

C# 6 and .NET Core 1.0Modern Cross-Platform Development

 Table of Contents

 C# 6 and .NET Core 1.0

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 eBooks, discount offers, and more

 Why subscribe?

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Hello, C#! Welcome, .NET Core!

 Setting up your development environment

 Using alternative C# IDEs

 Using Visual Studio 2015 on Windows 10

 Installing Microsoft Visual Studio 2015

 Choosing the default installation

 Choosing the custom installation

 Completing the installation

 Signing in to Visual Studio

 Choosing development settings

 Updating extensions and products

 Using older versions of Visual Studio

 Understanding .NET Framework, .NET Core, and .NET Native

 Understanding .NET Framework platform

 Understanding the Mono project

 Understanding the .NET Core platform

 Streamlining .NET

 The future of .NET

 Understanding the .NET Native platform

 Comparing .NET technologies

 Writing and compiling code using the Developer Command Prompt

 Writing code using Notepad

 Compiling code using the Developer Command Prompt

 Fixing compiler errors

 Decompiling code using ILDASM

 Disassembling compiled assemblies

 Writing and compiling code using Microsoft Visual Studio 2015

 Writing code using Visual Studio 2015

 Compiling code using Visual Studio

 Fixing mistakes with the error list

 Experimenting with C# Interactive

 Other useful windows

 Targeting the .NET Core

 Understanding the .NET Portability Analyzer

 Installing the .NET Portability Analyzer

 Configuring the .NET Portability Analyzer

 Analyzing a solution

 .NET Portability and this book

 Creating new projects for the .NET Core

 Managing .NET Core development with Command Line Tools

 Installing the .NET Command Line Tools

 Creating a .NET Core application using Command Line Tools

 Creating a .NET Core application using Visual Studio 2015

 Managing source code with GitHub

 Using the Team Explorer window

 Cloning a GitHub repository

 Managing a GitHub repository

 Practicing and exploring

 Exercise 1.1 – test your knowledge

 Exercise 1.2 – practice managing Visual Studio Windows

 Exercise 1.3 – practice coding anywhere

 Exercise 1.4 – explore topics

 Summary

 2. Speaking C#

 Understanding C# basics

 The C# grammar

 Statements

 Blocks

 The C# vocabulary

 Writing the code

 Verbs are methods

 Nouns are types, fields, and variables

 Counting types and methods

 Declaring variables

 Naming variables

 Storing text

 Storing numbers

 Storing whole numbers

 Storing real numbers

 Sizes of numbers in memory

 Comparing double and decimal

 Storing Booleans

 The object type

 The dynamic type

 Local variables

 Inferring the type of a local variable

 Making a value type nullable

 Storing multiple values in an array

 Building console applications

 Displaying output to the user

 Getting input from the user

 Importing a namespace

 Simplifying the usage of the console in C# 6

 Reading arguments and working with arrays

 Operating on variables

 Experimenting with unary operators

 Experimenting with arithmetic operators

 Comparison and Boolean operators

 Practicing and exploring

 Exercise 2.1 – test your knowledge

 Exercise 2.2 – practice number sizes and ranges

 Exercise 2.3 – explore topics

 Summary

 3. Controlling the Flow, Converting Types, and Handling Exceptions

 Selection statements

 The if-else statement

 The switch-case statement

 Autoformatting code

 Iteration statements

 The while statement

 The do-while statement

 The for statement

 The foreach statement

 How does the foreach statement actually work?

 Casting and converting between types

 Casting from numbers to numbers

 Using the Convert type

 Rounding numbers

 Converting from any type to a string

 Parsing from strings to numbers or dates and times

 Handling exceptions

 The try-catch statement

 Catching all exceptions

 Catching specific exceptions

 The finally statement

 Simplifying disposal with the using statement

 Checking for overflow

 The checked statement

 The unchecked statement

 Looking for help

 MSDN

 Getting the definition of code

 StackOverflow

 Google

 Design patterns

 Practice and explore

 Exercise 3.1 – test your knowledge

 Exercise 3.2 – explore loops and overflow

 Exercise 3.3 – practice loops and operators

 Exercise 3.4 – practice exception handling

 Exercise 3.5 – explore topics

 Summary

 4. Using Common .NET Types

 Using assemblies and namespaces

 Comparing .NET Framework with .NET Core

 Base Class Libraries and CoreFX

 Assemblies

 Namespaces

 Referencing an assembly

 Referencing Microsoft Core Library

 An example of assembly references

 Relating assemblies and namespaces

 Importing a namespace

 Browsing assemblies and namespaces

 Relating C# keywords to .NET types

 Storing and manipulating text

 Getting the length of a string

 Getting the characters of a string

 Splitting a string

 Extracting part of a string

 Checking a string for content

 Other string members

 Building strings efficiently

 Validating input with regular expressions

 The syntax of a regular expression

 Examples of regular expressions

 Storing data with collections

 Understanding collections

 Lists

 Dictionaries

 Stacks

 Queues

 Sets

 Working with lists

 Working with dictionaries

 Sorting collections

 Avoiding old collections

 Using specialized collections

 Practicing and exploring

 Exercise 4.1 – test your knowledge

 Exercise 4.2 – practice regular expressions

 Exercise 4.3 – explore topics

 Summary

 5. Using Specialized .NET Types

 Debugging and diagnostics

 Debugging an application

 Setting a breakpoint

 The debugging toolbar

 Debugging windows

 Stepping through code

 Customizing breakpoints

 Monitoring performance and resource usage

 Evaluating the efficiency of types

 Monitoring performance and memory use

 Measuring the efficiency of processing strings

 Monitoring with Debug and Trace

 Writing to the default trace listener

 Configuring trace listeners

 Configuring compiler symbols for .NET Framework

 Defining compiler symbols for .NET Core

 Checking compiler symbols

 Switching trace levels

 Unit testing an application

 Creating a unit of code that needs testing

 Creating a unit test project

 Running unit tests

 Internationalizing an application

 Globalizing an application

 Localizing an application

 Interoperating with unmanaged code

 Automating Microsoft Excel using COM Interop

 Accessing the Win32 API with P/Invoke

 Practicing and exploring

 Exercise 5.1 – test your knowledge

 Exercise 5.2 – practice using Debug and Trace

 Exercise 5.3 – explore topics

 Summary

 6. Building Your Own Types with Object-Oriented Programming

 Talking about OOP

 Building class libraries

 Creating a class library to share code

 Defining a class

 Instantiating a class

 Storing data with fields

 Defining fields

 Storing a value using the enum keyword

 Storing multiple values using collections

 Making a field static

 Making a field constant

 Making a field read only

 Initializing fields with constructors

 Writing and calling methods

 Overloading methods

 Optional parameters and named arguments

 Splitting classes using partial

 Controlling access with properties and indexers

 Defining read-only properties

 Defining settable properties

 Defining indexers

 Simplifying methods with operators

 Raising and handling events

 Calling methods using delegates

 Defining events

 Practicing and exploring

 Exercise 6.1 – test your knowledge

 Exercise 6.2 – practice writing mathematical methods

 Exercise 6.3 – explore topics

 Summary

 7. Implementing Interfaces and Inheriting Classes

 Implementing interfaces

 Common interfaces

 Comparing objects when sorting

 Defining a separate comparer

 Managing memory with reference and value types

 Defining a type using the struct keyword

 Releasing unmanaged resources

 Ensuring that dispose is called

 Inheriting from classes

 Extending classes

 Hiding members

 Overriding members

 Preventing inheritance and overriding

 Polymorphism

 Casting within inheritance hierarchies

 Implicit casting

 Explicit casting

 Handling casting exceptions

 Documenting your types

 Inheriting and extending .NET types

 Inheriting from the Exception class

 Extending types when you can't inherit

 Using static methods to reuse functionality

 Using extension methods to reuse functionality

 Practice and explore

 Exercise 7.1 – test your knowledge

 Exercise 7.2 – practice creating an inheritance hierarchy

 Exercise 7.3 – explore topics

 Summary

 8. Working with Relational Data Using the Entity Framework

 Relational Database Management Systems

 Connecting to Microsoft SQL Server LocalDb

 The Northwind sample database

 Choosing a .NET data provider

 Using ADO.NET

 Connecting to the database

 Executing commands and reading result sets

 Loading a connection string from configuration

 Using Entity Framework 6

 Building an Entity Framework 6 model

 Entity Framework Code First models

 EF Code First conventions

 EF annotation attributes

 EF Fluent API

 Querying an Entity Data Model

 Logging SQL statements

 Manipulating data with Entity Data Models

 Inserting entities

 Updating entities

 Transactions

 Defining an explicit transaction

 Loading patterns with EF

 Lazy loading entities

 Eager loading entities

 Explicit loading entities

 Using Entity Framework Core

 Practicing and exploring

 Exercise 8.1 – test your knowledge

 Exercise 8.2 – explore the EF Core documentation

 Exercise 8.3 – explore topics

 Summary

 9. Querying and Manipulating Data with LINQ

 Writing LINQ queries

 Extending sequences with the Enumerable class

 Filtering entities with Where

 Targeting a named method

 Simplifying the code by removing the explicit delegate instantiation

 Targeting a lambda expression

 Sorting sequences with OrderBy

 Sorting by multiple properties with the ThenBy method

 Working with sets

 Projecting entities with Select statement

 Joining and grouping

 Sweetening the syntax with syntactic sugar

 Using multiple threads with Parallel LINQ

 Creating your own LINQ extension methods

 Working with LINQ to XML

 Generating XML using LINQ to XML

 Reading XML by using LINQ to XML

 Practicing and exploring

 Exercise 9.1 – test your knowledge

 Exercise 9.2 – practice querying with LINQ

 Exercise 9.3 – explore topics

 Summary

 10. Working with Files, Streams, and Serialization

 Managing the filesystem

 Managing directories

 Managing files

 Managing paths

 Getting file information

 Reading and writing with streams

 Writing to text and XML streams

 Compressing streams

 Encoding text

 Encoding strings as byte arrays

 Encoding and decoding text in files

 Serializing object graphs

 Serializing with XML

 Deserializing with XML

 Customizing the XML

 Serializing with JSON

 Serializing with other formats

 Serializing with runtime serializers

 Practice and explore

 Exercise 10.1 – test your knowledge

 Exercise 10.2 – practice serializing as XML

 Exercise 10.3 – explore serialization formats

 Exercise 10.4 – explore Microsoft's System.IO types

 Exercise 10.5 – explore topics

 Summary

 11. Protecting Your Data and Applications

 Understanding the vocabulary of protection

 Keys and key sizes

 IVs and block sizes

 Salts

 Generating keys and IVs

 Encrypting and decrypting data

 Encrypting symmetrically with AES

 Hashing data

 Hashing with SHA256

 Signing data

 Signing with SHA256 and RSA

 Authenticating and authorizing users

 Managing local accounts

 Authenticating with Windows

 Authorizing with Windows

 Practicing and exploring

 Exercise 11.1 – test your knowledge

 Exercise 11.2 – practice protecting data with encryption and hashing

 Exercise 11.3 – practice protecting data with decryption

 Exercise 11.4 – explore topics

 Summary

 12. Improving Performance and Scalability with Multitasking

 Understanding processes and threads

 Running tasks asynchronously

 Running multiple actions synchronously

 Running multiple actions asynchronously using tasks

 Waiting for tasks

 Continuing with another task

 Nested and child tasks

 The async and await keywords

 Creating a GUI that blocks

 Creating a GUI that doesn't block

 Other types with Async methods

 await in catch blocks

 Improving scalability for client-server applications

 Synchronizing access to shared resources

 Accessing a resource from multiple threads

 Applying a mutually exclusive lock to a resource

 Understanding the lock statement

 Making operations atomic

 Applying other types of synchronization

 Practicing and exploring

 Exercise 12.1 – test your knowledge

 Exercise 12.2 – explore topics

 Summary

 13. Building Universal Windows Platform Apps Using XAML

 Understanding the UWP

 Adapting your app's layout

 Taking advantage of unique device capabilities

 Understanding XAML

 Simplifying code using XAML

 Creating a Windows desktop application using WPF

 Choosing common controls

 Creating an app for the Universal Windows Platform

 Analyzing UWP portability

 Using resources and templates 

 Sharing resources

 Replacing a control template

 Data binding

 Binding to elements

 Binding to data

 Animating with storyboards

 Testing in emulators

 Practicing and exploring

 Exercise 13.1 – test your knowledge

 Exercise 13.2 – practice building a universal tip calculator

 Exercise 13.3 – explore topics

 Summary

 14. Building Web Applications and Services Using ASP.NET Core

 Understanding ASP.NET Core

 Classic ASP.NET versus modern ASP.NET Core

 Client-side web development

 Install Web Essentials 2015

 The HyperText Transfer Protocol (HTTP)

 Create a web application project

 Exploring the parts of an ASP.NET Core web application

 ASP.NET Core startup

 Understanding the default route

 ASP.NET Core controllers

 Defining the Home controller's actions

 ASP.NET Core models

 Create Entity models for Northwind

 Configure Entity Framework Core as a service

 Create view models for requests

 Fetch the model in the controller

 ASP.NET Core views

 Rendering the Home controller's views

 Sharing layouts between views

 Defining custom styles

 Defining a typed view

 Taking ASP.NET Core further

 Passing parameters using a route value

 Passing parameters using a query string

 Annotating models

 ASP.NET Core Web API

 Scaffolding an API controller

 Calling a Web API service from a UWP app

 Practicing and exploring

 Exercise 14.1 – test your knowledge

 Exercise 14.2 – practice building a data-driven web application

 Exercise 14.3 – explore topics

 Summary

 15. Taking C# Cross-Platform

 Understanding cross-platform development

 Visual Studio Code

 .NET Core 1.0

 ASP.NET Core 1.0

 Entity Framework Core 1.0

 .NET Native

 Xamarin

 Cross-device Universal Windows Platform (UWP)

 Installing Visual Studio Code and ASP.NET Core

 Installing Visual Studio Code

 Managing development from the terminal

 Installing Homebrew

 Installing ASP.NET Core and the .NET Version Manager

 Listing the installed versions of .NET

 Switching from Mono to .NET Core

 Building a console application

 Creating the source files

 Editing the code

 Downloading dependency packages and compiling

 Building cross-platform web applications using ASP.NET Core

 Creating the simplest ASP.NET Core web application

 Installing Yeoman and related tools

 Scaffolding projects using Yeoman

 Editing projects using Visual Studio Code

 Understanding the .NET Core command-line tools

 Understanding the DNX tools

 Understanding the CLI tools

 Common DNX commands

 Common CLI commands

 Practicing and exploring

 Exercise 15.1 – test your knowledge

 Exercise 15.2 – practice transferring an existing ASP.NET application

 Exercise 15.3 – explore topics

 Summary

 16. Building a Quiz

 Designing the quiz application

 Choosing the platform

 Deciding the functional requirements

 Separating concerns

 Building the quiz solution

 Defining the entity models

 Creating the data repository

 Creating the web application

 Defining view models

 Adding sample quiz questions

 Configuring session state

 Adding custom controller actions

 Adding custom views

 Running the quiz

 Configuring the project to use Kestrel and .NET Core

 Hosting ASP.NET Core web apps in Microsoft Azure

 Register an Azure account

 Create an Azure web app

 Publishing an ASP.NET web application to the Web App

 Practicing and exploring

 Exercise 16.1 – test your knowledge

 Exercise 16.2 – practice by extending the quiz web app

 Exercise 16.3 – explore topics

 Summary

 A. Answers to the Test Your Knowledge Questions

 Chapter 1 – Hello, C#! Welcome, .NET Core!

 Chapter 2 – Speaking C#

 Chapter 3 – Controlling the Flow, Converting Types, and Handling Exceptions

 Exercise 3.2

 Chapter 4 – Using Common .NET Types

 Chapter 5 – Using Specialized .NET Types

 Chapter 6 – Building Your Own Types with Object-Oriented Programming

 Chapter 7 – Implementing Interfaces and Inheriting Classes

 Chapter 8 – Working with Relational Data Using the Entity Framework

 Chapter 9 – Querying and Manipulating Data with LINQ

 Chapter 10 – Working with Files, Streams, and Serialization

 Chapter 11 – Protecting Your Data and Applications

 Chapter 12 – Improving Performance and Scalability with Multitasking

 Chapter 13 – Building Universal Windows Platform Apps Using XAML

 Chapter 14 – Building Web Applications and Services Using ASP.NET Core

 Chapter 15 – Taking C# Cross-Platform

 Chapter 16 – Building a Quiz

 B. Creating a Virtual Machine for Your Development Environment

 Signing up for a Microsoft account

 Creating a Microsoft Azure subscription

 Managing your Microsoft Azure account

 Creating a virtual machine

 Connecting to your virtual machine using remote desktop

 Supporting other platforms

 Summary

 Index

C# 6 and .NET Core 1.0Modern Cross-Platform Development

C# 6 and .NET Core 1.0

Copyright © 2016 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: March 2016
Production reference: 1180316
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78528-569-1

www.packtpub.com

Credits

Author

Mark J. Price

Reviewers

Dustin Heffron
Liviu Ignat
Efraim Kyriakidis

Commissioning Editor

Edward Gordon

Acquisition Editor

Kirk D'Costa

Content Development Editor

Pooja Mhapsekar

Technical Editor

Vivek Pala

Copy Editor

Pranjali Chury

Project Coordinator

Francina Pinto

Proofreader

Safis Editing

Indexer

Tejal Soni

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Mark J. Price is a Microsoft Certified Trainer (MCT) and Microsoft Specialist, Programming in C# and Architecting Microsoft Azure Solutions, with more than 20 years of educational and programming experience.
[image: About the Author]

Since 1993, Mark has passed more than 90 Microsoft programming exams and specializes in preparing others to pass them too. His students range from professionals with decades of experience to 16-year-old apprentices with no experience at all. He successfully guides all of them by combining educational skills with real-world experience, consulting on and developing systems for enterprises worldwide.
Between 2001 and 2003, Mark was employed full-time to write official courseware for Microsoft in Redmond, USA. His team wrote the first training courses for C# and .NET while they were still an early alpha version. While with Microsoft, he delivered "train-the-trainer" classes to get other MCTs up to speed in C# and .NET.
In 2010, Mark took a postgraduate certificate in education (PGCE). He taught GCSE and A-level mathematics in two secondary schools in London. Mark holds a Computer Science BSc (Hons) degree from the University of Bristol, UK.

I'd like to thank my parents, Pamela and Ian, for raising me to be polite, hardworking, and curious about the world. I'm grateful to my sisters, Emily and Juliet, for loving me despite being their awkward older brother. I'd also like to express my gratitude to my friends and colleagues who inspire me technically and creatively. Lastly, thanks to all the students I have taught over the years for making me strive to be a better teacher, especially Jared.

About the Reviewers

Dustin Heffron is a software engineer by day and an independent game developer by night. He has over 10 years of experience programming in various languages and 7 years of experience working with C# and .NET.
Currently, Dustin works as a software engineer for Johnson Controls Inc. He is also the cofounder and CEO of SunFlake Studios, which was founded in late 2015. He released his first commercial game, Squash Master, in early 2016 and is planning to develop additional games in the coming months and years.
Dustin has a long history of reviewing for Packt Publishing, including the book XNA 4.0 Game Development by Example: Beginner's Guide and the video tutorial series XNA 3D Programming by Example. He also coauthored the video tutorial series XNA 3D Toolkit with Larry Louisiana.

Liviu Ignat is a full-stack developer and architect, technology geek, and entrepreneur, who has been writing commercial software since 2004. He started with VB6, soon moved to .NET Java, and then continued by moving to front-end web development. He has fun with everything that is a functional language, such as F#, Scala, Swift, JavaScript, and so on.
Currently, he is a senior software engineer at AppDirect (http://appdirect.com), Munich, and he is also the CTO of his own startup (http://giftdoodle.com). He has been involved in building distributed backend services, mostly with .NET and complex single-page web apps. He is a big fan of microservices with C#, NodeJS, Scala, and Docker, single-page apps, and native apps with Android and IOS.
When he is not coding, Liviu loves snowboarding during the winter, sailing to exotic places during the summer, or just traveling the world. You can find and contact him at http://ignat.email/.

Efraim Kyriakidis is a skilled software engineer with over 10 years of experience in developing and delivering software solutions for diverse customers and projects. He's well-versed in all stages of the software development lifecycle. His first acquaintance with computers and programming was a state of the art Commodore 64, back in the '80s as a kid. Since then, he has grown up and received his diploma as Electro technic engineer from Aristotle University Thessaloniki in Greece. Through out his career he has mainly worked with Microsoft technologies, using C# and .NET since .NET 1.0. He currently works for Siemens AG in Germany as a software developer.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <customercare@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Preface

There are many C# books, some, more than a thousand pages long, that aim to be comprehensive references to the C# programming language and the .NET Framework.
This book is different—it is concise and aims to be a fast-paced read that is packed with hands-on walkthroughs. I wrote this book to be the best step-by-step guide to modern cross-platform C# and .NET proven practices.
I will point out the cool corners and gotchas of C# so you can impress colleagues and employers and quickly get productive. Rather than slowing down and boring some of you by explaining every little thing, I assume that if a term I use is new to you, then you know how to Google it with a search engine such as DuckDuckGo.
At the end of each chapter, there is a section entitled Practicing and Exploring, which contains questions to test your knowledge, and usually a hands-on practical exercise, and you will explore topics in depth on your own with a little nudge in the right direction from me.
You can download solutions for the exercises from the GitHub repository at https://github.com/markjprice/cs6dotnetcore. I will provide instructions on how to do this using Visual Studio 2015 at the end of Chapter 1, Hello C#!, Welcome .NET Core!.

What this book covers

Chapter 1, Hello C#!, Welcome .NET Core!, is about setting up your development environment and using various tools to create the simplest application possible with C#. You will learn how to compile C# code at the Command Prompt and how to write and compile code using Visual Studio. You will also learn about the different .NET platforms: .NET Framework, .NET Core, and .NET Native.

Chapter 2, Speaking C#, is about the C# language, the grammar and vocabulary that you will use every day to write the source code for your applications. In particular, you will learn how to declare and work with variables of different types.

Chapter 3, Controlling the Flow, Converting Types, and Handling Exceptions, is about writing code that makes decisions, repeats blocks of statements, converts between types, and handles errors. You will also learn the best places to look for help.

Chapter 4, Using Common .NET Types, is about how .NET types are related to C#. You will learn about .NET Framework, .NET Core, and their class library assemblies of types that allow your applications to connect together existing components to perform common practical tasks.

Chapter 5, Using Specialized .NET Types, is about .NET types used to diagnose problems, support multiple languages and cultures, and access features and applications outside of .NET.

Chapter 6, Building Your Own Types with Object-Oriented Programming, is about all the different categories of members that a type can have, including fields for storing data and methods for performing actions. You will use OOP concepts such as aggregation and encapsulation.

Chapter 7, Implementing Interfaces and Inheriting Classes, is about deriving new types from existing ones using OOP. You will learn how to implement interfaces, about base and derived classes, how to override a type member, how to use polymorphism, and how to cast between classes in an inheritance hierarchy.

Chapter 8, Working with Relational Data Using the Entity Framework, is about reading and writing to Microsoft SQL Server (and other databases) using classic ADO.NET and the object-relational mapping technology known as Entity Framework.

Chapter 9, Querying and Manipulating Data with LINQ, is about Language Integrated Queries (LINQ)—language extensions that add the ability to work with sequences of items, and filter, sort, and project them into different outputs.

Chapter 10, Working with Files, Streams, and Serialization, is about reading and writing to files and streams, text encoding, and serialization.

Chapter 11, Protecting Your Data and Applications, is about protecting your data using encryption and hashing, and checking who is running your application and what they are allowed to do.

Chapter 12, Improving Performance and Scalability with Multitasking, is about allowing multiple actions to be executed at the same time to improve performance, scalability, and user productivity.

Chapter 13, Building Universal Windows Platform Apps Using XAML, is about learning the basics of XAML, which can be used to define the user interface for a graphical app for the Universal Windows Platform (UWP). This app can then run on Windows 10, Windows 10 Mobile, Xbox One, and even HoloLens.

Chapter 14, Building Web Applications and Services Using ASP.NET Core, is about building web applications and services using a modern HTTP architecture on the server side using Microsoft ASP.NET Core 1.0. You will learn about the models, views, and controllers that make up MVC and the Web API.

Chapter 15, Taking C# Cross-Platform, is about introducing you to how you can take C# cross-platform using .NET Core, ASP.NET Core 1.0, Entity Framework Core 1.0, and Visual Studio Code.

Chapter 16, Building a Quiz, is about designing and building a quiz application that helps students learn C#, .NET Core, and related topics.

Appendix A, Answers to the Test Your Knowledge Questions, has the answers to the test questions at the end of each chapter.

Appendix B, Creating a Virtual Machine for Your Development Environment, shows how to set up a virtual machine in Microsoft Azure for use as a development environment.

What you need for this book

Although you can develop and deploy C# on many platforms, including Mac OS X and Linux, for the best learning experience, you need two pieces of software:
	Microsoft Windows 10
	Microsoft Visual Studio Community 2015 with Update 1 (or later)

The best version of Windows to use is Microsoft Windows 10 because you need this version to create Universal Windows Platform apps in Chapter 13, Building Universal Windows Platform Apps Using XAML. Earlier versions of Windows, such as 7 or 8.1, will work for all other chapters. If you don't have a Windows computer, then you can use a virtual machine running Windows in the cloud. Refer to Appendix B, Creating a Virtual Machine for Your Development Environment for instructions.
The best version of Visual Studio to use is Microsoft Visual Studio Community 2015 with Update 1 (or later), which is the version I used while writing this book. In Chapter 15, Taking C# Cross-Platform, I will introduce you to Visual Studio Code, which runs on Windows, Linux, and Mac OS X, and can create cross-platform applications for all these OSes.

Who this book is for

If you have heard that C# is a popular general-purpose, cross-platform programming language used to create everything from business applications, websites, and services to games for mobile devices, Xbox One, and the Windows 10 desktop-to-tablet-to-phone platform, then this book is for you.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " The code you will write will be stored in the file named Program.cs."
A block of code is set as follows:
// the best nieces and nephews in the world
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
// the best nieces and nephews in the world
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

Any command-line input or output is written as follows:

csc my.cs /target:library

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "In Visual Studio, from the View menu, choose Other Windows, and then C# Interactive."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
	Log in or register to our website using your e-mail address and password.
	Hover the mouse pointer on the SUPPORT tab at the top.
	Click on Code Downloads & Errata.
	Enter the name of the book in the Search box.
	Select the book for which you're looking to download the code files.
	Choose from the drop-down menu where you purchased this book from.
	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
	WinRAR / 7-Zip for Windows
	Zipeg / iZip / UnRarX for Mac
	7-Zip / PeaZip for Linux

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

Chapter 1. Hello, C#! Welcome, .NET Core!

This chapter is about setting up your development environment, understanding the similarities and differences between .NET Core, .NET Framework, and .NET Native, and using various tools to create the simplest application possible with C#.
Most people learn complex topics by imitation and repetition rather than reading a detailed explanation of theory. So, I will not explain every keyword and step. The idea is to get you to write some code, build an application, and see it run. You don't need to know the details of how it all works yet.
In the words of Samuel Johnson, author of the English dictionary of 1755, I have likely committed "a few wild blunders, and risible absurdities, from which no work of such multiplicity is free." I take sole responsibility for these and hope you appreciate the challenge of my attempt to "lash the wind" by writing this book about .NET Core 1.0 during its rocky birth in the early months of 2016.
This chapter covers the following topics:
	Setting up your development environment
	Understanding the .NET Framework, .NET Core, and .NET Native
	Writing and compiling code by using the Developer Command Prompt
	Writing and compiling code by using Microsoft Visual Studio 2015
	Targeting the .NET Core
	Managing source code with GitHub

Setting up your development environment

Before you start programming, you will need to set up your
Interactive Development Environment (IDE) that includes a code editor for C#. The best IDE to choose is Microsoft Visual Studio 2015, but it only runs on the Windows operating system.

Using alternative C# IDEs

There are alternative IDEs for C#, for example,
MonoDevelop,
JetBrains Project Rider, and
Microsoft Visual Studio Code. They each have versions available for Windows, Linux, and Mac OS X, allowing you to write code on one operating system and deploy to the same, or a different, one:
	For MonoDevelop IDE, visit http://www.monodevelop.com/
	For JetBrains Project Rider, visit http://blog.jetbrains.com/dotnet/2016/01/13/project-rider-a-csharp-ide/
	For Microsoft Visual Studio Code, visit https://code.visualstudio.com/

Cloud9
 is a web browser-based IDE, so it's even more cross-platform than the others. here is the link:

https://c9.io/web/sign-up/free

In Chapter 15, Taking C# Cross-Platform, I will show you how to use Visual Studio Code running on Mac OS X to create an ASP.NET Core 1.0 web application that can be deployed to Windows, Mac OS X, or Linux operating systems, or to Docker containers.
Tip
Linux and Docker are popular server host platforms because they are relatively lightweight and more cost-effectively scalable when compared to operating system platforms that are designed for end users, such as Windows and Mac OS X.

Using Visual Studio 2015 on Windows 10

You can use Windows 7 or later to complete most of the chapters in this book, but you will have a better experience if you use Windows 10.
Tip
If you don't have Windows, I recommend that you create a virtual machine (VM) to use for development. You can choose any cloud provider, but Microsoft Azure has preconfigured VMs that include properly licensed Windows and Visual Studio 2015. You only pay for the minutes your VM is running, so it is a way for users of Linux, Mac OS X, and older Windows versions to have all the benefits of using Visual Studio 2015. Refer to Appendix B, Creating a Virtual Machine for Your Development Environment for more information.

Since October 2014, Microsoft has made a professional-quality edition of Visual Studio available to everyone for free. It is called the
Community Edition.
Tip
Microsoft has combined all its free developer offerings in a program called
Visual Studio Dev Essentials. This includes the Community Edition, the free level of Visual Studio Team Services, Azure credits for test and development, and free training from Pluralsight, Wintellect, and Xamarin.

Installing Microsoft Visual Studio 2015

Download and install Microsoft Visual Studio Community 2015 with Update 1 or higher.
Choosing the default installation

If you prefer a smaller, faster installation then choose Default because it only requires 8 GB and should complete the installation in about an hour. With this choice, as shown in the following screenshot, you will be able to complete the first two-thirds of this book. To complete the rest of the book, you can later add additional features, such as support for building Universal Windows Platform (UWP) apps, via Programs and Features in the Control Panel:
[image: Choosing the default installation]

If you chose
Default, then skip to the Completing the Installation section.

Choosing the custom installation

If you have 34 GB of free disk space and can wait for several hours, then in the installation dialog, choose Custom, and then click on Next. Select the following features:
	Under Windows and Web Development, tick the following checkboxes:	Microsoft SQL Server Data Tools
	Microsoft Web Developer Tools
	Universal Windows App Development Tools

	Under Cross Platform Mobile Development, tick the following checkbox:	C#/.NET (Xamarin)

	Under Common Tools, tick the following checkboxes:	Git for Windows
	GitHub Extension for Visual Studio

Click on Next:
Note
If you have the Home edition of Windows 10, then you will not be able to install emulators for Windows Phone because they require Hyper-V support.

[image: Choosing the custom installation]

Tip
You can choose to install everything if you want support for languages such as C++, Python, and F#, but these will not be covered in this book.

Completing the installation

On the license terms dialog, click on Install. Wait for the files to download and install.
Tip
While you wait for Visual Studio to install, you can jump to the Understanding .NET Framework, .NET Core, and .NET Native section in this chapter.

Signing in to Visual Studio

The first time that you run Visual Studio, you will be prompted to sign in:
[image: Signing in to Visual Studio]

If you have a Microsoft account, for example, a Hotmail, MSN, Live, or Outlook e-mail address, you can use that account. If you don't, then register for a new one at the following link:

https://signup.live.com/

Choosing development settings

After signing in, you will be prompted to choose Development Settings. Choose Visual C# to configure keyboard shortcuts and a default window layout that works best for C# programmers, as shown in the following screenshot:
[image: Choosing development settings]

After you click on Start Visual Studio, you will see the Visual Studio user interface with the Start Page open in the central area. Like most Windows desktop applications, Visual Studio has a menu bar, a toolbar for common commands, and a status bar at the bottom. On the right is the Solution Explorer window that will list all of your open projects, as shown in the following screenshot:
[image: Choosing development settings]

To have quick access to Visual Studio in the future, right-click on its entry in the Windows taskbar and select Pin this program to taskbar:
[image: Choosing development settings]

Updating extensions and products

In the top-right corner of Visual Studio, you will see a flag that has a number next to it. These are notifications of extensions and product updates.
Click on the flag to display the Notifications window, as shown in the following screenshot:
[image: Updating extensions and products]

In the Notifications window, click on each entry to install the update. You can install these updates at a later time if you prefer, but it is best to keep your software up-to-date to avoid bugs and security holes. The following screenshot shows an extension downloading and installing:
[image: Updating extensions and products]

Using older versions of Visual Studio

If you want to use a free version of Visual Studio older than 2015, then you can use one of the more limited Express editions. A lot of the code in this book will work with older versions if you bear in mind when the following features were introduced:
	
Year

	
C#

	
Features

	
2005

	
2

	
Generics with <T>

	
2008

	
3

	
Lambda expressions with => and manipulating sequences with LINQ (from, in, where, orderby, ascending, descending, select, group, into)

	
2010

	
4

	
Dynamic typing with dynamic and multithreading with Task

	
2012

	
5

	
Simplifying multithreading with async and await

	
2015

	
6

	

string interpolation with $"", importing static types with using static, and other refinements.

Understanding .NET Framework, .NET Core, and .NET Native

.NET Framework, .NET Core, and .NET Native are related platforms for developers to build applications and services upon.

Understanding .NET Framework platform

Microsoft's .NET Framework is a development platform that includes a Common Language Runtime (CLR) that manages the execution of code and a rich library of classes for building applications.
Microsoft designed the .NET Framework to have the possibility of being cross-platform, but Microsoft put their implementation effort into making it work best with Windows.
Practically speaking, the .NET Framework is Windows-only.

Understanding the Mono project

The open source community developed a cross-platform .NET implementation named the Mono project (http://www.mono-project.com/).

Mono
 is cross-platform, but it fell well behind Microsoft's implementation of .NET Framework. It has found a niche as the foundation of the
Xamarin mobile platform.

Understanding the .NET Core platform

Today, we live in a truly cross-platform world. Modern mobile and cloud development have made Windows a much less important operating system. So, Microsoft has been working on an effort to decouple the .NET Framework from its close ties with Windows.
While rewriting .NET to be truly cross-platform, Microsoft has taken the opportunity to refactor .NET, to remove major parts that are no longer considered "core".
This new product is branded as the .NET Core 1.0, which includes a cross-platform implementation of the CLR, known as CoreCLR
, and a streamlined library of classes known as
CoreFX.
Streamlining .NET

.NET Core 1.0 is much smaller than the current version of the .NET Framework because a lot has been removed.
For example, Windows Forms and Windows Presentation Foundation (WPF) can be used to build graphical user interface (GUI) applications, but they are tightly-bound to Windows, so they have been removed from the .NET Core. The latest technology for building Windows apps is the Universal Windows Platform (UWP). You will learn about it in Chapter 13, Building Universal Windows Platform Apps Using XAML.
ASP.NET Web Forms and Windows Communication Foundation (WCF) are old web applications and service technologies that fewer developers choose to use today, so they have also been removed from the .NET Core. Instead, developers prefer to use ASP.NET MVC and ASP.NET Web API. These two technologies have been refactored and combined into a new product that runs on the .NET Core, named ASP.NET Core 1.0. You will learn about it in Chapter 14, Building Web Applications and Services Using ASP.NET Core.
The Entity Framework (EF) 6.x is an object-relational mapping technology for working with data stored in relational databases, such as Oracle and Microsoft SQL Server. It has gained baggage over the years, so the cross-platform version has been slimmed down and named Entity Framework Core 1.0. You will learn about it in Chapter 8, Working with Relational Data Using the Entity Framework.
Some data types in .NET that are included with both the .NET Framework and the .NET Core have been simplified by removing some members. For example, in the .NET Framework, the File class has both a Close and Dispose method, and either can be used to release the file resources. In .NET Core, there is only the Dispose method. This reduces the memory footprint of the assembly and simplifies the API.
Tip
The .NET Framework 4.6 is about 200 MB. The .NET Core 1.0 is about 11 MB. Eventually, the .NET Core may grow to a similar larger size. Microsoft's goal is not to make the .NET Core smaller than the .NET Framework. The goal is to componentize .NET Core to support modern technologies and to have fewer dependencies so that deployment requires only those components that your application really needs.

The future of .NET

The .NET Core is the future of .NET, but in my opinion, we are not there yet. .NET Core 1.0 is a great start, but it will take another version or two to become as mature as the current version of the .NET Framework.
This book will focus features available in .NET Core, but will use the .NET Framework when features have not (yet) been implemented in the .NET Core.
Tip
One of the reasons we picked this cover image for this book is that you can think of .NET Core as a new dawn for .NET. The .NET Framework has become overgrown, like a dense forest, and the .NET Core is like finding a clearing or glade within it. It's a fresh start.

Understanding the .NET Native platform

Another .NET initiative is .NET Native which compiles C# code to native CPU instructions ahead-of-time (AoT) rather than using the CLR to compile IL just-in-time (JIT) to native code later.
The .NET Native compiler improves execution speed and reduces the memory footprint for applications. It supports the following:
	UWP apps for Windows 10, Windows 10 Mobile, Xbox One, HoloLens, and Internet of Things (IoT) devices such as Raspberry Pi
	Server-side web development with ASP.NET Core 1.0
	Console applications for use on the command line

Comparing .NET technologies

The following table summarizes and compares Microsoft's three .NET technologies:
	
Platform

	
Feature set

	
C# compiles to

	
Host OSes

	
.NET Framework

	
Mature and extensive

	
Intermediate Language (IL) code

	
Windows only

	
.NET Core

	
Brand-new and somewhat limited

	
Windows, Linux, Mac OS X, Docker

	
.NET Native

	
Brand-new and very limited

	
Native code

Writing and compiling code using the Developer Command Prompt

When you install Visual Studio, other tools are installed too. One of those tools is the Developer Command Prompt for VS2015 that has its path set to find developer tools such as the C# compiler.

Writing code using Notepad

Start Notepad (or your favorite text editor) and enter the following code:
class Program { static void Main() { System.Console.
WriteLine("Hello C#!"); } }

You can type the code all on one line or spread it out over multiple lines and indent your lines to make it easier to read.
Note
C# is case sensitive, meaning that you must type uppercase and lowercase characters exactly as shown in the preceding code. C# is not whitespace sensitive, meaning that it does not care if you use tabs and spaces and carriage-returns to lay out your code however you like.

From the File menu, choose Save As.
In the dialog box, change to drive C: (or any drive that you want to use to save your projects), click on the New Folder button, and name the folder Code.
In the Save as type field, select All Files from the drop-down list to avoid appending the .txt file extension, and enter the file name as myfirstapp.cs, as shown in the following screenshot:
[image: Writing code using Notepad]

Your code in Notepad should look something like the following screenshot:
[image: Writing code using Notepad]

Compiling code using the Developer Command Prompt

Start the Developer Command Prompt for VS2015 by typing the letters deve in the Windows 10 Search box, as you can see in the following screenshot. You will also find it on the Start Menu or Start Screen listed in All apps in the Visual Studio 2015 folder:
[image: Compiling code using the Developer Command Prompt]

At the Command Prompt, enter the commands to do the following:
	Change to the C:\Code folder
	Compile the source code using the C# compiler
	Request a directory listing
	Run the application by entering the name of the EXE

Here are the commands:

cd C:\Code
csc myfirstapp.cs
dir
myfirstapp

The output in the Command Prompt window should look like this:
[image: Compiling code using the Developer Command Prompt]

Note that your source code, the file named myfirstapp.cs, has been compiled into an assembly named myfirstapp.exe. When you enter the name of the assembly, it is loaded and executed by .NET Framework 4.6 and its CLR.
You can copy the myfirstapp.exe file onto any computer with Windows 10 and it will run correctly because all copies of Windows 10 have .NET Framework 4.6 installed. Actually, you can copy the file onto a computer with an older version of Windows as long as it has .NET Framework 4.0 or later installed.

Fixing compiler errors

If the compiler displays errors, read them carefully, and fix them in Notepad. Save your changes and recompile.
Tip
At the Command Prompt, you can press the up and down arrows on your keyboard to cycle through previous commands you have entered.

A typical error might be using the wrong case, a missing semi-colon at the end of a line, or a mismatched pair of curly braces. For example, if you had mistyped a lowercase m for the Main method you would see this error message:

error CS5001: Program does not contain a static 'Main' method suitable for an entry point

Decompiling code using ILDASM

The C# compiler converts your source code into Intermediate Language (IL) code and stores the IL in an assembly (a DLL or EXE file).
IL code statements are like assembly language instructions, but they are executed by the .NET virtual machine known as the Common Language Runtime (CLR).
At runtime, the CLR loads the IL code from the assembly, JIT compiles it into native CPU instructions, and then it is executed by the CPU on your machine.
The benefit of this two-step compilation process is that Microsoft can create CLRs for Linux and Mac OS X as well as for Windows. The same IL code runs everywhere because of the second compilation process that generates code for the native operating system and CPU instruction set.
Regardless of which language the source is written in, all .NET applications use IL code for their instructions, stored in an assembly. Microsoft provides a tool that can open an assembly and reveal this IL code.
Tip
Actually, not all .NET applications use IL code! Some use the new .NET Native compiler to generate native code instead of IL code, improving performance and reducing memory footprint, but at the cost of portability.

Disassembling compiled assemblies

Disassembling a compiled assembly is an advanced technique. I will walk you through the process, but do not worry about fully understanding what you are seeing yet!
Start the IL Disassembler by entering the following at the Developer Command Prompt:

ildasm myfirstapp.exe

You will see the IL DASM tool with the compiled EXE assembly loaded:
[image: Disassembling compiled assemblies]

Double-click on
MANIFEST in the tree view to show the metadata version (4.0.30319) of .NET and the Microsoft Core Library (mscorlib) assembly version (4.0.0.0) that this assembly needs to run. The following screenshot tells us that to run this assembly, we would need .NET Framework 4.0 or later installed:
[image: Disassembling compiled assemblies]

Close the MANIFEST window, expand Program, and then double-click on the Main method. Note the IL instructions: ldstr (load string), nop (no operation), and ret (return). Remember that IL is an assembly language that is executed by the .NET CLR:
[image: Disassembling compiled assemblies]

Anyone can use this tool to see any .NET assembly's IL code. Don't panic! This is not a reason to avoid C#.
All applications are lists of instructions that must be visible to the machine that runs it. If the machine can read these instructions, so can anything else. Therefore, all software can be reverse-engineered. It's just a matter of the effort required. .NET just happens to make it very easy!
Tip

ILSpy
 is a popular open source tool that does everything IL DASM does and can also reverse-engineer the IL code into C# or Visual Basic .NET source code. I used this tool for a client who had lost the source code for an assembly and needed to recover it!

Writing and compiling code using Microsoft Visual Studio 2015

We will now recreate the same application using Microsoft Visual Studio 2015.
I have been training students to use Visual Studio for over a decade, and I am always surprised at how many programmers fail to use the tool to their advantage.
Over the next few pages, I will slowly walk you through typing a line of code. It may seem redundant, but you will benefit from seeing what help and information Visual Studio provides as you enter your code. If you want to become a fast, accurate coder, letting Visual Studio write most of your code for you is a huge benefit!

Writing code using Visual Studio 2015

Start Microsoft Visual Studio 2015.
Navigate to File | New | Project menu or press Ctrl + Shift + N.
At the top of the New Project dialog box, choose .NET Framework 4.6.1 (or later). From the Installed Templates list on the left, choose Visual C#. In the list at the center, choose Console Application. Enter the name Ch01_MyFirstApp, set the location to C:\Code, enter Chapter01 as the solution name, and click on OK or press Enter:
[image: Writing code using Visual Studio 2015]

In the code editor, inside the Main method, press Enter to insert a new line between the innermost braces { }, and then type the letters sy, as you can see in the following screenshot:
[image: Writing code using Visual Studio 2015]

Note that IntelliSense shows a list of keywords, namespaces, and types that contain the letters sy, and highlights the first one that starts with sy, which happens to be the namespace that we want—System.
Type a dot (also known as decimal point or full stop). IntelliSense automatically completes the word System for you, enters the dot, and displays a list of types and namespaces, such as AccessViolationException and Action, in the System namespace, as shown in the following screenshot:
[image: Writing code using Visual Studio 2015]

Type the letters con and IntelliSense shows a list of matching types and namespaces:
[image: Writing code using Visual Studio 2015]

Press the down arrow on your keyboard to highlight Console, and then type a dot.
IntelliSense shows a list of the members of the Console class:
[image: Writing code using Visual Studio 2015]

Tip
Members include properties (attributes of an object, such as BackgroundColor), methods (actions the object can perform, such as Beep), and other related things.

Type the letters wr. IntelliSense shows two matching members containing these letters:
[image: Writing code using Visual Studio 2015]

Use the down arrow to highlight WriteLine and then type an open parenthesis (.
IntelliSense autocompletes WriteLine and enters a pair of parentheses.
You will also see a tooltip telling you that the WriteLine method has 19 variations:
[image: Writing code using Visual Studio 2015]

Type a double quote ("). IntelliSense enters a pair of double quotes for you and leaves the keyboard cursor in between them.
Type the text Hello C#!, as shown in the following screenshot:
[image: Writing code using Visual Studio 2015]

The red squiggle at the end of the line indicates an error, because every C# statement must end in a semicolon. Move the cursor to the end of the line by pressing End, and type a semicolon to fix the error.

Compiling code using Visual Studio

From the Debug menu, choose Start Without Debugging or press Ctrl + F5. Your completed application runs in a console window and closes when you press any key:
[image: Compiling code using Visual Studio]

To save space and to make the output clearer, I will usually not include screenshots of output from console applications as I did previously. Instead, I will show the output like this:

Hello C#!

Fixing mistakes with the error list

Let's make two deliberate errors.
Change the M of the Main method to the lowercase letter m.
Delete the e at the end of the method name WriteLine.
On the Build menu, choose Build Ch01_MyFirstApp or press Shift + F6.
After a few seconds, the status bar tells us that the build failed and the error list is activated. You can also view the error list by pressing Ctrl + W, E:
[image: Fixing mistakes with the error list]

The Error List can be filtered to show Errors, Warnings, and informational Messages by clicking on the toggle buttons at the top of the window.
If an error shows the line number, for example Line 13 in the preceding screenshot, then you can double-click on the error to jump to the line causing the problem.
If it's a more general error, such as the missing Main method, the compiler can't tell you the line number. You might want a method named main as well as a method named Main (remember that C# is case sensitive so you're allowed to do that).
Fix the two (as shown in the preceding screenshot) errors before you continue. Note that the error list updates to show no errors.

Experimenting with C# Interactive

Although Visual Studio has always had an Immediate window with limited REPL (read-eval-print loop) support, Visual Studio 2015 with Update 1 includes an enhanced window with full IntelliSense and color syntax code, named C# Interactive.
On the View menu, choose Other Windows, and then C# Interactive.
We will write some interactive code to download the About page from Microsoft's public website.
Tip
This is just an example. You don't need to understand the code yet!

At the C# Interactive prompt, we will enter commands to do the following:
	Reference the System.Net.Http assembly
	Import the System.Net.Http namespace
	Declare and instantiate an HTTP client variable
	Set the client's base address to Microsoft's website
	Wait asynchronously for a response to a GET request for the About page
	Read the status code returned by the web server
	Read the content type header
	Read the contents of the HTML page as a string

Type each of the following commands after the > prompt and then press Enter:

> #r "System.Net.Http"
> using System.Net.Http;
> var client = new HttpClient();
> client.BaseAddress = new Uri("http://www.microsoft.com/");
> var response = await client.GetAsync("about");
> response.StatusCode
OK
> response.Content.Headers.GetValues("Content-Type")
string[1] { "text/html" }
> await response.Content.ReadAsStringAsync()
"<!DOCTYPE html ><html xmlns:mscom=\"http://schemas.microsoft.com/CMSvNext\" xmlns:md=\"http://schemas.microsoft.com/mscom-data\" lang=\"en\" xmlns=\"http://www.w3.org/1999/xhtml\"><head><meta http-equiv=\"X-UA-Compatible\" content=\"IE=edge\" /><meta charset=\"utf-8\" /><meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\" /><link rel=\"shortcut icon\" href=\"//www.microsoft.com/favicon.ico?v2\" /><script type=\"text/javascript\" src=\"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.min.js\">\r\n // Third party scripts and code linked to or referenced from this website are licensed to you by the parties that own such code, not by Microsoft. See ASP.NET Ajax CDN Terms of Use - http://www.asp.net/ajaxlibrary/CDN.ashx.\r\n </script><script type=\"text/javascript\" language=\"javascript\">/*<![CDATA[*/if($(document).bind(\"mobileinit\",function(){$.mobile.autoInitializePage=!1}),navigator.userAgent.match(/IEMobile\\/10\\.0/)){var msViewportStyle=document.createElement(\"style ...

[image: Experimenting with C# Interactive]

Other useful windows

Visual Studio has lots of other useful windows, including the following:
	The Solution Explorer window for managing all the projects and files you work on
	The Team Explorer window for source code management tools, such as GitHub
	The Server Explorer window for managing database connections

If you ever can't see a window you need, go to the View menu to make it reappear or learn its keyboard shortcut, as shown here:
[image: Other useful windows]

Tip
If your keyboard shortcuts are different from the ones in the preceding screenshot, it is because you picked a different set when you installed Visual Studio. You can reset your keyboard shortcuts to match the ones used in this book by clicking on the Tools menu, then clicking on Import and Export Settings…, choosing Reset all settings, and then choosing to reset to the Visual C# settings collection.

Targeting the .NET Core

For 15 years, .NET programmers have been targeting the .NET Framework, so there are many projects that may need to move from Windows-only to cross-platform by retargeting to the .NET Core.

Understanding the .NET Portability Analyzer

To ensure that a project will work cross-platform, we can install and run the Visual Studio 2015 extension named .NET Portability Analyzer.
It allows you to choose multiple platforms that you would like to target and then scans your compiled assemblies, passes a list of the types and methods that you use to a web service, and produces a report that lists which ones are not supported on each platform along with recommendations for fixes.
Installing the .NET Portability Analyzer

In Visual Studio, go to the Tools menu and choose Extensions and Updates….
On the left-hand side of the dialog, click on Online. In the Search Visual Studio Gallery box, type portability and press Enter.
Click on the .NET Portability Analyzer entry and then click on the Download button. Once the extension is installed, restart Visual Studio:
[image: Installing the .NET Portability Analyzer]

Configuring the .NET Portability Analyzer

In Visual Studio, go to the Tools menu and choose Options.
In the Options dialog box, scroll down through the left-hand side list and choose .NET Portability Analyzer. In the Target Platforms section, deselect everything except for the following:
	.NET Core (Cross-platform) 1.0 (shown as 5.0 in the following screenshot)
	.NET Framework 4.5
	.NET Native 1.0
	ASP.NET Core 1.0 (shown as ASP.NET 5 in the screenshot below):

Tip
Microsoft Azure has a Platform-as-a-Service (PaaS) feature named Cloud Services, which is limited to the .NET Framework 4.5; this is why it is a common target platform to check with the analyzer.

[image: Configuring the .NET Portability Analyzer]

Analyzing a solution

In Visual Studio, open the previous solution, named Chapter01. In the Solution Explorer window, right-click on the project named Ch01_MyFirstApp (not the solution), choose Analyze, and then choose Analyze Assembly Portability.
After a few seconds, a report will display in the main area.
Tip
Be patient with the .NET Portability Analyzer because it has to send data to a web service and wait for a response.

Note that the Console class in the System namespace and its WriteLine method are supported by the following:
	.NET Core (Cross-Platform) 1.0 (shown as 5.0 in the following screenshot)
	.NET Framework 4.5
	ASP.NET Core 1.0 (shown as ASP.NET 5 in the following screenshot)

However, it is not supported by .NET Native 1.0:
[image: Analyzing a solution]

Note
At the time of writing this, the .NET Portability Analyzer has not been updated to show the new version branding for .NET Core and related products, which can be found at http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx.

Press Ctrl + W, E to view the error list, which has also been populated. As we saw earlier, double-clicking on an error will jump the code editor to the line that could cause an issue:
[image: Analyzing a solution]

.NET Portability and this book

I used the .NET Portability Analyzer while writing all the code in this book to ensure that, whenever possible, I can show you code that will work cross-platform using the .NET Core 1.0. If there are useful features that aren't cross-platform yet, then I will point that out in the text. Hopefully, they will be implemented in .NET Core in future versions.

Creating new projects for the .NET Core

Let's recreate the console application, but this time, target the .NET Core from the start.
Managing .NET Core development with Command Line Tools

There are two sets of command-line tools that you can use to manage the .NET Core:
	.NET Version Manager, .NET Execution Environment, .NET Development Utilities (dnvm, dnx, dnu): These were used by Microsoft during the initial development of the .NET Core between 2013 and 2015. They are installed as part of Visual Studio 2015. These tools will be deprecated with the final release of the .NET Core.
	.NET CLI (dotnet): This is a driver, which will be used by the final release of the .NET Core. It provides a simplified layer on top of other underlying tools. The .NET CLI must be installed separately.

Tip
At the time of writing, the DNX tools are more advanced than the .NET CLI, so in Chapter 15, Taking C# Cross-Platform, I will need to show you how to use both sets of tools. For this chapter, we can use the newer CLI tool because we are only using basic features. I recommend that you browse http://cs6dotnetcore.azurewebsites.net/ for information about changes between the time of writing this book and the release of the final versions of .NET Core 1.0 and its related technologies and tools.

Installing the .NET Command Line Tools

First, we must install the .NET Command Line Tools (CLI).
Start Microsoft Edge and go to the https://github.com/dotnet/cli.
Scroll down the page to find the Installers section and click on the link to download the MSI file for Windows. Open the file and install.

Creating a .NET Core application using Command Line Tools

Start the Developer Command Prompt for VS2015. At the prompt, enter the following command:

dotnet

You should see the following output:
[image: Creating a .NET Core application using Command Line Tools]

Enter the following at the prompt to create a new directory, change to it, create a new console application in the directory, and then list the files it created:

cd C:\Code\Chapter01
mkdir Ch01_MySecondApp
cd Ch01_MySecondApp
dotnet new
dir

You should see that the dotnet tool has created three new files for you: NuGet.Config, Program.cs, and project.json.
At the prompt, enter the following to start Notepad for editing the Program class:

notepad Program.cs

In Notepad, modify the WriteLine statement as follows:
Console.WriteLine("Hello C#, Welcome .NET Core!");

Save changes and exit Notepad.
At the prompt, enter the following commands:

dotnet restore
dotnet run

After a few seconds, all the dependency packages will be downloaded and your application will run, showing the following output:
[image: Creating a .NET Core application using Command Line Tools]

To compile the source code into an assembly containing IL code, enter the following command:

dotnet build

The output in the Command Prompt window should look like this:
[image: Creating a .NET Core application using Command Line Tools]

Enter the following commands to change to a subdirectory, list the files in it, and execute the compiled console application:

cd bin\Debug\dnxcore50
dir
Ch01_MySecondApp

Tip
The Debug is the name of the configuration and dnxcore50 is the name of the framework. This will change in the release version of the .NET Core.

Creating a .NET Core application using Visual Studio 2015

Start Visual Studio 2015 and open the
Chapter01 solution.
In Visual Studio, navigate to File | Add | New Project.
In the Add New Project dialog box, in the Installed Templates list on the left-hand side, choose Visual C#. In the list at the center, choose Console Application (Package). Enter the name Ch01_DotNetCore, and click on OK or press Enter:
[image: Creating a .NET Core application using Visual Studio 2015]

In the Solution Explorer window, right-click on the solution named Chapter01 and choose Properties.
Set the Startup Project to Current selection and click on OK.
Inside the Main method of the Program class, enter the following statements:
Console.WriteLine("Welcome, .NET Core!");
Console.ReadLine();

As you type code, you will notice that Visual Studio shows you which types and methods might not be available when targeting .NET Core. For example, the BufferHeight property is available when targeting the .NET Framework but not the .NET Core, as shown in the following screenshot as DNX 4.5.1 and DNX Core 5.0 respectively:
[image: Creating a .NET Core application using Visual Studio 2015]

You can tell the compiler to include statements available only when .NET Framework is available by using conditional compilation symbols, as follows:
#if DNX451
 Console.BufferHeight = 300;
#elseif DNXCORE50
 // some alternative for .NET Core
#endif

Tip
In Chapter 5, Using Specialized .NET Types, you will learn more about conditional compilation symbols so that you can create projects that target both the .NET Framework and the .NET Core with a single code base.

Note
The names of the conditional compilation symbols will change in the future. Visit https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md for more information.

In the Solution Explorer window, double-click on Properties for the Ch01_DotNetCore project.
In the Properties window, click on the
Debug tab, select the Use Specific Runtime checkbox, and select the latest version of the .NET Core platform for the x64 CPU architecture, as shown in the following screenshot:
[image: Creating a .NET Core application using Visual Studio 2015]

In the Visual Studio Debug menu, choose
Start or press F5.
Note that the Command Prompt window shows that the console application is running the dnx-coreclr-win-x64.1.0.0-rc1-update1 runtime:
[image: Creating a .NET Core application using Visual Studio 2015]

Tip
Throughout the first half of this book, I will show example code by creating console applications, so you can decide if you want to target the .NET Framework by choosing Console Application, or target the .NET Core by choosing Console Application (Package).

Managing source code with GitHub

Git is a commonly used source code management system. GitHub is a company, website, and desktop application that makes it easier to manage Git.
Visual Studio 2015 has built-in support for using Git with GitHub as well as Microsoft's own source code management system, named
Visual Studio Team Services.
I used GitHub to store solutions to all the practical exercises at the end of each chapter.

Using the Team Explorer window

In Visual Studio, navigate to View | Team Explorer menu to see the Team Explorer window:
[image: Using the Team Explorer window]

Although it is a good idea to sign up with an online source code management system provider, you can clone a GitHub repository without signing up for an account.

Cloning a GitHub repository

In the Team Explorer window, expand Local Git Repositories, click on the Clone menu, and then enter the following URL of a Git repository to clone it:

https://github.com/markjprice/cs6dotnetcore.git

Enter a path for the cloned Git repository:

C:\Code\Repos\cs6dotnetcore

Click on the Clone button:
[image: Cloning a GitHub repository]

Wait for the Git repository to clone locally:
[image: Cloning a GitHub repository]

You will now have a local copy of the complete solutions to all the hands-on practice exercises for this book.

Managing a GitHub repository

Double-click on the
cs6dotnetcore repo to open a detail view.
You can click on the options in the Project section to view Pull Requests and Issues, and other aspects of a repository.
You can double-click on an entry in the Solutions section to open it in the Solution Explorer:
[image: Managing a GitHub repository]

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore, with deeper research into the topics covered in this chapter.

Exercise 1.1 – test your knowledge

Answer the following questions:
	Why can a programmer use different languages to write applications that run on .NET?
	What do you type at the Command Prompt to compile the C# source code?
	What is the Visual Studio 2015 keyboard shortcut to save, compile, and run an application, without attaching the debugger?
	What is the Visual Studio 2015 keyboard shortcut to view the error list?
	What does ildasm.exe do?
	Is the .NET Core better than the .NET Framework?
	How is .NET Native different from the .NET Core?
	What does the .NET Portability Analyzer do?
	What is the difference between Git and GitHub?
	What is the name of the entry-point method of a .NET application and how should it be declared?

Exercise 1.2 – practice managing Visual Studio Windows

Practice closing and viewing windows, such as Error List and Toolbox.
You can pin, unpin, float, and rearrange windows by dragging their title bars. As you do so, Visual Studio will show blue tinted boxes and overlays to help you to understand where the window will be moved when you release the mouse button.
Tip
You can always reset Visual Studio back to one of the default layouts by clicking on the Tools menu and Import and Export Settings….

Exercise 1.3 – practice coding anywhere

You do not need Visual Studio to practice writing C#. Simply go to the .NET Fiddle website (https://dotnetfiddle.net/) and start coding. It's also a great way to share snippets of C# code with other developers:
[image: Exercise 1.3 – practice coding anywhere]

Exercise 1.4 – explore topics

Use the following links to read more details about the topics covered in this chapter:
	Visual Studio IDE User's Guide: https://msdn.microsoft.com/en-us/library/dn762121.aspx
	Solutions and Projects: https://msdn.microsoft.com/en-us/library/b142f8e7.aspx
	Using IntelliSense: https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
	Identifying and Customizing Keyboard Shortcuts in Visual Studio: https://msdn.microsoft.com/en-us/library/5zwses53.aspx
	Making your libraries compatible with .NET Core and other .NET Platforms: https://github.com/dotnet/corefx/blob/master/Documentation/project-docs/support-dotnet-core-instructions.md
	.NET Core: A general purpose managed framework: http://dotnet.github.io
	Leveraging existing code across .NET platforms: http://blogs.msdn.com/b/dotnet/archive/2014/08/06/leveraging-existing-code-across-net-platforms.aspx
	.NET Command Line Interface (CLI): https://github.com/dotnet/cli
	Use Visual Studio and Team Foundation Server with Git: https://msdn.microsoft.com/Library/vs/alm/Code/git/overview
	The easiest way to connect to your GitHub repositories in Visual Studio: https://visualstudio.github.com/

Summary

In this chapter, we set up the development environment, we used the Developer Command Prompt to compile and decompile an application, we used Visual Studio to create the same application and explore the features that make it so easy to use for development, and we discussed the differences between the .NET Framework, the .NET Core, and .NET Native.
In the next chapter, you will learn to speak C#.

Chapter 2. Speaking C#

This chapter is about the C# language—the grammar and vocabulary that you will use every day to write the source code for your applications.
Programming languages have many similarities to human languages, except that in programming languages, you can make up our own words, just like Dr. Seuss!
"And then, just to show them, I'll sail to Ka-Troo
And bring back an It-Kutch a Preep and a Proo
A Nerkle a Nerd and a Seersucker, too!"
If I Ran the Zoo

To learn to speak C#, you need to create some simple applications. To avoid overloading you with too much information too soon, the first few chapters of this book will use the simplest type of application: a console application.
This chapter covers the following topics:
	Understanding C# basics
	Declaring variables
	Building console applications
	Operating on variables

Understanding C# basics

Let's start with looking at the basics of the grammar and vocabulary of C#. In this chapter, you will create multiple console applications, each showing a feature of the C# language. To manage these projects, we will put them all in a single solution. Visual Studio 2015 can only have one solution open at any one time, but each solution can group together multiple projects. A project can build a console application, a Windows desktop application, a web application, and dozens of others.
Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N or choose the File | New | Project… menu.
In the New Project dialog, in the Installed Templates list, expand Other Project Types, and select Visual Studio Solutions. In the list at the center, select Blank Solution, type the name Chapter02, change the location to C:\Code, and then click on OK, as shown in the following screenshot:
[image: Understanding C# basics]

If you were to run File Explorer, you would see that Visual Studio has created a folder named Chapter02 with a Visual Studio solution named Chapter02 inside it, as follows:
[image: Understanding C# basics]

In Visual Studio, navigate to File | Add | New Project…, as shown in the following screenshot. This will add a new project to the blank solution:
[image: Understanding C# basics]

In the Add New Project dialog, in the Installed Templates list, select Visual C#. In the list at the center, select Console Application, type the name Ch02_Basics, ensure that .NET Framework 4.6 (or later) is selected at the top, and then click on OK.
[image: Understanding C# basics]

If you were to run File Explorer, you would see that Visual Studio has created a new folder with some files and subfolders inside it. You don't need to know what all these do yet. The code you will write will be stored in the file named Program.cs, as shown in the following screenshot:
[image: Understanding C# basics]

In Visual Studio, the Solution Explorer window on the right-hand side shows the same files as the ones in the preceding screenshot of the file system:
[image: Understanding C# basics]

Tip
Some folders and files, for example, the bin folder, are hidden by default in Solution Explorer. At the top of the window is a toolbar button named Show All Files. Toggle this button to show and hide folders and files.

The C# grammar

The grammar of C# includes statements and blocks.
Statements

In English, we indicate the end of a sentence with a full stop. A sentence can be composed of multiple words and phrases. The order of words is part of the grammar. For example, in English, we say: the black cat. The adjective, black, comes before the noun, cat. French grammar has a different order; the adjective comes after the noun, "le chat noir".
C# indicates the end of a statement with a semicolon. A statement can be composed of multiple variables and expressions. In the following statement, FullName is a variable and FirstName + LastName is an expression:
var FullName = FirstName + LastName;

You can add comments to explain your code using a double slash //.
The compiler ignores everything after the // until the end of the line; for example:
var TotalPrice = Cost + Tax; // Tax is 20% of the Cost

Tip
Visual Studio will add or remove the comment (double slashes) at the start of the currently selected line(s) if you press Ctrl + K + C or Ctrl + K + U.

To write a multi-line comment, use /* at the beginning and */ at the end of comment, as shown in the following code:
/*
This is a multi-line
comment.
*/

Blocks

In English, we indicate a paragraph with blank lines. C# indicates a block of code with curly brackets { }. Blocks often start with a declaration to indicate what the block is defining. For example, a block can define a namespace, a class, a method, or a statement. You will learn what these are later.
In your current project, note the grammar of C# written for you by the Visual Studio template. If you are using Visual Studio 2015, the first five lines will be slightly faded out in your editor window to indicate that they aren't necessary (but leave them in for now).
In the following code block, I have added some comments and a single statement inside the Main method:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks; // ; is the end of a statement

namespace Ch02_Basics
{
 class Program
 {
 static void Main(string[] args)
 { // the start of a block
 Console.WriteLine("Hello C#"); // a statement
 } // the end of a block
 }
}

The C# vocabulary

Some of the 79 predefined, reserved keywords that you will see in this chapter include using, namespace, class, static, int, string, double, bool, var, if, switch, break, while, do, for, and foreach.
Visual Studio shows C# keywords in blue to make them easier to spot. In the following screenshot, namespace, class, static, void, and string are part of the vocabulary of C#:
[image: The C# vocabulary]

There are another 25 contextual keywords that only have a special meaning in a specific context. But that still means there are only 104 actual C# keywords in the language.
English has more than 250,000 distinct words. How does C# get away with only having 104 keywords? Why is C# so difficult to learn if it has so few words?
One of the key differences between a human language and a programming language is that developers need to be able to define new "words" with new meanings.
Apart from the 104 keywords in the C# language, this book will teach you about some of the hundreds of thousands of "words" that other developers have defined. You will also learn how to define your own "words".
Tip
Programmers all over the world have to learn English because most programming languages use English words like namespace and class. There are programming languages that use other human languages, such as Arabic, but they are rare. This YouTube video shows a demonstration of an Arabic programming language: https://www.youtube.com/watch?v=77KAHPZUR8g.

Writing the code

Simple editors such as Notepad don't help you write correct English, as shown in the following screenshot:
[image: Writing the code]

Notepad won't help you write correct C# either.
[image: Writing the code]

Microsoft Word helps you write English by highlighting spelling mistakes with red squiggles (it should be ice cream) and grammatical errors with blue squiggles (sentences should have an upper-case first letter).
[image: Writing the code]

Similarly, Visual Studio helps you write C# code by highlighting spelling mistakes (the method name should be WriteLine with an uppercase L) and grammatical errors (statements must end with a semicolon).
Visual Studio constantly watches what you type and gives you feedback by highlighting problems with colored squiggly lines under your code and showing the Error List window as you can see in the following screenshot. You can ask Visual Studio to do a complete check of your code by choosing Build-Solution or pressing F6.
[image: Writing the code]

Verbs are methods

In English, verbs are doing or action words. In C#, doing or action words are called
methods. There are literally hundreds of thousands of methods available to C#.
In English, verbs change how they are written according to when in time the action happens. For example, Amir was jumping in the past, Beth jumps in the present, they jumped in the past, and Daz will jump in the future.
In C#, methods such as WriteLine change how they are called or executed according to the specifics of the action. This is called
overloading, which we will cover in more detail in Chapter 6, Building Your Own Types with Object-Oriented Programming. Consider the following example:
// outputs a carriage-return
Console.WriteLine();
// outputs the greeting and a carriage-return
Console.WriteLine("Hello Ahmed");
// outputs a formatted number and date
Console.WriteLine("Temperature on {0:D} is {1}°C.",
 DateTime.Today, 23.4);

A different analogy is that some words are spelled the same but have different meanings depending on the context.

Nouns are types, fields, and variables

In English, nouns are names that refer to things. In C#, their equivalents are types, fields, and variables. There are tens of thousands of types available in C#.

Counting types and methods

Let's write some code to find out how many types and methods are available to C# in our simple console application.
Don't worry about how this code works. It uses a technique called
reflection, which is beyond the scope of this book.
Start by adding the following statement at the top of the Program.cs file:
using System.Reflection;

Inside the Main method, type the following code:
// loop through the assemblies that this application references
foreach (var r in Assembly.GetExecutingAssembly()
 .GetReferencedAssemblies())
{
 // load the assembly so we can read its details
 var a = Assembly.Load(r.FullName);
 // declare and set a variable to count the total number of methods
 int methodCount = 0;
 // loop through all the types in the assembly
 foreach (var t in a.DefinedTypes)
 {
 // add up the counts of methods
 methodCount += t.GetMethods().Count();
 }
 // output the count of types and their methods
 Console.WriteLine($"{a.DefinedTypes.Count():N0} types with {methodCount:N0} methods in {r.Name} assembly.");
}

Press Ctrl + F5 to save, compile, and run your application without the debugger attached, or click on the Debug menu and then Start Without Debugging.
You will see the following output that shows the actual number of types and methods that are available to you in the simplest application:

3,233 types with 38,529 methods in mscorlib assembly.
974 types with 9,301 methods in System.Core assembly.

Tip
The actual numbers displayed may be different depending on the version of the .NET Framework that you are using. The numbers we see here are for version 4.6.1.

Add the following four lines of code at the top of the Main method. By declaring variables that use types in other assemblies, those assemblies are loaded with our application. This allows our code to see all the types and methods in them:
static void Main(string[] args)
{
 System.Data.SqlClient.SqlConnection connection;
 System.Xml.XmlReader reader;
 System.Xml.Linq.XElement element;
 System.Net.Http.HttpClient client;

Press Ctrl + F5 and view the output in the console:

3,233 types with 38,529 methods in mscorlib assembly.
1,105 types with 14,621 methods in System.Data assembly.
1,247 types with 19,139 methods in System.Xml assembly.
91 types with 1,632 methods in System.Xml.Linq assembly.
102 types with 1,201 methods in System.Net.Http assembly.
974 types with 9,301 methods in System.Core assembly.

Now you have a better sense of why learning C# is a challenge. There are many types with many methods to learn about, and other programmers are constantly defining new ones!

Declaring variables

All applications process data. Data comes in, data is processed, and data goes out.
Data usually comes into our program from files, databases, or user input. Data can be put temporarily in variables that will be stored in the memory of the running program. When the program ends, the data in memory is lost. Data is usually output to files and databases or to the screen or a printer.
When using variables, you should think about, first, how much space it takes in memory, and, next, how fast it can be processed.
We control this by picking an appropriate type. You can think of simple common types such as int and double as being differently sized storage boxes. A smaller box would take less memory but may not be processed as quickly.

Naming variables

There are naming conventions for variables and it is best practice to follow them, as shown in the following table:
	
Naming convention

	
Examples

	
Usage

	
Camel case

	

cost, orderDetail, dateOfBirth

	
Local variables and private members

	
Pascal/title case

	

Cost, OrderDetail, DateOfBirth

	
Type names and nonprivate members

The following code block shows an example of declaring and initializing a local variable. Note that you can output the name of a variable using a keyword introduced in C# 6, that is, nameof:
double heightInMetres = 1.88;
Console.WriteLine($"The variable {nameof(heightInMetres)} has the value {heightInMetres}.");

Storing text

For text, a single letter such as A is stored as a char type and is assigned using single-quotes around the literal value.
char letter = 'A';

Multiple characters like Bob are stored as a string type and are assigned using double quotes around the literal value:
string name = "Bob";

Storing numbers

Numbers are data that we want to perform an arithmetic calculation on (for example, multiplying).
Tip
A telephone number is not really a number. To decide whether a variable needs to be stored as a number or not, ask yourself whether you need to multiply two telephone numbers together or whether the number includes special characters such as (414)-555-1234. In these cases, the number is really a sequence of characters so should be stored as a string.

Numbers can be natural numbers, such as 42, used for counting (also called whole numbers), they can also be negative numbers, such as -42 (called integers), or they can be real numbers, such as 3.9 (with a fractional part), which are called single
 or double-precision floating point
 numbers in computing.
You might know that computers store everything as bits. A bit is either 0 or 1. This is called a
binary number system. Humans use a
decimal number system.
Storing whole numbers

The following table shows how computers store the number 10. Note the 1 bits in the 8 and the 2 columns; 8 + 2 = 10.
	
128

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
0

	
0

	
0

	
0

	
1

	
0

	
1

	
0

So, 10 in decimal is 00001010 in binary.
Computers can always exactly represent integers (positive and negative whole numbers) using the int type or one of its sibling types such as short.

Storing real numbers

Computers cannot always exactly represent floating point numbers. The float and double types store real numbers using single and double precision floating points.
The following table shows how a computer stores the number 12.75. Note the 1 bits in the 8, 4, ½, and ¼ columns.
8 + 4 + ½ + ¼ = 12¾ = 12.75.
	
128

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
.

	
½

	
¼

	
1/8

	
1/16

	
0

	
0

	
0

	
0

	
1

	
1

	
0

	
0

	
.

	
1

	
1

	
0

	
0

So, 12.75 in decimal is 00001100.1100 in binary.
As you can see, the number 12.75 can be exactly represented using bits. But some numbers can't, as you will see shortly.
Sizes of numbers in memory

In Visual Studio, click on File | Add | New Project…. In the Add New Project dialog, in the Installed Templates list, select Visual C#. In the list at the center, select Console Application, type the name Ch02_Numbers, and then click on OK.
In the Solution Explorer window, right-click on the solution and select Properties or press Alt + Enter. For Startup Project, select Current selection. From now on you can simply click on a project in the Solution Explorer and then press Ctrl + F5 to save, compile, and run that project.
[image: Sizes of numbers in memory]

Type the following code inside the Main method:
Console.WriteLine($"int uses {sizeof(int)} bytes and can store numbers in the range {int.MinValue:N0} to {int.MaxValue:N0}.");
Console.WriteLine($"double uses {sizeof(double)} bytes and can store numbers in the range {double.MinValue:N0} to {double.MaxValue:N0}.");
Console.WriteLine($"decimal uses {sizeof(decimal)} bytes and can store numbers in the range {decimal.MinValue:N0} to {decimal.MaxValue:N0}.");

Press Ctrl + F5 and view the output in the console:

int uses 4 bytes and can store numbers in the range -2,147,483,648 to 2,147,483,647.
double uses 8 bytes and can store numbers in the range -179,769,313,486,232,000 to 179,769,313,486,232,000.
decimal uses 16 bytes and can store numbers in the range -79,228,162,514,264,337,593,543,950,335 to 79,228,162,514,264,337,593,543,950,335.

Note that an int variable uses four bytes of memory and can store positive or negative numbers up to about 2 billion.
A double variable uses eight bytes of memory and can store much bigger values! A decimal variable uses 16 bytes of memory and can store big numbers, but not as big as a double.
Why might a double variable be able to store bigger numbers than a decimal variable yet use half the space in memory? Let's find out!

Comparing double and decimal

In Visual Studio, click on File | Add | New Project…. In the Add New Project dialog, in the Installed Templates list, select Visual C#. In the list at the center, select Console Application, type the name Ch02_NumberAccuracy, and then click on OK.
Enter the following code. Do not worry about understanding the syntax right now, although it isn't too hard to follow:
double a = 0.1;
double b = 0.2;
if (a + b == 0.3)
{
 Console.WriteLine($"{a} + {b} equals 0.3");
}
else
{
 Console.WriteLine($"{a} + {b} does NOT equal 0.3");
}

Press Ctrl + F5 and view the output in the console:

0.1 + 0.2 does NOT equal 0.3

The double type is NOT guaranteed to be accurate. Only use double when accuracy, especially when comparing two numbers, is not important, for example, when measuring a person's height.
The problem with the preceding code is how the computer stores the number 0.1 or multiples of 0.1. To represent 0.1 in binary, the computer stores 1 in the 1/16 column, 1 in the 1/128 column, 1 in the 1/1024 column, and so on. The number 0.1 in decimal is 0.0001001001001 repeating forever:
	
4

	
2

	
1

	
.

