public	IEnumerable<Shippers>	Get()

				{

								return	db.Shippers.ToArray();

				}

Note
If	you	have	used	older	versions	of	ASP.NET	Web	API,	then	you	know	that	in	that
technology,	you	could	create	C#	methods	that	begin	with	any	HTTP	method	(GET,	POST,
PUT,	and	so	on),	and	the	controller	will	automatically	execute	the	correct	one.	In	ASP.NET
Core,	this	doesn’t	happen	anymore,	because	we	are	not	inheriting	from	ApiController.
So	you	must	apply	an	attribute	such	as	[HttpGet]	to	explicitly	map	HTTP	methods	to	C#

methods.

Press	F5	to	run	the	application.

In	the	address	bar,	enter	api/shippers	at	the	end	of	the	URL	and	press	Enter.	You	will	see
this	JSON	response:

Note
If	you	test	with	Chrome	rather	than	Microsoft	Edge,	then	you	will	get	an	XML	response
because	Chrome	prefers	XML	over	JSON.

Calling	a	Web	API	service	from	a	UWP	app
Now	that	we	have	a	service	that	allows	HTTP	requests	to	be	used	to	manage	the	Shippers
table,	we	can	create	a	client	application	to	call	it.	The	client	will	often	be	an	HTML	page
that	uses	JavaScript	to	make	the	calls.	However,	since	this	book	is	about	modern	C#	and
.NET,	we	will	build	a	UWP	app.

In	Visual	Studio,	click	on	File	|	Add	|	New	Project….	In	the	Add	New	Project	dialog,	in
the	Installed	Templates	list,	select	Visual	C#.	In	the	center	list,	select	Blank	App
(Universal	Windows),	type	the	name	as	Ch14_WinApp,	and	then	click	on	OK.

In	Solution	Explorer	window,	right-click	on	the	new	project	and	choose	Manage	NuGet
Packages….	In	the	search	box,	enter	web	api	client	and	press	Enter.	Click	on	Install:

On	the	Project	menu,	choose	Add	Class	and	name	it	Shipper:

public	class	Shipper

{

				public	int	ShipperID	{	get;	set;	}

				public	string	CompanyName	{	get;	set;	}

				public	string	Phone	{	get;	set;	}

}

Open	MainPage.xaml	file	and	add	the	following	XAML	inside	the	existing	Grid	element:

<StackPanel	Padding="6">

				<TextBlock	FontSize="24">Shippers</TextBlock>

				<GridView	ItemsSource="{Binding}">

								<GridView.ItemTemplate>

												<DataTemplate>

																<Border	Margin="6"	Padding="10"	CornerRadius="10"	

Background="LightCyan">

																				<Grid>

																								<Grid.ColumnDefinitions>

																												<ColumnDefinition	Width="Auto"	/>

																												<ColumnDefinition	Width="Auto"	/>

																								</Grid.ColumnDefinitions>

																								<Grid.RowDefinitions>

																												<RowDefinition	/>

																												<RowDefinition	/>

																												<RowDefinition	/>

																								</Grid.RowDefinitions>

																								<TextBlock	Text="Shipper	ID"	/>

																								<TextBlock	Text="{Binding	ShipperID}"	

Grid.Column="1"	/>

																								<TextBlock	Text="Company	Name"	Grid.Row="1"	/>

																								<TextBlock	Text="{Binding	CompanyName}"	

Grid.Row="1"	Grid.Column="1"	/>

																								<TextBlock	Text="Phone"	Grid.Row="2"	/>

																								<TextBlock	Text="{Binding	Phone}"	Grid.Row="2"	

Grid.Column="1"	/>

																				</Grid>

																</Border>

												</DataTemplate>

								</GridView.ItemTemplate>

				</GridView>

</StackPanel>

This	defines	a	GridView	control	bound	to	the	DataContext	class	that	we	will	set	when	the
page	loads	to	the	response	coming	back	from	the	service.

In	the	Page	element,	add	an	event	handler	for	Loading	function:

Loading="Page_Loading"

In	the	MainPage.xaml.cs	file,	import	the	following	namespace:

using	System.Net.Http;

Add	the	following	statements	to	the	Page_Loading	method,	and	add	the	async	keyword	to
the	method’s	declaration:

var	client	=	new	HttpClient();

client.BaseAddress	=	new	Uri("http://localhost:59468/");

HttpResponseMessage	response	=	await	client.GetAsync("api/shippers");

DataContext	=	await	response.Content.ReadAsAsync<Shipper[]>();

Note
Make	sure	you	use	the	same	random	port	number	that	Visual	Studio	allocated	to	your
ASP.NET	Core	application.	It	is	unlikely	to	be	59468!

On	the	Build	menu,	choose	Deploy	Ch14_WinApp.	In	the	Solution	Explorer	window,
right-click	on	the	solution	and	choose	Properties.

Select	Multiple	startup	projects.	Set	the	action	for	Ch14_WebApp	to	Start	without
debugging.	Set	the	action	for	Ch14_WinApp	to	Start:

On	the	Debug	menu,	choose	Start	Debugging	or	press	F5.	You	will	see	that	the	UWP	app
called	the	service,	deserialized	the	JSON	data,	and	bound	it	to	the	list	box:

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	this	chapter’s	topics	with	deeper	research.

Exercise	14.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 What	is	the	difference	between	a	web	browser	and	a	web	server?
2.	 What	is	the	difference	between	a	URI,	a	URL,	and	a	URN?
3.	 What	are	the	four	most	common	HTTP	methods?
4.	 What	does	it	mean	when	a	web	server	responds	with	status	code	302?
5.	 What	are	the	responsibilities	of	a	route?
6.	 What	are	the	responsibilities	of	a	controller?
7.	 What	are	the	responsibilities	of	a	model?
8.	 What	are	the	responsibilities	of	a	view?
9.	 How	does	ASP.NET	distinguish	a	request	for	MVC	from	a	request	for	Web	API?
10.	 What	data	formats	does	Web	API	support	by	default?

Exercise	14.2	–	practice	building	a	data-driven	web
application
Create	an	ASP.NET	Core	web	application	that	connects	to	the	Northwind	sample	database
and	enables	the	user	to	see	a	list	of	customers	grouped	by	country.	When	the	user	clicks	on
a	customer	record,	they	then	see	a	page	showing	the	full	contact	details	of	that	customer
and	a	list	of	their	orders.

Exercise	14.3	–	explore	topics
Use	the	following	links	to	read	more	details	about	this	chapter’s	topics:

Learn	about	ASP.NET	Web	Forms:	http://www.asp.net/web-forms
What	is	Windows	Communication	Foundation:	https://msdn.microsoft.com/en-
us/library/ms731082(v=vs.110).aspx
Learn	about	ASP.NET	MVC:	http://www.asp.net/mvc
Learn	about	ASP.NET	Web	API:	http://www.asp.net/web-api

http://www.asp.net/web-forms
https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx
http://www.asp.net/mvc
http://www.asp.net/web-api

Summary
In	this	chapter,	you	learned	how	to	build	an	ASP.NET	Core	MVC	web	application,	and	an
ASP.NET	Core	Web	API	service	that	manages	data	using	Entity	Framework	Core.	You
also	learned	how	to	consume	a	REST/HTTP	service	using	HttpClient.

In	the	next	chapter,	you	will	learn	how	to	build	an	ASP.NET	Core	web	application	that	can
be	hosted	cross-platform	on	Windows,	Linux,	or	Mac	OS	X.

Chapter	15.	Taking	C#	Cross-Platform
This	chapter	is	about	how	you	can	take	C#	cross-platform	using	.NET	Core	1.0,	ASP.NET
Core	1.0,	Entity	Framework	Core	1.0,	and	Visual	Studio	Code.

Note
You	will	need	a	computer	running	Mac	OS	X	to	complete	this	chapter	if	you	want	to
follow	the	directions	as	written.	You	could	choose	to	use	a	Linux	variant	such	as	Ubuntu
14.04	or	a	Docker	container	instead	of	Mac	OS	X,	but	the	installation	steps	and	some	of
the	command-line	tools	will	be	different	from	what	I	have	described	in	this	chapter.	You
can	read	more	about	using	.NET	Core	on	Ubuntu	14.04	or	Docker	at
http://dotnet.github.io/getting-started/.

In	this	chapter,	we	will	cover	the	following	topics:

Understanding	cross-platform	development
Installing	Visual	Studio	Code	and	ASP.NET	Core
Building	cross-platform	web	applications	using	ASP.NET	Core
Understanding	.NET	Core	command-line	tools

http://dotnet.github.io/getting-started/

Understanding	cross-platform
development
Cross-platform	development	means	being	able	to	both	write	code	and	run	the	results	on
operating	systems	other	than	Windows.

Visual	Studio	Code
Visual	Studio	Code	is	an	open	source,	cross-platform,	extensible,	code-focused	editor	with
some	basic	IDE	features	based	on	Google’s	Chromium	project.	Microsoft	and	Google
have	worked	closely	together	to	ensure	that	Visual	Studio	Code	is	a	decent	choice	for
cross-platform	development.

However,	it	has	significant	limitations	compared	to	Visual	Studio	2015.	Luckily,	you	can
use	Visual	Studio	2015	on	Windows	for	your	initial	development	and	then	open	the	same
files	in	Visual	Studio	Code	when	you	need	to	work	with	your	code	on	other	platforms.

.NET	Core	1.0

.NET	Core	1.0	is	a	forked	open	source	and	cross-platform	implementation	of	.NET	that	is
designed	for	modern	development.	It	is	a	subset	of	the	Windows-only	.NET	Framework,
but	it	has	the	advantage	of	running	cross-platform	across	Windows,	Mac	OS	X,	Linux
operating	systems,	and	Docker	containers.

Microsoft	has	informally	announced	that	.NET	development	is	now	happening	first	on
.NET	Core,	with	changes	backported	to	the	Windows-only	.NET	Framework.

ASP.NET	Core	1.0
ASP.NET	Core	1.0	(which	includes	the	latest	versions	of	MVC	and	Web	API)	can	be	used
to	develop	web	applications	and	services	that	run	on	the	.NET	Core	for	cross-platform
hosts,	or	on	the	.NET	Framework	for	hosting	on	Windows.

Entity	Framework	Core	1.0
Entity	Framework	Core	1.0	(EF	Core)	can	be	used	cross-platform	to	manage	relational
data	(stored	in	Microsoft	SQL	Server	on	Windows	today	and	natively	on	Linux	starting	in
2017,	MySQL,	and	others)	and	non-relational	data	(stored	in	Microsoft	Azure	Table
storage,	Redis,	and	others).

.NET	Native

.NET	Native	is	a	runtime	that	compiles	.NET	applications	to	native	code.	You	can	use	it	to
create	console	applications,	and	ASP.NET	Core	applications	and	services,	all	running
natively	on	Windows,	Linux,	and	Mac	OS	X.

Xamarin
Xamarin	enables	developers	to	build	apps	for	Apple	iOS	and	Google	Android	using	C#.	It
is	based	on	a	third-party	open	source	implementation	of	.NET	known	as	Mono.

Applications	built	with	Xamarin	draw	the	user	interface	using	native	platform	widgets,	so
the	app	looks	natural	on	the	target	mobile	platform.

Developers	can	code	in	either	Visual	Studio	2015	(which	requires	a	paid	license	from
Xamarin	for	their	extensions)	or	using	the	free	Xamarin	Studio,	which	runs	on	Windows
and	Mac.

Tip
If	you	would	like	to	learn	more	about	Xamarin,	then	I	recommend	Xamarin	Cross-
platform	Application	Development	(Second	Edition)	by	Jonathan	Peppers,	and	Mastering
Cross-Platform	Development	with	Xamarin	by	Can	Bilgin,	by	Packt	Publishing.

Cross-device	Universal	Windows	Platform	(UWP)
UWP	apps	are	compiled	using	.NET	Native	for	efficient	resource	usage	and	faster
performance,	but	they	are	only	supported	on	the	Windows	10	platform.	This	means
Windows	10	desktops,	laptops,	and	tablets;	Windows	10	Mobile	phones;	Xbox	One;	and
HoloLens.

Note
Think	of	UWP	as	being	cross-device	rather	than	cross-platform.

Installing	Visual	Studio	Code	and
ASP.NET	Core
First,	we	will	install	Visual	Studio	Code	on	Mac	OS	X.

Note
If	you	are	using	Linux,	you	can	read	the	directions	at	https://code.visualstudio.com/Docs/?
dv=linux64.

https://code.visualstudio.com/Docs/?dv=linux64

Installing	Visual	Studio	Code
To	install	Visual	Studio	Code,	you	need	to	perform	the	following	steps:

1.	 Start	Safari	or	Chrome,	go	to	https://code.visualstudio.com/Docs/editor/setup,	and
then	click	on	Download	Visual	Studio	Code	for	Mac	OS	X.

2.	 After	downloading	the	ZIP	file,	double-click	on	it	to	extract	the	Visual	Studio
Code.app	file.	Drag	the	file	to	your	Applications	folder:

3.	 When	you	first	run	Visual	Studio	Code,	you	will	see	that	it	is	a	very	simple	editor:

https://code.visualstudio.com/Docs/editor/setup

If	you	want	to	add	Visual	Studio	Code	to	your	dock	for	easy	access,	then	right-click	on	its
icon	and	go	to	Options	|	Keep	in	Dock.

Managing	development	from	the	terminal
You	will	use	the	command	line	(the	Terminal	app)	a	lot	during	development	on	the	Mac.

Start	Mac	OS	X’s	Terminal	app.	Get	a	list	of	all	files	in	your	current	directory	by	entering
the	following	command:

ls	-a

The	Terminal	output	should	look	something	like	this:

If	you	do	not	already	have	a	file	named	.bash_profile,	then	enter	the	following
command:

touch	.bash_profile

Enter	the	following	command	to	edit	the	file	with	the	nano	text	editor:

nano	.bash_profile

In	the	editor,	add	the	following	statements:

code	()	{

			if	[[$#	=	0]]

			then

							open	-a	"Visual	Studio	Code"

			else

							[[$1	=	/*]]	&&	F="$1"	||	F="$PWD/${1#./}"

							open	-a	"Visual	Studio	Code"	--args	"$F"

			fi

}

Press	Ctrl	+	O	to	save	changes,	press	Enter	to	accept	the	filename,	and	then	press	Ctrl	+	X
to	exit	and	return	to	the	prompt.

Tip
You	could	also	use	TextEdit	to	modify	the	.bash_profile	file	using	the	following
command:

open	-e	.bash_profile

Restart	the	Terminal	app	or	enter	source	.bash_profile	to	force	it	to	be	reprocessed.

From	now	on,	you	will	be	able	to	change	to	a	directory	containing	any	project	and	enter
code	.	to	open	Visual	Studio	Code	and	start	editing	that	project.

Installing	Homebrew
The	next	step	is	to	install	Homebrew	if	you	don’t	already	have	it.

Tip
Homebrew	installs	the	stuff	you	need	that	Apple	didn’t	already	install.

Enter	the	following	in	the	Terminal	prompt:

ruby	-e	"$(curl	-fsSL	

https://raw.githubusercontent.com/Homebrew/install/master/install)"

Now,	we	will	use	Homebrew	to	install	ASP.NET	Core	and	its	.NET	Version	Manager
(dnvm).

Note
At	the	time	of	writing	this	book,	Microsoft	is	in	the	middle	of	changing	the	command-line
tools	for	.NET	Core.	When	the	final	version	is	released,	they	plan	to	use	a	similar	tool
named	dotnet	instead	of	dnvm.	Most	of	the	commands	will	be	similar	to	what	I	will	show
you	in	this	chapter.	You	can	keep	yourself	updated	by	visiting
http://cs6dotnetcore.azurewebsites.net/.

http://cs6dotnetcore.azurewebsites.net/

Installing	ASP.NET	Core	and	the	.NET	Version
Manager
Enter	the	following	commands	in	Command	Prompt:

brew	tap	aspnet/dnx

brew	install	dnvm

dnvm	upgrade

source	dnvm.sh

dnvm

The	last	command	displays	an	overview	of	what	you	can	do	with	dnvm:

Listing	the	installed	versions	of	.NET
One	of	the	most	important	commands	is	getting	a	detailed	list	of	the	installed	versions.
Enter	the	following	command	in	the	prompt:

dnvm	list	-detailed

You	will	see	output	like	the	following	screenshot:

Note
At	the	time	of	writing	this	book,	the	final	version	of	.NET	Core	has	not	been	released.	All
screenshots	in	this	chapter	show	a	release	candidate	version.

Switching	from	Mono	to	.NET	Core
You	may	have	noticed	that	the	default	runtime	is	Mono,	not	.NET	Core.	We	can	use	the
dnvm	use	command	to	switch	the	runtime	to	.NET	Core,	as	you	can	see	in	this	screenshot
of	the	dnvm	use	command’s	parameters:

In	the	Terminal	app,	enter	the	following	commands:

dnvm	use	1.0.0-rc1-update1	-runtime	coreclr	-arch	x64	-persistent

dnvm	list	-detailed

You	will	see	that	the	active	(and	default)	version	has	now	switched	to	.NET	Core:

Building	a	console	application
To	test	the	installation,	let’s	make	a	simple	console	application	that	outputs	Hello	C#
running	cross-platform!.

Creating	the	source	files
We	need	to	enter	some	commands	in	the	Terminal	prompt	to:

Create	a	new	directory	named	ConsoleApp	and	change	to	it
Create	two	files	named	program.cs	and	project.json
Start	Visual	Studio	Code	so	that	we	can	edit	the	files	in	an	IDE

Here	are	the	commands	to	enter:

mkdir	ConsoleApp

cd	ConsoleApp

touch	program.cs

touch	project.json

code	.

Editing	the	code
In	Visual	Studio	Code,	click	on	the	program.cs	file	on	the	left-hand	side	and	then	enter
these	statements:

using	static	System.Console;

public	class	Program

{

				public	static	void	Main()

				{

								WriteLine("Hello	C#,	running	cross-platform!");

				}

}

When	targeting	the	.NET	Framework,	a	developer	can	rely	on	the	fact	that	if	the	.NET
Framework	has	been	installed,	then	all	the	base	class	libraries	would	be	available	to	them.
This	means	the	developer	could	compile	the	previous	code	and	know	it	will	execute,	just
as	we	did	in	Chapter	1,	Hello,	C#!	Welcome,	.NET	Core!

When	targeting	.NET	Core,	the	developer	would	need	to	specify	the	dependencies	that
their	code	has	so	that	only	those	NuGet	packages	are	deployed	along	with	the	developer’s
assembly.

You	specify	options	such	as	which	versions	of	.NET	you	would	like	to	target	and	what
dependencies	your	code	has,	in	a	file	named	project.json.

Tip
You	can	read	the	documentation	for	the	project.json	file	at
https://github.com/aspnet/Home/wiki/Project.json-file.

Click	on	the	project.json	file	on	the	left-hand	side	and	then	enter	these	statements:

{

				"dependencies":	{

				},

				"commands":	{

								"ConsoleApp":	"ConsoleApp"

				},

				"frameworks":	{

								"dnx451":	{	},

								"dnxcore50":	{

												"dependencies":	{

																"System.Console":	"4.0.0-beta-*"

												}

								}

				}

}

Note
dnx451	means	.NET	Framework	4.5.1,	which	has	no	dependencies,	because	the	entire
base	class	library	would	be	available.	dnxcore50	means	.NET	Core	1.0,	which	must	have

https://github.com/aspnet/Home/wiki/Project.json-file

any	dependencies	explicitly	listed.	Both	these	names	are	likely	to	change	in	the	future
when	Microsoft	switches	to	the	.NET	Platform	Standard,	which	is	described	at
https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-
standard.md.

Visual	Studio	Code	should	look	like	the	following	screenshot:

Go	to	File	|	Save	All	to	save	the	changes	to	both	files	and	then	quit	Visual	Studio	Code.

Tip
Visual	Studio	Code	will	notice	that	you	need	to	download	some	dependency	packages.
Although	it	can	issue	the	command	for	you,	we	will	do	it	manually.

https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md

Downloading	dependency	packages	and	compiling
In	the	prompt,	enter	the	following	commands	to	download	dependency	packages	and	run
the	application:

dnu	restore

dnx	ConsoleApp	run

You	will	see	the	following	output:

Building	cross-platform	web	applications
using	ASP.NET	Core
Now,	let’s	make	a	simple	ASP.NET	Core	web	application.

Creating	the	simplest	ASP.NET	Core	web
application
You	will	enter	some	commands	in	the	Terminal	prompt	to:

Create	a	new	directory	named	HelloWeb	and	move	into	it
Create	two	files	named	startup.cs	and	project.json
Start	Visual	Studio	Code	so	that	we	can	edit	the	files	in	an	IDE

Here	are	the	commands	to	enter:

cd	~

mkdir	HelloWeb

cd	HelloWeb

touch	startup.cs

touch	project.json

code	.

In	Visual	Studio	Code,	click	on	the	startup.cs	file	on	the	left-hand	side	and	then	enter
these	statements:

using	Microsoft.AspNet.Builder;

using	Microsoft.Extensions.Logging;

namespace	HelloWeb

{

				public	class	Startup

				{

								public	void	Configure(IApplicationBuilder	app,	ILoggerFactory	

loggerFactory)

								{

												loggerFactory.AddConsole();

												app.UseIISPlatformHandler();

												app.UseStaticFiles();

												app.UseWelcomePage();

								}

				}

}

Click	on	the	project.json	file	on	the	left-hand	side	and	then	enter	the	following
statements	to:

Specify	a	version	for	our	code
Specify	a	directory	name	for	the	root	of	our	website	that	will	be	used	to	store	static
content	such	as	HTML,	CSS,	JavaScript	libraries,	and	assets	such	as	images	and
videos
Exclude	any	files	in	the	root	of	our	website	from	the	compilation	process
Exclude	design-time	files	such	as	.kproj	files	from	the	deployment	package
Define	a	list	of	dependency	packages	for	our	code
Target	both	the	.NET	Framework	4.5.1	(dnx451)	and	the	.NET	Core	1.0	(dnxcore50)
Define	a	dnx	command	named	web	that	will	start	the	web	application	hosted	in	the
Kestrel	cross-platform	web	server	listening	on	port	5004

Here	are	the	statements:

{

				"version":	"1.0.0-*",

				"webroot":	"wwwroot",

				"exclude":	[

								"wwwroot"

],

				"packExclude":	[

								"**.kproj",

								"**.user",

								"**.vspscc"

],

				"dependencies":	{

								"Microsoft.AspNet.Server.Kestrel":	"1.0.0-*",

								"Microsoft.AspNet.IISPlatformHandler":	"1.0.0-*",

								"Microsoft.AspNet.Diagnostics":	"1.0.0-*",

								"Microsoft.AspNet.Hosting":	"1.0.0-*",

								"Microsoft.AspNet.StaticFiles":	"1.0.0-*",

								"Microsoft.Extensions.Logging.Console":	"1.0.0-*"

				},

				"commands":	{

								"web":	"Microsoft.AspNet.Server.Kestrel	--server.urls	

http://localhost:5004"

				},

				"frameworks":	{

								"dnx451":	{	},

								"dnxcore50":	{	}

				}

}

Save	all	the	changes.	Visual	Studio	Code	should	look	something	like	the	following
screenshot.	Note	the	warning	about	unresolved	dependencies.	This	time	we	will	use	Visual
Studio	Code	to	restore	the	dependency	packages.