	
½

	
¼

	
1/8

	
1/16

	
1/32

	
1/64

	
1/128

	
1/256

	
1/512

	
1/1024

	
1/2048

	
0

	
0

	
0

	
.

	
0

	
0

	
0

	
1

	
0

	
0

	
1

	
0

	
0

	
1

	
0

Tip
Never compare double values using ==. During the First Gulf War, an American patriot missile battery used double values in its calculations. The inaccuracy caused it to fail to track and intercept an incoming Iraqi Scud missile, and 28 soldiers were killed, as you can read about at this link: https://www.ima.umn.edu/~arnold/disasters/patriot.html.

Copy and paste the code you wrote before that used doubles and then modify it to look like the following code:
decimal c = 0.1M; // M indicates a decimal literal value
decimal d = 0.2M;
if (c + d == 0.3M)
{
 Console.WriteLine($"{c} + {d} equals 0.3");
}
else
{
 Console.WriteLine($"{c} + {d} does NOT equal 0.3");
}

Press Ctrl + F5 and view the output in the console:

0.1 + 0.2 equals 0.3

The decimal type is accurate because it actually stores the number as a large integer and shifts the decimal point. For example, 0.1 is stored as 1 with a note to shift the decimal point one place to the left. 12.75 is stored as 1275 with a note to shift the decimal point two places to the left.
Tip

Best Practice

Use int for whole numbers and double for real numbers. Use decimal for money, CAD drawings, general engineering, and wherever accuracy of a real number is important.

The double type has some useful special values: double.NaN means not-a-number and double.Infinity means an infinitely large value. You can use these special values when comparing the value of double variables.

Storing Booleans

Booleans (bool) can only contain one of the two values: true or false, as shown in the following code. They are most commonly used to branch and loop, as you will see in Chapter 3, Controlling the Flow, Converting Types, and Handling Exceptions:
bool happy = true;
bool sad = false;

The object type

There is a special type named object that can store any type of data, but its flexibility comes at the cost of messier code and poor performance due to boxing and unboxing operations when storing a value type. You should avoid it whenever possible.
Add a new Console Application project named Ch02_SpecialTypes and add the following code to the Main method:
object height = 1.88; // storing a double in an object
object name = "Amir"; // storing a string in an object
int length1 = name.Length; // gives compile error!
int length2 = ((string)name).Length; // cast to access members

The object type has been available since the first version of C# but C# 2 and higher versions have better alternatives, which we will cover later, that provide the flexibility we want without the performance overhead.

The dynamic type

There is another special type named dynamic that can also store any type of data, and, like object, its flexibility comes at the cost of performance. Unlike object, the value stored in the variable can have its members invoked without an explicit cast, as shown in the following code:
dynamic anotherName = "Ahmed"; // storing a string in a dynamic object
int length = anotherName.Length; // this compiles but might throw an exception at run-time!

The limitation of dynamic is that Visual Studio cannot show IntelliSense to help you write the code because the compiler doesn't check at build time. Instead, the CLR checks for the member at runtime. The dynamic keyword was introduced in C# 4.

Local variables

Local variables are declared inside methods and they only exist during the call to that method. Once the method returns, the memory allocated to any local variables is released.
Add a new Console Application project named Ch02_Variables. Enter the following code to declare and assign values to some local variables inside the Main method. Note that we specify the type before the name of each variable:
int population = 66000000;
double weight = 1.88; // in kilograms
decimal price = 4.99M; // in pounds sterling
string fruit = "Apples"; // strings use double-quotes
char letter = 'Z'; // chars use single-quotes

Tip
Visual Studio 2015 will show green squiggles under each of the variable names to warn you that the variable is assigned but its value is never used.

Inferring the type of a local variable

You can use the var keyword to declare local variables. The compiler will infer the type from the literal value you assign after the assignment = operator.
A literal number without a decimal point is inferred as an int variable unless you add the L suffix, in which case it infers a long variable. A literal number with a decimal point is inferred as a double unless you add the M suffix, in which case it infers a decimal variable, or the F suffix, in which case it infers a float variable. Double quotes indicate a string variable, single quotes indicate a char, and the true and false values indicates a bool.
Modify your code to use var:
var population = 66000000;
var weight = 1.88; // in kilograms
var price = 4.99M; // in pounds sterling
var fruit = "Apples"; // strings use double-quotes
var letter = 'Z'; // chars use single-quotes
var happy = true;

Tip
Although using var is convenient, some developers avoid using it to make it easier for a code reader to understand the types in use in the code. Personally, I use it whenever the type is obvious. For example, the first statement is just as clear as the second in stating what the type of the xml variable is but is shorter than the second statement:
var xml = new XmlDocument();
XmlDocument xml = new XmlDocument();

Making a value type nullable

Most of the primitive types except string are value types. This means they must have a value. You can determine the default value of a type using the default() operator. The default value of an int variable is 0 (zero):
int defaultValueOfInt = default(int); // 0

Strings are reference types. This means that they can have a null value. The null value is a special value that indicates that the variable does not reference anything (yet).
Sometimes it is convenient to allow a value type to be null. You can do this by adding a question mark as a suffix to the type when declaring a variable, as shown in the following code:
int ICannotBeNull = 4;
ICannotBeNull = default(int); // 0
int? ICouldBeNull = null;
int result1 = ICouldBeNull.GetValueOrDefault(); // 0
ICouldBeNull = 4;
int result2 = ICouldBeNull.GetValueOrDefault(); // 4

Storing multiple values in an array

When you need to store multiple values of the same type, you can declare an array. For example, you might need to store four names in a string array.
Add the following lines of code to the end of the Main method. It declares an array for storing four strings. Then, it stores strings at index positions 0 to 3 (note that arrays count from zero, so the last item is one less than the length of the array). Finally, it loops through each item in the array using a for statement that we cover in more detail in Chapter 3, Controlling the Flow, Converting Types, and Handling Exceptions:
// declaring the size of the array
string[] names = new string[4];
// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";
for (int i = 0; i < names.Length; i++)
{
 Console.WriteLine(names[i]); // read the item at this index
}

Tip
Arrays are always of a fixed size, so you need to decide how many items you want to store before instantiating them. Arrays are useful for temporarily storing multiple items, but collections are more flexible when adding and removing items dynamically. We cover collections in Chapter 4, Using Common .NET Types.

Building console applications

Console applications are text based and are run at the Command Prompt. They typically perform simple tasks that need to be scripted such as compiling a file or encrypting a section of a configuration file. They can have arguments passed to them to control their behavior, for example, to compile a source file into a shared library:

csc my.cs /target:library

To encrypt the database connection strings section in a Web.config file, use the following command:

aspnet_regiis –pdf "connectionStrings" "c:\mywebsite\"

Displaying output to the user

The two most common tasks that a console application performs are writing and reading lines. We have already been using the WriteLine method to output. If we didn't want a carriage return at the end of lines, we could have used the Write method.
C# 6 has a handy new feature named string interpolation. This allows us to easily output one or more variables in a nicely formatted manner. A string prefixed with $ can use curly braces around the name of a variable to output the current value of that variable at that position in the string.
In the Ch02_Variables project, enter the following code in the Main method:
Console.Write($"The population of the UK is {population}. ");
Console.WriteLine($"The population of the UK is {population:N0}. ");
Console.WriteLine($"{weight}kg of {fruit} costs {price:C}.");

Press Ctrl + F5 and view the output in the console:

The population of the UK is 66000000. The population of the UK is 66,000,000.
1.88kg of Apples costs £4.99.

The variable can be formatted using special format codes. N0 means a number with commas for thousands and no decimal places. C means currency. The currency format will be determined by the current thread. If you run this code on a PC in the UK, you get pounds sterling. If you run this code on a PC in Germany, you get Euros.

Getting input from the user

We can get input from the user using the ReadLine method. This method waits for the user to type some text. As soon as the user presses Enter, whatever the user has typed is returned as a string.
Let's ask the user for their name and age. Later, we will convert the age into a number, but we will leave it as a string for now:
Console.Write("Type your name and press ENTER: ");
string name = Console.ReadLine();
Console.Write("Type your age and press ENTER: ");
string age = Console.ReadLine();
Console.WriteLine($"Hello {name}, you look good for {age}.");

Press Ctrl + F5 and view the output in the console. Enter a name and an age:

Type your name and press ENTER: Gary
Type your age and press ENTER: 34
Hello Gary, you look good for 34.

Importing a namespace

You might have noticed that unlike our very first application we have not been typing System before Console.

System is a namespace. Namespaces are like an address for a type. To refer to someone exactly, you might use Oxford.HighStreet.BobSmith, which tells us to look for a person named Bob Smith on the High Street in the city of Oxford.
The line System.Console.WriteLine tells the compiler to look for a method named WriteLine in a type named Console in a namespace named System.
To simplify our code, Visual Studio added a line at the top of the code file to tell the compiler to always look in the System namespace for types that haven't been prefixed with their namespace. We call this importing the namespace.
using System;

Simplifying the usage of the console in C# 6

In C# 6, the using statement can be used to further simplify our code.
Add the following line to the top of the file:
using static System.Console;

Now, we don't need to enter the Console type throughout our code. We can use Find and Replace to remove it. Select the first Console. line in your code (ensure that you select the dot after the word Console).
Press Ctrl + H to do a Quick Replace (ensure that the Replace… box is empty).
[image: Simplifying the usage of the console in C# 6]

Press Alt + A to replace all and then click on OK.
Close the replace box by clicking on the cross in its top-right corner.
[image: Simplifying the usage of the console in C# 6]

We can use a Visual Studio feature to clean up the extra using statements that we don't need.
Click on the using statements, click on the light bulb icon that appears (or press Ctrl + .), and then select Remove Unnecessary Usings:
[image: Simplifying the usage of the console in C# 6]

Our complete application now looks like the following code:
using static System.Console;

namespace Ch02_Variables
{
 class Program
 {
 static void Main(string[] args)
 {
 var population = 66000000;
 var weight = 1.88; // in kilograms
 var price = 4.99M; // in pounds sterling
 var fruit = "Apples"; // strings use double-quotes
 var letter = 'Z'; // chars use single-quotes
 var happy = true;

 int ICannotBeNull = 4;
 ICannotBeNull = default(int); // 0
 int? ICouldBeNull = null;
 var result1 = ICouldBeNull.GetValueOrDefault(); // 0
 ICouldBeNull = 4;
 var result2 = ICouldBeNull.GetValueOrDefault(); // 4

 // declaring the size of the array
 string[] names = new string[4];
 // storing items at index positions
 names[0] = "George";
 names[1] = "Jerry";
 names[2] = "Elaine";
 names[3] = "Cosmo";
 for (int i = 0; i < names.Length; i++)
 {
 WriteLine(names[i]); // read the item at this index
 }

 Write($"The population of the UK is {population}. ");
 WriteLine($"The population of the UK is {population:N0}. ");
 WriteLine($"{weight}kg of {fruit} costs {price:C}. ");

 Write("Type your name and press ENTER: ");
 string name = ReadLine();
 Write("Type your age and press ENTER: ");
 string age = ReadLine();
 WriteLine($"Hello {name}, you look good for {age}.");
 }
 }
}

Reading arguments and working with arrays

You have probably been wondering what the string[] args argument is in the Main method. It is an array used to pass arguments into a console application.
Add a new Console Application project named Ch02_Arguments.
Remember how we could pass the name of the file we wanted to compile to the compiler when we used the C# compiler at the Command Prompt? We can do the same thing with our own applications. For example, we can enter the following at the Command Prompt:

Ch02_Arguments apples bananas cherries

We would be able to read the fruit names by reading them from the args array.
Remember that arrays use the square bracket syntax to indicate multiple values. Arrays have a property named Length that tells us how many items are currently in the array. If there is at least one item, then we can access it by knowing its index. Indexes start counting from zero so the first item in an array is item 0.
Add a statement to statically import the System.Console type. Write a statement to output the number of arguments passed to the application. Remove the unnecessary using statements. Your code should now look like this:

using static System.Console;
namespace Ch02_Arguments
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine($"There are {args.Length} arguments.");
 }
 }
}

Tip
Remember to statically import the System.Console type to simplify your code, as these instructions will not be repeated.

Press Ctrl + F5 and view the output in the console:

There are 0 arguments.

To pass in some arguments, view the Solution Explorer window, and inside the Ch02_Arguments project, double-click on Properties:
[image: Reading arguments and working with arrays]

In the Properties window, select the Debug tab, and in the Command line arguments box, enter a space-separated list of four arguments as shown in the code and screenshot that follows:

firstarg second-arg third:arg "fourth arg"

Note that you can use almost any character in an argument including hyphens and colons. If you need to use a space inside an argument, you must wrap it in double quotes.
[image: Reading arguments and working with arrays]

Press Ctrl + F5 and view the output in the console:

There are 4 arguments.

To enumerate or iterate (that is, loop through) the values of those four arguments, add these three lines of highlighted code after outputting the length of the array:
WriteLine($"There are {args.Length} arguments.");
foreach (string arg in args)
{
 WriteLine(arg);
}

We will now use these arguments to allow the user to pick a color for the background, foreground, width and height of the console window.
Change the arguments in the Properties window to look like this:
[image: Reading arguments and working with arrays]

Import the System namespace by adding the following line to the top of the code file if it is not already there:
using System;

Add the highlighted code on top of the existing code like this:

ForegroundColor = (ConsoleColor)Enum.Parse(typeof(ConsoleColor), args[0], true);
BackgroundColor = (ConsoleColor)Enum.Parse(typeof(ConsoleColor), args[1], true);
WindowWidth = int.Parse(args[2]);
WindowHeight = int.Parse(args[3]);

WriteLine($"There are {args.Length} arguments.");
foreach (var arg in args)
{
 WriteLine(arg);
}

We needed to import the System namespace so that the compiler knows about the ConsoleColor and Enum types. If you cannot see either of these types in the IntelliSense list, it is because you are missing the using System; statement.
Press Ctrl + F5. The console window is now a different size and uses different colors for the foreground and background text.
[image: Reading arguments and working with arrays]

Operating on variables

Operators
 apply simple operations, such as addition and multiplication, to operands, such as numbers. They usually return a new value that is the result of the operation.
Most operators are binary, meaning that they work on two operands:
var result = FirstOperand operator SecondOperand;

Some operators are unary meaning they work on a single operand. A ternary operator works on three operands.

Experimenting with unary operators

Two common unary operators are used to increment ++ and decrement -- a number.
In Visual Studio, from the View menu, choose Other Windows, and then C# Interactive. Enter the following code:

> int i = 3;
> i
3

Note that when you enter a full statement ending in a semicolon, it is executed when you press Enter.
The first statement uses the assignment operator = to assign the value 3 to the variable i. When you enter a variable name at the prompt, it returns the variable's current value.
Enter the following statements and before pressing Enter, try to guess what the value of x and y will be:

> int x = 3;
> int y = x++;

Now check the values of x and y. You might be surprised to see that y has the value 3:

> x
4
> y
3

The variable y has the value 3 because the ++ operator executes after the assignment. This is known as postfix. If you need to increment before assignment, use prefix, as follows:

> int x = 3;
> int y = ++x;
> x
4
> y
4

You can decrement a variable using the -- operator.
Tip

Best Practice

Due to the confusion between prefix and postfix for the increment and decrement operators when combined with assignment, the Swift programming language designers plan to drop support for this operator in version 3. My recommendation for usage in C# is to never combine the use of ++ and -- operators with an assignment =. Perform the operations as separate statements.

Experimenting with arithmetic operators

Arithmetic operators allow you to perform arithmetics on numbers. Enter the following in the C# Interactive window:

> 11 + 3
14
> 11 - 3
8
> 11 * 3
33
> 11 / 3
3
> 11 % 3
2
> 11.0 / 3
3.6666666666666665

To understand the divide (/) and modulus (%) operators when applied to integers (whole numbers), you need to think back to primary school.
Imagine you have eleven sweets and three friends. How can you divide the sweets between your friends? You can give three sweets to each of your friends and there will be two left over. Those two are the modulus, also known as remainder. If you have twelve sweets, then each friend gets four of them and there are none left over. So the remainder is 0.
If you start with a real number (such as 11.0), then the divide operator returns a floating point value, such as 3.6666666666665, rather than a whole number.

Comparison and Boolean operators

Comparison and Boolean operators either return true or false. In the next chapter, we will use comparison operators in the if and while statements to check for conditions.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore the topics covered in this chapter with deeper research.

Exercise 2.1 – test your knowledge

What type would you choose for the following "numbers"?
	A person's telephone number
	A person's height
	A person's age
	A person's salary
	A book's ISBN
	A book's price
	A book's shipping weight
	A country's population
	The number of stars in the Universe
	The number of employees in each of the small or medium businesses in the UK (up to about 50,000 employees per business)

Exercise 2.2 – practice number sizes and ranges

Create a Console Application project named Ch02_Exercise02 that outputs the number of bytes in memory that each of the following number types use and the minimum and maximum possible values they can have: sbyte, byte, short, ushort, int, uint, long, ulong, float, double, and decimal.
Tip
Read the online MSDN documentation for Composite Formatting, available at https://msdn.microsoft.com/en-us/library/txafckwd(v=vs.110).aspx, to learn how to align text in a console application.

The output of your application should look something like the following screenshot:
[image: Exercise 2.2 – practice number sizes and ranges]

Exercise 2.3 – explore topics

Use the following links to read more about the topics covered in this chapter:
	C# Keywords: https://msdn.microsoft.com/en-us/library/x53a06bb.aspx
	Integral Types Table (C# Reference): https://msdn.microsoft.com/en-us/library/exx3b86w.aspx
	Floating-Point Types Table (C# Reference): https://msdn.microsoft.com/en-us/library/9ahet949.aspx
	decimal (C# Reference): https://msdn.microsoft.com/en-us/library/364x0z75.aspx
	bool (C# Reference): https://msdn.microsoft.com/en-us/library/c8f5xwh7.aspx
	char (C# Reference): https://msdn.microsoft.com/en-us/library/x9h8tsay.aspx
	string (C# Reference): https://msdn.microsoft.com/en-us/library/362314fe.aspx
	var (C# Reference): https://msdn.microsoft.com/en-us/library/bb383973.aspx
	Nullable Types (C# Programming Guide): https://msdn.microsoft.com/en-us/library/1t3y8s4s.aspx
	Standard Numeric Format Strings: https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx
	Custom Numeric Format Strings: https://msdn.microsoft.com/en-us/library/0c899ak8(v=vs.110).aspx
	Custom Date and Time Format Strings: https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
	Composite Formatting: https://msdn.microsoft.com/en-us/library/txafckwd(v=vs.110).aspx
	Console Class: https://msdn.microsoft.com/en-us/library/system.console(v=vs.110).aspx
	C# Operators: https://msdn.microsoft.com/en-us/library/6a71f45d.aspx
	Languages features in C# 6 and VB 14: https://github.com/dotnet/roslyn/wiki/Languages-features-in-C%23-6-and-VB-14

Summary

In this chapter, you learned how to declare variables with an explicit type or inferred with the var keyword, we discussed some of the built-in types for numbers, text, and Booleans, we covered how to choose between number types, and we experimented with some operators.
In the next chapter, you will learn about branching, looping, converting between types, and handling exceptions.

Chapter 3. Controlling the Flow, Converting Types, and Handling Exceptions

This chapter is about writing code that makes decisions, repeats blocks of statements, converts between types, and handles errors (known as exceptions). You will also learn about the best places to look for help.
This chapter covers the following topics:
	Selection statements
	Iteration statements
	Casting and converting between types
	Handling exceptions
	Checking for overflow
	Looking for help

Selection statements

Every application needs to be able to select from choices and branch along different code paths. The two selection statements in C# are if and switch, also known as if-else and switch-case. You can use if for all your code but switch can simplify your code in some common scenarios.
Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N or choose File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the list at the center, select Console Application, type the name Ch03_SelectionStatements, change the location to C:\Code, type the solution name Chapter03, and then click on OK.
At the top of the Program.cs file, statically import the System.Console type, as follows:
using static System.Console;

The if-else statement

The if-else statement determines which branch to follow by evaluating a Boolean expression. The else block is optional. if-else statements can be nested and combined. Each Boolean expression can be independent of the others.
Add the following statements to the Main method to check whether this console application has any arguments passed to it:
if (args.Length == 0)
{
 WriteLine("There are no arguments.");
}
else
{
 WriteLine("There is at least one argument.");
}

Since there is only a single statement inside each block, this code can be written without the curly braces, as follows:
if (args.Length == 0)
 WriteLine("There are no arguments.");
else
 WriteLine("There is at least one argument.");

This style of the if-else statement is not recommended because it can introduce serious bugs, for example, the infamous #gotofail bug in Apple's iPhone operating system. For 18 months after Apple's iOS 6 was released, it had a bug in its Secure Sockets Layer (SSL) encryption code, which meant that any user running Safari to connect to secure websites, such as their bank, for the purpose of payment transactions and other online banking activities, were not properly secure because an important check was being accidently skipped.

https://gotofail.com/

Just because you can leave out the curly braces, doesn't mean you should. Your code is not "more efficient" without them, instead, it is less maintainable and potentially more dangerous, as this tweet points out:
[image: The if-else statement]

The switch-case statement

The switch-case statement is different from the if-else statement because it compares a single expression against a list of possible cases. Every case is related to the single expression. Every case must end with the break keyword (such as case 1 in the following code) or the goto case keywords, (such as case 2 in the following code) or they should have no statements (such as case 3 in the following code).
Enter the following code after the if-else statement you wrote previously. Note that the first line is a label that can be jumped to and the second line generates a random number. The switch statement branches based on the value of this random number:
A_label:
 var number = (new Random()).Next(1, 7);
 WriteLine($"My random number is {number}");
 switch (number)
 {
 case 1: // must be a literal value
 WriteLine("One");
 break; // jumps to end of switch statement
 case 2:
 WriteLine("Two");
 goto case 1;
 case 3:
 case 4:
 WriteLine("Three or four");
 goto case 1;
 case 5:
 // go to sleep for half a second
 System.Threading.Thread.Sleep(500);
 goto A_label;
 default:
 WriteLine("Default");
 break;
 } // end of switch statement

You can use the goto keyword to jump to another case or a label. The goto keyword is frowned upon by most programmers but can be the best solution in some scenarios. Use it sparingly.
Run the program by pressing Ctrl + F5. Run it multiple times to see what happens in various cases of random numbers, as shown in the following output:

There are no arguments.
My random number is 5
My random number is 3
Three or four
One

Autoformatting code

Let's take a diversion for a minute to talk about formatting. Code is easier to read and understand if it is consistently indented and spaced out.
If your code can compile, then Visual Studio can automatically format it so it's nicely spaced and indented.
Type the following code (Visual Studio will autoformat even at the end of each line so when it does so, force the code to be improperly spaced out as shown):
var x =3;
if(x==3)
{ WriteLine("three");
}

Press Shift + F6 and wait for your code to build, and then press Ctrl + K, D. Your code will now look like this:
var x = 3;
if (x == 3)
{
 WriteLine("three");
}

Iteration statements

Iteration statements repeat a block either while a condition is true or for each item in a sequence. The choice of which statement to use is based on a combination of ease of understanding to solve the logic problem and personal preference.
Add a new Console Application project named Ch03_IterationStatements.
Set the solution's startup project to be the current selection.

The while statement

The while statement evaluates a Boolean expression and continues to loop while it is true.
Type the following code inside the Main method (remember to statically import the System.Console type!):
int x = 0;
while (x < 10)
{
 WriteLine(x);
 x++;
}

Press Ctrl + F5 and view the output in the console:

0
1
2
3
4
5
6
7
8
9

The do-while statement

The do-while statement is like while except the Boolean expression is checked at the bottom of the block instead of the top, which means that it always executes at least once.
If you want to try the code for the do-while statement, then select all the previous statements and press Ctrl + K, C to comment them out and then enter the following code and run it:
int x = 0;
do
{
 WriteLine(x);
 x++;
} while (x < 10);

When you then press Ctrl + F5, you will see that the results are the same as those we got earlier.

The for statement

The for statement is like while except that it is more succinct. It combines an initializer statement that executes once at the start of the loop, a Boolean expression to check whether the loop should continue, and an incrementer that executes at the bottom of the loop.
The for statement is commonly used with an integer counter, although it doesn't have to be as shown in the following code:
for (int y = 0; y < 10; y++)
{
 WriteLine(y);
}

The foreach statement

The foreach statement is a bit different from the other three. It is used to perform a block of statements on each item in a sequence (for example, an array or collection). Each item is read-only and if the sequence is modified during iteration, for example, by adding or removing an item, then an exception will be thrown.
Type the following code inside the Main method, which creates an array of string variables and then uses a foreach statement to enumerate and output the length of each of them:
string[] names = { "Adam", "Barry", "Charlie" };
foreach (string name in names)
{
 WriteLine($"{name} has {name.Length} characters.");
}

Press Ctrl + F5 and view the output in the console:

Adam has 4 characters.
Barry has 5 characters.
Charlie has 7 characters.

How does the foreach statement actually work?

Technically, the foreach statement will work on any type that implements an interface called IEnumerable, but you don't need to worry about what an interface is for now. You will learn about interfaces in Chapter 7, Implementing Interfaces and Inheriting Classes.
If you use a tool like ildasm, then you will see that the compiler turns the foreach statement in the preceding code into something like this:
IEnumerator e = names.GetEnumerator();
while(e.MoveNext())
{
 string name = (string)e.Current; // Current is read-only!
 WriteLine($"{name} has {name.Length} characters.");
}

Tip
Due to the use of an iterator, the variable declared in a foreach statement cannot be used to modify the value of the current item.

Casting and converting between types

You will often need to convert between different types.
Add a new Console Application project named Ch03_CastingConverting.

Casting from numbers to numbers

It is safe to implicitly cast an int variable into a double variable.
In the Main method, enter the following statements:
int a = 10;
double b = a;
WriteLine(b);

You cannot implicitly cast a double variable into an int variable because it is potentially unsafe and would lose data.
In the Main method, enter the following statements:
double c = 9.8;
int d = c; // compiler gives an error for this line
WriteLine(d);

Press Ctrl + W, E to view the Error List, as shown in the following screenshot:
[image: Casting from numbers to numbers]

You must explicitly cast a double into an int variable using a pair of round brackets around the type you want to cast the double into. The pair of round brackets is the cast operator. Even then you must beware that the part after the decimal point will be trimmed off without warning.
Modify the assignment statement for the variable d, as shown in the following code:
double c = 9.8;
int d = (int)c;
WriteLine(d); // d is 9 losing the .8 part

We must do a similar operation when moving values between larger integers and smaller integers. Again, beware that you might lose information because any value too big will get set to -1!
Enter the following code:
long e = 10;
int f = (int)e;
WriteLine($"e is {e} and f is {f}");
e = long.MaxValue;
f = (int)e;
WriteLine($"e is {e} and f is {f}");

Press Ctrl + F5 and view the output in the console:

e is 10 and f is 10
e is 9223372036854775807 and f is -1

Using the Convert type

An alternative to using the casting operator is to use the System.Convert type.
At the top of the Program.cs file, type the following code:
using static System.Convert;

We can now use a lot of ToSomeType methods.
double g = 9.8;
int h = ToInt32(g);
WriteLine($"g is {g} and h is {h}");

Note that one difference between casting and converting is that converting rounds the double value up to 10 instead of trimming the part after the decimal point.
Press Ctrl + F5 and view the output in the console:

g is 9.8 and h is 10

The System.Convert type can convert to and from all the C# number types as well as Booleans, strings, and dates and times.

Rounding numbers

You have now seen that the cast operator trims the decimal part of a real number and that the convert methods round up or down. But what is the rule for rounding?
In British primary schools, children are taught to round up if the decimal part is .5 or higher and round down if the decimal part is less.
Enter the following code beneath the code that you have already written to see the effect of converting four double variables to int variables:
double i = 9.49;
double j = 9.5;
double k = 10.49;
double l = 10.5;
WriteLine($"i is {i}, ToInt(i) is {ToInt32(i)}");
WriteLine($"j is {j}, ToInt(j) is {ToInt32(j)}");
WriteLine($"k is {k}, ToInt(k) is {ToInt32(k)}");
WriteLine($"l is {l}, ToInt(l) is {ToInt32(l)}");

Press Ctrl + F5 and view the output in the console:

i is 9.49, ToInt(i) is 9
j is 9.5, ToInt(j) is 10
k is 10.49, ToInt(k) is 10
l is 10.5, ToInt(l) is 10

Note that the rule for rounding in C# is subtly different. It will round up if the decimal part is .5 or higher and the non-decimal part is odd, but it will round down if the non-decimal part is even. It always rounds down if the decimal part is less than .5.
This rule is known as
Banker's Rounding and it is preferred because it reduces bias. Sadly, other languages such as JavaScript use the primary school rule.
Tip

Best Practice

For every programming language that you use, check its rounding rules. They may not work the way you expect!

Converting from any type to a string

The most common conversion is from any type into a string variable, so all types have a method named ToString that they inherit from the System.Object class (which can be simplified using the object keyword).
The ToString method converts the current value of any variable into a textual representation. Some types can't be sensibly represented as text so they return their namespace and type name. Enter the following statements beneath the code that you have already written to declare four variables of types int, bool, DateTime, and object, and see what their implementations of ToString return:
int number = 12;
WriteLine(number.ToString());
bool boolean = true;
WriteLine(boolean.ToString());
DateTime now = DateTime.Now;
WriteLine(now.ToString());
object me = new object();
WriteLine(me.ToString());

Press Ctrl + F5 and view the output in the console:

12
True
04/03/2016 13:48:54
System.Object

Parsing from strings to numbers or dates and times

The second most common conversion is from strings to numbers or dates and times. The opposite of ToString is Parse. Only a few types have a Parse method.
Add a new Console Application project named Ch03_Parsing.
Add the following statements to the bottom of the Main method:
int age = int.Parse("27");
DateTime birthday = DateTime.Parse("4 July 1980");
WriteLine($"I was born {age} years ago.");
WriteLine($"My birthday is {birthday}.");
WriteLine($"My birthday is {birthday:D}.");

Press Ctrl + F5 and view the output in the console:

I was born 27 years ago.
My birthday is 04/07/1980 00:00:00.
My birthday is 04 July 1980.

One problem with the Parse method is that it gives errors if the string cannot be converted.
Add the following statements to the bottom of the Main method:
int count = int.Parse("abc");

Press Ctrl + F5 and view the output in the console:

Unhandled Exception: System.FormatException: Input string was not in a correct format.

To avoid errors, you can use the TryParse method instead. TryParse attempts to convert the input string and returns true if it can convert it and false if it cannot. The out keyword is required to allow the TryParse method to set the count variable when the conversion works.
Replace the int count declaration with the following statements:
Write("How many eggs are there? ");
int count;
string input = Console.ReadLine();
if (int.TryParse(input, out count))
{
 WriteLine($"There are {count} eggs.");
}
else
{
 WriteLine("I could not parse the input.");
}

Run the application twice. The first time, enter 12. You will see the following output:

How many eggs are there? 12
There are 12 eggs.

The second time, enter twelve. You will see the following output:

How many eggs are there? twelve
I could not parse the count.

Tip
You can also use the Convert type, but like the Parse method, it gives an error if it cannot convert.

Handling exceptions

You've seen several scenarios when errors have occurred. C# calls that an exception being thrown. A best practice is to avoid writing code that will throw an exception whenever possible, but sometimes you can't. In those scenarios, you must catch the exception and handle it.
As you have seen, the default behavior of a console application is to display details about the exception in the console window and then stop running the application.
The default behavior of a Windows desktop application is to display details about the exception in a dialog box and allow the user to choose to either continue or stop running the application.
You can have more control over how you want to handle exceptions using the try-catch statement.
Add a new Console Application project named Ch03_HandlingExceptions.

The try-catch statement

When you know that a statement can cause an error, you should wrap that statement in a try block. For example, parsing from a string to a number can cause an error. We do not have to do anything inside the catch block. When the following code executes, the error will get caught and not displayed and the Console Application will continue running.
In the Main method, add the following statements:
WriteLine("Before parsing");
Write("What is your age? ");
string input = Console.ReadLine();
try
{
 int age = int.Parse(input);
 WriteLine($"You are {age} years old.");
}
catch
{

}
WriteLine("After parsing");

Run the program by pressing Ctrl + F5 and enter a valid age, for example, 43:

Before parsing
What is your age? 43
You are 43 years old.
After parsing

Run the program and enter an invalid age, for example, kermit;

Before parsing
What is your age? kermit
After parsing

It can be useful to see the type of error that occurred.
Catching all exceptions

Modify the catch statement to look like this:

catch(Exception ex)
{
 WriteLine($"{ex.GetType()} says {ex.Message}");
}

Run the program and again enter an invalid age, for example, kermit:

Before parsing
What is your age? kermit
System.FormatException says Input string was not in a correct format.
After parsing

Catching specific exceptions

Now that we know which specific type of exception occurred, we can improve our code by catching just that type of exception and customizing the message that we display to the user.
Leave the existing catch block but add the following code above it:

catch (FormatException)
{
 WriteLine("The age you entered is not a valid number format.");
}
catch (Exception ex)
{
 WriteLine($"{ex.GetType()} says {ex.Message}");
}

Run the program and again enter an invalid age, for example, kermit:

Before parsing
What is your age? kermit
The age you entered is not a valid number format.
After parsing

The reason we want to leave the more general catch below is because there might be other types of exception that can occur. Run the program and enter a number that is too big for an integer, for example, 9876543210:

Before parsing
What is your age? 9876543210
System.OverflowException says Value was either too large or too small for an Int32.
After parsing

Let's add another catch for this new type of exception:

catch(OverflowException)
{
 WriteLine("Your age is a valid number format but it is either too big or small.");
}
catch (FormatException)
{
 WriteLine("The age you entered is not a valid number format.");
}

Rerun the program one more time and enter a number that is too big:

Before parsing
What is your age? 9876543210
Your age is a valid number format but it is either too big or small.
After parsing

Tip
The order in which you catch exceptions is important. The correct order is related to the inheritance hierarchy of the exception types. You will learn about inheritance in Chapter 6, Building Your Own Types with Object-Oriented Programming. But don't worry too much about this—the compiler will give you build errors if you catch exceptions in the wrong order anyway.

The finally statement

Sometimes we would want to ensure that some code executes regardless of whether an exception occurs or not. To do this, we use a finally statement.
Add a new Console Application project named Ch03_Finally.
A common scenario in which you would want to use finally is when working with files and databases. When you open a file or a database, you are using resources outside of .NET. These are called unmanaged resources
 and must be disposed of when you are done working with them. To guarantee that they are disposed of, we can call the Dispose method inside of a finally block.
Tip
You will learn about files and databases in more detail in later chapters. For now, focus on the code that we write in the finally block.

Import the System.IO namespace at the top of the code file:
using System.IO;

Type the following code in the Main method:
FileStream file = null;
StreamWriter writer = null;
try
{
 file = File.OpenWrite(@"c:\Code\file.txt");
 writer = new StreamWriter(file);
 writer.WriteLine("Hello C#!");
}
catch (Exception ex)
{
 // if the folder doesn't exist the exception will be caught
 WriteLine($"{ex.GetType()} says {ex.Message}");
}
finally
{
 if(writer != null)
 {
 writer.Dispose();
 WriteLine("The writer's unmanaged resources have been disposed.");
 }
 if (file != null)
 {
 file.Dispose();
 WriteLine("The file's unmanaged resources have been disposed.");
 }
}

Press Ctrl + F5 and view the output in the console:

The writer's unmanaged resources have been disposed.
The file's unmanaged resources have been disposed.

Simplifying disposal with the using statement

If you don't need to catch any exceptions, then you can simplify the code that needs to check for a non-null object and then call its Dispose method, as follows:
using (FileStream file2 = File.OpenWrite(@"c:\Code\file2.txt"))
{
 using (StreamWriter writer2 = new StreamWriter(file2))
 {
 writer.WriteLine("Hello C#!");
 } // automatically calls Dispose if the object is not null
} // automatically calls Dispose if the object is not null

The compiler changes your code into the longer version but without a catch block. You are allowed to use nested try-catch statements, so if you do want to catch any exceptions you can do this.
Add this code after the existing code. It will create a file named file2.txt:
using (FileStream file2 = File.OpenWrite(@"c:\Code\file2.txt"))
{
 using (StreamWriter writer2 = new StreamWriter(file2))
 {
 try
 {
 Writer2.WriteLine("Hello C#!");
 }
 catch (Exception ex)
 {
 WriteLine($"{ex.GetType()} says {ex.Message}");
 }
 }
}

Tip
Many types, including FileStream and StreamWriter mentioned earlier, provide a Close method as well as a Dispose method. In the .NET Framework, you can use either because they do the same thing. In the .NET Core, Microsoft has simplified the API so you must use Dispose.

Checking for overflow

Earlier, we saw that when casting between number types it was possible to lose information, for example, when casting from a long variable to an int variable. If the value stored in a type is too big, it will overflow.
Add a new Console Application project named Ch03_CheckingForOverflow.

The checked statement

The checked statement tells .NET to throw an exception when an overflow happens instead of allowing to it happen silently.
We set the initial value of an int variable to its maximum value minus one. Then, we increment it several times, outputting its value each time. Note that once x gets above its maximum value, it overflows to its minimum value and continues incrementing from there.
Type the following code in the Main method and run the program:
int x = int.MaxValue - 1;
WriteLine(x);
x++;
WriteLine(x);
x++;
WriteLine(x);
x++;
WriteLine(x);

Press Ctrl + F5 and view the output in the console:

2147483646
2147483647
-2147483648
-2147483647

Now let's get the compiler to warn us about the overflow using the checked statement:

checked
{
 int x = int.MaxValue - 1;
 WriteLine(x);
 x++;
 WriteLine(x);
 x++;
 WriteLine(x);
 x++;
 WriteLine(x);
}

Press Ctrl+F5 and view the output in the console:

2147483646
2147483647
Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an overflow.

Just like any other exception, we could wrap these statements in a try-catch block and display a nicer error message for the user:
try
{
 // previous code goes here
}
catch(OverflowException)
{
 WriteLine("The code overflowed but I caught the exception.");
}

Press Ctrl + F5 and view the output in the console:

2147483646
2147483647
The code overflowed but I caught the exception.

The unchecked statement

A related keyword is unchecked. Type the following statement at the end of the previous statements. The compiler will not compile this statement because it knows it would overflow:
int x = int.MaxValue + 1;

Press F6 to build and notice the error, as shown in the following screenshot:
[image: The unchecked statement]

Note that this is a
compile-time check. To disable compile-time checks, we can wrap the statement in an unchecked block, as shown in the following code:

unchecked
{
 int x = int.MaxValue + 1;
 WriteLine(x);
 x--;
 WriteLine(x);
 x--;
}

Press Ctrl + F5 and view the output in the console:

2147483646
2147483647
The code overflowed but I caught the exception.
-2147483648
2147483647
2147483646

Of course it would be pretty rare that you would want to explicitly switch off a check like this because it allows an overflow to occur. But, perhaps, you can think of a scenario where you might want that behavior.

Looking for help

This section is about how to find quality information about programming on the Web.

MSDN

The definitive resource for getting help about C# and .NET is the
Microsoft Developer Network (MSDN).
Visual Studio is integrated with MSDN, so if you press F1 inside a C# keyword or type, then it will open your browser and take you to the official documentation.
Almost all the reference URLs at the end of chapters in this book will take you to MSDN.

Getting the definition of code

Another useful keystroke is F12. This will show what the original source code looks like. It uses a similar technique as IL DASM to reverse engineer the source code from Microsoft assemblies.
Enter the following code, click inside int, and then press F12 (or right-click and choose Go To Definition):
int x;

In the new code window that appears, you can see that int is in the mscorlib.dll assembly, it is named Int32, it is in the System namespace, and int is therefore an alias for System.Int32.
[image: Getting the definition of code]

Microsoft defined Int32 using a struct keyword, meaning that it is a value type stored on the stack. You can also see that Int32 implements interfaces such as IComparable and has constants for its maximum and minimum possible values.
In the code editor window, find the Parse methods and click on the small box with a plus symbol in the Parse methods to expand the code like I have done in the following screenshot:
[image: Getting the definition of code]

In the comment, you will see that Microsoft has documented what exceptions might occur if you call this method (ArgumentNullException, FormatException, and OverflowException).
Now we know that we need to wrap a call to this method in a try-catch statement and which exceptions to catch.

StackOverflow

StackOverflow
 is the most popular third-party website for getting answers to difficult programming questions. It is so popular that search engines such as DuckDuckGo
 have a special way to write a query to search the site.
Go to DuckDuckGo.com and enter the following query:

!so securestring

You will get the following results:
[image: StackOverflow]

Google

You can search Google with advanced search options to increase the likelihood of finding what you need.
For example, if you are searching for information about garbage collection
 using a simple Google query, you would see a Wikipedia definition of garbage collection in computer science and then a list of garbage collection services in your local area.
[image: Google]

We can improve the search by restricting it to a useful site like StackOverflow, as shown in the following screenshot:
[image: Google]

We can improve the search even more by removing languages that we might not care about, such as C++, as shown in the following screenshot:
[image: Google]

Design patterns

A design pattern is a general solution to a common problem. Programmers have been solving the same problems over and over. When the community discovers a good reusable solution, we call it a design pattern. Many design patterns have been documented over the years.
Microsoft has a group called patterns & practices
 that specializes in documenting and promoting design patterns for Microsoft products.
Tip

Best Practice

Before writing new code, search to see if someone else has already solved the problem in a general way.

Practice and explore

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into this chapter's topics.

Exercise 3.1 – test your knowledge

Answer the following questions:
	What happens when you divide an int variable by 0?
	What happens when you divide a double variable by 0?
	What happens when you overflow an int variable, that is, set it to a value beyond its range?
	What is the difference between x = y++; and x = ++y;?
	What is the difference between break, continue, and return when used inside a loop statement?
	What are the three parts of a for statement and which of them are required?
	What is the difference between the = and == operators?

Exercise 3.2 – explore loops and overflow

What will happen if this code executes?
int max = 500;
for (byte i = 0; i < max; i++)
{
 WriteLine(i);
}

Add a new Console Application named Ch03_Exercise02 and enter the preceding code. Run the application by pressing Ctrl + F5. What happens?
What code could you add (don't change any of the preceding code) to warn us about the problem?

Exercise 3.3 – practice loops and operators

FizzBuzz is a group word game for children to teach them about division. Players take turns to count incrementally, replacing any number divisible by three with the word "fizz", any number divisible by five with the word "buzz", and any number divisible by both with "fizzbuzz".
Some interviewers give applicants simple FizzBuzz-style problems to solve during interviews. Most good programmers should be able to write out on paper or whiteboard a program to output a simulated FizzBuzz game in under a couple of minutes.
Want to know something worrisome? Many computer science graduates can't. You can even find senior programmers who take more than 10-15 minutes to write a solution.
	 	"199 out of 200 applicants for every programming job can't write code at all. I repeat: they can't write any code whatsoever."
	
	 	--Reginald Braithwaite

This quote is taken from http://blog.codinghorror.com/why-cant-programmers-program/.
Refer to the following link for more information:

http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/

Create a Console Application named Ch03_Exercise03 that outputs a simulated FizzBuzz game counting up to 100. The output should look something like this:

1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz, 16, 17, Fizz, 19, Buzz, Fizz, 22, 23, Fizz, Buzz, 26, Fizz, 28, 29, FizzBuzz, 31, 32, Fizz, 34, Buzz, Fizz, 37, 38, Fizz, Buzz, 41, Fizz, 43, 44, FizzBuzz, 46, 47, Fizz, 49, Buzz, Fizz, 52, 53, Fizz, Buzz, 56, Fizz, 58, 59, FizzBuzz, 61, 62, Fizz, 64, Buzz, Fizz, 67, 68, Fizz, Buzz, 71, Fizz, 73, 74, FizzBuzz, 76, 77, Fizz, 79, Buzz, Fizz, 82, 83, Fizz, Buzz, 86, Fizz, 88, 89, FizzBuzz, 91, 92, Fizz, 94, Buzz, Fizz, 97, 98, Fizz, Buzz

Exercise 3.4 – practice exception handling

Create a Console Application named Ch03_Exercise04 that asks the user for two numbers in the range 0-255 and then divides the first number by the second:

Enter a number between 1 and 255: 100
Enter another number between 1 and 255: 8
100 divided by 8 is 12

Write exception handlers to catch any thrown errors:

Enter a number between 1 and 255: apples
Enter another number between 1 and 255: bananas
FormatException: Input string was not in a correct format.

Exercise 3.5 – explore topics

Use the following links to read in more detail about the topics covered in this chapter:
	Selection Statements (C# Reference): https://msdn.microsoft.com/en-us/library/676s4xab.aspx
	Iteration Statements (C# Reference): https://msdn.microsoft.com/en-us/library/32dbftby.aspx
	Jump Statements (C# Reference): https://msdn.microsoft.com/en-us/library/d96yfwee.aspx
	Casting and Type Conversions (C# Programming Guide): https://msdn.microsoft.com/en-us/library/ms173105.aspx
	Exception Handling Statements (C# Reference): https://msdn.microsoft.com/en-us/library/s7fekhdy.aspx
	Checked and Unchecked (C# Reference): https://msdn.microsoft.com/en-us/library/khy08726.aspx
	Namespace Keywords (C# Reference): https://msdn.microsoft.com/en-us/library/cxtk6h5e.aspx
	StackOverflow: http://stackoverflow.com/
	Google Advanced Search: http://www.google.com/advanced_search
	Design Patterns: https://msdn.microsoft.com/en-us/library/ff649977.aspx
	patterns & practices: https://msdn.microsoft.com/en-us/library/ff921345.aspx

Summary

In this chapter, you learned how to branch and loop, how to convert between types, how to handle exceptions, and most importantly, how to find help!
You are now ready to learn more about what is underneath C#— .NET types.

Chapter 4. Using Common .NET Types

This chapter is about .NET types and how they are related to C#. You will learn about .NET Framework and .NET Core, and their class library assemblies of common types that allow your applications to connect existing components together to perform common practical tasks.
This chapter covers the following topics:
	Using assemblies and namespaces
	Storing and manipulating text
	Storing data with collections

Using assemblies and namespaces

The .NET Framework and the .NET Core are made up of several pieces, which are as follows:
	Language compilers: These turn your source code (written with languages such as C#, F#, Visual Basic, and others) into intermediate language (IL) code stored in assemblies (applications and class libraries). C# 6 introduced a completely rewritten compiler known as Roslyn.
	Common Language Runtimes (CLR and CoreCLR): These runtimes load assemblies, compile the IL code stored in them into native code instructions for your computer's CPU, and execute the code within an environment that manages resources such as threads and memory.
	Base Class Libraries (BCL and CoreFX): These are prebuilt assemblies of types for performing common tasks when building applications. You can use them to quickly build anything you want, rather like combining LEGO pieces.

Comparing .NET Framework with .NET Core

The .NET Framework is a superset of .NET Core.
Although .NET Core has less functionality today, going forward, Microsoft has said that new features will be first added to .NET Core and then ported back to .NET Framework.
In this book, I will use the term .NET
 when introducing features that apply to both the .NET Framework and the .NET Core.

Base Class Libraries and CoreFX

The .NET Framework's BCL and the .NET Core's CoreFX are libraries of prebuilt code that are divided into assemblies and namespaces that make it easier to manage the tens of thousands of types available. It is important to understand the difference between an assembly and a namespace.
Assemblies

An assembly is where a type is stored in the filesystem. Assemblies are a mechanism for deploying code. For example, the System.Data.dll assembly contains types for managing databases.
When using the .NET Framework, the System.Data.dll assembly can be found in the Global Assembly Cache (GAC) centralized folder C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework\v4.6\.
When using .NET Core, the equivalent assembly would be found in a private subfolder alongside other dependency assemblies.

Namespaces

A namespace
 is the address of a type. Namespaces are a mechanism to uniquely identify a type by providing a full address rather than just a short name.
In the real world, Bob of 34 Sycamore Street is different from Bob of 12 Willow Drive.
In .NET, the IActionFilter interface of the System.Web.Mvc namespace is different from the IActionFilter interface of the System.Web.Http.Filters namespace.

Referencing an assembly

If an assembly is compiled as a class library (it provides types for other assemblies to use), then it has the file extension DLL (dynamic link library) and cannot be executed standalone.
If an assembly is compiled as an application, then it has the file extension EXE (executable) and can be executed standalone.
Any assembly (both applications and class libraries) can reference one or more class library assemblies, but you cannot have circular references, so assembly B cannot reference assembly A if assembly A already references assembly B. Visual Studio will warn you if you attempt to add a reference that would cause a circular reference.

Referencing Microsoft Core Library

Every application compiled for .NET has an automatic reference to Microsoft Core Library (mscorlib.dll). This special assembly contains types that almost all applications would need, such as the int and string types.
Tip
The name Microsoft Core Library has nothing to do with .NET Core.

To use types in other assemblies, they must be manually referenced. Most Visual Studio project templates add some common assembly references for you, for example, the System.Xml.dll assembly for working with XML.

An example of assembly references

The following diagram shows a console application that needs to connect to a database, process an XML file, connect to an HTTP server, and query data using LINQ so that it has references to the assemblies that contain types to perform those tasks:
[image: An example of assembly references]

Relating assemblies and namespaces

The following steps will help you to relate assemblies and namespaces:
	Start Microsoft Visual Studio 2015.
	In Visual Studio, press Ctrl + Shift + N or navigate to File | New | Project….
	In the New Project dialog, in the Installed Templates list, select Visual C#. In the list at the center, select Console Application, type the name Ch04_AssembliesAndNamespaces, change the location to C:\Code, type the solution name Chapter04, and then click on OK.
	In the Solution Explorer window, expand References. Note that a console application project already has references to several assemblies, including System.Xml.If you don't need any of these assemblies, then you can remove the reference by selecting it and pressing Del, or right-clicking and choosing Remove:
[image: Relating assemblies and namespaces]

	Inside the Main method, type the following code:var doc = new XmlDocument();

The XmlDocument type is not recognized because we have not told the compiler what the namespace of the type is. Although this project already has a reference to the assembly that contains the type, we also need to either prefix the type name with its namespace, or import the namespace. We can get Visual Studio to fix this problem for us.

Importing a namespace

You need to perform the following steps to import a namespace:
	Click inside the XmlDocument type. Visual Studio displays a light bulb showing that it recognizes the type and can automatically fix the problem for you, as shown in the following screenshot:[image: Importing a namespace]

	Click on the light bulb or press Ctrl+.
	Choose using System.Xml; from the menu showing several other options as well. This will import the namespace by adding a using statement to the top of the file:[image: Importing a namespace]

Once a namespace is imported for a code file, then all the types within the namespace are available for use in that code file just by typing their name.
Add another line of code to create an XmlDataDocument instance:
var data = new XmlDataDocument();

Note
You will see a green squiggle under the type name, which is a warning telling us that this type is obsolete and will be removed in a future release. Ignore that because it's not relevant to what you are learning now. As long as a type name is teal (bluish-green) it means the compiler understands it.

In the Solution Explorer window, inside References, right-click on System.Xml, and choose Remove.
After a few seconds, Visual Studio displays a red squiggle under XmlDocument, as shown in the following screenshot, and the text turns black instead of teal. This indicates that Visual Studio doesn't recognize the XmlDocument type:
[image: Importing a namespace]

This is because we no longer have a reference to the assembly that contains the XmlDocument type. Just having the import statement (using System.Xml;) is not enough to find the type.
Tip
The color syntax highlighting behavior may be different in older versions of Visual Studio.

However, the XmlDataDocument type is not affected (it is still teal). This is because XmlDataDocument is not in the System.Xml assembly. It is actually in the System.Data assembly and our project still has a reference to that assembly.
Tip
A type can be in any assembly and any namespace. They do not have to be related. It is up to the creator of a type to decide what makes most sense for the type. For example, the Microsoft employee who was responsible for the XmlDataDocument type decided that it should be stored in the System.Data assembly but logically grouped with types in the System.Xml namespace.

The following table summarizes the assembly and namespace locations of the two types that we have been looking at:
	
Type

	
Assembly

	
Namespace

	

XmlDocument

	

System.Xml

	

System.Xml

	

XmlDataDocument

	

System.Data

	

System.Xml

To fix the current compile error, we need to add back the reference to the System.Xml assembly.
In the Solution Explorer window, right-click on References, choose Add Reference…, and in the Reference Manager dialog box that appears, select Assemblies on the left-hand side, scroll down through the list, select the checkbox next to System.Xml, and then click on OK:
[image: Importing a namespace]

Browsing assemblies and namespaces

A useful tool for understanding the relationship between assemblies and namespaces is the
Object Browser.
On the View menu, choose Object Browser, or press Ctrl + W, J.
Note
Remember that keyboard shortcuts are dependent upon your settings. If you have chosen an option other than Visual C# for your development settings, then your keyboard shortcut for the Object Browser window may be different!

The Object Browser window shows that inside the System.Data assembly is the namespace System.Xml, and that contains the XmlDataDocument type:
[image: Browsing assemblies and namespaces]

If you expand the System.Xml assembly, you will see that it adds far more types to the System.Xml namespace.
If you select an assembly, you will see its location in the file system, for example, C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework\v4.6\System.Xml.dll:
[image: Browsing assemblies and namespaces]

Tip

Best Practice

Use class library assemblies to group together types with related functionality. Carefully consider the namespace that your types should belong to. Although Microsoft puts all .NET types underneath the System namespace, they often put other types underneath a Microsoft.ApplicationName namespace. You should follow their example and therefore use your organization name and application names. For example, Packt.Publishing might be a good namespace for a Book type.

Relating C# keywords to .NET types

One of the common questions I get from new C# programmers is, "What is the difference between string with a lowercase and String with an uppercase?"
The short answer is easy: none.
The long answer is that all C# type keywords are aliases for a .NET type in a class library assembly.
When you use the keyword string, the compiler turns it into a System.String type. When you use the type int, the compiler turns it into a System.Int32 type. You can even see this if you hover your mouse over an int type, as follows:
[image: Relating C# keywords to .NET types]

Tip

Best Practice

Use the C# keyword instead of the actual type because the keywords do not need the namespace imported.

The following table shows the 16 C# type keywords and their actual .NET types:
	
Keyword

	
.NET type

	
Keyword

	
.NET type

	

string

	

System.String

	

char

	

System.Char

	

sbyte

	

System.SByte

	

byte

	

System.Byte

	

short

	

System.Int16

	

ushort

	

System.UInt16

	

int

	

System.Int32

	

uint

	

System.UInt32

	

long

	

System.Int64

	

ulong

	

System.UInt64

	

float

	

System.Single

	

double

	

System.Double

	

decimal

	

System.Decimal

	

bool

	

System.Boolean

	

object

	

System.Object

	

dynamic

	

System.Dynamic.DynamicObject

Tip
Other .NET programming language compilers can do the same thing. For example, the Visual Basic .NET language has a type named Integer that is its alias for System.Int32.

Storing and manipulating text

The most common type of data for variables is text. The most common types in .NET for working with text are shown in the following table:
	
Namespace

	
Type

	

System

	

Char

	

System

	

String

	

System.Text

	

StringBuilder

	

System.Text.RegularExpressions

	

Regex

Getting the length of a string

Add a new console application project named Ch04_ManipulatingText. Set the solution's startup project to be the current selection.
Sometimes, you need to find out the length of a piece of text stored in a string variable. Modify the code to look like this:

using static System.Console;

namespace Ch04_ManipulatingText
{
 class Program
 {
 static void Main(string[] args)
 {
 string city = "London";
 WriteLine($"{city} is {city.Length} characters long.");
 }
 }
}

Getting the characters of a string

A string variable uses an array of char internally to store the text. It also has an indexer, which means that we can use the array syntax to read its characters. Add the following statement:
WriteLine($"First char is {city[0]} and third is {city[2]}.");

Splitting a string

Sometimes you need to split some text wherever there is a character such as a comma.
Add more lines of code to define a single string with comma-separated city names. You can use the Split method and specify a character that you want to treat as the separator. An array of strings is then created which you can enumerate using a foreach statement:
string cities = "Paris,Berlin,Madrid,New York";
string[] citiesArray = cities.Split(',');
foreach (string item in citiesArray)
{
 WriteLine(item);
}

Extracting part of a string

Sometimes you need to get part of some text. For example, if you had a person's full name stored in a string with a space character between the first and last name, then you could find the position of the space using the IndexOf method, and then extract the first name and last name as two parts using the Substring method shown as follows:
string fullname = "Alan Jones";
int indexOfTheSpace = fullname.IndexOf(' ');
string firstname = fullname.Substring(0, indexOfTheSpace);
string lastname = fullname.Substring(indexOfTheSpace + 1);
WriteLine($"{lastname}, {firstname}");

Tip
If the format of the full name was different, for example, "Lastname, Firstname", then the code would be slightly different.

Checking a string for content

Sometimes you need to check whether a piece of text starts or ends with some characters or contains some characters. For example, the following code checks whether the company variable starts with the letter M and contains the letter N:
string company = "Microsoft";
bool startsWithM = company.StartsWith("M");
bool containsN = company.Contains("N");
WriteLine($"Starts with M: {startsWithM}, contains an N: {containsN}");

Press Ctrl + F5 to run the application and check the output:

London is 6 characters long.
First char is L and third is n.
Paris
Berlin
Madrid
New York
Jones, Alan
Starts with M: True, contains an N: False

Other string members

Here are some other string members:
	
Member

	
Description

	

Trim, TrimStart, and TrimEnd

	
These trim whitespace characters such as spaces, tabs, and new lines

	

ToUpper and ToLower

	
These convert to uppercase or lowercase

	

Insert and Remove

	
These insert or remove some text

	

Replace

	
This replaces some text

	

String.Concat (or use +)

	
This concatenates two strings

	

String.Join

	
This concatenates strings with a character in between each one

	

String.IsEmptyOrNull

	
This checks whether a string is empty or null

	

String.Empty

	
This can be used instead of allocating memory each time you use a literal string value using an empty pair of double quotes ("")

Building strings efficiently

You can concatenate two strings to make a new string using the String.Concat method or simply using the + operator. But, this is a bad practice because .NET must create a completely new string in memory. This might not be noticeable if you are only concatenating two strings but if you concatenate inside a loop, it can have a significant negative impact on performance and memory use.

Validating input with regular expressions

Regular expressions are useful for validating input from the user. They are very powerful and can get very complicated. Almost all programming languages have support for regular expressions, and use a common set of special characters to define them.
Add a new console application project named Ch04_RegularExpressions. At the top of the file, import the following namespace and type:
using System.Text.RegularExpressions;
using static System.Console;

In the Main method, add the following statements:
Write("Enter your age: ");
string input = ReadLine();
Regex ageChecker = new Regex(@"\d");
if(ageChecker.IsMatch(input))
{
 WriteLine("Thank you!");
}
else
{
 WriteLine($"This is not a valid age: {input}");
}

Tip
The @ character in front of a string switches off the ability to enter escape characters in a string variable. Escape characters are prefixed with a backslash (\). For example, \t means a tab and \n means new line. When writing regular expressions, we can disable this feature. Prefixing a string with @ allows a backslash to be a backslash.

Press Ctrl + F5, and see the output. If you enter a valid age, it will say "Thank you!"

Enter your age: 34
Thank you!

If you enter carrots, you will see the error message:

Enter your age: carrots
This is not a valid age: carrots

However, if you enter bob30smith it says "Thank you!"

Enter your age: bob30smith
Thank you!

The regular expression we used is \d, which means one digit. However, it does not limit what is entered before and after the digit.
Change the regular expression to ^\d$, like this:

Regex ageChecker = new Regex(@"^\d$");

Rerun the application. Now, it rejects anything except a single digit.
We want to allow one or more digits. To do this, we add a + (plus) after the \d. Change the regular expression to look like this:

Regex ageChecker = new Regex(@"^\d+$");

Rerun the application and see how the regular expression now only allows positive whole numbers of any length.

The syntax of a regular expression

Here are some common special symbols that you can use in regular expressions:
	
Symbol

	
Meaning

	
Symbol

	
Meaning

	

^

	
Start of input

	

$

	
End of input

	

\d

	
A single digit

	

\D

	
A single NON-digit

	

\w

	
Whitespace

	

\W

	
NON-whitespace

	

[A-Za-z0-9]

	
Range(s) of characters

	

[AEIOU]

	
Set of characters

	

+

	
One or more

	

?

	
One or none

	

.

	
A single character

	 	
	

{3}

	
Exactly three

	

{3,5}

	
Three to five

	

{3,}

	
Three or more

	

{,3}

	
Up to three

Examples of regular expressions

Here are some examples of regular expressions:
	
Expression

	
Meaning

	

\d

	
A single digit somewhere in the input

	

a

	
The a character somewhere in the input

	

Bob

	
The word Bob somewhere in the input

	

^Bob

	
The word Bob at the start of the input

	

Bob$

	
The word Bob at the end of the input

	

^\d{2}$

	
Exactly two digits

	

^[0-9]{2}$

	
Exactly two digits

	

^[A-Z]{4,}$

	
At least four uppercase letters only

	

^[A-Za-z]{4,}$

	
At least four upper or lowercase letters only

	

^[A-Z]{2}\d{3}$

	
Two uppercase letters and three digits only

	

^d.g$

	
The letter d, then any character, and then the letter g, so it would match both dig and dog or any character between the d and g

	

^d\.g$

	
The letter d, then a dot (.), and then the letter g, so it would match d.g only

Tip

Best Practice

Use regular expressions to validate input from the user. The same regular expressions can be reused in C# and other languages, such as JavaScript.

Storing data with collections

If you need to store multiple values, you can use a collection. A collection
 is a data structure in memory that can manage multiple items in different ways, although all collections have some shared functionality.
There are two main namespaces for collections:
	System.Collections: Avoid the types in this namespace because they store any type that derives from System.Object, that is, every type (which is flexible but not type safe, thus leading to errors and boxing of value types, which can be slow and inefficient).
	System.Collections.Generic: The types in this namespace were introduced in C# 2 with .NET 2.0 and are better because they allow you to specify the type you want to store (which is safer, faster, and more efficient).

All collections have a Count property to tell you how many items are in it. For example, if we had a collection named passengers we could do this:
int howMany = passengers.Count;

All collections can be iterated using the foreach statement. To perform some action on all the items in the passengers collection, we can do this:
foreach (var passenger in passengers)
{
 // do something with each passenger
}

Understanding collections

There are several different collection categories: lists, dictionaries, stacks, queues, sets, and many other more specialized collections.
Lists

Lists are best when you want to manually control the order of items in a collection. Each item in a list has a unique index (or position) that is automatically assigned. Items can be any type (although they should all be the same type) and items can be duplicated. Indexes are int types and start from 0, so the first item in a list is at index 0, as shown in the following table:
	
Index

	
Item

	
0

	
London

	
1

	
Paris

	
2

	
London

	
3

	
Sydney

If a new item (for example, Santiago) is inserted between London and Sydney, the index of Sydney is automatically incremented. Therefore, you must be aware that an item's index can change after inserting or removing items, as shown in the following table:
	
Index

	
Item

	
0

	
London

	
1

	
Paris

	
2

	
London

	
3

	
Santiago

	
4

	
Sydney

Dictionaries

Dictionaries are best when each value (or item) has a unique subvalue (or a made-up value) that can be used as a key to quickly find the value in the collection later on. The key must be unique. If you are storing a list of people, you can use a government-issued identity number as the key.
Think of the key as being like an index entry in a real-world dictionary. It allows you to quickly find the definition of a word because the words (that is, keys) are kept sorted, and if we know we're looking for the definition of Manatee, we would jump to the middle of the dictionary to start looking, because the letter M is in the middle of the alphabet. Dictionaries in programming are similarly optimized when looking something up.
Both the key and the value can be any type. This example uses strings for both:
	
Key

	
Value

	
BSA

	
Bob Smith

	
MW

	
Max Williams

	
BSB

	
Bob Smith

	
AM

	
Amir Mohammed

Stacks

Stacks
 are best when you want to implement the last-in, first-out (LIFO) behavior. With a stack, you can only directly access the one item at the top of the stack, although you can enumerate to read through the whole stack of items. You cannot, for example, access the second item in a stack.
For example, word processors use a stack to remember the sequence of actions you have recently performed, so that when you press Ctrl + Z, it will undo the last action in the stack, and then the next last action, and so on.

Queues

Queues are best when you want to implement the first-in, first out (FIFO) behavior. With a queue you can only directly access the one item at the front of the queue, although you can enumerate to read through the whole queue of items. You cannot, for example, access the second item in a queue.
For example, background processes use a queue to process work items in the order that they arrive, just like people standing in line at the post office.

Sets

Sets
 are best when you want to perform set operations between two collections. For example, you may have two collections of city names and you want to know which names appear in both sets (known as the intersect
 between the sets).

Working with lists

Add a new console application project named Ch04_Lists.
In the Main method, type the following code, which illustrates some of the common ways of working with lists:
var cities = new List<string>();
cities.Add("London");
cities.Add("Paris");
cities.Add("Milan");
WriteLine("Initial list");
foreach (string city in cities)
{
 WriteLine($" {city}");
}
WriteLine($"The first city is {cities[0]}.");
WriteLine($"The last city is {cities[cities.Count - 1]}.");
cities.Insert(0, "Sydney");
WriteLine("After inserting Sydney at index 0");
foreach (string city in cities)
{
 WriteLine($" {city}");
}
cities.RemoveAt(1);
cities.Remove("Milan");
WriteLine("After removing two cities");
foreach (string city in cities)
{
 WriteLine($" {city}");
}

Tip
The angle brackets after the List<T> type are a feature of C# called generics. It's just a fancy term for making a collection strongly typed, that is, the compiler knows more specifically what type of object is allowed to be stored in the collection. Generics improve the performance and correctness of your code. Strongly typed collections are different from
statically typed collections. The old System.Collection types are statically typed to contain weakly typed System.Object items. The newer System.Collection.Generic types are statically typed to contain strongly typed <T> instances. Ironically, the term "generics" just means a more specific static type!

Press Ctrl + F5 to see the output:

Initial list
 London
 Paris
 Milan
The first city is London.
The last city is Milan.
After inserting Sydney at index 0
 Sydney
 London
 Paris
 Milan
After removing two cities
 Sydney
 Paris

Working with dictionaries

Add a new console application project named Ch04_Dictionaries.
In the Main method, type the following code that illustrates some of the common ways of working with dictionaries:
var keywords = new Dictionary<string, string>();
keywords.Add("int", "32-bit integer data type");
keywords.Add("long", "64-bit integer data type");
keywords.Add("float", "Single precision floating point number");
WriteLine("Keywords and their definitions");
foreach (KeyValuePair<string, string> item in keywords)
{
 WriteLine($" {item.Key}: {item.Value}");
}
WriteLine($"The definition of long is {keywords["long"]}");

Run the application by pressing Ctrl + F5.

Keywords and their definitions
 int: 32-bit integer data type
 long: 64-bit integer data type
 float: Single precision floating point number
The definition of long is 64-bit integer data type

Sorting collections

A List<T> class can be sorted by calling its Sort method (but remember that the indexes of each item will change).
Tip
Sorting a list of strings or other built-in types works automatically, but if you create a collection of your own type, then that type must implement an interface named IComparable. You will learn how to do this in Chapter 7, Implementing Interfaces and Inheriting Classes.

The Dictionary<T>, Stack<T>, or Queue<T> classes cannot be sorted, because you wouldn't usually want that functionality. For example, you would never sort a queue of guests checking into a hotel. But sometimes, you might want to sort a dictionary or a set.
The differences between these sorted collections are often subtle, but can have an impact on the memory requirements and performance of your application, so it is worth putting some effort into picking the best for your requirements. The following table summarizes some examples of sorted collection:
	
Collection

	
Description

	

SortedDictionary<TKey, TValue>

	
This represents a collection of key/value pairs that are sorted on the key

	

SortedList<TKey, TValue>

	
This represents a collection of key/value pairs that are sorted by key, based on the associated IComparer<T> implementation

	

SortedSet<T>

	
This represents a collection of objects that is maintained in a sorted order

Avoiding old collections

Avoid the old collections, listed in the following table, and use the more modern equivalents instead.
In 2005, Microsoft introduced generics that can be used to control more specifically which types can be stored in a collection. A collection that can only contain the int types is safer than one that can contain any object. The <T> parameter should be replaced with the type you want to store.
	
Avoid these collections

Namespaces: System.Collections, System.Collections.Specialized

	
Use these collections instead

Namespace: System.Collections.Generics

	

ArrayList

	

List<T>

	

Hashtable, HybridDictionary, ListDictionary

	

Dictionary<TKey, TValue>

	

Stack

	

Stack<T>

	

Queue

	

Queue<T>

	

SortedList

	

SortedList<T>

	

StringCollection

	

List<string>

	

StringDictionary

	

Dictionary<string, string>

Using specialized collections

There are a few other collections for special situations. For example, the NameValueCollection can be used to automate filling in a form on a web page and posting the named values to the web server:
	
Collection

	
Description

	

System.Collections.BitArray

	
This manages a compact array of bit values, which are represented as Booleans, where true indicates that the bit is on (1) and false indicates the bit is off (0)

	

System.Collections.Specialized. NameValueCollection

	
This represents a collection of associated string keys and string values that can be accessed either with the key or with the index

	

System.Collections.Generics. LinkedList<T>

	
This represents a doubly-linked list where every item has a reference to its previous and next item

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into topics of this chapter.

Exercise 4.1 – test your knowledge

Use the Web to answer the following questions:
	Does every assembly you create have a reference to the mscorlib.dll assembly?
	What is the maximum number of characters that can be stored in a string?
	When and why should you use a SecureString?
	When should you use a LinkedList?
	When should you use a SortedDictionary class rather than a SortedList class?
	Why should you not use the official standard for e-mail addresses to create a regular expression for validating a user's e-mail address?

Exercise 4.2 – practice regular expressions

Create a console application named Ch04_Exercise02 that prompts the user to enter a regular expression, and then prompts the user to enter some input and compare the two for a match until the user presses Esc:

The default regular expression checks for at least one digit.
Enter a regular expression (or press ENTER to use the default): ^[a-z]+$
Enter some input: apples
apples matches ^[a-z]+$? True
Press ESC to end or any key to try again.
Enter a regular expression (or press ENTER to use the default): ^[a-z]+$
Enter some input: abc123xyz
abc123xyz matches ^[a-z]+$? False
Press ESC to end or any key to try again.

Exercise 4.3 – explore topics

Use the following links to read in more detail the topics covered in this chapter:
	.NET Blog: A first hand look from the .NET engineering team: http://blogs.msdn.com/b/dotnet/
	Assemblies and the Global Assembly Cache (C# and Visual Basic): https://msdn.microsoft.com/en-us/library/ms173099.aspx
	String Class: https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
	StringBuilder Class: https://msdn.microsoft.com/en-us/library/system.text.stringbuilder(v=vs.110).aspx
	Regex Class: https://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex(v=vs.110).aspx
	How to: Search Strings Using Regular Expressions (C# Programming Guide): https://msdn.microsoft.com/en-us/library/ms228595.aspx
	Regular Expression Language - Quick Reference: https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
	RegExr: Learn, Build, & Test RegExr: http://regexr.com/
	Collections (C# and Visual Basic): https://msdn.microsoft.com/en-us/library/ybcx56wz.aspx
	List<T> Class: https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
	Dictionary<TKey, TValue> Class: https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
	Stack<T> Class: https://msdn.microsoft.com/en-us/library/3278tedw(v=vs.110).aspx
	Queue<T> Class: https://msdn.microsoft.com/en-us/library/7977ey2c(v=vs.110).aspx
	SortedList<TKey, TValue> Class: https://msdn.microsoft.com/en-us/library/ms132319(v=vs.110).aspx
	SortedDictionary<TKey, TValue> Class: https://msdn.microsoft.com/en-us/library/f7fta44c(v=vs.110).aspx

Summary

In this chapter, you explored the relationship between assemblies and namespaces, you learned about the best types to use for storing and manipulating text, and which collections to use for storing multiple items.
In the next chapter, you will learn about more specialized .NET types.

Chapter 5. Using Specialized .NET Types

This chapter is about specialized .NET types used to debug and diagnose problems, unit test your code, support multiple languages and cultures, and access features and applications outside of .NET.
This chapter covers the following topics:
	Debugging and diagnostics
	Unit testing an application
	Internationalizing an application
	Interoperating with unmanaged code

Debugging and diagnostics

In this section, you will learn how to debug problems at design time, trace problems at runtime, and use types such as Debug, Trace, Process, and Stopwatch that are in the System.Diagnostics namespace.

Debugging an application

In Visual Studio, press Ctrl + Shift + N or navigate to File | New | Project….
In the New Project dialog, from the Installed Templates list, select Visual C#. In the list at the center, select Console Application, type the name Ch05_Debugging, change the location to C:\Code, type the solution name Chapter05, and then click on OK.
Modify the template code to look like this:

using static System.Console;

namespace Ch05_Debugging
{
 class Program
 {
 static double Add(double a, double b)
 {
 return a * b; // deliberate bug!
 }
 static void Main(string[] args)
 {
 double a = 4.5; // or use var
 double b = 2.5;
 double answer = Add(a, b);
 WriteLine($"{a} + {b} = {answer}");
 ReadLine(); // wait for user to press ENTER
 }
 }
}

Press Ctrl + F5 and take a look at the output:

4.5 + 2.5 = 11.25

There is a bug! 4.5 added to 2.5 should be 7 and not 11.25. We will use the debugging tools
 in Visual Studio 2015 to squash the bug.
Setting a breakpoint

Breakpoints allow us to mark a line of code that we want to pause at to find bugs. Click on the open curly bracket at the beginning of the Main method and go to the Debug | Toggle Breakpoint menu, or press F9.
A red highlight will appear with a red circle in the grey margin bar on the left-hand side, to indicate that a breakpoint has been set. Breakpoints can be toggled off with the same command. You can also click in the margin to toggle the breakpoint on and off, as shown in the following screenshot:
[image: Setting a breakpoint]

Go to Debug | Start Debugging, or press the Start toolbar button, or press F5. Visual Studio starts and then pauses when it hits the breakpoint. This is known as
break mode. The line that will be executed next is highlighted in yellow, and a yellow arrow points at the line from the grey margin bar, as shown in the following screenshot:
[image: Setting a breakpoint]

Tip
You can drag the yellow arrow and its highlight. When you continue executing, it will run from the new position. This is useful for moving back a few statements to rerun them or to skip over some statements.

The debugging toolbar

Visual Studio enables some extra toolbar buttons to make it easy to access debugging features. Here are a few of those:
	Continue / F5 (green triangle): This button will run the code at full speed from the current position
	Stop Debugging / Shift + F5 (red square): This button will stop the program
	Restart / Ctrl + Shift + F5 (circular black arrow): This button will stop and then immediately restart the program
	Step into / F11, Step over / F10, and Step out / Shift + F11 (blue arrows over dots): These buttons will step through the code in various ways

The following screenshot illustrates Visual Studio's extra toolbar buttons:
[image: The debugging toolbar]

Debugging windows

Visual Studio makes some extra windows visible so that you can monitor useful information such as variables while you step through your code. If you cannot find one of these windows, then on the Debug menu, choose Windows, and then select the window you want to view.
Tip
Most of the debug windows are only available when you are in the Break mode.

The Locals window shows the name, value, and type for any local variables. Keep an eye on this window while you step through your code:
[image: Debugging windows]

In Chapter 1, Hello, C#! Welcome, .NET Core!, I introduced you to the C# Interactive window. The similar, but more basic, Immediate Window also allows live interaction with your code.
For example, you can ask a question such as, "What is 1+2?" by typing ?1+2 and pressing Enter. You can also use the question mark to find out the current value of a variable:
[image: Debugging windows]

You can execute statements of code:
[image: Debugging windows]

As long as you have Visual Studio 2015 with Update 1, the C# Interactive window is better.