Click	on	Restore:

Note
You	can	also	restore	the	dependency	packages	in	the	Terminal	prompt	by	entering	the	dnu
restore	command,	as	we	did	earlier.

It	might	take	a	few	minutes	to	download	all	the	packages,	so	be	patient!

In	the	prompt,	enter	the	following	command	to	run	the	application:

dnx	web

You	will	see	the	following	output:

Run	your	favorite	Mac	OS	X	web	browser	and	enter	this	URL	in	the	address	bar	and	press
Enter:
http://localhost:5004/

You	should	see	the	following	page:

Installing	Yeoman	and	related	tools
As	you	have	seen	earlier	in	this	book,	Visual	Studio	2015	has	many	project	templates	that
make	it	easy	to	get	started	with	projects,	from	console	applications	to	web	applications
and	services.

A	command-line	tool	named	Yeoman	can	be	used	to	provide	a	similar	scaffolding	feature.
To	use	Yeoman,	we	first	need	to	install	the	Node	Package	Manager	(npm)	from
http://nodejs.org/,	and	you	will	see	the	following	home	page:

In	the	Terminal	prompt,	enter	the	following	commands	to	install	Yeoman,	Bower,	Grunt,
Gulp,	and	the	ASP.NET	Core	generator:

npm	install	-g	yo	bower	grunt-cli	gulp

npm	install	-g	generator-aspnet

Note
If	you	get	a	permission	error,	then	prefix	the	commands	with	sudo	to	execute	them	using
the	super	user	account.	The	-g	flag	installs	the	tools	globally,	so	you	can	run	them	from
any	directory.

http://nodejs.org/

Scaffolding	projects	using	Yeoman
Enter	the	following	commands	in	the	Terminal	prompt	to	create	a	new	directory	for	a
project	and	create	a	scaffolded	project	template	inside	it:

cd	~

yo	aspnet

When	Yeoman	runs,	you	will	see	the	the	output	as	shown	in	the	following	screenshot.

Choose	Web	Application	Basic	[without	Membership	and	Authorization]	and	press
Enter.	Then,	enter	the	name	WebApp.	Yeoman	will	now	create	a	set	of	files	for	a	basic	web
application	project:

In	the	Terminal	prompt,	enter	the	following	commands	to	change	to	the	new	directory
that	Yeoman	created	for	you.	Then,	see	a	listing	of	all	the	files,	restore	dependent
packages,	and	finally	execute	the	Kestrel	web	server	and	start	it	listening	on	port	5000.

cd	WebApp

ls	-a

dnu	restore

dnx	web

As	you	enter	the	preceding	commands,	you	will	see	output	as	shown	in	the	following

screenshot:

Note
If	you	get	an	error	message	about	being	unable	to	resolve	project	that	is	most	likely
because	you	have	executed	the	dnu	restore	command	in	a	directory	without	a
project.json	file.

Start	a	web	browser	and	go	to	http://localhost:5000/:

By	default,	every	request	from	the	browser	is	logged	to	the	Terminal	window.

Note	that	the	first	request	is	to	http://localhost:5000/,	which	caused	the	Index	action
method	of	HomeController	to	return	the	results	of	a	view	named
/Views/Home/Index.cshtml:

Close	the	web	browser,	and	in	Terminal,	press	Ctrl	+	C	to	stop	the	Kestrel	web	server.

Editing	projects	using	Visual	Studio	Code
You	could	open	this	project	using	Visual	Studio	2015	if	you	have	Windows,	which
provides	a	better	developer	experience,	but	we	will	use	Visual	Studio	Code.

In	Terminal,	enter	code	.	to	start	Visual	Studio	Code	and	load	this	project.	Browse	the
files	to	see	how	it	all	fits	together,	as	shown	in	the	following	screenshot.	The	same	C#
code	that	you	learned	in	Chapter	14,	Building	Web	Applications	and	Services	Using
ASP.NET	Core,	applies	here.

Instead	of	having	to	run	Terminal,	you	can	execute	commands	directly	inside	Visual
Studio	Code.

Press	Command	+	Shift	+	P.	Then,	in	the	>	prompt,	type	dnx,	and	you	will	see	that	a	drop-
down	command	list	filters	to	show	two	commands	related	to	dnx:

Press	Enter	to	see	the	actual	command	(dnu	restore),	and	then	press	Enter	again	to
execute	it	in	the	directory	shown:

The	Terminal	prompt	will	become	active,	and	you	will	see	the	results	of	running	the
command.

Tip
In	2016,	Microsoft	SQL	Server	only	runs	on	Windows,	but	in	2017,	it	will	be	available	for
Linux.	If	you	need	a	RDBMS	that	is	completely	cross-platform	today,	then	you	should	use
SQLite.	For	more	information,	visit	https://github.com/aspnet/Microsoft.Data.Sqlite.

https://github.com/aspnet/Microsoft.Data.Sqlite

Understanding	the	.NET	Core	command-
line	tools
There	are	two	sets	of	command-line	interface	tools	that	you	can	use	to	manage	.NET	Core.

Understanding	the	DNX	tools
The	.NET	Version	Manager,	.NET	Execution	Environment,	and	.NET	Development
Utilities	(dnvm,	dnx,	and	dnu)	were	used	by	Microsoft	during	the	initial	development	of	the
.NET	Core	between	2013	and	2015.	They	are	installed	as	part	of	Visual	Studio	2015.

The	.NET	Version	Manager	(dnvm)	is	used	to	install	various	versions	of	the	.NET
Execution	Environment	(dnx).

A	dnx	is	a	software	development	kit	(SDK)	and	runtime	environment	that	has	everything
you	need	to	build	and	run	.NET	applications,	including	a	host	process,	CLR,	and	managed
entry-point	discovery.	There	are	three	common	dnxes:	the	.NET	Framework,	the	.NET
Core,	and	Mono.

The	.NET	Development	Utilities	(dnu)	tool	provides	functions	to	help	with	ASP.NET	Core
development.	The	most	common	function	is	to	use	dnu	to	install	and	manage	library
packages	in	our	application	by	using	its	restore	feature.

Understanding	the	CLI	tools
The	.NET	CLI	(dotnet)	is	a	“driver”	that	will	be	used	by	the	final	release	of	the	.NET
Core.	It	provides	a	simplified	layer	on	top	of	other	underlying	tools.	The	.NET	CLI	must
be	installed	separately.

Common	DNX	commands
To	install	the	latest	version	of	the	.NET	Execution	Environment	and	make	it	temporarily
active,	use	the	following	command:

dnvm	install	latest

To	install	a	specific	version	of	a	dnx	and	make	it	temporarily	active,	use	the	following
command:

dnvm	install	latest	-runtime	coreclr	-arch	x64

To	install	a	version	and	make	it	permanently	active	by	modifying	the	PATH	variable	use
upgrade	instead	of	install:

dnvm	upgrade	latest	-runtime	coreclr	-arch	x64

To	switch	to	a	different	version,	use	the	following	command:

dnvm	use	1.0.0-rc1-update1	-runtime	coreclr	-arch	x64

Common	CLI	commands
First,	we	must	install	the	.NET	CLI.

Start	Safari	or	Chrome	and	go	to	https://github.com/dotnet/cli.

Scroll	down	the	page	to	find	Installers	and	click	on	the	link	to	download	the	PKG	file	for
Mac	OS	X.	Open	the	package	and	install	it.

In	the	Terminal	prompt,	enter	the	following	command:

dotnet

You	should	see	the	following	output:

Enter	the	following	commands	in	the	Terminal	prompt	to	create	a	new	directory,	change
to	it,	create	a	new	console	application	in	the	directory,	and	then	list	the	files	it	created:

mkdir	ConsoleApp2

cd	ConsoleApp2

dotnet	new

ls

You	should	see	that	the	dotnet	tool	has	created	three	new	files	for	you:	NuGet.Config,
Program.cs,	and	project.json.

In	the	Terminal	prompt,	enter	the	following	command	to	start	Visual	Studio	Code:

code	.

In	Visual	Studio	Code,	click	on	Program.cs	on	the	left-hand	side	and	modify	the
WriteLine	statement	like	this:

https://github.com/dotnet/cli

Console.WriteLine("Hello	C#,	Welcome	.NET	Core!");

Save	changes	and	quit	Visual	Studio	Code.

In	the	Terminal	prompt,	enter	the	following	commands:

dotnet	restore

dotnet	run

After	a	few	seconds,	all	the	dependency	packages	will	be	downloaded,	and	your
application	will	run,	showing	the	following	output:

To	compile	the	source	code	into	an	assembly	containing	IL	code,	enter	the	following
command,	as	shown	in	the	following	screenshot:

dotnet	build

If	you	navigate	into	the	subdirectories,	you	will	note	that	a	\bin\Debug\dnxcore50\
directory	has	been	created	with	a	Unix	executable	named	ConsoleApp2	in	it.

Tip
Debug	is	the	configuration	name.	The	framework	name	is	dnxcore50.	This	will	change	in
the	release	version	of	the	.NET	Core.

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	this	chapter’s	topics	with	deeper	research.

Exercise	15.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 What	platforms	are	supported	by	.NET	Core	and	ASP.NET	Core?
2.	 What	command	downloads	dependent	packages	for	a	project?
3.	 What	file	does	project	directory	require	in	order	to	restore	packages?
4.	 What	command	will	show	the	currently	installed	versions	of	.NET?
5.	 What	command	will	switch	to	a	different	version	of	.NET?

Exercise	15.2	–	practice	transferring	an	existing
ASP.NET	application
Take	the	ASP.NET	Core	application	that	we	created	in	Chapter	14,	Building	Web
Applications	and	Services	Using	ASP.NET	Core,	restore	its	packages,	and	host	it	in	the
Kestrel	web	server.

What	happens?	Why?

Note
The	project	uses	a	database	connection	string	that	attempts	to	connect	to	a	Microsoft	SQL
Server	LocalDb	instance,	but	Mac	OS	X	does	not	support	this.	So,	an	unhandled	exception
is	thrown	causing	the	Terminal	window	to	crash!	We	would	need	to	change	the	database
connection	string	to	point	to	a	Windows	Server	or	Linux	running	the	full	(or	Express)
version	of	Microsoft	SQL	Server	instead.	Alternatively,	we	could	use	the	Microsoft	Azure
SQL	Database	instead.

Exercise	15.3	–	explore	topics
Use	the	following	links	to	read	more	about	this	chapter’s	topics:

Requirements	for	Visual	Studio	Code:
https://code.visualstudio.com/Docs/supporting/requirements
Visual	Studio	Code	for	Mac	developers:	https://channel9.msdn.com/Series/Visual-
Studio-Code-for-Mac-Developers
.NET	Core	Roadmap:	https://github.com/dotnet/core/blob/master/roadmap.md
Project.json	file:	https://github.com/aspnet/Home/wiki/Project.json-file
Microsoft	.NET	Native:	https://msdn.microsoft.com/en-us/vstudio/dotnetnative.aspx
Compiling	Apps	with	.NET	Native:	https://msdn.microsoft.com/en-
us/library/dn584397.aspx
ASP.NET	Core	Documentation:	http://docs.asp.net/en/latest/

https://code.visualstudio.com/Docs/supporting/requirements
https://channel9.msdn.com/Series/Visual-Studio-Code-for-Mac-Developers
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/aspnet/Home/wiki/Project.json-file
https://msdn.microsoft.com/en-us/vstudio/dotnetnative.aspx
https://msdn.microsoft.com/en-us/library/dn584397.aspx
http://docs.asp.net/en/latest/

Summary
In	this	chapter,	you	learned	how	to	build	an	ASP.NET	Core	application	that	can	be	hosted
cross-platform	on	Windows,	Linux,	a	Docker	container,	and	Mac	OS	X.

Tip
If	this	chapter	stoked	your	interest	and	you	want	more	details,	then	check	out	Packt
Publishing’s	web	site	at	http://www.packtpub.com/	because	the	most	likely	book	I	write
next	will	be	a	deeper	dive	into	ASP.NET	Core	and	Entity	Framework	Core	using	Visual
Studio	Code.

In	the	next	chapter,	you	will	learn	how	to	build	a	complete	web	application	and	service	for
a	Quiz	app.

http://www.packtpub.com/

Chapter	16.	Building	a	Quiz
This	chapter	is	about	designing	and	building	a	quiz	application	that	helps	students	learn
the	C#	language,	.NET	Core,	and	related	topics.

This	chapter	covers	the	following	topics:

Designing	the	quiz	application
Building	the	quiz	solution
Running	the	quiz
Hosting	ASP.NET	Core	web	apps	in	Microsoft	Azure

Designing	the	quiz	application
The	first	decision	for	designing	the	quiz	that	we	need	to	make	is	on	which	platform	to
implement	the	quiz.	We	want	this	quiz	to	be	usable	for	as	many	students	as	possible,
wherever	and	whenever.

Choosing	the	platform
A	web	application	that	uses	responsive	design	to	support	mobile	devices	as	well	as
desktops	would	be	a	good	choice.	To	provide	maximum	scalability	and	flexibility	for	the
choice	of	host,	we	want	a	platform	that	will	run	on	Windows	or	Linux,	either	the	full
operating	system,	or	a	Docker	container.

The	application	will	therefore	use	the	following:

ASP.NET	Core	1.0	for	its	server-side	processing
Entity	Framework	Core	1.0	for	data	storage
HTML5	and	CSS3	for	a	user	experience	that	adapts	to	different	devices

Tip
Since	this	is	only	a	sample	project	and	will	have	a	small	amount	of	data,	we	will	use
an	in-memory	database	to	remove	data	storage	costs.	In	the	real	world,	you	will	have
to	pay	for	storage	of	quizzes	and	their	questions.

Deciding	the	functional	requirements
The	application	will	maintain	multiple	quizzes	about	various	topics.	To	simplify	the
design,	the	questions	will	always	be	multiple	choices,	where	the	quiz	taker	picks	one
answer	from	four	possibilities.

At	the	end,	the	quiz	taker	will	be	told	how	many	questions	they	got	right	out	of	the	total,
and	they	will	be	given	a	list	of	their	answers	to	compare	against	the	correct	answers.

Separating	concerns
We	will	follow	best	practice	and	create	a	solution	with	multiple	projects,	each	of	which
has	responsibilities	as	described	in	the	following	bullets:

Ch16_QuizModels:	This	is	a	Class	Library	(Package)	for	the	entity	classes,	that
represents	a	quiz	and	a	question	with	no	dependency	on	a	data	access	library.
Ch16_QuizRepository:	This	is	a	Class	Library	(Package)	with	a	dependency	on
the	Entity	Framework	Core	1.0,	to	enable	data	access	and	storage	of	the	entities.	We
will	use	the	new	in-memory	database,	but	we	will	design	the	repository	to	support
easy	swapping	of	alternatives	such	as	Microsoft	SQL	Server	and	Microsoft	Azure
DocumentDB.
Ch16_QuizWebApp:	This	is	a	ASP.NET	Core	1.0	Web	Application,	with	view
models	that	represent	a	user’s	current	answers,	and	a	list	of	questions	stored	in	the
session	state.

Building	the	quiz	solution
Start	Microsoft	Visual	Studio	2015.	In	Visual	Studio,	press	Ctrl	+	Shift	+	N,	or	navigate	to
File	|	New	|	Project….

In	the	New	Project	dialog,	in	the	Installed	Templates	list,	select	Visual	C#.	In	the	list	at
the	center,	select	Class	Library	(Package)	and	enter	the	name	Ch16_QuizModels.
Change	the	location	to	C:\Code,	enter	the	solution	name	Chapter16,	and	then	click	on
OK.

Defining	the	entity	models
Right-click	on	Class1.cs	file	and	choose	Rename,	and	enter	a	name	for	the	quiz.	Open	the
file	and	modify	the	code	to	look	like	this:

using	System.Collections.Generic;

namespace	Packt.QuizWebApp

{

				public	class	Quiz

				{

								public	string	QuizID	{	get;	set;	}	//	e.g.	CSHARP

								public	string	Title	{	get;	set;	}	//	e.g.	C#	and	OOP

								public	string	Description	{	get;	set;	}

								//	one-to-many	relationship	with	a	collection	of	Questions

								public	virtual	ICollection<Question>	Questions	{	get;	set;	}

								//	constructor	to	instantiate	an	empty	collection

								public	Quiz()

								{

												Questions	=	new	HashSet<Question>();

								}

				}

}

Note
We	have	not	defined	the	Question	class	yet,	so	you	will	not	see	it	appear	in	IntelliSense
and	you	will	not	be	able	to	compile	the	project.

On	the	Project	menu,	choose	Add	Class…	and	name	it	Question.	Modify	the	code	to
look	like	this:

namespace	Packt.QuizWebApp

{

				public	class	Question

				{

								public	int	QuestionID	{	get;	set;	}	//	identity

								public	string	QuestionText	{	get;	set;	}

								public	string	AnswerA	{	get;	set;	}

								public	string	AnswerB	{	get;	set;	}

								public	string	AnswerC	{	get;	set;	}

								public	string	AnswerD	{	get;	set;	}

								public	string	CorrectAnswer	{	get;	set;	}	//	e.g.	B

								//	the	other	side	of	the	one-to-many	relationship

								public	virtual	Quiz	Quiz	{	get;	set;	}

				}

}

You	should	now	be	able	to	build	this	project	with	no	errors,	by	pressing	F6.

Creating	the	data	repository
Add	a	new	Class	Library	(Package)	project	named	Ch16_QuizRepository.	Add	a
reference	to	the	Ch16_QuizModels	project.

From	the	Tools	menu,	choose	NuGet	Package	Manager,	and	then	choose	Package
Manager	Console.

In	the	Package	Manager	Console,	ensure	that	the	package	source	is	set	to	nuget.org	and
the	default	project	is	set	to	Ch16_QuizRepository,	and	then	enter	the	following	command
at	the	prompt:

install-package	entityframework.inmemory

Note
By	the	time	you	read	this	book,	the	final	release	version	should	be	available,	so	the
preceding	command	will	work.	If	you	get	an	error	with	the	preceding	line	of	code,	add	the
–pre	flag	at	its	end	to	install	the	pre-release	version.

Right-click	on	Class1.cs	and	choose	Rename.	Enter	the	name	QuizContext.	Modify	the
code	to	look	like	this:

using	Microsoft.Data.Entity;

using	Microsoft.Data.Entity.Infrastructure;

namespace	Packt.QuizWebApp

{

				public	class	QuizContext	:	DbContext

				{

								public	DbSet<Quiz>	Quizzes	{	get;	set;	}

								public	DbSet<Question>	Questions	{	get;	set;	}

								//	Best	practice	is	to	allow	the	options	to	be	

								//	passed	into	a	constructor	so	that	we	remove	any	

								//	assumptions	about	where	the	data	is	stored:	in-memory,	

								//	SQL	Server,	and	so	on.

								public	QuizContext(DbContextOptions	options)	:	base(options)	{	}

								protected	override	void	OnModelCreating(ModelBuilder	modelBuilder)

								{

												modelBuilder.Entity<Quiz>().HasMany<Question>().WithOne(q	=>	

q.Quiz);

												base.OnModelCreating(modelBuilder);

								}

				}

}

You	should	now	be	able	to	build	this	project	with	no	errors,	by	pressing	F6.

Creating	the	web	application
Add	a	new	ASP.NET	Web	Application	project	named	Ch16_QuizWebApp.	Choose	the
ASP.NET	Core	1.0	Templates	–	Web	Application	template,	leave	the	authentication	as
Individual	User	Accounts,	clear	the	Host	in	the	cloud	checkbox,	and	click	on	OK:

Note
At	the	time	of	writing,	the	final	version	of	ASP.NET	Core	1.0	had	not	been	released,	so
the	screenshots	in	this	book	show	the	old	branding:	ASP.NET	5.

In	the	Solution	Explorer	window,	right-click	on	the	Ch16_QuizWebApp	project	and
choose	Set	as	StartUp	Project.

Add	references	to	the	Ch16_QuizModels	and	Ch16_QuizRepository	projects.

From	the	Tools	menu,	choose	NuGet	Package	Manager,	and	then	choose	Package
Manager	Console.	In	the	Package	Manager	Console	window,	ensure	that	the	package
source	is	set	to	nuget.org	and	the	default	project	is	set	to	Ch16_QuizWebApp.	Next,
enter	the	following	commands	at	the	prompt:

install-package	microsoft.netcore.portable.compatibility

install-package	newtonsoft.json

install-package	microsoft.aspnet.session

install-package	microsoft.extensions.caching.memory

install-package	entityframework.inmemory

Note
By	the	time	you	read	this	book,	the	final	release	versions	of	the	ASP.NET	Core	NuGet
packages	should	be	available,	so	the	preceding	commands	will	work.	If	you	get	an	error
with	any	of	the	preceding	lines,	add	the	–pre	flag	to	the	end	to	install	the	pre-release
version.

Defining	view	models
View	models	are	all	the	data	required	by	a	view.	We	need	to	define	two	view	models—one
for	the	view	that	displays	a	question,	and	another	for	the	view	that	displays	the	list	of
answers	at	the	end	of	a	quiz.

In	the	Solution	Explorer	window,	in	the	ViewModels	folder,	add	a	folder	named	Home.

Right-click	on	the	Home	folder,	choose	Add	Class…,	name	it	QuestionViewModel,	and
modify	the	code	to	define	a	class	that	represents	all	the	data	required	when	viewing	a
question:

using	Packt.QuizWebApp;

namespace	Ch16_QuizWebApp.ViewModels.Home

{

				public	class	QuestionViewModel

				{

								public	Question	Question	{	get;	set;	}

								public	string	Answer	{	get;	set;	}

								public	int	Number	{	get;	set;	}

								public	int	Total	{	get;	set;	}

				}

}

Right-click	on	the	Home	folder,	choose	Add	Class…,	name	it	FinishViewModel,	and
modify	the	code	to	define	a	class	that	represents	all	the	data	required	when	viewing	the
results	of	a	quiz:

using	Packt.QuizWebApp;

using	System.Collections.Generic;

namespace	Ch16_QuizWebApp.ViewModels.Home

{

				public	class	FinishViewModel

				{

								public	Quiz	Quiz	{	get;	set;	}

								public	Dictionary<int,	string>	Answers	{	get;	set;	}

								public	int	CorrectAnswers	{	get;	set;	}

				}

}

Adding	sample	quiz	questions
We	need	some	sample	quiz	questions.	We	will	store	them	in	a	JSON	file	and	deserialize
them	into	the	in-memory	database	provided	by	the	Entity	Framework	Core.

Right-click	on	the	wwwroot	directory	of	the	Ch16_QuizWebApp	project	and	navigate	to
Add	|	New	Item…	or	press	Ctrl	+	Shift	+	A.

Choose	a	JSON	File,	name	it	samplequestions.json,	and	click	on	OK.