Stepping through code

From the Debug menu, choose Debug | Step Into, or click on the Step Into button in the toolbar, or press F11. The yellow highlight steps forward one line, as shown in the following screenshot:
[image: Stepping through code]

Choose Debug | Step Over or press F10. The yellow highlight steps forward one line. At the moment, there is no difference between using Step Into or Step Over.
Press F10 again so that the yellow highlight is on the line that calls the Add method:
[image: Stepping through code]

The difference between Step Into or Step Over can be seen when you are about to execute a method call. If you press Step Into, the debugger steps into the method so that you can step through every line in that method. If you press Step Over, the whole method is executed in one go (it does not skip over the method!).
Use Step Into to step inside the method. Hover your mouse over the multiply (*) operator. A tooltip will appear showing that this operator is multiplying a by b to give the result 11.25. We can see that this is the bug. You can pin the tooltip by clicking on the pin icon as I have done here:
[image: Stepping through code]

Fix the bug by changing the * to +.
We don't need to step through all the lines in the Add method, so choose Step Out or press Shift + F11. Press F11 or choose Step Into to assign the return value of the Add method to the variable answer.
The Locals window highlights the most recent change in red text. The answer is correct, so choose Continue or press F5:
[image: Stepping through code]

Customizing breakpoints

You can also right-click on a breakpoint and choose additional options, such as Conditions, as shown in the following screenshot:
[image: Customizing breakpoints]

The conditions for a breakpoint include an expression that must be true and a hit count to reach for the breakpoint to apply.
In the example, as you can see in the following screenshot, I have set a condition to only apply the breakpoint if both the answer variable is greater than 9 and we have hit the breakpoint three times:
[image: Customizing breakpoints]

You have now fixed a bug using some of Visual Studio's debugging features.

Monitoring performance and resource usage

To write the best applications, we need to be able to monitor the speed and efficiency of our code.
Evaluating the efficiency of types

What is the best type to use for a particular scenario? To answer this question, we need to carefully consider what we mean by best. We should consider the following four factors:
	Functionality: This can be decided by checking whether the type provides the features you need
	Memory size: This can be decided by the number of bytes of memory the type takes up
	Performance: This can be decided by how fast the type is
	Future needs: This depends on the changes in requirements and maintainability

There will be scenarios, such as storing numbers, where multiple types have the same functionality, so we would need to consider the memory and performance in order to make a choice.
If we need to store millions of numbers, then the best type to use would be the one that requires the least number of bytes of memory. If we only need to store a few numbers but we need to perform lots of calculations on them, then the best type to use would be the one that runs fastest on a particular CPU.
You have seen the use of the sizeof() operator to show the number of bytes a single instance of a type uses in memory. When we are storing lots of values in more complex data structures, such as arrays and lists, then we need a better way of measuring memory usage.
You can read lots of advice online and in books, but the only way to know for sure what the best type would be for your code is to compare the types yourself. In the next section, you will learn how to write the code to monitor the actual memory requirements and the actual performance when using different types.
Although today a short variable might be the best choice, it might be a better choice to use an int variable, even though it takes twice as much space in memory, because we might need a wider range of values to be stored in the future.
There is another metric we should consider: maintenance. This is a measure of how much effort another programmer would have to put in, to understand and modify your code. If you use a nonobvious type choice, it might confuse the programmer who comes along later and needs to fix a bug or add a feature. There are analyzing tools that will generate a report that shows how easily maintainable your code is.

Monitoring performance and memory use

The System.Diagnostics namespace has lots of useful types for monitoring your code. The first one we will look at is the Stopwatch type.
Add a new console application project named Ch05_Monitoring. Set the solution's start up project to be the current selection.
Modify the template code to look like this:
using System;
using System.Diagnostics;
using System.Linq;
using static System.Console;
using static System.Diagnostics.Process;

namespace Ch05_Monitoring
{
 class Recorder
 {
 static Stopwatch timer = new Stopwatch();
 static long bytesPhysicalBefore = 0;
 static long bytesVirtualBefore = 0;
 public static void Start()
 {
 GC.Collect();
 GC.WaitForPendingFinalizers();
 GC.Collect();
 bytesPhysicalBefore = GetCurrentProcess().WorkingSet64;
 bytesVirtualBefore = GetCurrentProcess().VirtualMemorySize64;
 timer.Restart();
 }
 public static void Stop()
 {
 timer.Stop();
 long bytesPhysicalAfter = GetCurrentProcess().WorkingSet64;
 vlong bytesVirtualAfter = GetCurrentProcess().VirtualMemorySize64;
 WriteLine("Stopped recording.");
 WriteLine($"{bytesPhysicalAfter - bytesPhysicalBefore:N0} physical bytes used.");
 WriteLine($"{bytesVirtualAfter - bytesVirtualBefore:N0} virtual bytes used.");
 WriteLine($"{timer.Elapsed} time span ellapsed.");
 WriteLine($"{timer.ElapsedMilliseconds:N0} total milliseconds ellapsed.");
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Write("Press ENTER to start the timer: ");
 ReadLine();
 Recorder.Start();
 int[] largeArrayOfInts = Enumerable.Range(1, 10000).ToArray();
 Write("Press ENTER to stop the timer: ");
 ReadLine();
 Recorder.Stop();
 ReadLine();
 }
 }
}

Tip
The Start method of the Recorder class uses the garbage collector (GC) type to ensure that all the currently allocated memory is collected before recording the amount of used memory. This is an advanced technique that you should almost never use in production code.

You have created a class named Recorder with two methods to start and stop recording the time and memory used by any code you run. The Main method starts recording when the user presses Enter, creates an array of ten thousand int variables, and then stops recording when the user presses Enter again.
The Stopwatch type has some useful members, as shown in the following table:
	
Member

	
Description

	
The Restart method

	
This resets the elapsed time to zero and then starts the stopwatch

	
The Stop method

	
This stops the stopwatch

	
The Elapsed property

	
This is the elapsed time stored as a TimeSpan (hours:minutes:seconds)

	
The ElapsedMilliseconds property

	
This is the elapsed time in milliseconds stored as a long integer

The Process type has some useful members:
	
Member

	
Description

	

VirtualMemorySize64

	
This displays the amount of the virtual memory, in bytes, allocated for the process

	

WorkingSet64

	
This displays the amount of physical memory, in bytes, allocated for the process

Press Ctrl + F5 to start the application without the debugger attached. The application will start recording the time and memory used when you press Enter, and then stop recording when you press Enter again:

Press ENTER to start the timer:
Press ENTER to stop the timer:
Stopped recording.
942,080 physical bytes used.
0 virtual bytes used.
00:00:03.1166037 time span ellapsed.
3,116 total milliseconds ellapsed.

Measuring the efficiency of processing strings

Now that you've seen how the Stopwatch and Process types can be used to monitor your code, we will use them to evaluate the best way to process string variables.
Add a new console application project named Ch05_BuildingStrings. Add the following using statements:
using System;
using System.Diagnostics;
using System.Linq;
using System.Text;
using static System.Console;
using static System.Diagnostics.Process;

Copy and paste the class definition for the Recorder class from the earlier project.
Tip

Best Practice

Although copy and paste is a valid technique for code reuse in some scenarios, it would be better to create a class library assembly for the Recorder class so that we can share it between multiple projects without maintaining multiple copies. You will learn how to do this in Chapter 6, Building Your Own Types with Object-Oriented Programming.

Add the following code to the Main method. It creates an array of ten thousand int variables and then concatenates them with commas for separators using a string and a StringBuilder:
int[] numbers = Enumerable.Range(1, 10000).ToArray();
Recorder.Start();
WriteLine("Using string");
string s = "";
for (int i = 0; i < numbers.Length; i++)
{
 s += numbers[i] + ", ";
}
Recorder.Stop();
Recorder.Start();
WriteLine("Using StringBuilder");
StringBuilder builder = new StringBuilder();
for (int i = 0; i < numbers.Length; i++)
{
 builder.Append(numbers[i]);
 builder.Append(", ");
}
Recorder.Stop();
ReadLine();

Press Ctrl + F5 to see the output:

Using string
Stopped recording.
7,540,736 physical bytes used.
69,632 virtual bytes used.
00:00:00.0871730 time span ellapsed.
87 total milliseconds ellapsed.

Using StringBuilder
Stopped recording.
8,192 physical bytes used.
0 virtual bytes used.
00:00:00.0015680 time span ellapsed.
1 total milliseconds ellapsed.

We can summarize the results as follows:
	The string class used about 7.5 MB of memory and took 87 milliseconds
	The StringBuilder class used 8 KB of memory and took 1.5 milliseconds

In this scenario, StringBuilder is about one hundred times faster and about one thousand times more memory efficient when concatenating text!
Tip

Best Practice

Avoid using the String.Concat method or the + operator with string variables. Instead, use StringBuilder or the C# 6 $ string interpolation to concatenate variables together, especially inside loops.

Monitoring with Debug and Trace

You have seen the use of the Console type and its WriteLine method to provide output to the console window. We also have a pair of types named Debug and Trace that have more flexibility in where they write out to.
The Debug and Trace classes can write to any
trace listener. A trace listener is a type that can be configured to write output anywhere you like when the Trace.WriteLine method is called. There are several trace listeners provided by .NET, and you can even make your own by inheriting from the TraceListener type.
Writing to the default trace listener

One, the DefaultTraceListener, is configured automatically and writes to Visual Studio's output window; you can configure others manually using code or a configuration file.
Add a new console application project named Ch05_Tracing. Modify the template code to look like this:
using System.Diagnostics;
using static System.Console;
namespace Ch05_Tracing
{
 class Program
 {
 static void Main(string[] args)
 {
 Debug.WriteLine("Debug says Hello C#!");
 Trace.WriteLine("Trace says Hello C#!");
 WriteLine("Press ENTER to close.");
 ReadLine();
 }
 }
}

Press F5 to start Visual Studio with the debugger attached. In Visual Studio's output window, you will see the two messages. If you cannot see the output window, press Ctrl + W, O or navigate to View | Output menu.
Ensure that you show output from Debug, as shown in the following screenshot:
[image: Writing to the default trace listener]

Configuring trace listeners

Now, we will configure some trace listeners that will also write to a text file and to the Windows application event log.
In Visual Studio's Solution Explorer, double-click on the file named App.config and modify it to look like this:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sharedListeners>
 <add name="file" type="System.Diagnostics.TextWriterTraceListener" initializeData="C:\Code\Trace.txt" />
 <add name="appeventlog" type="System.Diagnostics.EventLogTraceListener" initializeData="Application" />
 </sharedListeners>
 <trace autoflush="true">
 <listeners>
 <add name="file" />
 <add name="appeventlog" />
 </listeners>
 </trace>
 </system.diagnostics>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6" />
 </startup>
</configuration>

You have configured two shared listeners—one that writes to a text file and another that writes to the application event log.
Press F5 to start Visual Studio with the debugger attached. In the console application, press Enter to close it. This will release the file that it is writing to. Click on the Windows Start menu, type event, and then click on Event Viewer:
[image: Configuring trace listeners]

In the Event Viewer window, expand Windows Logs, choose Application, choose the most recent log entry, and then click on the Details tab. You should see that the Friendly View option of the EventData is the message we output:
[image: Configuring trace listeners]

Run File Explorer, look in the C:\Code folder, and open the file named Trace.txt. If you open it with Notepad, it will look like this:
[image: Configuring trace listeners]

Configuring compiler symbols for .NET Framework

You might be wondering what the difference between Debug and Trace is. When you compile and run any application, it can be configured with the debug or trace compiler symbols on or off. By default, both are enabled. You can see this by double-clicking on Properties in the Solution Explorer window, and then clicking on the Debug tab.
You can see that both the debug and trace symbols are enabled. You can define your own symbols by entering them in the Conditional compilation symbols box, as shown in the following screenshot, where I have defined two symbols named KERMIT and FOZZIE:
[image: Configuring compiler symbols for .NET Framework]

Defining compiler symbols for .NET Core

If you chose to create a Console Application (Package) project to target the .NET Core, then you must define compiler symbols using the project.json file.
In the project.json file, add the configurations section, as shown in the following code, that specifies options for the two possible solution configurations—Debug and Release:
{
 "version": "1.0.0-*",
 "description": "Ch05_Tracing Console Application",
 "authors": ["markjprice"],
 "tags": [""],
 "projectUrl": "",
 "licenseUrl": "",

 "configurations": {
 "Debug": {
 "compilationOptions": {
 "define": ["DEBUG", "TRACE", "KERMIT", "FOZZIE"]
 }
 },
 "Release": {
 "compilationOptions": {
 "define": ["RELEASE", "TRACE"],
 "optimize": true
 }
 }
 },

Checking compiler symbols

Modify the content of the Main method to look like this. We are using conditional compilation #if statements to only write to the trace listeners if the KERMIT and FOZZIE symbols have been defined. Note that they are Booleans so we can use operators like AND (&&) on them:
namespace Ch05_Tracing
{
 class Program
 {
 static void Main(string[] args)
 {
 Debug.WriteLine("Debug says Hello C#!");
 Trace.WriteLine("Trace says Hello C#!");

#if KERMIT
 Trace.WriteLine("KERMIT is on!");
#endif
#if KERMIT && FOZZIE
 Trace.WriteLine("KERMIT and FOZZIE are on!");
#endif

Press F5 to start Visual Studio with the debugger attached.
In Visual Studio's output window, you will see all the messages:

Debug says Hello C#!
Trace says Hello C#!
KERMIT is on!
KERMIT and FOZZIE are on!

In Visual Studio's toolbar, go to the drop-down menu that shows the list of configurations and choose Release. In this configuration, only the TRACE directive is set:
[image: Checking compiler symbols]

Press F5 to start Visual Studio with the debugger attached. If you see a warning message, choose Continue Debugging. In Visual Studio's Output window, you will see only the Trace message:
[image: Checking compiler symbols]

The idea is that you can safely put as many Debug.WriteLine statements throughout your code, knowing that when you finally compile and deploy the release version of your application they will all be automatically removed.
Tip

Best Practice

Use Debug.WriteLine statements liberally throughout your code, knowing that they will be stripped out automatically when you compile the release version of your application.

If you need more flexibility, then you can also define your own symbols, but for these, you must manually check that your own symbol has been defined using #if statements.
But what about the Trace.WriteLine statements? They are left in your release code, so they should be used more sparingly. Even these can be configured using trace switches.

Switching trace levels

In the App.config file, add the following section inside <system.diagnostics>. It can go before or after the <trace> and <sharedListeners> sections:
<switches>
 <add name="PacktSwitch" value="3"/>
</switches>

The value of a switch can be set using a number or a word. For example, the number 3 can be replaced with the word Info, as shown in the following table:
	
Number

	
Word

	
Description

	
0

	
Off

	
This will output nothing

	
1

	
Error

	
This will output only errors

	
2

	
Warning

	
This will output errors and warnings

	
3

	
Info

	
This will output errors, warnings, and info messages

	
4

	
Verbose

	
This will output all levels

In the Main method, add the following statements before prompting the user to press Enter:

var ts = new TraceSwitch("PacktSwitch", "");
Trace.WriteLineIf(ts.TraceError, "TraceError");
Trace.WriteLineIf(ts.TraceWarning, "TraceWarning");
Trace.WriteLineIf(ts.TraceInfo, "TraceInfo");
Trace.WriteLineIf(ts.TraceVerbose, "TraceVerbose");
Trace.Close(); // release any file or database listeners
WriteLine("Press ENTER to close.");
ReadLine();

This code will check the value of the switch named PacktSwitch and only output if the level has been set.
Tip

Best Practice

Call the Close method of the Trace type to release any locks that might be held after writing to a text file trace listener. This is necessary only if you are writing to listeners that are buffered or apply locking, such as files and databases. However, it doesn't hurt to do this every time.

Press F5 to start Visual Studio with the debugger attached. If you see a warning message, choose Continue Debugging. In Visual Studio's Output window, you will see only the Trace messages up to level 3 (Info):
[image: Switching trace levels]

Unit testing an application

Microsoft has a proprietary unit testing framework known as MS Test, which is closely integrated with Visual Studio. However, to use a unit testing framework that is compatible with .NET Core, we will use the third-party framework
xUnit.net.

Creating a unit of code that needs testing

Add a new Class Library project named Ch05_Calculator. In the Solution Explorer window, right-click on the Class1.cs file and choose Rename. Change its name to Calculator.
Modify the code to look like this:
namespace Ch05_Calculator
{
 public class Calculator
 {
 public double Add(double a, double b)
 {
 return a * b;
 }
 }
}

Creating a unit test project

Add a new Class Library project named Ch05_CalculatorUnitTests. In the Solution Explorer, right-click on References and choose Manage NuGet Packages.
In the NuGet Package Manager window, click on the Browse tab, and then search for xunit. Click on Install for the latest stable version:
[image: Creating a unit test project]

In the Solution Explorer, right-click on References and choose Add Reference…. In the Reference Manager window, select the checkbox for Ch05_Calculator and then click on OK. In the Solution Explorer window, right-click on the Class1.cs file and choose Rename. Change its name to CalculatorUnitTests.
Modify the code to look like this:
using Ch05_Calculator;
using Xunit;

namespace Ch05_CalculatorUnitTests
{
 public class CalculatorUnitTests
 {
 [Fact]
 public void TestAdding2And2()
 {
 // arrange
 double a = 2;
 double b = 2;
 double expected = 4;
 var calc = new Calculator();
 // act
 double actual = calc.Add(a, b);
 // assert
 Assert.Equal(expected, actual);
 }
 [Fact]
 public void TestAdding2And3()
 {
 // arrange
 double a = 2;
 double b = 3;
 double expected = 5;
 var calc = new Calculator();
 // act
 double actual = calc.Add(a, b);
 // assert
 Assert.Equal(expected, actual);
 }
 }
}

A well-written unit test will have three parts:
	Arrange: This part will declare and instantiate variables for input and output
	Act: This part will execute the unit that you are testing
	Assert: This part will make one or more assertions about the output

Running unit tests

You must install a runner to execute your tests. There is a runner for Visual Studio, but we will use the one that executes in a console application because it is cross-platform.
In the Solution Explorer window, right-click on References and choose Manage NuGet Packages. In the NuGet Package Manager, click on the Browse tab, and then search for xunit.runner.console. Click on Install for the latest stable version.
Open a Command Prompt and navigate to C:\Code\Chapter05\. Enter the following command at the prompt to run your tests:

packages\xunit.runner.console.2.1.0\tools\xunit.console Ch05_CalculatorUnitTests\bin\Debug\Ch05_CalculatorUnitTests.dll

You should see the following results:
[image: Running unit tests]

Fix the bug in the Add method, rebuild the unit test project, and then rerun the unit tests at the Command Prompt. You should see the following results:
[image: Running unit tests]

Internationalizing an application

Internationalization
 is the process of enabling your application to run correctly all over the world. It has two parts: globalization
 and localization.
Globalization is about writing your code to accommodate multiple languages and regions. The combination of a language and a region is known as a culture. It is important for your code to know both the language and region because date and currency formats are different in Quebec and Paris despite them both using French.
There are International Standards Organization (ISO) codes for all culture combinations. For example, in the code da-DK, da indicates the Danish language and DK indicates the country of Denmark.
Localization is about customizing the user interface to support a particular language. Since localization is just about the language, it doesn't need to know about the region.
Internationalization is a huge topic that entire books have been written about. In this section, you will get a brief introduction to the basics using the CultureInfo type in the System.Globalization namespace.
Tip
.NET Core 1.0 does not currently allow threads to get or set their CurrentCulture or CurrentUICulture properties. An alternative for getting these two properties (but not setting) is to use the CultureInfo class's static properties, but you cannot set them.

Globalizing an application

Add a new console application project named Ch05_Internationalization. At the top of the file, import the following types and namespaces:
using static System.Console;
using System;
using System.Threading;
using System.Globalization;

In the Main method, enter the following statements:
Thread t = Thread.CurrentThread;
WriteLine($"The current globalization culture is {t.CurrentCulture.Name}: {t.CurrentCulture.DisplayName}");
WriteLine($"The current localization culture is {t.CurrentUICulture.Name}: {t.CurrentUICulture.DisplayName}");
WriteLine();
WriteLine("en-US: English (United States)");
WriteLine("da-DK: Danish (Denmark)");
WriteLine("fr-CA: French (Canada)");
Write("Enter an ISO culture code: ");
string newculture = ReadLine();
if(!string.IsNullOrEmpty(newculture))
{
 var ci = new CultureInfo(newculture);
 Thread.CurrentThread.CurrentCulture = ci;
 Thread.CurrentThread.CurrentUICulture = ci;
}
Write("Enter your name: ");
string name = ReadLine();
Write("Enter your date of birth: ");
string dob = ReadLine();
Write("Enter your salary: ");
string salary = ReadLine();
DateTime date = DateTime.Parse(dob);
int minutes = (int)DateTime.Today.Subtract(date).TotalMinutes;
decimal earns = decimal.Parse(salary);
WriteLine($"{name} was born on a {date:dddd} and is {minutes:N0} minutes old and earns {earns:C}.");

When you run an application, it automatically sets its thread to use the culture of the operating system. I am running my code in London, UK, so the thread is already set to English (United Kingdom).
The code prompts the user to enter an alternative ISO code. This allows your applications to replace the default culture at runtime.
The application then uses standard format codes to output the day of the week dddd, the number of minutes with thousand separators N0, and the salary with the currency symbol C. These adapt automatically based on the thread's culture.
Press Ctrl + F5. Enter en-GB for the ISO code and then enter some sample data. You will need to enter a date in a format valid for British English:

Enter an ISO culture code: en-GB
Enter your name: Alice
Enter your date of birth: 30/3/1967
Enter your salary: 23500
Alice was born on a Thursday, is 25,469,280 minutes old and earns £23,500.00.

Rerun the application and try a different culture such as Danish in Denmark (da-DK). You will need to enter a date in a format valid for the culture you chose:

Enter an ISO culture code: da-DK
Enter your name: Mikkel
Enter your date of birth: 12.3.1980
Enter your salary: 34000
Mikkel was born on a onsdag, is 18.656.640 minutes old and earns kr. 34.000,00.

Localizing an application

The application does not currently change the prompts. They have been hardcoded to always ask in English. We can improve this using localization. Choose Project | Add New Item… or press Ctrl + Shift + A.
In the dialog box, type resource into the search box, change the name of the resources file that you are adding to Prompts.resx, and then click on Add:
[image: Localizing an application]

Add the following entries and then close the resource editor:
[image: Localizing an application]

In the Solution Explorer window, copy and paste the Prompts.resx file by selecting it and pressing Ctrl + C and then Ctrl + V.
Rename the new copy to Prompts.fr.resx. The fr indicates that this new copy should be used for French. Open it and modify the entry values as follows:
[image: Localizing an application]

Modify the following statements in the Main method:

Write($"{Prompts.EnterYourName} ");
string name = ReadLine();
Write($"{Prompts.EnterYourDOB} ");
string dob = ReadLine();
Write($"{Prompts.EnterYourSalary} ");
string salary = ReadLine();

Press Ctrl + F5. With an ISO culture code of fr-FR, this will load the French prompts:

Enter an ISO culture code: fr-FR
Entrez votre nom: Michel
Entrez votre date de naissance: 4 5 1967
Entrez votre salaire: 72000
Michel was born on a jeudi, is 25 418 880 minutes old and earns 72 000,00 ?.

With any other ISO code, it will load English prompts (think of a resource file without an ISO code in its name as being the default). You could use Microsoft Bing or Google Translate to create your resource files.
[image: Localizing an application]

Tip

Best Practice

Consider whether your application needs to be internationalized and plan for that before you start coding! Write down all the pieces of text in the user interface that will need to be localized. Think about all the data that will need to be globalized (date formats, number formats, and sorting text behavior).

Interoperating with unmanaged code

.NET applications are loaded, executed, and managed by the CLR. We use the term unmanaged to refer to any code that is outside the control of the CLR.
If a .NET developer needs to interact with unmanaged code, they can use two technologies: Component Object Model (COM) Interop
 and Platform

Invoke (also known as P/Invoke).
Tip
Both of these technologies are specific to Windows and, therefore, are only supported by the .NET Framework, not by the .NET Core.

Automating Microsoft Excel using COM Interop

Most of the popular Microsoft Office products support being automated using COM. If you have Microsoft Excel (for Windows) installed, then you can complete this exercise.
Add a new console application project named Ch05_AutomatingExcel. In the Solution Explorer window, right-click on References and choose Add Reference….
In the Reference Manager window, on the left-hand side, click on COM, and then select the checkbox for Microsoft Excel 16.0 Object Library (or the latest version that you have installed). Click on OK:
[image: Automating Microsoft Excel using COM Interop]

At the top of the code, import the following types and namespaces:
using static System.Console;
using static System.Convert;
using Microsoft.Office.Interop.Excel;

In the Main method, enter the following statements:
const int xlPie = 5;
Write("Enter a number: ");
double number = ToDouble(ReadLine());
var excel = new Application();
excel.Visible = true;
excel.Workbooks.Add();
excel.Range["A1"].Value = number;
excel.Range["A2"].Formula = "=A1*2";
excel.Range["A1:A2"].Select();
excel.ActiveSheet.Shapes.AddChart2(251, xlPie).Select();
excel.ActiveChart.SetSourceData(Source: excel.Range["Sheet1!A1:A2"]);

When you run the console application, it starts Excel, makes it visible (because it runs hidden in the background by default), adds a blank new workbook, sets the cell A1 to contain the number the user entered, doubles it using a formula, then selects the cells and uses the numbers as a source for a pie chart:
Tip
To make it even easier to learn how to automate Excel, switch on the Developer tab in Excel and then use it to record a macro. The code recorded is Visual Basic for Applications, but that is easy to translate to C#.

[image: Automating Microsoft Excel using COM Interop]

Accessing the Win32 API with P/Invoke

All Windows applications make calls to the Win32 API to provide their functionality. That's what makes them Windows applications.
Technologies such as .NET are layers on top of the Win32 API. Most of the Win32 API functions have been exposed via .NET types, but not all. If a .NET developer needs to access a Win32 API that isn't already exposed, then they can use P/Invoke.
Add a new console application project named Ch05_HackNotepad. At the top of the file, import the following types and namespaces:
using static System.Console;
using static System.Diagnostics.Process;
using System.Runtime.InteropServices;
using System;

In the Program class, enter the following statements:
[DllImport("user32.dll", SetLastError = true)]
static extern IntPtr FindWindow(string lpClassName, string lpWindowName);
[DllImport("user32.dll", SetLastError = true, CharSet = CharSet.Auto)]
public static extern bool SetWindowText(IntPtr hwnd, string lpString);

In the Main method, enter the following statements:
Write("Enter a message: ");
string message = ReadLine();
WriteLine("Press any key to start Notepad.");
ReadKey();
Start("notepad.exe").WaitForInputIdle();
// use a Win32 API call to get reference to Notepad
IntPtr notepad = FindWindow("Notepad", null);
if (notepad != IntPtr.Zero)
{
 // if it is running, set it's window text with a message
 SetWindowText(notepad, "Notepad has been hacked! " + message);
}
else
{
 WriteLine("Notepad is not running!");
}

When you run the console application, it prompts the user to enter a message, starts an instance of Notepad, finds the Notepad window, and sets its title to a customized message.
Tip
A more practical example would be impersonating a user other than the current one while executing some statements. To do this, you would need to use P/Invoke to import the LogonUser function from advapi32.dll and the CloseHandle function from kernel32.dll. For more details, visit https://msdn.microsoft.com/en-us/library/w070t6ka(v=vs.110).aspx.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into the topics covered in this chapter.

Exercise 5.1 – test your knowledge

Answer the following questions:
	What is the difference between pressing F5, Ctrl + F5, Shift + F5, and Ctrl + Shift + F5?
	Want is the ISO culture code for Welsh?
	Which information can you find out about a process?
	Can your applications write to the security event log in Windows?
	How accurate is the Stopwatch?
	What is the difference between localization, globalization, and internationalization?

Exercise 5.2 – practice using Debug and Trace

Create a console application named Ch05_Exercise02 that writes the message "I am debugging." only when the DEBUG symbol is set, writes the message "I am tracing." only when the TRACE symbol is set, and the message "I am confused!" only when TRACE and a custom conditional compilation symbol named CONFUSED is set.

Exercise 5.3 – explore topics

Use the following links to read more about the topics covered in this chapter:
	Debugging in Visual Studio: https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
	Start, Break, Step, Run through Code, and Stop Debugging in Visual Studio: https://msdn.microsoft.com/en-us/library/y740d9d3.aspx
	Breakpoints and Tracepoints: https://msdn.microsoft.com/en-us/library/ktf38f66.aspx
	System.Diagnostics Namespaces: https://msdn.microsoft.com/en-us/library/gg145030(v=vs.110).aspx
	Stopwatch Class: https://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch(v=vs.110).aspx
	Process Class: https://msdn.microsoft.com/en-us/library/system.diagnostics.process(v=vs.110).aspx
	Debug Class: https://msdn.microsoft.com/en-us/library/system.diagnostics.debug(v=vs.110).aspx
	xUnit.net: http://xunit.github.io/
	Globalizing and Localizing .NET Framework Applications: https://msdn.microsoft.com/en-us/library/h6270d0z(v=vs.110).aspx
	System.Globalization Namespace: https://msdn.microsoft.com/en-us/library/system.globalization.aspx

Summary

In this chapter, you learned how to use the Visual Studio debugging and diagnostic features, how to unit test your code, how to internationalize your code, and how to interoperate with code outside of .NET.
In the next chapter, you will learn how to build your own types using object-oriented programming techniques.

Chapter 6. Building Your Own Types with Object-Oriented Programming

This chapter is about making your own types using object-oriented programming (OOP). You will learn about all the different categories of members that a type can have, including fields to store data and methods to perform actions. You will use OOP concepts such as aggregation and encapsulation.
This chapter will cover the following topics:
	Talking about OOP
	Building class libraries
	Storing data with fields
	Writing and calling methods
	Controlling access with properties and indexers
	Simplifying methods with operators
	Raising and handling events

Talking about OOP

An object in the real world is a thing, like a car or a person. An object in programming often represents something in the real world, such as a product or bank account, but can also be something more abstract.
In C#, we use a class (usually) or a struct (rarely) to define each type of object. You can think of a type as being a blueprint or template for an object.

Encapsulation
 is the combination of the data and actions that are related to an object. For example, a BankAccount type might have data such as Balance and AccountName, as well as actions such as Deposit and Withdraw. When encapsulating, you often want to control what is allowed to access those data and actions.

Composition
 is about what an object is made of. For example, a car is composed of different parts such as four wheels, several seats, an engine, and so on.

Aggregation
 is about what is related to an object. For example, a person could sit in the driver's seat and becomes the car's driver.

Inheritance
 is about reusing code by having a subclass derive from a base
 or
super class. All functionality in the base class becomes available in the derived class.

Abstraction
 is about capturing the core idea of an object and ignoring the details or specifics. Abstraction is a tricky balance. If you make a class more abstract, more classes would be able to inherit from it, but there will be less functionality share.

Polymorphism
 is about allowing a derived class to override an inherited action to provide custom behavior.

Building class libraries

Class library assemblies group types together into easily deployable units (DLL files). So far, you have only created console applications to contain all your code. To make the code that you write reusable across multiple projects, you should put it in class library assemblies, just like Microsoft does.
Tip
Put types that you might reuse in a class library.

Creating a class library to share code

Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N or go to File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select Class Library, type Name as Ch06_PacktLibrary, change Location to C:\Code, type Solution name as Chapter06, and then click on OK.
Note
Make sure you choose class library and not a console application!

Defining a class

In Solution Explorer, right-click on the file named Class1.cs and choose Rename. Type the name as Person. When you are prompted to rename all other references to the class, click on Yes:
[image: Defining a class]

Change the namespace to Packt.CS6 because it is important to put your classes in a logically named namespace. Your code should now look like this:
namespace Packt.CS6
{
 public class Person
 {
 }
}

Notice that I chose to apply the C# keyword public before the class. This allows all code to access this class. If you do not explicitly apply the public keyword, then it would only be accessible within the assembly that defined it. We need it to be accessible outside the assembly too. This type does not yet have any members encapsulated within it. We will create some soon.
Members can be fields, methods, or specialized versions of both. They are described here:
	Fields are used to store data. These are the three specialized fields:	Constants: The data in this field never changes
	Read-only fields: The data in this field cannot change after the class is instantiated
	Events: These point to methods that you want to call automatically when something happens, such as clicking on a button

	Methods are used to execute statements. These are the four specialized methods:	Constructors: These are a type of method that execute when you use the new keyword to allocate memory and instantiate a class
	Properties: These are a type of method that execute when you want to control access to fields
	Indexers: These are a type of method that execute when you want to control access to fields
	Operators: These are a type of method that execute when you want to apply an operator

Instantiating a class

In this section, we will make an instance of the Person class.
Add a new console application project named Ch06_PeopleApp.
Note
Make sure you choose console application and not a class library!

This project needs a reference to the class library we just made.
In Solution Explorer, right-click on References and choose Add Reference…:
[image: Instantiating a class]

In the Reference Manager dialog box, in the list on the left-hand side, choose Projects, select the Ch06_PacktLibrary assembly, and then click on OK:
[image: Instantiating a class]

At the top of the file, type the following code to import the namespace for our class and to statically import the Console type:
using Packt.CS6;
using static System.Console;

In the Main method, type the following code to create an instance of the Person type by using the new keyword. The new keyword allocates memory for the object and initializes any internal data. We could use Person in place of the var keyword, but the use of var involves less typing and is just as clear:
var p1 = new Person();
WriteLine(p1.ToString());

Press Ctrl + F5. If you see the following dialog box, then dismiss it:
[image: Instantiating a class]

Set the solution's startup project to the current selection. Click inside the Ch06_PeopleApp project or inside the Program.cs file, and press Ctrl + F5 again.
Although our Person class did not explicitly choose to inherit from a type, all types indirectly inherit from a special type named System.Object. The implementation of the ToString method in the System.Object type simply outputs the full namespace and type name like this:

Packt.CS6.Person

Back in the original Person class, we could have explicitly told the compiler that Person inherits from the System.Object type like this:
public class Person : System.Object

Tip
When class A inherits from class B, we say that B is the base or super class and A is the derived or subclass. In this case, System.Object is the base or super class and Person is the derived or subclass.

You can also use the C# alias object keyword:
public class Person : object

Modify the code to explicitly inherit from the object type. Then, click inside the keyword and press F12. You will see the Microsoft-defined System.Object type and its members. You do not need to understand any of this yet, but notice that it has a method named ToString, as you can see in the following screenshot:
[image: Instantiating a class]

Tip
Assume other programmers know that if inheritance is not specified, the class will inherit from System.Object.

Storing data with fields

Next, we will define some fields in the class to store information about a person.

Defining fields

Inside the Person class, write the following code. At this point, we have decided that a person is composed of a name and a date of birth. We have encapsulated these two values inside the person. We have also made the fields public so that they are visible outside the class itself:
public class Person
{
 // fields
 public string Name;
 public DateTime DateOfBirth;
}

Tip
You can use any type for a field, including arrays and collections; for example, if you need to store multiple values.

You might want to click, hold, and drag the tab for one of your open files to arrange them so that you can see both files at once, like this:
[image: Defining fields]

Notice, that like we did with the class, we applied the public keyword to these fields. If we hadn't, then they would be private to the class, which means they are accessible only inside the class.
There are four access modifier keywords that you can apply to a class member such as a field or method. Part of encapsulation is choosing how visible the members are:
	
Access Modifier

	
Description

	

private (default)

	
Member is accessible inside the type only

	

internal

	
Member is accessible inside the type and any type in the same assembly

	

protected

	
Member is accessible inside the type and any type that inherits from the type

	

internal protected

	
Member is accessible inside the type, any type in the same assembly, and any type that inherits from the type

	

public

	
Member is accessible everywhere

Tip
Explicitly apply one of the access modifiers to all type members rather than use the default, which is private.

Inside the Main method, change the code to look like this:
var p1 = new Person();
p1.Name = "Bob Smith";
p1.DateOfBirth = new DateTime(1965, 12, 22);
WriteLine($"{p1.Name} was born on {p1.DateOfBirth:dddd, d MMMM yyyy}");

Run the application by pressing Ctrl + F5, and view the output:

Bob Smith was born on Wednesday, 22 December 1965

You can also initialize fields using a short-hand object initializer syntax using curly brackets.
Add the following code underneath the existing code to create another new person. Note the different format code for the date of birth when writing to the console:
var p2 = new Person { Name = "Alice Jones", DateOfBirth = new DateTime(1998, 3, 17) };
WriteLine($"{p2.Name} was born on {p2.DateOfBirth:d MMM yy}");

Run the application and view the output:

Alice Jones was born on 17 Mar 98

Storing a value using the enum keyword

Sometimes, a value needs to be one of a limited list of options. For example, a person may have a favorite ancient world wonder. Sometimes, a value needs to be combination of a limited list of options. For example, a person may have a bucket list of ancient world wonders they want to visit. We can store this data using an enum type.
An enum is a very efficient way of storing one or more choices, because internally, it uses int values in combination with a lookup table of string descriptions.
Add a new class to the Ch06_PacktLibrary project named WondersOfTheAncientWorld by pressing Shift + Alt + C or going to Project | Add Class….
Modify the code file to make it look like this. Notice that the class keyword has been changed to enum and made public:
namespace Packt.CS6
{
 public enum WondersOfTheAncientWorld
 {
 GreatPyramidOfGiza,
 HangingGardensOfBabylon,
 StatueOfZeusAtOlympia,
 TempleOfArtemisAtEphesus,
 MausoleumAtHalicarnassus,
 ColossusOfRhodes,
 LighthouseOfAlexandria
 }
}

In the Person class, add the following statement to your list of fields:
public WondersOfTheAncientWorld FavouriteAncientWonder;

Back in the Main method of Ch06_PeopleApp, add the following statements:
p1.FavouriteAncientWonder = WondersOfTheAncientWorld.StatueOfZeusAtOlympia;
WriteLine($"{p1.Name}'s favourite wonder is {p1.FavouriteAncientWonder}");

Run the application and view the output:

Bob Smith's favourite wonder is StatueOfZeusAtOlympia

For the bucket list, we could create a collection of instances of the enum, but there is a better way. We can combine multiple choices into a single value using flags.
Modify the enum to look like this. Notice that I have used the left shift operator (<<) to set individual bits within the flag. I could also have set the values to 1, 2, 4, 8, 16, 32, and so on:
namespace Packt.CS6
{
 [System.Flags]
 public enum WondersOfTheAncientWorld : byte
 {
 None = 0,
 GreatPyramidOfGiza = 1,
 HangingGardensOfBabylon = 1 << 1,
 StatueOfZeusAtOlympia = 1 << 2,
 TempleOfArtemisAtEphesus = 1 << 3,
 MausoleumAtHalicarnassus = 1 << 4,
 ColossusOfRhodes = 1 << 5,
 LighthouseOfAlexandria = 1 << 6
 }
}

Notice that we are assigning explicit values for each choice that would not overlap when looking at the bits stored in memory. We must also mark the enum with the System.Flags attribute. Normally, an enum uses an int variable internally, but since we don't need values that big, we can make it more efficient by telling it to use a byte variable (with 8 bit columns).
If we want to indicate that our bucket list includes the Hanging Gardens and the Mausoleum at Halicarnassus, then we would want the 16 and 2 bits set to 1. In other words, we would store the value 18:
	
128

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
0

	
0

	
0

	
1

	
0

	
0

	
1

	
0

In the Person class, add the following statement to your list of fields:
public WondersOfTheAncientWorld BucketList;

Back in the Main method of Ch06_PeopleApp, add the following statements to set the bucket list using the | operator (logical OR) to combine enum values. We could also set the value using the number 18 cast into the enum type as in the comment:
p1.BucketList = WondersOfTheAncientWorld.HangingGardensOfBabylon | WondersOfTheAncientWorld.MausoleumAtHalicarnassus;
// p1.BucketList = (WondersOfTheAncientWorld)18;
WriteLine($"{p1.Name}'s bucket list is {p1.BucketList}");

Run the application and view the output:

Bob Smith's bucket list is HangingGardensOfBabylon, MausoleumAtHalicarnassus

Tip
Use enum values to store combinations of discreet options. Derive an enum from byte if there are up to eight options, from short if there are up to 16 options, from int if there are up to 32 options, and from long if there are up to 64 options.

Storing multiple values using collections

Let's add a field to store a person's children. This is an example of aggregation because children are instances of a class that is related to the current person, but are not part of the person themselves:
public List<Person> Children = new List<Person>();

Note that we need to ensure the collection is initialized to a new instance of a collection before we can add items to the collection.
In the Main method, add the following code:
p1.Children.Add(new Person());
p1.Children.Add(new Person());
WriteLine($"{p1.Name} has {p1.Children.Count} children.");

Run the application and view the output:

Bob Smith has 2 children.

Making a field static

The fields that we have created so far have all been instance members, meaning that a copy of each field exists for each instance of the class that is created.
Sometimes, you want to define a field that only has one copy, which is shared across all instances. These are called static members.
In the Ch06_PacktLibrary project, add a new class named BankAccount. Modify the code as follows:
namespace Packt.CS6
{
 public class BankAccount
 {
 public string AccountName;
 public decimal Balance;
 public static decimal InterestRate;
 }
}

Notice that each instance of BankAccount will have its own AccountName and Balance, but all instances will share a single InterestRate field.
In Ch06_PeopleApp and its Main method, add the following code, where we will set the shared interest rate and then create two instances of the BankAccount type:
BankAccount.InterestRate = 0.012M;
var ba1 = new BankAccount();
ba1.AccountName = "Mrs. Jones";
ba1.Balance = 2400;
WriteLine($"{ba1.AccountName} earned {ba1.Balance * BankAccount.InterestRate} interest.");
var ba2 = new BankAccount();
ba2.AccountName = "Ms. Gerrier";
ba2.Balance = 98;
WriteLine($"{ba2.AccountName} earned {ba2.Balance * BankAccount.InterestRate} interest.");

Run the application and view the output:

Mrs. Jones earned £28.80 interest.
Ms. Gerrier earned £1.18 interest.

Making a field constant

If the value of a field will never ever change, you can use const and assign the value at compile time.
Inside the Person class, add the following code:
// constants
public const string Species = "Homo Sapien";

Inside the Main method, change the code to look like the following statement. Note that to read a constant field, you must write the name of the class, not the name of an instance of the class:
WriteLine($"{p1.Name} is a {Person.Species}");

Run the application and view the output:

Bob Smith is a Homo Sapien

Examples of const fields in Microsoft types include System.Int32.MaxValue and System.Math.PI, because neither value will ever change, as you can see in the following screenshot:
[image: Making a field constant]

Tip
Constants should be avoided for two important reasons:
	The value must be known at compile time, and it must be expressible as a literal string, Boolean, or number value
	Every reference to the const field is replaced with the literal value at compile time, which will, therefore, not be reflected if the value changes in a future version

Making a field read only

A better choice for fields that should not change is to mark them as read-only.
Inside the Person class, write the following code:
// read-only fields
public readonly string HomePlanet = "Earth";

Inside the Main method, add the following code statement. Notice that to get a read-only field, you must write the name of an instance of the class, not the type name, unlike constants:
WriteLine($"{p1.Name} was born on {p1.HomePlanet}");

Run the application and view the output:

Bob Smith was born on Earth

Tip
Use read-only fields over const fields for two important reasons:
	The value can be calculated or loaded at runtime and can be expressed using any executable statement. So, a read-only field can be set using a constructor.
	Every reference to the field is a live reference, so any future changes will be correctly reflected by calling code.

Initializing fields with constructors

Fields often need to be initialized at runtime. You do this in a constructor that will be called when you make an instance of the class using the new keyword. Constructors execute before any fields are set by the code that is using the type.
Inside the Person class, add the following code:
// read-only fields
public readonly string HomePlanet = "Earth";
public readonly DateTime Instantiated;

// constructors
public Person()
{
 Name = "Unknown"; // set a default name
 Instantiated = DateTime.Now;
}

Inside the Main method, add the following code:
var p3 = new Person();
WriteLine($"{p3.Name} was instantiated at {p3.Instantiated:hh:mm:ss} on {p3.Instantiated:dddd, d MMMM yyyy}");

Run the application and view the output:

Unknown was instantiated at 11:58:12 on Sunday, 3 January 2016

You can have multiple constructors in a type. Inside the Person class, add the following code:
public Person(string initialName)
{
 Name = initialName;
 Instantiated = DateTime.Now;
}

Inside the Main method, add the following code:
var p4 = new Person("Aziz");
WriteLine($"{p4.Name} was instantiated at {p4.Instantiated:hh:mm:ss} on {p4.Instantiated:dddd, d MMMM yyyy}");

Notice that when you enter the statement to call the constructor, it shows the name of the parameter to be passed, as shown in the following screenshot:
[image: Initializing fields with constructors]

Run the application and view the output:

Aziz was instantiated at 11:59:25 on Sunday, 3 January 2016

Constructors are a special category of method. Let's look at methods in more detail.

Writing and calling methods

Methods are type members that execute a block of statements. A method that performs some actions but does not return a value is marked as returning void. A method that performs some actions and returns a value is marked as returning the type of that return value.
Inside the Person class, statically import the System.Console type and then add the following code:
// methods
public void WriteToConsole()
{
 WriteLine($"{Name} was born on {DateOfBirth:dddd, d MMMM yyyy}");
}
public string GetOrigin()
{
 return $"{Name} was born on {HomePlanet}";
}

Inside the Main method, add the following code:
p1.WriteToConsole();
WriteLine(p1.GetOrigin());

Run the application and view the output:

Bob Smith was born on Wednesday, 22 December 1965
Bob Smith was born on Earth

Methods can have parameters passed to them in order to change their behavior. Parameters are defined a bit like variable declarations but inside the parentheses of the method.
Inside the Person class, add the following code:
public string SayHello()
{
 return $"{Name} says 'Hello!'";
}
public string SayHelloTo(string name)
{
 return $"{Name} says 'Hello {name}!'";
}

Inside the Main method, add the following code:
WriteLine(p1.SayHello());
WriteLine(p1.SayHelloTo("Emily"));

Run the application and view the output:

Bob Smith says 'Hello!'
Bob Smith says 'Hello Emily!'

Overloading methods

When typing a statement that calls a method, you can press Ctrl + K, I or go to the Edit | IntelliSense | Quick Info to see Quick Info of a method:
[image: Overloading methods]

Here is the SayHelloTo method's Quick Info:
[image: Overloading methods]

Instead of having two different method names, we could give both methods the same name. This is allowed because the methods each have a different signature. A method signature is the list of parameter types that can be passed when calling the method.
In the Person class, change the name of the SayHelloTo method to SayHello. Now, when you view the quick info for the method, it tells you that it has one additional overload:
[image: Overloading methods]

Tip
Use overloaded methods to simplify your class by making it appear to have fewer methods.

Optional parameters and named arguments

Another way to simplify methods is to make parameters optional. You make a parameter optional by assigning a default value inside the method parameter list. Optional parameters must always come last in the list of parameters.
You will now create a method with three optional parameters.
Inside the Person class, add the following code:
public void OptionalParameters(string command = "Run!", double number = 0.0, bool active = true)
{
 WriteLine($"command is {command}, number is {number}, active is {active}");
}

Inside the Main method, add the following code. Notice IntelliSense Quick Info, that appears as you call the method, showing the three optional parameters in square brackets:
p1.OptionalParameters();

Watch Visual Studio as you type the code and you will see a tooltip as in the following screenshot:
[image: Optional parameters and named arguments]

When you run the application, you will see the following output:

command is Run!, number is 0, active is True

Add the following line that passes a string for the command and a double for the number parameters:
p1.OptionalParameters("Jump!", 98.5);

Run the application and see the output:

command is Jump!, number is 98.5, active is True

The default values for command and number have been replaced, but the default for active is still true.
Optional parameters are often combined with naming parameters when you call the method, because naming a parameter allows the values to be passed in a different order than how they were declared:
p1.OptionalParameters(number: 52.7, command: "Hide!");

Run the application and see the output:

command is Hide!, number is 52.7, active is True

You can even use named parameters to skip over optional parameters:
p1.OptionalParameters("Poke!", active: false);

Run the application and see the output:

command is Poke!, number is 0, active is False

Splitting classes using partial

When working on large projects with multiple team members, it is useful to be able to split the definition of a complex class across multiple files. You do this using the partial keyword.
Imagine we want to add a new method to the Person class without having to ask another programmer to close the Person.cs file. If the class is defined as partial, then we can split it over as many separate files as we like.
In the Person class, add the partial keyword:
namespace Packt.CS6
{
 public partial class Person
 {

In the Project menu, go to Add Class… or press Shift + Alt + C. Enter the name Person2.
We cannot enter Person because Visual Studio isn't smart enough to understand what we want to do. Instead, we must now rename the new class to Person, change the namespace, and add the public partial keywords:
namespace Packt.CS6
{
 public partial class Person
 {

The rest of the code we write can now be put in this new Person2.cs file.

Controlling access with properties and indexers

Earlier, you created a method named GetOrigin that returned a string containing the name and origin of the person. Languages such as Java do this a lot. C# has a better way: properties.
A property is simply a method (or pair of methods) that act like a field when you want to get or set a value, thereby simplifying the syntax.

Defining read-only properties

In the Person2.cs file, inside the Person class, add the following code to define three properties.
The first property will perform the same role as the GetOrigin method, using the property syntax that works with all versions of C# (although it uses the C# 6-only string interpolation syntax).
The second property will return a greeting message using the new C# 6 lambda expression (=>) syntax.
The third property will calculate the person's age.
Here is the code:
// property defined using C# 1 - 5 syntax
public string Origin
{
 get
 {
 return $"{Name} was born on {HomePlanet}";
 }
}

// two properties defined using C# 6 lambda expression syntax
public string Greeting => $"{Name} says 'Hello!'";

public int Age => (int)(DateTime.Today.Subtract(DateOfBirth).TotalDays / 365.25);

In the Main method, add the following code. You can see that to get (or read) a property, you need to treat it like a field:
var max = new Person { Name = "Max", DateOfBirth = new DateTime(1972, 1, 27) };
WriteLine(max.Origin);
WriteLine(max.Greeting);
WriteLine(max.Age);

Run the application and view the output:

Max was born on Earth
Max says 'Hello!'
43

Defining settable properties

To create a settable property, you must use the older syntax and provide a pair of methods, not just a get part but also a set part.
In the Person2.cs file, add the following code to define a string property that has both a get and set method (aka getter and setter). Although you have not manually created a field to store the person's favorite ice cream, it is there, automatically created by the compiler for you:
public string FavouriteIceCream { get; set; } // auto-syntax

Sometimes, you need more control over what happens when a property is set. In this scenario, you must use a more detailed syntax and manually create a private field to store the value for the property:
private string favouritePrimaryColour;
public string FavouritePrimaryColour
{
 get
 {
 return favouritePrimaryColour;
 }
 set
 {
 switch (value.ToLower())
 {
 case "red":
 case "green":
 case "blue":
 favouritePrimaryColour = value;
 break;
 default:
 throw new ArgumentException($"{value} is not a primary colour. Choose from: red, green, blue.");
 }
 }
}

In the Main method add the following code:
max.FavouriteIceCream = "Chocolate Fudge";
WriteLine($"Max's favourite ice-cream flavour is {max.FavouriteIceCream}.");
max.FavouritePrimaryColour = "Red";
WriteLine($"Max's favourite primary colour is {max.FavouritePrimaryColour}.");

Run the application and view the output:

Max's favourite ice-cream flavour is Chocolate Fudge.
Max's favourite primary colour is Red.

If you try to set the color to any value other than red, green, or blue, then the code will throw an exception. The calling code could then use a try-catch statement to display the error message.
Tip
Use properties instead of fields when you want to validate what value can be stored, when you want to data bind in XAML (we will cover this in Chapter 13, Building Universal Windows Platform Apps Using XAML), and when you want to read and write to fields without using methods.

Defining indexers

Indexers allow the calling code to use the array syntax to access a property. For example, the string class defines an indexer so that the calling code can access individual characters in the string individually. We will define an indexer to simplify access to the children of a person.
In the Person2.cs file, add the following code to define an indexer to get and set a child using the index (position) of the child:
// indexers
public Person this[int index]
{
 get
 {
 return Children[index];
 }
 set
 {
 Children[index] = value;
 }
}

Tip
You can overload indexers so that different types can be used to call them. For example, as well as passing an int, you could also pass a string.

In the Main method, add the following code. After adding two children, we will access the first and second child using the longer Children field and the shorter indexer syntax:
max.Children.Add(new Person { Name = "Charlie" });
max.Children.Add(new Person { Name = "Ella" });
WriteLine($"Max's first child is {max.Children[0].Name}");
WriteLine($"Max's second child is {max.Children[1].Name}");
WriteLine($"Max's first child is {max[0].Name}");
WriteLine($"Max's second child is {max[1].Name}");

Run the application and view the output:

Max's first child is Charlie
Max's second child is Ella
Max's first child is Charlie
Max's second child is Ella

Tip
Only use indexers if it makes sense to use the square bracket/array syntax. For example, a Microsoft type that uses indexers is DbDataReader. It loads one record at a time from a database table and allows you to use the indexer syntax to read column values based on the index or name of the column.

Simplifying methods with operators

We might want two instances of a person to be able to procreate. We could do this with the following method:
// method to "multiply"
public Person Procreate(Person partner)
{
 var baby = new Person("Baby");
 Children.Add(baby);
 partner.Children.Add(baby);
 return baby;
}

Now, we can get two people to make a baby:
var harry = new Person { Name = "Harry" };
var mary = new Person { Name = "Mary" };
var baby1 = harry.Procreate(mary);
WriteLine($"{mary.Name} has {mary.Children.Count} children.");
WriteLine($"{harry.Name} has {harry.Children.Count} children.");

Run the application and view the output:

Mary has 1 children.
Harry has 1 children.

An alternative would be to define an operator to allow two people to "multiply". To allow this, we need to define a static operator for the * symbol:
// operator to "multiply"
public static Person operator *(Person p1, Person p2)
{
 return p1.Procreate(p2);
}

Add the following code at the end of the Main method, but before writing the children count to the console:
var baby1 = harry.Procreate(mary);
var baby2 = harry * mary;
WriteLine($"{mary.Name} has {mary.Children.Count} children.");

Run the application and view the output:

Mary has 2 children.
Harry has 2 children.

Raising and handling events

Methods are often described as actions that an object can do. For example, a List class can add an item to itself or clear itself.
Events are often described as actions that happen to an object. For example, in a user interface, a Button has a Click event, click being something that happens to a button.
Another way of thinking of events is a way of exchanging messages between two objects.

Calling methods using delegates

You have already seen the most common way to call or execute a method: use the "dot" syntax to access the method using its name.
The other way to call or execute a method is to use a delegate. If you have used languages that support function pointers, then you can think of a delegate as being a type-safe method pointer. In other words, a delegate is just the memory address of a method that matches the same signature as the delegate.
For example, imagine there is a method that must have a string passed as its only parameter and it returns an int:
public int MethodIWantToCall(string input)
{
 return input.Length;
}

I could call this method directly like this:
int answer = p1.MethodIWantToCall("Frog");

Alternatively, I could define a delegate with a matching signature to call the method indirectly. Notice that the names of parameters do not have to match. Only the types of parameters and return values must match:
delegate int DelegateWithMatchingSignature(string s);

Now, I can create an instance of the delegate, point it at the method, and finally call the delegate (which calls the method!):
var d = new DelegateWithMatchingSignature(p1.MethodIWantToCall);
int answer2 = d("Frog");

You are probably thinking, "What's the point of that?" Well, it provides flexibility.
We could use delegates to create a queue of methods that need to be called in order. Delegates have built-in support for asynchronous operations that run on a different thread for better performance. Most importantly, delegates allow us to create events.
Tip
Delegates and events are one of the most advanced features of C# and can take a few attempts to understand, so don't worry if you're feeling lost!

Defining events

Microsoft has predefined two delegates for use as events. They look like this:
public delegate void EventHandler(object sender, EventArgs e);
public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);

Tip
When you want to define an event in your own type, you should use one of these two predefined delegates.

Add the following code to Person2.cs. The code defines an event named Shout. It also defines a field to store AngerLevel and a method named Poke.
Each time a person is poked, their anger level increments. Once their anger level reaches three, they raise the Shout event, but only if the event delegate is pointing at a method (that is, NOT null):
// events
public event EventHandler Shout;
public int AngerLevel;
public void Poke()
{
 AngerLevel++;
 if (AngerLevel >= 3)
 {
 if (Shout != null)
 {
 Shout(this, EventArgs.Empty);
 }
 }
}

In the Main method, start typing the following code to assign an event handler:
p1.Shout +=

Notice the IntelliSense that appears when you type the += operator, as shown in the following screenshot:
[image: Defining events]

Press Tab and then Enter to accept the name of the method. Visual Studio inserts a method that correctly matches the signature of the event delegate. This method will be automatically called when the event is raised.
Tip
In older versions of Visual Studio, you had to press the Tab key twice.

Scroll down to find the method Visual Studio created for you and delete the statement that throws a NotImplementedException. Replace it with the following code:
private static void P1_Shout(object sender, EventArgs e)
{
 Person p = (Person)sender;
 WriteLine($"{p.Name} is this angry: {p.AngerLevel}.");
}

Back in the Main method, add the following code after handling the Shout event:
p1.Shout += P1_Shout;
p1.Poke();
p1.Poke();
p1.Poke();
p1.Poke();

Run the application. Notice that Bob only gets angry enough to shout once he's been poked three times:

Bob Smith is this angry: 3.
Bob Smith is this angry: 4.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 6.1 – test your knowledge

Answer the following questions:
	What are the four access modifiers and what do they do?
	What is the difference between the static, const, and readonly keywords?
	How many parameters can a method have?
	What does a constructor do?
	Why do you need to apply the [Flags] attribute to an enum keyword when you want to store combined values?
	What is a delegate?
	What is an event?
	Why is the partial keyword useful?

Exercise 6.2 – practice writing mathematical methods

Create a console application named Ch06_Exercise02 and add three static methods to the Program class to perform the following tasks:
	Numbers used to count are called "cardinal" numbers, for example, 1, 2, 3. Numbers used to order are "ordinal" numbers, for example, 1st, 2nd, 3rd. Write a method named CardinalToOrdinal that converts a cardinal int into an ordinal string, for example, converts 1 into 1st, 2 into 2nd, and so on.
	The factorial of 5 is 120, because factorials are calculated by multiplying the number by one less than itself and so on like this: 5 x 4 x 3 x 2 x 1 = 120. The factorial of 3 is 6 because it is 3 x 2 x 1 = 6. Write a method named Factorial that calculates the factorial for an int variable passed to it as a parameter. You could either use a loop or a technique called recursion, which means a method that calls itself.
	Prime factors are the combination of smallest prime numbers that when multiplied together will produce the original number. For example, the prime factors of 30 are 2 x 3 x 5. The prime factors of 4 are 2 x 2. Write a method named PrimeFactors that, when passed an int variable as a parameter, returns a string showing the prime factors as stated earlier.

In the Main method, prompt the user to press A, B, or C to choose between the three mathematical functions. Then, prompt the user to enter a number as input and then show the output.

Exercise 6.3 – explore topics

Use the following links to read more about this chapter's topics:
	.NET Framework class library: https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx
	Framework design guidelines: https://msdn.microsoft.com/en-us/library/vstudio/ms229042(v=vs.110).aspx
	Fields (C# programming guide): https://msdn.microsoft.com/en-us/library/ms173118.aspx
	Access modifiers (C# programming guide): https://msdn.microsoft.com/en-us/library/ms173121.aspx
	Constructors (C# programming guide): https://msdn.microsoft.com/en-us/library/ace5hbzh.aspx
	Methods (C# programming guide): https://msdn.microsoft.com/en-us/library/ms173114.aspx
	Named and optional arguments (C# programming guide): https://msdn.microsoft.com/en-us/library/dd264739.aspx
	Method parameters (C# reference): https://msdn.microsoft.com/en-us/library/8f1hz171(v=vs.140).aspx
	Properties (C# programming guide): https://msdn.microsoft.com/en-us/library/x9fsa0sw.aspx
	Indexers (C# programming guide): https://msdn.microsoft.com/en-us/library/6x16t2tx.aspx
	Operator (C# reference): https://msdn.microsoft.com/en-us/library/s53ehcz3.aspx
	Delegates (C# programming guide): https://msdn.microsoft.com/en-us/library/ms173171.aspx
	Events (C# programming guide): https://msdn.microsoft.com/en-us/library/awbftdfh.aspx

Summary

In this chapter, you learned about making your own types using OOP. You learned about all the different categories of members that a type can have, including fields to store data and methods to perform actions. You used OOP concepts such as aggregation and encapsulation.
In the next chapter, you will take these concepts further by implementing interfaces and inheriting from existing classes.

Chapter 7. Implementing Interfaces and Inheriting Classes

This chapter is about deriving new types from existing ones using object-oriented programming (OOP). You will learn how to implement interfaces, about base and derived classes, how to override a type member, how to use polymorphism, how to create extension methods, and how to cast between classes in an inheritance hierarchy.
This chapter covers the following topics:
	Implementing interfaces
	Managing memory with reference and value types
	Inheriting from classes
	Casting within inheritance hierarchies
	Documenting your types
	Inheriting and extending .NET types

Implementing interfaces

Interfaces are a way of connecting different types together to make new things. Think of them like the studs on top of LEGO bricks that allow them to "stick" together, or electrical standards for plugs and sockets.
If a type implements a particular interface, then it is making a promise to the rest of .NET that it supports a certain feature.

Common interfaces

Here are some common interfaces that your types might want to implement:
	
Interface

	
Method(s)

	
Description

	

IComparable

	

CompareTo(other)

	
This defines a comparison method that a type implements to order or sort its instances

	

IComparer

	

Compare(first, second)

	
This defines a comparison method that a secondary type implements to order or sort instances of a primary type

	

IDisposable

	

Dispose()

	
This defines a disposal method to release unmanaged resources more efficiently than waiting for a finalizer

	

IFormattable

	

ToString(format, culture)

	
This defines a culture-aware method to format the value of an object into a string representation

	

IFormatter

	

Serialize(stream, object), Deserialize(stream)

	
This defines methods to convert an object to and from a stream of bytes for storage or transfer

Comparing objects when sorting

One of the most common interfaces that you will want to implement is IComparable. It allows arrays and collections that contain instances of your type to be sorted.
In Visual Studio, open the Chapter06 solution and the Program.cs file in the Ch06_PeopleApp project. Add the following code to the Main method. It creates an array of Person instances, attempts to sort it, and then outputs the array:
Person[] people =
{
 new Person { Name = "Simon" },
 new Person { Name = "Jenny" },
 new Person { Name = "Adam" },
 new Person { Name = "Richard" }
};
Array.Sort(people);
foreach (var person in people)
{
 WriteLine($"{person.Name}");
}

Run the application by pressing Ctrl + F5. You will see this runtime error:

Unhandled Exception: System.InvalidOperationException: Failed to compare two elements in the array. ---> System.ArgumentException: At least one object must implement IComparable.

As the error explains, to fix the problem our type must implement IComparable.
In the Ch06_PacktLibrary project in the Person2.cs file, add the following code to the end of the class definition:
public partial class Person : IComparable<Person>

Visual Studio will draw a red squiggle under the new code you have added to warn you that you have not yet implemented the method you have promised to.
Visual Studio can write the skeleton implementation for you if you click on the light bulb and choose the first option, that is, Implement interface.
[image: Comparing objects when sorting]

Scroll down to find the method that Visual Studio wrote for you and delete the statement that throws the NotImplementedException error. Modify the method to look like this:
public int CompareTo(Person other)
{
 return Name.CompareTo(other.Name);
}

I have chosen to compare two Person instances by comparing their name fields. People will therefore be sorted alphabetically by their name.
Run the application. This time it works:

Adam
Jenny
Richard
Simon

Defining a separate comparer

Sometimes you won't have access to the source code for a type and it might not implement the IComparable interface. Luckily, there is another way to sort instances of a type. You can create a secondary type that implements a slightly different interface named IComparer.
In the Ch06_PacktLibrary project, add a new class named PersonComparer that implements the IComparer interface, as shown in the following block of code. It will compare two people by comparing the length of their Name field, or if the names are the same length, then by comparing the names alphabetically:
using System.Collections.Generic;
namespace Packt.CS6
{
 public class PersonComparer : IComparer<Person>
 {
 public int Compare(Person x, Person y)
 {
 int temp = x.Name.Length.CompareTo(y.Name.Length);
 if (temp == 0)
 {
 return x.Name.CompareTo(y.Name);
 }
 else
 {
 return temp;
 }
 }
 }
}

In the Main method, add the following code:
Array.Sort(people, new PersonComparer());
foreach (var person in people)
{
 WriteLine($"{person.Name}");
}

Run the application. This time, when we sort the people array, we explicitly ask the sorting algorithm to use the PersonComparer type instead, so the people are sorted with the shortest names first:

Adam
Jenny
Simon
Richard

Tip

Best Practice

If anyone might want to sort an array or collection of instances of your type, then implement the IComparable interface.

Managing memory with reference and value types

There are two categories of memory: stack memory and
heap memory. Stack memory is fast but limited and heap memory is slower but plentiful.
There are two C# keywords that you use to create object types: class and struct. Both can have the same members. The difference between the two is how memory is allocated and the lifetime of their variables.
Note
Technically, how memory is allocated is an implementation detail and not part of the C# or .NET specifications. Alternative implementations could choose to store instances of a struct type on the heap! You can read more about how value types are stored here: https://blogs.msdn.microsoft.com/ericlippert/2010/09/30/the-truth-about-value-types/.

When you define a type using class, you are defining a reference type. This means that the memory for the object itself is allocated on the heap along with some overhead consisting of a pointer to the object's method table and an object that is used to synchronize access from multiple threads, and only the memory address of the object (and a little overhead) is stored on the stack.
When you define a type using struct, you are defining a value type. This means that the memory for the object itself is allocated on the stack.
Tip
If your type defined by using the struct keyword uses reference types for any of its fields, then those fields will be stored on the heap!

These are most of the struct types, that is, value types in .NET:
	These are number value types: byte, sbyte, short, ushort, int, uint, long, ulong, float, double, decimal
	These are character and Boolean value types: char, bool
	These are System.Drawing value types: Color, Point, Rectangle

Almost all the other types in .NET are classes, that is, reference types, including string.
Tip
You cannot inherit from a struct.

Defining a type using the struct keyword

In Solution Explorer, ensure that the Ch06_PacktLibrary project has the focus. Next, from the Project menu, choose Add Class… or press Shift + Alt + C.
In the dialog box enter DisplacementVector for the name.
Tip
There isn't a template for struct, so you have to use class and then change it manually.

Modify the code to look like this:
namespace Packt.CS6
{
 public struct DisplacementVector
 {
 public int X;
 public int Y;
 public DisplacementVector(int initialX, int initialY)
 {
 X = initialX;
 Y = initialY;
 }
 public static DisplacementVector operator +(DisplacementVector vector1, DisplacementVector vector2)
 {
 return new DisplacementVector(vector1.X + vector2.X, vector1.Y + vector2.Y);
 }
 }
}

In the Ch06_PeopleApp project, in the Main method, add the following code:
var dv1 = new DisplacementVector(3, 5);
var dv2 = new DisplacementVector(-2, 7);
var dv3 = dv1 + dv2;
WriteLine($"({dv1.X}, {dv1.Y}) + ({dv2.X}, {dv2.Y}) = ({dv3.X}, {dv3.Y})");

Run the application and view the output:

(3, 5) + (-2, 7) = (1, 12)

Tip

Best Practice

If your type uses 16 bytes or less of stack memory, only uses struct keywords for its field types, and you will never want to inherit from it, then Microsoft recommends that you use a struct keyword. If your type uses more than 16 bytes of stack memory, uses classes for its field types, and if you would want to inherit from your type, then use a class. By the way, if you are wondering what I mean by "inherit", then read on…

Releasing unmanaged resources

In the previous chapter, we saw that constructors can be used to initialize fields. A type may have multiple constructors.
Imagine that a constructor allocates an unmanaged resource (that is, anything that is not controlled by .NET). The unmanaged resource must be manually released because .NET cannot do it for us.
Each type can have a single
finalizer (also known as destructor) that will be called by the CLR when the resources need to be released. A finalizer has the same name as a constructor (that is, the type name) but it is prefixed with a tilde (~) as shown in the following code example:
public class Animal
{
 public Animal()
 {
 // allocate an unmanaged resource
 }
 ~Animal() // Finalizer aka destructor
 {
 // deallocate the unmanaged resource
 }
}

This is the minimum you should do in this scenario. The problem with just providing a finalizer is that the .NET garbage collector requires two garbage collections to completely release the allocated resources for this type.
Though optional, it is recommended to also provide a method to allow a developer who uses your type to explicitly release resources so that the garbage collector can then release the object in a single collection. There is a standard mechanism to do this in .NET by implementing the IDisposable interface, as shown in the following code example:
public class Animal : IDisposable
{
 public Animal()
 {
 // allocate unmanaged resource
 }
 ~Animal() // Finalizer aka destructor
 {
 if (disposed) return;
 Dispose(false);
 }
 bool disposed = false; // have resources been released?
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
 protected virtual void Dispose(bool disposing)
 {
 if (disposed) return;
 // deallocate the *unmanaged* resource
 // ...
 if (disposing)
 {
 // deallocate any other *managed* resources
 // ...
 }
 disposed = true;
 }
}

Note that there are two Dispose methods. The public method will be called by a developer using your type. The Dispose method with a bool parameter is used internally to implement the deallocation of resources, both unmanaged and managed. When the public Dispose method is called, both unmanaged and managed resources need to be deallocated, but when the finalizer runs, only unmanaged resources need to be deallocated.
Also, note the call to GC.SuppressFinalize(this)—this is what notifies the garbage collector that it no longer needs to run the finalizer and removes the need for a second collection.

Ensuring that dispose is called

When someone uses a type that implements IDisposable, they can ensure that the public Dispose method is called with the using statement, as shown in the following code:
using(Animal a = new Animal())
{
 // code that uses the Animal instance
}

The compiler converts your code into something like the following, which guarantees that even if an exception occurs, the Dispose method will still be called:
Animal a = new Animal();
try
{
 // code that uses the Animal instance
}
finally
{
 if (a != null) a.Dispose();
}

Inheriting from classes

Inheritance is a mechanism for code reuse where a derived (or sub) class is based on a base (or super) class thereby having access to all of the base class' members. The Person type we created earlier implicitly derived (inherited) from System.Object. Now, we will create a new class that explicitly inherits from Person.
In Solution Explorer, ensure that the Ch06_PacktLibrary project has the focus. Next, from the Project menu, choose Add Class… or press Shift + Alt + C. Name the class Employee.
Modify its code as follows:
using System;
namespace Packt.CS6
{
 public class Employee : Person
 {
 }
}

Add a new console application named Ch07_InheritanceApp.
Add a reference to the Ch06_PacktLibrary assembly.
Modify the Program.cs file to import the Packt.CS6 namespace and add statements to the Main method to create an instance of the Employee class:
using Packt.CS6;
using System;
using static System.Console;
namespace Ch07_InheritanceApp
{
 class Program
 {
 static void Main(string[] args)
 {
 Employee e1 = new Employee { Name = "John Jones", DateOfBirth = new DateTime(1990, 7, 28) };
 e1.WriteToConsole();
 }
 }
}

Run the application and view the output:

John Jones was born on Saturday, 28 July 1990

Note that the Employee class has inherited all the members of Person.

Extending classes

Now, we will add some employee-specific members to extend the class.
In the Employee class, add the following code to define two properties:
public string EmployeeCode { get; set; }
public DateTime HireDate { get; set; }

Back in the Main method, add the following code:
e1.EmployeeCode = "JJ001";
e1.HireDate = new DateTime(2014, 11, 23);
WriteLine($"{e1.Name} was hired on {e1.HireDate:dd/MM/yy}");

Run the application and view the output:

John Jones was hired on 23/11/14

Hiding members

So far, the WriteToConsole method is inherited from Person, and it only outputs the employee's name and date of birth. We might want to change what this method does for an employee.
In the Employee class, add the following code to redefine the WriteToConsole method:
using System;
using static System.Console;
namespace Packt.CS6
{
 public class Employee : Person
 {
 public string EmployeeCode { get; set; }
 public DateTime HireDate { get; set; }
 public void WriteToConsole()
 {
 WriteLine($"{Name}'s birth date is {DateOfBirth:dd/MM/yy} and hire date was {HireDate:dd/MM/yy}");
 }
 }
}

Run the application and view the output:

John Jones's birth date is 28/07/90 and hire date was 01/01/01
John Jones was hired on 23/11/14

Note that Visual Studio warns you that your method now hides the method with the same name that you inherited from the Person class.
[image: Hiding members]

You can remove this warning by applying the new keyword to the method:
[image: Hiding members]

Overriding members

Rather than hiding a method, it is usually better to override it. You can only override members if the base class chooses to allow overriding by applying the virtual keyword.
In the Main method, add the following statement:
WriteLine(e1.ToString());

Run the application. The ToString method is inherited from System.Object. The implementation outputs the namespace and type name, as follows:

Packt.CS6.Employee

Let's override this behavior for the Person class.
Open the Person.cs file and at the bottom of the Person.cs file (but inside the class brackets), type the word override and enter a space after the word. You will see that Visual Studio shows a list of methods that have been marked as virtual so that they can be overridden.
[image: Overriding members]

Use the arrow keys on your keyboard to choose ToString and then press Enter.
Modify the code to look like this:
// overridden methods
public override string ToString()
{
 return $"{Name} is a {base.ToString()}";
}

Run the application. Now, when the ToString method is called, it outputs the person's name as well as the base class's implementation of ToString:

John Jones is a Packt.CS6.Employee

Preventing inheritance and overriding

You can prevent someone from inheriting from your class by applying the sealed keyword to its definition. No one can inherit from Mr. Money Bags:
public sealed class MrMoneyBags
{
}

You can prevent someone from further overriding a method in your class by applying the sealed keyword to the method. No one can change the way Lady Gaga sings:
public class Singer
{
 public virtual void Sing()
 {
 }
}

public class LadyGaga : Singer
{
 public override sealed void Sing()
 {
 }
}

Note
You can only seal a method that you have overridden so the sealed keyword is always used in combination with the override keyword.

Polymorphism

You have now seen two ways to change the behavior of an inherited method. We can hide an inherited method using new (known as non-polymorphic inheritance) or we can override it if it is virtual (polymorphic inheritance).
Both ways can call the base class using the base keyword, so what is the difference?
It all depends on the type of the variable holding a reference to the object. For example, a variable of the Person type can hold a reference to a Person class or any type that derives from
Person.
In the Employee class, add the following code:
public override string ToString()
{
 return $"{Name}'s code is {EmployeeCode}";
}

In the Main method, write the following code:
Employee aliceInEmployee = new Employee { Name = "Alice", EmployeeCode = "AA123" };
Person aliceInPerson = aliceInEmployee;
aliceInEmployee.WriteToConsole();
aliceInPerson.WriteToConsole();
WriteLine(aliceInEmployee.ToString());
WriteLine(aliceInPerson.ToString());

Run the application and view the output:

Alice's birth date is 01/01/01 and hire date was 01/01/01
Alice was born on Monday, 1 January 0001
Alice's code is AA123
Alice's code is AA123

Note that when a method is hidden with new, the compiler is not smart enough to know that the object is an employee, so it calls the WriteToConsole method in Person.
When a method is overridden with virtual and override, the compiler is smart enough to know that although the variable is declared as a Person class, the object itself is an Employee and therefore the Employee implementation of ToString is called.
	
Variable type

	
Method defined with

	
Method executed

	
Person

	 	

WriteToConsole in Person

	
Employee

	
new

	

WriteToConsole in Employee

	
Person

	
virtual

	

ToString in Employee

	
Employee

	
override

	

ToString in Employee

Tip
Polymorphism is literally academic to most programmers. If you grok
 the concept, that's great, but if not, you shouldn't worry about polymorphism. http://www.urbandictionary.com/define.php?term=grok

Casting within inheritance hierarchies

Casting is subtly different from converting between different types.

Implicit casting

In the previous example, you saw how an instance of a derived type can be stored in a variable of its base type (or its base's base type and so on). When we do this, it is called implicit casting.

Explicit casting

Going the other way, for example, attempting to store an instance of a base type in a variable of a derived type, is an explicit cast and you must use parentheses to do it.
In the Main method, add the following code:
Employee e2 = aliceInPerson;

Visual Studio gives a compile error, as shown in the following screenshot:
[image: Explicit casting]

Change the code as follows:
Employee e2 = (Employee)aliceInPerson;

Handling casting exceptions

The compiler is now happy but because aliceInPerson might be a different derived type, such as a Student instead of an Employee, we need to be careful. This statement might throw an InvalidCastException.
We can handle this by writing a try-catch statement, but there is a better way. We can check the current type of the object using the is keyword.
Wrap the explicit cast statement in an if statement, as follows:
if (aliceInPerson is Employee)
{
 WriteLine($"{nameof(aliceInPerson)} IS an Employee");
 Employee e2 = (Employee)aliceInPerson;
 // do something with e2
}

Run the application and view the output:

aliceInPerson IS an Employee

Alternatively, you can use the as keyword to cast. Instead of throwing an exception, the as keyword returns null if the type cannot be cast.
Employee e3 = aliceInPerson as Employee;
if (e3 != null)
{
 WriteLine($"{nameof(aliceInPerson)} AS an Employee");
 // do something with e3
}

Since accessing a null variable can throw a NullReferenceException error, you should always check for null before using the result.
Run the application and view the output:

aliceInPerson AS an Employee

Tip

Best Practice

Use the is and as keywords to avoid throwing exceptions when casting between derived types.

Documenting your types

One of the files that you can add to a Visual Studio project is Class Diagram.
From the Project menu, choose Add New Item or press Ctrl + Shift + A. In the Search box, enter diagram and change the filename to PacktLibrary.cd, as shown in the following screenshot:
[image: Documenting your types]

In the View menu, choose Class View. In the Class View window, expand Ch06_PacktLibrary, expand Packt.CS6, and then drag and drop the Person file into the middle of the class diagram, as shown in the following screenshot:
[image: Documenting your types]

In the following diagram, you will see the Person class and the interface that it implements:
[image: Documenting your types]

In the preceding diagram, right-click on the background, choose Change Members Format, and then Display Full Signature.
Click on the downward pointing chevron in the top-right corner of the class to expand its details and stretch the box to make it wide enough for you to see all the details.
[image: Documenting your types]

Drag and drop the Employee class onto the diagram to show the inheritance hierarchy.
[image: Documenting your types]

Right-click on the Employee class and choose Class Details. This window can be used to modify or add new members to a class.
[image: Documenting your types]

Inheriting and extending .NET types

.NET has prebuilt class libraries containing hundreds of thousands of types. Rather than creating your own completely new types, you can often start by inheriting from one of Microsoft's.

Inheriting from the Exception class

In the Ch06_PacktLibrary project, add a new class named BankAccountException, as shown in the following code:
using System;

namespace Packt.CS6
{
 public class BankAccountException : Exception
 {
 public BankAccountException() : base() { }
 public BankAccountException(string message) : base(message) { }
 public BankAccountException(string message, Exception innerException) : base(message, innerException) { }
 }
}

In the BankAccount class that you created in the previous chapter, add the following method:
public void Withdraw(decimal amount)
{
 if ((Balance - amount) < 0M)
 {
 throw new BankAccountException("Balance cannot be less than zero!");
 }
 else
 {
 Balance -= amount;
 }
}

In Ch07_InheritanceApp, in the Main method, add the following statements to test what happens when we try to withdraw too much from a bank account:
try
{
 var ba = new BankAccount();
 ba.Balance = 100;
 WriteLine($"Balance is {ba.Balance}");
 ba.Withdraw(150);
 WriteLine($"Balance is {ba.Balance}");
}
catch (BankAccountException ex)
{
 WriteLine($"{ex.GetType().Name}: {ex.Message}");
}

Run the application and view the output:

Balance is 100
BankAccountException: Balance cannot be less than zero!

Tip

Best Practice

When defining your own exceptions, give them the three conventional constructors.

Extending types when you can't inherit

Earlier, we saw how the sealed modifier can be used to prevent inheritance.
Microsoft has applied the sealed keyword to the System.String class so that no one can inherit and potentially break the behavior of strings.
Can we still add new methods to strings? Yes, we can if we use a language feature named extension methods
 that was introduced with C# 3.
Using static methods to reuse functionality

Since the first version of C#, we have been able to create static methods to reuse functionality, such as the ability to validate that a string contains an e-mail address.
In the Ch06_PacktLibrary project, add a new class named MyExtensions, as shown in the following code:
using System.Text.RegularExpressions;

namespace Packt.CS6
{
 public class MyExtensions
 {
 public static bool IsValidEmail(string input)
 {
 // use simple regular expression to check
 // that the input string is a valid email
 return Regex.IsMatch(input,
 @"[a-zA-Z0-9\.-_]+@[a-zA-Z0-9\.-_]+");
 }
 }
}

Add a new Console Application named Ch07_ExtensionMethods.
Add a reference to the Ch06_PacktLibrary assembly.
Modify the Program.cs file to import the Packt.CS6 namespace and add statements to the Main method to validate two examples of e-mail addresses:
using static System.Console;
using Packt.CS6;

namespace Ch07_ExtensionMethods
{
 class Program
 {
 static void Main(string[] args)
 {
 string email1 = "pamela@test.com";
 string email2 = "ian&test.com";

 WriteLine($"{email1} is a valid e-mail address: {MyExtensions.IsValidEmail(email1)}.");
 WriteLine($"{email2} is a valid e-mail address: {MyExtensions.IsValidEmail(email2)}.");
 }
 }
}

Run the application and view the output:

pamela@test.com is a valid e-mail address: True.
ian&test.com is a valid e-mail address: False.

This works, but extension methods can reduce the amount of code we have to type and simplify the usage of this function.

Using extension methods to reuse functionality

In the MyExtensions class, add the static modifier before the class, and add the this modifier before the string type, like this:
public static class MyExtensions
{
 public static bool IsValidEmail(this string input)
 {

These two changes inform the compiler that it should treat the method as a method that extends the System.String type.
Back in the Program class, add some new statements to use the method as an extension method for strings:
WriteLine($"{email1} is a valid e-mail address: {email1.IsValidEmail()}.");
WriteLine($"{email2} is a valid e-mail address: {email2.IsValidEmail()}.");

Note the subtle change in the syntax. The IsValidEmail method now appears to be an instance member of the string type.
[image: Using extension methods to reuse functionality]

Tip
Extension methods cannot replace or override existing instance methods, so you cannot, for example, redefine the Insert method of the string class. The extension method will appear as an overload but the instance method will be called in preference to the extension method with the same name and signature.

Although extension methods don't seem to give a big benefit compared to simply using static methods, in Chapter 9, Querying and Manipulating Data with LINQ, you will see some extremely useful examples of extension methods.

Practice and explore

Test your knowledge and understanding by answering some questions. Get some hands-on practice and explore with deeper research into this chapter's topics.

Exercise 7.1 – test your knowledge

Answer the following questions:
	How are a base class and a derived class related?
	What is the difference between is and as?
	Which keyword is used to prevent a class from being derived from or a method from being overridden?
	Which keyword is used to prevent a class from being instantiated with the new keyword?
	Which keyword is used to allow a member to be overridden?
	What's the deal with polymorphism?
	What are the signatures of the constructors that all exceptions should have?
	What is an extension method and how do you define one?

Exercise 7.2 – practice creating an inheritance hierarchy

Add a new console application named Ch07_Exercise02.
Create a class named Shape with properties named Height, Width, and Area.
Add three classes that derive from it—Rectangle, Square, and Circle—with any additional members you feel are appropriate and that override and implement the Area property correctly.

Exercise 7.3 – explore topics

Use the following links to read more about the topics covered in this chapter:
	Interfaces (C# Programming Guide): https://msdn.microsoft.com/en-us/library/ms173156.aspx
	IComparable<T> Interface: https://msdn.microsoft.com/en-us/library/4d7sx9hd(v=vs.110).aspx
	Classes (C# Programming Guide): https://msdn.microsoft.com/en-us/library/x9afc042.aspx
	Reference Types (C# Reference): https://msdn.microsoft.com/en-us/library/490f96s2(v=vs.140).aspx
	Structs (C# Programming Guide): https://msdn.microsoft.com/en-us/library/saxz13w4.aspx
	Value Types (C# Reference): https://msdn.microsoft.com/en-us/library/s1ax56ch(v=vs.140).aspx
	Inheritance (C# Programming Guide): https://msdn.microsoft.com/en-us/library/ms173149.aspx
	Polymorphism (C# Programming Guide): https://msdn.microsoft.com/en-us/library/ms173152.aspx
	Cleaning Up Unmanaged Resources: http://msdn.microsoft.com/en-us/library/498928w2.aspx
	Destructors (C# Programming Guide): http://msdn.microsoft.com/en-us/library/66x5fx1b.aspx
	IDisposable Interface: http://msdn.microsoft.com/en-us/library/system.idisposable.aspx

Summary

In this chapter, you learned about deriving types using inheritance and object-oriented programming (OOP). You learned about base and derived classes, how to override a type member, how to use polymorphism, and how to cast between types.
In the next chapter, you will learn about working with relational data using the Entity Framework.

Chapter 8. Working with Relational Data Using the Entity Framework

This chapter is about reading and writing to Microsoft SQL Server (and other databases) using classic ADO.NET and the object-relational mapping technology known as the Entity Framework.
This chapter will cover the following topics:
	Relational Database Management Systems
	Using ADO.NET
	Using Entity Framework 6
	Using Entity Framework Core

Relational Database Management Systems

One of the most common places to store data is in a
Relational Database Management System (RDBMS). Common ones include Microsoft SQL Server, Oracle, and MySQL.

Connecting to Microsoft SQL Server LocalDb

Microsoft offers various editions of its SQL Server product. We will use a free version that can run standalone and is known as LocalDb. The latest version of LocalDb is installed as part of Visual Studio 2015.
When you write code to connect to a database, you need to know its server name. The name depends on the version you choose to use. Here are some examples:
	Visual Studio 2015 installs SQL Server 2014: (localdb)\mssqllocaldb
	Visual Studio 2012/2013 installs SQL Server 2012: (localdb)\v11.0
	If you install SQL Server Express: .\sqlexpress

The Northwind sample database

To learn how to manage a database, it would be useful to have a sample one to practice on that has a medium complexity and a decent amount of sample records. Microsoft offers several sample databases, most of which are too complex for our needs. So, we will use a database that was first created in the early 1990s known as Northwind.
Use the link https://github.com/markjprice/cs6dotnetcore to download the Northwind.sql file.
In Microsoft Visual Studio 2015, go to File | Open | File… or press Ctrl + O.
Browse to the Northwind.sql file and choose Open.
In the editor window, right-click and choose Execute… or press Ctrl + Shift + E.
In the dialog box, enter the server name as (localdb)\mssqllocaldb and click on Connect, as shown in the following screenshot:
[image: The Northwind sample database]

Note
LocalDb sometimes takes too long to start the first time, and you might see a timeout error. Simply click on Connect again, and it should work.

When you see the Command(s) completed successfully message, then the Northwind database has been created, and we can connect to it.
In Microsoft Visual Studio 2015, choose View | Server Explorer… or press Ctrl + W, L.
In the Server Explorer window, right-click on Data Connections and choose Add Connection.
In the dialog box, enter the server name as (localdb)\mssqllocaldb, enter the database name as Northwind, and click on OK:
[image: The Northwind sample database]

In Server Explorer window, expand the data connection and its tables. You should see a dozen tables, including the Products table:
[image: The Northwind sample database]

Right-click on the Products table and choose Show Table Data:
[image: The Northwind sample database]

To see the details of the
Products table columns and types, right-click on Products and choose Show Table Definition:
[image: The Northwind sample database]

Here is a diagram of Northwind that you can refer to as we write queries:
[image: The Northwind sample database]

Choosing a .NET data provider

Before we dive into the practicalities of managing data in a RDBMS, let's briefly talk about choosing between .NET data providers.
To manage data, we need classes that know how to efficiently "talk" to the database. .NET data providers are sets of classes that are optimized for a specific RDBMS.
.NET data providers are native
 if they are optimized for one type of RDBMS. Some .NET data providers act as a bridge
 to older data technologies such as OLEDB. The following table summarizes your choices:
	
To manage this RDBMS

	
.NET data provider namespace

	
Microsoft SQL Server 7.0 or later

	

System.Data.SqlClient

	
Oracle 8.1.7 or later

	

System.Data.OracleClient

	
Other databases with native providers

	
Download a provider from the manufacturer's website

	
Microsoft SQL Server 6.5 and earlier, Microsoft Access MDB files, or any other RDBMS that does not have a native provider

	

System.Data.OleDb

	
Only an RDBMS that does not have an OLE DB provider or a native provider

	

System.Data.Odbc

Using ADO.NET

When Microsoft first created .NET, it had one data access technology, and it was named ADO.NET. Since then, Microsoft has added additional technologies but reused the name ADO.NET, so it can get confusing. The following are your two main choices today:
	ADO.NET: This is the original .NET data access technology that has classes that inherit from abstract base classes such as DbConnection and DbDataReader. I often refer to this as classic ADO.NET.
	ADO.NET Entity Framework: This is a layer on top of ADO.NET that adds object-relational mapping (ORM) capabilities. I often refer to this as Entity Framework or just EF.

Tip
Both are supported on .NET Core. Use classic ADO.NET for performance, to maintain existing code that already uses it, and when your tables must always be accessed through stored procedures instead of directly. Use Entity Framework when developer productivity is more important than performance and when you are allowed to execute dynamically generated SQL statements against your tables.

Connecting to the database

To connect to an RDBMS, we need to know some information about it:
	The name of the server computer that is running the RDBMS
	The name of the database
	Security information such as username and password or if we should pass the currently logged-on user's credentials automatically

We specify this information in a connection string. For backward compatibility, there are multiple possible keywords we can use. Here are some examples:
	Data Source or server or addr: This is the name of the server (and optional instance)
	Initial Catalog or database: This is the name of the database
	Integrated Security or trusted_connection: This keyword is set to true or SSPI to pass the thread's current user credentials

Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N or go to File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select Console Application, type name as Ch08_ADONET, change the location to C:\Code, type solution name as Chapter08, and then click on OK.
To connect to the database, we need a class that inherits from DbConnection. The one for SQL Server is named SqlConnection. To use it, we must import the System.Data.SqlClient namespace.
Add the following code to the top of the Program.cs file:
using static System.Console;
using System.Data.SqlClient;

Add the following code inside the Main method. Note the @ symbol at the beginning of the connection string. This disables escape characters because we need to use a back slash (\) in the server and instance name:
var connection = new SqlConnection(@"Data Source=(localdb)\mssqllocaldb;Initial Catalog=Northwind;Integrated Security=true;");
connection.Open();
WriteLine($"The connection is {connection.State}.");
connection.Close();
WriteLine($"The connection is {connection.State}.");

Run the application by pressing Ctrl + F5 and view the output:

The connection is Open.
The connection is Closed.

If you see an exception similar to the following, then check the connection string for typos. If you enter an invalid database name, you will see this exception:

Unhandled Exception: System.Data.SqlClient.SqlException: Cannot open database "Northwnd" requested by the login. The login failed.
Login failed for user 'WIN81VM\Mark'.

If you enter an invalid server or instance name, you will see this exception:

Unhandled Exception: System.Data.SqlClient.SqlException: A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is configured to allow remote connections. (provider: SQL Network Interfaces, error: 50 - Local Database Runtime error occurred. The specified LocalDB instance does not exist.)

Note
If you make a mistake in the server or instance name, then the connection will wait for 30 seconds before returning the exception!

Executing commands and reading result sets

Now that we have a successful connection to the database we can issue SQL statements such as SELECT to query records and INSERT to add new records.
Tip
This book does not teach the SQL language. To learn about Microsoft SQL Server and the SQL language, refer to SQL Server 2014 Development Essentials at https://www.packtpub.com/networking-and-servers/sql-server-2014-development-essentials.

We will work with the Categories table because it is small and simple. First, we will execute a statement to get all the categories. Then, we will add a new category, list the categories again to see the new category, and finally delete the category we inserted.
Inside the Program class, add a method shown as follows:
// a method we will call three times to list the categories
private static void ListCategories(SqlConnection connection)
{
 var getCategories = new SqlCommand("SELECT CategoryID, CategoryName FROM Categories", connection);

 SqlDataReader reader = getCategories.ExecuteReader();

 // find out the index positions of the columns that you want to read
 int indexOfID = reader.GetOrdinal("CategoryID");
 int indexOfName = reader.GetOrdinal("CategoryName");

 while (reader.Read())
 {
 // use the typed GetXxx methods to efficiently read the column values
 WriteLine($"{reader.GetInt32(indexOfID)}: {reader.GetString(indexOfName)}");
 }
 reader.Close();
}

Modify the code in the Main method to add statements between the Open and Close method calls as shown in the following code. The code:
	Lists the eight categories in the original table
	Prompts the user to enter a new category name
	Truncates the name entered down to a maximum of 15 characters
	Inserts the new category using a parameter to avoid SQL injection attacks
	Lists the nine categories now in the table
	Deletes the new category
	Lists the eight categories in the original table

WriteLine("Original list of categories:");
ListCategories(connection);

Write("Enter a new category name: ");
string name = ReadLine();
// the category name column only allows up to 15 chars so truncate if necessary
if (name.Length > 15) name = name.Substring(0, 15);

var insertCategory = new SqlCommand($"INSERT INTO Categories(CategoryName) VALUES(@NewCategoryName)", connection);
insertCategory.Parameters.AddWithValue("@NewCategoryName", name);
int rowsAffected = insertCategory.ExecuteNonQuery();
WriteLine($"{rowsAffected} row(s) were inserted.");

WriteLine("List of categories after inserting:");
ListCategories(connection);

var deleteCategory = new SqlCommand($"DELETE FROM Categories WHERE CategoryName = @DeleteCategoryName", connection);
deleteCategory.Parameters.AddWithValue("@DeleteCategoryName", name);
rowsAffected = deleteCategory.ExecuteNonQuery();
WriteLine($"{rowsAffected} row(s) were deleted.");

WriteLine("List of categories after deleting:");
ListCategories(connection);

Press Ctrl + F5. When prompted, enter a new category name, for example, Tasty Treats:

The connection is Open.
Original list of categories:
1: Beverages
2: Condiments
3: Confections
4: Dairy Products
5: Grains/Cereals
6: Meat/Poultry
7: Produce
8: Seafood
Enter a new category name: Tasty Treats
1 row(s) were inserted.
List of categories after inserting:
1: Beverages
2: Condiments
3: Confections
4: Dairy Products
5: Grains/Cereals
6: Meat/Poultry
7: Produce
8: Seafood
9: Tasty Treats
1 row(s) were deleted.
List of categories after deleting:
1: Beverages
2: Condiments
3: Confections
4: Dairy Products
5: Grains/Cereals
6: Meat/Poultry
7: Produce
8: Seafood
The connection is Closed.

Loading a connection string from configuration

Instead of hard coding the connection string in your source code, it is better to load it from a file so that it can be easily changed in the future without recompiling.
In Solution Explorer window, inside the Ch08_ADONET project, right-click on References and choose Add Reference…. In the dialog box, select System.Configuration and click on OK.
At the top of the file, import the System.Configuration namespace, as shown here:
using System.Configuration;

Modify the existing code that instantiates SqlConnection to load the connection string at runtime from the configuration file:
var connection = new SqlConnection(ConfigurationManager.ConnectionStrings["Northwind"].ConnectionString);

Double-click on the App.config file to open it, and add the following element for connectionStrings inside the existing configuration element:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="Northwind"
 providerName="System.Data.SqlClient"
 connectionString="Data Source=(localdb)\mssqllocaldb;Initial Catalog=Northwind;Integrated Security=true;" />
 </connectionStrings>

Press Ctrl + F5 and check whether the application still functions as it did earlier.
Note
Every time you run this console application, you will notice that the ID for the new category increments by one. This is because Microsoft SQL Server uses an IDENTITY column, which remembers if a previous category has already been allocated the previous ID and won't reuse it to maintain data integrity.

Tip
In Chapter 12, Improving Performance and Scalability with Multitasking, you will see how you can improve the preceding code using asynchronous operations to prevent the current thread from blocking.

Using Entity Framework 6

The Entity Framework (EF) was first released as part of .NET Framework 3.5 with Service Pack 1 back in late 2008. Since then it has evolved, as Microsoft has observed how programmers use an object-relational mapping (ORM) tool in the real world.
The version included with Visual Studio 2015 is
Entity Framework 6.1.3 (EF6). It is mature, stable, and supports the "old" EDMX design-time way of defining complex inheritance models, and a few other advanced features. However, EF6 is only supported by the .NET Framework, not by the .NET Core.
The next version, Entity Framework Core 1.0 (EF Core), has been renamed and had its version reset to 1.0 to emphasize that it is a reset of functionality. Although EF Core has a similar name, you should be aware that it is different in many ways to EF6. Take a look at its pros and cons:
	Pros	EF Core is available for the .NET Core as well as the .NET Framework, which means it can be used cross-platform, on Linux and Max OS X as well as Windows
	EF Core supports modern cloud-based, non-relational, schema-less data stores such as Microsoft Azure Table Storage and Redis

	Cons	EF Core does not support the EDMX design-time XML file format
	EF Core does not (yet) support complex inheritance models and other advanced features of EF6

Tip
Use EF6 for Windows platform applications until EF Core becomes more stable and implements more features. Use EF Core for cross-platform development.

Building an Entity Framework 6 model

Using EF6 is easy because tooling support is built into Visual Studio 2015.
We will create a console application that lists the details of every product that costs more than an amount entered by the user.
Add a new console application project named Ch08_EF6.
Set the solution's startup project to be the current selection.
On the Project menu, choose Add New Item…, and in the dialog box, choose ADO.NET Entity Data Model and name it Northwind:
[image: Building an Entity Framework 6 model]

In the first step of the wizard, choose Code First from database and then click on Next:
[image: Building an Entity Framework 6 model]

Tip
Do not choose either of the first two options because those use the EDMX design-time file that is not supported in EF Core. Even when using EF6, I recommend that you get used to the Code First way of defining the Entity data model.

In the second step of the wizard, click on New Connection:
[image: Building an Entity Framework 6 model]

In the Connection Properties dialog, enter server name as (localdb)\mssqllocaldb and choose database name as Northwind. Then, click on OK:
[image: Building an Entity Framework 6 model]

Tip
If you have connection problems, then check which version of SQL Server LocalDb you have installed, and use the appropriate server and instance name.

Click on Next to go to the step of the wizard for picking database objects, check the box to choose all Tables, and then click on Finish:
[image: Building an Entity Framework 6 model]

In Solution Explorer, double-click on the App.config file and notice that a connection string named Northwind has been defined:
<connectionStrings>
 <add name="Northwind" connectionString="data source=(localdb)\mssqllocaldb;initial catalog=Northwind;integrated security=True;MultipleActiveResultSets=True;App=EntityFramework" providerName="System.Data.SqlClient" />
</connectionStrings>

In Solution Explorer, double-click on the Northwind.cs file and notice that it is a class that inherits from DbContext. This class represents the context of all interaction with the database and will track any changes we make to the local data so that those changes can be saved to the actual database:
public partial class Northwind : DbContext

Notice that the Northwind class has properties that represent the tables within the database. The DbSet type has built-in methods to add, delete, and find records:
public virtual DbSet<Category> Categories { get; set; }

Notice the overridden method named OnModelCreating that adds extra information to the model that cannot be inferred using conventions. For example, the following statement tells the model that the CustomerID column is of fixed length:
modelBuilder.Entity<Customer>()
 .Property(e => e.CustomerID)
 .IsFixedLength();

In Solution Explorer, double-click on the Customer.cs file and notice that it is a normal class. We call this a POCO (Plain Old CLR Object) class, because it does not need to inherit from any special type. It represents an entity (record or row) in a table in the database:
public partial class Customer

Each class has properties that represent the columns in the Customer table:
[StringLength(5)]
public string CustomerID { get; set; }

Entity Framework Code First models

The Entity Framework uses a combination of conventions, annotation attributes, and Fluent API statements to build a model at runtime so that any actions performed using the classes can be automatically translated into actions performed on the actual database.
EF Code First conventions

The code generated uses the following conventions:
	If a connection string exists with the same name as the class derived from DbContext, then it is loaded and used to connect to the database automatically.
	The name of a table is assumed to match the name of a DbSet<T> property in the DbContext class, for example, Customers.
	The names of the columns are assumed to match the names of properties in the class, for example, CustomerID.
	The string .NET type is assumed to be an nvarchar type in the database.
	The int .NET type is assumed to be an int type in the database.
	A property that is named ID or the name of the class has ID as the suffix, it is assumed to be a primary key. If this property is any integer type or the Guid type, then it is also assumed to be an IDENTITY (automatically assigned value when inserting).

There are other conventions, and you can even define your own, but that is beyond the scope of this book.

EF annotation attributes

Conventions often aren't enough to completely map the classes to the database objects. A simple way of adding more metadata to your model is to apply annotation attributes.
For example, in the database, the maximum length of the company name of a customer is 40, and the value cannot be null (empty). In the class, the wizard applies attributes to specify this:
[Required]
[StringLength(40)]
public string CompanyName { get; set; }

When there isn't an obvious map between .NET types and database types, an attribute can be used. For example, in the database, the column type of UnitPrice for the Products table is money. .NET does not have a money type, so it should use decimal instead:
[Column(TypeName = "money")]
public decimal? UnitPrice { get; set; }

In the Category table, Description can be longer than the 8,000 characters that can be stored in an nvarchar variable, so it needs to map to ntext instead:
[Column(TypeName = "ntext")]
public string Description { get; set; }

There are other attributes, but they are beyond the scope of this book.

EF Fluent API

The last way that the model can be defined is using the Fluent API. It can be used instead of attributes or in addition to them. For example, look at the following two attributes in the Customer class:
[Required]
[StringLength(40)]
public string CompanyName { get; set; }

They could be deleted and replaced with this Fluent API statement in the Northwind class' OnModelBuilding method:
modelBuilder.Entity<Customer>()
 .Property(customer => customer.CompanyName)
 .IsRequired()
 .HasMaxLength(40);

Querying an Entity Data Model

In the Main method, add the following statements to:
	Prompt the user for a price
	Create an instance of the Northwind class that will manage the database
	Write a simple query using LINQ
	Loop through the results

WriteLine("List of products that cost more than a given price with most expensive first.");
string input;
decimal price;
do
{
 Write("Enter a product price: ");
 input = ReadLine();
} while (!decimal.TryParse(input, out price));

var db = new Northwind();

IQueryable<Product> query = db.Products
 .Where(product => product.UnitPrice > price)
 .OrderByDescending(product => product.UnitPrice);

foreach (Product item in query)
{
 WriteLine($"{item.ProductID}: {item.ProductName} costs {item.UnitPrice:$#,##0.00}");
}

Tip
You will learn much more about LINQ in Chapter 9, Querying and Manipulating Data with LINQ.

Press Ctrl + F5. Enter 50 when prompted to enter a product price:

List of products that cost more than a given price with most expensive first.
Enter a product price: 50
38: Côte de Blaye costs $263.50
29: Thüringer Rostbratwurst costs $123.79
9: Mishi Kobe Niku costs $97.00
20: Sir Rodney's Marmalade costs $81.00
18: Carnarvon Tigers costs $62.50
59: Raclette Courdavault costs $55.00
51: Manjimup Dried Apples costs $53.00

Logging SQL statements

There are two ways to find out how the LINQ query is being translated into the underlying database's query language. The first is to convert the query into a string.
Add the following code before the for statement that loops through the results:
WriteLine(query.ToString());

Rerun the application with Ctrl + F5 and enter 50 again. You will see the Transact-SQL statement that was dynamically generated at runtime and then executed in the database to fetch the data we asked for:

List of products that cost more than a given price with most expensive first.
Enter a product price: 50
SELECT
 [Project1].[ProductID] AS [ProductID],
 [Project1].[ProductName] AS [ProductName],
 [Project1].[SupplierID] AS [SupplierID],
 [Project1].[CategoryID] AS [CategoryID],
 [Project1].[QuantityPerUnit] AS [QuantityPerUnit],
 [Project1].[UnitPrice] AS [UnitPrice],
 [Project1].[UnitsInStock] AS [UnitsInStock],
 [Project1].[UnitsOnOrder] AS [UnitsOnOrder],
 [Project1].[ReorderLevel] AS [ReorderLevel],
 [Project1].[Discontinued] AS [Discontinued]
 FROM (SELECT
 [Extent1].[ProductID] AS [ProductID],
 [Extent1].[ProductName] AS [ProductName],
 [Extent1].[SupplierID] AS [SupplierID],
 [Extent1].[CategoryID] AS [CategoryID],
 [Extent1].[QuantityPerUnit] AS [QuantityPerUnit],
 [Extent1].[UnitPrice] AS [UnitPrice],
 [Extent1].[UnitsInStock] AS [UnitsInStock],
 [Extent1].[UnitsOnOrder] AS [UnitsOnOrder],
 [Extent1].[ReorderLevel] AS [ReorderLevel],
 [Extent1].[Discontinued] AS [Discontinued]
 FROM [dbo].[Products] AS [Extent1]
 WHERE [Extent1].[UnitPrice] > @p__linq__0
) AS [Project1]
 ORDER BY [Project1].[UnitPrice] DESC
38: Côte de Blaye costs $263.50
29: Thüringer Rostbratwurst costs $123.79
9: Mishi Kobe Niku costs $97.00
20: Sir Rodney's Marmalade costs $81.00
18: Carnarvon Tigers costs $62.50
59: Raclette Courdavault costs $55.00
51: Manjimup Dried Apples costs $53.00

A better way is to use the database logging feature.
Comment out the previous statement to output the query as a string. Then, add the following code after creating the db variable:
var db = new Northwind();
db.Database.Log = new Action<string>(message => { WriteLine(message); });

Rerun the application and enter 50 again.
In the following output, you will see all the activity happening between our application and the database, including every time a connection is opened and closed, and useful timings for performance testing.
Note
Ignore the statements that use INFORMATION_SCHEMA.TABLES and [dbo].[__MigrationHistory]. These are internal checks made by EF.

List of products that cost more than a given price with most expensive first.
Enter a product price: 50
Opened connection at 30/08/2015 13:59:40 +01:00
SELECT
 [Project1].[ProductID] AS [ProductID],
 [Project1].[ProductName] AS [ProductName],
 [Project1].[SupplierID] AS [SupplierID],
 [Project1].[CategoryID] AS [CategoryID],
 [Project1].[QuantityPerUnit] AS [QuantityPerUnit],
 [Project1].[UnitPrice] AS [UnitPrice],
 [Project1].[UnitsInStock] AS [UnitsInStock],
 [Project1].[UnitsOnOrder] AS [UnitsOnOrder],
 [Project1].[ReorderLevel] AS [ReorderLevel],
 [Project1].[Discontinued] AS [Discontinued]
 FROM (SELECT
 [Extent1].[ProductID] AS [ProductID],
 [Extent1].[ProductName] AS [ProductName],
 [Extent1].[SupplierID] AS [SupplierID],
 [Extent1].[CategoryID] AS [CategoryID],
 [Extent1].[QuantityPerUnit] AS [QuantityPerUnit],
 [Extent1].[UnitPrice] AS [UnitPrice],
 [Extent1].[UnitsInStock] AS [UnitsInStock],
 [Extent1].[UnitsOnOrder] AS [UnitsOnOrder],
 [Extent1].[ReorderLevel] AS [ReorderLevel],
 [Extent1].[Discontinued] AS [Discontinued]
 FROM [dbo].[Products] AS [Extent1]
 WHERE [Extent1].[UnitPrice] > @p__linq__0
) AS [Project1]
 ORDER BY [Project1].[UnitPrice] DESC
-- p__linq__0: '50' (Type = Decimal, IsNullable = false, Precision = 2)
-- Executing at 30/08/2015 13:59:40 +01:00
-- Completed in 7 ms with result: SqlDataReader
38: Côte de Blaye costs $263.50
29: Thüringer Rostbratwurst costs $123.79
9: Mishi Kobe Niku costs $97.00
20: Sir Rodney's Marmalade costs $81.00
18: Carnarvon Tigers costs $62.50
59: Raclette Courdavault costs $55.00
51: Manjimup Dried Apples costs $53.00
Closed connection at 30/08/2015 13:59:40 +01:00

Tip
Notice that internally, EF6 uses classic ADO.NET types such as SqlConnection and SqlDataReader. For this reason, EF will always be slower than using classic ADO.NET. If performance is your goal, then use classic ADO.NET in preference to EF.

Manipulating data with Entity Data Models

It is easy to insert, update, and delete entities using EF.
Inserting entities

After the foreach statement, add the following code to insert a product and relist all products:
var newProduct = new Product
{
 ProductName = "Bob's Burger",
 UnitPrice = 500M
};
// mark product as added in change tracking
db.Products.Add(newProduct);
// save tracked changes to database
db.SaveChanges();
foreach (var item in query)
{
 WriteLine($"{item.ProductID}: {item.ProductName} costs {item.UnitPrice:$#,##0.00}");
}

Rerun the application and enter 50. You will see that the product has been inserted:

78: Bob's Burger costs $500.00

The following statement is logged, showing how the row was inserted within a transaction:

Opened connection at 30/08/2015 14:04:22 +01:00
Started transaction at 30/08/2015 14:04:22 +01:00
INSERT [dbo].[Products]([ProductName], [SupplierID], [CategoryID], [QuantityPerUnit], [UnitPrice], [UnitsInStock], [UnitsOnOrder], [ReorderLevel], [Discontinued])
VALUES (@0, NULL, NULL, NULL, @1, NULL, NULL, NULL, @2)
SELECT [ProductID]
FROM [dbo].[Products]
WHERE @@ROWCOUNT > 0 AND [ProductID] = scope_identity()
-- @0: 'Bob's Burger' (Type = String, Size = 40)
-- @1: '500' (Type = Decimal, Precision = 19, Scale = 4)
-- @2: 'False' (Type = Boolean)
-- Executing at 30/08/2015 14:04:22 +01:00
-- Completed in 12 ms with result: SqlDataReader
Committed transaction at 30/08/2015 14:04:22 +01:00
Closed connection at 30/08/2015 14:04:22 +01:00

Updating entities

Add the following code to increase the price by $20 of the product with a primary key value for its ProductID of 78 and then relist the products:
Product updateProduct = db.Products.Find(78);
updateProduct.UnitPrice += 20M;
db.SaveChanges();
foreach (var item in query)
{
 WriteLine($"{item.ProductID}: {item.ProductName} costs {item.UnitPrice:$#,##0.00}");
}

Rerun the application and notice that the existing entity for Bob's Burger has increased in price by $20:

78: Bob's Burger costs $520.00

Did you see the update statement that was dynamically generated and executed against the database and logged to the console? It looked something like this:

Opened connection at 30/08/2015 14:10:07 +01:00
Started transaction at 30/08/2015 14:10:07 +01:00
UPDATE [dbo].[Products]
SET [UnitPrice] = @0
WHERE ([ProductID] = @1)
-- @0: '520.0000' (Type = Decimal, Precision = 19, Scale = 4)
-- @1: '78' (Type = Int32)
-- Executing at 30/08/2015 14:10:07 +01:00
-- Completed in 2 ms with result: 1
Committed transaction at 30/08/2015 14:10:07 +01:00
Closed connection at 30/08/2015 14:10:07 +01:00

Notice the following aspects:
	When you call the SaveChanges method, EF implicitly creates a transaction so that if something goes wrong, it would automatically rollback all the changes, and if everything works ok, it would commit the transaction
	EF is repeatedly opening and closing the connection

We can improve performance by manually controlling when we open and close the connection.
Add the following code immediately after creating the db object:
var db = new Northwind();
// if you manually open a connection it will stop
// automatically opening and closing repeatedly
db.Database.Connection.Open();

Add the following code at the end of the Main method:
db.Database.Connection.Close();

If you rerun the application, you will see that the connection is only opened and closed once.

Transactions

Every time you call the SaveChanges method, an implicit transaction
 is started. If every operation succeeds, then the transaction is committed.
Transactions maintain the integrity of your database by applying locks to prevent reads and writes while a sequence of operations is occurring.
Transactions are ACID, which is explained here:
	A is for atomic. Either all the operations in the transaction commit or none of them do.
	C is for consistent. The state of the database before and after a transaction is consistent. This is dependent on your code logic.
	I is for isolated. During a transaction, changes are hidden from other processes. There are multiple isolation levels that you can pick from (see the following table). The stronger the level, the better the integrity of the data. However, more locks must be applied which will negatively affect other processes. Snapshot is a special case, because it creates multiple copies of rows to avoid locks, but this will increase the size of your database while transactions occur.
	D is for durable. If a failure occurs during a transaction, it can be recovered. The opposite of durable is volatile.

	
Isolation level

	
Lock(s)

	
Integrity problems allowed

	

ReadUncommitted

	
None

	
Dirty reads, non-repeatable reads, and phantom data

	

ReadCommitted

	
When editing, it applies read lock(s) to block other users from reading the record(s) until the transaction ends

	
Non-repeatable reads and phantom data

	

RepeatableRead

	
When reading, it applies edit lock(s) to block other users from editing the record(s) until the transaction ends

	
Phantom data

	

Serializable

	
Applies key-range locks to prevent any action that would affect the results, including inserts and deletes

	
None

	

Snapshot

	
None

	
None

Defining an explicit transaction

You can define an explicit transaction using the TransactionScope type.
Add a reference to the System.Transactions assembly and import the System.Transactions namespace.
Before the instantiation of the db variable, add the following statement to instantiate an explicit transaction scope. Also, add options to weaken the isolation level to allow dirty reads and other integrity issues, reduce locks to improve performance, and to automatically rollback if the transaction is not disposed within 10 seconds, to prevent deadlocks:

var options = new TransactionOptions
{
 IsolationLevel = IsolationLevel.ReadUncommitted,
 Timeout = TimeSpan.FromSeconds(10)
};
using (var scope = new TransactionScope(TransactionScopeOption.Required, options))
{
 var db = new Northwind();

You will also need to enter a close brace, }, after you close the database connection. When the close brace executes, the transaction scope will dispose and check whether everything worked. If it did, then all participants in the transaction would be asked to commit. If an exception occurs, then all participants would be asked to rollback:
 db.Database.Connection.Close();
}

Tip
Always specify a transaction timeout so that deadlocks cannot occur.

Loading patterns with EF

There are three loading patterns
 that can be used with EF:
lazy loading,
eager loading, and
explicit loading.
Lazy loading entities

Add a new console application project named Ch08_LoadingPatterns.
Add an ADO.NET Entity Data Model for the Northwind database, as we did earlier.
Back in Program.cs, add the following code to the top of the file:
using System;
using static System.Console;

Add the following code to the Main method:
var db = new Northwind();
db.Database.Log = new Action<string>(message => { WriteLine(message); });
var query = db.Categories;
foreach (var item in query)
{
 WriteLine(item.CategoryName);
}

Press Ctrl + F5 to run the application and notice that Transact-SQL queried only the Categories table:

SELECT
 [Extent1].[CategoryID] AS [CategoryID],
 [Extent1].[CategoryName] AS [CategoryName],
 [Extent1].[Description] AS [Description],
 [Extent1].[Picture] AS [Picture]
 FROM [dbo].[Categories] AS [Extent1]
-- Executing at 23/08/2015 12:17:02 +01:00
-- Completed in 14 ms with result: SqlDataReader
Beverages
Condiments
Confections
Dairy Products
Grains/Cereals
Meat/Poultry
Produce
Seafood

Each item in foreach is an instance of the Category class, which has a property named Products, that is, the list of products in that category. Since the original query only selected from the Categories table, this property is empty for each category.
Let's see what happens when we attempt to output how many products there are in each category. Temporarily comment out the line for logging:

// db.Database.Log = new Action<string>(message => { WriteLine(message); });

Modify the WriteLine statement inside foreach:
WriteLine($"{item.CategoryName} has {item.Products.Count} products.");

Rerun the application. Notice that the correct number of products is output:

Beverages has 12 products.
Condiments has 12 products.
Confections has 13 products.
Dairy Products has 10 products.
Grains/Cereals has 7 products.
Meat/Poultry has 6 products.
Produce has 5 products.
Seafood has 12 products.

This is due to a feature of EF known as lazy loading.
Uncomment the logging line and rerun the application. You will notice that when the code accesses the Products property, EF automatically checks to see whether they are loaded. If not, EF loads them for us "lazily."
For example, just before outputting the count of seafood products, this query is executed:

SELECT
 [Extent1].[ProductID] AS [ProductID],
 [Extent1].[ProductName] AS [ProductName],
 [Extent1].[SupplierID] AS [SupplierID],
 [Extent1].[CategoryID] AS [CategoryID],
 [Extent1].[QuantityPerUnit] AS [QuantityPerUnit],
 [Extent1].[UnitPrice] AS [UnitPrice],
 [Extent1].[UnitsInStock] AS [UnitsInStock],
 [Extent1].[UnitsOnOrder] AS [UnitsOnOrder],
 [Extent1].[ReorderLevel] AS [ReorderLevel],
 [Extent1].[Discontinued] AS [Discontinued]
 FROM [dbo].[Products] AS [Extent1]
 WHERE [Extent1].[CategoryID] = @EntityKeyValue1
-- EntityKeyValue1: '8' (Type = Int32, IsNullable = false)
-- Executing at 30/08/2015 14:16:26 +01:00
-- Completed in 0 ms with result: SqlDataReader
Seafood has 12 products.

The problem with lazy loading is that multiple round trips to the database server are required to eventually fetch all the data.

Eager loading entities

Sometimes, it is better to disable lazy loading and manually specify that all the data is brought across the network immediately using eager loading (aka early loading).
Add the following line of code after creating the db variable to disable lazy loading:
db.Configuration.LazyLoadingEnabled = false;

If you rerun the application, you will now find that all the product counts are zero:

Beverages has 0 products.
Condiments has 0 products.
Confections has 0 products.
Dairy Products has 0 products.
Grains/Cereals has 0 products.
Meat/Poultry has 0 products.
Produce has 0 products.
Seafood has 0 products.

To perform eager loading, modify the query line to make it look like this:
var query = db.Categories.Include("Products");

Rerun the application. You will see that EF generates a SELECT statement with a subquery in order to fetch the related products for each category, all in one go:

SELECT
 [Project1].[CategoryID] AS [CategoryID],
 [Project1].[CategoryName] AS [CategoryName],
 [Project1].[Description] AS [Description],
 [Project1].[Picture] AS [Picture],
 [Project1].[C1] AS [C1],
 [Project1].[ProductID] AS [ProductID],
 [Project1].[ProductName] AS [ProductName],
 [Project1].[SupplierID] AS [SupplierID],
 [Project1].[CategoryID1] AS [CategoryID1],
 [Project1].[QuantityPerUnit] AS [QuantityPerUnit],
 [Project1].[UnitPrice] AS [UnitPrice],
 [Project1].[UnitsInStock] AS [UnitsInStock],
 [Project1].[UnitsOnOrder] AS [UnitsOnOrder],
 [Project1].[ReorderLevel] AS [ReorderLevel],
 [Project1].[Discontinued] AS [Discontinued]
 FROM (SELECT
 [Extent1].[CategoryID] AS [CategoryID],
 [Extent1].[CategoryName] AS [CategoryName],
 [Extent1].[Description] AS [Description],
 [Extent1].[Picture] AS [Picture],
 [Extent2].[ProductID] AS [ProductID],
 [Extent2].[ProductName] AS [ProductName],
 [Extent2].[SupplierID] AS [SupplierID],
 [Extent2].[CategoryID] AS [CategoryID1],
 [Extent2].[QuantityPerUnit] AS [QuantityPerUnit],
 [Extent2].[UnitPrice] AS [UnitPrice],
 [Extent2].[UnitsInStock] AS [UnitsInStock],
 [Extent2].[UnitsOnOrder] AS [UnitsOnOrder],
 [Extent2].[ReorderLevel] AS [ReorderLevel],
 [Extent2].[Discontinued] AS [Discontinued],
 CASE WHEN ([Extent2].[ProductID] IS NULL) THEN CAST(NULL AS int) ELSE 1
END AS [C1]
 FROM [dbo].[Categories] AS [Extent1]
 LEFT OUTER JOIN [dbo].[Products] AS [Extent2] ON [Extent1].[CategoryID]
= [Extent2].[CategoryID]
) AS [Project1]
 ORDER BY [Project1].[CategoryID] ASC, [Project1].[C1] ASC

Explicit loading entities

The last type of loading we will look at is explicit loading. It works similar to lazy loading, but you are in control of exactly which related data is loaded and when.
Modify your code to make it look like this:
using System;
using System.Linq;
using static System.Console;
namespace Ch08_LoadingPatterns
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine("Loading Patterns with the Entity Framework");
 var db = new Northwind();
 IQueryable<Category> query;
 Write("Enable lazy loading? (Y/N): ");
 var lazyloading = (ReadKey().Key == ConsoleKey.Y);
 db.Configuration.LazyLoadingEnabled = lazyloading;
 WriteLine();
 Write("Enable logging? (Y/N): ");
 var logging = (ReadKey().Key == ConsoleKey.Y);
 if (logging)
 {
 db.Database.Log = new Action<string>(message => { WriteLine(message); });
 }
 WriteLine();
 Write("Enable eager loading? (Y/N): ");
 var eagerloading = (ReadKey().Key == ConsoleKey.Y);
 if (eagerloading)
 {
 query = db.Categories.Include("Products");
 }
 else
 {
 query = db.Categories;
 }
 WriteLine();
 Write("Enable explicit loading? (Y/N): ");
 var explicitloading = (ReadKey().Key == ConsoleKey.Y);
 WriteLine();
 foreach (var item in query)
 {
 if (explicitloading)
 {
 Write($"Explicitly load products for {item.CategoryName}? (Y/N): ");
 if (ReadKey().Key == ConsoleKey.Y)
 {
 var products = db.Entry(item).Collection(c => c.Products);
 if (!products.IsLoaded) products.Load();
 }
 WriteLine();
 }
 WriteLine($"{item.CategoryName} has {item.Products.Count} products.");
 }
 }
 }
}

Rerun the application, disable lazy loading, disable logging, disable eager loading, and enable explicit loading.
For each category, press Y or N to load its products as you wish. For example, this is the output when I ran it. I chose to load products for only four of the eight categories:

Enable lazy-loading? (Y/N): n
Enable logging? (Y/N): n
Enable eager-loading? (Y/N): n
Enable explicit-loading? (Y/N): y
Explicitly load products for Beverages? (Y/N): y
Beverages has 12 products.
Explicitly load products for Condiments? (Y/N): n
Condiments has 0 products.
Explicitly load products for Confections? (Y/N): n
Confections has 0 products.
Explicitly load products for Dairy Products? (Y/N): y
Dairy Products has 10 products.
Explicitly load products for Grains/Cereals? (Y/N): y
Grains/Cereals has 7 products.
Explicitly load products for Meat/Poultry? (Y/N): y
Meat/Poultry has 6 products.
Explicitly load products for Produce? (Y/N): n
Produce has 0 products.
Explicitly load products for Seafood? (Y/N): n
Seafood has 0 products.

Tip
Carefully consider which loading pattern is best for your code. The default of lazy loading can literally make you into a lazy database developer!

Using Entity Framework Core

Add a new
Console Application (Package) project named Ch08_EFCore.
Tip
Notice that we have chosen Console Application (Package) to target .NET Core.

To use EF Core, you must install a provider for the RDBMS you want to use. You can find an up-to-date list of data providers here:

http://ef.readthedocs.org/en/latest/providers/index.html

To install the provider for SQL Server, on the Tools menu, choose NuGet Package Manager and then choose Package Manager Console.
In Package Manager Console, ensure package source is set to nuget.org and default project is set to Ch08_EFCore. Then, enter the following command in the prompt:

install-package entityframework.microsoftsqlserver

Tip
By the time you read this book, the final release version should be available so that the preceding command will work. If you get an error with the preceding line, add the –pre flag to the end to install the pre-release version.

At the time of writing this book, the pre-release version of EF Core is 7.0.0-rc1-final, as you can see in the following screenshot:
[image: Using Entity Framework Core]

Later, we will run migration commands, so you will need to install the following package too:

install-package entityframework.commands

By the time you read this book, the final release version should be available so that the preceding command will work. If you get an error with the preceding line, add the –pre flag to the end to install the pre-release version.
At the time of writing this book, there are no graphical tools or wizards to help you write the code, so we will have to do it all manually.
On the Project menu, choose Add Class… or press Shift + Alt + C and name it Category.
Modify its code to look like the following code block. Note the following aspects:
	The initialization of the Products property with an empty Hashset (to avoid NullReferenceExceptions when reading its Count property)
	The Products property is virtual (so that EF Core can inherit from our class and implement automatic lazy loading)

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;
namespace Ch08_EFCore
{
 [Table("Categories")]
 public class Category
 {
 public int CategoryID { get; set; }
 public string CategoryName { get; set; }
 public virtual ICollection<Product> Products { get; set; }
 public Category()
 {
 Products = new HashSet<Product>();
 }
 }
}

Tip
At the time of writing this book, EF Core does not have an automatic pluralizer or singularizer, so we must explicitly specify the table name using an attribute (or we could have used the Fluent API).

Add a class named Product and modify its code to look like the following code block. Notice the attribute to explicitly specify the column to use for the relationship between Categories and Products:
using System.ComponentModel.DataAnnotations.Schema;
namespace Ch08_EFCore
{
 [Table("Products")]
 public class Product
 {
 public int ProductID { get; set; }
 public string ProductName { get; set; }
 public decimal? UnitPrice { get; set; }
 public int CategoryID { get; set; }
 [ForeignKey("CategoryID")]
 public virtual Category Category { get; set; }
 }
}

Add a class named Northwind and modify its code to look like the following code block:
using Microsoft.Data.Entity;
namespace Ch08_EFCore
{
 public class Northwind : DbContext
 {
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }
 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseSqlServer(@"Data Source=(localdb)\mssqllocaldb;initial catalog=Northwind;integrated security=true;");
 base.OnConfiguring(optionsBuilder);
 }
 }
}

Tip
EF Core prefers code over the old XML .config files to specify the connection string. This is because it removes the dependency on .config XML files. You should still load the connection string from an external source, but you can now store it wherever you want.

In Program.cs file, import the Microsoft.Data.Entity namespace, statically import the System.Console type, and add the following statements inside the Main method:
var db = new Northwind();
var query = db.Categories.Include(c => c.Products);
foreach (var item in query)
{
 WriteLine($"{item.CategoryName} has {item.Products.Count} products.");
}
ReadLine(); // wait for user to press ENTER when debugging

Open the project's Properties and on the Debug tab, select Use Specific Runtime and choose .NET Core and x64.
Run the application with F5, and view the output, which is the same as it was for EF6:

Beverages has 12 products.
Condiments has 12 products.
Confections has 13 products.
Dairy Products has 10 products.
Grains/Cereals has 7 products.
Meat/Poultry has 6 products.
Produce has 5 products.
Seafood has 12 products.

Note that this console application has a titlebar that shows that it targets .NET Core executed by the CoreCLR and the 64-bit CPU architecture, so it could be deployed to Windows, Max OS X, and Linux.
[image: Using Entity Framework Core]

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring this chapter's topics with deeper research.

Exercise 8.1 – test your knowledge

Answer the following questions:
	Which .NET data provider would you use to work with Microsoft Access .MDB database files?
	Which .NET data provider would you use to work with Microsoft SQL Server 2012 Express Edition?
	What must you do with DbConnection variable before executing a DbCommand variable?
	When would you use CommandBehavior.SequentialAccess?
	When would you use classic ADO.NET instead of Entity Framework?
	When defining a DbContext class, what type would you use for the property that represents a table, for example, the Products property of a Northwind context?
	What are the EF conventions for primary keys?
	When would you use an annotation attribute in an entity class?
	Why might you choose the Fluent API in preference to annotation attributes?
	What is the difference between Database First and Code First in EF6?

Exercise 8.2 – explore the EF Core documentation

Go to the following website and read the official Entity Framework Core 1.0 documentation. Follow the tutorials to create Windows desktop and web applications and services. If you have a Mac or a Linux virtual machine, follow the tutorials to use EF Core on those alternative platforms.

http://ef.readthedocs.org/en/latest/

Exercise 8.3 – explore topics

Use the following links to read more on this chapter's topics:
	.NET Framework data providers: https://msdn.microsoft.com/en-us/library/a6cd7c08(v=vs.110).aspx
	Retrieving and modifying data in ADO.NET: https://msdn.microsoft.com/en-us/library/ms254937(v=vs.110).aspx
	Data points – looking ahead to Entity Framework 7: https://msdn.microsoft.com/en-us/magazine/dn890367.aspx

Summary

In this chapter, you learned how to connect to a database, how to execute an SQL statement and process the results, and how to build Code First data models for an existing database such as Northwind.
In the next chapter, you will learn how to write a LINQ query to select, filter, sort, join, and group data of all types.

Chapter 9. Querying and Manipulating Data with LINQ

This chapter is about Language Integrated Queries (LINQ), language extensions that add the ability to work with sequences of items and filter, sort, and project them into different outputs.
This chapter covers the following topics:
	Writing LINQ queries
	Using multiple threads with Parallel LINQ
	Creating your own LINQ extension methods
	Working with LINQ to XML

Writing LINQ queries

In the previous chapter, you wrote a few simple LINQ queries, but I didn't properly explained how LINQ works.
LINQ has several parts; some are required and some are optional:
	Extension methods (required): These are Where, OrderBy, Select, and so on. These provide the functionality of LINQ.
	LINQ providers (required): LINQ to Objects, LINQ to Entities, LINQ to XML, LINQ to OData, LINQ to Amazon, and so on, are LINQ providers. These convert standard LINQ operations into specific commands for different types of data.
	Lambda expressions (optional): These can be used instead of named methods to simplify LINQ extension method calls.
	LINQ query comprehension syntax (optional): These include from, in, where, orderby, descending, select, and so on. These are C# keywords that are aliases for some of the LINQ extension methods, and their use can simplify the queries you write, especially if you already have experience with other query languages such as Structured Query Language (SQL).

Tip
When programmers are first introduced to LINQ, they often believe that the query comprehension syntax is LINQ, but ironically, that is one of the parts of LINQ that is optional!

Extending sequences with the Enumerable class

The extension methods, such as Where and Select, are appended by the Enumerable static class to any type, known as a
sequence, that implements IEnumerable<T>.
For example, an array of a type T implements the IEnumerable<T> class, where T is the type of items in the array, so all arrays support LINQ to query and manipulate them.
All collections, such as List<T>, Dictionary<TKey, TValue>, Stack<T>, and Queue<T> implement IEnumerable<T>, so they can be queried and manipulated with LINQ.

Filtering entities with Where

The most common reason for using LINQ is to filter items in a sequence using the Where extension method.
Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N or navigate to File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the list at the center, select Console Application, type the name Ch09_LinqToObjects, change the location to C:\Code, type the solution name Chapter09, and then click on OK.
Statically import the System.Console type.
In the Main method, add the following statements:
var names = new string[] { "Michael", "Pam", "Jim", "Dwight", "Angela", "Kevin", "Toby", "Creed" };
var query = names.Where(

As you type the open parenthesis after Where, note the IntelliSense. It tells us that to call Where, we must pass in an instance of a Func<string, bool> delegate. This delegate must target a method with a matching signature, as you can see in the following screenshot::
[image: Filtering entities with Where]

For each string variable passed to the method, the method must return a Boolean value. If the method returns true, it indicates that we should include the string in the results, and if the method returns false, it indicates that we should exclude it.
Targeting a named method

Let's define a method that only includes names that are longer than four characters.
Add the following method under the Main method:
static bool NameLongerThanFour(string name)
{
 return name.Length > 4;
}

Complete the Where call and loop through the query items, as shown in the following code:
var query = names.Where(new Func<string, bool>(NameLongerThanFour));
foreach (var item in query)
{
 WriteLine(item);
}

Run the application by pressing Ctrl + F5 and view the output:

Michael
Dwight
Angela
Kevin
Creed

Simplifying the code by removing the explicit delegate instantiation

We can simplify the code by deleting the explicit instantiation of the Func<string, bool> delegate. The C# compiler will instantiate the Func<string, bool> delegate for us, so you never need to explicitly do it.
Modify the query to look like this:
var query = names.Where(NameLongerThanFour);

Rerun the application and note that the output is the same as before.

Targeting a lambda expression

We can simplify our code even further using a lambda expression
 in place of the named method.
Although it can look complicated and magical at first, a lambda expression is simply a nameless function. It uses the => (read as "goes to") symbol to indicate the return value.
Modify the query to look like the following statement:
var query = names.Where(name => name.Length > 4);

Note that the syntax for a lambda expression includes all the important parts of the NameLongerThanFour method, but nothing extraneous. A lambda expression only needs to define the following:
	The names of input parameters
	A return value expression

The type of the name input parameter is inferred from the fact that the sequence contains strings and the return type must be a bool value for Where to work, so the expression after the => symbol must return a bool value.
The compiler does most of the work for us, so our code can be as concise as possible.
Rerun the application and note that the output is the same as earlier.

Sorting sequences with OrderBy

Extension methods can be chained if the previous method returns another sequence, that is, a type that implements the IEnumerable<T> class.
Append a call to OrderBy to the end of the existing query as shown here:
var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length);

Tip
I like to format the line so that each extension method call happens on its own line. I think this makes LINQ queries easier to read.

Rerun the application and note that the names are now sorted with shortest first:

Kevin
Creed
Dwight
Angela
Michael

Tip
To put the longest name first, you would use OrderByDescending.

Sorting by multiple properties with the ThenBy method

We might want to sort the array of names by more than one property.
Append a call to ThenBy to the end of the existing query as shown here:
var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

Rerun the application and note the slight difference in the sort order. Within a group of names of the same length, the names are sorted alphabetically by the full value of the string, so Creed comes before Kevin, and Angela comes before Dwight:

Creed
Kevin
Angela
Dwight
Michael

Working with sets

Sets are one of the most fundamental concepts in mathematics. A set is a collection of one or more objects. You might remember being taught about Venn diagrams in school. Common set operations include the intersect
 or union
 between sets.
Add a new console application project named Ch09_Sets. Set the solution's start up project to be the current selection.
Statically import the System.Console type.
This application will define three arrays of strings for cohorts of apprentices and then perform some common set operations.
On the top of the Main method, add the following method, that outputs any sequence of string variables as a comma-separated single string to the console output along with an optional description:
private static void Output(IEnumerable<string> cohort, string description = "")
{
 WriteLine(description);
 WriteLine(string.Join(", ", cohort.ToArray()));
}

In the Main method, write the following statements:
var cohort1 = new string[] { "Rachel", "Gareth", "Jonathan", "George" };
var cohort2 = new string[] { "Jack", "Stephen", "Daniel", "Jack", "Jared" };
var cohort3 = new string[] { "Declan", "Jack", "Jack", "Jasmine", "Conor" };
Output(cohort1, "Cohort 1");
Output(cohort2, "Cohort 2");
Output(cohort3, "Cohort 3");
WriteLine();
Output(cohort2.Distinct(), "cohort2.Distinct(): removes duplicates");
Output(cohort2.Union(cohort3), "cohort2.Union(cohort3): combines two sequences and removes any duplicates");
Output(cohort2.Concat(cohort3), "cohort2.Concat(cohort3): combines two sequences but leaves in any duplicates");
Output(cohort2.Intersect(cohort3), "cohort2.Intersect(cohort3): returns items that are in both sequences");
Output(cohort2.Except(cohort3), "cohort2.Except(cohort3): removes items from the first sequence that are in the second sequence");
Output(cohort1.Zip(cohort2, (c1, c2) => $"{c1} matched with {c2}"), "cohort1.Zip(cohort2, (c1, c2) => $\"{c1} matched with {c2}\"): matches items based on position in the sequence");

Run the application by pressing Ctrl + F5 and view the output:

Cohort 1
Rachel, Gareth, Jonathan, George
Cohort 2
Jack, Stephen, Daniel, Jack, Jared
Cohort 3
Declan, Jack, Jack, Jasmine, Conor

cohort2.Distinct(): removes duplicates
Jack, Stephen, Daniel, Jared
cohort2.Union(cohort3): combines two sequences and removes any duplicates
Jack, Stephen, Daniel, Jared, Declan, Jasmine, Conor
cohort2.Concat(cohort3): combines two sequences but leaves in any duplicates
Jack, Stephen, Daniel, Jack, Jared, Declan, Jack, Jack, Jasmine, Conor
cohort2.Intersect(cohort3): returns items that are in both sequences
Jack
cohort2.Except(cohort3): removes items from the first sequence that are in the second sequence
Stephen, Daniel, Jared
cohort1.Zip(cohort2, (c1, c2) => $"{c1} matched with {c2}"): matches items based on position in the sequence
Rachel matched with Jack, Gareth matched with Stephen, Jonathan matched with Daniel, George matched with Jack

Note that with Zip, if there are unequal numbers of items in the two sequences, then some items will not have a matching partner, like poor Jared.

Projecting entities with Select statement

To learn about
projection, it is best to have some more complex sequences to work with, so in the next project, we will use the Northwind sample database.
Add a new console application project named Ch09_Projection. Add a new ADO.NET Entity Data Model item named Northwind. Use Code First from database, connect to the Northwind database with the server and instance name (localdb)\mssqllocaldb, and select all the tables.
In the Main method, write the following statements:
var db = new Northwind();

var query = db.Products
 .Where(product => product.UnitPrice < 10M)
 .OrderByDescending(product => product.UnitPrice);

foreach (var item in query)
{
 WriteLine($"{item.ProductID}: {item.ProductName} costs {item.UnitPrice:$#,##0.00}");
}

Run the application by pressing Ctrl + F5 and view the output:

41: Jack's New England Clam Chowder costs $9.65
45: Rogede sild costs $9.50
47: Zaanse koeken costs $9.50
19: Teatime Chocolate Biscuits costs $9.20
23: Tunnbröd costs $9.00
75: Rhönbräu Klosterbier costs $7.75
54: Tourtière costs $7.45
52: Filo Mix costs $7.00
13: Konbu costs $6.00
24: Guaraná Fantástica costs $4.50
33: Geitost costs $2.50

Although this query outputs the information we want, it does so inefficiently because it returns entire rows of all columns from the table. We can see this by outputting the query.
Add the following statement before the foreach statement:
WriteLine(query.ToString());

Rerun the applications and note that the SQL logged statement includes all columns:

SELECT
 [Extent1].[ProductID] AS [ProductID],
 [Extent1].[ProductName] AS [ProductName],
 [Extent1].[SupplierID] AS [SupplierID],
 [Extent1].[CategoryID] AS [CategoryID],
 [Extent1].[QuantityPerUnit] AS [QuantityPerUnit],
 [Extent1].[UnitPrice] AS [UnitPrice],
 [Extent1].[UnitsInStock] AS [UnitsInStock],
 [Extent1].[UnitsOnOrder] AS [UnitsOnOrder],
 [Extent1].[ReorderLevel] AS [ReorderLevel],
 [Extent1].[Discontinued] AS [Discontinued]
 FROM [dbo].[Products] AS [Extent1]
 WHERE [Extent1].[UnitPrice] < cast(10 as decimal(18))
 ORDER BY [Extent1].[UnitPrice] DESC

Change the LINQ to call the Select method to project the results into a new anonymous type with only the three columns that we actually need, like this:
var query = db.Products
 .Where(product => product.UnitPrice < 10M)
 .OrderByDescending(product => product.UnitPrice)
 .Select(product => new { product.ProductID, product.ProductName, product.UnitPrice });

Rerun the application and note that the SQL now only includes three columns that we need:

SELECT
 [Extent1].[ProductID] AS [ProductID],
 [Extent1].[ProductName] AS [ProductName],
 [Extent1].[UnitPrice] AS [UnitPrice]
 FROM [dbo].[Products] AS [Extent1]
 WHERE [Extent1].[UnitPrice] < cast(10 as decimal(18))
 ORDER BY [Extent1].[UnitPrice] DESC

Tip
You might also have noticed that the sequences implement IQueryable<T> instead of IEnumerable<T>. This is an indication that we are using a LINQ provider that uses deferred execution and builds the query in memory using expression trees. The query will not be executed until the last possible moment and only then will it be converted into another query language, such as Transact-SQL for Microsoft SQL Server. Enumerating the query with foreach or calling a method such as ToArray will force immediate execution of the query.

Joining and grouping

Add a new console application project named Ch09_JoiningGrouping.
Add a new ADO.NET Entity Data Model item named Northwind. Use Code First from database, connect to the Northwind database with the server and instance name (localdb)\mssqllocaldb, and select all the tables.
In the Main method, write the following statements:
var db = new Northwind();

var categories = db.Categories.Select(c => new { c.CategoryID, c.CategoryName }).ToArray();
var products = db.Products.Select(p => new { p.ProductID, p.ProductName, p.CategoryID }).ToArray();

// join every product to its category to return 77 matches
var queryJoin = categories.Join(products,
 category => category.CategoryID,
 product => product.CategoryID,
 (c, p) => new { c.CategoryName, p.ProductName, p.ProductID });

foreach (var item in queryJoin)
{
 WriteLine($"{item.ProductID}: {item.ProductName} is in {item.CategoryName}.");
}

Run the application and view the output. Note that there is a single line output for each of the 77 products, and the results show all products in the Beverages category first, then the Condiments category, and so on:

1: Chai is in Beverages.
2: Chang is in Beverages.
24: Guaraná Fantástica is in Beverages.
34: Sasquatch Ale is in Beverages.
35: Steeleye Stout is in Beverages.
38: Côte de Blaye is in Beverages.
39: Chartreuse verte is in Beverages.
43: Ipoh Coffee is in Beverages.
67: Laughing Lumberjack Lager is in Beverages.
70: Outback Lager is in Beverages.
75: Rhönbräu Klosterbier is in Beverages.
76: Lakkalikööri is in Beverages.
3: Aniseed Syrup is in Condiments.
4: Chef Anton's Cajun Seasoning is in Condiments.

Change the query to sort by ProductID:
var queryJoin = categories.Join(products,
 category => category.CategoryID,
 product => product.CategoryID,
 (c, p) => new { c.CategoryName, p.ProductName, p.ProductID })
 .OrderBy(cp => cp.ProductID);

Rerun the application and view the output:

1: Chai is in Beverages.
2: Chang is in Beverages.
3: Aniseed Syrup is in Condiments.
4: Chef Anton's Cajun Seasoning is in Condiments.
5: Chef Anton's Gumbo Mix is in Condiments.
6: Grandma's Boysenberry Spread is in Condiments.
7: Uncle Bob's Organic Dried Pears is in Produce.
8: Northwoods Cranberry Sauce is in Condiments.
9: Mishi Kobe Niku is in Meat/Poultry.
10: Ikura is in Seafood.
11: Queso Cabrales is in Dairy Products.
12: Queso Manchego La Pastora is in Dairy Products.
13: Konbu is in Seafood.
14: Tofu is in Produce.
15: Genen Shouyu is in Condiments.

Add some new statements, as shown below, to the existing code to use the GroupJoin method, and in the output, show the group name and then all the items within each group:
// group all products by their category to return 8 matches
var queryGroup = categories.GroupJoin(products,
 category => category.CategoryID,
 product => product.CategoryID,
 (c, Products) => new { c.CategoryName, Products = Products.OrderBy(p => p.ProductName) });

foreach (var item in queryGroup)
{
 WriteLine($"{item.CategoryName} has {item.Products.Count()} products.");
 foreach (var product in item.Products)
 {
 WriteLine($" {product.ProductName}");
 }
}

Rerun the application. Note that the products inside each category have been sorted by their name as the query asked:

Beverages has 12 products.
 Chai
 Chang
 Chartreuse verte
 Côte de Blaye
 Guaraná Fantástica
 Ipoh Coffee
 Lakkalikööri
 Laughing Lumberjack Lager
 Outback Lager
 Rhönbräu Klosterbier
 Sasquatch Ale
 Steeleye Stout
Condiments has 12 products.
 Aniseed Syrup
 Chef Anton's Cajun Seasoning
 Chef Anton's Gumbo Mix

Sweetening the syntax with syntactic sugar

C# 3 introduced some new keywords in 2008 to make it easier for programmers with experience in SQL to write LINQ queries. This syntactic sugar
 is sometimes called the
LINQ query comprehension syntax.
Tip
LINQ query comprehension syntax is limited in functionality. You must use extension methods to access all the features of LINQ.

Consider the following code:
var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

Instead of writing the preceding code, you can write this:
var query = from name in names
 where name.Length > 4
 orderby name.Length, name
 select name;

C# compiles the query comprehension syntax into the equivalent query using extension methods and lambda expressions.
Not all extension methods have a C# keyword equivalent, for example, the Skip and Take extension methods. The following query cannot be written using only the query syntax:
var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name)
 .Skip(1)
 .Take(2);

Luckily, you can wrap query syntax in parentheses and then switch to using extension methods, as follows:
var query = (from name in names
 where name.Length > 4
 orderby name.Length, name
 select name)
 .Skip(1)
 .Take(2);

Tip

Best Practice

Learn both extension methods with lambda expressions and the comprehension syntax ways of writing LINQ queries because you are likely to have to maintain code that uses both.

Using multiple threads with Parallel LINQ

By default, only one thread is used to execute a LINQ query. Parallel LINQ (PLINQ) is an easy way to enable multiple threads to execute a query.
To see it in action, we will start with some code that only uses a single thread to double 200 million integers.
Add a new console application project named Ch09_PLINQ. Import the System.Diagnostics namespace and statically import the System.Console type.
Add the following statements to the Main method:
var watch = Stopwatch.StartNew();
Write("Press ENTER to start. ");
ReadLine();
watch.Start();
IEnumerable<int> numbers = Enumerable.Range(1, 200000000);
var squares = numbers.Select(number => number * 2).ToArray();
watch.Stop();
WriteLine($"{watch.ElapsedMilliseconds:#,##0} ellapsed milliseconds.");

Press Ctrl + F5 to run the application, but do not press Enter yet.
Right-click on the Windows Taskbar or press Ctrl + Alt + Delete, and then click on Task Manager.
At the bottom of the Task Manager window, click on the More details button. At the top of the Task Manager window, click on the Performance tab.
Right-click on the CPU Utilization graph, choose Change graph to, and then Logical processors, as you can see in the following screenshot:
[image: Using multiple threads with Parallel LINQ]

Note
If you do not have multiple CPUs, then this exercise won't show much!

Rearrange the
Task Manager window and your console application so that they are side by side.
Wait for the CPUs to settle and then press Enter to start the stopwatch and run the query. Your output should look like this:

Press ENTER to start.
19,404 ellapsed milliseconds.

The Task Manager window should show that while the code executed, one CPU was used the most. However, other CPUs could execute background tasks, such as the garbage collector, so they won't be completely flat:
[image: Using multiple threads with Parallel LINQ]

Close the console application, and back in the Main method, modify the query to make a call to the AsParallel extension method as follows:
var squares = numbers.AsParallel().Select(number => number * 2).ToArray();

Press Ctrl + F5 to run the application again. Wait for the Task Manager window to settle and then press Enter to start the stopwatch and run the query. This time, the application should complete in less time (although it might not be as much less as you might hope for—managing those multiple threads takes extra effort!), as shown in the following output:

Press ENTER to start.
17,971 ellapsed milliseconds.

The Task Manager window should show that all CPUs were used equally to execute the LINQ query, as shown in the following screenshot:
[image: Using multiple threads with Parallel LINQ]

Tip
You will learn more about managing multiple threads in Chapter 12, Improving Performance and Scalability with Multitasking.

Creating your own LINQ extension methods

In Chapter 7, Implementing Interfaces and Inheriting Classes, you learned how to create your own extension methods. To create LINQ extension methods, all you have to do is extend the IEnumerable<T> type.
Add a new Class Library project named Ch09_MyLINQExtensions. Rename the Class1.cs file to MyLINQExtensions.
Modify the class to look like the following code. Note that the ProcessSequence extension method doesn't actually modify the sequence because it exists only as an example. It would be up to you to process the sequence in whatever manner you want. The SummariseSequence extension method also doesn't do anything especially useful. It simply returns the number of items in the sequence by using the built-in LongCount extension method. Again, it would be up to you to decide exactly what this method should do and what type it should return:
using System.Collections.Generic;

namespace System.Linq
{
 public static class MyLINQExtensions
 {
 // this is a chainable LINQ extension method
 public static IEnumerable<T> ProcessSequence<T>(this IEnumerable<T> sequence)
 {
 return sequence;
 }

 // this is a scalar LINQ extension method
 public static long SummariseSequence<T>(this IEnumerable<T> sequence)
 {
 return sequence.LongCount();
 }
 }
}

To use your LINQ extension methods in a project, you would simply need to reference the class library assembly because the System.Linq namespace is usually already imported.
In the Ch09_LinqToObjects project, add a reference to the Ch09_MyLINQExtensions assembly.
Modify the LINQ query to call your chainable extension method as follows:
var query = names
 .ProcessSequence()
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

If you run the console application, then you will see the same output as before because your method doesn't actually modify the sequence. But you now know how to extend LINQ with your own functionality.

Working with LINQ to XML

LINQ to XML is a provider that allows you to use LINQ to query and manipulate XML.

Generating XML using LINQ to XML

Add a new console application project named Ch09_LINQandXML. Add a new ADO.NET Entity Data Model item named Northwind. Use Code First from database, connect to the Northwind database on the server named (localdb)\mssqllocaldb, and select all the tables.
Import System.Xml.Linq. In the Main method, write the following statements:
var db = new Northwind();
var products = db.Products.ToArray();

var xml = new XElement("products",
 from p in products
 select new XElement("product",
 new XAttribute("id", p.ProductID),
 new XAttribute("price", p.UnitPrice),
 new XElement("name", p.ProductName)));

Console.WriteLine(xml.ToString());

Run the application. Notice that the structure of the XML generated matches the elements and attributes that the LINQ to XML statement declaratively described in the preceding code:

<products>
 <product id="1" price="18.0000">
 <name>Chai</name>
 </product>
 <product id="2" price="19.0000">
 <name>Chang</name>
 </product>
 <product id="3" price="10.0000">
 <name>Aniseed Syrup</name>
 </product>

Reading XML by using LINQ to XML

The .NET Framework uses XML to store its configuration. You might want to use LINQ to XML to more easily query those files.
In the Solution Explorer window, double-click on the App.config file for the Ch09_LINQandXML project and add the following into the <configuration> element:
<appSettings>
 <add key="color" value="red" />
 <add key="size" value="large" />
 <add key="price" value="23.99" />
</appSettings>

Back in the Program class, add the following statements to load the configuration file for this console application, use LINQ to XML to search for an element named appSettings and its descendants named add, then project the XML into an array of an anonymous type with a Key and Value property, and then enumerate through the array to show the results:
XDocument doc = XDocument.Load("Ch09_LINQandXML.exe.config");

var appSettings = doc.Descendants("appSettings").Descendants("add")
 .Select(node => new
 {
 Key = node.Attribute("key").Value,
 Value = node.Attribute("value").Value
 })
 .ToArray();

foreach (var item in appSettings)
{
 WriteLine($"{item.Key}: {item.Value}");
}

Press Ctrl + F5 to run the application and view the output:

color: red
size: large
price: 23.99

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore, with deeper research into the topics covered in this chapter.

Exercise 9.1 – test your knowledge

Answer the following questions:
	What are the two requirements to use LINQ?
	Which LINQ extension method would you use to return a subset of properties from a type?
	Which LINQ extension method would you use to filter a sequence?
	List five LINQ extension methods that perform aggregation.
	What is the difference between the Select and SelectMany extension methods?

Exercise 9.2 – practice querying with LINQ

Create a console application named Ch09_Exercise02 that prompts the user for a city and then lists the company names for Northwind customers in that city, as shown in the following output:

Enter the name of a city: London
There are 6 customers in London:
Around the Horn
B's Beverages
Consolidated Holdings
Eastern Connection
North/South
Seven Seas Imports

Enhance the application by displaying a list of all unique cities that customers already reside in as a prompt to the user before they enter their preferred city:

Aachen, Albuquerque, Anchorage, Århus, Barcelona, Barquisimeto, Bergamo, Berlin, Bern, Boise, Bräcke, Brandenburg, Bruxelles, Buenos Aires, Butte, Campinas, Caracas, Charleroi, Cork, Cowes, Cunewalde, Elgin, Eugene, Frankfurt a.M., Genève, Graz, Helsinki, I. de Margarita, Kirkland, Kobenhavn, Köln, Lander, Leipzig, Lille, Lisboa, London, Luleå, Lyon, Madrid, Mannheim, Marseille, México D.F., Montréal, München, Münster, Nantes, Oulu, Paris, Portland, Reggio Emilia, Reims, Resende, Rio de Janeiro, Salzburg, San Cristóbal, San Francisco, Sao Paulo, Seattle, Sevilla, Stavern, Strasbourg, Stuttgart, Torino, Toulouse, Tsawassen, Vancouver, Versailles, Walla Walla, Warszawa

Exercise 9.3 – explore topics

Use the following links to read more details about the topics covered in this chapter:
	Query Syntax and Method Syntax in LINQ (C#): https://msdn.microsoft.com/en-us/library/bb397947.aspx
	101 LINQ Samples: https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
	Parallel LINQ (PLINQ): https://msdn.microsoft.com/en-us/library/dd460688(v=vs.110).aspx
	LINQ to XML: https://msdn.microsoft.com/en-us/library/bb387098.aspx
	LINQPad – The .NET Programmer's Playground: https://www.linqpad.net/

Summary

In this chapter, you learned how to write LINQ queries to select, project, filter, sort, join, and group data in many different formats, including XML, which are tasks you will perform every day.
In the next chapter, you will learn how to manage files and streams, encode and decode text, and perform serialization.