Modify	the	file	as	shown	in	the	following	block	of	code.	Note	that	any	string	can	be	used
as	a	$id	and	$ref	in	order	to	define	references	between	objects.	I	chose	to	use	Q1,	Q2,	and
so	on,	to	identify	quizzes,	and	Q1.1,	Q1.2,	and	so	on,	to	identify	questions	that	belong	to
quizzes:

{

		"$values":	[

				{

						"$id":	"Q1",

						"QuizID":	"CSHARP",

						"Title":	"C#	and	OOP",

						"Description":	"Questions	about	the	C#	language	and	object-oriented	

programming.",

						"Questions":	{

								"$values":	[

										{

												"$id":	"Q1.1",

												"QuestionID":	0,

												"QuestionText":	"Which	modifier	would	you	apply	to	a	type's	

member	to	allow	only	code	within	that	type	access	to	it?",

												"AnswerA":	"internal",

												"AnswerB":	"protected",

												"AnswerC":	"private",

												"AnswerD":	"public",

												"CorrectAnswer":	"C",

												"Quiz":	{

														"$ref":	"Q1"

												}

										},

										{

												"$id":	"Q1.2",

												"QuestionID":	0,

												"QuestionText":	"Which	keyword	would	you	apply	to	a	type's	

field	to	prevent	its	value	from	changing	after	an	instance	of	the	type	has	

been	created?",

												"AnswerA":	"const",

												"AnswerB":	"readonly",

												"AnswerC":	"static",

												"AnswerD":	"protected",

												"CorrectAnswer":	"B",

												"Quiz":	{

														"$ref":	"Q1"

												}

										}

										

]

						}

				},

				{

						"$id":	"Q2",

						"QuizID":	"FILEIO",

						"Title":	"File	I/O",

						"Description":	"Questions	about	the	file	input/output	features	of	the	

.NET	Framework	including	serialization.",

						"Questions":	{

								"$values":	[

										{

												"$id":	"Q2.1",

												"QuestionID":	0,

												"QuestionText":	"What	are	the	requirements	for	a	type	to	be	

serialized	by	using	the	BinaryFormatter?",

												"AnswerA":	"Apply	[Serializable]	to	the	type.",

												"AnswerB":	"Apply	[Serializable]	to	the	type	and	make	all	

fields	public.",

												"AnswerC":	"Ensure	the	type	is	public	with	a	parameterless	

contructor.",

												"AnswerD":	"Ensure	the	type	is	public	with	a	parameterless	

contructor	and	make	any	fields	you	want	to	include	public.",

												"CorrectAnswer":	"A",

												"Quiz":	{

														"$ref":	"Q2"

												}

										}

]

						}

				}

]

}

Tip
Add	at	least	five	questions	for	each	quiz.	The	preceding	code	is	trimmed	to	save	space.

Right-click	on	the	Models	folder	and	choose	Add	Class…,	name	it	QuizConfig,	and
modify	the	code	to	enable	the	Entity	Framework	Core	in-memory	database.	Populate	it
with	the	deserialized	sample	quiz	questions,	as	follows:

using	Packt.QuizWebApp;

using	Microsoft.AspNet.Builder;

using	Microsoft.Data.Entity;

using	Newtonsoft.Json;

using	System.IO;

using	System.Collections.Generic;

namespace	Ch16_QuizWebApp.Models

{

				public	static	class	QuizConfig

				{

								public	static	void	UseSampleQuestions(this	IApplicationBuilder	app,	

string	path)

								{

												//	load	a	sample	JSON	file	of	questions

												string	json	=	File.ReadAllText(Path.Combine(path,	

"samplequestions.json"));

												var	settings	=	new	JsonSerializerSettings

																{	PreserveReferencesHandling	=	

PreserveReferencesHandling.All	};

												List<Quiz>	quizzes	=	JsonConvert.DeserializeObject<List<Quiz>>

(json,	settings);

												//	Configure	the	in-memory	database	option

												var	optionsBuilder	=	new	DbContextOptionsBuilder<QuizContext>

();

												optionsBuilder.UseInMemoryDatabase();

												using	(var	context	=	new	QuizContext(optionsBuilder.Options))

												{

																foreach	(Quiz	quiz	in	quizzes)

																{

																				//	mark	each	quiz	and	its	question	entities	as	Added

																				context.Add(quiz,	GraphBehavior.IncludeDependents);

																}

																//	Save	the	entities	to	the	data	store

																context.SaveChanges();

												}

								}

				}

}

Configuring	session	state
Open	the	Startup.cs	file	and	add	the	following	statements	to	the	end	of	the
ConfigureServices	method,	after	the	call	to	the	AddMvc	method:

services.AddCaching();

services.AddSession(options	=>	

				{

								options.CookieName	=	".Packt.QuizWebApp";

								options.IdleTimeout	=	TimeSpan.FromMinutes(10);

				});

Add	the	following	statements	to	the	end	of	the	Configure	method,	before	and	after	the
call	to	the	UseMvc	method,	to	use	the	session	state	and	to	populate	the	sample	questions:

app.UseSession();	//	must	be	added	before	MVC

app.UseMvc(routes	=>

{

				routes.MapRoute(

								name:	"default",

								template:	"{controller=Home}/{action=Index}/{id?}");

});

app.UseSampleQuestions(env.MapPath(""));	//	pass	the	path	to	the	wwwroot	

directory

Adding	custom	controller	actions
Open	the	Controllers	folder	and	the	HomeController	class,	and	modify	the	code	as
follows:

Define	a	custom	JsonSerializerSettings	class	that	handles	circular	references
correctly	for	the	quiz-questions	relationship
Define	pairs	of	methods	to	set	and	get	the	current	user’s	quiz	and	the	user’s	questions
from	their	user	session	stored	as	JSON
A	constructor	that	sets	the	database	context	to	use	an	in-memory	database
Index	action	that	passes	all	the	quizzes	to	a	home	page	view
The	TakeQuiz	action	that	shows	a	summary	of	the	chosen	quiz	ready,	for	the	user	to
start	it
The	Question	GET	action	that	shows	a	specified	question
The	Question	POST	action	that	stores	the	user’s	selected	answer	and	then	redirects	to
the	next	question
The	Finish	action	that	shows	the	results
The	Error	action	that	shows	the	default	error	page

Here	is	the	code:

using	Packt.QuizWebApp;

using	Microsoft.Data.Entity;

using	System.Collections.Generic;

using	System.Linq;

using	System.Threading.Tasks;

using	Microsoft.AspNet.Mvc;

using	Microsoft.AspNet.Http;

using	Newtonsoft.Json;

namespace	Ch16_QuizWebApp.Controllers

{

				public	class	HomeController	:	Controller

				{

								private	QuizContext	db;

								public	JsonSerializerSettings	settings	=	new	JsonSerializerSettings

												{	PreserveReferencesHandling	=	PreserveReferencesHandling.All	

};

#region	Helper	methods	to	store	state	in	Session

								public	void	SetQuiz(Quiz	input)

								{

												string	json	=	JsonConvert.SerializeObject(input,	

Formatting.None,	settings);

												HttpContext.Session.SetString("usersquiz",	json);

								}

								public	Quiz	GetQuiz()

								{

												string	json	=	HttpContext.Session.GetString("usersquiz");

												return	JsonConvert.DeserializeObject<Quiz>(json,	settings);

								}

								public	void	SetAnswers(Dictionary<int,	string>	input)

								{

												string	json	=	JsonConvert.SerializeObject(input,	settings);

												HttpContext.Session.SetString("usersanswers",	json);

								}

								public	Dictionary<int,	string>	GetAnswers()

								{

												string	json	=	HttpContext.Session.GetString("usersanswers");

												return	JsonConvert.DeserializeObject<Dictionary<int,	string>>

(json,	settings);

								}

#endregion

								public	HomeController()

								{

												var	optionsBuilder	=	new	DbContextOptionsBuilder<QuizContext>

();

												optionsBuilder.UseInMemoryDatabase();

												db	=	new	QuizContext(optionsBuilder.Options);

								}

								//	make	the	method	asynchronous	to	improve	scalability

								public	async	Task<IActionResult>	Index()

								{

												var	model	=	await	db.Quizzes.ToListAsync();

												ViewData["Title"]	=	"Home";

												return	View(model);

								}

								public	IActionResult	TakeQuiz(string	id)

								{

												Quiz	model	=	db.Quizzes.Where(q	=>	q.QuizID	==	id).Include(q	=>	

q.Questions).FirstOrDefault();

												if	(model	==	null)

												{

																return	HttpNotFound($"A	quiz	with	the	ID	of	{id}	was	not	

found.");

												}

												SetQuiz(model);

												SetAnswers(new	Dictionary<int,	string>());

												ViewData["Title"]	=	"Take	Quiz";

												return	View(model);

								}

								public	IActionResult	Question(int?	id)

								{

												if	(!id.HasValue)

												{

																return	HttpNotFound("You	must	pass	an	id	of	a	question.");

												}

												var	quiz	=	GetQuiz();

												var	answers	=	GetAnswers();

												var	model	=	new	ViewModels.Home.QuestionViewModel

												{

																Question	=	quiz.Questions.Skip(id.Value	-	

1).Take(1).FirstOrDefault(),

																Answer	=	answers.ContainsKey(id.Value	-	1)	?	

answers[id.Value	-	1]	:	string.Empty,

																Number	=	id.Value,

																Total	=	quiz.Questions.Count()

												};

												ViewData["Title"]	=	$"Question	{model.Number}	of	

{model.Total}";

												return	View(model);

								}

								[HttpPost]

								public	IActionResult	Question(int?	id,	string	submit,	string	

answer)

								{

												if	(!id.HasValue)

												{

																return	HttpNotFound("You	must	pass	an	id	of	a	question.");

												}

												var	answers	=	GetAnswers();

												answers[id.Value	-	1]	=	answer;

												SetAnswers(answers);

												if	(submit	==	"Previous")

												{

																id--;

												}

												else	if	(submit	==	"Next")

												{

																id++;

												}

												else	if	(submit	==	"Finish")

												{

																return	RedirectToAction("Finish");

												}

												else

												{

																return	RedirectToAction("Index");

												}

												return	RedirectToAction("Question",	new	{	id	=	id	});

								}

								public	IActionResult	Finish()

								{

												var	quiz	=	GetQuiz();

												var	model	=	new	ViewModels.Home.FinishViewModel

												{

																Quiz	=	quiz,

																Answers	=	GetAnswers()

												};

												for	(int	i	=	0;	i	<	model.Quiz.Questions.Count;	i++)

												{

																if	(model.Quiz.Questions.ToList()[i].CorrectAnswer	==	

model.Answers[i])	model.CorrectAnswers++;

												}

												ViewData["Title"]	=	"End	of	Quiz";

												return	View(model);

								}

								public	IActionResult	Error()

								{

												return	View();

								}

				}

}

Adding	custom	views
In	the	Views	folder,	in	the	Home	folder,	rename	the	About.cshtml	file	to
TakeQuiz.cshtml,	and	then	modify	the	view	as	follows:

@model	Packt.QuizWebApp.Quiz

@{

				ViewBag.Title	=	$"{Model.Title}	Quiz";

}

<div	class="jumbotron">

				<h2>@Model.Title	Quiz</h2>

				<p>@Model.Description</p>

				<p>This	quiz	has	@Model.Questions.Count	questions.</p>

				<p>

								<a	class="btn	btn-success"	href="@Url.Action("Question",	new	{	id	=	

1	})">Start	»

				</p>

</div>

In	the	Views	folder,	go	in	the	Home	folder,	rename	the	Contact.cshtml	file	to
Question.cshtml,	and	then	modify	the	view	as	follows:

@model	Ch16_QuizWebApp.ViewModels.Home.QuestionViewModel

@{

				ViewBag.Title	=	"Question	"	+	Model.Number;

}

<div	class="jumbotron">

				<h2>Question	@Model.Number</h2>

				<p>

								@Model.Question.QuestionText

				</p>

				<form	action="@Url.Action("Question",	new	{	id	=	Model.Number	})"	

method="post"	class="form-inline">

								<div	class="row">

												<div	class="col-md-5	alert	alert-info">

																<input	type="radio"	class="radio	radio-inline"	

name="answer"	id="ARadio"	value="A"

																							@if	(Model.Answer	==	"A")	{	@:	checked="checked"

																																																													}	/>

																<label	for="ARadio">@Model.Question.AnswerA</label>

												</div>

												<div	class="col-md-1"></div>

												<div	class="col-md-5	alert	alert-info">

																<input	type="radio"	class="radio"	name="answer"	id="BRadio"	

value="B"

																							@if	(Model.Answer	==	"B")	{	@:	checked="checked"

																																										}	/>

																<label	for="BRadio">@Model.Question.AnswerB</label>

												</div>

								</div>

								<div	class="row">

												<div	class="col-md-5	alert	alert-info">

																<input	type="radio"	class="radio"	name="answer"	id="CRadio"	

value="C"

																							@if	(Model.Answer	==	"C")	{	@:	checked="checked"

																																																		}	/>

																<label	for="CRadio">@Model.Question.AnswerC</label>

												</div>

												<div	class="col-md-1"></div>

												<div	class="col-md-5	alert	alert-info">

																<input	type="radio"	class="radio"	name="answer"	id="DRadio"	

value="D"

																							@if	(Model.Answer	==	"D")	{	@:	checked="checked"

																																																																													

}	/>

																<label	for="DRadio">@Model.Question.AnswerD</label>

												</div>

								</div>

								<div	class="row">

												<div	class="col-md-4">

																<input	name="submit"	type="submit"	value="End	Quiz"	

class="btn	btn-warning"	/>

												</div>

												<div	class="col-md-4">

																@if	(Model.Number	>	1)

																{

																				@:<input	name="submit"	type="submit"	value="Previous"	

class="btn	btn-default"	/>

												}

												</div>

												<div	class="col-md-4">

																@if	(Model.Number	==	Model.Total)

																{

																				@:<input	name="submit"	type="submit"	value="Finish"	

class="btn	btn-default"	/>

												}

																else

																{

																				@:<input	name="submit"	type="submit"	value="Next"	

class="btn	btn-success"	/>

												}

												</div>

								</div>

				</form>

</div>

In	the	Views	folder,	go	in	the	Home	folder,	copy	and	paste	the	Index.cshtml	file,	rename
the	copy	to	Finish.cshtml,	and	then	modify	the	view	as	follows:

@model	Ch16_QuizWebApp.ViewModels.Home.FinishViewModel

@{

				ViewBag.Title	=	"Finish";

}

<div	class="jumbotron">

				<h2>Finish</h2>

				<p>

								You	scored	@Model.CorrectAnswers	out	of	@Model.Quiz.Questions.Count

				</p>

</div>

<div	class="row">

				<table	class="table">

								<tr>

												<th>Question</th>

												<th>Correct	Answer</th>

												<th>Your	Answer</th>

								</tr>

								@for	(int	i	=	0;	i	<	Model.Quiz.Questions.Count;	i++)

								{

												<tr>

																<td>

																				@Html.DisplayFor(modelItem	=>	

Model.Quiz.Questions.ToList()[i].QuestionText)

																</td>

																<td>

																				@Html.DisplayFor(modelItem	=>	

Model.Quiz.Questions.ToList()[i].CorrectAnswer)

																</td>

																<td>

																				@Html.DisplayFor(modelItem	=>	Model.Answers[i])

																</td>

												</tr>

								}

				</table>

</div>

In	the	Views	folder,	go	in	the	Home	folder,	open	the	Index.cshtml	file,	and	modify	the
view	as	follows:

@model	IEnumerable<Packt.QuizWebApp.Quiz>

<div	class="jumbotron">

				<h1>Quiz	Web	App</h1>

				<p	class="lead">Quiz	Web	App	is	a	web	application	built	using	C#	and	

ASP.NET	Core	as	an	example	for	the	Packt	Publishing	book	"C#	6	and	.NET	

Core	1.0".</p>

				<p>Learn	

more	about	the	C#	6	and	.NET	Core	1.0	book	»</p>

</div>

@{

				var	x	=	0;

}

<div	class="row">

				@foreach	(var	item	in	Model)

				{

								x++;

								<div	class="col-md-6	col-sm-12">

												<h2>@item.Title</h2>

												<p>@item.Description</p>

												<p>

																<a	class="btn	btn-default"	href="@Url.Action("TakeQuiz",	

new	{	id	=	item.QuizID	})">Take	the	@item.Title	quiz	»

												</p>

								</div>

								if	(x	%	2	==	0)

								{

												@:</div><div	class="row">

								}

				}

</div>

Running	the	quiz
Before	we	can	run	the	quiz,	we	need	to	configure	it	to	use	the	cross-platform	Kestrel	web
server,	and	host	it	on	.NET	Core.

Configuring	the	project	to	use	Kestrel	and	.NET
Core
In	the	Solution	Explorer	window,	in	the	Ch16_QuizWebApp	project,	double-click	on
Properties,	click	on	the	Debug	tab,	and	set	the	following	options:

Set	the	profile	to	web	(the	Kestrel	cross-platform	web	server)
Check	the	box	for	Use	Specific	Runtime	and	choose	the	latest	version
Set	the	platform	to	.NET	Core
Set	the	architecture	to	x64,	as	shown	in	the	following	screenshot:

Save	your	changes,	and	then	in	the	Visual	Studio	toolbar,	choose	the	web	profile:

Start	the	application	by	pressing	F5.	Note	that	the	Kestrel	web	server	has	started	and	is
hosted	on	the	CoreCLR	for	64-bit	CPUs:

Start	Microsoft	Edge	and	enter	the	following	into	the	address	box:
http://localhost:5000/

Note	that	when	the	browser’s	width	is	too	small,	the	list	of	quizzes	on	the	home	page	uses
a	vertical	layout	instead	of	two	quizzes	side	by	side,	as	you	can	see	from	the	following
screenshot:

Click	on	the	Take	the	C#	and	OOP	quiz	button:

Click	on	Start,	answer	the	first	question,	and	then	click	on	Next:

Answer	the	second	question	and	click	on	the	Previous	button.	Note	that	it	remembers

your	answer	to	the	first	question.	Click	on	Next,	answer	all	the	questions,	and	then	click
on	Finish:

On	the	Finish	page,	click	on	Home	Page	in	the	navigation	bar:

Hosting	ASP.NET	Core	web	apps	in
Microsoft	Azure
First,	you	need	to	register	an	account	with	Microsoft	Azure.

Register	an	Azure	account
Go	to	http://portal.azure.com/	and	register	an	account	to	get	a	free	trial.	You	will	be	able	to
continue	after	the	end	of	the	free	trial	because	we	will	only	use	the	free	features	of	Azure.

You	can	use	any	Microsoft	account,	for	example,	Hotmail,	MSN,	or	Live	account.	For	this
book,	I	registered	a	new	account	named	cs6dotnetcore@outlook.com.

http://portal.azure.com/

Create	an	Azure	web	app
Go	to	the	Azure	portal	(https://portal.azure.com/),	where	you	will	see	the	Azure
dashboard:

Click	on	All	resources	and	then	click	on	the	+	Add	button:

https://portal.azure.com/

In	the	Search	Everything	box,	enter	web	app	and	press	Enter.	Click	on	Web	App	and
then	click	on	Create:

In	the	Web	App	blade,	enter	a	globally	unique	name	for	your	web	app:

Note
I	entered	quizwebapp,	so	this	name	is	now	taken.	No	one	else	will	be	able	to	have	a	Web
App	with	that	name.	You	will	need	to	choose	something	different.

Leave	the	other	options	as	their	defaults	and	click	on	Create.	You	will	be	taken	back	to
the	Azure	dashboard	where	you	will	see	a	new	tile	telling	you	that	your	Web	App	is	being
deployed.	This	process	normally	takes	a	few	minutes.	Once	it	is	running,	click	on	it:

Click	on	the	URL	to	open	a	browser	and	show	the	example	web	page.	You	are	now	ready
to	deploy	any	ASP.NET	web	application	project	(both	ASP.NET	4.6	and	ASP.NET	Core)
to	your	Web	App	in	Azure.

Publishing	an	ASP.NET	web	application	to	the
Web	App
In	the	Solution	Explorer	window,	right-click	on	the	Ch16_QuizWebApp	project	and
choose	Publish….

Select	Microsoft	Azure	Web	Apps	as	the	publish	target:

In	the	App	Service	dialog,	choose	the	account	that	you	previously	registered,	and	choose
the	web	app	name	that	you	created	earlier:

Visual	Studio	will	download	a	publishing	profile	that	you	can	use	to	easily	deploy	the
web	application	to	Azure.	Click	on	Validate	Connection	and	wait	for	the	green	tick	mark,
and	then	click	on	Publish:

Visual	Studio	will	rebuild	and	deploy	your	application,	and	then	start	a	browser	to	show
that	it	has	succeeded:

Practicing	and	exploring
Test	your	knowledge	and	understanding	by	answering	some	questions,	get	some	hands-on
practice,	and	explore	with	deeper	research	into	the	topics	covered	in	this	chapter.

Exercise	16.1	–	test	your	knowledge
Answer	the	following	questions:

1.	 How	many	web	apps	can	you	host	in	Microsoft	Azure	for	free?
2.	 Does	Microsoft	Azure	only	support	Windows	as	a	host	operating	system?
3.	 What	options	does	Microsoft	Azure	offer	for	data	storage?

Exercise	16.2	–	practice	by	extending	the	quiz	web
app
How	would	you	improve	this	quiz	app?	Here	are	some	suggestions:

Use	Visual	Studio’s	scaffolding	feature	to	allow	an	administrator	to	add,	edit,	and
delete	quizzes	and	questions
Allow	more	complex	types	of	questions,	for	example,	multiple	correct	answers	to	a
question
Create	an	Ubuntu	or	Docker	virtual	machine	in	Microsoft	Azure	and	deploy	the	quiz
application	to	that	platform

Exercise	16.3	–	explore	topics
Use	the	following	links	to	read	more	about	the	topics	covered	in	this	chapter:

Installing	ASP.NET	Core	1.0	on	Linux:	https://docs.asp.net/en/latest/getting-
started/installing-on-linux.html
Microsoft	Azure:	Cloud	and	Computing	Services:	https://azure.microsoft.com/en-
us/

https://docs.asp.net/en/latest/getting-started/installing-on-linux.html
https://azure.microsoft.com/en-us/

Summary
In	this	chapter,	we	created	a	quiz	app	using	ASP.NET	Core	and	Entity	Framework	Core
hosted	in	Microsoft	Azure.	It	could	easily	be	deployed	to	a	Microsoft	Windows	Nano
Server,	Microsoft	Azure	Service	Fabric,	a	Linux	virtual	machine,	or	a	Docker	container,	to
minimize	costs	and	maximize	scalability.	It	can	be	deployed	to	alternative	cloud	hosts	or
on-premise	servers.

Hopefully	this	book,	and	the	C#	language	and	.NET	features	we’ve	covered,	will	inspire
you	to	think	about	how	you	can	use	C#	and	.NET	to	build	well-architected	and	modern
applications	that	run	cross-platform	on	Windows,	Mac	OS	X,	Docker,	and	Linux.

With	C#	and	.NET	in	your	arsenal	of	tools	and	technologies,	you	can	conquer	the	universe
of	cross-platform	development	and	build	any	type	of	application	that	you	need.

Appendix	A.	Answers	to	the	Test	Your
Knowledge	Questions
This	appendix	has	the	answers	to	the	questions	in	the	Test	Your	Knowledge	section	at	the
end	of	each	chapter.

Chapter	1	–	Hello,	C#!	Welcome,	.NET
Core!
1.	 Why	can	a	programmer	use	different	languages	to	write	applications	that	run	on

.NET?

Multiple	languages	are	supported	on	.NET	because	each	one	has	a	compiler	that
translates	the	source	code	into	IL	(intermediate	language)	code.	This	IL	code	is	then
compiled	to	native	CPU	instructions	at	runtime	by	the	CLR.

2.	 What	do	you	type	at	the	Command	Prompt	to	compile	C#?

For	.NET	Framework,	we	type	csc	sourcecode.cs
For	.NET	Core	using	.NET	CLI	in	a	folder	with	a	project.json	file,	we	type
dotnet	build

3.	 What	is	the	Visual	Studio	2015	keyboard	shortcut	to	save,	compile,	and	run	an
application	without	attaching	the	debugger?

Ctrl	+	F5

4.	 What	is	the	Visual	Studio	2015	keyboard	shortcut	to	view	the	Error	List?

Ctrl	+	W,	E

5.	 What	does	ildasm.exe	do?

The	IL	Disassembler	(ildasm.exe)	tool	reveals	the	manifest,	metadata,	embedded
resources,	and	IL	code	inside	a	compiled	.NET	assembly.

6.	 Is	the	.NET	Core	better	than	the	.NET	Framework?

It	depends	on	what	you	need.	The	.NET	Core	is	a	slimmed	down,	cross-platform
version	of	the	more	full-featured,	mature	.NET	Framework.

7.	 How	is	.NET	Native	different	from	.NET	Core?

.NET	Native	is	an	ahead-of-time	compiler	that	can	produce	native	code	assemblies
that	have	better	performance	and	reduced	memory	footprint,	and	it	has	its	.NET
assemblies	statically	linked,	which	removes	its	dependency	on	CoreCLR.

8.	 What	does	the	.NET	Portability	Analyzer	do?

It	scans	an	assembly	and	produces	a	report	that	lists	any	features	the	assembly	uses
that	are	not	supported	on	your	chosen	target	platform.	For	any	missing	features,	it	can
make	a	recommendation	to	use	an	alternative.

9.	 What	is	the	difference	between	Git	and	GitHub?

Git	is	a	source	code	management	platform.	GitHub	is	a	popular	web	service	that
implements	Git.

10.	 What	is	the	name	of	the	entry	point	method	of	a	.NET	application	and	how	should	it

be	declared?

public	static	void	Main()

Its	name	is	Main	and	the	preceding	code	is	how	it	is	declared.	An	optional	string
array	for	command-line	arguments	and	a	return	type	of	int	are	recommended,	but
they	are	not	required.

Chapter	2	–	Speaking	C#
What	type	would	you	choose	for	the	following	“numbers”?

1.	 A	person’s	telephone	number
string

2.	 A	person’s	height

float	or	double

3.	 A	person’s	age

int	for	performance	or	byte	(0	to	255)	for	size

4.	 A	person’s	salary
decimal

5.	 A	book’s	ISBN
string

6.	 A	book’s	price
decimal

7.	 A	book’s	shipping	weight

float	or	double

8.	 A	country’s	population

uint	(0	to	about	4	billion)

9.	 The	number	of	stars	in	the	universe

ulong	(0	to	about	18	quadrillion)	or	System.Numerics.BigInteger	(allows	an
arbitrarily	large	integer)

10.	 The	number	of	employees	in	each	of	the	small	or	medium	businesses	in	the	UK	(up
to	about	50,000	employees	per	business)

Since	there	are	hundreds	of	thousands	of	small	or	medium	businesses,	we	need	to
take	memory	size	as	the	determining	factor	so	choose	ushort	because	it	only	takes	2
bytes	compared	to	an	int,	which	takes	4	bytes.

Chapter	3	–	Controlling	the	Flow,
Converting	Types,	and	Handling
Exceptions
1.	 What	happens	when	you	divide	an	int	value	by	0?

A	DivideByZeroException	is	thrown	when	dividing	an	integer	or	decimal.

2.	 What	happens	when	you	divide	a	double	value	by	0?

The	double	contains	a	special	value	of	Infinity.	Instances	of	floating-point	numbers
can	have	special	values:	NaN	(not	a	number),	PositiveInfinity,	and
NegativeInfinity.

3.	 What	happens	when	you	overflow	an	int	value	that	is	set	to	a	value	beyond	its
range?

It	will	loop	unless	you	wrap	the	statement	in	a	checked	block	in	which	case	an
OverflowException	will	be	thrown.

4.	 What	is	the	difference	between	x	=	y++;	and	x	=	++y;?

In	x	=	y++;,	y	will	be	assigned	to	x	and	then	y	will	be	incremented,	and	in	x	=	++y;,
y	will	be	incremented	and	then	the	result	will	be	assigned	to	x.

5.	 What	is	the	difference	between	break,	continue,	and	return	when	used	inside	a	loop
statement?

The	break	statement	will	end	the	whole	loop	and	continue	executing	after	the	loop,
the	continue	statement	will	end	the	current	iteration	of	the	loop	and	continue
executing	at	the	start	of	the	loop	block	for	the	next	iteration,	and	the	return
statement	will	end	the	current	method	call	and	continue	executing	after	the	method
call.

6.	 What	are	the	three	parts	of	a	for	statement	and	which	of	them	are	required?

The	three	parts	of	a	for	statement	are	the	initializer,	condition,	and	incrementer.	The
condition	is	required	to	be	an	expression	that	returnstrue	or	false,	but	the	other	two
are	optional.

7.	 What	is	the	difference	between	the	=	and	==	operators?

The	=	operator	is	the	assignment	operator	for	assigning	values	to	variables,	and	the	==
operator	is	the	equality	check	operator	that	returns	true	or	false.

Exercise	3.2
What	will	happen	if	this	code	executes?

int	max	=	500;

for	(byte	i	=	0;	i	<	max;	i++)

{

				WriteLine(i);

}

The	code	will	loop	nonstop	because	the	value	of	i	can	only	be	between	0	and	255,	so	once
it	gets	incremented	beyond	255,	it	goes	back	to	0	and	therefore	will	always	be	less	than
max	(500).

To	prevent	it	from	looping	nonstop,	you	can	add	a	checked	statement	around	the	code.
This	would	cause	an	exception	to	be	thrown	after	255,	like	this:

254

255

System.OverflowException	says	Arithmetic	operation	resulted	in	an	overflow.

Chapter	4	–	Using	Common	.NET	Types
1.	 Does	every	assembly	that	you	create	have	a	reference	to	the	mscorlib.dll	assembly?

No.	Although	by	default	every	assembly	will	have	an	automatic	reference	to	the
mscorlib.dll	assembly,	there	is	a	compiler	flag	that	can	prevent	this.	For	details,
visit:

https://msdn.microsoft.com/en-us/library/fa13yay7.aspx

2.	 What	is	the	maximum	number	of	characters	that	can	be	stored	in	a	string	variable?

The	maximum	size	of	a	string	variable	is	2	GB	or	about	1	billion	characters	because
each	char	variable	uses	2	bytes	due	to	the	internal	use	of	Unicode	(UTF-16)
encoding	for	characters.

3.	 When	and	why	should	you	use	the	SecureString	type?

The	string	type	leaves	text	data	in	memory	for	too	long	and	it’s	too	visible.	The
SecureString	type	encrypts	the	text	and	ensures	that	the	memory	is	released
immediately.	WPF’s	PasswordBox	control	stores	the	password	as	a	SecureString
variable,	and	when	starting	a	new	process,	the	Password	parameter	must	be	a
SecureString	variable.	For	more	discussion,	visit:

http://stackoverflow.com/questions/141203/when-would-i-need-a-securestring-in-net

4.	 When	should	you	use	a	LinkedList<T>	variable?

Each	item	in	a	linked	list	has	a	reference	to	its	previous	and	next	siblings	as	well	as
the	list	itself	so	should	be	used	when	items	need	to	be	inserted	and	removed	from
positions	in	the	list	without	actually	moving	the	items	in	memory.

5.	 When	should	you	use	a	SortedDictionary	variable	rather	than	a	SortedList
variable?

The	SortedList	class	uses	less	memory	than	SortedDictionary,	SortedDictionary
has	faster	insertion	and	removal	operations	for	unsorted	data.	If	the	list	is	populated
all	at	once	from	sorted	data,	SortedList	is	faster	than	SortedDictionary.	For	more
discussion,	visit:

http://stackoverflow.com/questions/935621/whats-the-difference-between-sortedlist-
and-sorteddictionary

6.	 Why	should	you	not	use	the	official	standard	for	e-mail	addresses	to	create	a	regular
expression	to	validate	a	user’s	e-mail	address?

The	effort	is	not	worth	the	pain	for	you	or	your	users.	Validating	an	e-mail	address
using	official	specification	doesn’t	check	whether	that	address	actually	exists	or
whether	the	person	entering	the	address	is	its	owner.	For	more	discussion,	visit:

http://davidcel.is/posts/stop-validating-email-addresses-with-regex/

http://stackoverflow.com/questions/201323/using-a-regular-expression-to-validate-

https://msdn.microsoft.com/en-us/library/fa13yay7.aspx
http://stackoverflow.com/questions/141203/when-would-i-need-a-securestring-in-net
http://stackoverflow.com/questions/935621/whats-the-difference-between-sortedlist-and-sorteddictionary
http://davidcel.is/posts/stop-validating-email-addresses-with-regex/
http://stackoverflow.com/questions/201323/using-a-regular-expression-to-validate-an-email-address

an-email-address

Chapter	5	–	Using	Specialized	.NET	Types
1.	 What	is	the	difference	between	pressing	F5,	Ctrl	+	F5,	Shift	+	F5,	and	Ctrl	+	Shift	+
F5?

F5	saves,	compiles,	runs,	and	attaches	the	debugger,	Ctrl	+	F5	saves,	compiles,	and
runs	the	debugger,	Shift	+	F5	stops	the	debugger,	and	Ctrl	+	Shift	+	F5	restarts	the
debugger.

2.	 What	is	the	ISO	culture	code	for	Welsh?

cy-GB

For	a	complete	list	of	culture	codes,	visit:

http://timtrott.co.uk/culture-codes/

3.	 What	information	can	you	find	out	about	a	Process	variable?

The	Process	class	has	many	properties	including:	ExitCode,	ExitTime,	Id,
MachineName,	PagedMemorySize64,	ProcessorAffinity,	StandardInput,
StandardOutput,	StartTime,	Threads,	TotalProcessorTime,	and	so	on.	You	can
find	more	information	about	Process	Properties	at	https://msdn.microsoft.com/en-
us/library/System.Diagnostics.Process_properties(v=vs.110).aspx.

4.	 Can	your	applications	write	to	the	security	event	log	in	Windows?

No.	The	security	event	log	is	for	use	only	by	the	operating	system.	You	can	find	more
information	about	the	security	event	log	at	https://msdn.microsoft.com/en-
us/library/windows/desktop/aa363658(v=vs.85).aspx.

5.	 How	accurate	is	the	Stopwatch	class?

The	Stopwatch	class	can	be	accurate	to	within	a	nanosecond	(a	billionth	of	a	second)
but	you	shouldn’t	rely	on	that.	You	can	improve	accuracy	by	setting	processor
affinity	as	shown	in	the	article	at
http://www.codeproject.com/Articles/61964/Performance-Tests-Precise-Run-Time-
Measurements-wi.

6.	 What	is	the	difference	between	localization,	globalization,	and	internationalization?

Localization	is	about	changing	the	user	interface	to	a	specific	language,	for	example,
French;	whereas	globalization	is	about	writing	code	so	that	the	language	and	region
are	taken	into	account	when	formatting	numbers	and	dates	and	when	sorting	text.
Finally,	internationalization	is	a	combination	of	both.

http://timtrott.co.uk/culture-codes/
https://msdn.microsoft.com/en-us/library/System.Diagnostics.Process_properties(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363658(v=vs.85).aspx
http://www.codeproject.com/Articles/61964/Performance-Tests-Precise-Run-Time-Measurements-wi

Chapter	6	–	Building	Your	Own	Types
with	Object-Oriented	Programming
1.	 What	are	the	four	access	modifiers	and	what	do	they	do?

private:	This	modifier	makes	a	member	only	visible	inside	the	class
internal:	This	modifier	makes	a	member	only	visible	inside	the	class	or	within
the	same	assembly
protected:	This	modifier	makes	a	member	only	visible	inside	the	class	or
derived	classes
public:	This	modifier	makes	a	member	visible	everywhere

2.	 What	is	the	difference	between	the	static,	const,	and	readonly	keywords?

static:	This	keyword	makes	the	member	shared	by	all	instances	and	accessed
through	the	type
const:	This	keyword	makes	a	field	a	fixed	literal	value	that	should	never	change
readonly:	This	keyword	makes	a	field	that	can	only	be	assigned	at	runtime
using	a	constructor

3.	 How	many	parameters	can	a	method	have?

A	method	with	16383	parameters	can	be	compiled,	ran,	and	called.	Any	more	than
that	and	an	unstated	exception	is	thrown	at	runtime.	IL	has	predefined	opcodes	to
load	up	to	four	parameters	and	a	special	opcode	to	load	up	to	16-bits	(65,536)
parameters.	A	best	practice	is	to	limit	your	methods	to	three	or	four	parameters.	You
can	combine	multiple	parameters	into	a	new	class	to	encapsulate	them	into	a	single
parameter.	You	can	find	more	information	on	this	at
http://stackoverflow.com/questions/12658883/what-is-the-maximum-number-of-
parameters-that-a-c-sharp-method-can-be-defined-as.

4.	 What	does	a	constructor	do?

A	constructor	allocates	memory	and	initializes	field	values.

5.	 Why	do	you	need	to	apply	the	[Flags]	attribute	to	an	enum	type	when	you	want	to
store	combined	values?

If	you	don’t	apply	the	[Flags]	attribute	to	an	enum	type	when	you	want	to	store
combined	values,	then	a	stored	enum	value	that	is	a	combination	will	return	as	the
stored	integer	value	instead	of	a	comma-separated	list	of	text	values.

6.	 What	is	a	delegate?

A	delegate	is	a	type-safe	method	reference.	It	can	be	used	to	execute	any	method	with
a	matching	signature.

7.	 What	is	an	event?

An	event	is	a	field	that	is	a	delegate	having	the	event	keyword	applied.	The	keyword

http://stackoverflow.com/questions/12658883/what-is-the-maximum-number-of-parameters-that-a-c-sharp-method-can-be-defined-as

ensures	that	only	+=	and	-=	are	used;	this	safely	combines	multiple	delegates	without
replacing	any	existing	event	handlers.

8.	 Why	is	the	partial	keyword	useful?

You	can	use	the	partial	keyword	to	split	the	definition	of	a	type	over	multiple	files.

Chapter	7	–	Implementing	Interfaces	and
Inheriting	Classes
1.	 How	is	a	base	class	and	a	derived	class	related?

A	derived	class	(or	subclass)	is	a	class	that	inherits	from	a	base	class	(or	superclass).

2.	 What	is	the	difference	between	the	is	and	as	operators?

The	is	operator	returns	true	if	an	object	can	be	cast	to	the	type.	The	as	operator
returns	a	reference	if	an	object	can	be	cast	to	the	type;	otherwise,	it	returns	null.

3.	 Which	keyword	is	used	to	prevent	a	class	from	being	derived	from,	or	a	method	from
being	overridden?

sealed

Find	more	information	on	the	sealed	keyword	at	https://msdn.microsoft.com/en-
us/library/88c54tsw.aspx.

4.	 Which	keyword	is	used	to	prevent	a	class	from	being	instantiated	with	the	new
keyword	or	force	a	method	to	be	overridden?

abstract

Find	more	information	on	the	abstract	keyword	at	https://msdn.microsoft.com/en-
us/library/sf985hc5.aspx.

5.	 Which	keyword	is	used	to	allow	a	member	to	be	overridden?

virtual

Find	more	information	on	the	virtual	keyword	at	https://msdn.microsoft.com/en-
us/library/9fkccyh4.aspx.

6.	 What’s	the	deal	with	polymorphism?

Polymorphism	is	a	fancy	academic	OOP	concept	that	rarely	has	an	impact	on	real-
world	code.

7.	 What	are	the	signatures	of	the	constructors	that	all	exceptions	should	have?

The	following	are	the	signatures	of	the	constructors	that	all	exceptions	should	have:

A	constructor	with	no	parameters
A	constructor	with	a	string	parameter	usually	named	message
A	constructor	with	a	string	parameter,	usually	named	message,	and	an
Exception	parameter	usually	named	innerException

8.	 What	is	an	extension	method	and	how	do	you	define	one?

An	extension	method	is	a	compiler	trick	that	makes	a	static	method	of	a	static	class
appear	to	be	one	of	the	members	of	a	type.	You	define	which	type	you	want	to	extend
by	prefixing	the	type	with	this.

https://msdn.microsoft.com/en-us/library/88c54tsw.aspx
https://msdn.microsoft.com/en-us/library/sf985hc5.aspx
https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx

Chapter	8	–	Working	with	Relational	Data
Using	the	Entity	Framework
1.	 Which	.NET	data	provider	would	you	use	to	work	with	Microsoft	Access	.MDB

database	files?

.NET	Framework	Data	Provider	for	OLE	DB.

2.	 Which	.NET	data	provider	would	you	use	to	work	with	Microsoft	SQL	Server	2012
Express	Edition?

.NET	Framework	Data	Provider	for	SQL	Server.

3.	 What	must	you	do	with	a	DbConnection	variable	before	executing	a	DbCommand?

Ensure	that	its	state	is	open	by	calling	the	Open()	method.

4.	 When	would	you	use	the	CommandBehavior.SequentialAccess	property?

This	option	provides	a	way	for	a	DbDataReader	class	to	handle	rows	that	contain
columns	with	BLOBs	(binary	large	objects),	such	as	videos	and	images,	by	not
loading	the	entire	row	at	once	and	instead	loading	one	column	at	a	time,	allowing
skipping	of	columns,	and	reading	the	BLOB	data	as	a	stream.

5.	 ADO.NET	instead	of	Entity	Framework?

You	would	use	classic	ADO.NET	instead	of	Entity	Framework	when	you	need	the
best	performance,	when	most	data	access	must	use	stored	procedures,	and	when
maintaining	legacy	code	written	using	classic	ADO.NET.

6.	 When	defining	a	DbContext	class,	what	type	would	you	use	for	the	property	that
represents	a	table,	for	example,	the	Products	property	of	a	Northwind	context?

DbSet<T>,	where	T	is	the	entity	type,	for	example,	Product.

7.	 What	are	the	EF	conventions	for	primary	keys?

The	property	named	ID	or	ClassNameID	is	assumed	to	be	the	primary	key.	If	the	type
of	that	property	is	any	of	the	following,	then	the	property	is	also	marked	as	being	an
IDENTITY	column:	tinyint,	smallint,	int,	bigint,	guid.

8.	 When	would	you	use	an	annotation	attribute	in	an	entity	class?

You	would	use	an	annotation	attribute	in	an	entity	class	when	the	conventions	cannot
work	out	the	correct	mapping	between	the	classes	and	tables.	For	example,	if	a	class
name	does	not	match	a	table	name	or	a	property	name	does	not	match	a	column
name.

9.	 Why	might	you	choose	fluent	API	in	preference	to	annotation	attributes?

You	might	choose	fluent	API	in	preference	to	annotation	attributes	when	the
conventions	cannot	work	out	the	correct	mapping	between	the	classes	and	tables,	and
you	do	not	want	to	use	annotation	attributes	because	you	want	to	keep	your	entity

classes	clean	and	free	from	extraneous	code.

10.	 What	is	the	difference	between	Database-First	and	Code-First	in	EF6?

Database-First	creates	a	design-time	file	with	the	EDMX	that	contains	XML	files	that
define	the	conceptual,	storage,	and	mappings	between	the	two.	These	XML	files	must
be	kept	synchronized	with	future	changes	to	the	classes	and	tables.	Code-First	does
not	need	a	design-time	EDMX	file.	Instead,	a	combination	of	conventions,	annotation
attributes,	and	fluent	API	is	used	to	define	the	conceptual	storage	and	mappings
between	the	two.	Code-First	is	more	difficult	to	learn	in	the	short	term	but	it	is	more
manageable	in	the	long	term	which	is	why	Entity	Framework	Core	1.0	drops	support
for	design-time	EDMX	files.

Chapter	9	–	Querying	and	Manipulating
Data	with	LINQ
1.	 What	are	the	two	requirements	to	use	LINQ?

You	must	import	the	System.Linq	namespace	to	make	the	LINQ	extension	methods
available	and	reference	a	LINQ	provider	assembly	for	the	type	of	data	that	you	want
to	work	with.

2.	 Which	LINQ	extension	method	would	you	use	to	return	a	subset	of	properties	from	a
type?

The	Select	method	allows	projection	(selection)	of	properties.

3.	 Which	LINQ	extension	method	would	you	use	to	filter	results?

The	Where	method	allows	filtering	by	supplying	a	delegate	(or	lambda	expression)
that	returns	a	Boolean	to	indicate	whether	the	value	should	be	included	in	the	results.

4.	 List	five	LINQ	extension	methods	that	perform	aggregation.

Max,	Min,	Count,	Average,	Sum,	and	Aggregate.

5.	 What	is	the	difference	between	the	Select	and	SelectMany	extension	methods?

Select	returns	exactly	what	you	specify	to	return.	SelectMany	checks	that	the	items
you	have	selected	are	themselves	IEnumerable<T>	and	then	breaks	them	down	into
smaller	parts.	For	example,	if	the	type	you	select	is	a	string	value	(which	is
IEnumerable<char>),	SelectMany	will	break	each	string	value	returned	into	their
individual	char	values.

Chapter	10	–	Working	with	Files,
Streams,	and	Serialization
1.	 What	is	the	difference	between	using	the	File	class	and	the	FileInfo	class?

The	File	class	has	static	methods	so	it	cannot	be	instantiated.	It	is	best	used	for	one-
off	tasks	such	as	copying	a	file.	The	FileInfo	class	requires	the	instantiation	of	an
object	that	represents	a	file.	It	is	best	used	when	you	need	to	perform	multiple
operations	on	the	same	file.

2.	 What	is	the	difference	between	the	ReadByte	method	and	the	Read	method	of	a
stream?

The	ReadByte	method	returns	a	single	byte	each	time	it	is	called	and	the	Read	method
fills	a	temporary	array	with	bytes	up	to	a	specified	length.	It	is	generally	best	to	use
Read	to	process	blocks	of	bytes	at	once.

3.	 When	would	you	use	the	StringReader,	the	TextReader,	and	the	StreamReader
classes?

StringReader	is	used	for	efficiently	reading	from	a	string	stored	in	memory
TextReader	is	an	abstract	class	that	StringReader	and	StreamReader	both
inherit	from	for	their	shared	functionality
StreamReader	is	used	for	reading	strings	from	a	stream	that	can	be	any	type	of
text	file,	including	XML	and	JSON

4.	 What	does	the	DeflateStream	type	do?

DeflateStream	implements	the	same	compression	algorithm	as	GZIP	but	without	a
cyclical	redundancy	check,	so	although	it	produces	smaller	compressed	files,	it
cannot	perform	integrity	checks	when	decompressing.

5.	 How	many	bytes	per	character	does	the	UTF-8	encoding	use?

It	depends	on	the	character.	Most	Western	alphabet	characters	are	stored	using	a
single	byte.	Other	characters	may	need	two	or	more	bytes.