Chapter 10. Working with Files, Streams, and Serialization

This chapter is about reading and writing to files and streams, encoding and decoding text, and serialization.
This chapter will cover the following topics:
	Managing the filesystem
	Reading and writing with streams
	Encoding text
	Serializing object graphs

Managing the filesystem

Your applications will often need to perform input and output with files and directories. The System.IO namespace contains classes for this purpose.

Managing directories

Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N or choose File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select Console Application, type Name as Ch10_FileSystem, change location to C:\Code, type solution name as Chapter10, and then click on OK.
At the top of the Program.cs file, add the following import statements:
using static System.Console;
using System.IO;

In the Main method, write the following statements to check for the existence of a directory, and then, create and delete it:
// define a directory
string dir = @"C:\Code\Ch10_Example\";
// check if it exists
WriteLine($"Does {dir} exist? {Directory.Exists(dir)}");
// create a directory
Directory.CreateDirectory(dir);
WriteLine($"Does {dir} exist? {Directory.Exists(dir)}");
// delete a directory
Directory.Delete(dir);
WriteLine($"Does {dir} exist? {Directory.Exists(dir)}");

Run the application by pressing Ctrl + F5 and notice the output:

Does C:\Code\Ch10_Example\ exist? False
Does C:\Code\Ch10_Example\ exist? True
Does C:\Code\Ch10_Example\ exist? False

Managing files

In the Main method, add the following statements to:
	Check for the existence of a file
	Create a text file
	Write a line of text to the file
	Copy the file to a backup
	Delete the original file
	Read the backup file's contents

string textFile = @"C:\Code\Ch10.txt";";
string backupFile = @"C:\Code\Ch10.bak";

// check if a file exists
WriteLine($"Does {textFile} exist? {File.Exists(textFile)}");

// create a new text file and write a line to it
StreamWriter textWriter = File.CreateText(textFile);
textWriter.WriteLine("Hello C#!");
textWriter.Dispose();
WriteLine($"Does {textFile} exist? {File.Exists(textFile)}");

// copy a file and overwrite if it already exists
File.Copy(textFile, backupFile, true);
WriteLine($"Does {backupFile} exist? {File.Exists(backupFile)}");

// delete a file
File.Delete(textFile);
WriteLine($"Does {textFile} exist? {File.Exists(textFile)}");

// read from a text file
string textReader = File.OpenText(backupFile);
WriteLine(textReader.ReadToEnd());
textReader.Dispose();

Rerun the application and notice the output:

Does C:\Code\Ch10.txt exist? False
Does C:\Code\Ch10.txt exist? True
Does C:\Code\Ch10.bak exist? True
Does C:\Code\Ch10.txt exist? False
Hello C#!

Note
In the .NET Framework, you can use either the Close or Dispose method when you are finished with StreamReader or StreamWriter. In the .NET Core, you can only use Dispose, because Microsoft has simplified the API.

Managing paths

Sometimes you need to work with paths, for example, you might want to extract just the folder name, just the file name, or just the extension. Sometimes, you need to generate temporary folders and file names. You can do this with the Path class.
Add the following statements to the Main method:
WriteLine($"File Name: {Path.GetFileName(textFile)}");
WriteLine($"File Name without Extension: {Path.GetFileNameWithoutExtension(textFile)}");
WriteLine($"File Extension: {Path.GetExtension(textFile)}");
WriteLine($"Random File Name: {Path.GetRandomFileName()}");
WriteLine($"Temporary File Name: {Path.GetTempFileName()}");

Rerun the application:

File Name: Ch10.txt
File Name without Extension: Ch10
File Extension: .txt
Random File Name: u45w1zki.co3
Temporary File Name: C:\Users\Mark\AppData\Local\Temp\tmpDF0B.tmp

Getting file information

To get more information about a file or directory, you can create an instance of the FileInfo or DirectoryInfo class.
Add the following statements to the end of the Main method:
string backup = @"C:\Code\Ch10.bak";
string info = new FileInfo(backup);
WriteLine($"{backup} contains {info.Length} bytes.");
WriteLine($"{backup} was last accessed {info.LastAccessTime}.");
WriteLine($"{backup} has readonly set to {info.IsReadOnly}.");

Rerun the application and see the output.:

C:\Code\Ch10.bak contains 11 bytes.
C:\Code\Ch10.bak was last accessed 29/08/2015 16:25:47.
C:\Code\Ch10.bak has readonly set to False.

Reading and writing with streams

A stream
 is a sequence of bytes.
There is an abstract class named Stream that represents a stream. There are many classes that inherit from this base class, so they all work the same way. In the following table are some of the common members of the Stream class:
	
Member

	
Description

	

CanRead, CanWrite

	
Determines whether you can read to and write from the stream

	

Length, Position

	
Determines the total number of bytes and the current position within the stream

	

Close()

	
Closes the stream and releases its resources

	

Flush()

	
If the stream has a buffer, then it is cleared and written to the underlying stream

	

Read()

	
Reads a specified number of bytes from the stream into a byte array and advances the position

	

ReadByte()

	
Reads the next byte from the stream and advances the position

	

Seek()

	
Moves the position to the specified position (if CanSeek is true)

	

Write()

	
Writes the contents of a byte array into the stream

	

WriteByte()

	
Writes a byte to the stream

Storage streams can be read and written to, and the bytes will be stored in that location. The following table has examples of storage stream classes:
	
Class

	
Description

	

FileStream

	
Stored in the filesystem

	

MemoryStream

	
Stored in memory in the current process

	

NetworkStream

	
Stored at a network location

Function streams can only be "plugged onto" other streams to add functionality. The following table has examples of function stream classes:
	
Class

	
Description

	

CryptoStream

	
Encrypts and decrypts the stream

	

GZipStream, DeflateStream

	
Compresses and decompresses the stream

	

AuthenticatedStream

	
Sends credentials across the stream

Although there will be occasions where you need to work with streams at a low level, most often, you can plug helper classes into the chain to make things easier. Here are some helper classes to handle common scenarios:
	
Class

	
Description

	

StreamReader

	
Reads from streams as text

	

StreamWriter

	
Writes to streams as text

	

XmlReader

	
Reads from streams as XML

	

XmlWriter

	
Writes to streams as XML

	

BinaryReader

	
Reads from streams as .NET types

	

BinaryWriter

	
Writes to streams as .NET types

Writing to text and XML streams

Add a new console application project named Ch10_Streams. Set the solution's start-up project to be the current selection.
Import the System.IO and System.Xml namespaces, statically import the System.Console type, and add the following statement to the Main method:
// define an array of strings
string[] callsigns = new string[] { "Husker", "Starbuck", "Apollo", "Boomer", "Bulldog", "Athena", "Helo", "Racetrack" };

// define a file to write to using a text writer helper
string textFile = @"C:\Code\Ch10_Streams.txt";
StreamWriter text = File.CreateText(textFile);

// enumerate the strings writing each one to the stream
foreach (string item in callsigns)
{
 text.WriteLine(item);
}
text.Dispose(); // release the stream resources

// output all the contents of the file to the Console
WriteLine($"{textFile} contains {new FileInfo(textFile).Length} bytes.");
WriteLine(File.ReadAllText(textFile));

// define a file to write to using the XML writer helper
string xmlFile = @"C:\Code\Ch10_Streams.xml";
FileStream xmlFileStream = File.Create(xmlFile);
XmlWriter xml = XmlWriter.Create(xmlFileStream, new XmlWriterSettings { Indent = true });

// write the XML declaration
xml.WriteStartDocument();

// write a root element
xml.WriteStartElement("callsigns");

// enumerate the strings writing each one to the stream
foreach (string item in callsigns)
{
 xml.WriteElementString("callsign", item);
}

// write the close root element
xml.WriteEndElement();
xml.Dispose();

// output all the contents of the file to the Console
WriteLine($"{xmlFile} contains {new FileInfo(xmlFile).Length} bytes.");
WriteLine(File.ReadAllText(xmlFile));

Run the application using Ctrl + F5:

C:\Code\Ch10_Streams.txt contains 68 bytes.
Husker
Starbuck
Apollo
Boomer
Bulldog
Athena
Helo
Racetrack

C:\Code\Ch10_Streams.xml contains 320 bytes.
<?xml version="1.0" encoding="utf-8"?>
<callsigns>
 <callsign>Husker</callsign>
 <callsign>Starbuck</callsign>
 <callsign>Apollo</callsign>
 <callsign>Boomer</callsign>
 <callsign>Bulldog</callsign>
 <callsign>Athena</callsign>
 <callsign>Helo</callsign>
 <callsign>Racetrack</callsign>
</callsigns>

Compressing streams

XML is relatively verbose, so it takes up more space in bytes than plain text. We could squeeze the XML using a common compression algorithm known as
GZIP.
Import the following namespace:
using System.IO.Compression;

Add the following code to the end of the Main method:
// compress the XML output
string gzipFilePath = @"C:\Code\Ch10.gzip";
FileStream gzipFile = File.Create(gzipFilePath);
GZipStream compressor = new GZipStream(gzipFile, CompressionMode.Compress);
XmlWriter xmlGzip = XmlWriter.Create(compressor);
xmlGzip.WriteStartDocument();
xmlGzip.WriteStartElement("callsigns");
foreach (string item in callsigns)
{
 xmlGzip.WriteElementString("callsign", item);
}
xmlGzip.Dispose();
compressor.Dispose(); // also closes the underlying stream

// output all the contents of the compressed file to the Console
WriteLine($"{gzipFilePath} contains {new FileInfo(gzipFilePath).Length} bytes.");
WriteLine(File.ReadAllText(gzipFilePath));

// read a compressed file
WriteLine("Reading the compressed XML file:");
gzipFile = File.Open(gzipFilePath, FileMode.Open);
GZipStream decompressor = new GZipStream(gzipFile, CompressionMode.Decompress);
XmlReader reader = XmlReader.Create(decompressor);
while (reader.Read())
{
 // check if we are currently on an element node named callsign
 if ((reader.NodeType == XmlNodeType.Element) && (reader.Name == "callsign"))
 {
 reader.Read(); // move to the Text node inside the element
 WriteLine($"{reader.Value}"); // read its value
 }
}
reader.Dispose();
decompressor.Dispose();

Rerun the application and notice that the compressed XML is less than half the size of the same XML without compression:

C:\Code\Ch10.gzip contains 144 bytes.
▼ ♦ {?{??}En?BYjQqf~???????Bj^r~Jf^??RiI??????MrbNNqfz^1?i?QZ??Zd?☼↨@H♣?$▬%?
&gc?t,?????*????H?????t?&?d??%b??H?aUPbrjIQ"?←?◄?♦ ??9→∟☺
Reading the compressed XML file:
Husker
Starbuck
Apollo
Boomer
Bulldog
Athena
Helo
Racetrack

Encoding text

Text characters can be represented in different ways. For example, the Western alphabet can be encoded using Morse code, into a series of dots and dashes for transmission over a telegraph line.
In a similar way, text inside a computer is stored as bits; ones and zeros. .NET uses a standard called Unicode
 to encode text internally. Sometimes, you will need to move text outside .NET for use by systems that do not use Unicode or use a variation of Unicode. The following table shows some alternative encodings:
	
Encoding

	
Description

	
ASCII

	
Encodes a limited range of characters using the lower seven bits of a byte

	
UTF-8

	
Represents each Unicode code point as a sequence of one to four bytes

	
UTF-16

	
Represents each Unicode code point as a sequence of one or two 16-bit integers

	
ANSI/ISO encodings

	
Provides support for a variety of code pages that are used to support a specific language or group of languages

Encoding strings as byte arrays

Add a new console application project named Ch10_Encoding.
Import the System.Text namespace and add the following statement to the Main method. The code encodes a string using the chosen encoding, loops through each byte, and then decodes back into a string and outputs it:
WriteLine("Encodings");
WriteLine("[1] ASCII");
WriteLine("[2] UTF-7");
WriteLine("[3] UTF-8");
WriteLine("[4] UTF-16 (Unicode)");
WriteLine("[5] UTF-32");
WriteLine("[any other key] Default");

// choose an encoding
Write("Press a number to choose an encoding: ");
ConsoleKey number = ReadKey(false).Key;
WriteLine();
WriteLine();

Encoding encoder;
switch (number)
{
 case ConsoleKey.D1:
 encoder = Encoding.ASCII;
 break;
 case ConsoleKey.D2:
 encoder = Encoding.UTF7;
 break;
 case ConsoleKey.D3:
 encoder = Encoding.UTF8;
 break;
 case ConsoleKey.D4:
 encoder = Encoding.Unicode;
 break;
 case ConsoleKey.D5:
 encoder = Encoding.UTF32;
 break;
 default:
 encoder = Encoding.GetEncoding(0);
 break;
}

// define a string to encode
string message = "A pint of milk is £1.99";

// encode the string into a byte array
byte[] encoded = encoder.GetBytes(message);

// check how many bytes the encoding needed
WriteLine($"{encoder.GetType().Name} uses {encoded.Length} bytes.");

// enumerate each byte
WriteLine($"Byte Hex Char");
foreach (byte b in encoded)
{
 WriteLine($"{b,4} {b.ToString("X"),4} {(char)b,5}");
}

// decode the byte array back into a string and display it
string decoded = encoder.GetString(encoded);
WriteLine(decoded);

Run the application and press 1 to choose ASCII. Notice that when outputting the bytes, the pound sign (£) cannot be represented in ASCII, so it uses a question mark (?) instead:

Encodings
[1] ASCII
[2] UTF-7
[3] UTF-8
[4] UTF-16 (Unicode)
[5] UTF-32
[any other key] Default
Press a number to choose an encoding: 1

ASCIIEncoding uses 23 bytes.
Byte Hex Char
 65 41 A
 32 20
 112 70 p
 105 69 i
 110 6E n
 116 74 t
 32 20
 111 6F o
 102 66 f
 32 20
 109 6D m
 105 69 i
 108 6C l
 107 6B k
 32 20
 105 69 i
 115 73 s
 32 20
 63 3F ?
 49 31 1
 46 2E .
 57 39 9
 57 39 9
A pint of milk is ?1.99

Rerun the application and press 3 to choose UTF-8. Notice that
UTF-8 requires one extra byte (24 bytes instead of 23 bytes), but it can store the £:

UTF8Encoding uses 24 bytes.
Byte Hex Char
 65 41 A
 32 20
 112 70 p
 105 69 i
 110 6E n
 116 74 t
 32 20
 111 6F o
 102 66 f
 32 20
 109 6D m
 105 69 i
 108 6C l
 107 6B k
 32 20
 105 69 i
 115 73 s
 32 20
 194 C2 Â
 163 A3 £
 49 31 1
 46 2E .
 57 39 9
 57 39 9
A pint of milk is £1.99

Rerun the application and press 4 to choose Unicode (UTF-16). Notice that UTF-16 requires two bytes for every character, but it can store the £:

UnicodeEncoding uses 46 bytes.

Encoding and decoding text in files

When using stream helper classes such as StreamReader and StreamWriter, you can specify the encoding you want to use. As you write to the helper, the strings will automatically be encoded, and as you read from the helper, the bytes will be automatically decided. This is how you can specify the encoding:
var reader = new StreamReader(stream, Encoding.UTF7);
var writer = new StreamWriter(stream, Encoding.UTF7);

Tip
Often, you won't have a choice of encoding to use, because you will be generating a file for use by another system. However, if you do, pick one that uses the least amount of bytes but can store every character you need.

Serializing object graphs

Serialization
 is the process of converting a live object into a sequence of bytes using a specified format. Deserialization
 is the reverse process.
There are dozens of formats you can choose, but the two most common ones are eXtensible Markup Language (XML) and
JavaScript Object Notation (JSON).
Tip
JSON is more compact and is best for web and mobile applications. XML is more verbose, but is better supported on older systems.

.NET has multiple classes that will serialize to and from XML and JSON. We will start by looking at XmlSerializer and JavaScriptSerializer.

Serializing with XML

Add a new console application project named Ch10_Serialization.
Note
If you are targeting the .NET Core, then you would need to manually add the latest version of the System.Xml.XmlSerializer NuGet package.

To show a common example, we will define a custom class to store information about a person and then create an object graph using a list of Person instances with nesting.
Add a class named Person with the following definition. Notice that the Salary property is protected, meaning it is only accessible to itself and the derived classes. To populate the salary, the class has a constructor with a single parameter to set the initial salary:
public class Person
{
 public Person(decimal initialSalary)
 {
 Salary = initialSalary;
 }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public HashSet<Person> Children { get; set; }
 protected decimal Salary { get; set; }
}

Back in Program.cs, import the following namespaces:
using System;
using System.Collections.Generic;
using System.Xml.Serialization;
using System.IO;
using static System.Console;

Add the following statements to the Main method:
// create an object graph
var people = new List<Person>
{
 new Person(30000M) { FirstName = "Alice", LastName = "Smith", DateOfBirth = new DateTime(1974, 3, 14) },
 new Person(40000M) { FirstName = "Bob", LastName = "Jones", DateOfBirth = new DateTime(1969, 11, 23) },
 new Person(20000M) { FirstName = "Charlie", LastName = "Rose", DateOfBirth = new DateTime(1964, 5, 4), Children = new HashSet<Person>
 { new Person(0M) { FirstName = "Sally", LastName = "Rose", DateOfBirth = new DateTime(1990, 7, 12) } } }
};

// create a file to write to
string xmlFilepath = @"C:\Code\Ch10_People.xml";
FileStream xmlStream = File.Create(xmlFilepath);

// create an object that will format a List of Persons as XML
var xs = new XmlSerializer(typeof(List<Person>));

// serialize the object graph to the stream
xs.Serialize(xmlStream, people);

// you must dispose the stream to release the file lock
xmlStream.Dispose();

WriteLine($"Written {new FileInfo(xmlFilepath).Length} bytes of XML to {xmlFilepath}");
WriteLine();

// Display the serialized object graph
WriteLine(File.ReadAllText(xmlFilepath));

Run the application with Ctrl + F5. Notice that an exception is thrown:

Unhandled Exception: System.InvalidOperationException: Ch10_Serialization.Person cannot be serialized because it does not have a parameterless constructor.

Back in the Person.cs file, add the following statement to define a parameter-less constructor. Notice that the constructor does not need to do anything, but it must exist so that the XmlSerializer can call it to instantiate new Person instances when deserializing:
public Person() { }

Rerun the application and see the output. Notice that the object graph is serialized and the Salary property is not included:

Written 778 bytes of XML to C:\Code\Ch10_People.xml

<?xml version="1.0"?>
<ArrayOfPerson xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Person>
 <FirstName>Alice</FirstName>
 <LastName>Smith</LastName>
 <DateOfBirth>1974-03-14T00:00:00</DateOfBirth>
 </Person>
 <Person>
 <FirstName>Bob</FirstName>
 <LastName>Jones</LastName>
 <DateOfBirth>1969-11-23T00:00:00</DateOfBirth>
 </Person>
 <Person>
 <FirstName>Charlie</FirstName>
 <LastName>Rose</LastName>
 <DateOfBirth>1964-05-04T00:00:00</DateOfBirth>
 <Children>
 <Person>
 <FirstName>Sally</FirstName>
 <LastName>Rose</LastName>
 <DateOfBirth>1990-07-12T00:00:00</DateOfBirth>
 </Person>
 </Children>
 </Person>
</ArrayOfPerson>

We could make the XML more efficient using attributes instead of elements for some fields.
In the Person.cs file, import the System.Xml.Serialization namespace and modify all the properties, except Children, with the [XmlAttribute] attribute:

[XmlAttribute("fname")]
public string FirstName { get; set; }
[XmlAttribute("lname")]
public string LastName { get; set; }
[XmlAttribute("dob")]
public DateTime DateOfBirth { get; set; }

Rerun the application and notice that the XML is now more efficient:

Written 473 bytes of XML to C:\Code\Ch10_People.xml

<?xml version="1.0"?>
<ArrayOfPerson xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="
http://www.w3.org/2001/XMLSchema">
 <Person fname="Alice" lname="Smith" dob="1974-03-14T00:00:00" />
 <Person fname="Bob" lname="Jones" dob="1969-11-23T00:00:00" />
 <Person fname="Charlie" lname="Rose" dob="1964-05-04T00:00:00">
 <Children>
 <Person fname="Sally" lname="Rose" dob="1990-07-12T00:00:00" />
 </Children>
 </Person>
</ArrayOfPerson>

Deserializing with XML

Add the following statements to the end of the Main method:
FileStream xmlLoad = File.Open(xmlFilepath, FileMode.Open);
// deserialize and cast the object graph into a List of Person
var loadedPeople = (List<Person>)xs.Deserialize(xmlLoad);
foreach (var item in loadedPeople)
{
 WriteLine($"{item.LastName} has {item.Children.Count} children.");
}
xmlLoad.Dispose();

Rerun the application and notice that the people are loaded successfully from the XML file:

Smith has 0 children.
Jones has 0 children.
Rose has 1 children.

Customizing the XML

There are many other attributes that can be used to control the XML generated. See the references at the end of this chapter for more information.
Tip
When using XmlSerializer, remember that only public fields and properties are included, and the type must have a parameter-less constructor. You can customize the output with attributes.

Serializing with JSON

Add a reference to the System.Web.Extensions assembly.
Note
The System.Web.Extensions assembly is supported by the .NET Framework only. Use Newtonsoft's JSON.NET if you need to serialize cross platform with the .NET Core, which can be found at http://www.newtonsoft.com/json

Import the following namespace at the top of the Program.cs file:
using System.Web.Script.Serialization;

Add the following statements to the end of the Main method:
// create a file to write to
string jsonFilepath = @"C:\Code\Ch10_People.json";
FileStream jsonStream = File.Create(jsonFilepath);

// create an object that will format as JSON
var jss = new JavaScriptSerializer();

// serialize the object graph into a string
string json = jss.Serialize(people);

// write the string to a file
var writer = new StreamWriter(jsonStream);
writer.Write(json);

// you must dispose the stream to release the file lock
writer.Dispose();

WriteLine();
WriteLine($"Written {new FileInfo(jsonFilepath).Length} bytes of JSON to: {jsonFilepath}");

// Display the serialized object graph
WriteLine(File.ReadAllText(jsonFilepath));

Rerun the application, and notice that JSON requires less than half the number of bytes compared to XML with elements. It's even smaller than XML that uses attributes:

Written 380 bytes of JSON to: C:\Code\Ch10_People.json

[{"FirstName":"Alice","LastName":"Smith","DateOfBirth":"\/Date(132451200000)\/", "Children":null},{"FirstName":"Bob","LastName":"Jones","DateOfBirth":"\/Date(-3369600000)\/","Children":null},{"FirstName":"Charlie","LastName":"Rose","DateOfBirth":"\/Date(-178678800000)\/","Children":[{"FirstName":"Sally","LastName":"Rose","DateOfBirth":"\/Date(647737200000)\/","Children":null}]}]

Tip
Use JSON to minimize the size of serialized object graphs. You can also use JSON when sending object graphs to web applications and mobile applications.

Serializing with other formats

There are many other formats built into .NET that you can use for serialization and even more if you purchase additional libraries.
	
Type

	
Description

	

System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

	
This uses a Microsoft proprietary binary format, so it should only be used when a .NET application is both serializing and deserializing the object graph.

	

System.Runtime.Serialization.Formatters.Soap.SoapFormatter

	
This is used by ASP.NET XML web services to serialize with the SOAP format. To use it yourself, you must add a reference to the System.Runtime.Serialization.Formatters.Soap assembly and import the System.Runtime.Serialization.Formatters.Soap namespace.

	

System.Runtime.Serialization.DataContractSerializer

	
This is used by Windows Communication Foundation (WCF) to serialize with SOAP format (or XML when an endpoint has the WebHttp behavior). To use it yourself, you must add a reference to the System.Runtime.Serialization assembly and import the System.Runtime.Serialization namespace.

	

System.Runtime.Serialization.DataContractJsonSerializer

	
This is used by WCF to serialize into the JSON format when an endpoint has a WebHttp behavior.

	

System.Runtime.Serialization .IFormatter

	
This is used to implement your own custom runtime serializers.

Serializing with runtime serializers

BinaryFormatter type is one of the serializers that can be used only with .NET Framework. These are powerful, but they have the special requirement that the type being serialized must be marked as serializable using an attribute. Like JavaScriptSerializer, they are not cross-platform!
[image: Serializing with runtime serializers]

Import the System.Runtime.Serialization.Formatters.Binary namespace:
using System.Runtime.Serialization.Formatters.Binary;

At the bottom of the Main method, add the following statements:
string binaryFilepath = @"C:\Code\Ch10_People.bin";";
FileStream binaryStream = File.Create(binaryFilepath);
var bf = new BinaryFormatter();
bf.Serialize(binaryStream, people);
binaryStream.Dispose();
WriteLine($"Written {new FileInfo(binaryFilepath).Length} bytes of proprietary binary to {binaryFilepath}");}");
WriteLine();
// Display the serialized object graph
WriteLine(File.ReadAllText(binaryFilepath));

Rerun the application and notice the exception that is thrown.:

Unhandled Exception: System.Runtime.Serialization.SerializationException: Type 'Ch10_Serialization.Person' in Assembly 'Ch10_Serialization, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' is not marked as serializable.

In the Person.cs, add the [Serializable] attribute to the Person class:
[Serializable]
public class Person

Rerun the application. Now, the object graph is successfully serialized:

Written 1573 bytes of proprietary binary to C:\Code\Ch10_People.bin

 ☺ ????☺ ♀☻ ICh10_Serialization, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null♦☺ ?☺System.Collections.Generic.List`1[[Ch10_Serialization.Person, Ch10_Serialization, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]] ♥ ♠_items♣_siz_version♦ ←Ch10_Serialization.Person[] ♥ ♥ ♥ ♥ ☺ ♦ ♦↓Ch10_Serialization.Person☻ ♦ ♣ ♠♀ NSystem.Core, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089♣♦ ↓Ch10_Serialization.Person♣ →<FirstName>k__BackingField↓<LastName>k__BackingField∟<DateOfBirth>k__BackingField↓<Children>k__BackingField↨<Salary>k__Ba?☺System.Collections.Generic.HashSet`1[[Ch10_Serialization.Person, Ch10_Serialization, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]] ♣☻ ♣Alice♠ ♣Smith @??4? ♣30000☺♣ ♦ ♠ ♥Bob♠♂ ♣Jones @??Pa? ♦Rose ?rY?& ♫ ♣20000♣♫ ?☺System.Collections.Generic.HashSet`1[[Ch10_Serialization.Person, Ch10_Serialization, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]]♦ VersioCompareCapacitElements ♥ ?☺System.Collections.Generic.ObjectEqualityComparer`1[[Ch10_Serialization.Person, Ch10_Serialization, Version=1. 0.0.0, Culture=neutral, PublicKeyToken=null]←Ch10_Serialization.Person[]☻ ☺ ☼ ♥ ► ♦☼ ?☺System.Collections.Generic.ObjectEqualityComparer`1[[Ch10_Serialization.Person, Ch10_Serialization, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]] ► ☺ ☺ ♦↓Ch10_Serialization.Person☻ @? ♦ ♠↕ ♣Sally!?? ☺0♂

Tip
Use the BinaryFormatter or any of the other runtime serializers only when you will serialize and deserialize with .NET Framework.

Practice and explore

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring this chapter's topics with deeper research.

Exercise 10.1 – test your knowledge

Answer the following questions:
	What is the difference between using the File class and the FileInfo class?
	What is the difference between the ReadByte method and the Read method of a stream?
	When would you use StringReader, TextReader, and StreamReader classes?
	What does the DeflateStream type do?
	How many bytes per character does the UTF-8 encoding use?
	What is an object graph?
	What is the best serialization format to choose for minimizing space requirements?
	What is the best serialization format to choose for cross-platform compatibility?
	Which Microsoft technology uses the DataContractSerializer type by default?
	Is it possible to create your own custom runtime serializers?

Exercise 10.2 – practice serializing as XML

Create a console application named Ch10_Exercise02 that creates a list of shapes, uses serialization to save it to the filesystem using XML, and then deserializes it back:
// create a list of Shapes to serialize
var listOfShapes = new List<Shape>
{
 new Circle { Colour = "Red", Radius = 2.5 },
 new Rectangle { Colour = "Blue", Height = 20.0, Width = 10.0 },
 new Circle { Colour = "Green", Radius = 8 },
 new Circle { Colour = "Purple", Radius = 12.3 },
 new Rectangle { Colour = "Blue", Height = 45.0, Width = 18.0 }
};

Shapes should have a read-only property named Area so that when you deserialize, you can output a list of shapes, including their areas, as shown here:
List<Shape> loadedShapesXml = serializerXml.Deserialize(fileXml) as List<Shape>;
foreach (Shape item in loadedShapesXml)
{
 WriteLine($"{item.GetType().Name} is {item.Colour} and has an area of {item.Area}");
}

This is what your output should look like when you run the application:

Loading shapes from XML:
Circle is Red and has an area of 19.6349540849362
Rectangle is Blue and has an area of 200
Circle is Green and has an area of 201.061929829747
Circle is Purple and has an area of 475.2915525616
Rectangle is Blue and has an area of 810

Exercise 10.3 – explore serialization formats

Create a console application named Ch10_Exercise03 that queries the Northwind database for all the categories and products, and then serializes the data using all the formats of serialization available in .NET. Which uses the least number of bytes?

Exercise 10.4 – explore Microsoft's System.IO types

Use ILSpy to explore the Microsoft .NET Framework implementations of the Stream, FileStream, and StreamWriter classes. You will find those classes in the System.IO namespace in the mscorlib.dll assembly.
In particular, look at the Dispose and Close methods. My students often ask which to use and whether there is a difference. By viewing the actual implementation, you can find out.
The Close method looks like this:
[image: Exercise 10.4 – explore Microsoft's System.IO types]

The Dispose method looks like this:
[image: Exercise 10.4 – explore Microsoft's System.IO types]

Tip
In the .NET Core, Microsoft has removed the Close method so you must use the Dispose method instead.

Exercise 10.5 – explore topics

Use the following links to read more on this chapter's topics:
	File and Stream I/O: https://msdn.microsoft.com/en-us/library/k3352a4t(v=vs.110).aspx
	Character encoding in the .NET Framework: https://msdn.microsoft.com/en-us/library/ms404377(v=vs.110).aspx
	Serialization: https://msdn.microsoft.com/en-us/library/7ay27kt9(v=vs.110).aspx
	Introducing XML serialization: https://msdn.microsoft.com/en-us/library/182eeyhh(v=vs.110).aspx
	Serialization and deserialization: https://msdn.microsoft.com/en-us/library/ms731073(v=vs.110).aspx

Summary

In this chapter, you learned how to read from and write to text files and XML files, how to compress and decompress files, how to encode and decode text, and how to serialize an object into JSON and XML (and deserialize it back again).
In the next chapter, you will learn how to protect data and applications.

Chapter 11. Protecting Your Data and Applications

This chapter is about protecting your data from being viewed by malicious users using encryption and from being manipulated or corrupted using hashing and signing. It is also about checking who is running your application and restricting their actions to only those that they are given permission to do.
Note
Security is tightly bound to the operating system, so this is an area that is not very well supported by the .NET Core (at least for now). To complete the exercises in this chapter, I recommend that you target the .NET Framework on Windows 10. Then, once you have learned the skills, you can try implementing them using the equivalent .NET Core types.

This chapter covers the following topics:
	Understanding the vocabulary of protection
	Encrypting and decrypting data
	Hashing data
	Signing data
	Authenticating and authorizing users

Understanding the vocabulary of protection

There are many techniques to protect your applications and data, some of them are as follows:
	Encryption and decryption: This is a two-way process to convert cleartext into cryptotext and back again
	Hashes: This is a one-way process to; generate a hash to securely store passwords, or a hash can be used to detect malicious changes and corruption of data
	Signatures: This technique is used to ensure that data has come from someone you trust by validating a signature against someone's public key
	Authentication: This technique is used to identify someone by checking their credentials
	Authorization: This technique is used to ensure someone has permission to perform an action, or work with some data by checking the roles or groups they belong to

Tip

Best Practice

If security is important to you, then hire an experienced security expert for guidance rather than relying on advice found online. It is very easy to make small mistakes and leave your applications and data vulnerable without realizing until it is too late!

Keys and key sizes

Protection algorithms often use a
key. Keys can be
symmetric (also known as shared or secret because the same key is used to encrypt and decrypt) or
asymmetric (a public-private key pair where the public key is used to encrypt and only the private key can be used to decrypt). Keys are represented by byte arrays of varying size.
Tip

Best Practice

Choose a bigger key size for stronger protection.

IVs and block sizes

When encrypting large amounts of data, there are likely to be repeating sequences. For example, in an English document the sequence of characters "the" would appear frequently. A good cracker would use this knowledge to make it easier to crack the encryption. Note the becomes hQ2 in the following example:
When the wind blew hard the umbrella broke.
5:s4&hQ2aj#D f9d1d£8fh"&hQ2s0)an DF8SFd#][1

We can avoid repeating sequences by dividing data into
blocks. After encrypting a block, a byte array value is generated from that block and this value is fed into the next block to adjust the algorithm so that "the" isn't encrypted in the same way. To encrypt the first block, we need a byte array to feed in. This is called the
initialization vector (IV).
Tip

Best Practice

Choose a small block size for stronger encryption.

Salts

A salt is a random byte array that is used as an additional input to a one-way hash function. If you do not use a salt when generating hashes, then when many of your users register with "123456" as their password (about 8% of users still do this!), they all have the same hashed value, and their account will be vulnerable to a dictionary attack.
When a user registers, a salt should be randomly generated and concatenated with their chosen password before being hashed. The output (but not the original password) is stored with the salt in the database.
When the user next logs in and enters their password, you look up their salt, concatenate it with the entered password, regenerate a hash, and then compare its value with the hash stored in the database. If they are the same, you know they entered the correct password.

Generating keys and IVs

Keys and IVs are byte arrays. You can reliably generate a key or IV using a
password-based key derivation function (PBKDF2). A good one is the Rfc2898DeriveBytes class, which takes a password, a salt, and an iteration count, and then generates keys and IVs by making calls to its GetBytes method.
Tip

Best Practice

The salt size should be 8 bytes or larger and the iteration count should be greater than zero. The minimum recommended number of iterations is 1000.

Encrypting and decrypting data

There are multiple encryption algorithms you can choose from in .NET. Some algorithms are implemented by the operating system and their names are suffixed with the text CryptoServiceProvider, some are implemented in managed code and their names are suffixed with the text Managed, some use symmetric keys, and some use asymmetric keys. The following table summarizes some of the more common encryption algorithms:
	
Type

	
Description

	

RSACryptoServiceProvider

	
This performs asymmetric encryption and decryption using the implementation of the RSA algorithm. RSA stands for Ron Rivest, Adi Shamir, and Leonard Adleman, who described it in 1978.

	

AesManaged

	
This provides a managed implementation of the
Advanced Encryption Standard (AES) symmetric algorithm that is based on Rijndael.

	

RijndaelManaged

	
This provides a managed implementation of the Rijndael symmetric algorithm.

	

RC2CryptoServiceProvider

	
This defines a wrapper to access the cryptographic service provider (CSP) implementation of the RC2 symmetric algorithm.

	

DESCryptoServiceProvider

	
This defines a wrapper to access the CSP version of the Data Encryption Standard (DES) symmetric algorithm.

Tip

Best Practice

Choose AES for symmetric encryption and RSA for asymmetric encryption.

Encrypting symmetrically with AES

To make it easier to reuse your protection code in the future, we will create a static class named Protector in its own class library.
Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N or navigate to File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the list at the center, select Class Library, type the name Ch11_Cryptography, change the location to C:\Code, type the solution name as Chapter11, and then click on OK.
Rename Class1.cs to Protector.cs. Change its contents to look like this:
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;

namespace Ch11_Cryptography
{
 public static class Protector
 {
 // salt size must be at least 8 bytes, we will use 16 bytes
 private static readonly byte[] salt = Encoding.Unicode.GetBytes("7BANANAS");

 // iterations must be at least 1000, we will use 2000
 private static readonly int iterations = 2000;

 public static string Encrypt(string plainText, string password)
 {
 byte[] plainBytes = Encoding.Unicode.GetBytes(plainText);
 var aes = Aes.Create();
 var pbkdf2 = new Rfc2898DeriveBytes(password, salt, iterations);
 aes.Key = pbkdf2.GetBytes(32); // set a 256-bit key
 aes.IV = pbkdf2.GetBytes(16); // set a 128-bit IV
 var ms = new MemoryStream();
 using (var cs = new CryptoStream(ms, aes.CreateEncryptor(), CryptoStreamMode.Write))
 {
 cs.Write(plainBytes, 0, plainBytes.Length);
 }
 return Convert.ToBase64String(ms.ToArray());
 }

 public static string Decrypt(string cryptoText, string password)
 {
 byte[] cryptoBytes = Convert.FromBase64String(cryptoText);
 var aes = Aes.Create();
 var pbkdf2 = new Rfc2898DeriveBytes(password, salt, iterations);
 aes.Key = pbkdf2.GetBytes(32);
 aes.IV = pbkdf2.GetBytes(16);
 var ms = new MemoryStream();
 using (var cs = new CryptoStream(ms, aes.CreateDecryptor(), CryptoStreamMode.Write))
 {
 cs.Write(cryptoBytes, 0, cryptoBytes.Length);
 }
 return Encoding.Unicode.GetString(ms.ToArray());
 }
 }
}

Note the following about the preceding code:
	We used double the recommended salt size and iteration count
	Although the salt and iteration count can be hardcoded, the password must be passed at runtime when calling Encrypt and Decrypt
	We use a temporary MemoryStream variable to store the results of encrypting and decrypting and then call ToArray to turn the stream into a byte array
	We convert the encrypted byte arrays to and from the Base64 encoding to make them easier to read

Tip

Best Practice

Never hardcode a password in your source code because it can be read using ILDASM and other tools.

Add a new Console Application project named Ch11_Encryption. Add a reference to the Ch11_Cryptography assembly and then import the following namespaces:
using Ch11_Cryptography;
using static System.Console;

In the Main method, add the following statements to prompt the user for a message and a password and then encrypt and decrypt:
Write("Enter a message that you want to encrypt: ");
string message = ReadLine();
Write("Enter a password: ");
string password = ReadLine();
string cryptoText = Protector.Encrypt(message, password);
WriteLine($"Encrypted text: {cryptoText}");
string clearText = Protector.Decrypt(cryptoText, password);
WriteLine($"Decrypted text: {clearText}");

Run the application and try entering a message and password, and see the output.

Enter a message that you want to encrypt: Hello Bob
Enter a password: secret
Encrypted text: pV5qPDf1CCZmGzUMH2gapFSkn573lg7tMj5ajice3cQ=
Decrypted text: Hello Bob

Hashing data

There are multiple hash algorithms you can choose from in .NET. Some do not use any key, some use symmetric keys, and some use asymmetric keys.
There are two important factors to consider when choosing a hash algorithm:
	Collision resistance: How rare is it to find two inputs that share the same hash?
	Preimage resistance: For a hash, how difficult would it be to find another input that shares the same hash?

Here are some common hashing algorithms:
	
Algorithm

	
Hash size

	
Description

	
MD5

	
16 bytes

	
This is commonly used because it is fast, but it is not collision resistant.

	
SHA1, SHA256, SHA384, SHA512

	
20 bytes, 32 bytes, 48 bytes, 64 bytes

	
These are Secure Hashing Algorithm 2nd generation algorithms (SHA2) with different hash sizes. The use of SHA1 on the Internet has been deprecated since 2011.

Note

Best Practice

Avoid MD5 and SHA1 because they have known weaknesses. Choose a larger hash size to improve collision and preimage resistance.

Hashing with SHA256

In the Ch11_Cryptography class library project, add a new class named User. This will represent a user stored in memory, a file, or a database.
public class User
{
 public string Name { get; set; }
 public string Salt { get; set; }
 public string SaltedHashedPassword { get; set; }
}

Add the following code to the Protector class. We will use a dictionary to store multiple users in memory. There are two methods, one to register a new user and one to validate their password when they subsequently log in.
public static Dictionary<string, User> Users = new Dictionary<string, User>();

public static User Register(string username, string password)
{
 // generate a random salt
 var rng = RandomNumberGenerator.Create();
 var saltBytes = new byte[16];
 rng.GetBytes(saltBytes);
 var saltText = Convert.ToBase64String(saltBytes);

 // generate the salted and hashed password
 var sha = SHA256.Create();
 var saltedPassword = password + saltText;
 var saltedhashedPassword = Convert.ToBase64String(sha.ComputeHash(Encoding.Unicode.GetBytes(saltedPassword)));

 var user = new User
 {
 Name = username,
 Salt = saltText,
 SaltedHashedPassword = saltedhashedPassword
 };
 Users.Add(user.Name, user);

 return user;
}

public static bool CheckPassword(string username, string password)
{
 if (!Users.ContainsKey(username))
 {
 return false;
 }
 var user = Users[username];

 // re-generate the salted and hashed password
 var sha = SHA256.Create();
 var saltedPassword = password + user.Salt;
 var saltedhashedPassword = Convert.ToBase64String(sha.ComputeHash(Encoding.Unicode.GetBytes(saltedPassword)));

 return (saltedhashedPassword == user.SaltedHashedPassword);
}

Add a new Console Application project named Ch11_Hashing. Add a reference to the Ch11_Cryptography assembly and then import the following namespaces:
using Ch11_Cryptography;
using static System.Console;

In the Main method, add the following statements to register a user and prompt to register a second user, and then prompt to log in as one of those users and validate the password.
WriteLine("A user named Alice has been registered with Pa$$w0rd as her password.");
var alice = Protector.Register("Alice", "Pa$$w0rd");
WriteLine($"Name: {alice.Name}");
WriteLine($"Salt: {alice.Salt}");
WriteLine($"Salted and hashed password: {alice.SaltedHashedPassword}");
WriteLine();
Write("Enter a different username to register: ");
string username = ReadLine();
Write("Enter a password to register: ");
string password = ReadLine();
var user = Protector.Register(username, password);
WriteLine($"Name: {user.Name}");
WriteLine($"Salt: {user.Salt}");
WriteLine($"Salted and hashed password: {user.SaltedHashedPassword}");

bool correctPassword = false;
while (!correctPassword)
{
 Write("Enter a username to log in: ");
 string loginUsername = ReadLine();
 Write("Enter a password to log in: ");
 string loginPassword = ReadLine();
 correctPassword = Protector.CheckPassword(loginUsername, loginPassword);
 if (correctPassword)
 {
 WriteLine($"Correct! {loginUsername} has been logged in.");
 }
 else
 {
 WriteLine("Invalid username or password. Try again.");
 }
}

Run the application by pressing Ctrl + F5 and view the output:

A user named Alice has been registered with Pa$$w0rd as her password.
Name: Alice
Salt: tLn3gRn9DXmp2oeuvBSxTg==
Salted and hashed password: w8Ub2aH5NNQ8MJarYsUgm29bbbl0lV/9dlozjWs2Ipk=

Enter a different username to register: Bob
Enter a password to register: Pa$$w0rd
Name: Bob
Salt: zPU9YyFLaz0idhQkKpzY+g==
Salted and hashed password: 8w14w8WNHoZddEeIx2+UJhpHQqSs4EmyoazqjbmmEz0=
Enter a username to log in: Bob
Enter a password to log in: secret
Invalid username or password. Try again.
Enter a username to log in: Alice
Enter a password to log in: secret
Invalid username or password. Try again.
Enter a username to log in: Bob
Enter a password to log in: Pa$$w0rd
Correct! Bob has been logged in.

Note that even if two users register with the same password, they have randomly generated salts so that their salted and hashed passwords are different.

Signing data

To prove that some data has come from someone we trust, it can be signed. Actually, you don't sign the data itself, instead you sign a hash of the data. We will use the RSA algorithm combined with the SHA256 algorithm.

Signing with SHA256 and RSA

In the Ch11_Cryptography class library project, add the following code to the Protector class:
public static string PublicKey;

public static string GenerateSignature(string data)
{
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 var sha = SHA256.Create();
 var hashedData = sha.ComputeHash(dataBytes);

 var rsa = RSA.Create();
 PublicKey = rsa.ToXmlString(false); // exclude private key

 var signer = new RSAPKCS1SignatureFormatter(rsa);
 signer.SetHashAlgorithm("SHA256");

 return Convert.ToBase64String(signer.CreateSignature(hashedData));
}

public static bool ValidateSignature(string data, string signature)
{
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 var sha = SHA256.Create();
 var hashedData = sha.ComputeHash(dataBytes);

 byte[] signatureBytes = Convert.FromBase64String(signature);

 var rsa = RSA.Create();
 rsa.FromXmlString(PublicKey);

 var checker = new RSAPKCS1SignatureDeformatter(rsa);
 checker.SetHashAlgorithm("SHA256");

 return checker.VerifySignature(hashedData, signatureBytes);
}

Note the following about the preceding code:
	Only the public part of the public-private key pair needs to be made available to the code that is checking the signature, so we can pass the value false when we call the ToXmlString method.
	The hash algorithm used to generate the hash from the data must match the hash algorithm set on the signer and checker. In the preceding code, we used SHA256.

Add a new Console Application project named Ch11_Signing. Add a reference to the Ch11_Cryptography assembly, and then import the following namespaces:
using static System.Console;
using Ch11_Cryptography;

In the Main method, add the following code:
Write("Enter some text to sign: ");
string data = ReadLine();
var signature = Protector.GenerateSignature(data);
WriteLine($"Signature: {signature}");
WriteLine("Public key used to check signature:");
WriteLine(Protector.PublicKey);

if (Protector.ValidateSignature(data, signature))
{
 WriteLine("Correct! Signature is valid.");
}
else
{
 WriteLine("Invalid signature.");
}

Run the application and enter some text:

Enter some text to sign: The cat sat on the mat.
Signature: LSmfgRuRRvYzM1/jg7U7jkKINCU4KKGpFUCvCB87hmWpa3gDVLjLj0Wift+CktZuPSkc/gAnIzC1bQCOyELsrNWzATnPDFa/B0Gpy0vAJ8VJ9FPs1vFy353mMnGcnQU8fOummKgEv4r1JpsnkJQ41MGUMNCH9YVodO6Bn6o81g0=
Public key used to check signature:
<RSAKeyValue><Modulus>qPnY4UHIqJMuUJ0CQ4F0Xy/fxaugNFFe/QNikGsufdKrwa1t+CcQqCmWso4zUDW3NTFCWFGilisJ4SqTBgYee/VT9UGuFng68TrZXNiNJO8dP8OZHNBirWkhtsNQx9A6rq9bZ/9dsjY1hYsWpGKCw4WhxsHjmGuevQew8C+I2z0=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>
Correct! Signature is valid.

Authenticating and authorizing users

Authentication is the process of discovering and verifying the identity of a user by validating their credentials against some authority.
There are multiple authentication mechanisms to choose from. They all implement a pair of interfaces: IIdentity and IPrincipal. The most common mechanism is Windows authentication.
Tip
You can implement your own authentication mechanism using the GenericIdentity and GenericPrincipal classes, but that is beyond the scope of this book.

Managing local accounts

For testing purposes, we will create a new local user account.
In the Windows 10 Start Menu, navigate to Settings | Accounts | Family and other users. In the Other users section, click on Add someone else to this PC, as shown in the following screenshot:
[image: Managing local accounts]

In the How will this person sign in? step, click on The person who I want to add doesn't have an email address. In the Let's create an account step, click on Add a user without a Microsoft account.
In the Create an account for this PC step, enter AliceJones for the username and Pa$$w0rd for the password, and then click Next.
[image: Managing local accounts]

Authenticating with Windows

Add a new Console Application project named Ch11_Authentication. Import the following namespaces:
using System;
using System.Security.Permissions;
using System.Security.Principal;
using static System.Console;

In the Main method, add the following statements:
var user = new WindowsPrincipal(WindowsIdentity.GetCurrent());
WriteLine($"Name: {user.Identity.Name}");
WriteLine($"IsAuthenticated: {user.Identity.IsAuthenticated}");
WriteLine($"AuthenticationType: {user.Identity.AuthenticationType}");
ReadLine(); // keep the application running

Run the application. The name of my computer is DARKMATTER, and I am currently logged on to Windows 10 using my linked MSN account, so this is what I see:

Name: DARKMATTER\markjprice
IsAuthenticated: True
AuthenticationType: CloudAP

In the Windows 10 start menu, click on your username, and then click on AliceJones.
[image: Authenticating with Windows]

Enter Pa$$w0rd and wait for the new user to be set up. It should only take a minute or two. Use File Explorer to open the C:\Code\Chapter11\Ch11_Authentication\bin\Debug folder and then double-click on the Ch11_Authentication.exe file to run it. You will see the following output:

Name: DARKMATTER\AliceJones
IsAuthenticated: True
AuthenticationType: NTLM

Note that local users are authenticated with NTLM (which meant
New Technology LAN Manager back in the 1990s).
Switch back to your own account by clicking on the username on the start menu.

Authorizing with Windows

Authorization is usually a check to ensure that the current user belongs to a role or group.
In the Main method, add the following statements:
// to check if the current user belongs to a specific role
WriteLine($"Is in Administrators group? {user.IsInRole("Administrators")}");
WriteLine($"Is in Users group? {user.IsInRole("Users")}");
WriteLine($"Is in Sales group? {user.IsInRole("Sales")}");
WriteLine();
WriteLine($"{user.Identity.Name} belongs to these roles/groups:");
foreach (var claim in user.Claims)
{
 if(claim.Type == "http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid")
 {
 WriteLine($"{claim.Value}: {(new SecurityIdentifier(claim.Value)).Translate(typeof(NTAccount)).Value}");
 }
}

Note that the roles/groups that a user belongs to are stored in the user's Claims collection as security identifier strings (SIDs) using a Type of groupsid, for example, a Group SID of S-1-5-32-545 means the User's group. To see the group name, we have to translate the SID into an NTAccount object.
Run the application by pressing Ctrl + F5 and view the output:

Is in Administrators group? False
Is in Users group? True
Is in Sales group? False

DARKMATTER\markjprice belongs to these roles/groups:
S-1-1-0: Everyone
S-1-5-32-559: BUILTIN\Performance Log Users
S-1-5-32-545: BUILTIN\Users
S-1-5-4: NT AUTHORITY\INTERACTIVE
S-1-2-1: CONSOLE LOGON
S-1-5-11: NT AUTHORITY\Authenticated Users
S-1-5-15: NT AUTHORITY\This Organization
S-1-11-96-3623454863-58364-18864-2661722203-1597581903-1800426060-9997179511-9995030342-2042432011-970967485: MicrosoftAccount\markjprice@msn.com
S-1-5-113: NT AUTHORITY\Local account
S-1-2-0: LOCAL
S-1-5-64-36: NT AUTHORITY\Cloud Account Authentication

You can use either statements or attributes to prevent the current user from accessing parts of your application.
Add the following method to the Program class. Note that the attribute demands that the current user be in the role named Users. If they are not, then a SecurityException will be thrown.
[PrincipalPermission(SecurityAction.Demand, Role = "Users")]
public static void SecureFeature()
{
 WriteLine("This is a secure feature!");
}

Add the following statements to the bottom of the Main method. Note that we must set the principal policy to ensure that the current thread knows about the current user in order for the PrincipalPermission attribute to work correctly. This only has to be done once, so it is usually executed as the first statement in a Main method.
if(user.IsInRole("Users"))
{
 WriteLine("You are in the role so you are allowed access to this feature.");
}
else
{
 WriteLine("You are NOT in the role so you are banned from this feature.");
}
// copy the current user principal to the current thread
AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal);
try
{
 SecureFeature();
}
catch(Exception ex)
{
 WriteLine($"{ex.GetType()}: {ex.Message}");
}

Run the application and view the output:

You are in the role so you are allowed access to this feature.
This is a secure feature!

Change the role name to Administrators in the if statement and the attribute, and then rerun the application:

You are NOT in the role so you are banned from this feature.
System.Security.SecurityException: Request for principal permission failed.

Unfortunately, the string for the Role in the PrincipalPermission attribute must be a literal value, so it cannot reference a variable.
Tip

Best Practice

Use the IsInRole method to check whether the current user is authorized to access a feature of your application rather than the PrincipalPermission attribute.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore the topics covered in this chapter with deeper research.

Exercise 11.1 – test your knowledge

Answer the following questions:
	Of the encryption algorithms provided by .NET, which is the best choice for symmetric encryption?
	Of the encryption algorithms provided by .NET, which is the best choice for asymmetric encryption?
	For encryption algorithms, is it better to have a larger or smaller block size?

Exercise 11.2 – practice protecting data with encryption and hashing

Create a console application named Ch11_Exercise02 that protects an XML file similar to the following code. Note that the customer record credit card number and password are currently stored in clear text. The credit card must be encrypted so that it can be decrypted and used later, and the password must be salted and hashed:
<?xml version="1.0" encoding="utf-8" ?>
<customers>
 <customer>
 <name>Bob Smith</name>
 <creditcard>1234-5678-9012-3456</creditcard>
 <password>Pa$$w0rd</password>
 </customer>
</customers>

Exercise 11.3 – practice protecting data with decryption

Create a console application named Ch11_Exercise03 that opens the XML file that you protected in the preceding code and decrypts the credit card number.

Exercise 11.4 – explore topics

Use the following links to read more about the topics covered in this chapter:
	Key Security Concepts: https://msdn.microsoft.com/en-us/library/z164t8hs(v=vs.110).aspx
	Encrypting Data: https://msdn.microsoft.com/en-us/library/as0w18af(v=vs.110).aspx
	Cryptographic Signatures: https://msdn.microsoft.com/en-us/library/hk8wx38z(v=vs.110).aspx
	How to: Create GenericPrincipal and GenericIdentity Objects: https://msdn.microsoft.com/en-us/library/y9dd5fx0(v=vs.110).aspx

Summary

In this chapter, you learned how to encrypt and decrypt using symmetric encryption, how to generate a salted hash, how to find out who is running the application, and how to check that the user running the application is allowed to access a feature of the application.
In the next chapter, you will use the Task type to improve the performance of your applications.

Chapter 12. Improving Performance and Scalability with Multitasking

This chapter is about allowing multiple actions to occur at the same time to improve performance, scalability, and user productivity.
In this chapter, we will cover the following topics:
	Understanding processes and threads
	Running tasks asynchronously
	The async and await keywords
	Synchronizing access to shared resources

Understanding processes and threads

A process, like each of the console applications we have created, has resources allocated to it, such as memory and threads. A thread executes your code, statement by statement.
Windows uses pre-emptive multitasking, which simulates the parallel execution of tasks. It divides the processor time among the threads, allocating a "time slice" to each thread, one after another. The current thread is suspended when its time slice finishes. The processor allows another thread to run for a time slice.
When Windows switches from one thread to another, it saves the context of the thread and reloads the previously saved context of the next thread in the thread queue.
Most modern operating systems work the same as Windows, and are known as pre-emptive multitasking OSes.
By default, each process only has one thread, and this can cause problems when we need to do more than one thing at the same time.

Running tasks asynchronously

First, we will write a simple console application that needs to execute three actions.

Running multiple actions synchronously

Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N or go to File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select Console Application, type the name as Ch12_Tasks, change the location to C:\Code, type the solution name as Chapter12, and then click on OK.
Ensure that the following namespaces have been imported:
using System;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;
using static System.Console;

In the Program class, add the following code. There are three methods that need to be executed: the first takes three seconds, the second takes two seconds, and the third takes one second. To simulate work, we can use the Thread class to tell the current thread to go to sleep for a specified number of milliseconds:
static void MethodA()
{
 WriteLine("Starting Method A...");
 Thread.Sleep(3000); // simulate three seconds of work
 WriteLine("Finished Method A.");
}
static void MethodB()
{
 WriteLine("Starting Method B...");
 Thread.Sleep(2000); // simulate two seconds of work
 WriteLine("Finished Method B.");
}
static void MethodC()
{
 WriteLine("Starting Method C...");
 Thread.Sleep(1000); // simulate one second of work
 WriteLine("Finished Method C.");
}

In the Main method, add the following statements:
static void Main(string[] args)
{
 var timer = Stopwatch.StartNew();
 WriteLine("Running methods synchronously on one thread.");
 MethodA();
 MethodB();
 MethodC();
 WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");
 WriteLine("Press ENTER to end.");
 ReadLine();
}

Run the application by pressing Ctrl + F5 and view the output. Since there is only one thread, the total time required is just over six seconds.

Running methods synchronously on one thread.
Starting Method A...
Finished Method A.
Starting Method B...
Finished Method B.
Starting Method C...
Finished Method C.
6,047ms elapsed.
Press ENTER to end.

Running multiple actions asynchronously using tasks

The Thread class has been available since the first version of C#, but it can be tricky to work with directly. C# 4 introduced the Task class, which is a wrapper around a thread that enables easier management. Creating multiple threads wrapped in tasks will allow our code to execute asynchronously (at the same time).
We will look at three ways to start the methods using Task instances. Each has a slightly different syntax, but they all define a task and start it. Comment out the calls to the three methods and the associated console message, and then add the highlighted statements in the following code:
static void Main(string[] args)
{
 var timer = Stopwatch.StartNew();
 //WriteLine("Running methods synchronously on one thread.");
 //MethodA();
 //MethodB();
 //MethodC();
 WriteLine("Running methods asynchronously on multiple threads.");
 var taskA = new Task(MethodA);
 taskA.Start();
 var taskB = Task.Factory.StartNew(MethodB);
 var taskC = Task.Run(new Action(MethodC));
 WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");
 WriteLine("Press ENTER to end.");
 ReadLine();
}

Rerun the application by pressing Ctrl + F5 and view the output.
The actual elapsed milliseconds will depend on the performance of your CPU, so you are likely to see a different value than shown in the following example output:

Running methods asynchronously on multiple threads.
10 milliseconds elapsed.
Press ENTER to end.
Starting Method C...
Starting Method A...
Starting Method B...
Finished Method C.
Finished Method B.
Finished Method A.

Notice that the stopwatch displays the elapsed time almost immediately, because each of the three methods are now being executed by three new threads. The original thread continues executing until it reaches the ReadLine call at the end of the Main method.
Meanwhile, the three new threads execute their code in parallel, and they start in any order. MethodC will usually finish first, because it takes only one second, then MethodB, and finally MethodA, because it takes three seconds.
However, the actual CPU used has a big effect on the results. It is the CPU that allocates time slices to each process to allow them to execute their threads. You have little control over when the methods run.

Waiting for tasks

Sometimes you need to wait for a task to complete before continuing. To do this, you can use the Wait method on a Task instance, or the WaitAll or WaitAny method on an array of Task instances, as shown in the following table:
	
Method

	
Description

	

Wait

	
Waits for this instance of the task to complete execution

	

WaitAny

	
Waits for any of the provided task objects to complete execution

	

WaitAll

	
Waits for all of the provided task objects to complete execution

Add the following statements to the Main method immediately after creating the three tasks. This will combine references to the three tasks into an array and pass them to the WaitAll method. Now, the original thread will pause on that statement, waiting for all three tasks to finish before outputting the elapsed time:
Task[] tasks = { taskA, taskB, taskC };
Task.WaitAll(tasks);

Rerun the application by pressing Ctrl + F5 and view the output:

Running methods asynchronously on multiple threads.
Starting Method B...
Starting Method C...
Starting Method A...
Finished Method C.
Finished Method B.
Finished Method A.
3,024 milliseconds elapsed.
Press ENTER to end.

Note that the total time is now slightly more than the time to run the longest method. If all three tasks can be performed at the same time, then this would be all we need to do.
However, often, a task is dependent on the output from another task. To handle this scenario, we need to define continuation tasks.

Continuing with another task

Add the following methods to the Program class:
static decimal CallWebService()
{
 WriteLine("Starting call to web service...");
 Thread.Sleep((new Random()).Next(2000, 4000));
 WriteLine("Finished call to web service.");
 return 89.99M;
}
static string CallStoredProcedure(decimal amount)
{
 WriteLine("Starting call to stored procedure...");
 Thread.Sleep((new Random()).Next(2000, 4000));
 WriteLine("Finished call to stored procedure.");
 return $"12 products cost more than {amount:C}.";
}

These methods simulate a call to a web service, that returns a monetary amount that then needs to be used to retrieve how many products cost more than that amount in a database. The result returned from the first method needs to be fed into the input of the second method.
Tip
I have used the Random class to wait for a random interval of between two and four seconds for each method.

Inside the Main method, comment out the previous tasks by highlighting the statements and pressing Ctrl + K, C. Then, add the following statements before the existing statement that outputs the total time elapsed and then calls ReadLine to wait for the user to press Enter:
WriteLine("Passing the result of one task as an input into another.");
var taskCallWebServiceAndThenStoredProcedure =
Task.Factory.StartNew(CallWebService)
 .ContinueWith(previousTask =>
CallStoredProcedure(previousTask.Result));
WriteLine($"{taskCallWebServiceAndThenStoredProcedure.Result}");

Run the application by pressing Ctrl + F5 and view the output:

Passing the result of one task as an input into another.
Starting call to web service...
Finished call to web service.
Starting call to stored procedure...
Finished call to stored procedure.
12 products cost more than £89.99.
5,971 milliseconds elapsed.
Press ENTER to end.

Nested and child tasks

Add a new console application project named Ch12_NestedAndChildTasks. In the solution's Properties, remember to change the Startup Project to Current selection.
Ensure the following namespaces have been imported:
using System;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;
using static System.Console;

Inside the Main method, add the following statements:
var outer = Task.Factory.StartNew(() =>
{
 WriteLine("Outer task starting...");
 var inner = Task.Factory.StartNew(() =>
 {
 WriteLine("Inner task starting...");
 Thread.Sleep(2000);
 WriteLine("Inner task finished.");
 });
});
outer.Wait();
WriteLine("Outer task finished.");
ReadLine();

Run the application by pressing Ctrl + F5 and view the output:

Outer task starting...
Outer task finished.
Inner task starting...
Inner task finished.

Notice that although we wait for the outer task to finish, its inner task does not have to finish as well. To link the two tasks, we must use a special option.
Modify the code that defines the inner task to add TaskCreationOption of AttachedToParent:
var inner = Task.Factory.StartNew(() =>
{
 WriteLine("Inner task starting...");
 Thread.Sleep(2000);
 WriteLine("Inner task finished.");
}, TaskCreationOptions.AttachedToParent);

Rerun the application by pressing Ctrl + F5. Notice that the inner task must finish before the outer task is allowed to:

Outer task starting...
Inner task starting...
Inner task finished.
Outer task finished.

The async and await keywords

C# 5 introduced two new keywords to simplify working with the Task type. They are especially useful when multitasking with graphical user interfaces.

Creating a GUI that blocks

In Visual Studio, go to File | Add | New Project…. In the Add New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select WPF Application, type the name as Ch12_GUITasks, and then click on OK.
Tip
We will use a WPF application because these can be created on versions of Windows older than 10. In Chapter 13, Building Universal Windows Platform Apps Using XAML, you will learn about modern Windows apps. However, these can only be created on Windows 10. Obviously, Windows applications of any sort are not cross-platform, so they cannot be executed by the .NET Core!

You will learn more about XAML in the next chapter, but for now, just enter the following code in the XAML view inside the <Grid> element:
<StackPanel>
 <Button Name="GetProductsButton">Get Products</Button>
 <TextBox>Type in here while the products load...</TextBox>
 <ListBox Name="ProductsListBox"></ListBox>
</StackPanel>

Your main editor window should now look like this:
[image: Creating a GUI that blocks]

Inside the Button element, after setting the Name, enter an attribute named Click, as shown in the following screenshot, and when the IntelliSense appears, press Enter to insert a new event handler:
[image: Creating a GUI that blocks]

Choose the View | Code menu or press F7. Add the following code to the top of the code file:
using System.Data.SqlClient;

Add the following code inside the GetProductsButton_Click method.
Note the following:
	The database connection string uses Microsoft SQL Server LocalDb and connects to the Northwind sample database
	The SQL statement waits for five seconds before returning four columns from the Products table

var connection = new SqlConnection(@"Data Source=(localdb)\mssqllocaldb;Initial Catalog=Northwind;Integrated Security=true;");
connection.Open();
var getProducts = new SqlCommand("WAITFOR DELAY '00:00:05';SELECT ProductID, ProductName, UnitPrice FROM Products", connection);
SqlDataReader reader = getProducts.ExecuteReader();
int indexOfID = reader.GetOrdinal("ProductID");
int indexOfName = reader.GetOrdinal("ProductName");
int indexOfPrice = reader.GetOrdinal("UnitPrice");
while (reader.Read())
{
 ProductsListBox.Items.Add($"{reader.GetInt32(indexOfID)}: {reader.GetString(indexOfName)} costs {reader.GetDecimal(indexOfPrice):C}");
}
reader.Dispose();
connection.Dispose();

Run the application by pressing Ctrl + F5.
Click inside the text box and enter some text. The user interface is responsive. Click on the Get Products button and then try to enter some text in the text box. The user interface is blocked because the thread is busy running the SQL command:
[image: Creating a GUI that blocks]

Creating a GUI that doesn't block

The types in the SqlClient namespace have been improved in .NET Framework 4.5 and later by giving any method that might take a long time an asynchronous equivalent that returns a Task.
For example, the SqlConnection class has both an Open method, that returns void, and an OpenAsync method, that returns Task. SqlCommand has both an ExecuteReader method, that returns SqlDataReader, and an ExecuteReaderAsync method, that returns Task<SqlDataReader>.
We can use these Task objects as we did earlier, but that would still block the user interface when we call any of the Wait methods.
Instead we can use await keyword for any Task. This means that the main thread will not be blocked while we wait, but will remember its current position within the statements so that once the Task has completed, the main thread continues executing from that same point. This allows us to write code that looks as simple as synchronous, but underneath, it is actually much more complex.
Tip
Internally, await creates a state machine to manage the complexity of passing state between any worker threads and the user interface thread.

Modify the code like this. Notice that to use the await keyword, we must mark any method that contains await with the async keyword. They always work as a pair:
private async void GetProductsButton_Click(object sender, RoutedEventArgs e)
{
 var connection = new SqlConnection(@"Data Source=(localdb)\mssqllocaldb;Initial Catalog=Northwind;Integrated Security=true;");
 await connection.OpenAsync();
 var getProducts = new SqlCommand("WAITFOR DELAY '00:00:05';SELECT ProductID, ProductName, UnitPrice FROM Products", connection);
 SqlDataReader reader = await getProducts.ExecuteReaderAsync();
 int indexOfID = reader.GetOrdinal("ProductID");
 int indexOfName = reader.GetOrdinal("ProductName");
 int indexOfPrice = reader.GetOrdinal("UnitPrice");
 while (await reader.ReadAsync())
 {
 ProductsListBox.Items.Add($"{await reader.GetFieldValueAsync<int>(indexOfID)}: {await reader.GetFieldValueAsync<string>(indexOfName)} costs {await reader.GetFieldValueAsync<decimal>(indexOfPrice):C}");
 }
 reader.Dispose();
 connection.Dispose();
}

Run the application by pressing Ctrl + F5.
This time, after clicking on the Get Products button, you will be able to enter text in the text box while the command executes:
[image: Creating a GUI that doesn't block]

Other types with Async methods

Here are some of the other types that have asynchronous method support:
	
Class

	
Methods

	

HttpClient

	

GetAsync, PostAsync, PutAsync, DeleteAsync, SendAsync

	

StreamReader

	

ReadAsync, ReadLineAsync, ReadToEndAsync

	

StreamWriter

	

WriteAsync, WriteLineAsync, FlushAsync.

	
SOAP service clients

	
When you generate a proxy to a SOAP service using Visual Studio's Add Service Reference dialog or the svcutil.exe command-line tool, the class created can include Async methods for the service operations

Tip
Any time you see a method that ends in the suffix Async, check to see whether it returns Task or Task<T>. If it does, then you can call it using await if you mark your method using async.

await in catch blocks

In C# 5, it was only possible to use the await keyword in a try exception handling block, but not in a catch block.
In C# 6, it is now possible to use await in both try and catch blocks.

Improving scalability for client-server applications

In the previous example, we saw how using the async and await keywords can improve the performance of a client-side graphical application by preventing the blocking of the user interface thread.
The same keywords can be applied on the server-side when building web applications and services. From the client application's point of view, nothing changes (or they might even notice a small increase in the time for a request to return). So, from a single client's point of view, the use of async on the server side makes their experience worse!
On the server-side, additional, cheaper worker threads are created to wait for long-running tasks to finish so that expensive I/O threads can handle other clients' requests instead of being blocked. This improves the overall scalability of a web application or service. More clients can be supported simultaneously.
Tip
You will create asynchronous operations on the server-side in Chapter 14, Building Web Applications and Services Using ASP.NET Core.

Synchronizing access to shared resources

When you have multiple threads executing at the same time, there is a possibility that two or more threads may access the same variable or other resource at the same time and cause a problem.
For this reason, you should carefully consider how to make your code "thread safe".
The simplest mechanism for implementing thread safety is to use an object variable as a "flag" or "traffic light" to indicate when a shared resource has an exclusive lock applied.
Tip
In William Golding's Lord of the Flies, Piggy and Ralph spot a conch shell and use it to call a meeting. The boys impose a "rule of the conch" on themselves, deciding that no one can speak unless he's holding the conch. I like to name the object variable I use the "conch". When a thread has the conch, no other thread can access the shared resource(s) represented by that conch.

Accessing a resource from multiple threads

In Visual Studio, go to File | Add | New Project…. In the Add New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select Console Application, type the name as Ch12_LockAndMonitor, and then click on OK.
Modify the Program class to:
	Declare and instantiate an object to generate random wait times
	Declare a string variable to store a message (this will be the shared resource)
	Declare two methods that add a letter, A or B, to the shared string five times in a loop, and wait for a random interval of up to two seconds for each iteration
	A Main method that starts both methods on separate threads using a pair of tasks and waits for them to complete before outputting the elapsed milliseconds they took:using static System.Console;
using System.Threading;
using System.Threading.Tasks;
using System;
using System.Diagnostics;

namespace Ch12_LockAndMonitor
{
 class Program
 {
 static Random r = new Random();
 static string Message; // a shared resource

 static void MethodA()
 {
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
 }

 static void MethodB()
 {
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "B";
 Write(".");
 }
 }

 static void Main(string[] args)
 {
 WriteLine("Please wait for the tasks to complete.");
 Stopwatch watch = Stopwatch.StartNew();

 Task a = Task.Factory.StartNew(MethodA);
 Task b = Task.Factory.StartNew(MethodB);

 Task.WaitAll(new Task[] { a, b });
 WriteLine();
 WriteLine($"Results: {Message}.");
 WriteLine($"{watch.ElapsedMilliseconds:#,##0} elapsed milliseconds.");
 }
 }
}

Press Ctrl + F5 to run the application and view the output:

Please wait for the tasks to complete.
..........
Results: BABBABBAAA.
6,099 elapsed milliseconds.

Notice that the results show that both threads were modifying the message concurrently. In an actual application, this could be a problem. We could prevent concurrent access by using a mutually exclusive lock or conch.

Applying a mutually exclusive lock to a resource

In the Program class, define an object variable for the conch:
static object conch = new object();

In both the methods, add a lock statement around the for statement:

lock(conch)
{
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
}

Press Ctrl + F5 and view the output:

Please wait for the tasks to complete.
..........
Results: AAAAABBBBB.
9,751 elapsed milliseconds.

Notice that although the time elapsed was longer, only one method at a time could access the shared resource.

Understanding the lock statement

The compiler changes this:
lock(conch)
{
 // access shared resource
}

Into this:
try
{
 Monitor.Enter(conch);
 // access shared resource
}
finally
{
 Monitor.Exit(conch);
}

Knowing how the lock statement works internally is important because using the lock statement can cause a deadlock.
Deadlocks occur when there are two or more shared resources (and therefore conches), and the following sequence of events happens:
	Thread X locks conch A
	Thread Y locks conch B
	Thread X attempts to lock conch B, but is blocked because thread Y already has it
	Thread Y attempts to lock conch A, but is blocked because thread X already has it

A proven way to prevent deadlocks is to specify a timeout when attempting to get a lock. To do this, you must manually use the Monitor class instead of using the lock statement.
Modify your code to replace the lock statements with code that tries to enter the conch with a timeout like this:

try
{
 Monitor.TryEnter(conch, TimeSpan.FromSeconds(15));
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
}
finally
{
 Monitor.Exit(conch);
}

Press Ctrl + F5 and view the output. It should be the same as before.

Making operations atomic

Look at the following increment operation:
int x = 3;
x++;

It is not atomic! Incrementing an integer requires three CPU operations:
	Load a value from an instance variable into a register
	Increment the value
	Store the value back into the instance variable

A thread could be pre-empted after executing the first two steps. A second thread could then execute all three steps. When the first thread resumes execution, it would overwrite the value in the variable, and the effect of the increment or decrement performed by the second thread would be lost!
Declare another shared resource that will count how many operations have occurred:
static int Counter; // another shared resource

In both methods, add the following statement to safely increment the counter:
Interlocked.Increment(ref Counter);

After outputting the elapsed time, output the counter:
WriteLine($"{Counter} string modifications.");

Press Ctrl + F5 and view the output:

10 string modications.

Applying other types of synchronization

The Monitor and Interlocked mutually exclusive locks are simple and effective, but sometimes, you need more advanced options to synchronize access to shared resources, as shown in the following table:
	
Type

	
Description

	

ReaderWriterLock and ReaderWriterLockSlim (recommended)

	
Allows multiple threads to be in the shared read mode, allows one thread to be in the write mode with exclusive ownership of the lock, and allows one thread that has read access to be in the upgradeable read mode, from which the thread can upgrade to the write mode without having to relinquish its read access to the resource

	

Mutex

	
Similar to Monitor in that it provides exclusive access to a shared resource, except when it is used for inter-process synchronization

	

Semaphore and SemaphoreSlim

	
Limits the number of threads that can access a resource or pool of resources concurrently

	

AutoResetEvent and ManualResetEvent

	
Event wait handles allow threads to synchronize activities by signaling each other and by waiting for each other's signals

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 12.1 – test your knowledge

Answer the following questions:
	By convention, what suffix should be applied to a method that returns Task or Task<T>?
	To use the await keyword inside a method, what keyword must be applied to the method declaration?
	How do you create a child task?
	Why should you avoid the lock keyword?
	When should you use the Interlocked class?

Exercise 12.2 – explore topics

Use the following links to read more about this chapter's topics:
	Threads and threading: https://msdn.microsoft.com/en-us/library/6kac2kdh(v=vs.110).aspx
	Task parallelism (task parallel library): https://msdn.microsoft.com/en-us/library/dd537609(v=vs.110).aspx
	await (C# reference): https://msdn.microsoft.com/en-GB/library/hh156528.aspx
	Asynchronous Programming with Async and Await (C# and Visual Basic): https://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx
	Interlocked Operations: https://msdn.microsoft.com/en-us/library/sbhbke0y(v=vs.110).aspx
	EventWaitHandle, AutoResetEvent, CountdownEvent, ManualResetEvent: https://msdn.microsoft.com/en-us/library/ksb7zs2x(v=vs.110).aspx

Summary

In this chapter, you learned how to define and start a task, how to wait for one or more tasks to finish, and how to control task completion order. You also learned how to use async and await to prevent the user interface thread from being blocked, and how to synchronize access to shared resources.
In the next chapter, you will learn how to create apps for the Universal Windows Platform.

Chapter 13. Building Universal Windows Platform Apps Using XAML

This chapter is about seeing what can be achieved with XAML when defining the user interface for a graphical app, in particular, for the Universal Windows Platform (UWP).
In a single chapter, we will only be able to scratch the surface of everything that can be done with UWP. However, I hope to excite you into wanting to learn more about this cool technology and platform.
Think of this chapter as a whistle-stop tour of the coolest parts of UWP and XAML, including template-able controls, data binding, and animation!
Note
UWP apps are not cross-platform, but they are cross-device, if those devices run a modern flavor of Windows. You will need Windows 10 to create the examples in this chapter.

In this chapter, we will cover the following topics:
	Understanding the UWP
	Understanding XAML
	Creating a Windows Desktop Application using WPF
	Creating an app for the UWP
	Using resources and templates
	Data binding
	Animating with storyboards
	Testing in emulators

Understanding the UWP

The UWP is Microsoft's latest technology solution to build applications for its Windows suite of operating systems.
UWP provides a guaranteed API layer across multiple device types. You can create a single app package that can be uploaded to a single Windows Store to be distributed to reach all the device types your app can run on. These devices include Windows 10, Windows 10 Mobile, Xbox One, and Microsoft HoloLens.

Adapting your app's layout

XAML and UWP provide layout panels that adapt how they display their child controls to make the most of the device they are currently running on. It is the Windows app equivalent of web page responsive design.
XAML and UWP provide visual state triggers to alter the layout, based on dynamic changes such as the horizontal or vertical orientation of a tablet.

Taking advantage of unique device capabilities

UWP provides standard mechanisms to detect the capabilities of the current device and then activate additional features of your app to fully take advantage of them.

Understanding XAML

XAML can be used to create:
	UWP apps for Windows 10
	Windows Store apps for Windows 8 and 8.1
	Windows Presentation Foundation (WPF) applications for the Windows desktop, including Windows 7 and later
	Silverlight applications for web browsers, Windows Phone, and desktopNote
Although Silverlight is still supported by Microsoft, it is not being actively developed, so it should be avoided.

Simplifying code using XAML

XAML simplifies C# code, especially when building a user interface.
Imagine that you need two or more buttons laid out horizontally to create a toolbar. In C#, you would write this code:
var toolbar = new StackPanel();
toolbar.Orientation = Orientation.Horizontal;
var newButton = new Button();
newButton.Content = "New";
newButton.Background = new SolidColorBrush(Colors.Pink);
toolbar.Children.Add(newButton);
var openButton = new Button();
openButton.Content = "Open";
openButton.Background = new SolidColorBrush(Colors.Pink);
toolbar.Children.Add(openButton);

In XAML, it would be simplified to the following lines of code. When this XAML is processed, the equivalent properties are set and methods are called, to achieve the same goal as the preceding C# code:
<StackPanel Name="toolbar" Orientation="Horizontal">
 <Button Name="newButton" Background="Pink">New</Button>
 <Button Name="openButton" Background="Pink">Open</Button>
</StackPanel>

XAML is an alternative (better) way of declaring and instantiating .NET types.

Creating a Windows desktop application using WPF

In 2006, Microsoft released WPF, which was the first technology to use XAML. It is is still used today to create desktop applications.
Tip
Microsoft Visual Studio 2015 and Microsoft Blend are WPF applications.

Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N, or choose File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select WPF Application, type the name as Ch13_WPF, change the location to C:\Code, type the solution name as Chapter13, and then click on OK.
You will see the XAML design window showing a graphical view and an XAML view of the MainWindow.xaml file. You will be able to make the following observations:
	The XAML designer is split horizontally, but you can toggle to vertical split and collapse one side by clicking the buttons on the right edge of the divider
	You can swap the views by clicking the double-arrow button in the divider
	You can scroll and zoom both views:[image: Creating a Windows desktop application using WPF]

On the View menu, choose Toolbox, or press Ctrl + W, X. Notice that the toolbox has sections for Common WPF Controls and All WPF Controls:
[image: Creating a Windows desktop application using WPF]

Drag and drop the
Button control from the toolbox onto the graphical view. Notice that the button is given a fixed width and margin to position it inside the grid:
[image: Creating a Windows desktop application using WPF]

Although you can drag and drop controls, it is better to use the XAML view for layout.
In the XAML view, find the Button element and delete it.
In the XAML view, inside the Grid element, type the following line of code, and notice that the button stretches to take up the whole grid:
<Button Margin="6" Padding="6" Name="clickMeButton">Click Me</Button>

Modify the XAML to put the Button element inside a StackPanel, and notice the change in its layout:

<StackPanel Orientation="Horizontal" VerticalAlignment="Top">
 <Button Margin="6" Padding="6" Name="clickMeButton">Click Me</Button>
</StackPanel>

Modify the Button element to give it a new event handler for its Click event:
<Button Margin="6" Padding="6" Name="clickMeButton" Click="clickMeButton_Click">Click Me</Button>

In the MainWindows.xaml.cs file, add the following statement to the event handler:
clickMeButton.Content = DateTime.Now.ToLongTimeString();

Run the application by pressing Ctrl + F5 and view the window:
[image: Creating a Windows desktop application using WPF]

Click on the Click Me button. Every time you click the button, the button's content changes to show the current time:
[image: Creating a Windows desktop application using WPF]

Choosing common controls

There are lots of predefined controls that you can choose from for common user interface scenarios. Almost all versions of XAML support the controls in the following table:
	
Control(s)

	
Description

	

Button, Menu, Toolbar

	
Executing actions

	

CheckBox, RadioButton

	
Choosing options

	

Calendar, DatePicker

	
Choosing dates

	

ComboBox, ListBox, ListView, TreeView

	
Choosing items from lists and hierarchical trees

	

Canvas, DockPanel, Grid, StackPanel, WrapPanel

	
Layout containers that affect their children in different ways

	

Label, TextBlock

	
Displaying read-only text

	

RichTextBox, TextBox

	
Editing text

	

Image, MediaElement

	
Embedding images, videos, and audio files

	

DataGrid

	
Viewing and editing bound data

	

Scrollbar, Slider, StatusBar

	
Miscellaneous. user interface elements

Tip
You can learn more about the controls available at https://msdn.microsoft.com/en-us/library/windows/apps/mt185405.aspx.

Creating an app for the Universal Windows Platform

To be able to create apps for the UWP, you must enable the developer mode in Windows 10.
Go to the Start Menu | Settings | Update & Security, and then click on Developer mode. Close the Settings app:
[image: Creating an app for the Universal Windows Platform]

Start Microsoft Visual Studio 2015. In Visual Studio, click on File | Add | New Project…. In the Add New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select Blank App (Universal Windows), type the name as Ch13_UWP, and then click on OK.
Set the solution's startup project to be the current selection.
In the Solution Explorer window, double-click on the MainPage.xaml file to open it for editing.
Modify the XAML to put a Button element inside a StackPanel. Add the event handler by choosing New Event Handler, so that a method is created in the code-behind file:
<StackPanel VerticalAlignment="Top">
 <StackPanel Orientation="Horizontal">
 <Button Margin="6" Padding="6" Name="clickMeButton" Click="clickMeButton_Click">Click Me</Button>
 </StackPanel>
</StackPanel>

Right-click and chose View Code or press F7.
In the clickMeButton_Click method, add the following statement:
clickMeButton.Content = DateTime.Now.ToLongTimeString();

Run the application by pressing Ctrl + F5, and notice the warning:
[image: Creating an app for the Universal Windows Platform]

UWP apps have extra requirements compared to console and WPF applications. They must be deployed before being run.
On the Build menu, choose Deploy Ch13_UWP.
You will see a compile error. This is because UWP apps have a more limited version of the base-class libraries, and the ToLongTimeString method has not been implemented for instances of DateTime:
[image: Creating an app for the Universal Windows Platform]

Note
UWP apps cannot use the full features of .NET. because they use a custom implementation of .NET Core.

Modify your code to make it look like this:
clickMeButton.Content = DateTime.Now.ToString("hh:mm:ss");

Redeploy the application and then run it by pressing Ctrl + F5.
This time, it works just as our WPF application did earlier, except that this app will also run on Windows 10 Mobile phones, Xbox One, and even HoloLens:
[image: Creating an app for the Universal Windows Platform]

Analyzing UWP portability

If you run the .NET Portability Analyzer on this project, you will see the following report:
[image: Analyzing UWP portability]

Note
Note that UWP apps do not support cross-platform .NET Core because they use a custom implementation of .NET Core. However, they are cross-device if that device runs a modern flavor of Windows. Also, they support .NET Native. This means that the .NET code is compiled to native CPU instructions for a smaller memory footprint and faster execution.

Using resources and templates 

When building graphical user interfaces, you will often want to use a resource such as a brush to paint the background of controls. These resources can be defined in a single place and shared throughout the app.

Sharing resources

In the Solution Explorer window, double-click on the App.xaml file. Add the following statement to it:
<Application.Resources>
 <LinearGradientBrush x:Key="rainbow">
 <GradientStop Color="Red" Offset="0" />
 <GradientStop Color="Orange" Offset="0.1" />
 <GradientStop Color="Yellow" Offset="0.3" />
 <GradientStop Color="Green" Offset="0.5" />
 <GradientStop Color="Blue" Offset="0.7" />
 <GradientStop Color="Indigo" Offset="0.9" />
 <GradientStop Color="Violet" Offset="1" />
 </LinearGradientBrush>
</Application.Resources>

In the MainPage.xaml file, modify the Grid element to make it look like this:
<Grid Background="{StaticResource rainbow}">

Redeploy and run the application:
[image: Sharing resources]

Tip
A resource can be an instance of any object. To share it within an application, define it in the App.xaml file and give it a unique Key. To set an element's property to apply the resource, use StaticResource with the Key.

Replacing a control template

You can redefine how a control looks by replacing its default template.
One of the most common resources is a Style that can set multiple properties at once. If a style has a unique Key, then it must be explicitly set, like we did earlier with the linear gradient. If it doesn't have a Key, then it will be automatically applied based on the TargetType. For example, if the TargetType is Button then all Buttons will have the style applied.
In App.xaml file, add the following statements:
<ControlTemplate x:Key="DarkGlassButton" TargetType="Button">
 <Border BorderBrush="#FFFFFFFF" BorderThickness="1,1,1,1" CornerRadius="4,4,4,4">
 <Border x:Name="border" Background="#7F000000" BorderBrush="#FF000000" BorderThickness="1,1,1,1" CornerRadius="4,4,4,4">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Border Opacity="0" HorizontalAlignment="Stretch" x:Name="glow" Width="Auto" Grid.RowSpan="2" CornerRadius="4,4,4,4">
 </Border>
 <ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center" Width="Auto" Grid.RowSpan="2" Padding="4"/>
 <Border HorizontalAlignment="Stretch" Margin="0,0,0,0" x:Name="shine" Width="Auto" CornerRadius="4,4,0,0">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,0.9" StartPoint="0.5,0.03">
 <GradientStop Color="#99FFFFFF" Offset="0"/>
 <GradientStop Color="#33FFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 </Border>
 </Grid>
 </Border>
 </Border>
</ControlTemplate>
<Style TargetType="Button">
 <Setter Property="Template" Value="{StaticResource DarkGlassButton}" />
 <Setter Property="Foreground" Value="White" />
</Style>

Redeploy and run the application:
[image: Replacing a control template]

Data binding

When building graphical user interfaces, you will often want to bind a property of one control to another or to some data.

Binding to elements

In the MainWindow.xaml file, add the following elements after the Button element, inside the horizontal StackPanel:
<Slider Value="50" Maximum="100" Minimum="0" Width="200" Name="slider"/>
<TextBlock Text="{Binding ElementName=slider, Path=Value}" VerticalAlignment="Center" Margin="10"/>

Redeploy and then run the app. Click and drag the slider, and notice that the text block always shows the current value of the slider:
[image: Binding to elements]

Under the horizontal stack panel, add these statements:
<Rectangle Height="100" Width="100" Fill="Red">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="{Binding ElementName=sliderRotation, Path=Value}" />
 </Rectangle.RenderTransform>
</Rectangle>
<TextBlock>Use the slider to rotate the square:</TextBlock>
<Slider Value="0" Minimum="0" Maximum="360" Name="sliderRotation"/>

Redeploy and run the app:
[image: Binding to elements]

Binding to data

Add a new
Blank App (Universal Windows) project named Ch13_DataBinding.
In the Solution Explorer window, right-click on the new project and add a new folder named Models.
Right-click on the Models folder and add a new class named Employee. Add the following statements to it:
public class Employee
{
 public int EmployeeID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime DOB { get; set; }
 public decimal Salary { get; set; }
}

Add another class named EmployeesViewModel:
public class EmployeesViewModel
{
 public HashSet<Employee> Employees { get; set; }
 public EmployeesViewModel()
 {
 Employees = new HashSet<Employee>();
 Employees.Add(new Employee { EmployeeID = 1, FirstName = "Alice", LastName = "Smith", DOB = new DateTime(1972, 1, 27), Salary = 34000M });
 Employees.Add(new Employee { EmployeeID = 2, FirstName = "Bob", LastName = "Jones", DOB = new DateTime(1965, 4, 13), Salary = 64000M });
 }
}

Open MainPage.xaml. Add the following ListBox element, whose items are bound to each employee instance in the Employees hash set of the view model:
<ListBox ItemsSource="{Binding Employees}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBox Text="{Binding EmployeeID}" />
 <TextBox Text="{Binding FirstName}" />
 <TextBox Text="{Binding LastName}" />
 <DatePicker Date="{Binding DOB}" />
 <TextBox Text="{Binding Salary}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Tip
Since the data won't be loaded until runtime, you won't see a preview of the layout in the design window. You can configure a UWP project with sample data for use at design time, but that is beyond the scope of this book.

In the XAML for the Page element, insert a new event handler for the Load event:
Loading="Page_Loading"

Press F7 to view the code.
Add the following statement to the event handler for Page_Loading. The DataContext method is inherited by all controls, so the instance of the view model can be easily bound to by everything on the page:
DataContext = new Models.EmployeesViewModel();

Deploy and run the application.
The user can click inside each box to modify the data values. Notice the date picker. This looks different and is optimized for input on different devices:
[image: Binding to data]

Tip
In the real world, you would load the data from a file or service. You will learn how to build services in Chapter 14, Building Web Applications and Services Using ASP.NET Core.

Animating with storyboards

You can make your application feel more natural and organic (and fun) using storyboard animations.
Add a new Blank App (Universal Windows) project named Ch13_BouncingBall.
Open the MainPage.xaml file, change Grid into Canvas and add an ellipse to make a red ball. Save your changes:
<Canvas Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Fill="Red" Height="100" Width="100"/>
</Canvas>

In the Solution Explorer window, right-click on the Ch13_BouncingBall project and choose Design in Blend….
The project will open in the Microsoft Blend for Visual Studio tool that is used by designers, because it has better support for graphical effects and animation than Visual Studio does.
On the drawing surface, click on the ellipse to select it.
In the Objects and Timeline window, click on the small green + button to create a new storyboard resource:
[image: Animating with storyboards]

Change the name of the storyboard resource to BounceBall and click on OK:
[image: Animating with storyboards]

A red box appears around the drawing surface, and you will see in the top-right corner that the timeline recording is on. Later, you will click on the red dot to stop recording:
[image: Animating with storyboards]

In the Objects and Timeline window, click on the Record Keyframe button (it looks like a green + symbol combined with a small diamond, and it is to the left of the current time indicator). This will record the current properties of the ball at time 0:00.000:
[image: Animating with storyboards]

On the timeline, drag the down-pointing orange triangle and its vertical orange line to time position 0:00.800. This means 0.8 seconds later:
[image: Animating with storyboards]

On the drawing surface, drag the ball down and a little to the right. This change will be recorded automatically:
[image: Animating with storyboards]

Drag the orange triangle to time position 0:01.000. Click and drag the resize handle at the top of the ball to squash it down a little.
Drag the orange triangle to time position 0:01.200. Resize the ball to stretch it back to its original height.
Drag the orange triangle to time position 0:02.000. Click in the middle of the ball and drag it back up to near the top of the window and a little to the right.
Click the red dot to stop recording:
[image: Animating with storyboards]

In the Objects and Timeline window, click on the small green triangle Play button.
You should see the red ball smoothly drop down. When it hits the bottom, it squashes slightly as a rubber ball would in real life, before bouncing back up to the top.
Exit from Blend. When you return to Visual Studio, it should warn you that the file has changes and prompt you to reload it. Click on Yes.
Notice that Blend created some XAML elements to define a storyboard named BounceBall that animates properties of the Ellipse object.
In the toolbox, choose Button and draw one on the canvas named BounceBallButton. Change its contents to Bounce Ball. Give it a Click event handler. Add the following statement to the event handler method:
BounceBall.Begin();

Deploy and run the application. Click on the Bounce Ball button to run the animation:
[image: Animating with storyboards]

Testing in emulators

While developing a UWP app, you can quickly see what it would look like on various devices in the XAML design window. The following screenshot is showing the 23" Desktop (1920 x 1080) 100% scale emulator:
[image: Testing in emulators]

Switch to a phone option with a vertical layout. The following screenshot is showing the 5" Phone (1920 x 1080) 300% scale emulator. You can see that the right-hand edge is visible:
[image: Testing in emulators]

You can also run the app in a Simulator rather than on Local Machine. You can also choose Remote Machine or Device:
[image: Testing in emulators]

The Simulator can rotate, and change input modes and screen resolution, using the buttons in the toolbar, on the right-hand edge of the Simulator window:
[image: Testing in emulators]

Tip
Test your apps with the Simulator, and then test on all of the actual devices that your users will deploy your app to.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 13.1 – test your knowledge

Answer the following questions:
	Which control would you choose to allow the user to easily choose their date of birth on many different types of devices?
	Which XAML element would you use to adapt the layout of your app to handle different device families?
	How can you set multiple properties on an XAML element as a single group?
	What is the difference between a control template and a data template?
	Can XAML bindings be two way or just one way?

Exercise 13.2 – practice building a universal tip calculator

Create an app for UWP that calculates a tip for common percentages.

Exercise 13.3 – explore topics

Use the following links to read more about this chapter's topics.
	Enable your device for development: https://msdn.microsoft.com/en-us/library/windows/apps/dn706236.aspx
	Guide to UWP apps: https://msdn.microsoft.com/library/windows/apps/hh465424.aspx
	How-to guides for Windows 10 apps: https://msdn.microsoft.com/library/windows/apps/xaml/mt244352.aspx

Summary

In this chapter, you learned how to build a graphical user interface using XAML, how to share resources in a central location, how to replace a control's template, how to bind to data and controls, and how to animate properties.
In the next chapter, you will learn how to build web applications and services.

Chapter 14. Building Web Applications and Services Using ASP.NET Core

This chapter is about building web applications and services using a modern HTTP architecture on the server-side using Microsoft ASP.NET Core 1.0. You will learn about the startup configuration, routes, models, views, and controllers that make up ASP.NET Core.
This chapter will cover the following topics:
	Understanding ASP.NET Core
	ASP.NET Core startup
	ASP.NET Core controllers
	ASP.NET Core models
	ASP.NET Core views
	Taking ASP.NET Core further
	ASP.NET Core Web API

Understanding ASP.NET Core

Microsoft ASP.NET Core 1.0 is part of a suite of Microsoft technologies to build web applications and services that have evolved over the years as shown in the following bullet points:
	ASP.NET Web Forms was released in 2002 and is designed to enable non-web developers, such as those familiar with Visual Basic, to quickly create web applications. Web Forms can only be hosted on Windows, but are used in products such as Microsoft SharePoint. It should be avoided for new projects in favor of ASP.NET Core.
	ASP.NET XML Web Services was released in 2002 and enables developers to build SOAP services. It should be avoided for new projects in favor of WCF or ASP.NET Web API.
	Windows Communication Foundation (WCF) was released in 2006 and enables developers to build SOAP and REST services. SOAP is powerful but complex, so it should be avoided unless you need advanced features, such as distributed transactions and complex messaging topologies.
	ASP.NET MVC was released in 2009 and is designed to cleanly separate the concerns of web developers between the models that represent the data, the views that present that data, and the controllers that fetch the model and pass it to a view. This separation enables improved scalability and unit testing.
	ASP.NET Web API was released in 2012 and enables developers to create HTTP services that are simpler and more scalable than SOAP services.
	ASP.NET Core was released in 2016, and combines MVC and Web API running on the .NET Core. Therefore, it is cross-platform.Tip

Best Practice

Choose ASP.NET Core to develop web applications and services, because it includes MVC and Web API, which are modern and cross-platform.

Classic ASP.NET versus modern ASP.NET Core

ASP.NET is almost 15 years old. Until now, it has been built on top of a major part of the .NET Framework, the System.Web.dll assembly. Over the years, it has accumulated a lot of features, many of which are not suitable for modern, cross-platform development.
ASP.NET Core is a major redesign of ASP.NET. It removes the dependency on the System.Web.dll assembly, and is composed of modular lightweight components.
You can develop and run ASP.NET Core applications cross-platform on Windows, Mac OS X, and Linux. The entire stack is open source, and it is designed to integrate with a variety of client-side frameworks, including AngularJS, KnockoutJS, and Bootstrap.

Client-side web development

When building web applications, a developer needs to know more than just C# and .NET. On the client (that is, in the web browser), you will use a combination of the following components of a web page:
	HTML5: This is used for the content and semantics of elements
	CSS3: This is used for the format and layout applied to elements
	JavaScript: This is used for the behavior of elementsTip
This book is about C#, so we will cover some of the basics. For more information on web browser technologies, I recommend that you refer to the book HTML5 Web Application Development By Example by Packt Publishing at https://www.packtpub.com/web-development/html5-web-application-development-example-beginners-guide.

To make it easier to work with HTML5, CSS3, and JavaScript, I recommend that developers install the free Web Essentials extension for Visual Studio.
Install Web Essentials 2015

Start Microsoft Visual Studio 2015. On the Tools menu, choose
Extensions and Updates. In the left-hand list, select Online. In the search box, enter web essentials, select Web Essentials 2015.1, click on the Download button, and then follow the instructions:
[image: Install Web Essentials 2015]

The HyperText Transfer Protocol (HTTP)

To communicate with a server, the client makes calls over the network using a protocol known as HTTP. HTTP is the technical underpinning of the "web". So when we talk about "web" applications or "web" services, we mean they use HTTP to communicate between a client (often a web browser) and a server.
A client makes an HTTP request for a resource, such as a page identified by a URL (Uniform Resource Locator), and the server sends back an HTTP response. You can use Microsoft Edge and other browsers to record requests and responses.
Start Microsoft Edge. Press F12 to show developer tools. Click on the Network tab. If the Start profiling session button has not been pressed, click on it to start recording, or press Ctrl + E:
[image: The HyperText Transfer Protocol (HTTP)]

In Microsoft Edge's address box, enter http://www.asp.net/mvc.
In the F12 Developer Tools window, in the list of recorded requests, click on the first entry:
[image: The HyperText Transfer Protocol (HTTP)]

On the right-hand side, you will see details about the request and the response:
[image: The HyperText Transfer Protocol (HTTP)]

Note the following aspects:
	The request method is GET. Other methods that HTTP defines include POST, PUT, DELETE, HEAD, and PATCH.
	The response status code is 200 OK. This means the server found the resource the browser requested. Other status codes include 404 Missing.
	The request headers include what formats the browser will accept. In this case, the browser is saying it understands HTML, XHTML, and others.
	The browser has told the server that it understands the GZIP and DEFLATE compressions algorithms.
	The browser has told the server which human languages it would prefer: US English, British English, and then any other dialect of English.
	I have been to this site before, so a cookie that was defined by the site is being sent to the server so that it can track me. Microsoft has named it omniID. Does that sound ominous to you?
	The server has sent back the response, compressed using the GZIP algorithm, because it knows that the client can decompress that format.
	The server is running Internet Information Services (IIS) 8.0.

Create a web application project

In Visual Studio, press Ctrl + Shift + N or choose File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select ASP.NET Web Application, type the name as Ch14_WebApp, type the solution name as Chapter14, and then click on OK:
[image: Create a web application project]

In the New ASP.NET Project dialog box, in the ASP.NET Core 1.0 Templates section, select the Web Application template.
Note
At the time of writing this book, the final version of ASP.NET Core 1.0 and its Visual Studio project templates have not been released. So, the screenshots in this book show the old branding, ASP.NET 5!

Click on the Change Authentication button and choose No Authentication. Then, click on OK. This tells Visual Studio to allow all users access to the application. We can change this later to secure our web application.
Uncheck the Host in the cloud box, because we want to run this locally. We can always deploy to the Microsoft Azure cloud later.
Click on OK:
[image: Create a web application project]

After a few seconds, your Solution Explorer window will look like this:
[image: Create a web application project]

Run the application by pressing F5. The web application is hosted in the free version of IIS Express using a random port number for local testing.
Notice that the home page has a black navigation bar with links to an About page and a Contact page. The home page has a carousel with four rotating items and four columns of links underneath:
[image: Create a web application project]

Click on the links to the About page and the Contact page, and notice the URLs that are used. To get to the About page, the user could enter /Home/About in the browser address box:
[image: Create a web application project]

Resize the width of the browser window and notice that the navigation bar becomes a clickable "hamburger" menu (three horizontal lines):
[image: Create a web application project]

This is an example of responsive web design. The page looks good on both desktop and mobile devices, by automatically adapting based on the current width of the window:
[image: Create a web application project]

Exploring the parts of an ASP.NET Core web application

Let's walk through the parts that make up a modern ASP.NET Core application.
In Visual Studio, look at Solution Explorer for the Ch14_WebApp project and note the following points:
	wwwroot: This folder contains static content, such as stylesheets, images, scripts, and common libraries, that combine resources such as jQuery and Bootstrap
	Dependencies: This folder contains Bower and npm for modern package management
	Controllers: This folder contains C# classes that have methods (known as actions) that fetch a model and pass it to a view
	Models: This (optional) folder contains C# classes that represent all the data required for a request
	Views: This folder contains .cshtml files that combine HTML and C# code to enable the dynamic generation of an HTML response
	project.json: This file contains a list of NuGet packages (such as the Entity Framework Core) that your project requires and other project configuration
	Startup.cs: This file contains the Main entry point for your application and configures the services, pipeline, and routes for your application

The following screenshot shows the parts of a typical ASP.NET Core project:
[image: Exploring the parts of an ASP.NET Core web application]

ASP.NET Core startup

In the Solution Explorer window, double-click on the Startup.cs file.
Notice the ConfigureServices method that adds support for MVC. Later, we will add statements here to add support for the Entity Framework Core:
public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();
}

Next, we have the Configure method.
The most important statement here is the one that calls UseMvc and maps a default route. This route is very flexible, because it would match almost any incoming URL:
public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();
 if (env.IsDevelopment())
 {
 app.UseBrowserLink();
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }
 app.UseIISPlatformHandler();
 app.UseStaticFiles();
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

Understanding the default route

The default route looks at any URL entered by the user in the address bar and matches it to extract the name of a controller, the name of an action, and an optional id value (the ? symbol makes it optional). If the user hasn't entered these names, it uses defaults of Home for the controller, and Index for the action (the = assignment sets a default for a named segment).
Contents in curly brackets {} are called
segments, and they are like a named parameter of a method. The value of these segments can be any string.
The responsibility of a route is to discover the name of a controller and an action.
Here's a table of example URLs and how MVC would work out the names. Notice that if the user does not supply a name, then the defaults Home and Index are used, as specified when the route was registered. You could change these defaults if you wanted:
	
URL

	
Controller

	
Action

	
ID

	

/

	
Home

	
Index

	
	

/Muppet

	
Muppet

	
Index

	
	

/Muppet/Kermit

	
Muppet

	
Kermit

	
	

/Muppet/Kermit/Green

	
Muppet

	
Kermit

	
Green

	

/Products

	
Products

	
Index

	
	

/Products/Detail

	
Products

	
Detail

	
	

/Products/Detail/3

	
Products

	
Detail

	
3

ASP.NET Core controllers

Now that MVC knows the names of the controller and action, it will look for a class that implements an interface named IController. To simplify the requirements, Microsoft supplies a class named Controller that your classes can inherit from.
The responsibilities of a controller are as follows:
	To extract parameters from the HTTP request
	To use the parameters to fetch the correct model and pass it to the correct view
	To return the results from the view to the client as an HTTP response

Defining the Home controller's actions

In the
Solution Explorer window, expand the Controllers folder and double-click on the file named HomeController.cs:
public class HomeController : Controller
{
 public IActionResult Index()
 {
 return View();
 }
 public IActionResult About()
 {
 ViewData["Message"] = "Your application description page.";
 return View();
 }
 public IActionResult Contact()
 {
 ViewData["Message"] = "Your contact page.";
 return View();
 }
 public IActionResult Error()
 {
 return View();
 }
}

Tip
If the user enters /, or /Home, then it is the equivalent of /Home/Index because those were the defaults.

Note the following aspects:
	None of the action methods currently use a model
	Two of the action methods use a dictionary named ViewData to store a string message that can then be read inside a view
	All action methods execute a method named View and return the results to the client

ASP.NET Core models

In MVC, the model represents the data required for a request. For example, an HTTP GET request for http://www.example.com/products/details/3 would mean you are asking for the details of product number 3.
The controller would need to use the ID value 3 to retrieve the record for that product and pass it to a view that can then turn the model into HTML for display in the browser.
For this initial example, we will create an Entity Data Model (EDM) to access data in the Northwind database.
Tip

Best Practice

Use a data repository (typically implemented as a service) to manage your data.

Create Entity models for Northwind

If you have not already installed the Northwind database, then follow the instructions at the beginning of Chapter 8, Working with Relational Data Using the Entity Framework.
On the Tools menu, choose NuGet Package Manager and then Package Manager Console.
In the PM> prompt, enter the following commands:

Install-Package EntityFramework.MicrosoftSqlServer
Install-Package EntityFramework.Commands
Install-Package EntityFramework.MicrosoftSqlServer.Design :

Tip
If the preceding commands give errors, then add -pre to the end of each command to install the pre-release version as shown in the following screenshot.

[image: Create Entity models for Northwind]

In the Solution Explorer window, double-click on project.json. Notice that three dependencies have been added for the Entity Framework Core:
{
 "version": "1.0.0-*",
 "compilationOptions": {
 "emitEntryPoint": true
 },

 "dependencies": {
 "EntityFramework.Commands": "7.0.0-rc1-final",
 "EntityFramework.MicrosoftSqlServer": "7.0.0-rc1-final",
 "EntityFramework.MicrosoftSqlServer.Design": "7.0.0-rc1-final",
 "Microsoft.AspNet.Diagnostics": "1.0.0-rc1-final",

In the commands section, add a new command for ef, as follows:
 "commands": {
 "web": "Microsoft.AspNet.Server.Kestrel",
 "ef": "EntityFramework.Commands"
 },

Save project.json file.
In the Solution Explorer window, right-click on the project and choose Add, New Folder…, and then enter the name of the model.
Right-click on the Ch14_WebApp project and choose Open Folder in File Explorer. Click in the address box and copy the path to the clipboard by pressing Ctrl + C.
Click the Windows Start button and start Command Prompt. In Command Prompt window, enter cd, and then right-click to paste the path to your project. Press Enter to change to that directory:

cd C:\Code\Chapter14\src\Ch14_WebApp

Enter the following command to tell the .NET Version Manager to use the latest version of .NET Core:

dnvm use 1.0.0-rc1-update1

Note
At the time of writing this book, .NET Core was a release candidate. By the time you follow these instructions, the final version should be available, and use the new .NET CLI so the commands dnvm and dnx will be replaced by the command dotnet.

Enter the following command to generate classes that represent entities for all the tables in the Northwind database in the Models subfolder:

dnx ef dbcontext scaffold "Server=(localdb)\mssqllocaldb;Database=Northwind;Trusted_Connection=True;" EntityFramework.MicrosoftSqlServer --outputDir Models

In the Solution Explorer window, expand the Models folder. You will see that a class has been created for each entity, and a class named NorthwindContext has been created to represent the whole database:
[image: Create Entity models for Northwind]

Tip

Best Practice

Create a separate class library project for your entity models. This allows easier sharing between servers and clients. We have not done this for this example to keep it simple for now.

Configure Entity Framework Core as a service

Dependency injection is central to ASP.NET Core. Services, such as the Entity Framework Core that are needed by MVC controllers, must be registered as a service during startup.
In the Solution Explorer window, open the Startup.cs file. Import the following namespaces:
using Ch14_WebApp.Models;
using Microsoft.Data.Entity;

Add the following statements to the ConfigureServices method:
var connection = @"Server=(localdb)\mssqllocaldb;Database=Northwind;Trusted_Connection=True;";
services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<NorthwindContext>(options => options.UseSqlServer(connection));

Since we are setting the database connection string in the ASP.NET Core startup, it does not need to be done in the NorthwindContext class.
In the Solution Explorer window, in the Models folder, open the NorthwindContext.cs file and delete the following method:
protected override void OnConfiguring(DbContextOptionsBuilder options)
{
 options.UseSqlServer(@"Server=(localdb)\mssqllocaldb;Database=Northwind;Trusted_Connection=True;");
}

Create view models for requests

Imagine that when a user comes to our website, we want to show them a list of products and a count of the number of visitors we have had this month. All the data that we want to show in response to a request is the MVC model, sometimes called a view model
 because it is a model that is passed to a view.
In the Solution Explorer window, select the Models folder. On the Project menu, choose Add Class…, and in the dialog box, choose Class and name it HomeIndexViewModel.
Modify the class definition to make it look like this:
public class HomeIndexViewModel
{
 public int VisitorCount;
 public ICollection<Products> Products { get; set; }
}

Fetch the model in the controller

Open the HomeController class. Import the Ch14_WebApp.Models namespace.
Add a field to store a reference to a NorthwindContext instance and initialize it in a constructor:
private NorthwindContext db;

public HomeController(NorthwindContext injectedContext)
{
 db = injectedContext;
}

Modify the contents of the Index action method to make it look like this:
var model = new HomeIndexViewModel
{
 VisitorCount = (new Random()).Next(1, 1001),
 Products = db.Products.ToArray()
};
return View(model); // pass model to view

Note that we will simulate a visitor count using the Random class to generate a number between 1 and 1000.
Note
If you build the project now, you might get "CS0833	An anonymous type cannot have multiple properties with the same name" errors due to bugs in the scaffolding feature. To fix the errors, simply delete the duplicate members.

ASP.NET Core views

The responsibility of a view is to transform a model into HTML or other formats. There are multiple view engines
 that can be used to do this. The default view engine for ASP.NET MVC 3 and later is called
Razor, and it uses the @ symbol to indicate server-side code execution.

Rendering the Home controller's views

In the Solution Explorer window, expand the Views folder. Expand the Home folder. Note the three files with the .cshtml file extension.
Tip
The .cshtml file extension means this is a file that mixes C# and HTML.

When the View method is executed in a controller action, MVC looks in the Views folder for a subfolder with the same name as the current controller, that is, Home. It then looks for a file with the same name as the current action, that is, Index, About, or Contact.
In the Index.cshtml file, notice the block of code wrapped in @{ }. This will execute first and can be used to store data that needs to be passed into a shared layout file:
@{
 ViewData["Title"] = "Home Page";
}

Note the static HTML content in several DIV elements that uses Bootstrap for styling.
Tip

Best Practice

Instead of defining your own styles, use a library, such as Bootstrap, that implements responsive design using standard CSS3 principles.

Sharing layouts between views

There is a file, named _ViewStart.cshtml, that gets executed by the View method. It is used to set defaults that apply to all views.
For example, it sets the Layout property of all views to a shared layout file:
@{
 Layout = "_Layout";
}

In the Shared folder, open the _Layout.cshtml file. Notice that the title is being read from the ViewData dictionary that was set earlier in the Index.cshtml view:
<title>@ViewData["Title"] – Ch14_WebApp</title>

Note the rendering of common styles to support Bootstrap and the two sections. During development, the fully-commented and nicely formatted versions of CSS files will be used. For staging and production, the minified versions will be used:
<environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</environment>
<environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.5/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
</environment>

Note the rendering of hyperlinks to allow users to click between pages using the navigation bar at the top of every page. The <a> elements use "tag helper" attributes to specify the controller name and action name that will execute when the link is clicked:
<div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-controller="Home" asp-action="Index">Home
 <a asp-controller="Home" asp-action="About">About
 <a asp-controller="Home" asp-action="Contact">Contact

</div>

Note the rendering of the body:
@RenderBody()

Note the rendering of script blocks at the bottom of the page (so that it doesn't slow down the display of the page):
<environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
</environment>
<environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.1.4.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.5/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
</environment>

You can add you own script blocks into an optional defined section named scripts:
@RenderSection("scripts", required: false)

Defining custom styles

In the wwwroot\css folder, open the site.css file.
Add a new style that will apply to an element with the newspaper ID, like this:
#newspaper {
 column-count: 3;
}

Notice that the column-count property has a purple squiggle under it. When you hover over it, you will see that only Internet Explorer 10 (or later) and Opera 11.6 (or later) currently implement this standard. Luckily, Web Essentials can fix this for us.
Click on the column-count property, hover your mouse over the small blue bar, click on the button to pop open a menu, and then click on Add missing vendor specifics.
You will see that Web Essentials has added two extra statements. They are faded out to indicate that they will automatically change when you change the value for the original column-count property:
#newspaper {
 -moz-column-count: 3;
 -webkit-column-count: 3;
 column-count: 3;
}

Tip
To learn more about CSS3 and responsive design, read the book Responsive Web Design with HTML5 and CSS3 - Second Edition by Packt Publishing at https://www.packtpub.com/web-development/responsive-web-design-html5-and-css3-second-edition.

Defining a typed view

To improve the IntelliSense when writing a view, you can define the type the view can expect using a @model directive at the top.
Back in the Index.cshtml view, enter the following code as the first line of the file:
@model Ch14_WebApp.Models.HomeIndexViewModel

Now whenever we enter @Model, Visual Studio's code editor will know the correct type and will provide IntelliSense.
Tip
To declare the type of the model, use @model (with lowercase m). To read the model, use @Model (with uppercase M).

In Index.cshtml, delete all the <div> elements and replace them with this code:
<div class="row">
 <div class="col-md-12">
 <h1>Northwind</h1>
 <p class="lead">We have had @Model.VisitorCount visitors this month.</p>
 <h2>Products</h2>
 <div id="newspaper">

 @foreach (var item in @Model.Products)
 {
 <a asp-controller="Home" asp-action="ProductDetail" asp-route-id="@item.ProductID">@item.ProductName costs @item.UnitPrice.Value.ToString("C")
 }

 </div>
 </div>
</div>

Note how easy it is to mix static HTML elements, such as and , with C# code to output the list of product names.
Note the <div> element with the id attribute of newspaper. This will use the custom style that we defined earlier, so all the content in that element will display in three columns.
To test the web application, press F5. The results in Microsoft Edge will look something like this:
[image: Defining a typed view]

Taking ASP.NET Core further

Now that you've seen the basics of how models, views, and controllers work together to provide a web application, let's look at some common scenarios, such as passing parameters and annotating models.

Passing parameters using a route value

Back in the HomeController class, add the following action method. It uses something called the default model binder
 to automatically match the id passed in the route to the parameter named id in the method.
Tip
Model binders are very powerful, and the default one does a lot for you. For advanced scenarios, you can create your own by implementing the IModelBinder interface, but that is beyond the scope of this book.

Inside the method, we check to see whether the id is null, and if so, it returns a 404 status code and message. Otherwise, we can connect to the database and try to retrieve a product using the id variable. If we find a product, we pass it to a view; otherwise, we return a different 404 status code and message:
public IActionResult ProductDetail(int? id)
{
 if (!id.HasValue)
 {
 return HttpNotFound("You must pass a product ID in the route, for example, /Home/ProductDetail/21");
 }
 var model = db.Products.SingleOrDefault(p => p.ProductID == id);
 if (model == null)
 {
 return HttpNotFound($"A product with the ID of {id} was not found.");
 }
 return View(model); // pass model to view
}

Now we need to create a view for this request.
Inside the Views folder, right-click on Home and choose Add | New Item….
Choose MVC View Page and name it ProductDetail.cshtml:
[image: Passing parameters using a route value]

Modify the contents as shown here:
@model Ch14_WebApp.Models.Products
@{
 ViewData["Title"] = "Product Detail - " + Model.ProductName;
}
<h2>Product Detail</h2>
<hr />
<div>
 <dl class="dl-horizontal">
 <dt>Product ID</dt>
 <dd>@Model.ProductID</dd>
 <dt>Product Name</dt>
 <dd>@Model.ProductName</dd>
 <dt>Category ID</dt>
 <dd>@Model.CategoryID</dd>
 <dt>Unit Price</dt>
 <dd>@Model.UnitPrice.Value.ToString("C")</dd>
 <dt>Units In Stock</dt>
 <dd>@Model.UnitsInStock</dd>
 </dl>
</div>

Test the new action and view by pressing F5.
When the home page appears with the list of products, click one of them, for example, product 26. The result should look something like this:
[image: Passing parameters using a route value]

Passing parameters using a query string

In the HomeController class, import the Microsoft.Data.Entity namespace.
Add a new action method like this:
public IActionResult ProductsThatCostMoreThan(decimal? price)
{
 if (!price.HasValue)
 {
 return HttpNotFound("You must pass a product price in the query string, for example, /Home/ProductsThatCostMoreThan?price=50");
 }
 var model = db.Products.Include(p => p.Category).Include(p => p.Supplier).Where(p => p.UnitPrice > price).ToArray();
 if (model.Count() == 0)
 {
 return HttpNotFound($"No products cost more than {price:C}.");
 }
 ViewData["MaxPrice"] = price.Value.ToString("C");
 return View(model); // pass model to view
}

Inside the Views folder, right-click on Home and choose Add | New Item….
Choose MVC View Page and name it ProductsThatCostMoreThan.cshtml.
Modify the contents like this:
@model IEnumerable<Ch14_WebApp.Models.Products>
@{
 ViewData["Title"] = "Products That Cost More Than " + ViewData["MaxPrice"];
}
<h2>Products That Cost More Than @ViewData["MaxPrice"]</h2>
<table class="table">
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Category.CategoryName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Supplier.CompanyName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ProductName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.UnitPrice)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.UnitsInStock)
 </th>
 </tr>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Category.CategoryName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Supplier.CompanyName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ProductName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.UnitPrice)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.UnitsInStock)
 </td>
 </tr>
 }
</table>

In the Views folder, in the
Home folder, open Index.cshtml file and add the following div element at the bottom of the file. This will provide a form for the user to enter a price. The user can then click on a submit button to call the action method that shows only products that cost more than the entered price:
<div class="row">
 <form asp-action="ProductsThatCostMoreThan" method="get">
 <input name="price" placeholder="Enter a product price" />
 <input type="submit" />
 </form>
</div>

Run the web application by pressing F5. On the home page, scroll down and enter a price in the form. Then, click on Submit Query:
[image: Passing parameters using a query string]

You will see a table of the products that cost more than the price you entered:
[image: Passing parameters using a query string]

Annotating models

You might have noticed that the column headings in the table used the names of the properties by default. This means that if the property is multiple words, it won't have spaces. We can use data annotations to improve this.
In the Models folder, open the Products class. Import the System.ComponentModel.DataAnnotations namespace.
Add [Display] attributes before each property if you want to have a different label, for example, Product Name, Unit Price, Units In Stock, and so on:
[Display(Name = "Product Name")]
public string ProductName { get; set; }

Apply the [Display] attribute to the properties of three other classes: Category's Category Name, Customer's Company Name, and Supplier's Company Name.
Start the web application by pressing F5.
Enter a product price and click on Submit Query. Notice that the column headings now reflect the display attributes and not the actual property names:
[image: Annotating models]

ASP.NET Core Web API

Although HTTP was originally designed to request and respond with HTML and other resources for us to look at, it is also good for building services. Roy Fielding stated, in his doctoral dissertation describing the Representational State Transfer (REST) architectural style, that the HTTP standard defines:
	URLs to uniquely identify resources
	Methods to perform common tasks, such as GET and DELETE
	The ability to negotiate media formats such as XML and JSON

To allow the easy creation of services, ASP.NET Core has combined what used to be two types of controller.
In earlier versions of ASP.NET, you would derive from ApiController to create a Web API service, and then register API routes in the same route table that MVC uses.
With ASP.NET Core, you use exactly the same Controller base class used with MVC, except the routes are usually configured on the controller itself, using attributes, rather than in the route table.

Scaffolding an API controller

In the Solution Explorer window, right-click on the Controllers folder and choose Add | New Item…. Choose Web API Controller Class, enter the name as ShippersController, and then click on Add:
[image: Scaffolding an API controller]

API controllers do not have views. Instead, they use automatic content negotiation with the client to return XML, JSON, or X-WWW-FORMURLENCODED data formats.
In ShippersController class, add the following code:
[Route("api/[controller]")]
public class ShippersController : Controller
{
 private NorthwindContext db;
 public ShippersController(NorthwindContext injectedContext)
 {
 db = injectedContext;
 }
 // GET: api/shippers
 [HttpGet]
 public IEnumerable<Shippers> Get()
 {
 return db.Shippers.ToArray();
 }

Note
If you have used older versions of ASP.NET Web API, then you know that in that technology, you could create C# methods that begin with any HTTP method (GET, POST, PUT, and so on), and the controller will automatically execute the correct one. In ASP.NET Core, this doesn't happen anymore, because we are not inheriting from ApiController. So you must apply an attribute such as [HttpGet] to explicitly map HTTP methods to C# methods.

Press F5 to run the application.
In the address bar, enter api/shippers at the end of the URL and press Enter. You will see this JSON response:
[image: Scaffolding an API controller]

Note
If you test with Chrome rather than Microsoft Edge, then you will get an XML response because Chrome prefers XML over JSON.

Calling a Web API service from a UWP app

Now that we have a service that allows HTTP requests to be used to manage the Shippers table, we can create a client application to call it. The client will often be an HTML page that uses JavaScript to make the calls. However, since this book is about modern C# and .NET, we will build a UWP app.
In Visual Studio, click on File | Add | New Project…. In the Add New Project dialog, in the Installed Templates list, select Visual C#. In the center list, select Blank App (Universal Windows), type the name as Ch14_WinApp, and then click on OK.
In Solution Explorer window, right-click on the new project and choose Manage NuGet Packages…. In the search box, enter web api client and press Enter. Click on Install:
[image: Calling a Web API service from a UWP app]

On the Project menu, choose Add Class and name it Shipper:
public class Shipper
{
 public int ShipperID { get; set; }
 public string CompanyName { get; set; }
 public string Phone { get; set; }
}

Open MainPage.xaml file and add the following XAML inside the existing Grid element:
<StackPanel Padding="6">
 <TextBlock FontSize="24">Shippers</TextBlock>
 <GridView ItemsSource="{Binding}">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Border Margin="6" Padding="10" CornerRadius="10" Background="LightCyan">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Text="Shipper ID" />
 <TextBlock Text="{Binding ShipperID}" Grid.Column="1" />
 <TextBlock Text="Company Name" Grid.Row="1" />
 <TextBlock Text="{Binding CompanyName}" Grid.Row="1" Grid.Column="1" />
 <TextBlock Text="Phone" Grid.Row="2" />
 <TextBlock Text="{Binding Phone}" Grid.Row="2" Grid.Column="1" />
 </Grid>
 </Border>
 </DataTemplate>
 </GridView.ItemTemplate>
 </GridView>
</StackPanel>

This defines a GridView control bound to the DataContext class that we will set when the page loads to the response coming back from the service.
In the Page element, add an event handler for Loading function:
Loading="Page_Loading"

In the MainPage.xaml.cs file, import the following namespace:
using System.Net.Http;

Add the following statements to the Page_Loading method, and add the async keyword to the method's declaration:
var client = new HttpClient();
client.BaseAddress = new Uri("http://localhost:59468/");
HttpResponseMessage response = await client.GetAsync("api/shippers");
DataContext = await response.Content.ReadAsAsync<Shipper[]>();

Note
Make sure you use the same random port number that Visual Studio allocated to your ASP.NET Core application. It is unlikely to be 59468!

On the Build menu, choose Deploy Ch14_WinApp. In the Solution Explorer window, right-click on the solution and choose Properties.
Select Multiple startup projects. Set the action for Ch14_WebApp to Start without debugging. Set the action for Ch14_WinApp to Start:
[image: Calling a Web API service from a UWP app]

On the Debug menu, choose Start Debugging or press F5. You will see that the UWP app called the service, deserialized the JSON data, and bound it to the list box:
[image: Calling a Web API service from a UWP app]

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 14.1 – test your knowledge

Answer the following questions:
	What is the difference between a web browser and a web server?
	What is the difference between a URI, a URL, and a URN?
	What are the four most common HTTP methods?
	What does it mean when a web server responds with status code 302?
	What are the responsibilities of a route?
	What are the responsibilities of a controller?
	What are the responsibilities of a model?
	What are the responsibilities of a view?
	How does ASP.NET distinguish a request for MVC from a request for Web API?
	What data formats does Web API support by default?

Exercise 14.2 – practice building a data-driven web application

Create an ASP.NET Core web application that connects to the Northwind sample database and enables the user to see a list of customers grouped by country. When the user clicks on a customer record, they then see a page showing the full contact details of that customer and a list of their orders.

Exercise 14.3 – explore topics

Use the following links to read more details about this chapter's topics:
	Learn about ASP.NET Web Forms: http://www.asp.net/web-forms
	What is Windows Communication Foundation: https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx
	Learn about ASP.NET MVC: http://www.asp.net/mvc
	Learn about ASP.NET Web API: http://www.asp.net/web-api

Summary

In this chapter, you learned how to build an ASP.NET Core MVC web application, and an ASP.NET Core Web API service that manages data using Entity Framework Core. You also learned how to consume a REST/HTTP service using HttpClient.
In the next chapter, you will learn how to build an ASP.NET Core web application that can be hosted cross-platform on Windows, Linux, or Mac OS X.

Chapter 15. Taking C# Cross-Platform

This chapter is about how you can take C# cross-platform using .NET Core 1.0, ASP.NET Core 1.0, Entity Framework Core 1.0, and Visual Studio Code.
Note
You will need a computer running Mac OS X to complete this chapter if you want to follow the directions as written. You could choose to use a Linux variant such as Ubuntu 14.04 or a Docker container instead of Mac OS X, but the installation steps and some of the command-line tools will be different from what I have described in this chapter. You can read more about using .NET Core on Ubuntu 14.04 or Docker at http://dotnet.github.io/getting-started/.

In this chapter, we will cover the following topics:
	Understanding cross-platform development
	Installing Visual Studio Code and ASP.NET Core
	Building cross-platform web applications using ASP.NET Core
	Understanding .NET Core command-line tools

Understanding cross-platform development

Cross-platform development means being able to both write code and run the results on operating systems other than Windows.

Visual Studio Code

Visual Studio Code is an open source, cross-platform, extensible, code-focused editor with some basic IDE features based on Google's Chromium project. Microsoft and Google have worked closely together to ensure that Visual Studio Code is a decent choice for cross-platform development.
However, it has significant limitations compared to Visual Studio 2015. Luckily, you can use Visual Studio 2015 on Windows for your initial development and then open the same files in Visual Studio Code when you need to work with your code on other platforms.

.NET Core 1.0

.NET Core 1.0 is a forked open source and cross-platform implementation of .NET that is designed for modern development. It is a subset of the Windows-only .NET Framework, but it has the advantage of running cross-platform across Windows, Mac OS X, Linux operating systems, and Docker containers.
Microsoft has informally announced that .NET development is now happening first on .NET Core, with changes backported to the Windows-only .NET Framework.

ASP.NET Core 1.0

ASP.NET Core 1.0 (which includes the latest versions of MVC and Web API) can be used to develop web applications and services that run on the .NET Core for cross-platform hosts, or on the .NET Framework for hosting on Windows.

Entity Framework Core 1.0

Entity Framework Core 1.0 (EF Core) can be used cross-platform to manage relational data (stored in Microsoft SQL Server on Windows today and natively on Linux starting in 2017, MySQL, and others) and non-relational data (stored in Microsoft Azure Table storage, Redis, and others).

.NET Native

.NET Native is a runtime that compiles .NET applications to native code. You can use it to create console applications, and ASP.NET Core applications and services, all running natively on Windows, Linux, and Mac OS X.

Xamarin

Xamarin enables developers to build apps for Apple iOS and Google Android using C#. It is based on a third-party open source implementation of .NET known as Mono.
Applications built with Xamarin draw the user interface using native platform widgets, so the app looks natural on the target mobile platform.
Developers can code in either Visual Studio 2015 (which requires a paid license from Xamarin for their extensions) or using the free
Xamarin Studio, which runs on Windows and Mac.
Tip
If you would like to learn more about Xamarin, then I recommend Xamarin Cross-platform Application Development (Second Edition) by Jonathan Peppers, and Mastering Cross-Platform Development with Xamarin by Can Bilgin, by Packt Publishing.

Cross-device Universal Windows Platform (UWP)

UWP apps are compiled using .NET Native for efficient resource usage and faster performance, but they are only supported on the Windows 10 platform. This means Windows 10 desktops, laptops, and tablets; Windows 10 Mobile phones; Xbox One; and HoloLens.
Note
Think of UWP as being cross-device rather than cross-platform.

Installing Visual Studio Code and ASP.NET Core

First, we will install Visual Studio Code on Mac OS X.
Note
If you are using Linux, you can read the directions at https://code.visualstudio.com/Docs/?dv=linux64.

Installing Visual Studio Code

To install Visual Studio Code, you need to perform the following steps:
	Start Safari or Chrome, go to https://code.visualstudio.com/Docs/editor/setup, and then click on Download Visual Studio Code for Mac OS X.
	After downloading the ZIP file, double-click on it to extract the Visual Studio Code.app file. Drag the file to your Applications folder:[image: Installing Visual Studio Code]

	When you first run Visual Studio Code, you will see that it is a very simple editor:[image: Installing Visual Studio Code]

If you want to add Visual Studio Code to your dock for easy access, then right-click on its icon and go to Options | Keep in Dock.

Managing development from the terminal

You will use the command line (the Terminal app) a lot during development on the Mac.
Start Mac OS X's Terminal app. Get a list of all files in your current directory by entering the following command:

ls -a

The Terminal output should look something like this:
[image: Managing development from the terminal]

If you do not already have a file named .bash_profile, then enter the following command:

touch .bash_profile

Enter the following command to edit the file with the nano text editor:

nano .bash_profile

In the editor, add the following statements:
code () {
 if [[$# = 0]]
 then
 open -a "Visual Studio Code"
 else
 [[$1 = /*]] && F="$1" || F="$PWD/${1#./}"
 open -a "Visual Studio Code" --args "$F"
 fi
}

Press Ctrl + O to save changes, press Enter to accept the filename, and then press Ctrl + X to exit and return to the prompt.
Tip
You could also use TextEdit to modify the .bash_profile file using the following command:

open -e .bash_profile

Restart the Terminal app or enter source .bash_profile to force it to be reprocessed.
From now on, you will be able to change to a directory containing any project and enter code . to open Visual Studio Code and start editing that project.

Installing Homebrew

The next step is to install Homebrew if you don't already have it.
Tip
Homebrew installs the stuff you need that Apple didn't already install.

Enter the following in the Terminal prompt:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Now, we will use Homebrew to install ASP.NET Core and its .NET Version Manager (dnvm).
Note
At the time of writing this book, Microsoft is in the middle of changing the command-line tools for .NET Core. When the final version is released, they plan to use a similar tool named dotnet instead of dnvm. Most of the commands will be similar to what I will show you in this chapter. You can keep yourself updated by visiting http://cs6dotnetcore.azurewebsites.net/.

Installing ASP.NET Core and the .NET Version Manager

Enter the following commands in Command Prompt:

brew tap aspnet/dnx
brew install dnvm
dnvm upgrade
source dnvm.sh
dnvm

The last command displays an overview of what you can do with dnvm:
[image: Installing ASP.NET Core and the .NET Version Manager]

Listing the installed versions of .NET

One of the most important commands is getting a detailed list of the installed versions. Enter the following command in the prompt:

dnvm list -detailed

You will see output like the following screenshot:
[image: Listing the installed versions of .NET]

Note
At the time of writing this book, the final version of .NET Core has not been released. All screenshots in this chapter show a release candidate version.

Switching from Mono to .NET Core

You may have noticed that the default runtime is Mono, not .NET Core. We can use the dnvm use command to switch the runtime to .NET Core, as you can see in this screenshot of the dnvm use command's parameters:
[image: Switching from Mono to .NET Core]

In the Terminal app, enter the following commands:

dnvm use 1.0.0-rc1-update1 -runtime coreclr -arch x64 -persistent
dnvm list -detailed

You will see that the active (and default) version has now switched to .NET Core:
[image: Switching from Mono to .NET Core]

Building a console application

To test the installation, let's make a simple console application that outputs Hello C# running cross-platform!.

Creating the source files

We need to enter some commands in the Terminal prompt to:
	Create a new directory named ConsoleApp and change to it
	Create two files named program.cs and project.json
	Start Visual Studio Code so that we can edit the files in an IDE

Here are the commands to enter:

mkdir ConsoleApp
cd ConsoleApp
touch program.cs
touch project.json
code .

Editing the code

In Visual Studio Code, click on the program.cs file on the left-hand side and then enter these statements:
using static System.Console;

public class Program
{
 public static void Main()
 {
 WriteLine("Hello C#, running cross-platform!");
 }
}

When targeting the .NET Framework, a developer can rely on the fact that if the .NET Framework has been installed, then all the base class libraries would be available to them. This means the developer could compile the previous code and know it will execute, just as we did in Chapter 1, Hello, C#! Welcome, .NET Core!

When targeting .NET Core, the developer would need to specify the dependencies that their code has so that only those NuGet packages are deployed along with the developer's assembly.
You specify options such as which versions of .NET you would like to target and what dependencies your code has, in a file named project.json.
Tip
You can read the documentation for the project.json file at https://github.com/aspnet/Home/wiki/Project.json-file.

Click on the project.json file on the left-hand side and then enter these statements:
{
 "dependencies": {
 },
 "commands": {
 "ConsoleApp": "ConsoleApp"
 },
 "frameworks": {
 "dnx451": { },
 "dnxcore50": {
 "dependencies": {
 "System.Console": "4.0.0-beta-*"
 }
 }
 }
}

Note

dnx451
 means .NET Framework 4.5.1, which has no dependencies, because the entire base class library would be available. dnxcore50
 means .NET Core 1.0, which must have any dependencies explicitly listed. Both these names are likely to change in the future when Microsoft switches to the .NET Platform Standard, which is described at https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md.

Visual Studio Code should look like the following screenshot:
[image: Editing the code]

Go to File | Save All to save the changes to both files and then quit Visual Studio Code.
Tip
Visual Studio Code will notice that you need to download some dependency packages. Although it can issue the command for you, we will do it manually.

Downloading dependency packages and compiling

In the prompt, enter the following commands to download dependency packages and run the application:

dnu restore
dnx ConsoleApp run

You will see the following output:
[image: Downloading dependency packages and compiling]

Building cross-platform web applications using ASP.NET Core

Now, let's make a simple ASP.NET Core web application.

Creating the simplest ASP.NET Core web application

You will enter some commands in the Terminal prompt to:
	Create a new directory named HelloWeb and move into it
	Create two files named startup.cs and project.json
	Start Visual Studio Code so that we can edit the files in an IDE

Here are the commands to enter:

cd ~
mkdir HelloWeb
cd HelloWeb
touch startup.cs
touch project.json
code .

In Visual Studio Code, click on the startup.cs file on the left-hand side and then enter these statements:
using Microsoft.AspNet.Builder;
using Microsoft.Extensions.Logging;

namespace HelloWeb
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole();
 app.UseIISPlatformHandler();
 app.UseStaticFiles();
 app.UseWelcomePage();
 }
 }
}

Click on the project.json file on the left-hand side and then enter the following statements to:
	Specify a version for our code
	Specify a directory name for the root of our website that will be used to store static content such as HTML, CSS, JavaScript libraries, and assets such as images and videos
	Exclude any files in the root of our website from the compilation process
	Exclude design-time files such as .kproj files from the deployment package
	Define a list of dependency packages for our code
	Target both the .NET Framework 4.5.1 (dnx451) and the .NET Core 1.0 (dnxcore50)
	Define a dnx command named web that will start the web application hosted in the Kestrel cross-platform web server listening on port 5004

Here are the statements:
{
 "version": "1.0.0-*",
 "webroot": "wwwroot",
 "exclude": [
 "wwwroot"
],
 "packExclude": [
 "**.kproj",
 "**.user",
 "**.vspscc"
],
 "dependencies": {
 "Microsoft.AspNet.Server.Kestrel": "1.0.0-*",
 "Microsoft.AspNet.IISPlatformHandler": "1.0.0-*",
 "Microsoft.AspNet.Diagnostics": "1.0.0-*",
 "Microsoft.AspNet.Hosting": "1.0.0-*",
 "Microsoft.AspNet.StaticFiles": "1.0.0-*",
 "Microsoft.Extensions.Logging.Console": "1.0.0-*"
 },
 "commands": {
 "web": "Microsoft.AspNet.Server.Kestrel --server.urls http://localhost:5004"
 },
 "frameworks": {
 "dnx451": { },
 "dnxcore50": { }
 }
}

Save all the changes. Visual Studio Code should look something like the following screenshot. Note the warning about unresolved dependencies. This time we will use Visual Studio Code to restore the dependency packages.
Click on Restore:
[image: Creating the simplest ASP.NET Core web application]

Note
You can also restore the dependency packages in the Terminal prompt by entering the dnu restore command, as we did earlier.

It might take a few minutes to download all the packages, so be patient!
[image: Creating the simplest ASP.NET Core web application]

In the prompt, enter the following command to run the application:

dnx web

You will see the following output:
[image: Creating the simplest ASP.NET Core web application]

Run your favorite Mac OS X web browser and enter this URL in the address bar and press Enter:

http://localhost:5004/

You should see the following page:
[image: Creating the simplest ASP.NET Core web application]

Installing Yeoman and related tools

As you have seen earlier in this book, Visual Studio 2015 has many project templates that make it easy to get started with projects, from console applications to web applications and services.
A command-line tool named
Yeoman can be used to provide a similar scaffolding feature. To use Yeoman, we first need to install the Node Package Manager (npm) from http://nodejs.org/, and you will see the following home page:
[image: Installing Yeoman and related tools]

In the Terminal prompt, enter the following commands to install Yeoman, Bower, Grunt, Gulp, and the ASP.NET Core generator:

npm install -g yo bower grunt-cli gulp
npm install -g generator-aspnet

Note
If you get a permission error, then prefix the commands with sudo to execute them using the super user account. The -g flag installs the tools globally, so you can run them from any directory.

Scaffolding projects using Yeoman

Enter the following commands in the Terminal prompt to create a new directory for a project and create a scaffolded project template inside it:

cd ~
yo aspnet

When Yeoman runs, you will see the the output as shown in the following screenshot.
Choose Web Application Basic [without Membership and Authorization] and press Enter. Then, enter the name WebApp. Yeoman will now create a set of files for a basic web application project:
[image: Scaffolding projects using Yeoman]

In the Terminal prompt, enter the following commands to change to the new directory that Yeoman created for you. Then, see a listing of all the files, restore dependent packages, and finally execute the Kestrel web server and start it listening on port 5000.

cd WebApp
ls -a
dnu restore
dnx web

As you enter the preceding commands, you will see output as shown in the following screenshot:
[image: Scaffolding projects using Yeoman]

Note
If you get an error message about being unable to resolve project that is most likely because you have executed the dnu restore command in a directory without a project.json file.

Start a web browser and go to http://localhost:5000/:
[image: Scaffolding projects using Yeoman]

By default, every request from the browser is logged to the Terminal window.
Note that the first request is to http://localhost:5000/, which caused the Index action method of HomeController to return the results of a view named /Views/Home/Index.cshtml:
[image: Scaffolding projects using Yeoman]

Close the web browser, and in Terminal, press Ctrl + C to stop the Kestrel web server.

Editing projects using Visual Studio Code

You could open this project using Visual Studio 2015 if you have Windows, which provides a better developer experience, but we will use Visual Studio Code.
In Terminal, enter code . to start Visual Studio Code and load this project. Browse the files to see how it all fits together, as shown in the following screenshot. The same C# code that you learned in Chapter 14, Building Web Applications and Services Using ASP.NET Core, applies here.
[image: Editing projects using Visual Studio Code]

Instead of having to run Terminal, you can execute commands directly inside Visual Studio Code.
Press Command + Shift + P. Then, in the > prompt, type dnx, and you will see that a drop-down command list filters to show two commands related to dnx:
[image: Editing projects using Visual Studio Code]

Press Enter to see the actual command (dnu restore), and then press Enter again to execute it in the directory shown:
[image: Editing projects using Visual Studio Code]

The Terminal prompt will become active, and you will see the results of running the command.
Tip
In 2016, Microsoft SQL Server only runs on Windows, but in 2017, it will be available for Linux. If you need a RDBMS that is completely cross-platform today, then you should use SQLite. For more information, visit https://github.com/aspnet/Microsoft.Data.Sqlite.

Understanding the .NET Core command-line tools

There are two sets of command-line interface tools that you can use to manage .NET Core.

Understanding the DNX tools

The .NET Version Manager, .NET Execution Environment, and .NET Development Utilities (dnvm, dnx, and dnu) were used by Microsoft during the initial development of the .NET Core between 2013 and 2015. They are installed as part of Visual Studio 2015.
The .NET Version Manager (dnvm) is used to install various versions of the .NET Execution Environment (dnx).
A dnx is a software development kit (SDK) and runtime environment that has everything you need to build and run .NET applications, including a host process, CLR, and managed entry-point discovery. There are three common dnxes: the .NET Framework, the .NET Core, and Mono.
The .NET Development Utilities (dnu) tool provides functions to help with ASP.NET Core development. The most common function is to use dnu to install and manage library packages in our application by using its restore feature.

Understanding the CLI tools

The .NET CLI (dotnet) is a "driver" that will be used by the final release of the .NET Core. It provides a simplified layer on top of other underlying tools. The .NET CLI must be installed separately.

Common DNX commands

To install the latest version of the .NET Execution Environment and make it temporarily active, use the following command:

dnvm install latest

To install a specific version of a dnx and make it temporarily active, use the following command:

dnvm install latest -runtime coreclr -arch x64

To install a version and make it permanently active by modifying the PATH variable use upgrade instead of install:

dnvm upgrade latest -runtime coreclr -arch x64

To switch to a different version, use the following command:

dnvm use 1.0.0-rc1-update1 -runtime coreclr -arch x64

Common CLI commands

First, we must install the .NET CLI.
Start Safari or Chrome and go to https://github.com/dotnet/cli.
Scroll down the page to find Installers and click on the link to download the PKG file for Mac OS X. Open the package and install it.
In the Terminal prompt, enter the following command:

dotnet

You should see the following output:
[image: Common CLI commands]

Enter the following commands in the Terminal prompt to create a new directory, change to it, create a new console application in the directory, and then list the files it created:

mkdir ConsoleApp2
cd ConsoleApp2
dotnet new
ls

You should see that the dotnet tool has created three new files for you: NuGet.Config, Program.cs, and project.json.
In the Terminal prompt, enter the following command to start Visual Studio Code:

code .

In Visual Studio Code, click on Program.cs on the left-hand side and modify the WriteLine statement like this:
Console.WriteLine("Hello C#, Welcome .NET Core!");

Save changes and quit Visual Studio Code.
In the Terminal prompt, enter the following commands:

dotnet restore
dotnet run

After a few seconds, all the dependency packages will be downloaded, and your application will run, showing the following output:
[image: Common CLI commands]

To compile the source code into an assembly containing IL code, enter the following command, as shown in the following screenshot:

dotnet build

If you navigate into the subdirectories, you will note that a \bin\Debug\dnxcore50\ directory has been created with a Unix executable named ConsoleApp2 in it.
[image: Common CLI commands]

Tip

Debug is the configuration name. The framework name is dnxcore50. This will change in the release version of the .NET Core.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 15.1 – test your knowledge

Answer the following questions:
	What platforms are supported by .NET Core and ASP.NET Core?
	What command downloads dependent packages for a project?
	What file does project directory require in order to restore packages?
	What command will show the currently installed versions of .NET?
	What command will switch to a different version of .NET?

Exercise 15.2 – practice transferring an existing ASP.NET application

Take the ASP.NET Core application that we created in Chapter 14, Building Web Applications and Services Using ASP.NET Core, restore its packages, and host it in the Kestrel web server.
What happens? Why?
Note
The project uses a database connection string that attempts to connect to a Microsoft SQL Server LocalDb instance, but Mac OS X does not support this. So, an unhandled exception is thrown causing the Terminal window to crash! We would need to change the database connection string to point to a Windows Server or Linux running the full (or Express) version of Microsoft SQL Server instead. Alternatively, we could use the Microsoft Azure SQL Database instead.

Exercise 15.3 – explore topics

Use the following links to read more about this chapter's topics:
	Requirements for Visual Studio Code: https://code.visualstudio.com/Docs/supporting/requirements
	Visual Studio Code for Mac developers: https://channel9.msdn.com/Series/Visual-Studio-Code-for-Mac-Developers
	.NET Core Roadmap: https://github.com/dotnet/core/blob/master/roadmap.md
	Project.json file: https://github.com/aspnet/Home/wiki/Project.json-file
	Microsoft .NET Native: https://msdn.microsoft.com/en-us/vstudio/dotnetnative.aspx
	Compiling Apps with .NET Native: https://msdn.microsoft.com/en-us/library/dn584397.aspx
	ASP.NET Core Documentation: http://docs.asp.net/en/latest/

Summary

In this chapter, you learned how to build an ASP.NET Core application that can be hosted cross-platform on Windows, Linux, a Docker container, and Mac OS X.
Tip
If this chapter stoked your interest and you want more details, then check out Packt Publishing's web site at http://www.packtpub.com/ because the most likely book I write next will be a deeper dive into ASP.NET Core and Entity Framework Core using Visual Studio Code.

In the next chapter, you will learn how to build a complete web application and service for a Quiz app.

Chapter 16. Building a Quiz

This chapter is about designing and building a quiz application that helps students learn the C# language, .NET Core, and related topics.
This chapter covers the following topics:
	Designing the quiz application
	Building the quiz solution
	Running the quiz
	Hosting ASP.NET Core web apps in Microsoft Azure

Designing the quiz application

The first decision for designing the quiz that we need to make is on which platform to implement the quiz. We want this quiz to be usable for as many students as possible, wherever and whenever.

Choosing the platform

A web application that uses responsive design to support mobile devices as well as desktops would be a good choice. To provide maximum scalability and flexibility for the choice of host, we want a platform that will run on Windows or Linux, either the full operating system, or a Docker container.
The application will therefore use the following:
	ASP.NET Core 1.0 for its server-side processing
	Entity Framework Core 1.0 for data storage
	HTML5 and CSS3 for a user experience that adapts to different devicesTip
Since this is only a sample project and will have a small amount of data, we will use an in-memory database to remove data storage costs. In the real world, you will have to pay for storage of quizzes and their questions.

Deciding the functional requirements

The application will maintain multiple quizzes about various topics. To simplify the design, the questions will always be multiple choices, where the quiz taker picks one answer from four possibilities.
At the end, the quiz taker will be told how many questions they got right out of the total, and they will be given a list of their answers to compare against the correct answers.

Separating concerns

We will follow best practice and create a solution with multiple projects, each of which has responsibilities as described in the following bullets:
	Ch16_QuizModels: This is a Class Library (Package) for the entity classes, that represents a quiz and a question with no dependency on a data access library.
	Ch16_QuizRepository: This is a Class Library (Package) with a dependency on the Entity Framework Core 1.0, to enable data access and storage of the entities. We will use the new in-memory database, but we will design the repository to support easy swapping of alternatives such as Microsoft SQL Server and Microsoft Azure DocumentDB.
	Ch16_QuizWebApp: This is a ASP.NET Core 1.0 Web Application, with view models that represent a user's current answers, and a list of questions stored in the session state.

Building the quiz solution

Start Microsoft Visual Studio 2015. In Visual Studio, press Ctrl + Shift + N, or navigate to File | New | Project….
In the New Project dialog, in the Installed Templates list, select Visual C#. In the list at the center, select Class Library (Package) and enter the name Ch16_QuizModels. Change the location to C:\Code, enter the solution name Chapter16, and then click on OK.

Defining the entity models

Right-click on
Class1.cs file and choose Rename, and enter a name for the quiz. Open the file and modify the code to look like this:
using System.Collections.Generic;

namespace Packt.QuizWebApp
{
 public class Quiz
 {
 public string QuizID { get; set; } // e.g. CSHARP
 public string Title { get; set; } // e.g. C# and OOP
 public string Description { get; set; }

 // one-to-many relationship with a collection of Questions
 public virtual ICollection<Question> Questions { get; set; }

 // constructor to instantiate an empty collection
 public Quiz()
 {
 Questions = new HashSet<Question>();
 }
 }
}

Note
We have not defined the Question class yet, so you will not see it appear in IntelliSense and you will not be able to compile the project.

On the Project menu, choose Add Class… and name it Question. Modify the code to look like this:
namespace Packt.QuizWebApp
{
 public class Question
 {
 public int QuestionID { get; set; } // identity
 public string QuestionText { get; set; }
 public string AnswerA { get; set; }
 public string AnswerB { get; set; }
 public string AnswerC { get; set; }
 public string AnswerD { get; set; }
 public string CorrectAnswer { get; set; } // e.g. B
 // the other side of the one-to-many relationship
 public virtual Quiz Quiz { get; set; }
 }
}

You should now be able to build this project with no errors, by pressing F6.

Creating the data repository

Add a new Class Library (Package) project named Ch16_QuizRepository. Add a reference to the Ch16_QuizModels project.
From the Tools menu, choose NuGet Package Manager, and then choose Package Manager Console.
In the Package Manager Console, ensure that the package source is set to nuget.org and the default project is set to Ch16_QuizRepository, and then enter the following command at the prompt:

install-package entityframework.inmemory

Note
By the time you read this book, the final release version should be available, so the preceding command will work. If you get an error with the preceding line of code, add the –pre flag at its end to install the pre-release version.

Right-click on Class1.cs and choose Rename. Enter the name QuizContext. Modify the code to look like this:
using Microsoft.Data.Entity;
using Microsoft.Data.Entity.Infrastructure;

namespace Packt.QuizWebApp
{
 public class QuizContext : DbContext
 {
 public DbSet<Quiz> Quizzes { get; set; }
 public DbSet<Question> Questions { get; set; }

 // Best practice is to allow the options to be
 // passed into a constructor so that we remove any
 // assumptions about where the data is stored: in-memory,
 // SQL Server, and so on.
 public QuizContext(DbContextOptions options) : base(options) { }
 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Quiz>().HasMany<Question>().WithOne(q => q.Quiz);
 base.OnModelCreating(modelBuilder);
 }
 }
}

You should now be able to build this project with no errors, by pressing F6.

Creating the web application

Add a new ASP.NET Web Application project named Ch16_QuizWebApp. Choose the ASP.NET Core 1.0 Templates – Web Application template, leave the authentication as Individual User Accounts, clear the Host in the cloud checkbox, and click on OK:
[image: Creating the web application]

Note
At the time of writing, the final version of ASP.NET Core 1.0 had not been released, so the screenshots in this book show the old branding: ASP.NET 5.

In the Solution Explorer window, right-click on the Ch16_QuizWebApp project and choose Set as StartUp Project.
Add references to the Ch16_QuizModels and Ch16_QuizRepository projects.
From the Tools menu, choose NuGet Package Manager, and then choose Package Manager Console. In the Package Manager Console window, ensure that the package source is set to nuget.org and the default project is set to Ch16_QuizWebApp. Next, enter the following commands at the prompt:

install-package microsoft.netcore.portable.compatibility
install-package newtonsoft.json
install-package microsoft.aspnet.session
install-package microsoft.extensions.caching.memory
install-package entityframework.inmemory

Note
By the time you read this book, the final release versions of the ASP.NET Core NuGet packages should be available, so the preceding commands will work. If you get an error with any of the preceding lines, add the –pre flag to the end to install the pre-release version.

Defining view models

View models are all the data required by a view. We need to define two view models—one for the view that displays a question, and another for the view that displays the list of answers at the end of a quiz.
In the Solution Explorer window, in the ViewModels folder, add a folder named Home.
Right-click on the Home folder, choose Add Class…, name it QuestionViewModel, and modify the code to define a class that represents all the data required when viewing a question:
using Packt.QuizWebApp;

namespace Ch16_QuizWebApp.ViewModels.Home
{
 public class QuestionViewModel
 {
 public Question Question { get; set; }
 public string Answer { get; set; }
 public int Number { get; set; }
 public int Total { get; set; }
 }
}

Right-click on the Home folder, choose Add Class…, name it FinishViewModel, and modify the code to define a class that represents all the data required when viewing the results of a quiz:
using Packt.QuizWebApp;
using System.Collections.Generic;

namespace Ch16_QuizWebApp.ViewModels.Home
{
 public class FinishViewModel
 {
 public Quiz Quiz { get; set; }
 public Dictionary<int, string> Answers { get; set; }
 public int CorrectAnswers { get; set; }
 }
}

Adding sample quiz questions

We need some sample quiz questions. We will store them in a JSON file and deserialize them into the in-memory database provided by the Entity Framework Core.
Right-click on the wwwroot directory of the Ch16_QuizWebApp project and navigate to Add | New Item… or press Ctrl + Shift + A.
Choose a JSON File, name it samplequestions.json, and click on OK.
Modify the file as shown in the following block of code. Note that any string can be used as a $id and $ref in order to define references between objects. I chose to use Q1, Q2, and so on, to identify quizzes, and Q1.1, Q1.2, and so on, to identify questions that belong to quizzes:
{
 "$values": [
 {
 "$id": "Q1",
 "QuizID": "CSHARP",
 "Title": "C# and OOP",
 "Description": "Questions about the C# language and object-oriented programming.",
 "Questions": {
 "$values": [
 {
 "$id": "Q1.1",
 "QuestionID": 0,
 "QuestionText": "Which modifier would you apply to a type's member to allow only code within that type access to it?",
 "AnswerA": "internal",
 "AnswerB": "protected",
 "AnswerC": "private",
 "AnswerD": "public",
 "CorrectAnswer": "C",
 "Quiz": {
 "$ref": "Q1"
 }
 },
 {
 "$id": "Q1.2",
 "QuestionID": 0,
 "QuestionText": "Which keyword would you apply to a type's field to prevent its value from changing after an instance of the type has been created?",
 "AnswerA": "const",
 "AnswerB": "readonly",
 "AnswerC": "static",
 "AnswerD": "protected",
 "CorrectAnswer": "B",
 "Quiz": {
 "$ref": "Q1"
 }
 }

]
 }
 },
 {
 "$id": "Q2",
 "QuizID": "FILEIO",
 "Title": "File I/O",
 "Description": "Questions about the file input/output features of the .NET Framework including serialization.",
 "Questions": {
 "$values": [
 {
 "$id": "Q2.1",
 "QuestionID": 0,
 "QuestionText": "What are the requirements for a type to be serialized by using the BinaryFormatter?",
 "AnswerA": "Apply [Serializable] to the type.",
 "AnswerB": "Apply [Serializable] to the type and make all fields public.",
 "AnswerC": "Ensure the type is public with a parameterless contructor.",
 "AnswerD": "Ensure the type is public with a parameterless contructor and make any fields you want to include public.",
 "CorrectAnswer": "A",
 "Quiz": {
 "$ref": "Q2"
 }
 }
]
 }
 }
]
}

Tip
Add at least five questions for each quiz. The preceding code is trimmed to save space.