6.	 What	is	an	object	graph?

An	object	graph	is	any	instance	of	classes	in	memory	that	reference	each	other,
thereby	forming	a	set	of	related	objects.	For	example,	a	Customer	object	may	have	a
property	that	references	a	set	of	Order	instances.

7.	 What	is	the	best	serialization	format	to	choose	for	minimizing	space	requirements?

JavaScript	Object	Notation	(JSON).

8.	 What	is	the	best	serialization	format	to	choose	for	cross-platform	compatibility?

eXtensible	Markup	Language	(XML),	although	JSON	is	almost	as	good	these	days.

9.	 Which	Microsoft	technology	uses	the	DataContractSerializer	class	by	default?

Windows	Communication	Foundation	(WCF)	for	creating	SOAP	services.

10.	 Is	it	possible	to	create	your	own	custom	runtime	serializers?

Yes.	Create	a	class	that	implements	the	interface
System.Runtime.Serialization.IFormatter.	For	details,	visit:

https://msdn.microsoft.com/en-
us/library/system.runtime.serialization.iformatter(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/system.runtime.serialization.iformatter(v=vs.110).aspx

Chapter	11	–	Protecting	Your	Data	and
Applications
1.	 Of	the	encryption	algorithms	provided	by	the	.NET	Framework,	which	is	the	best

choice	for	symmetric	encryption?

The	AES	algorithm	is	the	best	choice	for	symmetric	encryption.

2.	 Of	the	encryption	algorithms	provided	by	the	.NET	Framework,	which	is	the	best
choice	for	asymmetric	encryption?

The	RSA	algorithm	is	the	best	choice	for	asymmetric	encryption.

3.	 For	encryption	algorithms,	is	it	better	to	have	a	larger	or	smaller	block	size?

For	encryption	algorithms,	it	is	better	to	have	a	smaller	block	size.

Chapter	12	–	Improving	Performance	and
Scalability	with	Multitasking
1.	 By	convention,	what	suffix	should	be	applied	to	a	method	that	returns	a	Task	or	a

Task<T>?

Async,	for	example,	OpenAsync	for	a	method	named	Open.

2.	 To	use	the	await	keyword	inside	a	method,	which	keyword	must	be	applied	to	the
method	declaration?

The	async	keyword	must	be	applied	to	the	method	declaration.

3.	 How	do	you	create	a	child	task?

Call	the	Task.Factory.StartNew	method	with	the
TaskCreationOptions.AttachToParent	option	to	create	a	child	task.

4.	 Why	should	you	avoid	the	lock	keyword?

The	lock	keyword	does	not	allow	you	to	specify	a	timeout;	this	can	cause	deadlocks.
Use	Monitor.Enter	with	a	TimeSpan	and	Monitor.Exit	instead.

5.	 When	should	you	use	the	Interlocked	class?

If	you	have	integers	and	floats	that	are	shared	between	multiple	threads,	you	should
use	the	Interlocked	class.

Chapter	13	–	Building	Universal	Windows
Platform	Apps	Using	XAML
1.	 Which	control	would	you	choose	to	allow	the	user	to	easily	choose	their	date	of	birth

on	many	different	types	of	device?

The	DatePicker	control	will	allow	the	user	to	easily	choose	their	date	of	birth	on
many	different	types	of	device.

2.	 Which	XAML	element	would	you	use	to	adapt	the	layout	of	your	app	to	handle
different	device	families?

The	VisualStateManager	element	is	used	to	adapt	the	layout	of	your	app	to	handle
different	device	families.

3.	 How	can	you	set	multiple	properties	on	an	XAML	element	as	a	single	group?

We	can	set	multiple	properties	on	an	XAML	element	as	a	single	group	by	defining	a
style	with	setters.

4.	 What	is	the	difference	between	a	control	template	and	a	data	template?

Control	templates	are	used	to	define	the	look	and	feel	of	the	external	parts	of	a
control,	such	as	a	button	or	list	box.	Data	templates	are	used	to	define	the	look	and
feel	of	the	internal	content	of	a	button	or	the	items	with	a	list	box.

5.	 Can	XAML	bindings	be	two-way	bindings	or	just	one-way	bindings?

XAML	bindings	can	be	two-way,	one-way,	or	one-time.

Chapter	14	–	Building	Web	Applications
and	Services	Using	ASP.NET	Core
1.	 What	is	the	difference	between	a	web	browser	and	a	web	server?

A	web	browser	makes	HTTP	requests	for	resources	and	a	web	server	sends	HTTP
responses	back	containing	a	mix	of	HTML,	CSS,	JavaScript,	and	other	media
formats,	which	the	browser	then	displays	to	the	end	user.

2.	 What	is	the	difference	between	a	URI,	a	URL,	and	a	URN?

Uniform	Resource	Identifier	(URI)	is	the	more	general	term	instead	of	URL	or	URN.
A	Uniform	Resource	Locator	(URL)	is	a	type	of	URI	that	species	a	location	of	a
resource.	A	Uniform	Resource	Name	(URN)	is	intended	to	serve	as	persistent,
location-independent	identifier.

3.	 What	are	the	four	most	common	HTTP	methods?

The	GET,	POST,	PUT,	and	DELETE	are	the	most	common	HTTP	methods.

4.	 What	does	it	mean	when	a	web	server	responds	with	status	code	302?

The	web	server	is	indicating	a	temporary	redirect.	This	means	that	the	web	server
found	the	resource	but	it	is	at	a	different	location.	A	response	header	is	used	to	tell	the
web	browser	about	the	new	location.	Note	that	status	code	301	is	similar	but
represents	a	permanent	redirect.

5.	 What	are	the	responsibilities	of	a	route?

At	the	minimum,	a	route	must	provide	the	name	of	a	controller	and	an	action.	It	can
also	provide	additional	parameter	values	defined	in	segments.

6.	 What	are	the	responsibilities	of	a	controller?

A	controller	(and	one	of	its	actions)	must	examine	the	request	and	decide	which
model	needs	to	be	passed	to	which	view	and	then	return	the	response	to	the	client.

7.	 What	are	the	responsibilities	of	a	model?

A	model	represents	all	the	data	required	for	a	particular	request.

8.	 What	are	the	responsibilities	of	a	view?

A	view	converts	a	model	into	another	format,	typically	HTML,	but	it	could	be	any
media	type,	for	example,	JPEG,	DOCX,	JSON,	XML,	and	so	on.

9.	 How	does	ASP.NET	distinguish	a	request	for	MVC	from	a	request	for	Web	API?

Multiple	entries	are	added	to	the	route	table.	By	convention,	Web	API	controllers
should	use	attributes	to	register	routes	that	look	for	URLs	that	begin	with	api/.	If	a
URL	doesn’t	begin	with	api/	then	it	should	match	other	routes	registered	by	MVC.

10.	 What	data	formats	does	Web	API	support	by	default?

x-www-formurlencoded,	JSON,	and	XML.

Chapter	15	–	Taking	C#	Cross-Platform
1.	 Which	platforms	are	supported	by	.NET	Core	and	ASP.NET	Core?

Windows,	Mac	OS	X,	Docker,	and	Linux	are	the	platforms	supported	by	.NET	Core
and	ASP.NET	Core.

2.	 What	command	downloads	dependent	packages	for	a	project?

The	dnu	restore	or	dotnet	restore	commands	downloads	dependent	packages	for
a	project.

3.	 What	file	does	project	directory	require	in	order	to	restore	packages?

The	project.json	file	is	required	in	project	directory	in	order	to	restore	packages.

4.	 What	command	will	show	the	currently	installed	versions	of	.NET?

The	dnvm	list	-detailed	command	will	show	the	currently	installed	versions	of
.NET.

5.	 What	command	will	switch	to	a	different	version	of	.NET?

The	dnvm	use	[parameters]	command	will	switch	to	a	different	version	of	.NET.

Chapter	16	–	Building	a	Quiz
1.	 How	many	web	apps	can	you	host	in	Microsoft	Azure	for	free?

10

2.	 Does	Microsoft	Azure	only	support	Windows	as	a	host	operating	system?

No.	You	can	create	Virtual	Machines	to	host	Linux,	Docker,	and	other	operating
systems.

3.	 What	options	does	Microsoft	Azure	offer	for	data	storage?

The	following	options	are	what	Microsoft	Azure	offers	for	data	storage:

Azure	Storage:	For	schema-less	entities,	blobs,	and	files
Azure	Redis	for	distributed	caching	and	general	entity	storage
Azure	DocumentDb	for	schema-less	JSON	entities
Azure	SQL	Database	for	relational	data
Azure	Data	Lake	for	hybrid	storage	and	analysis

Appendix	B.	Creating	a	Virtual	Machine
for	Your	Development	Environment
This	appendix	shows	you	how	to	set	up	a	virtual	machine	hosted	in	Microsoft	Azure	to
use	as	a	development	environment.

The	most	popular,	client,	non-Microsoft	operating	system	is	Apple’s	Mac	OS	X,	so	that’s
what	I	will	use	in	these	instructions.

You	can	use	any	operating	system,	such	as	Ubuntu	14.04,	that	has	the	ability	to	make	a
connection	to	a	virtual	machine	using	Microsoft’s	Remote	Desktop	Protocol	(RDP).

This	chapter	covers	the	following	topics:

Signing	up	for	a	Microsoft	account
Creating	a	Microsoft	Azure	subscription
Creating	a	virtual	machine
Connecting	a	virtual	machine	using	remote	desktop
Supporting	other	platforms

Signing	up	for	a	Microsoft	account
If	you	already	have	a	Microsoft	account,	for	example,	a	Hotmail,	MSN,	Live,	or	Passport
account,	then	you	can	choose	to	use	that.	Even	if	you	do,	you	might	choose	to	create	a
new	account	just	for	experimenting	with	Microsoft	Azure.

You	can	sign	up	for	a	Microsoft	account	at	https://signup.live.com/.

https://signup.live.com/

Creating	a	Microsoft	Azure	subscription
You	can	sign	in	to	a	Microsoft	Azure	account	at	https://azure.microsoft.com/en-
us/account/,	you	will	see	the	the	Manage	your	Azure	account	page	as	shown	in	the
following	screenshot:

Click	on	Usage	and	billing	and	then	sign	in	with	your	Microsoft	account.

https://azure.microsoft.com/en-us/account/

Once	you	have	signed	in,	you	need	to	create	an	Azure	subscription.	Click	on	Sign	up	for
a	free	trial	at	the	bottom	of	this	page.

Enter	your	details	in	the	About	you	section	and	complete	the	Verification	by	phone
section.

You	will	also	need	to	verify	your	identity	using	your	credit	or	debit	card.

You	can	then	click	on	the	Sign	up	button.

It	will	take	a	few	minutes	to	get	things	ready	for	you.

Finally,	your	subscription	will	be	ready	for	you	to	use,	as	shown	in	the	following
screenshot:

Managing	your	Microsoft	Azure	account
Click	on	Start	managing	my	service	or	use	your	browser	to	navigate	to
https://portal.azure.com/.

This	is	the	modern	Microsoft	Azure	portal	with	a	customizable	dashboard	that	allows	you
to	manage	all	your	resources	that	are	hosted	in	Azure.	Tiles	can	be	added	to	the	dashboard,
resized	and	rearranged,	and	can	be	removed	by	clicking	on	the	Edit	button.

https://portal.azure.com/

Creating	a	virtual	machine
On	the	left-hand	side	of	the	Azure	Portal’s	Dashboard,	click	on	the	+	New	option	and
then	click	on	Compute	to	see	a	list	of	common	operating	systems	that	you	can	choose	to
hosted	on	a	virtual	machine	in	Azure.

Click	inside	the	Search	the	marketplace	box	to	search	for,	and	select,	the	Visual	Studio
Community	2015	with	Update	1	on	Microsoft	Windows	Server	2012	R2	option,	as
shown	in	the	following	screenshot.

Note
Microsoft	does	not	offer	Windows	10	as	an	operating	system	for	hosting	in	Microsoft
Azure	unless	you	are	an	MSDN	subscriber.	Unfortunately,	that	means	you	will	not	be	able
to	complete	the	hands-on	practical	exercises	in	Chapter	13,	Building	Universal	Windows
Platform	Apps	Using	XAML,	but	you	will	be	able	to	complete	all	the	other	chapters.

Ensure	that	Resource	Manager	is	selected	as	the	deployment	model	and	then	click	on	the
Create	button.

Tip
Microsoft	Azure	has	two	deployment	models—the	old	Azure	Service	Management

(ASM)	and	the	new	Azure	Resource	Manager	(ARM).	You	can	read	more	about	the
differences	at	https://azure.microsoft.com/en-gb/documentation/articles/resource-manager-
deployment-model/.

Complete	the	Basics	blade.	You	will	need	to	choose	the	following:

A	machine	name	(make	a	note	because	you	will	need	this	later)
A	username	and	password	to	log	in	with	(you	will	need	this	later)
A	resource	group	(to	manage	the	virtual	machine	and	other	resources)
A	data	center	location

Click	on	OK	on	the	Basics	blade.

Complete	the	Size	blade	by	choosing	the	capabilities	of	your	virtual	machine	and	then
click	on	Select.

Note
The	prices	shown	are	estimates	of	monthly	cost,	including	license	fees	for	the	software
such	as	the	Windows	operating	system.	You	will	only	be	charged	per	minute	of	compute

https://azure.microsoft.com/en-gb/documentation/articles/resource-manager-deployment-model/

time.	An	average	month	has	43,200	minutes,	so	for	a	virtual	machine	and	its	software
costing	£117.26	per	month,	you	would	be	charged	about	five	pence	for	twenty	minutes’
use	once	your	free	trial	has	expired.

In	the	Settings	blade,	you	can	choose	storage,	network,	and	monitoring	options.	The
defaults	are	usually	sufficient.

On	the	Summary	blade,	select	Create	to	start	deployment.

After	a	few	minutes,	your	Dashboard	will	show	the	new	virtual	machine.

Connecting	to	your	virtual	machine	using
remote	desktop
To	connect	to	a	Microsoft	Azure	virtual	machine,	you	can	install	Microsoft	Remote
Desktop	from	the	Apple	Mac	OS	X	App	Store.

Tip
Any	remote	desktop	software	that	supports	Microsoft’s	RDP	will	work	from	any	operating
system.

On	the	Dashboard	window,	click	on	All	resources,	and	then	click	on	the	virtual	machine
you	created	earlier.

If	your	virtual	machine	does	not	have	Running	as	the	status,	then	click	on	Start.

Wait	for	the	virtual	machine	to	start.	Click	on	Connect	to	download	an	RDP	file.

Double-click	on	the	RDP	file	to	connect	to	the	virtual	machine.

Click	on	Continue	to	accept	the	certificate.

Log	in	by	entering	the	user	name	machinename\username	and	the	password,	which	you
chose	when	creating	the	virtual	machine	earlier,	and	then	click	on	OK.

After	logging	in,	you	will	have	a	window	into	the	virtual	machine.	Click	on	the	Windows
Start	button	and	start	typing	vis	to	find	and	run	Visual	Studio	2015.

When	you	are	finished,	the	start	screen	will	display	a	power	button	that	allows	the	remote
desktop	window	to	disconnect	or	shut	down.

Click	on	the	power	button	and	then	click	on	Shut	down.

After	the	remote	desktop	window	closes,	return	to	the	Azure	portal.	Note	the	orange
warning	that	states	that	even	though	the	virtual	machine	is	shut	down,	it	is	still	incurring
charges	because	it	is	still	using	some	resources.

Click	on	Stop	and	then	click	on	Yes	to	stop	the	virtual	machine	fully.

Wait	for	the	virtual	machine	to	stop.

Once	the	virtual	machine	is	stopped,	it	will	have	Stopped	(deallocated)	as	the	status.	This
means	that	you	are	not	being	charged	for	this	virtual	machine.

Supporting	other	platforms
There	are	Microsoft	RDP	clients	for	multiple	operating	systems,	including	iOS	for	iPad.
It’s	pretty	cool	being	able	to	run	the	full	version	of	Visual	Studio	2015	on	an	iPad	mini!

Summary
In	this	appendix,	you	learned	how	to	use	remote	software	on	almost	any	operating	system
to	connect	to	a	virtual	machine	running	Windows	Server	and	Visual	Studio	2015	hosted	in
Microsoft	Azure.

Index
A

abstraction
about	/	Talking	about	OOP

access
controlling,	with	indexers	/	Controlling	access	with	properties	and	indexers
controlling,	with	properties	/	Controlling	access	with	properties	and	indexers
synchronizing,	to	shared	resources	/	Synchronizing	access	to	shared	resources

access	modifier	keywords
private	(default)	/	Defining	fields
internal	/	Defining	fields
protected	/	Defining	fields
internal	protected	/	Defining	fields
public	/	Defining	fields

access	modifiers	(C#	programming	guide)
reference	link	/	Exercise	6.3	–	explore	topics

ADO.NET
using	/	Using	ADO.NET
about	/	Using	ADO.NET

ADO.NET	Entity	Framework
about	/	Using	ADO.NET

Advanced	Encryption	Standard	(AES)
about	/	Encrypting	and	decrypting	data

AES
used,	for	encrypting	data	symmetrically	/	Encrypting	symmetrically	with	AES

AesManaged
about	/	Encrypting	and	decrypting	data

aggregation
about	/	Talking	about	OOP

alternative	C#	IDEs
using	/	Using	alternative	C#	IDEs
MonoDevelop	/	Using	alternative	C#	IDEs
JetBrains	Project	Rider	/	Using	alternative	C#	IDEs
Microsoft	Visual	Studio	Code	/	Using	alternative	C#	IDEs

app
creating,	for	UWP	/	Creating	an	app	for	the	Universal	Windows	Platform

application
debugging	/	Debugging	an	application
unit	testing	/	Unit	testing	an	application
internationalizing	/	Internationalizing	an	application
globalizing	/	Globalizing	an	application
localizing	/	Localizing	an	application

compiling	/	Downloading	dependency	packages	and	compiling
arguments

reading	/	Reading	arguments	and	working	with	arrays
arithmetic	operators

about	/	Experimenting	with	arithmetic	operators
array

multiple	values,	storing	in	/	Storing	multiple	values	in	an	array
arrays

working	with	/	Reading	arguments	and	working	with	arrays
ASP.NET	Core

about	/	Understanding	ASP.NET	Core
client-side	web	development	/	Client-side	web	development
scenarios	/	Taking	ASP.NET	Core	further
parameters,	passing	with	route	value	/	Passing	parameters	using	a	route	value
parameters,	passing	with	query	string	/	Passing	parameters	using	a	query	string
models,	annotating	/	Annotating	models
installing	/	Installing	Visual	Studio	Code	and	ASP.NET	Core,	Installing
ASP.NET	Core	and	the	.NET	Version	Manager
used,	for	building	cross-platform	web	apps	/	Building	cross-platform	web
applications	using	ASP.NET	Core

ASP.NET	Core	1.0
about	/	ASP.NET	Core	1.0

ASP.NET	Core	application
exploring	/	Exploring	the	parts	of	an	ASP.NET	Core	web	application

ASP.NET	Core	controllers
about	/	ASP.NET	Core	controllers
responsibilities	/	ASP.NET	Core	controllers
Home	controller’s	actions,	defining	/	Defining	the	Home	controller’s	actions

ASP.NET	Core	models
about	/	ASP.NET	Core	models
Entity	models,	creating	for	Northwind	/	Create	Entity	models	for	Northwind
Entity	Framework	Core,	configuring	as	service	/	Configure	Entity	Framework
Core	as	a	service
view	models,	creating	for	requests	/	Create	view	models	for	requests
model,	fetching	in	controller	/	Fetch	the	model	in	the	controller

ASP.NET	Core	startup
about	/	ASP.NET	Core	startup
default	route	/	Understanding	the	default	route

ASP.NET	Core	views
about	/	ASP.NET	Core	views
Home	controller’s	views,	rendering	/	Rendering	the	Home	controller’s	views
layouts,	sharing	between	views	/	Sharing	layouts	between	views
custom	styles,	defining	/	Defining	custom	styles
typed	view,	defining	/	Defining	a	typed	view

ASP.NET	Core	web	API
about	/	ASP.NET	Core	Web	API
API	controller,	scaffolding	/	Scaffolding	an	API	controller
Web	API	service,	calling	from	UWP	app	/	Calling	a	Web	API	service	from	a
UWP	app

ASP.NET	Core	web	apps
hosting,	in	Microsoft	Azure	/	Hosting	ASP.NET	Core	web	apps	in	Microsoft
Azure

ASP.NET	MVC
about	/	Understanding	ASP.NET	Core

ASP.NET	Web	API
about	/	Understanding	ASP.NET	Core

ASP.NET	web	application
publishing,	to	web	app	/	Publishing	an	ASP.NET	web	application	to	the	Web
App

ASP.NET	Web	Forms
about	/	Understanding	ASP.NET	Core

ASP.NET	XML	Web	Services
about	/	Understanding	ASP.NET	Core

assemblies
using	/	Using	assemblies	and	namespaces
about	/	Assemblies
referencing	/	Referencing	an	assembly
browsing	/	Browsing	assemblies	and	namespaces

assemblies,	and	namespaces
relating	/	Relating	assemblies	and	namespaces

Assemblies	and	the	Global	Assembly	Cache	(C#	and	Visual	Basic)
reference	link	/	Exercise	4.3	–	explore	topics

assembly	references
example	/	An	example	of	assembly	references

asymmetric
about	/	Keys	and	key	sizes

async	keyword
about	/	The	async	and	await	keywords

authentication
about	/	Understanding	the	vocabulary	of	protection,	Authenticating	and
authorizing	users

authorization
about	/	Understanding	the	vocabulary	of	protection,	Authorizing	with	Windows

await,	in	catch	blocks
about	/	await	in	catch	blocks

await	keyword
about	/	The	async	and	await	keywords

Azure	account

registering	/	Register	an	Azure	account
Azure	portal

reference	/	Register	an	Azure	account
Azure	Resource	Manager	(ARM)	/	Creating	a	virtual	machine
Azure	Service	Management	(ASM)	/	Creating	a	virtual	machine
Azure	web	app

creating	/	Create	an	Azure	web	app

B
Banker’s	Rounding	/	Rounding	numbers
base	class

about	/	Talking	about	OOP
Base	Class	Libraries	(BCL)

about	/	Using	assemblies	and	namespaces,	Base	Class	Libraries	and	CoreFX
binary	number	system	/	Storing	numbers
blocks

about	/	Blocks,	IVs	and	block	sizes
block	sizes

about	/	IVs	and	block	sizes
bool	(C#	Reference)

reference	link	/	Exercise	2.3	–	explore	topics
Boolean	operators

about	/	Comparison	and	Boolean	operators
Booleans

storing	/	Storing	Booleans
break	mode	/	Setting	a	breakpoint
breakpoint

setting	/	Setting	a	breakpoint
customizing	/	Customizing	breakpoints

bridge
about	/	Choosing	a	.NET	data	provider

byte	arrays
strings,	encoding	as	/	Encoding	strings	as	byte	arrays

C
C#

basics	/	Understanding	C#	basics
keywords	/	The	C#	vocabulary

C#	Interactive
experimenting	with	/	Experimenting	with	C#	Interactive

C#	Keywords
reference	link	/	Exercise	2.3	–	explore	topics

C#	keywords
relating,	to	.NET	types	/	Relating	C#	keywords	to	.NET	types

C#	Operators
reference	link	/	Exercise	2.3	–	explore	topics

casting
from	numbers	to	numbers	/	Casting	from	numbers	to	numbers

Casting	and	Type	Conversions	(C#	Programming	Guide)
reference	link	/	Exercise	3.5	–	explore	topics

casting	exceptions
hiding	/	Handling	casting	exceptions

char	(C#	Reference)
reference	link	/	Exercise	2.3	–	explore	topics

Checked	and	Unchecked	(C#	Reference)
reference	link	/	Exercise	3.5	–	explore	topics

checked	statement
about	/	The	checked	statement

child	tasks
about	/	Nested	and	child	tasks

class
defining	/	Defining	a	class
instantiating	/	Instantiating	a	class

classes
splitting,	partial	used	/	Splitting	classes	using	partial
inheriting	from	/	Inheriting	from	classes
extending	/	Extending	classes

Classes	(C#	Programming	Guide)
reference	link	/	Exercise	7.3	–	explore	topics

classic	ASP.NET
versus	modern	ASP.NET	Core	/	Classic	ASP.NET	versus	modern	ASP.NET
Core

class	libraries
building	/	Building	class	libraries
creating,	for	sharing	code	/	Creating	a	class	library	to	share	code

Cleaning	Up	Unmanaged	Resources
reference	link	/	Exercise	7.3	–	explore	topics

client-server	applications
scalability,	improving	for	/	Improving	scalability	for	client-server	applications

client-side	web	development,	ASP.NET	Core
HTML5	/	Client-side	web	development
CSS3	/	Client-side	web	development
JavaScript	/	Client-side	web	development

CLI	tools
about	/	Understanding	the	CLI	tools

Cloud9
about	/	Using	alternative	C#	IDEs
URL	/	Using	alternative	C#	IDEs

code
decompiling,	ILDASM	used	/	Decompiling	code	using	ILDASM
writing	/	Writing	the	code
autoformatting	/	Autoformatting	code
simplifying,	by	removing	explicit	delegate	instantiation	/	Simplifying	the	code
by	removing	the	explicit	delegate	instantiation
simplifying,	XAML	used	/	Simplifying	code	using	XAML

code,	compiling	with	Developer	Command	Prompt
about	/	Writing	and	compiling	code	using	the	Developer	Command	Prompt,
Compiling	code	using	the	Developer	Command	Prompt
code,	writing	with	Notepad	/	Writing	code	using	Notepad
compiler	errors,	fixing	/	Fixing	compiler	errors

code,	compiling	with	Microsoft	Visual	Studio	2015
about	/	Writing	and	compiling	code	using	Microsoft	Visual	Studio	2015,
Compiling	code	using	Visual	Studio
mistakes,	fixing	with	error	list	/	Fixing	mistakes	with	the	error	list

code,	writing	with	Microsoft	Visual	Studio	2015
about	/	Writing	code	using	Visual	Studio	2015

collections
about	/	Storing	data	with	collections,	Understanding	collections
data,	storing	with	/	Storing	data	with	collections
lists	/	Lists
dictionaries	/	Dictionaries
stacks	/	Stacks
queues	/	Queues
sorting	/	Sorting	collections
old	collections,	avoiding	/	Avoiding	old	collections
specialized	collections,	using	/	Using	specialized	collections
used,	for	storing	multiple	values	/	Storing	multiple	values	using	collections

Collections	(C#	and	Visual	Basic)
reference	link	/	Exercise	4.3	–	explore	topics

COM	Interop
used,	for	automating	Microsoft	Excel	/	Automating	Microsoft	Excel	using	COM

Interop
command-line	tools,	.NET	Core

.NET	Version	Manager	/	Managing	.NET	Core	development	with	Command
Line	Tools
.NET	Execution	Environment	/	Managing	.NET	Core	development	with
Command	Line	Tools
.NET	Development	Utilities	/	Managing	.NET	Core	development	with
Command	Line	Tools
.NET	CLI	/	Managing	.NET	Core	development	with	Command	Line	Tools

Command	Line	Tools
.NET	Core	development,	managing	with	/	Managing	.NET	Core	development
with	Command	Line	Tools
used,	for	creating	.NET	Core	application	/	Creating	a	.NET	Core	application
using	Command	Line	Tools

commands
executing	/	Executing	commands	and	reading	result	sets

common	CLI	commands
about	/	Common	CLI	commands

common	DNX	commands
about	/	Common	DNX	commands

Common	Language	Runtimes	(CLR)
about	/	Using	assemblies	and	namespaces

Community	Edition
about	/	Using	Visual	Studio	2015	on	Windows	10

comparer
defining	/	Defining	a	separate	comparer

comparison	operators
about	/	Comparison	and	Boolean	operators

compile-time	check
about	/	The	unchecked	statement

compiled	assemblies
disassembling	/	Disassembling	compiled	assemblies

compiler	symbols
configuring,	for	.NET	Framework	/	Configuring	compiler	symbols	for	.NET
Framework
defining,	for	.NET	Core	/	Defining	compiler	symbols	for	.NET	Core
checking	/	Checking	compiler	symbols

Component	Object	Model	(COM)	Interop	/	Interoperating	with	unmanaged	code
Composite	Formatting

reference	link	/	Exercise	2.3	–	explore	topics
composition

about	/	Talking	about	OOP
configuration

connection	string,	loading	from	/	Loading	a	connection	string	from

configuration
connection	string

loading,	from	configuration	/	Loading	a	connection	string	from	configuration
console,	in	C#	6

usage,	simplifying	of	/	Simplifying	the	usage	of	the	console	in	C#	6
console	application

building	/	Building	a	console	application
source	files,	creating	/	Creating	the	source	files
code,	editing	/	Editing	the	code

console	applications
building	/	Building	console	applications

Console	Class
reference	link	/	Exercise	2.3	–	explore	topics

constants
about	/	Defining	a	class
reasons,	for	avoiding	/	Making	a	field	constant

constructors
about	/	Defining	a	class
fields,	initializing	with	/	Initializing	fields	with	constructors

constructors	(C#	programming	guide)
reference	link	/	Exercise	6.3	–	explore	topics

content
string,	checking	for	/	Checking	a	string	for	content

continuation	tasks	/	Waiting	for	tasks
controls

reference	link	/	Choosing	common	controls
control	template

replacing	/	Replacing	a	control	template
convert	type

using	/	Using	the	Convert	type
CoreCLR

about	/	Understanding	the	.NET	Core	platform,	Using	assemblies	and
namespaces

CoreFX
about	/	Understanding	the	.NET	Core	platform,	Using	assemblies	and
namespaces,	Base	Class	Libraries	and	CoreFX

cross-device	Universal	Windows	Platform	(UWP)
about	/	Cross-device	Universal	Windows	Platform	(UWP)

cross-platform	development
about	/	Understanding	cross-platform	development
Visual	Studio	Code	/	Visual	Studio	Code
.NET	Core	1.0	/	.NET	Core	1.0
ASP.NET	Core	1.0	/	ASP.NET	Core	1.0
Entity	Framework	Core	1.0	(EF	Core)	/	Entity	Framework	Core	1.0

.NET	Native	/	.NET	Native
Xamarin	/	Xamarin
cross-device	Universal	Windows	Platform	(UWP)	/	Cross-device	Universal
Windows	Platform	(UWP)

cross-platform	web	apps
building,	ASP.NET	Core	used	/	Building	cross-platform	web	applications	using
ASP.NET	Core

cryptographic	service	provider	(CSP)
about	/	Encrypting	and	decrypting	data

Custom	Date	and	Time	Format	Strings
reference	link	/	Exercise	2.3	–	explore	topics

Custom	Numeric	Format	Strings
reference	link	/	Exercise	2.3	–	explore	topics

D
data

storing,	with	collections	/	Storing	data	with	collections
storing,	with	fields	/	Storing	data	with	fields
manipulating,	with	Entity	Data	Models	/	Manipulating	data	with	Entity	Data
Models
encrypting	/	Encrypting	and	decrypting	data
decrypting	/	Encrypting	and	decrypting	data
encrypting,	symmetrically	with	AES	/	Encrypting	symmetrically	with	AES
hashing	/	Hashing	data
hashing,	with	SHA256	/	Hashing	with	SHA256
signing	/	Signing	data
signing,	with	SHA256	/	Signing	with	SHA256	and	RSA
signing,	with	RSA	/	Signing	with	SHA256	and	RSA

data	binding
about	/	Data	binding
to	elements	/	Binding	to	elements
to	data	/	Binding	to	data

Data	Encryption	Standard	(DES)
about	/	Encrypting	and	decrypting	data

Debug	and	Trace
monitoring	with	/	Monitoring	with	Debug	and	Trace

debugging
about	/	Debugging	and	diagnostics

debugging	toolbar
about	/	The	debugging	toolbar

debugging	tools
about	/	Debugging	an	application

debugging	windows
about	/	Debugging	windows

decimal	(C#	Reference)
reference	link	/	Exercise	2.3	–	explore	topics

decimal	number	system	/	Storing	numbers
decryption

about	/	Understanding	the	vocabulary	of	protection
default	model	binder	/	Passing	parameters	using	a	route	value
default	trace	listener

writing	to	/	Writing	to	the	default	trace	listener
delegates

used,	for	calling	methods	/	Calling	methods	using	delegates
delegates	(C#	programming	guide)

reference	link	/	Exercise	6.3	–	explore	topics
dependency	packages

downloading	/	Downloading	dependency	packages	and	compiling
DESCryptoServiceProvider

about	/	Encrypting	and	decrypting	data
deserialization

about	/	Serializing	object	graphs
design	pattern

about	/	Design	patterns
Design	Patterns

reference	link	/	Exercise	3.5	–	explore	topics
Destructors	(C#	Programming	Guide)

reference	link	/	Exercise	7.3	–	explore	topics
Developer	Command	Prompt	for	VS2015	/	Writing	and	compiling	code	using	the
Developer	Command	Prompt
development	environment

setting	up	/	Setting	up	your	development	environment
diagnostics

about	/	Debugging	and	diagnostics
dictionaries

about	/	Dictionaries
working	with	/	Working	with	dictionaries

Dictionary<TKey,	TValue>	Class
reference	link	/	Exercise	4.3	–	explore	topics

directories
managing	/	Managing	directories

disposal
simplifying,	with	using	statement	/	Simplifying	disposal	with	the	using
statement

Dispose	method
about	/	Ensuring	that	dispose	is	called

DLL	(dynamic	link	library)	/	Referencing	an	assembly
dnx451

about	/	Editing	the	code
dnxcore50

about	/	Editing	the	code
DNX	tools

about	/	Understanding	the	DNX	tools
do-while	statement

about	/	The	do-while	statement
Docker

about	/	Using	alternative	C#	IDEs
double,	and	decimal

comparing	/	Comparing	double	and	decimal
double-precision	floating	point	/	Storing	numbers
DuckDuckGo

about	/	StackOverflow
URL	/	StackOverflow

dynamic	type	/	The	dynamic	type

E
EF	annotation	attributes

about	/	EF	annotation	attributes
EF	Code	First	conventions

about	/	EF	Code	First	conventions
efficiency

measuring,	of	processing	strings	/	Measuring	the	efficiency	of	processing	strings
efficiency	of	types,	evaluating

functionality	/	Evaluating	the	efficiency	of	types
memory	size	/	Evaluating	the	efficiency	of	types
performance	/	Evaluating	the	efficiency	of	types
future	needs	/	Evaluating	the	efficiency	of	types

EF	Fluent	API
about	/	EF	Fluent	API

emulators
testing	in	/	Testing	in	emulators

encapsulation
about	/	Talking	about	OOP

encoding
ASCII	/	Encoding	text
UTF-8	/	Encoding	text
UTF-16	/	Encoding	text
ANSI/ISO	encodings	/	Encoding	text

encryption
about	/	Understanding	the	vocabulary	of	protection

entities
inserting	/	Inserting	entities
updating	/	Updating	entities
lazy	loading	/	Lazy	loading	entities
eager	loading	/	Eager	loading	entities
explicit	loading	/	Explicit	loading	entities
filtering,	with	Where	extension	method	/	Filtering	entities	with	Where
sorting,	with	OrderBy	/	Sorting	sequences	with	OrderBy
sorting	by	multiple	properties,	with	ThenBy	method	/	Sorting	by	multiple
properties	with	the	ThenBy	method
projecting,	with	Select	statement	/	Projecting	entities	with	Select	statement

Entity	Data	Model
querying	/	Querying	an	Entity	Data	Model

Entity	Data	Models
data,	manipulating	with	/	Manipulating	data	with	Entity	Data	Models

Entity	Framework	(EF)
about	/	Using	Entity	Framework	6

Entity	Framework	6

using	/	Using	Entity	Framework	6
Entity	Framework	6	model

building	/	Building	an	Entity	Framework	6	model
Entity	Framework	6.1.3	(EF6)

about	/	Using	Entity	Framework	6
Entity	Framework	Code	First	models

about	/	Entity	Framework	Code	First	models
Entity	Framework	Core

using	/	Using	Entity	Framework	Core
Entity	Framework	Core	1.0	(EF	Core)

about	/	Using	Entity	Framework	6,	Entity	Framework	Core	1.0
pros	/	Using	Entity	Framework	6
cons	/	Using	Entity	Framework	6

enumerable	class
sequence,	extending	with	/	Extending	sequences	with	the	Enumerable	class

enum	keyword
used,	for	storing	value	/	Storing	a	value	using	the	enum	keyword

events
about	/	Defining	a	class
raising	/	Raising	and	handling	events
handling	/	Raising	and	handling	events
defining	/	Defining	events

events	(C#	programming	guide)
reference	link	/	Exercise	6.3	–	explore	topics

exception
inheriting	from	/	Inheriting	from	the	Exception	class

Exception	Handling	Statements	(C#	Reference)
reference	link	/	Exercise	3.5	–	explore	topics

exceptions
handling	/	Handling	exceptions
all	exceptions,	catching	/	Catching	all	exceptions
specific	exceptions,	catching	/	Catching	specific	exceptions

explicit	casting	/	Explicit	casting
explicit	transaction

defining	/	Defining	an	explicit	transaction
eXtensible	Markup	Language	(XML)

about	/	Serializing	object	graphs
extension	methods	/	Extending	types	when	you	can’t	inherit

used,	for	reusing	functionality	/	Using	extension	methods	to	reuse	functionality

F
fields

about	/	Defining	a	class
specialized	fields	/	Defining	a	class
data,	storing	with	/	Storing	data	with	fields
defining	/	Defining	fields
static,	making	/	Making	a	field	static
constant,	making	/	Making	a	field	constant
read	only,	making	/	Making	a	field	read	only
initializing,	with	constructors	/	Initializing	fields	with	constructors

fields	(C#	programming	guide)
reference	link	/	Exercise	6.3	–	explore	topics

file	information
obtaining	/	Getting	file	information

files
managing	/	Managing	files
text,	encoding	in	/	Encoding	and	decoding	text	in	files
text,	decoding	in	/	Encoding	and	decoding	text	in	files

filesystem
managing	/	Managing	the	filesystem

finalizer
about	/	Releasing	unmanaged	resources

finally	statement
about	/	The	finally	statement

FizzBuzz
about	/	Exercise	3.3	–	practice	loops	and	operators
references	/	Exercise	3.3	–	practice	loops	and	operators

flags
about	/	Storing	a	value	using	the	enum	keyword

Floating-Point	Types	Table	(C#	Reference)
reference	link	/	Exercise	2.3	–	explore	topics

foreach	statement
about	/	The	foreach	statement
working	/	How	does	the	foreach	statement	actually	work?

for	statement
about	/	The	for	statement

framework	design	guidelines
reference	link	/	Exercise	6.3	–	explore	topics

functionality
static	methods,	used	for	reusing	/	Using	static	methods	to	reuse	functionality
extension	methods,	used	for	reusing	/	Using	extension	methods	to	reuse
functionality

function	streams

about	/	Reading	and	writing	with	streams
CryptoStream	class	/	Reading	and	writing	with	streams
GZipStream	class	/	Reading	and	writing	with	streams
DeflateStream	class	/	Reading	and	writing	with	streams
AuthenticatedStream	class	/	Reading	and	writing	with	streams

G
garbage	collection

about	/	Google
garbage	collector	(GC)	/	Monitoring	performance	and	memory	use
generics

about	/	Working	with	lists
Git

about	/	Managing	source	code	with	GitHub
GitHub

source	code,	managing	with	/	Managing	source	code	with	GitHub
GitHub	repository

cloning	/	Cloning	a	GitHub	repository
managing	/	Managing	a	GitHub	repository

Global	Assembly	Cache	(GAC)
about	/	Assemblies

globalization
about	/	Internationalizing	an	application

Google
about	/	Google

Google	Advanced	Search
reference	link	/	Exercise	3.5	–	explore	topics

grok
reference	link	/	Polymorphism

grouping
about	/	Joining	and	grouping

GUI
creating,	that	blocks	/	Creating	a	GUI	that	blocks
creating,	that	doesn’t	block	/	Creating	a	GUI	that	doesn’t	block

GZIP
about	/	Compressing	streams

H
hash	algorithm,	selecting	factors

collision	resistance	/	Hashing	data
preimage	resistance	/	Hashing	data

hashes
about	/	Understanding	the	vocabulary	of	protection

hashing	algorithms
MD5	/	Hashing	data
SHA1	/	Hashing	data
SHA256	/	Hashing	data
SHA384	/	Hashing	data
SHA512	/	Hashing	data

heap	memory
about	/	Managing	memory	with	reference	and	value	types

helper	classes,	streams
StreamReader	/	Reading	and	writing	with	streams
StreamWriter	/	Reading	and	writing	with	streams
XmlReader	/	Reading	and	writing	with	streams
XmlWriter	/	Reading	and	writing	with	streams
BinaryReader	/	Reading	and	writing	with	streams
BinaryWriter	/	Reading	and	writing	with	streams

help	section
about	/	Looking	for	help
Microsoft	Developer	Network	(MSDN)	/	MSDN
Go	to	definition	/	Getting	the	definition	of	code
StackOverflow	/	StackOverflow
Google	/	Google

Homebrew
installing	/	Installing	Homebrew

HTML5	Web	Application	Development	By	Example
reference	link	/	Client-side	web	development

HTTP
about	/	The	HyperText	Transfer	Protocol	(HTTP)
aspects	/	The	HyperText	Transfer	Protocol	(HTTP)

I
IComparable<T>	Interface

reference	link	/	Exercise	7.3	–	explore	topics
IDisposable	Interface

reference	link	/	Exercise	7.3	–	explore	topics
if-else	statement	/	The	if-else	statement
ILDASM

used,	for	decompiling	code	/	Decompiling	code	using	ILDASM
ILSpy

about	/	Disassembling	compiled	assemblies
implicit	casting	/	Implicit	casting
implicit	transaction

about	/	Transactions
indexers

about	/	Defining	a	class
access,	controlling	with	/	Controlling	access	with	properties	and	indexers
defining	/	Defining	indexers

indexers	(C#	programming	guide)
reference	link	/	Exercise	6.3	–	explore	topics

inheritance
about	/	Talking	about	OOP
preventing	/	Preventing	inheritance	and	overriding

Inheritance	(C#	Programming	Guide)
reference	link	/	Exercise	7.3	–	explore	topics

inheritance	hierarchies
casting	within	/	Casting	within	inheritance	hierarchies

initialization	vector	(IV)
about	/	IVs	and	block	sizes
generating	/	Generating	keys	and	IVs

input
obtaining,	from	user	/	Getting	input	from	the	user

installed	versions
listing,	of	.NET	/	Listing	the	installed	versions	of	.NET

installing
.NET	Portability	Analyzer	/	Installing	the	.NET	Portability	Analyzer
.NET	Command	Line	Tools	/	Installing	the	.NET	Command	Line	Tools
Web	Essentials	2015	/	Install	Web	Essentials	2015
Visual	Studio	Code	/	Installing	Visual	Studio	Code	and	ASP.NET	Core,
Installing	Visual	Studio	Code
ASP.NET	Core	/	Installing	Visual	Studio	Code	and	ASP.NET	Core,	Installing
ASP.NET	Core	and	the	.NET	Version	Manager
Homebrew	/	Installing	Homebrew
.NET	Version	Manager	/	Installing	ASP.NET	Core	and	the	.NET	Version

Manager
Yeoman	/	Installing	Yeoman	and	related	tools

Integral	Types	Table	(C#	Reference)
reference	link	/	Exercise	2.3	–	explore	topics

Interactive	Development	Environment	(IDE)
about	/	Setting	up	your	development	environment

interfaces
implementing	/	Implementing	interfaces
IComparable	/	Common	interfaces
IComparer	/	Common	interfaces
IDisposable	/	Common	interfaces
IFormattable	/	Common	interfaces
IFormatter	/	Common	interfaces

Interfaces	(C#	Programming	Guide)
reference	link	/	Exercise	7.3	–	explore	topics

intermediate	language	(IL)	/	Using	assemblies	and	namespaces
internationalization

about	/	Internationalizing	an	application
International	Standards	Organization	(ISO)	codes

about	/	Internationalizing	an	application
Internet	Information	Services	(IIS)	8.0	/	The	HyperText	Transfer	Protocol	(HTTP)
intersect

about	/	Sets,	Working	with	sets
isolation	level

ReadUncommitted	/	Transactions
ReadCommitted	/	Transactions
RepeatableRead	/	Transactions
Serializable	/	Transactions
Snapshot	/	Transactions

iteration	statements
about	/	Iteration	statements
while	statement	/	The	while	statement
do-while	statement	/	The	do-while	statement
for	statement	/	The	for	statement
foreach	statement	/	The	foreach	statement

Iteration	Statements	(C#	Reference)
reference	link	/	Exercise	3.5	–	explore	topics

J
JavaScript	Object	Notation	(JSON)

about	/	Serializing	object	graphs
JetBrains	Project	Rider

about	/	Using	alternative	C#	IDEs
URL	/	Using	alternative	C#	IDEs

joining
about	/	Joining	and	grouping

JSON
object	graphs,	serializing	with	/	Serializing	with	JSON

K
key

about	/	Keys	and	key	sizes
keys

generating	/	Generating	keys	and	IVs
key	sizes

about	/	Keys	and	key	sizes
keywords	/	Writing	code	using	Visual	Studio	2015

L
lambda	expression

targeting	/	Targeting	a	lambda	expression
about	/	Targeting	a	lambda	expression

language	compilers
about	/	Using	assemblies	and	namespaces

languages	features	in	C#	6	and	VB	14
reference	link	/	Exercise	2.3	–	explore	topics

length
obtaining,	of	string	/	Getting	the	length	of	a	string

LINQ
extension	methods	/	Writing	LINQ	queries
providers	/	Writing	LINQ	queries
lambda	expressions	/	Writing	LINQ	queries
query	comprehension	syntax	/	Writing	LINQ	queries

LINQ	extension	methods
creating	/	Creating	your	own	LINQ	extension	methods

LINQ	queries
writing	/	Writing	LINQ	queries

LINQ	query	comprehension	syntax
about	/	Sweetening	the	syntax	with	syntactic	sugar

LINQ	to	XML
working	with	/	Working	with	LINQ	to	XML
used,	for	generating	XML	/	Generating	XML	using	LINQ	to	XML
used,	for	reading	XML	/	Reading	XML	by	using	LINQ	to	XML