Right-click on the Models folder and choose Add Class…, name it QuizConfig, and modify the code to enable the Entity Framework Core in-memory database. Populate it with the deserialized sample quiz questions, as follows:
using Packt.QuizWebApp;
using Microsoft.AspNet.Builder;
using Microsoft.Data.Entity;
using Newtonsoft.Json;
using System.IO;
using System.Collections.Generic;

namespace Ch16_QuizWebApp.Models
{
 public static class QuizConfig
 {
 public static void UseSampleQuestions(this IApplicationBuilder app, string path)
 {
 // load a sample JSON file of questions
 string json = File.ReadAllText(Path.Combine(path, "samplequestions.json"));

 var settings = new JsonSerializerSettings
 { PreserveReferencesHandling = PreserveReferencesHandling.All };

 List<Quiz> quizzes = JsonConvert.DeserializeObject<List<Quiz>>(json, settings);

 // Configure the in-memory database option
 var optionsBuilder = new DbContextOptionsBuilder<QuizContext>();
 optionsBuilder.UseInMemoryDatabase();

 using (var context = new QuizContext(optionsBuilder.Options))
 {
 foreach (Quiz quiz in quizzes)
 {
 // mark each quiz and its question entities as Added
 context.Add(quiz, GraphBehavior.IncludeDependents);
 }
 // Save the entities to the data store
 context.SaveChanges();
 }
 }
 }
}

Configuring session state

Open the Startup.cs file and add the following statements to the end of the ConfigureServices method, after the call to the AddMvc method:
services.AddCaching();
services.AddSession(options =>
 {
 options.CookieName = ".Packt.QuizWebApp";
 options.IdleTimeout = TimeSpan.FromMinutes(10);
 });

Add the following statements to the end of the Configure method, before and after the call to the UseMvc method, to use the session state and to populate the sample questions:

app.UseSession(); // must be added before MVC

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

app.UseSampleQuestions(env.MapPath("")); // pass the path to the wwwroot directory

Adding custom controller actions

Open the Controllers folder and the HomeController class, and modify the code as follows:
	Define a custom JsonSerializerSettings class that handles circular references correctly for the quiz-questions relationship
	Define pairs of methods to set and get the current user's quiz and the user's questions from their user session stored as JSON
	A constructor that sets the database context to use an in-memory database
	Index action that passes all the quizzes to a home page view
	The TakeQuiz action that shows a summary of the chosen quiz ready, for the user to start it
	The Question GET action that shows a specified question
	The Question POST action that stores the user's selected answer and then redirects to the next question
	The Finish action that shows the results
	The Error action that shows the default error page

Here is the code:
using Packt.QuizWebApp;
using Microsoft.Data.Entity;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Mvc;
using Microsoft.AspNet.Http;
using Newtonsoft.Json;

namespace Ch16_QuizWebApp.Controllers
{
 public class HomeController : Controller
 {
 private QuizContext db;

 public JsonSerializerSettings settings = new JsonSerializerSettings
 { PreserveReferencesHandling = PreserveReferencesHandling.All };

#region Helper methods to store state in Session
 public void SetQuiz(Quiz input)
 {
 string json = JsonConvert.SerializeObject(input, Formatting.None, settings);
 HttpContext.Session.SetString("usersquiz", json);
 }

 public Quiz GetQuiz()
 {
 string json = HttpContext.Session.GetString("usersquiz");
 return JsonConvert.DeserializeObject<Quiz>(json, settings);
 }

 public void SetAnswers(Dictionary<int, string> input)
 {
 string json = JsonConvert.SerializeObject(input, settings);
 HttpContext.Session.SetString("usersanswers", json);
 }

 public Dictionary<int, string> GetAnswers()
 {
 string json = HttpContext.Session.GetString("usersanswers");
 return JsonConvert.DeserializeObject<Dictionary<int, string>>(json, settings);
 }
#endregion

 public HomeController()
 {
 var optionsBuilder = new DbContextOptionsBuilder<QuizContext>();
 optionsBuilder.UseInMemoryDatabase();
 db = new QuizContext(optionsBuilder.Options);
 }

 // make the method asynchronous to improve scalability
 public async Task<IActionResult> Index()
 {
 var model = await db.Quizzes.ToListAsync();
 ViewData["Title"] = "Home";
 return View(model);
 }

 public IActionResult TakeQuiz(string id)
 {
 Quiz model = db.Quizzes.Where(q => q.QuizID == id).Include(q => q.Questions).FirstOrDefault();
 if (model == null)
 {
 return HttpNotFound($"A quiz with the ID of {id} was not found.");
 }
 SetQuiz(model);
 SetAnswers(new Dictionary<int, string>());
 ViewData["Title"] = "Take Quiz";
 return View(model);
 }

 public IActionResult Question(int? id)
 {
 if (!id.HasValue)
 {
 return HttpNotFound("You must pass an id of a question.");
 }
 var quiz = GetQuiz();
 var answers = GetAnswers();
 var model = new ViewModels.Home.QuestionViewModel
 {
 Question = quiz.Questions.Skip(id.Value - 1).Take(1).FirstOrDefault(),
 Answer = answers.ContainsKey(id.Value - 1) ? answers[id.Value - 1] : string.Empty,
 Number = id.Value,
 Total = quiz.Questions.Count()
 };
 ViewData["Title"] = $"Question {model.Number} of {model.Total}";
 return View(model);
 }

 [HttpPost]
 public IActionResult Question(int? id, string submit, string answer)
 {
 if (!id.HasValue)
 {
 return HttpNotFound("You must pass an id of a question.");
 }
 var answers = GetAnswers();
 answers[id.Value - 1] = answer;
 SetAnswers(answers);
 if (submit == "Previous")
 {
 id--;
 }
 else if (submit == "Next")
 {
 id++;
 }
 else if (submit == "Finish")
 {
 return RedirectToAction("Finish");
 }
 else
 {
 return RedirectToAction("Index");
 }
 return RedirectToAction("Question", new { id = id });
 }

 public IActionResult Finish()
 {
 var quiz = GetQuiz();
 var model = new ViewModels.Home.FinishViewModel
 {
 Quiz = quiz,
 Answers = GetAnswers()
 };
 for (int i = 0; i < model.Quiz.Questions.Count; i++)
 {
 if (model.Quiz.Questions.ToList()[i].CorrectAnswer == model.Answers[i]) model.CorrectAnswers++;
 }
 ViewData["Title"] = "End of Quiz";
 return View(model);
 }

 public IActionResult Error()
 {
 return View();
 }
 }
}

Adding custom views

In the Views folder, in the Home folder, rename the About.cshtml file to TakeQuiz.cshtml, and then modify the view as follows:
@model Packt.QuizWebApp.Quiz
@{
 ViewBag.Title = $"{Model.Title} Quiz";
}
<div class="jumbotron">
 <h2>@Model.Title Quiz</h2>
 <p>@Model.Description</p>
 <p>This quiz has @Model.Questions.Count questions.</p>
 <p>
 Start »
 </p>
</div>

In the Views folder, go in the Home folder, rename the Contact.cshtml file to Question.cshtml, and then modify the view as follows:
@model Ch16_QuizWebApp.ViewModels.Home.QuestionViewModel
@{
 ViewBag.Title = "Question " + Model.Number;
}
<div class="jumbotron">
 <h2>Question @Model.Number</h2>
 <p>
 @Model.Question.QuestionText
 </p>
 <form action="@Url.Action("Question", new { id = Model.Number })" method="post" class="form-inline">
 <div class="row">
 <div class="col-md-5 alert alert-info">
 <input type="radio" class="radio radio-inline" name="answer" id="ARadio" value="A"
 @if (Model.Answer == "A") { @: checked="checked"
 } />
 <label for="ARadio">@Model.Question.AnswerA</label>
 </div>
 <div class="col-md-1"></div>
 <div class="col-md-5 alert alert-info">
 <input type="radio" class="radio" name="answer" id="BRadio" value="B"
 @if (Model.Answer == "B") { @: checked="checked"
 } />
 <label for="BRadio">@Model.Question.AnswerB</label>
 </div>
 </div>
 <div class="row">
 <div class="col-md-5 alert alert-info">
 <input type="radio" class="radio" name="answer" id="CRadio" value="C"
 @if (Model.Answer == "C") { @: checked="checked"
 } />
 <label for="CRadio">@Model.Question.AnswerC</label>
 </div>
 <div class="col-md-1"></div>
 <div class="col-md-5 alert alert-info">
 <input type="radio" class="radio" name="answer" id="DRadio" value="D"
 @if (Model.Answer == "D") { @: checked="checked"
 } />
 <label for="DRadio">@Model.Question.AnswerD</label>
 </div>
 </div>
 <div class="row">
 <div class="col-md-4">
 <input name="submit" type="submit" value="End Quiz" class="btn btn-warning" />
 </div>
 <div class="col-md-4">
 @if (Model.Number > 1)
 {
 @:<input name="submit" type="submit" value="Previous" class="btn btn-default" />
 }
 </div>
 <div class="col-md-4">
 @if (Model.Number == Model.Total)
 {
 @:<input name="submit" type="submit" value="Finish" class="btn btn-default" />
 }
 else
 {
 @:<input name="submit" type="submit" value="Next" class="btn btn-success" />
 }
 </div>
 </div>
 </form>
</div>

In the Views folder, go in the
Home folder, copy and paste the Index.cshtml file, rename the copy to Finish.cshtml, and then modify the view as follows:
@model Ch16_QuizWebApp.ViewModels.Home.FinishViewModel
@{
 ViewBag.Title = "Finish";
}
<div class="jumbotron">
 <h2>Finish</h2>
 <p>
 You scored @Model.CorrectAnswers out of @Model.Quiz.Questions.Count
 </p>
</div>
<div class="row">
 <table class="table">
 <tr>
 <th>Question</th>
 <th>Correct Answer</th>
 <th>Your Answer</th>
 </tr>
 @for (int i = 0; i < Model.Quiz.Questions.Count; i++)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => Model.Quiz.Questions.ToList()[i].QuestionText)
 </td>
 <td>
 @Html.DisplayFor(modelItem => Model.Quiz.Questions.ToList()[i].CorrectAnswer)
 </td>
 <td>
 @Html.DisplayFor(modelItem => Model.Answers[i])
 </td>
 </tr>
 }
 </table>
</div>

In the Views folder, go in the Home folder, open the Index.cshtml file, and modify the view as follows:
@model IEnumerable<Packt.QuizWebApp.Quiz>
<div class="jumbotron">
 <h1>Quiz Web App</h1>
 <p class="lead">Quiz Web App is a web application built using C# and ASP.NET Core as an example for the Packt Publishing book "C# 6 and .NET Core 1.0".</p>
 <p>Learn more about the C# 6 and .NET Core 1.0 book »</p>
</div>
@{
 var x = 0;
}
<div class="row">
 @foreach (var item in Model)
 {
 x++;
 <div class="col-md-6 col-sm-12">
 <h2>@item.Title</h2>
 <p>@item.Description</p>
 <p>
 Take the @item.Title quiz »
 </p>
 </div>
 if (x % 2 == 0)
 {
 @:</div><div class="row">
 }
 }
</div>

Running the quiz

Before we can run the quiz, we need to configure it to use the cross-platform Kestrel web server, and host it on .NET Core.

Configuring the project to use Kestrel and .NET Core

In the Solution Explorer window, in the Ch16_QuizWebApp project, double-click on Properties, click on the Debug tab, and set the following options:
	Set the profile to web (the Kestrel cross-platform web server)
	Check the box for Use Specific Runtime and choose the latest version
	Set the platform to .NET Core
	Set the architecture to x64, as shown in the following screenshot:[image: Configuring the project to use Kestrel and .NET Core]

Save your changes, and then in the Visual Studio toolbar, choose the web profile:
[image: Configuring the project to use Kestrel and .NET Core]

Start the application by pressing F5. Note that the Kestrel web server has started and is hosted on the CoreCLR for 64-bit CPUs:
[image: Configuring the project to use Kestrel and .NET Core]

Start Microsoft Edge and enter the following into the address box:

http://localhost:5000/

Note that when the browser's width is too small, the list of quizzes on the home page uses a vertical layout instead of two quizzes side by side, as you can see from the following screenshot:
[image: Configuring the project to use Kestrel and .NET Core]

Click on the Take the C# and OOP quiz button:
[image: Configuring the project to use Kestrel and .NET Core]

Click on Start, answer the first question, and then click on
Next:
[image: Configuring the project to use Kestrel and .NET Core]

Answer the second question and click on the Previous button. Note that it remembers your answer to the first question. Click on Next, answer all the questions, and then click on Finish:
[image: Configuring the project to use Kestrel and .NET Core]

On the
Finish page, click on Home Page in the navigation bar:
[image: Configuring the project to use Kestrel and .NET Core]

Hosting ASP.NET Core web apps in Microsoft Azure

First, you need to register an account with Microsoft Azure.

Register an Azure account

Go to http://portal.azure.com/ and register an account to get a free trial. You will be able to continue after the end of the free trial because we will only use the free features of Azure.
You can use any Microsoft account, for example, Hotmail, MSN, or Live account. For this book, I registered a new account named cs6dotnetcore@outlook.com.

Create an Azure web app

Go to the Azure portal (https://portal.azure.com/), where you will see the Azure dashboard:
[image: Create an Azure web app]

Click on All resources and then click on the + Add button:
[image: Create an Azure web app]

In the Search Everything box, enter web app and press Enter. Click on Web App and then click on Create:
[image: Create an Azure web app]

In the Web App blade, enter a globally unique name for your web app:
[image: Create an Azure web app]

Note
I entered quizwebapp, so this name is now taken. No one else will be able to have a Web App with that name. You will need to choose something different.

Leave the other options as their defaults and click on Create. You will be taken back to the Azure dashboard where you will see a new tile telling you that your Web App is being deployed. This process normally takes a few minutes. Once it is running, click on it:
[image: Create an Azure web app]

Click on the URL to open a browser and show the example web page. You are now ready to deploy any ASP.NET web application project (both ASP.NET 4.6 and ASP.NET Core) to your Web App in Azure.

Publishing an ASP.NET web application to the Web App

In the Solution Explorer window, right-click on the Ch16_QuizWebApp project and choose Publish….
Select Microsoft Azure Web Apps as the publish target:
[image: Publishing an ASP.NET web application to the Web App]

In the App Service
 dialog, choose the account that you previously registered, and choose the web app name that you created earlier:
[image: Publishing an ASP.NET web application to the Web App]

Visual Studio will download a publishing profile that you can use to easily deploy the web application to Azure. Click on Validate Connection and wait for the green tick mark, and then click on Publish:
[image: Publishing an ASP.NET web application to the Web App]

Visual Studio will rebuild and deploy your application, and then start a browser to show that it has succeeded:
[image: Publishing an ASP.NET web application to the Web App]

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into the topics covered in this chapter.

Exercise 16.1 – test your knowledge

Answer the following questions:
	How many web apps can you host in Microsoft Azure for free?
	Does Microsoft Azure only support Windows as a host operating system?
	What options does Microsoft Azure offer for data storage?

Exercise 16.2 – practice by extending the quiz web app

How would you improve this quiz app? Here are some suggestions:
	Use Visual Studio's scaffolding feature to allow an administrator to add, edit, and delete quizzes and questions
	Allow more complex types of questions, for example, multiple correct answers to a question
	Create an Ubuntu or Docker virtual machine in Microsoft Azure and deploy the quiz application to that platform

Exercise 16.3 – explore topics

Use the following links to read more about the topics covered in this chapter:
	Installing ASP.NET Core 1.0 on Linux: https://docs.asp.net/en/latest/getting-started/installing-on-linux.html
	Microsoft Azure: Cloud and Computing Services: https://azure.microsoft.com/en-us/

Summary

In this chapter, we created a quiz app using ASP.NET Core and Entity Framework Core hosted in Microsoft Azure. It could easily be deployed to a Microsoft Windows Nano Server, Microsoft Azure Service Fabric, a Linux virtual machine, or a Docker container, to minimize costs and maximize scalability. It can be deployed to alternative cloud hosts or on-premise servers.
Hopefully this book, and the C# language and .NET features we've covered, will inspire you to think about how you can use C# and .NET to build well-architected and modern applications that run cross-platform on Windows, Mac OS X, Docker, and Linux.
With C# and .NET in your arsenal of tools and technologies, you can conquer the universe of cross-platform development and build any type of application that you need.

Appendix A. Answers to the Test Your Knowledge Questions

This appendix has the answers to the questions in the Test Your Knowledge section at the end of each chapter.

Chapter 1 – Hello, C#! Welcome, .NET Core!

	Why can a programmer use different languages to write applications that run on .NET?Multiple languages are supported on .NET because each one has a compiler that translates the source code into IL (intermediate language) code. This IL code is then compiled to native CPU instructions at runtime by the CLR.

	What do you type at the Command Prompt to compile C#?	For .NET Framework, we type csc sourcecode.cs
	For .NET Core using .NET CLI in a folder with a project.json file, we type dotnet build

	What is the Visual Studio 2015 keyboard shortcut to save, compile, and run an application without attaching the debugger?
Ctrl + F5

	What is the Visual Studio 2015 keyboard shortcut to view the Error List?
Ctrl + W, E

	What does ildasm.exe do?The IL Disassembler (ildasm.exe) tool reveals the manifest, metadata, embedded resources, and IL code inside a compiled .NET assembly.

	Is the .NET Core better than the .NET Framework?It depends on what you need. The .NET Core is a slimmed down, cross-platform version of the more full-featured, mature .NET Framework.

	How is .NET Native different from .NET Core?.NET Native is an ahead-of-time compiler that can produce native code assemblies that have better performance and reduced memory footprint, and it has its .NET assemblies statically linked, which removes its dependency on CoreCLR.

	What does the .NET Portability Analyzer do?It scans an assembly and produces a report that lists any features the assembly uses that are not supported on your chosen target platform. For any missing features, it can make a recommendation to use an alternative.

	What is the difference between Git and GitHub?Git is a source code management platform. GitHub is a popular web service that implements Git.

	What is the name of the entry point method of a .NET application and how should it be declared?public static void Main()

Its name is Main and the preceding code is how it is declared. An optional string array for command-line arguments and a return type of int are recommended, but they are not required.

Chapter 2 – Speaking C#

What type would you choose for the following "numbers"?
	A person's telephone number
string

	A person's height
float or double

	A person's age
int for performance or byte (0 to 255) for size

	A person's salary
decimal

	A book's ISBN
string

	A book's price
decimal

	A book's shipping weight
float or double

	A country's population
uint (0 to about 4 billion)

	The number of stars in the universe
ulong (0 to about 18 quadrillion) or System.Numerics.BigInteger (allows an arbitrarily large integer)

	The number of employees in each of the small or medium businesses in the UK (up to about 50,000 employees per business)Since there are hundreds of thousands of small or medium businesses, we need to take memory size as the determining factor so choose ushort because it only takes 2 bytes compared to an int, which takes 4 bytes.

Chapter 3 – Controlling the Flow, Converting Types, and Handling Exceptions

	What happens when you divide an int value by 0?A DivideByZeroException is thrown when dividing an integer or decimal.

	What happens when you divide a double value by 0?The double contains a special value of Infinity. Instances of floating-point numbers can have special values: NaN (not a number), PositiveInfinity, and NegativeInfinity.

	What happens when you overflow an int value that is set to a value beyond its range?It will loop unless you wrap the statement in a checked block in which case an OverflowException will be thrown.

	What is the difference between x = y++; and x = ++y;?In x = y++;, y will be assigned to x and then y will be incremented, and in x = ++y;, y will be incremented and then the result will be assigned to x.

	What is the difference between break, continue, and return when used inside a loop statement?The break statement will end the whole loop and continue executing after the loop, the continue statement will end the current iteration of the loop and continue executing at the start of the loop block for the next iteration, and the return statement will end the current method call and continue executing after the method call.

	What are the three parts of a for statement and which of them are required?The three parts of a for statement are the initializer, condition, and incrementer. The condition is required to be an expression that returnstrue or false, but the other two are optional.

	What is the difference between the = and == operators?The = operator is the assignment operator for assigning values to variables, and the == operator is the equality check operator that returns true or false.

Exercise 3.2

What will happen if this code executes?
int max = 500;
for (byte i = 0; i < max; i++)
{
 WriteLine(i);
}

The code will loop nonstop because the value of i can only be between 0 and 255, so once it gets incremented beyond 255, it goes back to 0 and therefore will always be less than max (500).
To prevent it from looping nonstop, you can add a checked statement around the code. This would cause an exception to be thrown after 255, like this:

254
255
System.OverflowException says Arithmetic operation resulted in an overflow.

Chapter 4 – Using Common .NET Types

	Does every assembly that you create have a reference to the mscorlib.dll assembly?No. Although by default every assembly will have an automatic reference to the mscorlib.dll assembly, there is a compiler flag that can prevent this. For details, visit:

https://msdn.microsoft.com/en-us/library/fa13yay7.aspx

	What is the maximum number of characters that can be stored in a string variable?The maximum size of a string variable is 2 GB or about 1 billion characters because each char variable uses 2 bytes due to the internal use of Unicode (UTF-16) encoding for characters.

	When and why should you use the SecureString type?The string type leaves text data in memory for too long and it's too visible. The SecureString type encrypts the text and ensures that the memory is released immediately. WPF's PasswordBox control stores the password as a SecureString variable, and when starting a new process, the Password parameter must be a SecureString variable. For more discussion, visit:

http://stackoverflow.com/questions/141203/when-would-i-need-a-securestring-in-net

	When should you use a LinkedList<T> variable?Each item in a linked list has a reference to its previous and next siblings as well as the list itself so should be used when items need to be inserted and removed from positions in the list without actually moving the items in memory.

	When should you use a SortedDictionary variable rather than a SortedList variable?The SortedList class uses less memory than SortedDictionary, SortedDictionary has faster insertion and removal operations for unsorted data. If the list is populated all at once from sorted data, SortedList is faster than SortedDictionary. For more discussion, visit:

http://stackoverflow.com/questions/935621/whats-the-difference-between-sortedlist-and-sorteddictionary

	Why should you not use the official standard for e-mail addresses to create a regular expression to validate a user's e-mail address?The effort is not worth the pain for you or your users. Validating an e-mail address using official specification doesn't check whether that address actually exists or whether the person entering the address is its owner. For more discussion, visit:

http://davidcel.is/posts/stop-validating-email-addresses-with-regex/

http://stackoverflow.com/questions/201323/using-a-regular-expression-to-validate-an-email-address

Chapter 5 – Using Specialized .NET Types

	What is the difference between pressing F5, Ctrl + F5, Shift + F5, and Ctrl + Shift + F5?
F5 saves, compiles, runs, and attaches the debugger, Ctrl + F5 saves, compiles, and runs the debugger, Shift + F5 stops the debugger, and Ctrl + Shift + F5 restarts the debugger.

	What is the ISO culture code for Welsh?cy-GB

For a complete list of culture codes, visit:

http://timtrott.co.uk/culture-codes/

	What information can you find out about a Process variable?The Process class has many properties including: ExitCode, ExitTime, Id, MachineName, PagedMemorySize64, ProcessorAffinity, StandardInput, StandardOutput, StartTime, Threads, TotalProcessorTime, and so on. You can find more information about Process Properties at https://msdn.microsoft.com/en-us/library/System.Diagnostics.Process_properties(v=vs.110).aspx.

	Can your applications write to the security event log in Windows?No. The security event log is for use only by the operating system. You can find more information about the security event log at https://msdn.microsoft.com/en-us/library/windows/desktop/aa363658(v=vs.85).aspx.

	How accurate is the Stopwatch class?The Stopwatch class can be accurate to within a nanosecond (a billionth of a second) but you shouldn't rely on that. You can improve accuracy by setting processor affinity as shown in the article at http://www.codeproject.com/Articles/61964/Performance-Tests-Precise-Run-Time-Measurements-wi.

	What is the difference between localization, globalization, and internationalization?Localization is about changing the user interface to a specific language, for example, French; whereas globalization is about writing code so that the language and region are taken into account when formatting numbers and dates and when sorting text. Finally, internationalization is a combination of both.

Chapter 6 – Building Your Own Types with Object-Oriented Programming

	What are the four access modifiers and what do they do?	private: This modifier makes a member only visible inside the class
	internal: This modifier makes a member only visible inside the class or within the same assembly
	protected: This modifier makes a member only visible inside the class or derived classes
	public: This modifier makes a member visible everywhere

	What is the difference between the static, const, and readonly keywords?	static: This keyword makes the member shared by all instances and accessed through the type
	const: This keyword makes a field a fixed literal value that should never change
	readonly: This keyword makes a field that can only be assigned at runtime using a constructor

	How many parameters can a method have?A method with 16383 parameters can be compiled, ran, and called. Any more than that and an unstated exception is thrown at runtime. IL has predefined opcodes to load up to four parameters and a special opcode to load up to 16-bits (65,536) parameters. A best practice is to limit your methods to three or four parameters. You can combine multiple parameters into a new class to encapsulate them into a single parameter. You can find more information on this at http://stackoverflow.com/questions/12658883/what-is-the-maximum-number-of-parameters-that-a-c-sharp-method-can-be-defined-as.

	What does a constructor do?A constructor allocates memory and initializes field values.

	Why do you need to apply the [Flags] attribute to an enum type when you want to store combined values?If you don't apply the [Flags] attribute to an enum type when you want to store combined values, then a stored enum value that is a combination will return as the stored integer value instead of a comma-separated list of text values.

	What is a delegate?A delegate is a type-safe method reference. It can be used to execute any method with a matching signature.

	What is an event?An event is a field that is a delegate having the event keyword applied. The keyword ensures that only += and -= are used; this safely combines multiple delegates without replacing any existing event handlers.

	Why is the partial keyword useful?You can use the partial keyword to split the definition of a type over multiple files.

Chapter 7 – Implementing Interfaces and Inheriting Classes

	How is a base class and a derived class related?A derived class (or subclass) is a class that inherits from a base class (or superclass).

	What is the difference between the is and as operators?The is operator returns true if an object can be cast to the type. The as operator returns a reference if an object can be cast to the type; otherwise, it returns null.

	Which keyword is used to prevent a class from being derived from, or a method from being overridden?sealed

Find more information on the sealed keyword at https://msdn.microsoft.com/en-us/library/88c54tsw.aspx.

	Which keyword is used to prevent a class from being instantiated with the new keyword or force a method to be overridden?abstract

Find more information on the abstract keyword at https://msdn.microsoft.com/en-us/library/sf985hc5.aspx.

	Which keyword is used to allow a member to be overridden?virtual

Find more information on the virtual keyword at https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx.

	What's the deal with polymorphism?Polymorphism is a fancy academic OOP concept that rarely has an impact on real-world code.

	What are the signatures of the constructors that all exceptions should have?The following are the signatures of the constructors that all exceptions should have:
	A constructor with no parameters
	A constructor with a string parameter usually named message
	A constructor with a string parameter, usually named message, and an Exception parameter usually named innerException

	What is an extension method and how do you define one?An extension method is a compiler trick that makes a static method of a static class appear to be one of the members of a type. You define which type you want to extend by prefixing the type with this.

Chapter 8 – Working with Relational Data Using the Entity Framework

	Which .NET data provider would you use to work with Microsoft Access .MDB database files?.NET Framework Data Provider for OLE DB.

	Which .NET data provider would you use to work with Microsoft SQL Server 2012 Express Edition?.NET Framework Data Provider for SQL Server.

	What must you do with a DbConnection variable before executing a DbCommand?Ensure that its state is open by calling the Open() method.

	When would you use the CommandBehavior.SequentialAccess property?This option provides a way for a DbDataReader class to handle rows that contain columns with BLOBs (binary large objects), such as videos and images, by not loading the entire row at once and instead loading one column at a time, allowing skipping of columns, and reading the BLOB data as a stream.

	ADO.NET instead of Entity Framework?You would use classic ADO.NET instead of Entity Framework when you need the best performance, when most data access must use stored procedures, and when maintaining legacy code written using classic ADO.NET.

	When defining a DbContext class, what type would you use for the property that represents a table, for example, the Products property of a Northwind context?
DbSet<T>, where T is the entity type, for example, Product.

	What are the EF conventions for primary keys?The property named ID or ClassNameID is assumed to be the primary key. If the type of that property is any of the following, then the property is also marked as being an IDENTITY column: tinyint, smallint, int, bigint, guid.

	When would you use an annotation attribute in an entity class?You would use an annotation attribute in an entity class when the conventions cannot work out the correct mapping between the classes and tables. For example, if a class name does not match a table name or a property name does not match a column name.

	Why might you choose fluent API in preference to annotation attributes?You might choose fluent API in preference to annotation attributes when the conventions cannot work out the correct mapping between the classes and tables, and you do not want to use annotation attributes because you want to keep your entity classes clean and free from extraneous code.

	What is the difference between Database-First and Code-First in EF6?Database-First creates a design-time file with the EDMX that contains XML files that define the conceptual, storage, and mappings between the two. These XML files must be kept synchronized with future changes to the classes and tables. Code-First does not need a design-time EDMX file. Instead, a combination of conventions, annotation attributes, and fluent API is used to define the conceptual storage and mappings between the two. Code-First is more difficult to learn in the short term but it is more manageable in the long term which is why Entity Framework Core 1.0 drops support for design-time EDMX files.

Chapter 9 – Querying and Manipulating Data with LINQ

	What are the two requirements to use LINQ?You must import the System.Linq namespace to make the LINQ extension methods available and reference a LINQ provider assembly for the type of data that you want to work with.

	Which LINQ extension method would you use to return a subset of properties from a type?The Select method allows projection (selection) of properties.

	Which LINQ extension method would you use to filter results?The Where method allows filtering by supplying a delegate (or lambda expression) that returns a Boolean to indicate whether the value should be included in the results.

	List five LINQ extension methods that perform aggregation.
Max, Min, Count, Average, Sum, and Aggregate.

	What is the difference between the Select and SelectMany extension methods?
Select returns exactly what you specify to return. SelectMany checks that the items you have selected are themselves IEnumerable<T> and then breaks them down into smaller parts. For example, if the type you select is a string value (which is IEnumerable<char>), SelectMany will break each string value returned into their individual char values.

Chapter 10 – Working with Files, Streams, and Serialization

	What is the difference between using the File class and the FileInfo class?The File class has static methods so it cannot be instantiated. It is best used for one-off tasks such as copying a file. The FileInfo class requires the instantiation of an object that represents a file. It is best used when you need to perform multiple operations on the same file.

	What is the difference between the ReadByte method and the Read method of a stream?The ReadByte method returns a single byte each time it is called and the Read method fills a temporary array with bytes up to a specified length. It is generally best to use Read to process blocks of bytes at once.

	When would you use the StringReader, the TextReader, and the StreamReader classes?	StringReader is used for efficiently reading from a string stored in memory
	TextReader is an abstract class that StringReader and StreamReader both inherit from for their shared functionality
	StreamReader is used for reading strings from a stream that can be any type of text file, including XML and JSON

	What does the DeflateStream type do?
DeflateStream implements the same compression algorithm as GZIP but without a cyclical redundancy check, so although it produces smaller compressed files, it cannot perform integrity checks when decompressing.

	How many bytes per character does the UTF-8 encoding use?It depends on the character. Most Western alphabet characters are stored using a single byte. Other characters may need two or more bytes.

	What is an object graph?An object graph is any instance of classes in memory that reference each other, thereby forming a set of related objects. For example, a Customer object may have a property that references a set of Order instances.

	What is the best serialization format to choose for minimizing space requirements?JavaScript Object Notation (JSON).

	What is the best serialization format to choose for cross-platform compatibility?eXtensible Markup Language (XML), although JSON is almost as good these days.

	Which Microsoft technology uses the DataContractSerializer class by default?Windows Communication Foundation (WCF) for creating SOAP services.

	Is it possible to create your own custom runtime serializers?Yes. Create a class that implements the interface System.Runtime.Serialization.IFormatter. For details, visit:

https://msdn.microsoft.com/en-us/library/system.runtime.serialization.iformatter(v=vs.110).aspx

Chapter 11 – Protecting Your Data and Applications

	Of the encryption algorithms provided by the .NET Framework, which is the best choice for symmetric encryption?The AES algorithm is the best choice for symmetric encryption.

	Of the encryption algorithms provided by the .NET Framework, which is the best choice for asymmetric encryption?The RSA algorithm is the best choice for asymmetric encryption.

	For encryption algorithms, is it better to have a larger or smaller block size?For encryption algorithms, it is better to have a smaller block size.

Chapter 12 – Improving Performance and Scalability with Multitasking

	By convention, what suffix should be applied to a method that returns a Task or a Task<T>?Async, for example, OpenAsync for a method named Open.

	To use the await keyword inside a method, which keyword must be applied to the method declaration?The async keyword must be applied to the method declaration.

	How do you create a child task?Call the Task.Factory.StartNew method with the TaskCreationOptions.AttachToParent option to create a child task.

	Why should you avoid the lock keyword?The lock keyword does not allow you to specify a timeout; this can cause deadlocks. Use Monitor.Enter with a TimeSpan and Monitor.Exit instead.

	When should you use the Interlocked class?If you have integers and floats that are shared between multiple threads, you should use the Interlocked class.

Chapter 13 – Building Universal Windows Platform Apps Using XAML

	Which control would you choose to allow the user to easily choose their date of birth on many different types of device?The DatePicker control will allow the user to easily choose their date of birth on many different types of device.

	Which XAML element would you use to adapt the layout of your app to handle different device families?The VisualStateManager element is used to adapt the layout of your app to handle different device families.

	How can you set multiple properties on an XAML element as a single group?We can set multiple properties on an XAML element as a single group by defining a style with setters.

	What is the difference between a control template and a data template?Control templates are used to define the look and feel of the external parts of a control, such as a button or list box. Data templates are used to define the look and feel of the internal content of a button or the items with a list box.

	Can XAML bindings be two-way bindings or just one-way bindings?XAML bindings can be two-way, one-way, or one-time.

Chapter 14 – Building Web Applications and Services Using ASP.NET Core

	What is the difference between a web browser and a web server?A web browser makes HTTP requests for resources and a web server sends HTTP responses back containing a mix of HTML, CSS, JavaScript, and other media formats, which the browser then displays to the end user.

	What is the difference between a URI, a URL, and a URN?Uniform Resource Identifier (URI) is the more general term instead of URL or URN. A Uniform Resource Locator (URL) is a type of URI that species a location of a resource. A Uniform Resource Name (URN) is intended to serve as persistent, location-independent identifier.

	What are the four most common HTTP methods?The GET, POST, PUT, and DELETE are the most common HTTP methods.

	What does it mean when a web server responds with status code 302?The web server is indicating a temporary redirect. This means that the web server found the resource but it is at a different location. A response header is used to tell the web browser about the new location. Note that status code 301 is similar but represents a permanent redirect.

	What are the responsibilities of a route?At the minimum, a route must provide the name of a controller and an action. It can also provide additional parameter values defined in segments.

	What are the responsibilities of a controller?A controller (and one of its actions) must examine the request and decide which model needs to be passed to which view and then return the response to the client.

	What are the responsibilities of a model?A model represents all the data required for a particular request.

	What are the responsibilities of a view?A view converts a model into another format, typically HTML, but it could be any media type, for example, JPEG, DOCX, JSON, XML, and so on.

	How does ASP.NET distinguish a request for MVC from a request for Web API?Multiple entries are added to the route table. By convention, Web API controllers should use attributes to register routes that look for URLs that begin with api/. If a URL doesn't begin with api/ then it should match other routes registered by MVC.

	What data formats does Web API support by default?x-www-formurlencoded, JSON, and XML.

Chapter 15 – Taking C# Cross-Platform

	Which platforms are supported by .NET Core and ASP.NET Core?Windows, Mac OS X, Docker, and Linux are the platforms supported by .NET Core and ASP.NET Core.

	What command downloads dependent packages for a project?The dnu restore or dotnet restore commands downloads dependent packages for a project.

	What file does project directory require in order to restore packages?The project.json file is required in project directory in order to restore packages.

	What command will show the currently installed versions of .NET?The dnvm list -detailed command will show the currently installed versions of .NET.

	What command will switch to a different version of .NET?The dnvm use [parameters] command will switch to a different version of .NET.

Chapter 16 – Building a Quiz

	How many web apps can you host in Microsoft Azure for free?10

	Does Microsoft Azure only support Windows as a host operating system?No. You can create Virtual Machines to host Linux, Docker, and other operating systems.

	What options does Microsoft Azure offer for data storage?The following options are what Microsoft Azure offers for data storage:
	Azure Storage: For schema-less entities, blobs, and files
	Azure Redis for distributed caching and general entity storage
	Azure DocumentDb for schema-less JSON entities
	Azure SQL Database for relational data
	Azure Data Lake for hybrid storage and analysis

Appendix B. Creating a Virtual Machine for Your Development Environment

This appendix shows you how to set up a virtual machine hosted in Microsoft Azure to use as a development environment.
The most popular, client, non-Microsoft operating system is Apple's Mac OS X, so that's what I will use in these instructions.
You can use any operating system, such as Ubuntu 14.04, that has the ability to make a connection to a virtual machine using Microsoft's Remote Desktop Protocol (RDP).
This chapter covers the following topics:
	Signing up for a Microsoft account
	Creating a Microsoft Azure subscription
	Creating a virtual machine
	Connecting a virtual machine using remote desktop
	Supporting other platforms

Signing up for a Microsoft account

If you already have a Microsoft account, for example, a Hotmail, MSN, Live, or Passport account, then you can choose to use that. Even if you do, you might choose to create a new account just for experimenting with Microsoft Azure.
You can sign up for a Microsoft account at https://signup.live.com/.

Creating a Microsoft Azure subscription

You can sign in to a Microsoft Azure account at https://azure.microsoft.com/en-us/account/, you will see the the Manage your Azure account page as shown in the following screenshot:
[image: Creating a Microsoft Azure subscription]

Click on
Usage and billing and then sign in with your Microsoft account.
[image: Creating a Microsoft Azure subscription]

Once you have signed in, you need to create an Azure subscription. Click on Sign up for a free trial at the bottom of this page.
[image: Creating a Microsoft Azure subscription]

Enter your details in the About you section and complete the Verification by phone section.
[image: Creating a Microsoft Azure subscription]

You will also need to verify your identity using your credit or debit card.
You can then click on the Sign up button.
[image: Creating a Microsoft Azure subscription]

It will take a few minutes to get things ready for you.
[image: Creating a Microsoft Azure subscription]

Finally, your subscription will be ready for you to use, as shown in the following screenshot:
[image: Creating a Microsoft Azure subscription]

Managing your Microsoft Azure account

Click on
Start managing my service or use your browser to navigate to https://portal.azure.com/.
[image: Managing your Microsoft Azure account]

This is the modern Microsoft Azure portal with a customizable dashboard that allows you to manage all your resources that are hosted in Azure. Tiles can be added to the dashboard, resized and rearranged, and can be removed by clicking on the Edit button.

Creating a virtual machine

On the left-hand side of the Azure Portal's Dashboard, click on the + New option and then click on Compute to see a list of common operating systems that you can choose to hosted on a virtual machine in Azure.
Click inside the Search the marketplace box to search for, and select, the Visual Studio Community 2015 with Update 1 on Microsoft Windows Server 2012 R2 option, as shown in the following screenshot.
[image: Creating a virtual machine]

Note
Microsoft does not offer Windows 10 as an operating system for hosting in Microsoft Azure unless you are an MSDN subscriber. Unfortunately, that means you will not be able to complete the hands-on practical exercises in Chapter 13, Building Universal Windows Platform Apps Using XAML, but you will be able to complete all the other chapters.

Ensure that
Resource Manager is selected as the deployment model and then click on the Create button.
[image: Creating a virtual machine]

Tip
Microsoft Azure has two deployment models—the old Azure Service Management (ASM) and the new
Azure Resource Manager (ARM). You can read more about the differences at https://azure.microsoft.com/en-gb/documentation/articles/resource-manager-deployment-model/.

Complete the
Basics blade. You will need to choose the following:
	A machine name (make a note because you will need this later)
	A username and password to log in with (you will need this later)
	A resource group (to manage the virtual machine and other resources)
	A data center location

[image: Creating a virtual machine]

Click on OK on the Basics blade.
Complete the Size blade by choosing the capabilities of your virtual machine and then click on Select.
Note
The prices shown are estimates of monthly cost, including license fees for the software such as the Windows operating system. You will only be charged per minute of compute time. An average month has 43,200 minutes, so for a virtual machine and its software costing £117.26 per month, you would be charged about five pence for twenty minutes' use once your free trial has expired.

[image: Creating a virtual machine]

In the Settings blade, you can choose storage, network, and monitoring options. The defaults are usually sufficient.
[image: Creating a virtual machine]

On the Summary blade, select Create to start deployment.
[image: Creating a virtual machine]

After a few minutes, your
Dashboard will show the new virtual machine.
[image: Creating a virtual machine]

Connecting to your virtual machine using remote desktop

To connect to a Microsoft Azure virtual machine, you can install Microsoft Remote Desktop from the Apple Mac OS X App Store.
[image: Connecting to your virtual machine using remote desktop]

Tip
Any remote desktop software that supports Microsoft's RDP will work from any operating system.

On the Dashboard window, click on All resources, and then click on the virtual machine you created earlier.
[image: Connecting to your virtual machine using remote desktop]

If your virtual machine does not have Running as the status, then click on Start.
Wait for the virtual machine to start. Click on Connect to download an RDP file.
[image: Connecting to your virtual machine using remote desktop]

Double-click on the RDP file to connect to the virtual machine.
[image: Connecting to your virtual machine using remote desktop]

Click on Continue to accept the certificate.
Log in by entering the user name machinename\username and the password, which you chose when creating the virtual machine earlier, and then click on OK.
[image: Connecting to your virtual machine using remote desktop]

After logging in, you will have a window into the virtual machine. Click on the Windows Start button and start typing vis to find and run Visual Studio 2015.
When you are finished, the start screen will display a power button that allows the remote desktop window to disconnect or shut down.
Click on the power button and then click on Shut down.
[image: Connecting to your virtual machine using remote desktop]

After the remote desktop window closes, return to the Azure portal. Note the orange warning that states that even though the virtual machine is shut down, it is still incurring charges because it is still using some resources.
[image: Connecting to your virtual machine using remote desktop]

Click on Stop and then click on Yes to stop the virtual machine fully.
[image: Connecting to your virtual machine using remote desktop]

Wait for the virtual machine to stop.
[image: Connecting to your virtual machine using remote desktop]

Once the virtual machine is stopped, it will have Stopped (deallocated) as the status. This means that you are not being charged for this virtual machine.
[image: Connecting to your virtual machine using remote desktop]

Supporting other platforms

There are Microsoft RDP clients for multiple operating systems, including iOS for iPad. It's pretty cool being able to run the full version of Visual Studio 2015 on an iPad mini!
[image: Supporting other platforms]

Summary

In this appendix, you learned how to use remote software on almost any operating system to connect to a virtual machine running Windows Server and Visual Studio 2015 hosted in Microsoft Azure.

 Index

 A

 	abstraction	about / Talking about OOP

 	access	controlling, with indexers / Controlling access with properties and indexers
	controlling, with properties / Controlling access with properties and indexers
	synchronizing, to shared resources / Synchronizing access to shared resources

 	access modifier keywords	private (default) / Defining fields
	internal / Defining fields
	protected / Defining fields
	internal protected / Defining fields
	public / Defining fields

 	access modifiers (C# programming guide)	reference link / Exercise 6.3 – explore topics

 	ADO.NET	using / Using ADO.NET
	about / Using ADO.NET

 	ADO.NET Entity Framework	about / Using ADO.NET

 	Advanced Encryption Standard (AES)	about / Encrypting and decrypting data

 	AES	used, for encrypting data symmetrically / Encrypting symmetrically with AES

 	AesManaged	about / Encrypting and decrypting data

 	aggregation	about / Talking about OOP

 	alternative C# IDEs	using / Using alternative C# IDEs
	MonoDevelop / Using alternative C# IDEs
	JetBrains Project Rider / Using alternative C# IDEs
	Microsoft Visual Studio Code / Using alternative C# IDEs

 	app	creating, for UWP / Creating an app for the Universal Windows Platform

 	application	debugging / Debugging an application
	unit testing / Unit testing an application
	internationalizing / Internationalizing an application
	globalizing / Globalizing an application
	localizing / Localizing an application
	compiling / Downloading dependency packages and compiling

 	arguments	reading / Reading arguments and working with arrays

 	arithmetic operators	about / Experimenting with arithmetic operators

 	array	multiple values, storing in / Storing multiple values in an array

 	arrays	working with / Reading arguments and working with arrays

 	ASP.NET Core	about / Understanding ASP.NET Core
	client-side web development / Client-side web development
	scenarios / Taking ASP.NET Core further
	parameters, passing with route value / Passing parameters using a route value
	parameters, passing with query string / Passing parameters using a query string
	models, annotating / Annotating models
	installing / Installing Visual Studio Code and ASP.NET Core, Installing ASP.NET Core and the .NET Version Manager
	used, for building cross-platform web apps / Building cross-platform web applications using ASP.NET Core

 	ASP.NET Core 1.0	about / ASP.NET Core 1.0

 	ASP.NET Core application	exploring / Exploring the parts of an ASP.NET Core web application

 	ASP.NET Core controllers	about / ASP.NET Core controllers
	responsibilities / ASP.NET Core controllers
	Home controller's actions, defining / Defining the Home controller's actions

 	ASP.NET Core models	about / ASP.NET Core models
	Entity models, creating for Northwind / Create Entity models for Northwind
	Entity Framework Core, configuring as service / Configure Entity Framework Core as a service
	view models, creating for requests / Create view models for requests
	model, fetching in controller / Fetch the model in the controller

 	ASP.NET Core startup	about / ASP.NET Core startup
	default route / Understanding the default route

 	ASP.NET Core views	about / ASP.NET Core views
	Home controller's views, rendering / Rendering the Home controller's views
	layouts, sharing between views / Sharing layouts between views
	custom styles, defining / Defining custom styles
	typed view, defining / Defining a typed view

 	ASP.NET Core web API	about / ASP.NET Core Web API
	API controller, scaffolding / Scaffolding an API controller
	Web API service, calling from UWP app / Calling a Web API service from a UWP app

 	ASP.NET Core web apps	hosting, in Microsoft Azure / Hosting ASP.NET Core web apps in Microsoft Azure

 	ASP.NET MVC	about / Understanding ASP.NET Core

 	ASP.NET Web API	about / Understanding ASP.NET Core

 	ASP.NET web application	publishing, to web app / Publishing an ASP.NET web application to the Web App

 	ASP.NET Web Forms	about / Understanding ASP.NET Core

 	ASP.NET XML Web Services	about / Understanding ASP.NET Core

 	assemblies	using / Using assemblies and namespaces
	about / Assemblies
	referencing / Referencing an assembly
	browsing / Browsing assemblies and namespaces

 	assemblies, and namespaces	relating / Relating assemblies and namespaces

 	Assemblies and the Global Assembly Cache (C# and Visual Basic)	reference link / Exercise 4.3 – explore topics

 	assembly references	example / An example of assembly references

 	asymmetric	about / Keys and key sizes

 	async keyword	about / The async and await keywords

 	authentication	about / Understanding the vocabulary of protection, Authenticating and authorizing users

 	authorization	about / Understanding the vocabulary of protection, Authorizing with Windows

 	await, in catch blocks	about / await in catch blocks

 	await keyword	about / The async and await keywords

 	Azure account	registering / Register an Azure account

 	Azure portal	reference / Register an Azure account

 	Azure Resource Manager (ARM) / Creating a virtual machine

 	Azure Service Management (ASM) / Creating a virtual machine

 	Azure web app	creating / Create an Azure web app

B

 	Banker's Rounding / Rounding numbers

 	base class	about / Talking about OOP

 	Base Class Libraries (BCL)	about / Using assemblies and namespaces, Base Class Libraries and CoreFX

 	binary number system / Storing numbers

 	blocks	about / Blocks, IVs and block sizes

 	block sizes	about / IVs and block sizes

 	bool (C# Reference)	reference link / Exercise 2.3 – explore topics

 	Boolean operators	about / Comparison and Boolean operators

 	Booleans	storing / Storing Booleans

 	break mode / Setting a breakpoint

 	breakpoint	setting / Setting a breakpoint
	customizing / Customizing breakpoints

 	bridge	about / Choosing a .NET data provider

 	byte arrays	strings, encoding as / Encoding strings as byte arrays

C

 	C#	basics / Understanding C# basics
	keywords / The C# vocabulary

 	C# Interactive	experimenting with / Experimenting with C# Interactive

 	C# Keywords	reference link / Exercise 2.3 – explore topics

 	C# keywords	relating, to .NET types / Relating C# keywords to .NET types

 	C# Operators	reference link / Exercise 2.3 – explore topics

 	casting	from numbers to numbers / Casting from numbers to numbers

 	Casting and Type Conversions (C# Programming Guide)	reference link / Exercise 3.5 – explore topics

 	casting exceptions	hiding / Handling casting exceptions

 	char (C# Reference)	reference link / Exercise 2.3 – explore topics

 	Checked and Unchecked (C# Reference)	reference link / Exercise 3.5 – explore topics

 	checked statement	about / The checked statement

 	child tasks	about / Nested and child tasks

 	class	defining / Defining a class
	instantiating / Instantiating a class

 	classes	splitting, partial used / Splitting classes using partial
	inheriting from / Inheriting from classes
	extending / Extending classes

 	Classes (C# Programming Guide)	reference link / Exercise 7.3 – explore topics

 	classic ASP.NET	versus modern ASP.NET Core / Classic ASP.NET versus modern ASP.NET Core

 	class libraries	building / Building class libraries
	creating, for sharing code / Creating a class library to share code

 	Cleaning Up Unmanaged Resources	reference link / Exercise 7.3 – explore topics

 	client-server applications	scalability, improving for / Improving scalability for client-server applications

 	client-side web development, ASP.NET Core	HTML5 / Client-side web development
	CSS3 / Client-side web development
	JavaScript / Client-side web development

 	CLI tools	about / Understanding the CLI tools

 	Cloud9	about / Using alternative C# IDEs
	URL / Using alternative C# IDEs

 	code	decompiling, ILDASM used / Decompiling code using ILDASM
	writing / Writing the code
	autoformatting / Autoformatting code
	simplifying, by removing explicit delegate instantiation / Simplifying the code by removing the explicit delegate instantiation
	simplifying, XAML used / Simplifying code using XAML

 	code, compiling with Developer Command Prompt	about / Writing and compiling code using the Developer Command Prompt, Compiling code using the Developer Command Prompt
	code, writing with Notepad / Writing code using Notepad
	compiler errors, fixing / Fixing compiler errors

 	code, compiling with Microsoft Visual Studio 2015	about / Writing and compiling code using Microsoft Visual Studio 2015, Compiling code using Visual Studio
	mistakes, fixing with error list / Fixing mistakes with the error list

 	code, writing with Microsoft Visual Studio 2015	about / Writing code using Visual Studio 2015

 	collections	about / Storing data with collections, Understanding collections
	data, storing with / Storing data with collections
	lists / Lists
	dictionaries / Dictionaries
	stacks / Stacks
	queues / Queues
	sorting / Sorting collections
	old collections, avoiding / Avoiding old collections
	specialized collections, using / Using specialized collections
	used, for storing multiple values / Storing multiple values using collections

 	Collections (C# and Visual Basic)	reference link / Exercise 4.3 – explore topics

 	COM Interop	used, for automating Microsoft Excel / Automating Microsoft Excel using COM Interop

 	command-line tools, .NET Core	.NET Version Manager / Managing .NET Core development with Command Line Tools
	.NET Execution Environment / Managing .NET Core development with Command Line Tools
	.NET Development Utilities / Managing .NET Core development with Command Line Tools
	.NET CLI / Managing .NET Core development with Command Line Tools

 	Command Line Tools	.NET Core development, managing with / Managing .NET Core development with Command Line Tools
	used, for creating .NET Core application / Creating a .NET Core application using Command Line Tools

 	commands	executing / Executing commands and reading result sets

 	common CLI commands	about / Common CLI commands

 	common DNX commands	about / Common DNX commands

 	Common Language Runtimes (CLR)	about / Using assemblies and namespaces

 	Community Edition	about / Using Visual Studio 2015 on Windows 10

 	comparer	defining / Defining a separate comparer

 	comparison operators	about / Comparison and Boolean operators

 	compile-time check	about / The unchecked statement

 	compiled assemblies	disassembling / Disassembling compiled assemblies

 	compiler symbols	configuring, for .NET Framework / Configuring compiler symbols for .NET Framework
	defining, for .NET Core / Defining compiler symbols for .NET Core
	checking / Checking compiler symbols

 	Component Object Model (COM) Interop / Interoperating with unmanaged code

 	Composite Formatting	reference link / Exercise 2.3 – explore topics

 	composition	about / Talking about OOP

 	configuration	connection string, loading from / Loading a connection string from configuration

 	connection string	loading, from configuration / Loading a connection string from configuration

 	console, in C# 6	usage, simplifying of / Simplifying the usage of the console in C# 6

 	console application	building / Building a console application
	source files, creating / Creating the source files
	code, editing / Editing the code

 	console applications	building / Building console applications

 	Console Class	reference link / Exercise 2.3 – explore topics

 	constants	about / Defining a class
	reasons, for avoiding / Making a field constant

 	constructors	about / Defining a class
	fields, initializing with / Initializing fields with constructors

 	constructors (C# programming guide)	reference link / Exercise 6.3 – explore topics

 	content	string, checking for / Checking a string for content

 	continuation tasks / Waiting for tasks

 	controls	reference link / Choosing common controls

 	control template	replacing / Replacing a control template

 	convert type	using / Using the Convert type

 	CoreCLR	about / Understanding the .NET Core platform, Using assemblies and namespaces

 	CoreFX	about / Understanding the .NET Core platform, Using assemblies and namespaces, Base Class Libraries and CoreFX

 	cross-device Universal Windows Platform (UWP)	about / Cross-device Universal Windows Platform (UWP)

 	cross-platform development	about / Understanding cross-platform development
	Visual Studio Code / Visual Studio Code
	.NET Core 1.0 / .NET Core 1.0
	ASP.NET Core 1.0 / ASP.NET Core 1.0
	Entity Framework Core 1.0 (EF Core) / Entity Framework Core 1.0
	.NET Native / .NET Native
	Xamarin / Xamarin
	cross-device Universal Windows Platform (UWP) / Cross-device Universal Windows Platform (UWP)

 	cross-platform web apps	building, ASP.NET Core used / Building cross-platform web applications using ASP.NET Core

 	cryptographic service provider (CSP)	about / Encrypting and decrypting data

 	Custom Date and Time Format Strings	reference link / Exercise 2.3 – explore topics

 	Custom Numeric Format Strings	reference link / Exercise 2.3 – explore topics

D

 	data	storing, with collections / Storing data with collections
	storing, with fields / Storing data with fields
	manipulating, with Entity Data Models / Manipulating data with Entity Data Models
	encrypting / Encrypting and decrypting data
	decrypting / Encrypting and decrypting data
	encrypting, symmetrically with AES / Encrypting symmetrically with AES
	hashing / Hashing data
	hashing, with SHA256 / Hashing with SHA256
	signing / Signing data
	signing, with SHA256 / Signing with SHA256 and RSA
	signing, with RSA / Signing with SHA256 and RSA

 	data binding	about / Data binding
	to elements / Binding to elements
	to data / Binding to data

 	Data Encryption Standard (DES)	about / Encrypting and decrypting data

 	Debug and Trace	monitoring with / Monitoring with Debug and Trace

 	debugging	about / Debugging and diagnostics

 	debugging toolbar	about / The debugging toolbar

 	debugging tools	about / Debugging an application

 	debugging windows	about / Debugging windows

 	decimal (C# Reference)	reference link / Exercise 2.3 – explore topics

 	decimal number system / Storing numbers

 	decryption	about / Understanding the vocabulary of protection

 	default model binder / Passing parameters using a route value

 	default trace listener	writing to / Writing to the default trace listener

 	delegates	used, for calling methods / Calling methods using delegates

 	delegates (C# programming guide)	reference link / Exercise 6.3 – explore topics

 	dependency packages	downloading / Downloading dependency packages and compiling

 	DESCryptoServiceProvider	about / Encrypting and decrypting data

 	deserialization	about / Serializing object graphs

 	design pattern	about / Design patterns

 	Design Patterns	reference link / Exercise 3.5 – explore topics

 	Destructors (C# Programming Guide)	reference link / Exercise 7.3 – explore topics

 	Developer Command Prompt for VS2015 / Writing and compiling code using the Developer Command Prompt

 	development environment	setting up / Setting up your development environment

 	diagnostics	about / Debugging and diagnostics

 	dictionaries	about / Dictionaries
	working with / Working with dictionaries

 	Dictionary<TKey, TValue> Class	reference link / Exercise 4.3 – explore topics

 	directories	managing / Managing directories

 	disposal	simplifying, with using statement / Simplifying disposal with the using statement

 	Dispose method	about / Ensuring that dispose is called

 	DLL (dynamic link library) / Referencing an assembly

 	dnx451	about / Editing the code

 	dnxcore50	about / Editing the code

 	DNX tools	about / Understanding the DNX tools

 	do-while statement	about / The do-while statement

 	Docker	about / Using alternative C# IDEs

 	double, and decimal	comparing / Comparing double and decimal

 	double-precision floating point / Storing numbers

 	DuckDuckGo	about / StackOverflow
	URL / StackOverflow

 	dynamic type / The dynamic type

E

 	EF annotation attributes	about / EF annotation attributes

 	EF Code First conventions	about / EF Code First conventions

 	efficiency	measuring, of processing strings / Measuring the efficiency of processing strings

 	efficiency of types, evaluating	functionality / Evaluating the efficiency of types
	memory size / Evaluating the efficiency of types
	performance / Evaluating the efficiency of types
	future needs / Evaluating the efficiency of types

 	EF Fluent API	about / EF Fluent API

 	emulators	testing in / Testing in emulators

 	encapsulation	about / Talking about OOP

 	encoding	ASCII / Encoding text
	UTF-8 / Encoding text
	UTF-16 / Encoding text
	ANSI/ISO encodings / Encoding text

 	encryption	about / Understanding the vocabulary of protection

 	entities	inserting / Inserting entities
	updating / Updating entities
	lazy loading / Lazy loading entities
	eager loading / Eager loading entities
	explicit loading / Explicit loading entities
	filtering, with Where extension method / Filtering entities with Where
	sorting, with OrderBy / Sorting sequences with OrderBy
	sorting by multiple properties, with ThenBy method / Sorting by multiple properties with the ThenBy method
	projecting, with Select statement / Projecting entities with Select statement

 	Entity Data Model	querying / Querying an Entity Data Model

 	Entity Data Models	data, manipulating with / Manipulating data with Entity Data Models

 	Entity Framework (EF)	about / Using Entity Framework 6

 	Entity Framework 6	using / Using Entity Framework 6

 	Entity Framework 6 model	building / Building an Entity Framework 6 model

 	Entity Framework 6.1.3 (EF6)	about / Using Entity Framework 6

 	Entity Framework Code First models	about / Entity Framework Code First models

 	Entity Framework Core	using / Using Entity Framework Core

 	Entity Framework Core 1.0 (EF Core)	about / Using Entity Framework 6, Entity Framework Core 1.0
	pros / Using Entity Framework 6
	cons / Using Entity Framework 6

 	enumerable class	sequence, extending with / Extending sequences with the Enumerable class

 	enum keyword	used, for storing value / Storing a value using the enum keyword

 	events	about / Defining a class
	raising / Raising and handling events
	handling / Raising and handling events
	defining / Defining events

 	events (C# programming guide)	reference link / Exercise 6.3 – explore topics

 	exception	inheriting from / Inheriting from the Exception class

 	Exception Handling Statements (C# Reference)	reference link / Exercise 3.5 – explore topics

 	exceptions	handling / Handling exceptions
	all exceptions, catching / Catching all exceptions
	specific exceptions, catching / Catching specific exceptions

 	explicit casting / Explicit casting

 	explicit transaction	defining / Defining an explicit transaction

 	eXtensible Markup Language (XML)	about / Serializing object graphs

 	extension methods / Extending types when you can't inherit	used, for reusing functionality / Using extension methods to reuse functionality

F

 	fields	about / Defining a class
	specialized fields / Defining a class
	data, storing with / Storing data with fields
	defining / Defining fields
	static, making / Making a field static
	constant, making / Making a field constant
	read only, making / Making a field read only
	initializing, with constructors / Initializing fields with constructors

 	fields (C# programming guide)	reference link / Exercise 6.3 – explore topics

 	file information	obtaining / Getting file information

 	files	managing / Managing files
	text, encoding in / Encoding and decoding text in files
	text, decoding in / Encoding and decoding text in files

 	filesystem	managing / Managing the filesystem

 	finalizer	about / Releasing unmanaged resources

 	finally statement	about / The finally statement

 	FizzBuzz	about / Exercise 3.3 – practice loops and operators
	references / Exercise 3.3 – practice loops and operators

 	flags	about / Storing a value using the enum keyword

 	Floating-Point Types Table (C# Reference)	reference link / Exercise 2.3 – explore topics

 	foreach statement	about / The foreach statement
	working / How does the foreach statement actually work?

 	for statement	about / The for statement

 	framework design guidelines	reference link / Exercise 6.3 – explore topics

 	functionality	static methods, used for reusing / Using static methods to reuse functionality
	extension methods, used for reusing / Using extension methods to reuse functionality

 	function streams	about / Reading and writing with streams
	CryptoStream class / Reading and writing with streams
	GZipStream class / Reading and writing with streams
	DeflateStream class / Reading and writing with streams
	AuthenticatedStream class / Reading and writing with streams

G

 	garbage collection	about / Google

 	garbage collector (GC) / Monitoring performance and memory use

 	generics	about / Working with lists

 	Git	about / Managing source code with GitHub

 	GitHub	source code, managing with / Managing source code with GitHub

 	GitHub repository	cloning / Cloning a GitHub repository
	managing / Managing a GitHub repository

 	Global Assembly Cache (GAC)	about / Assemblies

 	globalization	about / Internationalizing an application

 	Google	about / Google

 	Google Advanced Search	reference link / Exercise 3.5 – explore topics

 	grok	reference link / Polymorphism

 	grouping	about / Joining and grouping

 	GUI	creating, that blocks / Creating a GUI that blocks
	creating, that doesn't block / Creating a GUI that doesn't block

 	GZIP	about / Compressing streams

H

 	hash algorithm, selecting factors	collision resistance / Hashing data
	preimage resistance / Hashing data

 	hashes	about / Understanding the vocabulary of protection

 	hashing algorithms	MD5 / Hashing data
	SHA1 / Hashing data
	SHA256 / Hashing data
	SHA384 / Hashing data
	SHA512 / Hashing data

 	heap memory	about / Managing memory with reference and value types

 	helper classes, streams	StreamReader / Reading and writing with streams
	StreamWriter / Reading and writing with streams
	XmlReader / Reading and writing with streams
	XmlWriter / Reading and writing with streams
	BinaryReader / Reading and writing with streams
	BinaryWriter / Reading and writing with streams

 	help section	about / Looking for help
	Microsoft Developer Network (MSDN) / MSDN
	Go to definition / Getting the definition of code
	StackOverflow / StackOverflow
	Google / Google

 	Homebrew	installing / Installing Homebrew

 	HTML5 Web Application Development By Example	reference link / Client-side web development

 	HTTP	about / The HyperText Transfer Protocol (HTTP)
	aspects / The HyperText Transfer Protocol (HTTP)

I

 	IComparable<T> Interface	reference link / Exercise 7.3 – explore topics

 	IDisposable Interface	reference link / Exercise 7.3 – explore topics

 	if-else statement / The if-else statement

 	ILDASM	used, for decompiling code / Decompiling code using ILDASM

 	ILSpy	about / Disassembling compiled assemblies

 	implicit casting / Implicit casting

 	implicit transaction	about / Transactions

 	indexers	about / Defining a class
	access, controlling with / Controlling access with properties and indexers
	defining / Defining indexers

 	indexers (C# programming guide)	reference link / Exercise 6.3 – explore topics

 	inheritance	about / Talking about OOP
	preventing / Preventing inheritance and overriding

 	Inheritance (C# Programming Guide)	reference link / Exercise 7.3 – explore topics

 	inheritance hierarchies	casting within / Casting within inheritance hierarchies

 	initialization vector (IV)	about / IVs and block sizes
	generating / Generating keys and IVs

 	input	obtaining, from user / Getting input from the user

 	installed versions	listing, of .NET / Listing the installed versions of .NET

 	installing	.NET Portability Analyzer / Installing the .NET Portability Analyzer
	.NET Command Line Tools / Installing the .NET Command Line Tools
	Web Essentials 2015 / Install Web Essentials 2015
	Visual Studio Code / Installing Visual Studio Code and ASP.NET Core, Installing Visual Studio Code
	ASP.NET Core / Installing Visual Studio Code and ASP.NET Core, Installing ASP.NET Core and the .NET Version Manager
	Homebrew / Installing Homebrew
	.NET Version Manager / Installing ASP.NET Core and the .NET Version Manager
	Yeoman / Installing Yeoman and related tools

 	Integral Types Table (C# Reference)	reference link / Exercise 2.3 – explore topics

 	Interactive Development Environment (IDE)	about / Setting up your development environment

 	interfaces	implementing / Implementing interfaces
	IComparable / Common interfaces
	IComparer / Common interfaces
	IDisposable / Common interfaces
	IFormattable / Common interfaces
	IFormatter / Common interfaces

 	Interfaces (C# Programming Guide)	reference link / Exercise 7.3 – explore topics

 	intermediate language (IL) / Using assemblies and namespaces

 	internationalization	about / Internationalizing an application

 	International Standards Organization (ISO) codes	about / Internationalizing an application

 	Internet Information Services (IIS) 8.0 / The HyperText Transfer Protocol (HTTP)

 	intersect	about / Sets, Working with sets

 	isolation level	ReadUncommitted / Transactions
	ReadCommitted / Transactions
	RepeatableRead / Transactions
	Serializable / Transactions
	Snapshot / Transactions

 	iteration statements	about / Iteration statements
	while statement / The while statement
	do-while statement / The do-while statement
	for statement / The for statement
	foreach statement / The foreach statement

 	Iteration Statements (C# Reference)	reference link / Exercise 3.5 – explore topics

J

 	JavaScript Object Notation (JSON)	about / Serializing object graphs

 	JetBrains Project Rider	about / Using alternative C# IDEs
	URL / Using alternative C# IDEs

 	joining	about / Joining and grouping

 	JSON	object graphs, serializing with / Serializing with JSON

K

 	key	about / Keys and key sizes

 	keys	generating / Generating keys and IVs

 	key sizes	about / Keys and key sizes

 	keywords / Writing code using Visual Studio 2015

L

 	lambda expression	targeting / Targeting a lambda expression
	about / Targeting a lambda expression

 	language compilers	about / Using assemblies and namespaces

 	languages features in C# 6 and VB 14	reference link / Exercise 2.3 – explore topics

 	length	obtaining, of string / Getting the length of a string

 	LINQ	extension methods / Writing LINQ queries
	providers / Writing LINQ queries
	lambda expressions / Writing LINQ queries
	query comprehension syntax / Writing LINQ queries

 	LINQ extension methods	creating / Creating your own LINQ extension methods

 	LINQ queries	writing / Writing LINQ queries

 	LINQ query comprehension syntax	about / Sweetening the syntax with syntactic sugar

 	LINQ to XML	working with / Working with LINQ to XML
	used, for generating XML / Generating XML using LINQ to XML
	used, for reading XML / Reading XML by using LINQ to XML

 	Linux	about / Using alternative C# IDEs

 	List<T> Class	reference link / Exercise 4.3 – explore topics

 	lists	about / Lists
	working with / Working with lists

 	loading patterns	about / Loading patterns with EF
	lazy loading / Loading patterns with EF
	eager loading / Loading patterns with EF
	explicit loading / Loading patterns with EF

 	local accounts	managing / Managing local accounts

 	localization	about / Internationalizing an application

 	local variables	about / Local variables
	type, inferring of / Inferring the type of a local variable

 	lock statement	about / Understanding the lock statement

M

 	members	hiding / Hiding members
	overriding / Overriding members

 	memory	managing, with reference type / Managing memory with reference and value types
	managing, with value type / Managing memory with reference and value types

 	memory use	monitoring / Monitoring performance and memory use

 	method parameters (C# reference)	reference link / Exercise 6.3 – explore topics

 	methods	about / Verbs are methods, Defining a class
	counting / Counting types and methods
	specialized methods / Defining a class
	calling / Writing and calling methods
	writing / Writing and calling methods
	overloading / Overloading methods
	simplifying, with operators / Simplifying methods with operators
	calling, delegates used / Calling methods using delegates

 	methods (C# programming guide)	reference link / Exercise 6.3 – explore topics

 	Microsoft account	signing up for / Signing up for a Microsoft account
	URL / Signing up for a Microsoft account

 	Microsoft Azure	ASP.NET Core web apps, hosting in / Hosting ASP.NET Core web apps in Microsoft Azure

 	Microsoft Azure account	URL / Creating a Microsoft Azure subscription
	managing / Managing your Microsoft Azure account

 	Microsoft Azure subscription	creating / Creating a Microsoft Azure subscription

 	Microsoft Core Library	referencing / Referencing Microsoft Core Library

 	Microsoft Core Library (mscorlib) / Disassembling compiled assemblies

 	Microsoft Excel	automating, COM Interop used / Automating Microsoft Excel using COM Interop

 	Microsoft SQL Server LocalDb	connecting to / Connecting to Microsoft SQL Server LocalDb

 	Microsoft Visual Studio 2015	installing / Installing Microsoft Visual Studio 2015
	default installation, selecting / Choosing the default installation
	custom installation, selecting / Choosing the custom installation
	installation, completing / Completing the installation

 	Microsoft Visual Studio Code	about / Using alternative C# IDEs
	URL / Using alternative C# IDEs

 	modern ASP.NET Core	versus classic ASP.NET / Classic ASP.NET versus modern ASP.NET Core

 	Mono	about / Understanding the Mono project

 	Mono, to .NET Core	switching from / Switching from Mono to .NET Core

 	MonoDevelop	about / Using alternative C# IDEs
	URL / Using alternative C# IDEs

 	Mono project	about / Understanding the Mono project
	reference link / Understanding the Mono project

 	multiple actions	running, asynchronously / Running multiple actions synchronously

 	multiple threads	using, with parallel LINQ (PLINQ) / Using multiple threads with Parallel LINQ
	resource, accessing from / Accessing a resource from multiple threads

 	multiple values	storing, in array / Storing multiple values in an array
	storing, collections used / Storing multiple values using collections

 	mutually exclusive lock	applying, to resource / Applying a mutually exclusive lock to a resource

N

 	.NET	streamlining / Streamlining .NET
	future / The future of .NET
	about / Comparing .NET Framework with .NET Core
	installed versions, listing of / Listing the installed versions of .NET

 	.NET Blog	reference link / Exercise 4.3 – explore topics

 	.NET CLI	about / Managing .NET Core development with Command Line Tools

 	.NET Command Line Tools	installing / Installing the .NET Command Line Tools

 	.NET Core	about / Understanding .NET Framework, .NET Core, and .NET Native, Understanding the .NET Core platform
	targeting / Targeting the .NET Core
	used, for creating projects / Creating new projects for the .NET Core
	.NET Framework, comparing with / Comparing .NET Framework with .NET Core
	compiler symbols, defining for / Defining compiler symbols for .NET Core

 	.NET Core 1.0	about / .NET Core 1.0

 	.NET Core application	creating, Command Line Tools used / Creating a .NET Core application using Command Line Tools
	creating, Visual Studio 2015 used / Creating a .NET Core application using Visual Studio 2015

 	.NET Core command-line tools	about / Understanding the .NET Core command-line tools
	DNX tools / Understanding the DNX tools
	CLI tools / Understanding the CLI tools

 	.NET Core development	managing, with Command Line Tools / Managing .NET Core development with Command Line Tools

 	.NET data provider	selecting / Choosing a .NET data provider

 	.NET Development Utilities	about / Managing .NET Core development with Command Line Tools

 	.NET Execution Environment	about / Managing .NET Core development with Command Line Tools

 	.NET Framework	about / Understanding .NET Framework, .NET Core, and .NET Native, Understanding .NET Framework platform
	comparing, with .NET Core / Comparing .NET Framework with .NET Core
	compiler symbols, configuring for / Configuring compiler symbols for .NET Framework

 	.NET Framework class library	reference link / Exercise 6.3 – explore topics

 	.NET Native	about / Understanding .NET Framework, .NET Core, and .NET Native, .NET Native

 	.NET Native compiler	about / Understanding the .NET Native platform

 	.NET Portability Analyzer	about / Understanding the .NET Portability Analyzer
	installing / Installing the .NET Portability Analyzer
	configuring / Configuring the .NET Portability Analyzer
	solution, analyzing / Analyzing a solution
	reference link / Analyzing a solution

 	.NET technologies	comparing / Comparing .NET technologies

 	.NET types	C# keywords, relating to / Relating C# keywords to .NET types
	extending / Inheriting and extending .NET types
	inheriting / Inheriting and extending .NET types

 	.NET Version Manager	about / Managing .NET Core development with Command Line Tools
	installing / Installing ASP.NET Core and the .NET Version Manager

 	named and optional arguments (C# programming guide)	reference link / Exercise 6.3 – explore topics

 	named arguments	about / Optional parameters and named arguments

 	named method	targeting / Targeting a named method

 	Namespace Keywords (C# Reference)	reference link / Exercise 3.5 – explore topics

 	namespaces	about / Writing code using Visual Studio 2015, Namespaces
	importing / Importing a namespace, Importing a namespace
	using / Using assemblies and namespaces
	browsing / Browsing assemblies and namespaces

 	namespaces, for collections	System.Collections / Storing data with collections
	System.Collections.Generic / Storing data with collections

 	native	about / Choosing a .NET data provider

 	nested tasks	about / Nested and child tasks

 	New Technology LAN Manager (NTLM) / Authenticating with Windows

 	Newtonsoft's JSON.NET	reference link / Serializing with JSON

 	Node Package Manager (npm)	reference link / Installing Yeoman and related tools

 	Northwind.sql file	download link / The Northwind sample database

 	Northwind sample database	about / The Northwind sample database

 	nouns	about / Nouns are types, fields, and variables

 	Nullable Types (C# Programming Guide)	reference link / Exercise 2.3 – explore topics

 	numbers	storing / Storing numbers
	rounding / Rounding numbers

O

 	object	about / Talking about OOP

 	object-relational mapping (ORM)	about / Using Entity Framework 6

 	Object Browser	about / Browsing assemblies and namespaces

 	object graphs	serializing / Serializing object graphs
	serializing, with XML / Serializing with XML
	deserializing, with XML / Deserializing with XML
	serializing, with JSON / Serializing with JSON
	serializing, with other formats / Serializing with other formats
	serializing, with runtime serializers / Serializing with runtime serializers

 	objects	comparing, when sorting / Comparing objects when sorting

 	object type / The object type

 	old collections	avoiding / Avoiding old collections

 	OOP	about / Talking about OOP

 	operations	atomic, making / Making operations atomic

 	operator (C# reference)	reference link / Exercise 6.3 – explore topics

 	operators	about / Operating on variables, Defining a class
	unary operators / Experimenting with unary operators
	arithmetic operators / Experimenting with arithmetic operators
	comparison operators / Comparison and Boolean operators
	Boolean operators / Comparison and Boolean operators
	methods, simplifying with / Simplifying methods with operators

 	optional parameters	about / Optional parameters and named arguments

 	OrderBy	entities, sorting with / Sorting sequences with OrderBy

 	output	displaying, to user / Displaying output to the user

 	overflow	checking for / Checking for overflow

 	overloading	about / Verbs are methods

 	overriding	preventing / Preventing inheritance and overriding

P

 	P/Invoke	Win32 API, accessing with / Accessing the Win32 API with P/Invoke

 	parallel LINQ (PLINQ)	about / Using multiple threads with Parallel LINQ
	multiple threads, using with / Using multiple threads with Parallel LINQ

 	partial	used, for splitting classes / Splitting classes using partial

 	password-based key derivation function (PBKDF2)	about / Generating keys and IVs

 	paths	managing / Managing paths

 	pattern matching	with regular expressions / Validating input with regular expressions

 	patterns & practices group, Microsoft	about / Design patterns
	reference link / Exercise 3.5 – explore topics

 	performance	monitoring / Monitoring performance and resource usage, Monitoring performance and memory use