Linux
about	/	Using	alternative	C#	IDEs

List<T>	Class
reference	link	/	Exercise	4.3	–	explore	topics

lists
about	/	Lists
working	with	/	Working	with	lists

loading	patterns
about	/	Loading	patterns	with	EF
lazy	loading	/	Loading	patterns	with	EF
eager	loading	/	Loading	patterns	with	EF
explicit	loading	/	Loading	patterns	with	EF

local	accounts
managing	/	Managing	local	accounts

localization
about	/	Internationalizing	an	application

local	variables
about	/	Local	variables

type,	inferring	of	/	Inferring	the	type	of	a	local	variable
lock	statement

about	/	Understanding	the	lock	statement

M
members

hiding	/	Hiding	members
overriding	/	Overriding	members

memory
managing,	with	reference	type	/	Managing	memory	with	reference	and	value
types
managing,	with	value	type	/	Managing	memory	with	reference	and	value	types

memory	use
monitoring	/	Monitoring	performance	and	memory	use

method	parameters	(C#	reference)
reference	link	/	Exercise	6.3	–	explore	topics

methods
about	/	Verbs	are	methods,	Defining	a	class
counting	/	Counting	types	and	methods
specialized	methods	/	Defining	a	class
calling	/	Writing	and	calling	methods
writing	/	Writing	and	calling	methods
overloading	/	Overloading	methods
simplifying,	with	operators	/	Simplifying	methods	with	operators
calling,	delegates	used	/	Calling	methods	using	delegates

methods	(C#	programming	guide)
reference	link	/	Exercise	6.3	–	explore	topics

Microsoft	account
signing	up	for	/	Signing	up	for	a	Microsoft	account
URL	/	Signing	up	for	a	Microsoft	account

Microsoft	Azure
ASP.NET	Core	web	apps,	hosting	in	/	Hosting	ASP.NET	Core	web	apps	in
Microsoft	Azure

Microsoft	Azure	account
URL	/	Creating	a	Microsoft	Azure	subscription
managing	/	Managing	your	Microsoft	Azure	account

Microsoft	Azure	subscription
creating	/	Creating	a	Microsoft	Azure	subscription

Microsoft	Core	Library
referencing	/	Referencing	Microsoft	Core	Library

Microsoft	Core	Library	(mscorlib)	/	Disassembling	compiled	assemblies
Microsoft	Excel

automating,	COM	Interop	used	/	Automating	Microsoft	Excel	using	COM
Interop

Microsoft	SQL	Server	LocalDb
connecting	to	/	Connecting	to	Microsoft	SQL	Server	LocalDb

Microsoft	Visual	Studio	2015

installing	/	Installing	Microsoft	Visual	Studio	2015
default	installation,	selecting	/	Choosing	the	default	installation
custom	installation,	selecting	/	Choosing	the	custom	installation
installation,	completing	/	Completing	the	installation

Microsoft	Visual	Studio	Code
about	/	Using	alternative	C#	IDEs
URL	/	Using	alternative	C#	IDEs

modern	ASP.NET	Core
versus	classic	ASP.NET	/	Classic	ASP.NET	versus	modern	ASP.NET	Core

Mono
about	/	Understanding	the	Mono	project

Mono,	to	.NET	Core
switching	from	/	Switching	from	Mono	to	.NET	Core

MonoDevelop
about	/	Using	alternative	C#	IDEs
URL	/	Using	alternative	C#	IDEs

Mono	project
about	/	Understanding	the	Mono	project
reference	link	/	Understanding	the	Mono	project

multiple	actions
running,	asynchronously	/	Running	multiple	actions	synchronously

multiple	threads
using,	with	parallel	LINQ	(PLINQ)	/	Using	multiple	threads	with	Parallel	LINQ
resource,	accessing	from	/	Accessing	a	resource	from	multiple	threads

multiple	values
storing,	in	array	/	Storing	multiple	values	in	an	array
storing,	collections	used	/	Storing	multiple	values	using	collections

mutually	exclusive	lock
applying,	to	resource	/	Applying	a	mutually	exclusive	lock	to	a	resource

N
.NET

streamlining	/	Streamlining	.NET
future	/	The	future	of	.NET
about	/	Comparing	.NET	Framework	with	.NET	Core
installed	versions,	listing	of	/	Listing	the	installed	versions	of	.NET

.NET	Blog
reference	link	/	Exercise	4.3	–	explore	topics

.NET	CLI
about	/	Managing	.NET	Core	development	with	Command	Line	Tools

.NET	Command	Line	Tools
installing	/	Installing	the	.NET	Command	Line	Tools

.NET	Core
about	/	Understanding	.NET	Framework,	.NET	Core,	and	.NET	Native,
Understanding	the	.NET	Core	platform
targeting	/	Targeting	the	.NET	Core
used,	for	creating	projects	/	Creating	new	projects	for	the	.NET	Core
.NET	Framework,	comparing	with	/	Comparing	.NET	Framework	with	.NET
Core
compiler	symbols,	defining	for	/	Defining	compiler	symbols	for	.NET	Core

.NET	Core	1.0
about	/	.NET	Core	1.0

.NET	Core	application
creating,	Command	Line	Tools	used	/	Creating	a	.NET	Core	application	using
Command	Line	Tools
creating,	Visual	Studio	2015	used	/	Creating	a	.NET	Core	application	using
Visual	Studio	2015

.NET	Core	command-line	tools
about	/	Understanding	the	.NET	Core	command-line	tools
DNX	tools	/	Understanding	the	DNX	tools
CLI	tools	/	Understanding	the	CLI	tools

.NET	Core	development
managing,	with	Command	Line	Tools	/	Managing	.NET	Core	development	with
Command	Line	Tools

.NET	data	provider
selecting	/	Choosing	a	.NET	data	provider

.NET	Development	Utilities
about	/	Managing	.NET	Core	development	with	Command	Line	Tools

.NET	Execution	Environment
about	/	Managing	.NET	Core	development	with	Command	Line	Tools

.NET	Framework
about	/	Understanding	.NET	Framework,	.NET	Core,	and	.NET	Native,
Understanding	.NET	Framework	platform

comparing,	with	.NET	Core	/	Comparing	.NET	Framework	with	.NET	Core
compiler	symbols,	configuring	for	/	Configuring	compiler	symbols	for	.NET
Framework

.NET	Framework	class	library
reference	link	/	Exercise	6.3	–	explore	topics

.NET	Native
about	/	Understanding	.NET	Framework,	.NET	Core,	and	.NET	Native,	.NET
Native

.NET	Native	compiler
about	/	Understanding	the	.NET	Native	platform

.NET	Portability	Analyzer
about	/	Understanding	the	.NET	Portability	Analyzer
installing	/	Installing	the	.NET	Portability	Analyzer
configuring	/	Configuring	the	.NET	Portability	Analyzer
solution,	analyzing	/	Analyzing	a	solution
reference	link	/	Analyzing	a	solution

.NET	technologies
comparing	/	Comparing	.NET	technologies

.NET	types
C#	keywords,	relating	to	/	Relating	C#	keywords	to	.NET	types
extending	/	Inheriting	and	extending	.NET	types
inheriting	/	Inheriting	and	extending	.NET	types

.NET	Version	Manager
about	/	Managing	.NET	Core	development	with	Command	Line	Tools
installing	/	Installing	ASP.NET	Core	and	the	.NET	Version	Manager

named	and	optional	arguments	(C#	programming	guide)
reference	link	/	Exercise	6.3	–	explore	topics

named	arguments
about	/	Optional	parameters	and	named	arguments

named	method
targeting	/	Targeting	a	named	method

Namespace	Keywords	(C#	Reference)
reference	link	/	Exercise	3.5	–	explore	topics

namespaces
about	/	Writing	code	using	Visual	Studio	2015,	Namespaces
importing	/	Importing	a	namespace,	Importing	a	namespace
using	/	Using	assemblies	and	namespaces
browsing	/	Browsing	assemblies	and	namespaces

namespaces,	for	collections
System.Collections	/	Storing	data	with	collections
System.Collections.Generic	/	Storing	data	with	collections

native
about	/	Choosing	a	.NET	data	provider

nested	tasks

about	/	Nested	and	child	tasks
New	Technology	LAN	Manager	(NTLM)	/	Authenticating	with	Windows
Newtonsoft’s	JSON.NET

reference	link	/	Serializing	with	JSON
Node	Package	Manager	(npm)

reference	link	/	Installing	Yeoman	and	related	tools
Northwind.sql	file

download	link	/	The	Northwind	sample	database
Northwind	sample	database

about	/	The	Northwind	sample	database
nouns

about	/	Nouns	are	types,	fields,	and	variables
Nullable	Types	(C#	Programming	Guide)

reference	link	/	Exercise	2.3	–	explore	topics
numbers

storing	/	Storing	numbers
rounding	/	Rounding	numbers

O
object

about	/	Talking	about	OOP
object-relational	mapping	(ORM)

about	/	Using	Entity	Framework	6
Object	Browser

about	/	Browsing	assemblies	and	namespaces
object	graphs

serializing	/	Serializing	object	graphs
serializing,	with	XML	/	Serializing	with	XML
deserializing,	with	XML	/	Deserializing	with	XML
serializing,	with	JSON	/	Serializing	with	JSON
serializing,	with	other	formats	/	Serializing	with	other	formats
serializing,	with	runtime	serializers	/	Serializing	with	runtime	serializers

objects
comparing,	when	sorting	/	Comparing	objects	when	sorting

object	type	/	The	object	type
old	collections

avoiding	/	Avoiding	old	collections
OOP

about	/	Talking	about	OOP
operations

atomic,	making	/	Making	operations	atomic
operator	(C#	reference)

reference	link	/	Exercise	6.3	–	explore	topics
operators

about	/	Operating	on	variables,	Defining	a	class
unary	operators	/	Experimenting	with	unary	operators
arithmetic	operators	/	Experimenting	with	arithmetic	operators
comparison	operators	/	Comparison	and	Boolean	operators
Boolean	operators	/	Comparison	and	Boolean	operators
methods,	simplifying	with	/	Simplifying	methods	with	operators

optional	parameters
about	/	Optional	parameters	and	named	arguments

OrderBy
entities,	sorting	with	/	Sorting	sequences	with	OrderBy

output
displaying,	to	user	/	Displaying	output	to	the	user

overflow
checking	for	/	Checking	for	overflow

overloading
about	/	Verbs	are	methods

overriding

preventing	/	Preventing	inheritance	and	overriding

P
P/Invoke

Win32	API,	accessing	with	/	Accessing	the	Win32	API	with	P/Invoke
parallel	LINQ	(PLINQ)

about	/	Using	multiple	threads	with	Parallel	LINQ
multiple	threads,	using	with	/	Using	multiple	threads	with	Parallel	LINQ

partial
used,	for	splitting	classes	/	Splitting	classes	using	partial

password-based	key	derivation	function	(PBKDF2)
about	/	Generating	keys	and	IVs

paths
managing	/	Managing	paths

pattern	matching
with	regular	expressions	/	Validating	input	with	regular	expressions

patterns	&	practices	group,	Microsoft
about	/	Design	patterns
reference	link	/	Exercise	3.5	–	explore	topics

performance
monitoring	/	Monitoring	performance	and	resource	usage,	Monitoring
performance	and	memory	use

Platform	Invoke	(P/Invoke)
about	/	Interoperating	with	unmanaged	code

platforms
supporting	/	Supporting	other	platforms

POCO	(Plain	Old	CLR	Object)	/	Building	an	Entity	Framework	6	model
polymorphism

about	/	Talking	about	OOP,	Polymorphism
Polymorphism	(C#	Programming	Guide)

reference	link	/	Exercise	7.3	–	explore	topics
processes

about	/	Understanding	processes	and	threads
processing	strings

efficiency,	measuring	of	/	Measuring	the	efficiency	of	processing	strings
Process	type,	members

VirtualMemorySize64	/	Monitoring	performance	and	memory	use
WorkingSet64	/	Monitoring	performance	and	memory	use

project
configuring,	to	use	Kestrel	/	Configuring	the	project	to	use	Kestrel	and	.NET
Core
configuring,	to	use	.NET	Core	/	Configuring	the	project	to	use	Kestrel	and	.NET
Core

project.json	file
reference	link,	for	documentation	/	Editing	the	code

projection
about	/	Projecting	entities	with	Select	statement

projects
creating,	.NET	Core	used	/	Creating	new	projects	for	the	.NET	Core
scaffolding,	Yeoman	used	/	Scaffolding	projects	using	Yeoman
editing,	Visual	Studio	Code	used	/	Editing	projects	using	Visual	Studio	Code

properties
about	/	Defining	a	class
access,	controlling	with	/	Controlling	access	with	properties	and	indexers

properties	(C#	programming	guide)
reference	link	/	Exercise	6.3	–	explore	topics

Q
Queue<T>	Class

reference	link	/	Exercise	4.3	–	explore	topics
queues

about	/	Queues
quiz

running	/	Running	the	quiz
quiz	application,	designing

about	/	Designing	the	quiz	application
platform,	selecting	/	Choosing	the	platform
functional	requirements,	deciding	/	Deciding	the	functional	requirements
separating	concerns	/	Separating	concerns

quiz	solution
building	/	Building	the	quiz	solution
entity	models,	defining	/	Defining	the	entity	models
data	repository,	creating	/	Creating	the	data	repository
web	application,	creating	/	Creating	the	web	application
view	models,	defining	/	Defining	view	models
sample	quiz	questions.	adding	/	Adding	sample	quiz	questions
session	state,	configuring	/	Configuring	session	state
custom	controller	actions,	adding	/	Adding	custom	controller	actions
custom	views,	adding	/	Adding	custom	views

R
Razor	/	ASP.NET	Core	views
RC2CryptoServiceProvider

about	/	Encrypting	and	decrypting	data
read-only	fields

about	/	Defining	a	class
read-only	properties

defining	/	Defining	read-only	properties
real	numbers	/	Storing	numbers

storing	/	Storing	real	numbers
reference	type

memory,	managing	with	/	Managing	memory	with	reference	and	value	types
Reference	Types	(C#	Reference)

reference	link	/	Exercise	7.3	–	explore	topics
reflection

about	/	Counting	types	and	methods
Regex	Class

reference	link	/	Exercise	4.3	–	explore	topics
RegExr

reference	link	/	Exercise	4.3	–	explore	topics
Regular	Expression	Language

reference	link	/	Exercise	4.3	–	explore	topics
regular	expressions

about	/	Validating	input	with	regular	expressions
syntax	/	The	syntax	of	a	regular	expression
examples	/	Examples	of	regular	expressions
best	practice	/	Examples	of	regular	expressions

Relational	Database	Management	System	(RDBMS)
about	/	Relational	Database	Management	Systems
connecting	to	/	Connecting	to	the	database

remote	desktop
used,	for	connecting	virtual	machine	/	Connecting	to	your	virtual	machine	using
remote	desktop

REPL	(read-eval-print	loop)	/	Experimenting	with	C#	Interactive
Representational	State	Transfer	(REST)	/	ASP.NET	Core	Web	API
resource

accessing,	from	multiple	threads	/	Accessing	a	resource	from	multiple	threads
mutually	exclusive	lock,	applying	to	/	Applying	a	mutually	exclusive	lock	to	a
resource

resources
using	/	Using	resources	and	templates 
sharing	/	Sharing	resources

resource	usage

monitoring	/	Monitoring	performance	and	resource	usage
result	sets

reading	/	Executing	commands	and	reading	result	sets
RijndaelManaged

about	/	Encrypting	and	decrypting	data
Roslyn

about	/	Using	assemblies	and	namespaces
RSA

data,	signing	with	/	Signing	with	SHA256	and	RSA
RSACryptoServiceProvider

about	/	Encrypting	and	decrypting	data
runtime	serializers

object	graphs,	serializing	with	/	Serializing	with	runtime	serializers

S
salts

about	/	Salts
scalability

improving,	for	client-server	applications	/	Improving	scalability	for	client-server
applications

Search	Strings	Using	Regular	Expressions
reference	link	/	Exercise	4.3	–	explore	topics

Secure	Sockets	Layer	(SSL)	/	The	if-else	statement
segments

about	/	Understanding	the	default	route
selection	statements

about	/	Selection	statements
if-else	statement	/	The	if-else	statement
switch-case	statement	/	The	switch-case	statement

Selection	Statements	(C#	Reference)
reference	link	/	Exercise	3.5	–	explore	topics

Select	statement
entities,	projecting	with	/	Projecting	entities	with	Select	statement

sequence
about	/	Extending	sequences	with	the	Enumerable	class
extending,	with	enumerable	class	/	Extending	sequences	with	the	Enumerable
class

serialization
about	/	Serializing	object	graphs

Server	Explorer	window	/	Other	useful	windows
sets

about	/	Sets,	Working	with	sets
working	with	/	Working	with	sets

settable	properties
defining	/	Defining	settable	properties

SHA256
data,	hashing	with	/	Hashing	with	SHA256
data,	signing	with	/	Signing	with	SHA256	and	RSA

shared	resources
access,	synchronizing	to	/	Synchronizing	access	to	shared	resources

signatures
about	/	Understanding	the	vocabulary	of	protection

simplest	ASP.NET	Core	application
creating	/	Creating	the	simplest	ASP.NET	Core	web	application

single-precision	floating	point	/	Storing	numbers
sizes	of	numbers,	in	memory	/	Sizes	of	numbers	in	memory
Solution	Explorer	window	/	Other	useful	windows

SortedDictionary<TKey,	TValue>	Class
reference	link	/	Exercise	4.3	–	explore	topics

SortedList<TKey,	TValue>	Class
reference	link	/	Exercise	4.3	–	explore	topics

source	code
managing,	with	GitHub	/	Managing	source	code	with	GitHub

specialized	collections
using	/	Using	specialized	collections

specialized	fields
constants	/	Defining	a	class
read-only	fields	/	Defining	a	class
events	/	Defining	a	class

specialized	methods
constructors	/	Defining	a	class
properties	/	Defining	a	class
indexers	/	Defining	a	class
operators	/	Defining	a	class

SQLite
reference	link	/	Editing	projects	using	Visual	Studio	Code

SQL	statements
loading	/	Logging	SQL	statements

Stack<T>	Class
reference	link	/	Exercise	4.3	–	explore	topics

stack	memory
about	/	Managing	memory	with	reference	and	value	types

StackOverflow
about	/	StackOverflow
reference	link	/	Exercise	3.5	–	explore	topics

stacks
about	/	Stacks

Standard	Numeric	Format	Strings
reference	link	/	Exercise	2.3	–	explore	topics

statements
about	/	Statements

statically	typed
about	/	Working	with	lists

static	methods
used,	for	reusing	functionality	/	Using	static	methods	to	reuse	functionality

Stopwatch	type,	members
Restart	method	/	Monitoring	performance	and	memory	use
Stop	method	/	Monitoring	performance	and	memory	use
Elapsed	property	/	Monitoring	performance	and	memory	use
ElapsedMilliseconds	property	/	Monitoring	performance	and	memory	use

storage	streams

about	/	Reading	and	writing	with	streams
FileStream	/	Reading	and	writing	with	streams
MemoryStream	/	Reading	and	writing	with	streams
NetworkStream	/	Reading	and	writing	with	streams

storyboards
animating	with	/	Animating	with	storyboards

Stream	class,	members
CanRead	/	Reading	and	writing	with	streams
CanWrite	/	Reading	and	writing	with	streams
Length	/	Reading	and	writing	with	streams
Position	/	Reading	and	writing	with	streams
Close()	/	Reading	and	writing	with	streams
Flush()	/	Reading	and	writing	with	streams
Read()	/	Reading	and	writing	with	streams
ReadByte()	/	Reading	and	writing	with	streams
Seek()	/	Reading	and	writing	with	streams
Write()	/	Reading	and	writing	with	streams
WriteByte()	/	Reading	and	writing	with	streams

streams
about	/	Reading	and	writing	with	streams
reading	/	Reading	and	writing	with	streams
writing	/	Reading	and	writing	with	streams
compressing	/	Compressing	streams

string
type,	converting	to	/	Converting	from	any	type	to	a	string
converting,	to	number	/	Parsing	from	strings	to	numbers	or	dates	and	times
converting,	to	dates	/	Parsing	from	strings	to	numbers	or	dates	and	times
converting,	to	times	/	Parsing	from	strings	to	numbers	or	dates	and	times
length,	obtaining	of	/	Getting	the	length	of	a	string
characters,	obtaining	of	/	Getting	the	characters	of	a	string
splitting	/	Splitting	a	string
part,	obtaining	of	/	Extracting	part	of	a	string
checking,	for	content	/	Checking	a	string	for	content
building,	efficiently	/	Building	strings	efficiently

string	(C#	Reference)
reference	link	/	Exercise	2.3	–	explore	topics

StringBuilder	Class
reference	link	/	Exercise	4.3	–	explore	topics

String	Class
reference	link	/	Exercise	4.3	–	explore	topics

string	members
TrimEnd	/	Other	string	members
Trim	/	Other	string	members
TrimStart	/	Other	string	members

ToUpper	/	Other	string	members
ToLower	/	Other	string	members
Insert	/	Other	string	members
Remove	/	Other	string	members
Replace	/	Other	string	members
String.Concat	/	Other	string	members
String.Join	/	Other	string	members
String.IsEmptyOrNull	/	Other	string	members
String.Empty	/	Other	string	members

strings
encoding,	as	byte	arrays	/	Encoding	strings	as	byte	arrays

strongly	typed
about	/	Working	with	lists

struct	keyword
defining	/	Defining	a	type	using	the	struct	keyword

Structs	(C#	Programming	Guide)
reference	link	/	Exercise	7.3	–	explore	topics

Structured	Query	Language	(SQL)	/	Writing	LINQ	queries
subclass

about	/	Talking	about	OOP
super	class

about	/	Talking	about	OOP
switch-case	statement	/	The	switch-case	statement
symmetric

about	/	Keys	and	key	sizes
synchronization	types

ReaderWriterLock	/	Applying	other	types	of	synchronization
ReaderWriterLockSlim	/	Applying	other	types	of	synchronization
Mutex	/	Applying	other	types	of	synchronization
Semaphore	/	Applying	other	types	of	synchronization
SemaphoreSlim	/	Applying	other	types	of	synchronization
AutoResetEvent	/	Applying	other	types	of	synchronization
ManualResetEvent	/	Applying	other	types	of	synchronization

syntactic	sugar
about	/	Sweetening	the	syntax	with	syntactic	sugar

T
tasks

running,	asynchronously	/	Running	tasks	asynchronously
multiple	actions,	running	asynchronously	/	Running	multiple	actions
asynchronously	using	tasks
writing	for	/	Waiting	for	tasks
continuing	with	/	Continuing	with	another	task

Team	Explorer	window	/	Other	useful	windows
using	/	Using	the	Team	Explorer	window

templates
using	/	Using	resources	and	templates 

text
storing	/	Storing	text,	Storing	and	manipulating	text
manipulating	/	Storing	and	manipulating	text
writing	to	/	Writing	to	text	and	XML	streams
encoding	/	Encoding	text
encoding,	in	files	/	Encoding	and	decoding	text	in	files
deocding,	in	files	/	Encoding	and	decoding	text	in	files

ThenBy	method
entities,	sorting	by	multiple	properties	/	Sorting	by	multiple	properties	with	the
ThenBy	method

threads
about	/	Understanding	processes	and	threads

trace	levels
switching	/	Switching	trace	levels

trace	listener
about	/	Monitoring	with	Debug	and	Trace

trace	listeners
configuring	/	Configuring	trace	listeners

transactions
about	/	Transactions

try-catch	statement
about	/	The	try-catch	statement

type
inferring,	of	local	variable	/	Inferring	the	type	of	a	local	variable
converting,	to	string	/	Converting	from	any	type	to	a	string

types
about	/	Writing	code	using	Visual	Studio	2015
counting	/	Counting	types	and	methods
casting	/	Casting	and	converting	between	types
converting	between	/	Casting	and	converting	between	types
efficiency,	evaluating	of	/	Evaluating	the	efficiency	of	types
documenting	/	Documenting	your	types

extending	/	Extending	types	when	you	can’t	inherit
types,	with	Async	methods

about	/	Other	types	with	Async	methods

U
unary	operators

about	/	Experimenting	with	unary	operators
unchecked	statement

about	/	The	unchecked	statement
Unicode

about	/	Encoding	text
union

about	/	Working	with	sets
unit	of	code

creating	/	Creating	a	unit	of	code	that	needs	testing
unit	test	project

creating	/	Creating	a	unit	test	project
unit	tests

running	/	Running	unit	tests
unmanaged	code

interoperating	with	/	Interoperating	with	unmanaged	code
unmanaged	resources

about	/	The	finally	statement
releasing	/	Releasing	unmanaged	resources

user
output,	displaying	to	/	Displaying	output	to	the	user
input,	obtaining	from	/	Getting	input	from	the	user

users
authenticating	/	Authenticating	and	authorizing	users
authorizing	/	Authenticating	and	authorizing	users
authenticating,	with	Windows	/	Authenticating	with	Windows
authorizing,	with	Windows	/	Authorizing	with	Windows

using	statement
disposal,	simplifying	with	/	Simplifying	disposal	with	the	using	statement

UWP
about	/	Understanding	the	UWP
app’s	layout,	adapting	/	Adapting	your	app’s	layout
advantage,	taking	of	unique	device	capabilities	/	Taking	advantage	of	unique
device	capabilities
app,	creating	for	/	Creating	an	app	for	the	Universal	Windows	Platform

UWP	portability
analyzing	/	Analyzing	UWP	portability

V
value

storing,	enum	keyword	used	/	Storing	a	value	using	the	enum	keyword
value	type

nullable,	making	/	Making	a	value	type	nullable
memory,	managing	with	/	Managing	memory	with	reference	and	value	types

Value	Types	(C#	Reference)
reference	link	/	Exercise	7.3	–	explore	topics

var	(C#	Reference)
reference	link	/	Exercise	2.3	–	explore	topics

variables
declaring	/	Declaring	variables
naming	/	Naming	variables

verbs
about	/	Verbs	are	methods

view	engines	/	ASP.NET	Core	views
view	model	/	Create	view	models	for	requests
virtual	machine

creating	/	Creating	a	virtual	machine
connecting,	remote	desktop	used	/	Connecting	to	your	virtual	machine	using
remote	desktop

Visual	Studio
signing	in	to	/	Signing	in	to	Visual	Studio
registration	link	/	Signing	in	to	Visual	Studio
development	settings,	selecting	/	Choosing	development	settings
extensions,	updating	/	Updating	extensions	and	products
products,	updating	/	Updating	extensions	and	products
older	versions,	using	/	Using	older	versions	of	Visual	Studio

Visual	Studio	2015
using,	on	Windows	10	/	Using	Visual	Studio	2015	on	Windows	10
used,	for	creating	.NET	Core	application	/	Creating	a	.NET	Core	application
using	Visual	Studio	2015

Visual	Studio	Code
about	/	Visual	Studio	Code
installing	/	Installing	Visual	Studio	Code	and	ASP.NET	Core,	Installing	Visual
Studio	Code
reference	link,	for	installation	instructions	/	Installing	Visual	Studio	Code	and
ASP.NET	Core
used,	for	editing	projects	/	Editing	projects	using	Visual	Studio	Code

Visual	Studio	Code,	for	Mac	OS	X
download	link	/	Installing	Visual	Studio	Code
development,	managing	from	terminal	/	Managing	development	from	the
terminal

Visual	Studio	Dev	Essentials
about	/	Using	Visual	Studio	2015	on	Windows	10

Visual	Studio	Team	Services
about	/	Managing	source	code	with	GitHub

W
web	app

ASP.NET	web	application,	publishing	to	/	Publishing	an	ASP.NET	web
application	to	the	Web	App

web	application	project
creating	/	Create	a	web	application	project

Web	Essentials	2015
installing	/	Install	Web	Essentials	2015

Where	extension	method
entities,	filtering	with	/	Filtering	entities	with	Where

while	statement
about	/	The	while	statement

whole	numbers
storing	/	Storing	whole	numbers

Win32	API
accessing,	with	P/Invoke	/	Accessing	the	Win32	API	with	P/Invoke

Windows
users,	authenticating	with	/	Authenticating	with	Windows
users,	authorizing	with	/	Authorizing	with	Windows

windows,	Visual	Studio
Solution	Explorer	window	/	Other	useful	windows
Team	Explorer	window	/	Other	useful	windows
Server	Explorer	window	/	Other	useful	windows

Windows	10
Visual	Studio	2015,	using	on	/	Using	Visual	Studio	2015	on	Windows	10

Windows	Communication	Foundation	(WCF)	/	Serializing	with	other	formats
about	/	Understanding	ASP.NET	Core

Windows	desktop	application
creating,	WPF	used	/	Creating	a	Windows	desktop	application	using	WPF

Windows	Presentation	Foundation	(WPF)	/	Understanding	XAML
WPF

used,	for	creating	Windows	desktop	application	/	Creating	a	Windows	desktop
application	using	WPF

X
Xamarin

about	/	Xamarin
Xamarin	mobile	platform

about	/	Understanding	the	Mono	project
Xamarin	Studio

about	/	Xamarin
XAML

about	/	Understanding	XAML
benefits	/	Understanding	XAML
used,	for	simplifying	code	/	Simplifying	code	using	XAML
common	controls,	selecting	/	Choosing	common	controls

XML
generating,	LINQ	to	XML	used	/	Generating	XML	using	LINQ	to	XML
reading,	LINQ	to	XML	used	/	Reading	XML	by	using	LINQ	to	XML
about	/	Compressing	streams
object	graphs,	serializing	with	/	Serializing	with	XML
object	graphs,	deserializing	with	/	Deserializing	with	XML
customizing	/	Customizing	the	XML

XML	streams
writing	to	/	Writing	to	text	and	XML	streams

xUnit.net
about	/	Unit	testing	an	application

Y
Yeoman

installing	/	Installing	Yeoman	and	related	tools
used,	for	scaffolding	projects	/	Scaffolding	projects	using	Yeoman

	C# 6 and .NET Core 1.0
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Hello, C#! Welcome, .NET Core!
	Setting up your development environment
	Using alternative C# IDEs
	Using Visual Studio 2015 on Windows 10
	Installing Microsoft Visual Studio 2015
	Choosing the default installation
	Choosing the custom installation
	Completing the installation
	Signing in to Visual Studio
	Choosing development settings
	Updating extensions and products
	Using older versions of Visual Studio
	Understanding .NET Framework, .NET Core, and .NET Native
	Understanding .NET Framework platform
	Understanding the Mono project
	Understanding the .NET Core platform
	Streamlining .NET
	The future of .NET
	Understanding the .NET Native platform
	Comparing .NET technologies
	Writing and compiling code using the Developer Command Prompt
	Writing code using Notepad
	Compiling code using the Developer Command Prompt
	Fixing compiler errors
	Decompiling code using ILDASM
	Disassembling compiled assemblies
	Writing and compiling code using Microsoft Visual Studio 2015
	Writing code using Visual Studio 2015
	Compiling code using Visual Studio
	Fixing mistakes with the error list
	Experimenting with C# Interactive
	Other useful windows
	Targeting the .NET Core
	Understanding the .NET Portability Analyzer
	Installing the .NET Portability Analyzer
	Configuring the .NET Portability Analyzer
	Analyzing a solution
	.NET Portability and this book
	Creating new projects for the .NET Core
	Managing .NET Core development with Command Line Tools
	Installing the .NET Command Line Tools
	Creating a .NET Core application using Command Line Tools
	Creating a .NET Core application using Visual Studio 2015
	Managing source code with GitHub
	Using the Team Explorer window
	Cloning a GitHub repository
	Managing a GitHub repository
	Practicing and exploring
	Exercise 1.1 – test your knowledge
	Exercise 1.2 – practice managing Visual Studio Windows
	Exercise 1.3 – practice coding anywhere
	Exercise 1.4 – explore topics
	Summary
	2. Speaking C#
	Understanding C# basics
	The C# grammar
	Statements
	Blocks
	The C# vocabulary
	Writing the code
	Verbs are methods
	Nouns are types, fields, and variables
	Counting types and methods
	Declaring variables
	Naming variables
	Storing text
	Storing numbers
	Storing whole numbers
	Storing real numbers
	Sizes of numbers in memory
	Comparing double and decimal
	Storing Booleans
	The object type
	The dynamic type
	Local variables
	Inferring the type of a local variable
	Making a value type nullable
	Storing multiple values in an array
	Building console applications
	Displaying output to the user
	Getting input from the user
	Importing a namespace
	Simplifying the usage of the console in C# 6
	Reading arguments and working with arrays
	Operating on variables
	Experimenting with unary operators
	Experimenting with arithmetic operators
	Comparison and Boolean operators
	Practicing and exploring
	Exercise 2.1 – test your knowledge
	Exercise 2.2 – practice number sizes and ranges
	Exercise 2.3 – explore topics
	Summary
	3. Controlling the Flow, Converting Types, and Handling Exceptions
	Selection statements
	The if-else statement
	The switch-case statement
	Autoformatting code
	Iteration statements
	The while statement
	The do-while statement
	The for statement
	The foreach statement
	How does the foreach statement actually work?
	Casting and converting between types
	Casting from numbers to numbers
	Using the Convert type
	Rounding numbers
	Converting from any type to a string
	Parsing from strings to numbers or dates and times
	Handling exceptions
	The try-catch statement
	Catching all exceptions
	Catching specific exceptions
	The finally statement
	Simplifying disposal with the using statement
	Checking for overflow
	The checked statement
	The unchecked statement
	Looking for help
	MSDN
	Getting the definition of code
	StackOverflow
	Google
	Design patterns
	Practice and explore
	Exercise 3.1 – test your knowledge
	Exercise 3.2 – explore loops and overflow
	Exercise 3.3 – practice loops and operators
	Exercise 3.4 – practice exception handling
	Exercise 3.5 – explore topics
	Summary
	4. Using Common .NET Types
	Using assemblies and namespaces
	Comparing .NET Framework with .NET Core
	Base Class Libraries and CoreFX
	Assemblies
	Namespaces
	Referencing an assembly
	Referencing Microsoft Core Library
	An example of assembly references
	Relating assemblies and namespaces
	Importing a namespace
	Browsing assemblies and namespaces
	Relating C# keywords to .NET types
	Storing and manipulating text
	Getting the length of a string
	Getting the characters of a string
	Splitting a string
	Extracting part of a string
	Checking a string for content
	Other string members
	Building strings efficiently
	Validating input with regular expressions
	The syntax of a regular expression
	Examples of regular expressions
	Storing data with collections
	Understanding collections
	Lists
	Dictionaries
	Stacks
	Queues
	Sets
	Working with lists
	Working with dictionaries
	Sorting collections
	Avoiding old collections
	Using specialized collections
	Practicing and exploring
	Exercise 4.1 – test your knowledge
	Exercise 4.2 – practice regular expressions
	Exercise 4.3 – explore topics
	Summary
	5. Using Specialized .NET Types
	Debugging and diagnostics
	Debugging an application
	Setting a breakpoint
	The debugging toolbar
	Debugging windows
	Stepping through code
	Customizing breakpoints
	Monitoring performance and resource usage
	Evaluating the efficiency of types
	Monitoring performance and memory use
	Measuring the efficiency of processing strings
	Monitoring with Debug and Trace
	Writing to the default trace listener
	Configuring trace listeners
	Configuring compiler symbols for .NET Framework
	Defining compiler symbols for .NET Core
	Checking compiler symbols
	Switching trace levels
	Unit testing an application
	Creating a unit of code that needs testing
	Creating a unit test project
	Running unit tests
	Internationalizing an application
	Globalizing an application
	Localizing an application
	Interoperating with unmanaged code
	Automating Microsoft Excel using COM Interop
	Accessing the Win32 API with P/Invoke
	Practicing and exploring
	Exercise 5.1 – test your knowledge
	Exercise 5.2 – practice using Debug and Trace
	Exercise 5.3 – explore topics
	Summary
	6. Building Your Own Types with Object-Oriented Programming
	Talking about OOP
	Building class libraries
	Creating a class library to share code
	Defining a class
	Instantiating a class
	Storing data with fields
	Defining fields
	Storing a value using the enum keyword
	Storing multiple values using collections
	Making a field static
	Making a field constant
	Making a field read only
	Initializing fields with constructors
	Writing and calling methods
	Overloading methods
	Optional parameters and named arguments
	Splitting classes using partial
	Controlling access with properties and indexers
	Defining read-only properties
	Defining settable properties
	Defining indexers
	Simplifying methods with operators
	Raising and handling events
	Calling methods using delegates
	Defining events
	Practicing and exploring
	Exercise 6.1 – test your knowledge
	Exercise 6.2 – practice writing mathematical methods
	Exercise 6.3 – explore topics
	Summary
	7. Implementing Interfaces and Inheriting Classes
	Implementing interfaces
	Common interfaces
	Comparing objects when sorting
	Defining a separate comparer
	Managing memory with reference and value types
	Defining a type using the struct keyword
	Releasing unmanaged resources
	Ensuring that dispose is called
	Inheriting from classes
	Extending classes
	Hiding members
	Overriding members
	Preventing inheritance and overriding
	Polymorphism
	Casting within inheritance hierarchies
	Implicit casting
	Explicit casting
	Handling casting exceptions
	Documenting your types
	Inheriting and extending .NET types
	Inheriting from the Exception class
	Extending types when you can't inherit
	Using static methods to reuse functionality
	Using extension methods to reuse functionality
	Practice and explore
	Exercise 7.1 – test your knowledge
	Exercise 7.2 – practice creating an inheritance hierarchy
	Exercise 7.3 – explore topics
	Summary
	8. Working with Relational Data Using the Entity Framework
	Relational Database Management Systems
	Connecting to Microsoft SQL Server LocalDb
	The Northwind sample database
	Choosing a .NET data provider
	Using ADO.NET
	Connecting to the database
	Executing commands and reading result sets
	Loading a connection string from configuration
	Using Entity Framework 6
	Building an Entity Framework 6 model
	Entity Framework Code First models
	EF Code First conventions
	EF annotation attributes
	EF Fluent API
	Querying an Entity Data Model
	Logging SQL statements
	Manipulating data with Entity Data Models
	Inserting entities
	Updating entities
	Transactions
	Defining an explicit transaction
	Loading patterns with EF
	Lazy loading entities
	Eager loading entities
	Explicit loading entities
	Using Entity Framework Core
	Practicing and exploring
	Exercise 8.1 – test your knowledge
	Exercise 8.2 – explore the EF Core documentation
	Exercise 8.3 – explore topics
	Summary
	9. Querying and Manipulating Data with LINQ
	Writing LINQ queries
	Extending sequences with the Enumerable class
	Filtering entities with Where
	Targeting a named method
	Simplifying the code by removing the explicit delegate instantiation
	Targeting a lambda expression
	Sorting sequences with OrderBy
	Sorting by multiple properties with the ThenBy method
	Working with sets
	Projecting entities with Select statement
	Joining and grouping
	Sweetening the syntax with syntactic sugar
	Using multiple threads with Parallel LINQ
	Creating your own LINQ extension methods
	Working with LINQ to XML
	Generating XML using LINQ to XML
	Reading XML by using LINQ to XML
	Practicing and exploring
	Exercise 9.1 – test your knowledge
	Exercise 9.2 – practice querying with LINQ
	Exercise 9.3 – explore topics
	Summary
	10. Working with Files, Streams, and Serialization
	Managing the filesystem
	Managing directories
	Managing files
	Managing paths
	Getting file information
	Reading and writing with streams
	Writing to text and XML streams
	Compressing streams
	Encoding text
	Encoding strings as byte arrays
	Encoding and decoding text in files
	Serializing object graphs
	Serializing with XML
	Deserializing with XML
	Customizing the XML
	Serializing with JSON
	Serializing with other formats
	Serializing with runtime serializers
	Practice and explore
	Exercise 10.1 – test your knowledge
	Exercise 10.2 – practice serializing as XML
	Exercise 10.3 – explore serialization formats
	Exercise 10.4 – explore Microsoft's System.IO types
	Exercise 10.5 – explore topics
	Summary
	11. Protecting Your Data and Applications
	Understanding the vocabulary of protection
	Keys and key sizes
	IVs and block sizes
	Salts
	Generating keys and IVs
	Encrypting and decrypting data
	Encrypting symmetrically with AES
	Hashing data
	Hashing with SHA256
	Signing data
	Signing with SHA256 and RSA
	Authenticating and authorizing users
	Managing local accounts
	Authenticating with Windows
	Authorizing with Windows
	Practicing and exploring
	Exercise 11.1 – test your knowledge
	Exercise 11.2 – practice protecting data with encryption and hashing
	Exercise 11.3 – practice protecting data with decryption
	Exercise 11.4 – explore topics
	Summary
	12. Improving Performance and Scalability with Multitasking
	Understanding processes and threads
	Running tasks asynchronously
	Running multiple actions synchronously
	Running multiple actions asynchronously using tasks
	Waiting for tasks
	Continuing with another task
	Nested and child tasks
	The async and await keywords
	Creating a GUI that blocks
	Creating a GUI that doesn't block
	Other types with Async methods
	await in catch blocks
	Improving scalability for client-server applications
	Synchronizing access to shared resources
	Accessing a resource from multiple threads
	Applying a mutually exclusive lock to a resource
	Understanding the lock statement
	Making operations atomic
	Applying other types of synchronization
	Practicing and exploring
	Exercise 12.1 – test your knowledge
	Exercise 12.2 – explore topics
	Summary
	13. Building Universal Windows Platform Apps Using XAML
	Understanding the UWP
	Adapting your app's layout
	Taking advantage of unique device capabilities
	Understanding XAML
	Simplifying code using XAML
	Creating a Windows desktop application using WPF
	Choosing common controls
	Creating an app for the Universal Windows Platform
	Analyzing UWP portability
	Using resources and templates
	Sharing resources
	Replacing a control template
	Data binding
	Binding to elements
	Binding to data
	Animating with storyboards
	Testing in emulators
	Practicing and exploring
	Exercise 13.1 – test your knowledge
	Exercise 13.2 – practice building a universal tip calculator
	Exercise 13.3 – explore topics
	Summary
	14. Building Web Applications and Services Using ASP.NET Core
	Understanding ASP.NET Core
	Classic ASP.NET versus modern ASP.NET Core
	Client-side web development
	Install Web Essentials 2015
	The HyperText Transfer Protocol (HTTP)
	Create a web application project
	Exploring the parts of an ASP.NET Core web application
	ASP.NET Core startup
	Understanding the default route
	ASP.NET Core controllers
	Defining the Home controller's actions
	ASP.NET Core models
	Create Entity models for Northwind
	Configure Entity Framework Core as a service
	Create view models for requests
	Fetch the model in the controller
	ASP.NET Core views
	Rendering the Home controller's views
	Sharing layouts between views
	Defining custom styles
	Defining a typed view
	Taking ASP.NET Core further
	Passing parameters using a route value
	Passing parameters using a query string
	Annotating models
	ASP.NET Core Web API
	Scaffolding an API controller
	Calling a Web API service from a UWP app
	Practicing and exploring
	Exercise 14.1 – test your knowledge
	Exercise 14.2 – practice building a data-driven web application
	Exercise 14.3 – explore topics
	Summary
	15. Taking C# Cross-Platform
	Understanding cross-platform development
	Visual Studio Code
	.NET Core 1.0
	ASP.NET Core 1.0
	Entity Framework Core 1.0
	.NET Native
	Xamarin
	Cross-device Universal Windows Platform (UWP)
	Installing Visual Studio Code and ASP.NET Core
	Installing Visual Studio Code
	Managing development from the terminal
	Installing Homebrew
	Installing ASP.NET Core and the .NET Version Manager
	Listing the installed versions of .NET
	Switching from Mono to .NET Core
	Building a console application
	Creating the source files
	Editing the code
	Downloading dependency packages and compiling
	Building cross-platform web applications using ASP.NET Core
	Creating the simplest ASP.NET Core web application
	Installing Yeoman and related tools
	Scaffolding projects using Yeoman
	Editing projects using Visual Studio Code
	Understanding the .NET Core command-line tools
	Understanding the DNX tools
	Understanding the CLI tools
	Common DNX commands
	Common CLI commands
	Practicing and exploring
	Exercise 15.1 – test your knowledge
	Exercise 15.2 – practice transferring an existing ASP.NET application
	Exercise 15.3 – explore topics
	Summary
	16. Building a Quiz
	Designing the quiz application
	Choosing the platform
	Deciding the functional requirements
	Separating concerns
	Building the quiz solution
	Defining the entity models
	Creating the data repository
	Creating the web application
	Defining view models
	Adding sample quiz questions
	Configuring session state
	Adding custom controller actions
	Adding custom views
	Running the quiz
	Configuring the project to use Kestrel and .NET Core
	Hosting ASP.NET Core web apps in Microsoft Azure
	Register an Azure account
	Create an Azure web app
	Publishing an ASP.NET web application to the Web App
	Practicing and exploring
	Exercise 16.1 – test your knowledge
	Exercise 16.2 – practice by extending the quiz web app
	Exercise 16.3 – explore topics
	Summary
	A. Answers to the Test Your Knowledge Questions
	Chapter 1 – Hello, C#! Welcome, .NET Core!
	Chapter 2 – Speaking C#
	Chapter 3 – Controlling the Flow, Converting Types, and Handling Exceptions
	Exercise 3.2
	Chapter 4 – Using Common .NET Types
	Chapter 5 – Using Specialized .NET Types
	Chapter 6 – Building Your Own Types with Object-Oriented Programming
	Chapter 7 – Implementing Interfaces and Inheriting Classes
	Chapter 8 – Working with Relational Data Using the Entity Framework
	Chapter 9 – Querying and Manipulating Data with LINQ
	Chapter 10 – Working with Files, Streams, and Serialization
	Chapter 11 – Protecting Your Data and Applications
	Chapter 12 – Improving Performance and Scalability with Multitasking
	Chapter 13 – Building Universal Windows Platform Apps Using XAML
	Chapter 14 – Building Web Applications and Services Using ASP.NET Core
	Chapter 15 – Taking C# Cross-Platform
	Chapter 16 – Building a Quiz
	B. Creating a Virtual Machine for Your Development Environment
	Signing up for a Microsoft account
	Creating a Microsoft Azure subscription
	Managing your Microsoft Azure account
	Creating a virtual machine
	Connecting to your virtual machine using remote desktop
	Supporting other platforms
	Summary
	Index