 	Platform Invoke (P/Invoke)	about / Interoperating with unmanaged code

 	platforms	supporting / Supporting other platforms

 	POCO (Plain Old CLR Object) / Building an Entity Framework 6 model

 	polymorphism	about / Talking about OOP, Polymorphism

 	Polymorphism (C# Programming Guide)	reference link / Exercise 7.3 – explore topics

 	processes	about / Understanding processes and threads

 	processing strings	efficiency, measuring of / Measuring the efficiency of processing strings

 	Process type, members	VirtualMemorySize64 / Monitoring performance and memory use
	WorkingSet64 / Monitoring performance and memory use

 	project	configuring, to use Kestrel / Configuring the project to use Kestrel and .NET Core
	configuring, to use .NET Core / Configuring the project to use Kestrel and .NET Core

 	project.json file	reference link, for documentation / Editing the code

 	projection	about / Projecting entities with Select statement

 	projects	creating, .NET Core used / Creating new projects for the .NET Core
	scaffolding, Yeoman used / Scaffolding projects using Yeoman
	editing, Visual Studio Code used / Editing projects using Visual Studio Code

 	properties	about / Defining a class
	access, controlling with / Controlling access with properties and indexers

 	properties (C# programming guide)	reference link / Exercise 6.3 – explore topics

Q

 	Queue<T> Class	reference link / Exercise 4.3 – explore topics

 	queues	about / Queues

 	quiz	running / Running the quiz

 	quiz application, designing	about / Designing the quiz application
	platform, selecting / Choosing the platform
	functional requirements, deciding / Deciding the functional requirements
	separating concerns / Separating concerns

 	quiz solution	building / Building the quiz solution
	entity models, defining / Defining the entity models
	data repository, creating / Creating the data repository
	web application, creating / Creating the web application
	view models, defining / Defining view models
	sample quiz questions. adding / Adding sample quiz questions
	session state, configuring / Configuring session state
	custom controller actions, adding / Adding custom controller actions
	custom views, adding / Adding custom views

R

 	Razor / ASP.NET Core views

 	RC2CryptoServiceProvider	about / Encrypting and decrypting data

 	read-only fields	about / Defining a class

 	read-only properties	defining / Defining read-only properties

 	real numbers / Storing numbers	storing / Storing real numbers

 	reference type	memory, managing with / Managing memory with reference and value types

 	Reference Types (C# Reference)	reference link / Exercise 7.3 – explore topics

 	reflection	about / Counting types and methods

 	Regex Class	reference link / Exercise 4.3 – explore topics

 	RegExr	reference link / Exercise 4.3 – explore topics

 	Regular Expression Language	reference link / Exercise 4.3 – explore topics

 	regular expressions	about / Validating input with regular expressions
	syntax / The syntax of a regular expression
	examples / Examples of regular expressions
	best practice / Examples of regular expressions

 	Relational Database Management System (RDBMS)	about / Relational Database Management Systems
	connecting to / Connecting to the database

 	remote desktop	used, for connecting virtual machine / Connecting to your virtual machine using remote desktop

 	REPL (read-eval-print loop) / Experimenting with C# Interactive

 	Representational State Transfer (REST) / ASP.NET Core Web API

 	resource	accessing, from multiple threads / Accessing a resource from multiple threads
	mutually exclusive lock, applying to / Applying a mutually exclusive lock to a resource

 	resources	using / Using resources and templates 
	sharing / Sharing resources

 	resource usage	monitoring / Monitoring performance and resource usage

 	result sets	reading / Executing commands and reading result sets

 	RijndaelManaged	about / Encrypting and decrypting data

 	Roslyn	about / Using assemblies and namespaces

 	RSA	data, signing with / Signing with SHA256 and RSA

 	RSACryptoServiceProvider	about / Encrypting and decrypting data

 	runtime serializers	object graphs, serializing with / Serializing with runtime serializers

S

 	salts	about / Salts

 	scalability	improving, for client-server applications / Improving scalability for client-server applications

 	Search Strings Using Regular Expressions	reference link / Exercise 4.3 – explore topics

 	Secure Sockets Layer (SSL) / The if-else statement

 	segments	about / Understanding the default route

 	selection statements	about / Selection statements
	if-else statement / The if-else statement
	switch-case statement / The switch-case statement

 	Selection Statements (C# Reference)	reference link / Exercise 3.5 – explore topics

 	Select statement	entities, projecting with / Projecting entities with Select statement

 	sequence	about / Extending sequences with the Enumerable class
	extending, with enumerable class / Extending sequences with the Enumerable class

 	serialization	about / Serializing object graphs

 	Server Explorer window / Other useful windows

 	sets	about / Sets, Working with sets
	working with / Working with sets

 	settable properties	defining / Defining settable properties

 	SHA256	data, hashing with / Hashing with SHA256
	data, signing with / Signing with SHA256 and RSA

 	shared resources	access, synchronizing to / Synchronizing access to shared resources

 	signatures	about / Understanding the vocabulary of protection

 	simplest ASP.NET Core application	creating / Creating the simplest ASP.NET Core web application

 	single-precision floating point / Storing numbers

 	sizes of numbers, in memory / Sizes of numbers in memory

 	Solution Explorer window / Other useful windows

 	SortedDictionary<TKey, TValue> Class	reference link / Exercise 4.3 – explore topics

 	SortedList<TKey, TValue> Class	reference link / Exercise 4.3 – explore topics

 	source code	managing, with GitHub / Managing source code with GitHub

 	specialized collections	using / Using specialized collections

 	specialized fields	constants / Defining a class
	read-only fields / Defining a class
	events / Defining a class

 	specialized methods	constructors / Defining a class
	properties / Defining a class
	indexers / Defining a class
	operators / Defining a class

 	SQLite	reference link / Editing projects using Visual Studio Code

 	SQL statements	loading / Logging SQL statements

 	Stack<T> Class	reference link / Exercise 4.3 – explore topics

 	stack memory	about / Managing memory with reference and value types

 	StackOverflow	about / StackOverflow
	reference link / Exercise 3.5 – explore topics

 	stacks	about / Stacks

 	Standard Numeric Format Strings	reference link / Exercise 2.3 – explore topics

 	statements	about / Statements

 	statically typed	about / Working with lists

 	static methods	used, for reusing functionality / Using static methods to reuse functionality

 	Stopwatch type, members	Restart method / Monitoring performance and memory use
	Stop method / Monitoring performance and memory use
	Elapsed property / Monitoring performance and memory use
	ElapsedMilliseconds property / Monitoring performance and memory use

 	storage streams	about / Reading and writing with streams
	FileStream / Reading and writing with streams
	MemoryStream / Reading and writing with streams
	NetworkStream / Reading and writing with streams

 	storyboards	animating with / Animating with storyboards

 	Stream class, members	CanRead / Reading and writing with streams
	CanWrite / Reading and writing with streams
	Length / Reading and writing with streams
	Position / Reading and writing with streams
	Close() / Reading and writing with streams
	Flush() / Reading and writing with streams
	Read() / Reading and writing with streams
	ReadByte() / Reading and writing with streams
	Seek() / Reading and writing with streams
	Write() / Reading and writing with streams
	WriteByte() / Reading and writing with streams

 	streams	about / Reading and writing with streams
	reading / Reading and writing with streams
	writing / Reading and writing with streams
	compressing / Compressing streams

 	string	type, converting to / Converting from any type to a string
	converting, to number / Parsing from strings to numbers or dates and times
	converting, to dates / Parsing from strings to numbers or dates and times
	converting, to times / Parsing from strings to numbers or dates and times
	length, obtaining of / Getting the length of a string
	characters, obtaining of / Getting the characters of a string
	splitting / Splitting a string
	part, obtaining of / Extracting part of a string
	checking, for content / Checking a string for content
	building, efficiently / Building strings efficiently

 	string (C# Reference)	reference link / Exercise 2.3 – explore topics

 	StringBuilder Class	reference link / Exercise 4.3 – explore topics

 	String Class	reference link / Exercise 4.3 – explore topics

 	string members	TrimEnd / Other string members
	Trim / Other string members
	TrimStart / Other string members
	ToUpper / Other string members
	ToLower / Other string members
	Insert / Other string members
	Remove / Other string members
	Replace / Other string members
	String.Concat / Other string members
	String.Join / Other string members
	String.IsEmptyOrNull / Other string members
	String.Empty / Other string members

 	strings	encoding, as byte arrays / Encoding strings as byte arrays

 	strongly typed	about / Working with lists

 	struct keyword	defining / Defining a type using the struct keyword

 	Structs (C# Programming Guide)	reference link / Exercise 7.3 – explore topics

 	Structured Query Language (SQL) / Writing LINQ queries

 	subclass	about / Talking about OOP

 	super class	about / Talking about OOP

 	switch-case statement / The switch-case statement

 	symmetric	about / Keys and key sizes

 	synchronization types	ReaderWriterLock / Applying other types of synchronization
	ReaderWriterLockSlim / Applying other types of synchronization
	Mutex / Applying other types of synchronization
	Semaphore / Applying other types of synchronization
	SemaphoreSlim / Applying other types of synchronization
	AutoResetEvent / Applying other types of synchronization
	ManualResetEvent / Applying other types of synchronization

 	syntactic sugar	about / Sweetening the syntax with syntactic sugar

T

 	tasks	running, asynchronously / Running tasks asynchronously
	multiple actions, running asynchronously / Running multiple actions asynchronously using tasks
	writing for / Waiting for tasks
	continuing with / Continuing with another task

 	Team Explorer window / Other useful windows	using / Using the Team Explorer window

 	templates	using / Using resources and templates 

 	text	storing / Storing text, Storing and manipulating text
	manipulating / Storing and manipulating text
	writing to / Writing to text and XML streams
	encoding / Encoding text
	encoding, in files / Encoding and decoding text in files
	deocding, in files / Encoding and decoding text in files

 	ThenBy method	entities, sorting by multiple properties / Sorting by multiple properties with the ThenBy method

 	threads	about / Understanding processes and threads

 	trace levels	switching / Switching trace levels

 	trace listener	about / Monitoring with Debug and Trace

 	trace listeners	configuring / Configuring trace listeners

 	transactions	about / Transactions

 	try-catch statement	about / The try-catch statement

 	type	inferring, of local variable / Inferring the type of a local variable
	converting, to string / Converting from any type to a string

 	types	about / Writing code using Visual Studio 2015
	counting / Counting types and methods
	casting / Casting and converting between types
	converting between / Casting and converting between types
	efficiency, evaluating of / Evaluating the efficiency of types
	documenting / Documenting your types
	extending / Extending types when you can't inherit

 	types, with Async methods	about / Other types with Async methods

U

 	unary operators	about / Experimenting with unary operators

 	unchecked statement	about / The unchecked statement

 	Unicode	about / Encoding text

 	union	about / Working with sets

 	unit of code	creating / Creating a unit of code that needs testing

 	unit test project	creating / Creating a unit test project

 	unit tests	running / Running unit tests

 	unmanaged code	interoperating with / Interoperating with unmanaged code

 	unmanaged resources	about / The finally statement
	releasing / Releasing unmanaged resources

 	user	output, displaying to / Displaying output to the user
	input, obtaining from / Getting input from the user

 	users	authenticating / Authenticating and authorizing users
	authorizing / Authenticating and authorizing users
	authenticating, with Windows / Authenticating with Windows
	authorizing, with Windows / Authorizing with Windows

 	using statement	disposal, simplifying with / Simplifying disposal with the using statement

 	UWP	about / Understanding the UWP
	app's layout, adapting / Adapting your app's layout
	advantage, taking of unique device capabilities / Taking advantage of unique device capabilities
	app, creating for / Creating an app for the Universal Windows Platform

 	UWP portability	analyzing / Analyzing UWP portability

V

 	value	storing, enum keyword used / Storing a value using the enum keyword

 	value type	nullable, making / Making a value type nullable
	memory, managing with / Managing memory with reference and value types

 	Value Types (C# Reference)	reference link / Exercise 7.3 – explore topics

 	var (C# Reference)	reference link / Exercise 2.3 – explore topics

 	variables	declaring / Declaring variables
	naming / Naming variables

 	verbs	about / Verbs are methods

 	view engines / ASP.NET Core views

 	view model / Create view models for requests

 	virtual machine	creating / Creating a virtual machine
	connecting, remote desktop used / Connecting to your virtual machine using remote desktop

 	Visual Studio	signing in to / Signing in to Visual Studio
	registration link / Signing in to Visual Studio
	development settings, selecting / Choosing development settings
	extensions, updating / Updating extensions and products
	products, updating / Updating extensions and products
	older versions, using / Using older versions of Visual Studio

 	Visual Studio 2015	using, on Windows 10 / Using Visual Studio 2015 on Windows 10
	used, for creating .NET Core application / Creating a .NET Core application using Visual Studio 2015

 	Visual Studio Code	about / Visual Studio Code
	installing / Installing Visual Studio Code and ASP.NET Core, Installing Visual Studio Code
	reference link, for installation instructions / Installing Visual Studio Code and ASP.NET Core
	used, for editing projects / Editing projects using Visual Studio Code

 	Visual Studio Code, for Mac OS X	download link / Installing Visual Studio Code
	development, managing from terminal / Managing development from the terminal

 	Visual Studio Dev Essentials	about / Using Visual Studio 2015 on Windows 10

 	Visual Studio Team Services	about / Managing source code with GitHub

W

 	web app	ASP.NET web application, publishing to / Publishing an ASP.NET web application to the Web App

 	web application project	creating / Create a web application project

 	Web Essentials 2015	installing / Install Web Essentials 2015

 	Where extension method	entities, filtering with / Filtering entities with Where

 	while statement	about / The while statement

 	whole numbers	storing / Storing whole numbers

 	Win32 API	accessing, with P/Invoke / Accessing the Win32 API with P/Invoke

 	Windows	users, authenticating with / Authenticating with Windows
	users, authorizing with / Authorizing with Windows

 	windows, Visual Studio	Solution Explorer window / Other useful windows
	Team Explorer window / Other useful windows
	Server Explorer window / Other useful windows

 	Windows 10	Visual Studio 2015, using on / Using Visual Studio 2015 on Windows 10

 	Windows Communication Foundation (WCF) / Serializing with other formats	about / Understanding ASP.NET Core

 	Windows desktop application	creating, WPF used / Creating a Windows desktop application using WPF

 	Windows Presentation Foundation (WPF) / Understanding XAML

 	WPF	used, for creating Windows desktop application / Creating a Windows desktop application using WPF

X

 	Xamarin	about / Xamarin

 	Xamarin mobile platform	about / Understanding the Mono project

 	Xamarin Studio	about / Xamarin

 	XAML	about / Understanding XAML
	benefits / Understanding XAML
	used, for simplifying code / Simplifying code using XAML
	common controls, selecting / Choosing common controls

 	XML	generating, LINQ to XML used / Generating XML using LINQ to XML
	reading, LINQ to XML used / Reading XML by using LINQ to XML
	about / Compressing streams
	object graphs, serializing with / Serializing with XML
	object graphs, deserializing with / Deserializing with XML
	customizing / Customizing the XML

 	XML streams	writing to / Writing to text and XML streams

 	xUnit.net	about / Unit testing an application

Y

 	Yeoman	installing / Installing Yeoman and related tools
	used, for scaffolding projects / Scaffolding projects using Yeoman

 images/00257.jpeg
Publish Web

@ Publish Web

Profile inznebapnly

Settings

Preview

Server: quizwebapp.scm.azurewebsites.net443
Site name: quizwebapp
User name: Squizwebapp

Password:
V] save password

Destination URL: | http://quizwebapp azurewebsites net

Validate Connection | @

e =

images/00258.jpeg
quizwebapp.azurewebsi X =

&~ S5 0 quizwebapp.azurewebsites.net Y

Quiz Web App

Quiz Web App is a web application built using C# and ASP.NET MVC as an
example for the Packt Publishing book C# and the .NET Framework.

Learn more about Packt's C# and the .NET Framework book »

C# and OOP

Questions about the C# language and object-oriented programming.

Take the C# and OOP quiz »

ASP.NET Web Applications and Services

Questions about building MVC web applications and Web AP services by using ASP.NET.

Take the ASP.NET Web Applications and Services quiz »

images/00255.jpeg
Publish Web

& Publish Web

Select a publish target

Connection | @ Microsoft Azure Web Apps

Settings

Preview

() More Options

Find other hosting options at our web hosting gallery

Next > Publish |

images/00256.jpeg
E"j App Service

Host your web and mobile applications, REST APIs, and more in Azure

Subscription

csédotnetcorePAYG

View

Resource Group

Search

B Microsoft account
csédotnetcore@outlook.com

4 1 es6dotnetcore
» © FIEE

app
@ csédotnetcore

images/00261.jpeg
Safari File Edit View History Bookmarks Develop Window Help

ene < in] ® O & account.windowsazure.com g [ul =

Microsoft Azure Q csédotnetcore@outiook.com SIGN OUT

HOME PRICING DOCUMENTATION ~DOWNLOADS ~COMMUNITY ~ SUPPORT ACCOUNT =
Portal (3)

It looks like you have not created any subscriptions yet.

Choose from one of the options below:

? Manage subscriptions on which you are a Co-administrator or Service Administrator in the
1 Developer Portal.

= Contact your Account Administrator if you want to sign up for a preview feature or manage
subscriptions.

o Sign up for a free trial.

images/00262.jpeg
& Safari File Edit View History Bookmarks Develop Window Help

ese < 2] ofe account.windowsazure.com g [ulll [™
re -
About you
FIRST NAME LAST NAME COUNTRY/REGION
Mark price United Kingdom G
VATID
CONTACT EMAL com L WORK PHONE

cs6dotnetcore@outlook.com 07529999999

Verification by phone

Send text message Call me

United Kingdom (+44)

|

Verification by card
This nformation s colected only to verify your dentit. You will no be charged unless you

explicitly upgrade to a paid offer.

Agreement

1 agree to the and

Microsoft may use my email and phone to provide special Microsoft Azure offers.

images/00259.jpeg
@ Safari File Edit View History Bookmarks Develop Window Help

Microsoft Azure

Resources

Why Azure Products Documentation Pricing Partners Blog Support

ISON

Visual Studio Ultimate

16
$146

images/00260.jpeg
& Safari File Edit View History Bookmarks Develop Window Help

ene < I o] @ Microsoft Co g th 7 |

Sign in

csédotnetcore@outiook.com

Keep me signed in

Don't have a Microsoft account? Sign up no

images/00263.jpeg
Verification by phone COMPLETE @

Verification by card COMPLETE @

Agreement

v | agree to the subscription agreement, offer details, and privacy statement.

v Microsoft may use my email and phone to provide special Microsoft Azure offers.

We are creating your subscription. Do not
close or refresh your browser.

images/00264.jpeg
Microsoft Azure csdotnetcoreQoutookeom | SIGN OUT

Just a moment while we get things ready.

This typically takes up to 4 minutes. We'll send you an email when we're done.

images/00268.jpeg
Visual Studio Community 2015 Update 1 with Azure SD.

=)

Visual Studio Community 2015 Update 1 is our free, full featured and extensible IDE for non-
enterprise application development. This image contains Windows Server 2012 R2 with Visual Studio
Community 2015 Update 1. It allows you to easily and quickly set up a development environment in
Azure to build and test applications using Visual Studio.

Legal Terms

By clicking the Create button, | acknowledge that | am getting this software from Microsoft and that
the legal terms of Microsoft apply to it. Microsoft does not provide rights for third-party software.
Also see the privacy statement from Microsoft

50 WebAppiication! - Miroso Visual Studio (Adminisura.. ¥4 O -8 x
M T vew MORCT WAD DG TAM TOOS TS aceTICOR AAZE son B
© - G-t B» B intemet taplorer + @ = | Debug - | Amy CPU B

%2 Webhpphcation” -0

nwsespace Vebapplicationt Controllers

Select a deployment model @

Resource Manager v

images/00269.jpeg
Create virtual ma

* Name
1 e 9 i 3 9 o Souh
Configure basic settings
T, @ Central Us
" ssbdatnelsore v
= @ EastAsia
* Password =
-~ g # 9 Eastus
* Subscription East US 2
Free Trial ?
* Resource group Japan East
csbdotnetcore v
s @ Japan West
* Location
Horh core 9 North Central US
Q North Europe
@ south Central US
? Southeast Asia
A .. .-

images/00266.jpeg
Window Help

@ Safari File E tory Bookmarks Develop

portal.azure.com

Microsoft Azure earch resources 0 78 O wins

Al resources Service health

ALLSUBSCRIPTIONS MY RESOURCES
Resource groups

No resources to display

Al res

© Fecent

°
& App Services L4
B Virtual machines (classic)
o
o Q)]
aiphits Help + support

Subscriptions

Browse >

images/00267.jpeg
Microsoft Azure v~ New > Compute

—+ New

Resource groups

All resources

Recent

App Services

Virtual machines (classic)

Virtual machines

SQL databases

Cloud services (classic)

- & @ @ @ ® © m

Subscriptions

Browse >

New

MARKETPLACE
Compute

Web + Mobile
Data + Storage
Data + Analytics
Internet of Things
Networking
Media + CDN
Hybrid Integration
Security + Identity
Developer Services
Management

Container Apps

See all

v

N ONE N T B NG N N NR N N

Compute

FEATURED APPS See aIII

Windows Server 2012 R2
Datacenter

Enterprise-class solutions that are
simple to deploy, cost-effective,

Windows Server 2016 Core
with Containers Tech Preview 4
Enterprise-class solutions that are
simple to deploy, cost-effective,

Ubuntu Server 14.04 LTS
Ubuntu Server delivers the best
value scale-out performance
available.

SQL Server 2014 Enterprise on
Windows Server 2012 R2
Enterprise version of SQL Server
2014 for transactional, data

SharePoint 2013 HA Farm
Deploy a SharePoint server farm in
Aaure with the dlick of a button

images/00272.jpeg
| machine

Basics

Done

Size
Done

Settings
Done

Summary
Visual Studio Community 2015

>

Summary

Basics

Subscription
Resource group
Location

Settings

Computer name
User name

Size

Disk type

Storage account

Virtual network

Subnet

Public IP address

Network security group
Availability set

Diagnostics

Diagnostics storage account

Free Trial
(new) csédotnetcore
North Europe

esédotnetcore
esédotnetcore

Standard DS1

Premium (SSD)

(new) csédotnetcore
(new) csédotnetcore
(new) default (10.0.0.0/24)
(new) csédotnetcore
(new) csédotnetcore.
None

Enabled

(new) csbdotnetcore4887

images/00273.jpeg
@ Safari File Edit

Microsoft Azure v

Dashboard

All resources

No resources to display

View History Bookmarks

Service health

Develop

Window Help

portal.azure.com

I O KMol

yment started.

e
9
°
°
@
Marketplace support

Mark Price
DEFAULT DIRECTORY

&

images/00270.jpeg
eate virtual m

Choose a size

1 Basics.

Done

2 Size

Choose virtual machine size

Prices presented below are estimated retail prices that include both Azure infrastructure and
applicable third-party software costs. Prices do not reflect applicable discounts for your subscription

and may include currency conversions.

* Recommended | View all

DS2 Standard DS3 Standard

oSt sandard osi2 sandard

Cores. 2 Cores
28 GB 14 68 28
o ; 5
Data disks Data disks
3 25600) 6400)
Max10Ps Max0PS

1 Core 2 Cores 4 Cores
35 B 7 e 14 o8
2 4 8
Data disks Data disks Data disks
3 3200 3 6400 5 12800
Miax 0PS MaxI0PS Max 0PS
= 768 1468 - 2868
W Laisso B aisso B Laisso
4» Load balancing &) Load balancing &) Load balancing
2 Autoscale 7 Auto scale 2 Autoscale
B8 Premium disk supp.. B8 Premium disk supp... B8 Premium disk supp...
58.63 117.26 234.53

Cores

GB
8
Data disks

12800
Max I0PS

images/00271.jpeg
virtual ma

Storage
1 o ¢ 9
Done Disk type @
2 s &
Do * Storage account © :
(new) csbdotnetcore
Bl 2 > Network
Configure opiona estures
* Virtual network
>
(new) csédotnetcore
* Sunet@
default (10.0.0.0/24)
* publc P address ©
>
(new) csédotnetcore
* Network securiy group @ 3

(new) csédotnetcore

Monitoring

Diagnostics @

owatied RN

images/00265.jpeg
Your subscription is ready for you!

images/00274.jpeg
& App Store Edit

* E B % O

Featured Top Charts Categories Purchased Updates

Store Window Help

Qremote desktop @

Microsoft Remote Desktop

With the Microsoft Remote Desktop app, you can connect to a remote PC and your work
resources from almost anywhere. Experience the power of Windows with RemoteFX in a Remote.

@ Desktop clien designed 1o help you get your work done wherever you are

hat's New in Version 8.0.
- Stabilty improverents o help prevent app crashes
=B ~New faaturs: Suppor for Asmote Deskiop Gateway pluggable authenticaton and authorizato

Information
Category: Business
Jpdated: 01 Dacember 2015
Version: 8025

§ i i Zem = Price: Froe

141 M8

Family Sharing: Yes
Language: English

per: Microsoft Corporation

images/00279.jpeg
& Microsoft Remote Desktop Window 2@ | LT 4 B3 Wed20:13 Mark Price Q.

Sta rt csédotnetcore

Shut down

Restart

images/00280.jpeg
csbdotnetcore

£ o] - >

Settings Connect Start

Essentials ~

Resource group
csbdotnetcore
Status

Stopped
Location

North Europe
Subscription name

Free Trial

Subscription ID

54259439-aeec-4fa2-9479-fe2028eb4eaf

A RO

Computer name

cs6dotnetcore

Size

Standard DS1 (1 core, 3.5 GB memory)
Operating systen

Windows

Public IP address/DNS name label
40.127.188.238/<none>

Virtual network/subnet

csbdotnetcore/default

All settings =»

images/00277.jpeg
Downloads

images/00278.jpeg
Invalid login credentials. Please re-enter.

User name ~ cs6dotnetcore\csédotnetcore

Password |-

images/00283.jpeg
- csbdotnetcore

Settings

Essentials ~ A R QO

Resource group Computer name
csbdotnetcore
Status Size
Stopped (deallocated) Standard DS1 (1 core, 3.5 GB memory)
Location Operating system
North Europe Windows
Subscription name Public IP address/DNS name label
Subscription ID Virtual network/subnet

54259439-aeec-4fa2-9479-fe2028eb4eaf

images/00284.jpeg
Ean

Debug

images/00281.jpeg
- csbdotnetcore

& - >

Settings Connect

Stop this virtual machine

Do you want to stop ‘csédotnetcore'?

Stwppeu
Location
North Europe

Subscription name

Subscription ID

54259439-aeec-4fa2-9479-fe2028eb4eaf

Stanudra US T (T COrE; 5.3 U ITENory)

tem

Operating sy
Windows

Public IP address/DNS name label

Virtual network/subnet

images/00282.jpeg
v Allresources > csédotnetcore > Settings JoR

© successfully stopped virtual machine ~ 8:18 PM

csbdotnetcore
: : Successfully stopped the virtual machine ‘csédotnetcore’

& o » ¢ u

Settings Start Delete

images/00275.jpeg
urce gr

Al resources

Recent

App Sen

irtual machines (classic)

Virtual machines

SQL databases

Cloud services (classic)

ubscripti

csdotnetcore

esbdotnetcore

csdotnetcore

csdotnetcore

esbdotnetcore

csdotnetcored887

csdotnetcore640

Virtual machine

Network security gr.

Public IP address

Virtual network

Storage account

Storage account

Network interface

estdotnetcore

esbdotnetcore

csdotnetcore

estdotnetcore

esbdotnetcore

csédotnetcore

estdotnetcore

North Europe

North Europe

North Europe

North Europe

North Europe

North Europe

North Europe

images/00276.jpeg
- csbdotnetcore

8 o Q

Settings Connect Restart

Essentials A~ A 8 O

Resource group Computer name
cs6dotnetcore
Status Size
Running Standard DS1 (1 core, 3.5 GB memory)
Location Operating system
North Europe Windows
Subscription name Public IP address/DNS name label
Subscription 1D Virtual network/subnet

54259439-aeec-4fa2-9479-fe2028eb4eaf

images/00048.jpeg
1] Chapter02 - Microsoft Visual Studio

File | Edit View Project Build Debug Team Tools Architecture Test
New P Attach.
Open
Add to Source Control
Add New Project...
Close New Web Site...

Close Solution Existing Project

Save Chapter02.sin Ctrl+s Existing Web Site...

images/00049.jpeg
Add New Project
b Recent
4 Installed

4 Visual C#

b Windows
Web
Android
Cloud
Extensibility

b ios
Maobile Apps
Reporting
Silveriight
Test

b Online

Name:

Location:

NET Framework 46~ Sort by: Default

Xi

N1
i
!_c‘
G
=5
-

Cho2_Basics

CCode\Chapter02

Blank App (Universal Windows)

Blank App (Universal Windows 8.1)

Windows Forms Application

WPF Application

Console Application

Hub App (Universal Windows 8.1)

Click here to go online and find templates.

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

70X

Search Installed Templates (Ct+E) P~

Type: Visual C#

A project for creating a command-line

application

images/00046.jpeg
New Project
b Recent
4 Installed

4 Templates
b Visual C#
b Other Languages
4 Other Project Types
Visual Studio Solutions
Samples

b Online
Name: Chapter02
Location: Ci\Code

Solution name: Cha

70X
NET Framework 46~ Sort by: Default

bq_] Blank Solution

Search Installed Templates (Ctrl+E) & -
Visual Studio Solutions Type: Visual Studio Solutions

Create an empty solution containing no
projects

Click here to go online and find templates,

- rows:

[Create directory for solution
[] Add to source control

images/00047.jpeg
= | Chapter02

Home Share View

v 4 | - Local Disk (C) > Code > Chapter02 v

Quick access Name Date modified Type

4 OneDrive) Chapter02 31/08/2015 12:15 SLN File
= This PC

@ Network
1item

Search Chapter02

Size

images/00052.jpeg
h02_Basics
[Eusiﬁg System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
| using System.Threading.Tasks;

=lnamespace Ch@2_Basics

{

= class Program

{
=] static void Main(string[] args)

images/00053.jpeg
“|Untitled - Notepad ~ — [m}
File Edit Format View Help

do you like icecream?

images/00050.jpeg
1~ | Ccho2 Basics

Home
« v
Quick access
4@ OneDrive
= This PC

@ Network

*4 Homegroup

6 items.

View

Name
1 bin

1 obj

" Properties
< App

) Cho2 Basics

4 | < Code > Chapter02 > Ch02_Basics

Date modified

31/08/2015 12:21
31/08/2015 12221
31/08/2015 12:21
31/08/2015 1221
31/08/2015 12221
31/08/2015 12:21

vo

Type
File folder
File folder
File folder
CONFIG File
CSPROJ File

Visual C# Source file

Search Ch02_Basics

Size

images/00051.jpeg
Solution Explorer v 1 x
@ o-s5CcaB| 0=
Search Solution Explorer (Ctrl+;) Polg

%] Solution ‘Chapter02' (1 project)
4 Cho2_Basics
> & Properties
D =W References
¢ App.config
P c# Program.cs

Solution Explorer [Team Explorer

images/00045.jpeg
GShare 2 Colaborate ©TdyUp

«22 NET Fiddle

< Options Access: | Only With Link
systen;

NET Framework: Lic class Program

vas t
public static void Main()

Frem— Console.WriteLine("Hello World");

cn

images/00054.jpeg
| Untitled - Notepad — [m}
File Edit Format View Help

X

Console.Writeline("Hello C#!")

images/00059.jpeg
o 11 occurrence(s) replaced.

Always show this message

images/00060.jpeg
lusing static System.Console;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks;

using static Syste.Console;

B class Program

{

static void Main(strin

S

var population = 6¢
var weight = 1.88;
var price = 4.99M;

Preview changes

Fix all occurrences in: Document | Project | Solution

images/00057.jpeg
Solution ‘Chapter02' Property Pages

: [N/A

4 Common Properties @ Current selection
Startup Project
Project Dependencies
Code Analysis Settings
Debug Source Files

b Configuration Properties

Osingle startup project
Choz_asics

(O e statup projects

Project

Cho2_Basics

Action

None

Configuration Manager.

X

images/00058.jpeg
] Cho2_Variables

Program.cs Program.cs
-] % Ch02 Variables Program
77 this only works with C# 6.0 or later
Irite($"The population of the UK is {population}.
riteLine(§"The population of the UK is (population: o).
iriteLine(" {weight}kg of {fruit} costs {price:C}.

// this works in all versions of C#
rite(*The population of the UK is {6}. ", population);
riteLine("The population of the UK is {6:Ne}. "

population);
iriteLine("{6} kilos of {0} costs {0:C}. "
weight, fruit, price);

EEEAIESrite("Type your nane and press ENTER: ");
string nane = FUIAIEReadLine();

rite("Type your age and press ENTER: H
string age = EOSOIBReadLine();

riteLine($"Hello {name}, you look good for {age}.");

A Console.

Aa

~| @aMainstringl args)

¥ Current Document

images/00063.jpeg
Start Options

Command line arguments: | red yellow 50 10

images/00064.jpeg
C:\Windows\system32... -

images/00061.jpeg
@ o-5¢ca®
Search Solution Explorer (Ctrl+;) P~

%] Solution ‘Chapter02' (5 projects)
- Ch02_Arguments
>/ Properties

D =W References
¢ App.config
b c# Program.cs

3 Ch02_FloatingPoints
Ch02_Grammar
Ch02_Numbers
> Ch02_Variables

images/00062.jpeg
Application
Build
Build Events

®) Start project

Platform: Active (Any CPU)

Resources
Services _ Start external program:
Settings _) Start browser with URL:
Reference Paths
o Start Options

Signing
Security
Publish

Code Analysis

Configuration: Active (Debug)

Command line arguments:

firstarg second-arg third:arg “fourth arg”

images/00055.jpeg
EHS-O- Document1 - Word ?H -0 X
HO INSE DESI PAG REF MAI REVI VIE Mar.“'l

dg you like icecream?)

PAGE 1 OF 1 B -———F——+ 100%

images/00056.jpeg
DQ CS6Console - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Architect

(¢ |’n".3"’-1ﬂu""| '| Debug ~ Any CPU

Program.cs* + X
[#] cs6Console ~ %, CS6Console.P

Console.Writeline("Hello C#!")

=
o
o
I3
o
=
n
o
=
@
m
i

=
&
©

€3 2 Errors | ‘ 0 Warnings 1 0 of 4 Messages

¥ Code Description

0 CS1002 ; expected
0 CS0117 'Console’ does not contain a definition for ‘Writeline'

Error List Hel¥iseliid

images/00070.jpeg
Summary :
Converts the string representation of a number to its 32-bit signed integer equivalent.

Parameters:
st
A string containing a number to convert.

Returns:
A 32-bit signed integer equivalent to the number contained in s.

Exceptions:
T:System. ArgumentNullException:
s is null.

T:System. FormatException:
s is not in the correct format.

T:System.OverflowException:
s represents a number less than System.Int32.MinValue or greater than System.Int32.MaxValue.
public static Int32 Parse(string s);

images/00071.jpeg
Q: Using SecureString

Can this be simplified to a one liner? Feel free to completely rewrite it as long as secureString gets
initialized properly. SecureString secureString = new SecureString (); foreach (char ¢ in
"fizzbuzz" ToCharArray()) { secureString.AppendChar (c); } ...

c# security securestring asked Mar 10 '10 by Todd Smith

Q: Convert String to SecureString
How to convert String to SecureString?

c# securestring asked Oct 15 '09 by Nila

Q: When would | need a SecureString in .NET?

I'm trying to grok the purpose of NET's SecureString. From MSDN: An instance of the System.String class
is both immutable and, when no longer needed, cannot be programmatically scheduled ... from computer
memory. A SecureString object is similar to a String object in that it has a text value. However, the value of
a SecureString object is automatically encrypted, can be modified .

net securty encryption asked Sep 26 '08 by Richard Morgan

images/00068.jpeg
int x = intMaxvalue + 1;

Error List

\ @ | €3 1 Error | ‘ 0 Warnings | (i JO) Messages

Code Description

€3 CS0220 The operation overflows at compile time in checked mode

images/00069.jpeg
[&¥] MetadataAsSourceProject
E[Assembly mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934¢089

=using [.]

Einamespace System

] [Jpublic struct Int32 : IComparable, IFormattable, IConvertible, IComparable<Int32
{

® [
| |

blic const Int32 MaxvValue = 2147483647;
blic const Int32 MinValue = -2147483648;

images/00074.jpeg
garbage collection site:stackoverflow.com -c++ -java

Web Maps Images Videos Books More ~ Search tools

About 19,100 results (0.30 seconds)

c# - Garbage Collection not happening even when needed ...
stackoverflow.com/.../garbage-collection-not-happening-even-when-nee... v

4 Apr 2012 - As a sanity check, | have a button to force GC. When | push that, | quickly
get 6GB back. Doesn't that prove my 6 arrays were not being referenced and ...

How expensive is it to call the Garbage Collector manually?
stackoverflow.com/.. /how-expensive-is-it-to-call-the-garbage-collector-... ~

4 Feb 2014 - Yes, there are some other drawbacks. Even if you call GC.Collect, you
can not ensure that objects that you believe are gone, are actually gone.

c# - Garbage collection of circular referenced object - Stack ...
stackoverflow.com/.../garbage-collection-of-circular-referenced-object

16 May 2013 - The garbage collector looks through the active references, and
anything that isn't found from there can be collected. That way it doesn't matter that
the

images/00072.jpeg
garbage collection

Web Maps Images Videos Books More ~ Search tools

About 26,900,000 results (0.39 seconds)

Garbage collection (computer science) - Wikipedia, the free ...
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science) v

In computer science, garbage collection (GC) s a form of automatic memory
management. The garbage collector, or just collector, attempts to reclaim garbage,
Principles - Tracing garbage collectors - Reference counting - Escape analysis

Clear It Waste A) 91 Michael Cliffe House
clearitwaste.co.uk Skinner Street, London

5.0 %k Kk %k 55 Google reviews - Google+ page 020 8504 2380

junk clearance Leathwaite Rd
plus.google.com London, battersea
Google+ page

Best Clearance Ltd 35 Grafton Way
bestclearance.co.uk London
Google+ page 07737 639920

images/00073.jpeg
garbage collection site:stackoverflow.com

Web Maps Images Videos Books More~ Search tools

About 49,400 results (0.27 seconds)

Newest 'garbage-collection' Questions - Stack Overflow
stackoverflow.com/questions/tagged/garbage-collection ~

Garbage collection (GC) is a form of automatic memory management. It attempts to
reclaim garbage, or memory occupied by objects that are no longer in use by ...

Garbage Collection: Algorithms for Automatic Dynamic ...
rads.stackoverflow.com ...» Algorithms > Memory Management v
Garbage Collection: Algorithms for Automatic Dynamic Memory Management
[Richard Jones, Rafael D Lins] on Amazon.com. *FREE* shipping on qualifying

c++ - Why garbage collection when RAll is available ...
stackoverflow.com/../why-garbage-collection-when-raii-is-available +

23 Jun 2013 - | hear talks of C++14 introducing a garbage collector in the C++
Garbage collection and RAIl are useful in different contexts. The presence of ...

images/00066.jpeg
Chris Adamson @ invalidname - May 26
Had a colleague remove my {} surrounding a 1-line if clause today. No, not angry.

It's on his conscience now. #gotofail

10 15

images/00067.jpeg
Error List

Y - 1 Error 1 0 Warnings | (i J) Messages

Code Description

CS0266 Cannot implicitly convert type ‘double’ to ‘int'. An explicit
conversion exists (are you missing a cast?)

images/00065.jpeg
- C:\WINDOWS\system32\cmd.exe = O X4

Type Byte(s) of memory Max
sbyte 1 -128 127
byte 1 [} 255
short 2 -32768 32767
ushort 2 -] 65535
int 4 -2147483648 2147483647
uint 4 e 4294967295
long 8 -9223372036854775808 9223372036854775807
ulong 8 e 18446744073709551615
[float 4 -3.402823E+38 3.402823E+38
double 8 -1.79769313486232E+308 1.79769313486232E+308

decimal 16 -79228162514264337593543950335 79228162514264337593543950335

Press any key to continue . . .

images/00081.jpeg
Program.cs*
Browse: My Solution | (<] | :‘..|

<Search> v }3

Ch03_AssembliesAndNames CloneNode(bool)

=8 Microsoft.CSharp CreateElement(string, string, string)

=B mscorlib CreateEntityReference(string)

', CreateNavigator(System.Xml.XmINode)
GetElementByld(string)
GetElementFromRow(System.Data.DataRow)
GetElementsByTagName(string)
GetRowFromElement(System.Xml.XmlElement)}
Load(string)

Load(System.|O.Stream)
Load(System.|O.TextReader)
Load(System.Xml.XmIReader)

@
@
@
=8 System @
=8 System.Core
=8 System.Data
{} <CpplmplementationDet:
{} <CrtimplementationDetali
{} Microsoft.SqlServer.Serve|
{} System.Configuration
{} System.Data
{} System.Data.Common
{} System.Data.Odbc XmlDataDocument()
{} System.Data.OleDb XmlDataDocument(System.Data.DataSet)
{} System.Data.ProviderBase| /& DataSet
{} System.Data.Sql
{} System.Data.SqlClient
{} System.Data.SqlTypes
{} System.Xml <
> ‘t; public class XmIDataDocument :
b =8 System.Data.DataSetExtensio| System.Xml.XmIDocument
b =8 System.Net.Http Member of System.Xml
B System.Xml

@
@
@
@
@
@
@
@
@
@

P>
P>
P>
P>
P>
P>
P>
P>
P>
P>
P>
P>
4

images/00082.jpeg
Program.cs*
Browse: My Solution

<Search>

BRI System. Xml

{} Microsoft.Win32
{} MS.nternal Xml.Cache
{} MS.nternal Xml.XPath
{} System
{} System.Configuration
System.Xml
Conformancelevel
DtdProcessing
EntityHandling
Formatting
*0 |HasXmINode
*0 [XmlLinelnfo
*0 [XmINamespaceResolver
=" NamespaceHandling
'I: NameTable
NewlLineHandling
ReadState
ValidationType
WhitespaceHandling
WriteState
‘I! XmlAttribute
> ‘I; XmlAttributeCollection

Assembly System.Xml

C:\Program Files (x86)\Reference
Assemblies\Microsoft\Framework
\.NETFramework\v4.6\System.Xml.dll

images/00079.jpeg
var doc
var data

images/00080.jpeg
Assemblies

Framework
Extensions

Recent

Projects

Shared Projects

com

Targeting: .NET Framework 4.6

Name
System.Web.Extensions.Design
System Web.Mobile

System Web.RegularExpressions
System Web.Routing

System Web Services

System Windows

System Windows.Controls.Ribbon
System Windows.Forms

System.XmlLing
System.XmlSerialization
UlAutomationClient
UlAutomationClientsideProviders
UlAutomationProvider
UlAutomationTypes
WindowsBase
WindowsFormsintegration

Version
4000
4000
4000
4000
4000
4000
4000

Search Assemblies (Ctrl+E)

Name:
SystemXm|

Created by:

Microsoft Corporation
Version:

4.6.57.0 built by: NETFXREL2

o~

images/00083.jpeg
int age = 12;

m struct System.Int32
Represents a 32-bit signed integer.

images/00084.jpeg
class Program

{

static void Main(string[] args)

var a = 4.5;

images/00077.jpeg
static void Main(string[] args)

{

o I var doc = new XmlDocument();

images/00078.jpeg
var doc = new XnlDocument();
using SystemXml;
Change XmiDocument'to ‘SystemXml.XmlDocument

Generate class for XmiDocument' in ‘Ch03 AssembliesAndNamespaces' (in new.

Generate class for XmiDocument in ‘Ch03_AssembliesAndNamespaces'
Generate class for XmiDocument'in ‘Program’

Generate new type.

> | © 50246 The type or namespace name XmiDocument could not be

found (are you missing a using directive or an assembly reference?)

using Systen.xal;

Preview changes

images/00075.jpeg
mscorlib.dll System.Core.dll System.Data.dll System.Xml.dll Sy;tﬁm f‘

images/00076.jpeg
Solution Explorer
€] Cho3_Assemblie ~ | %%, Cho3.Assemblic ~| @, Main(stringl] arc ~
// import the namespace
weing: Systen.dul; Search Solution Explorer (Ctrl+;)
I &7 Solution ‘Chapter03' (1 project)
“Inamespace Cho3_AssembliesAndNamespaces 4 [Cho3 AssembliesAndNamespaces
{ b H Properties
class Program o Réforéticss
& Analyzers
Microsoft.CSharp.
System
System.Core
System.Data
System.Data.DataSetExtensions
System.Net Http
SystemXml
SystemXmlLing
¥ App.config
b c* Program.cs

static void Main(string[] args)
{

var doc = new XmlDocument();

images/00092.jpeg
static double Add(double a, double b)
I < 20ms elapsed

return a * b; @ a*b 1125

}

images/00093.jpeg
Value Type

{string[0]} string[]

4.5 double
25 double
double

images/00090.jpeg
static void Main(string[] args)

var b = 2.5;

images/00091.jpeg
static void Main(string[] an

var a 4.5;
var b 2.5;

WriteLine($"{a} + {b} =

images/00094.jpeg
static void Main(string[] args)

Delete Breakpoint

Disable Breakpoint

Conditions...
Actions...

Edit labels...

Export...

Ctrl+F9
Alt+F9, C

Alt+F9, L

/ or use var

dd(a, b);
{b} = {answer}");
it for user to press ENTER

images/00085.jpeg
static void Main(string[] args)

J

var a

images/00088.jpeg
Immediate Window
2142

3
?answer
)

images/00089.jpeg
Immediate Window

ForegroundColor=Systel

images/00086.jpeg
Continue ~

images/00087.jpeg
Locals

Name Value Type

{string[0]}_|string[]
0

double
L b 0 double
@ answer 0 double

images/00103.jpeg
Show output from: Debug

Trace says Hello C#!
TraceError
TraceWarning
TraceInfo

images/00104.jpeg
JatorunitTests.cs

NuGet Package Manager: Ch05_CalculatorUnitTests

Installed Updates Package source: nugetorg

x ~| O diids pisiessd

XUNit by James Newiirk, Brad Wilson, 1.55M downloads x xunit
xUnitnet is a developer testing framework,bult o support Test riven
Development, with adesign goa! of extreme simplity and alignment with frame.

Version: | Latest stable 21.0 - Install

Xunit.runner.visualstudio by James Newkirk Brad Wilson, 430K downloads

Vinial Shardic: 2002+ Test Explorst rinmer v the siivitinat esnwork: Capabls of

images/00101.jpeg
D‘ Chapter03 - Microsoft Visual Studio
File Edit View Project Build Debug Team XML Tools

PQ B9 O | Debug = AnycPU

Debug

Release
<?xml
@<conf‘ Configuration Manager...

4 General

images/00102.jpeg
Show output from: Debug =

*Che3_Tracing.vshost.exe ' (CLR v4.0.30319: Che3_Tracing.vshost.
Trace says Hello C#!

images/00095.jpeg
static void Main(string[] args)

{
double a = 4.5; // or use var
double b = 2.5;
double answer = Add(a, b);
Writeline($"{a} + {b} = {answer

Breakpoint Setting X |

Location: Program.cs, Line: 21, Character: 13, Must match source
Conditions

Conditional Expression - answer>9 X
And Hit Count - 3 X Saved
Add condition

[] Actions

ReadLine(); // wait for user to press ENTER

images/00096.jpeg
Output

Show output from: Debug

LIIO5_ 11 UL, YSIUS L. EAE (LR VA.9.30517. LIIs_iiacdiig
Debug says Hello C#!

Trace says Hello C#!

4
Output [

LvsiusL.eac) .

ik

1 AWLHUURS (AL USUT LN

images/00099.jpeg
| Trace - Notepad

File Edit Format View Help
bebug says Hello Ci!

Trace says Hello C#!

images/00100.jpeg
Build Events
Debug
Resources
Services
Settings

Configuration: Active (Debug)

General

Conditional compilation symbols: KERMIT,FOZZIE

[Define TRACE constant

Platform: Active (Any CPU)

images/00097.jpeg
Event Viewer

Desktop app

images/00098.jpeg
File Action View Help

e n

(@ Event Viewer (Local) |V

b [5 Custom Views =

4 [t Windows Logs Level Date and
Application
(5] Security (@ Information 23/07/2015 10:27:12_ Application

Number of events: 2:
Source EventID Task Category

0 None

Event 0, Application

Forwarded Eve|
b [F Applications and §
[} Subscriptions @) Friendly View O XML View

General | Details |

+ System
- EventData

Trace says Hello C#!

images/00114.jpeg
D O{] References

Add Reference...

Add Analyzer...

Add Service Reference...
Add Connected Service...

Manage NuGet Packages...
Scope to This

New Solution Explorer View

images/00112.jpeg
Excel Options

General
Formulas
Proofing

| save
Language

| Advanced

| Csomze ihon
Quick Access Toolbar
Add-ins

|
Trust Center

Customize the Ribbon.

Choose commands from:

|Popular Commands

Add or Remove Fiters
All Chart Types...
Borders

Calculate Now

Center

Conditional Formatting
Copy.

Custom Sort...

Cut

Decrease Font Size

Add >>

<< Remove

Customize the Ribbon:®
Main Tabs

B MView

& MDeveloper
& Madd-ins

& MTeam

New Tab ‘ ‘ NewGroup Rename..
Customizations:
Import/Export ¥

[=]

images/00113.jpeg
Microsoft Visual Studio

0 You are renaming a file. Would you also like to perform a rename
in this project of all references to the code element 'Class1'?

Yes No

images/00106.jpeg
™~ Developer Command Prompt for V52015 = =l X

IC:\Code\Chaptere5>packages\xunit.runner.console.2.1.8\tools\xunit.console Ch@5_(
lalculatorUnitTests\bin\Debug\Che5_CalculatorUnitTests.dll
IXUnit.net Console Runner (64-bit .NET 4.0.30319.42000)

Discovering: Ch@5_CalculatorUnitTests

Discovered: Che@5_CalculatorUnitTests

Starting: Ches_CalculatorUnitTests

Finished: Cches_CalculatorUnitTests
TEST EXECUTION SUMMARY ===

Ches5_CalculatorUnitTests Total: 2, Errors: ©, Failed: @, Skipped: ©, Time:
.235s

IC: \Code\Chapteres>

images/00107.jpeg
Add New Item - ChO3_Internationalization

4 nstalled Sort by: Default

4 Visual C# Items Type: Visual C# ltems
[Resources Fite Visual C# ltems ype: Visual C# It
Code

1 W e s ke

images/00105.jpeg
IC:\Code\Chaptere5>packages\xunit.runner.console.2.1.8\tools\xunit.console Che5_(
lalculatorUnitTests\bin\Debug\Che5_CalculatorUnitTests.dll
IXUnit.net Console Runner (64-bit .NET 4.0.30319.42000)
Discovering: Ch@5_CalculatorUnitTests
Discovered: Che@5_CalculatorUnitTests
Starting: Cches_CalculatorUnitTests
Che5_CalculatorUnitTests.CalculatorUnitTests. TestAdding2And3 [FAIL]
Assert.Equal() Failure
Expected: 5
Actual: 6
Stack Trace:
Ches5_CalculatorUnitTests\CalculatorUnitTests.cs(32,0): at Che5_Calculatg
FUnitTests.CalculatorUnitTests. TestAdding2And3()
Finished: Cches_CalculatorUnitTests
TEST EXECUTION SUMMARY ===
Ches5_CalculatorUnitTests Total: 2, Errors: ©, Failed: 1, Skipped: ©, Time:
.308s

images/00110.jpeg
English — detected ~ French ~

Enter your date Entrez votre date

of birth: de naissance:

images/00111.jpeg
Reference Manager - Ch05_AutomatingExcel

b Assemblies Search COM (Ctr+E)

b Projects Name Version Naine:

DStared Projects Microsoft DirectX Transforms Image Transforms... 1. Microsoft Excel 16.0 Object
Microsoft Disk Quota 1.0 X Library
4 oM Microsoft Excel 16.0 Object Library £ Created by:
Microsoft Fax Service Extended COM Type Library 1. Microsoft Corporation
Type Libraries Microsoft Feeds 2.0 Object Library I Version:
Recent Microsoft File Tracing Automation Library v1.0 X 19
Microsoft Forms 2.0 Object Library I File Version:
EABrowes Microsoft Graph 16.0 Object Library X 16.0.6366.2036
Microsoft HTML Object Library
Microsoft IMAPI2 Base Functionality
Microsoft IMAPI2 File System Image Creator
Microsoft InkDivider Type Library, version 1.5
Microsoft InkEdit Control 1.0

Micrnenft Intarmat Cantrale

images/00108.jpeg
Program.cs
* | Access Modifier: Internal

Strings ~ %) Add Resource X Remove Resource |

Name. ~ Value Comment
EnterYourName Enter your name:
EnterYourDOB Enter your date of birth:

EnterYourSalary Enter your salary:

images/00109.jpeg
Program.cs*

Strings ~ "1 Add Resource ¥ X Remove Resource

Value

Name A
> EnterYourDOB

Entrez votre date de naissance:

EnterYourName

Entrez votre nom:

EnterYourSalary

Entrez votre salaire:

images/00123.jpeg
SayHelllo("Emily"));

@ string Person.SayHello(string name) (+ 1 overload)

images/00124.jpeg
p1.0ptionalPar‘ameter‘s(\);

void Person.OptionalParameters([string command = “Run!"], [double number = 0], [bool active = true])

images/00117.jpeg
Einamespace System
{
[-public class Object
{
[--Jpublic object();

[Jobject();

[Jpublic static bool Equals(Object objA, Object objB);
[Jpublic static bool ReferenceEquals(Object objA, Object objB);
[---public virtual bool Equals(Object obj);

.. .Jpublic virtual int GetHashCode();

[---public Type GetType();

[---public virtual string ToString();

|- protected Object MemberwiseClone();

®
®

B3

B3

images/00118.jpeg
Personcs # X
[Cho4_PeopleLibrary ~] %3 PacktLearningCSPerson ~| @ Name
Finamespace Packt.learningCs

{

5 public class Person

// fields
public string Name;
public DateTime DateOfBirth;

[Cho4_PeopleApp ~J%, Choa_peopleApp.Program ~] . Main(string[] args)
=hamespace Che4_PeopleApp
{

5 class Program

{

static void Main(string[] args)
{
var p1 = new Person();
WriteLine(pl);

images/00115.jpeg
Reference Manager - Ch06_PeopleApp
b Assemblies

4 Projects v

Soilien Cho6_PacktLibrary
b Shared Projects
» com

b Browse

Path
C:\Code\Chapter06\Ch06._

Search Projects (Ctrl+E)

Name:
Cho6_PacktLibrary

images/00116.jpeg
Microsoft Visual Studio

@ A project with an Output Type of Class Library cannot be started
directly.

In order to debug this project, add an executable project to this
solution which references the library project. Set the executable
project as the startup project.

OK

images/00121.jpeg
SayHello());

@ string Person.SayHello()

images/00122.jpeg
SayHelloTo("Emily"));

@ string Person.SayHelloTo(string name)

images/00119.jpeg
(constant) int int.MaxValue = 2147483647
Represents the largest possible value of an int. This field is constant.

(constant) double Math.Pl = 3.1415926535897931
Represents the ratio of the circumference of a circle to its diameter, specified by the constant, T

images/00120.jpeg
var p4 = new Per‘son(\)M

A 2 of 2 ¥ Person(string initialName)

images/00125.jpeg
pl.Shout +=

P1_Shout; (Press TAB to insert)

images/00134.jpeg
(P IComparable <Person>

Person
Class

“ Fields
AngerLevel : int
Children : List<Person>
DateOfBirth : DateTime
favouritePrimaryColour : string
HomePlanet : string
Instantiated : DateTime
Name : string
Species : string

“ Properties

Age {get; set; }:int

FavouritelceCream { get; set; } : string
FavouritePrimaryColour { get; set; } : string
Greeting { get; set; } : string
Origin { get; } : string
thisfint index] { get; set; } : Person

“ Methods
CompareTo(Person other) : int
GetOrigin() : string
MethodIWantToCall(string input) : int
operator *(Person p1, Person p2) : Person
OptionalParameters([string command = “.
Person()
Person(string initialName)

images/00128.jpeg
public new void WriteToConsole()

images/00129.jpeg
override

@ |Equals(object obj)

9@ GetHashCode()
@ ToString()

images/00126.jpeg
public partial class Person : IComparable<Person>

{

/1 properties

public string Origin

{
get
{

return $"

i

Implement interface expliitly

€ 50535 ‘Person’ does not implement interface member
‘IComparable <Person> CompareTo(Person)

{Name} was born on {HomePlanet}";

images/00127.jpeg
- E PUBTIC VO1d] WETEETOCONSOTE()

€3 0 Errors | Warning | @ 0 of 9 Messages

Code Description

b A CS0108 ‘Employee.WriteToConsole()' hides inherited member
‘Person.WriteToConsole()". Use the new keyword if hiding was intended.

images/00132.jpeg
B[R

<Search>

b [€#] Cho4_InheritanceApp
“ Ch04,PacktLibrary
> I Project References
4 {} Packt.LearningCS
> ‘I; BankAccount
b %z BankAccountException
> o= DisplacementVector
b *z Employee
b 4 RN
b #z PersonComparer
b [€#] Cho4_PeopleApp

images/00133.jpeg
(P IComparable <Person>
: 2N

: Person

Class

images/00130.jpeg
Employee e2 = aliceInPerson

© 00f 11 Messages

Code Description

€ CS0266 Cannot implicitly convert type ‘Packt.LearningCS.Person’ to
*Packt.LearningCS Employee’. An explicit conversion exists (are you missing a
cast?)

images/00131.jpeg
Add New Item - Ch04_PacktLibrary

4 Installed Sort by: Default diagram

v 43 G oigan Vel o s THPEE Visul C# toms

f T TS,

images/00135.jpeg
(P IComparable <Person>

Person
Class

“ Fields

Angerlevel :int

Children : List<Person>
DateOfBirth : DateTime
favouritePrimaryColour : string
HomePlanet : string
Instantiated : DateTime

Name : string

Employee
Class

* Person

“ Properties

EmployeeCode { get; set; } : string
HireDate { get; set; } : DateTime
“ Methods

@ ToString() : string
@ WriteToConsole() : void

images/00136.jpeg
Name
4 Methods
D @ ToString
P e WriteToConsole
© <add method>

4 Properties

EmployeeCode

HireDate

<add property>
4 Fields

® <add field>

Type
string

void

string
DateTime

Modifier

public
public

public
public

images/00139.jpeg
Data source:
Microsoft SQL Server (SqlClient)
Server name:
(localdb)\mssaliocaldo
Log on to the server

 Use Windows Authentication

Use SQL Server Authentication

Save my password
Connect to a database

 Select or enter a database name:
Northwind

Attach a database file:

Test Connection ok

Enter information to connect to the selected data source or click
‘Change" to choose a different data source and/or provider.

Change...

v Refresh
Browse.
Advanced

Cancel

images/00140.jpeg
¢x|emialk
b =» Azure
4 ﬁi Data Connections
4 E win81vm\localdb#99a11e8d.Northwind.dbo
4 [Tables
FH Categories
FH CustomerCustomerDemo
FH CustomerDemographics
FH Customers
FH Employees
FH EmployeeTerritories
FH Order Details
FH Orders
FH Products
[Region
FH Shippers
FH Suppliers
FH Territories
> I Views
b [Stored Procedures

images/00137.jpeg
emaill.|

@ IndexOf

@ IndexOfAny
@ Insert
@
D:

IsNormalized
£ (extension) bool string.IsValidEmail()
@ LastindexOf
@ LastindexOfAny
K Length
© Normalize

images/00138.jpeg
Microsoft SQL Server 2014

Server type: Database Engine
Server name: (localdb)\mssgllocaldb
Authentication: Windows Authentication
WIN81VM\Mark
Password:

Remember password

Cancel ‘ Help

Options >>

images/00143.jpeg
Customers Orders Order Details Products Cateaories
+ CustomerlD + OrderlD @—0G '+ OrderlD <@ |+ ProductiD + CategorylD

CompanyName CustomerID + ProductiD ProductName CategoryName
ContactName EmployeelD UnitPrice SupplieriD Desaription
ContactTitle OrderDate Quantity CategorylD Picture
Address RequiredDate Discount QuantityPerUnit
City ShippedDate. L= UnitPrice

Region ShipVia UnitsinStock Gt

PostalCode Freight UnitsOnOrder + SupplierlD

Country ShipName Reorderlevel CompanyName

Phone ShipAddress Discontinued ContactName
Fax ShipCity — ContactTitle
ShipRegi Address
ShipPostalCode city
ShipCountry Region
PostalCode

Country
Phone
Fax

HomePage

images/00144.jpeg
4 Installed

4 Visual C# Items

Code

Data

General

Web

Windows Forms
weF

AppVeyor
Azure

Build and NuGet
Extensibility
LightSwitch
Misc

PowerShell

b Online

Name:

Northwind

Sort by:

Default -

ADOINET Entity Data Model
Dataset

£F 5. DbContext Generator
EF 6.x DbContext Generator
UNQ to SQL Classes
Service based Database

XML File

Click here to go online and find templates.

Visual C# ltems.

Visual C# ltems

Visual C# ltems

Visual C# ltems

Visual C# items

Visual C# ltems

Visual C# ltems

Seorch nstlled Tomplates (Cul+6)

Type: Visual C# ltems

Aproject item for creating an ADONET
Entity Data Model.

images/00141.jpeg
ucts |
¢ | Yo Y| % | MaxRows: 1000
ProductiD | ProductName

Chai

Chang

Aniseed Syrup

Chef Anton's Cajun Seasoning

Chef Anton’s Gumbo Mix

‘o

SupplierlD | CategorylD QuantityPerUnit

1

1
1
2
2

1

1
2
2
2

10 boxes x 20 bags
24- 12 0z bottles
12 - 550 ml bottles
48 -6 0z jars

36 boxes

images/00142.jpeg
+* Update | Script File: dbo.Products.sql =
Name Data Type | Allow Nulls | Default
"ProductID ‘int) I [|
ProductName nvarchar(40) O
SupplierlD int
CategorylD int
QuantityPerUnit nvarchar(20)
UnitPrice money
UnitsInStock smallint

UnitsOnOrder smallint

ReorderLevel smallint
|

Discontinued bit

images/00246.jpeg
B3 ¢# and 0P Quiz x I

E SO | o

C# and OOP Quiz

Questions about the C# language and object-oriented programming.

This quiz has 2 questions.

©2015 - Quiz Web App

images/00247.jpeg
B Question 1 X |+

& 4] localhost

Question 1

Which keyword would you apply to a type's field to prevent its value from changing after
an instance of the type has been created?

O const > readonly

O static ® protected

-]

©2015 - Quiz Web App

images/00245.jpeg
[Home - Ch16 QuizWebs X+

& S5 O | iocakes

Quiz Web App

Quiz Web App is a web application built using C# and ASP.NET Core as an example for
the Packt Publishing book "C# 6 and .NET Core 1.0".

Learn more about the C# 6 and .NET Core 1.0 book »

C# and OOP File 1/0

Questions about the C# language and object-oriented programming Questions about the file inputioutput features of the .NET Framework
including serialization
Take the C# and OOP quiz »
Take the File /0 quiz »

ASP.NET Web Applications and
Services

Questions about building MVC web applications and Web AP services
by using ASP.NET.

images/00250.jpeg
88 Dashboard - Microsoft A X

C @ https://portal.azure.com,

’ Mark Price
oft Azure 70 DEFAULT DIRECTORY

Service health quizwebapp
MY RESOURCES weB aPP

Running
Resource groups 9
Al resources quizwebapp
APPLICATION INSIGHTS

Recent

Web Apps

learningcs
WS APP
SQL databases

MARKETPLACE | e 2 Running
Virtual machines (classic)
Virtual machines
Cloud services (classic)

Subscriptions

Browse >

images/00251.jpeg
Microsoft Azure v Allresources

+ New

N
8¢/ Resource groups

All resources

All resources
Default Directory

+ == (V)

Add Columns Refresh

images/00248.jpeg
B Question2 x [

& 4] localhost

Question 2

Which modifier would you apply to a type's member to allow only code within that type
access to it?

o internal O protected

@ private

©2015 - Quiz Web App

images/00249.jpeg
3 Finish x I8

& O | tocathost

Finish

You scored 1 out of 2

Question Correct Your
Answer Answer

Which keyword would you apply to a type's field to prevent its value from changing after an instance of the type has B D
been created?

Which modifier would you apply to a type's member to allow only code within that type access to it?

images/00254.jpeg
. quizwebapp
Web app

o] X B [} ¥

Settings Tools Browse Restart Get More
publish... commanc.

Essentials ~

Running
North Europe No FTP/deployment user set

ftp://waws-prod-db3-033 ftp.azurewebsite..

d03d9c59-44a5-46df-9cd4-ad4f083a976e ftps://waws-prod-db3-033.ftp.azurewebsit.

images/00252.jpeg
Everything

Y

Filter

web app|

PUBLISHER

Microsoft

images/00253.jpeg
* Web app

quizwebapp
azurewebsites.net
* Subscription

Pay-As-You-Go

* Resource Group

Default-Web-NorthEurope

* App Service plan/Location

Default1(North Europe)

Pin to dashboard

images/00285.jpeg
C# 6 and .NET Core 1.0

Modern Cross-Platform Development

Mark J. Price [

images/00147.jpeg
Enter information to connect to the selected data source or click
“Change" to choose a different data source and/or provider.

Data source:
Microsoft SQL Server (SqiClient)
Server name:
(localdb)\mssglocaldb
Log on to the server

® Use Windows Authentication

Use SQL Server Authentication

Save my password

Connect to a database

@ Select or enter a database name:
Northwind

Attach a database file:

Test Connection ok

Change..

Refresh

Adyanced..

Cancel

images/00148.jpeg
Which database objects do you want to include in your model?

[e Views

images/00145.jpeg
What should the model contain?

EF Designer Empty EF Empty Code [SStaIy

from Designer First model [SRIIS
database model database

Creates a Code First model based on an existing database. You can choose the database
connection, settings for the model, and database objects to include in the model.

images/00146.jpeg
Which data connection should your application use to connect to the database?

¥ | New Connection..

images/00151.jpeg
var names = new string[] { "Michael”, "Pam", "Jim", "Dwight”, "Angela”
var query = names.Where()

A 102 ¥ (extension) |Enumerable<string> IEnumerable<string> Where <string> (Func<string, bool> predicate)

images/00152.jpeg
CPU intel(R) Core(TM) i7-3615QM CPU @ 2.30G...

% Utilisation 100%

| Changegraphto e Overallutiisation

Show kernel times Logical processors

Graph summary view NUMA nodes

View

Copy Ctrl+C

L e |

60 seconds

images/00149.jpeg
Package Manager Console

Package source: nuget.org ~| %% | Default project: Ch08_EFCore -
PM> install-package entityframework.microsoftsqlserver -pre 7
Installing NuGet package EntityFramework.MicrosoftSqlServer.7.0.8-rcl-final.

Successfully installed 'EntityFramework.MicrosoftsqlServer 7.0.@-rcl-final' to Ches_EFCore

PM> | 5

100%

images/00150.jpeg
[C\Users\markjprice\.dnx\runtimes\dnx-coreclr-win-x64.1.0.0-rc1-update \..

lBeverages has 12 products.
lCondiments has 12 products.
[confections has 13 products.
Pairy Products has 16 products.
(Grains/Cereals has 7 products.
Meat/Poultry has 6 products.
Produce has 5 products.
lseafood has 12 products.

images/00153.jpeg
CPU Intel(R) Core(TM) i7-3615QM CPU @ 2.30G...

NL A

| JUM

\

images/00154.jpeg
CPU intel(R) Core(TM) i7-3615QM CPU @ 2.30G...

% Utilisation over 60 seconds 100%

images/00158.jpeg
Other users

Allow people who are not part of your family to sign in with their
own accounts. This won't add them to your family.

+ Add someone else to this PC

images/00159.jpeg
Create an account for this PC

If you want to use a password, choose something that will be easy for you to remember
but hard for others to guess.

Who's going to use this PC?

[Alicesones |

Make it secure.

[Password with dollars and zero |

images/00156.jpeg
// System.IO.Stream
\/// <summary>Closes the current
public virtual void Close()

{

this.Dispose(true);
GC.SuppressFinalize(this);

images/00157.jpeg
// System.IO.Stream

/// <summary>Releases all
[__DynamicallyInvokable]
public void Dispose()

{
}

this.Close();

images/00162.jpeg
<Grid>
<StackPanel> New Event Handler

<Button Name="GetProductsButton" Click="">Get Products</Button>
<TextBox>Type in here while the products load...</TextBox>

images/00163.jpeg
MainWindow

Get Products

Type in here while the products load...jhhkhhk

images/00160.jpeg
@ Mark Price

v Change account settings
Lock
(Sign out

| Q AliceJones
v raint

images/00161.jpeg
G Design
1 Button

H BExamL

Get Products
Type in here while the products load...
Rt
~| @ Button

100% -

E<Window x:Class:

xmlns
xmlns
me:Ig
Titl

<Grid>
<stac

<Button Name="GetProductsButton">Get Products</Button>
<TextBox>Type in here while the products load...</TextBox>

:local:
norable

kPanel>

"Ch12_GUITasks.MainWindow"
http://schemas.microsoft.com/winfx/2006/xaml/presentation”
"http://schemas .microsoft. com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
http://schemas .openxmlformats.org/markup-compatibility/2006"
clr-namespace:Ch12_GUITasks"

MainWindow” Height="350" Widtl

525">

<ListBox Name="ProductsListBox"></ListBox>

</sta
</6rid>

[</mindow>

4

ckPanel>

images/00155.jpeg
Ch10_Serialization, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null (NETFramework,Version=v4.6.1)
NET Core (Cross- NeT Ner
Targettpe PatormVersion=v5.0 Famevorkverson=wiS Natveersionsvi0
Sysem Console ° o
Witetine ° o
Witeline(sstemSting) ° o

System Runtime Serialzation Formatters Binary BinaryFormatter
#etor

Serialize(System 1O Stream System.Object)

System.\Web.Script Serialization JavascriptSerializer

#ctor

o
o
J
o
o
L

Serialize(System.Object)

Recommended
changes

Use JSON.NET instead
Use JSONNET instead
Use JSON.NET instead

images/00164.jpeg
B MainWindow

Get Products

Type in here while the products load...jkhjhkhhhhkhkhhkhkhkhhjhjkhhhhhhhhH|
1: Chai costs £18.00

2: Chang costs £19.00

3: Aniseed Syrup costs £10.00

images/00169.jpeg
B | MainWindow

images/00170.jpeg
& Setings

5% UPDATE & SECURITY

Windows Update

Windows Defender

Backup

Recovery

Activation

Use developer features

These settings are intended for development use
only.

Learn more.

O Don't use developer features

Q sideload apps

(@ Developer mode

images/00167.jpeg

images/00168.jpeg
B MainWindow

Click Me

images/00173.jpeg
Chog_uwp

09:10:27

images/00174.jpeg
Ch13_UWP, Version=1.0.0.0, Culture=neutral, PublickeyToken=null (NETCore,Version=v5.0)

NET Core (Cross- NET NET
Target type platform) Version=v5.0 FrameworkVersion=v4.5 NativeVersion=v1.0

System Runtime.nteropServices WindowsRuntime EventRegistrationToken o o o

System Runtime.nteropServices WindowsRuntime WindowsRuntimeMarshal o

AddEventHandler™1(system.Func
(°0,5ystem Runtime InteropServices WindowsRuntime EventRegistrationToken) System Action
(System Runtime InteropServices WindowsRuntime EventRegistrationToken), "0)

images/00171.jpeg
Microsoft Visual Studio

@ The project "Ch09_UWP" needs to be deployed before it can be
started.

Verify the project is selected to be deployed in the Solution
Configuration Manager, or deploy it explicitly by clicking one of
the Deploy commands in the Build menu.

OK

images/00172.jpeg
Error List

Entire Solution - | @ 1€rmor | 4 0Warnings | @ 0Messages | Build + Intellisense

Code | Description

€ Cs1061 'DateTime’ does not contain a definition for ‘TolongTimeString’ and no
extension method ‘TolongTimeString’ accepting a first argument of type
“DateTime' could be found (are you missing a using directive or an assembly
reference?)

Project

Cho9_UWP

v & X

Search Error List

File Line

MainPage.xaml.cs 32

p-

images/00165.jpeg
[Design
[Window - K Title

[=I<Window x:Class “ChBQ_WPF.MéinNindow;
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns: ttp://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:local="clr-namespace:Ch@9_WPF"

mc:Ignorable=
Title="MainWindow" Height="350" Width="525">
<Grid>

</Grid>
</Window>
100% ~ 4

images/00166.jpeg
Search Toolbox

P~

4 Common WPF Controls

Pointer
Border
Button
CheckBox
ComboBox
DataGrid
Grid

Image
Label
ListBox
RadioButton

Rectangle

StackPanel
TabControl
TextBlock

TextBox

> All WPF Controls
P G al

EEl'mde >

images/00180.jpeg
er09 - Microsoft for Visua

o che

File Edit View Project Build Debug Team Design Format Tools Window Help

Debug ~ AnyCPU ~ Ch09_BouncingBall (Universal Win ~ P Local Machine ~ _
Solution Explorer v B X MainPage.xaml App.xaml.cs
@l o-5¢CaT@ o & " | 5 Phone (1920 x 1080) 300% scale -
Lok
> L) MainPage.xaml ¥ 0 80 |
&5 Package.appxmanifest Q g 4
) projectjson "
3 Ch09_DataBinding (Universal Windows) “
& o

Ch09_UWP (Universal Windows)
Ch09_WPF ¥ d

Solution Explorer ' Assets States Data

[Page]

4 [[Page]
= TopAppBar

BottomAppBar

4 [[Canvas] [

images/00181.jpeg
Create Storyboard Resource

Name (Key)
O BounceBall
[

images/00178.jpeg

images/00179.jpeg
Ch09_DataBinding - o

[Jaie Jsmn [3 October 2015 | 34000 |

[2 [Bob Juones | 3 October 2015 | 64000 |

images/00184.jpeg
®Bounce.. ¥ X + - |4 4 p I» »
. [Page] *e 000800 @
@8 0 1
4 [[Page]
‘= TopAppBar

= BottomAppBar
4 [g [Canvas] & O

images/00182.jpeg
© BounceBall timeline recording is on.

images/00183.jpeg
®*Bounce.. ¥ X + - |4 4 p I »l
[Page] *e 000000 @

4 [[Page]
‘= TopAppBar
= BottomAppBar|
4 fd [Canvas] & O

images/00176.jpeg
Chog_uwp

images/00177.jpeg
Chog_uwp

(G|

images/00175.jpeg
Chog_uwp

10:10:54

images/00191.jpeg
Chos_BouncingBal

Bounce Ball

® B o W o [ovsmmes

images/00192.jpeg
Extensions and Update:

b installed Sort by: Relevance

4 Online

4 Visual Studio Gallery
Search Results
b Controls
b Templates
b Tools
b Samples Gallery

b Updates

2

Change your Extensions and Updates settings

Web Essentials 2015.1
Adds many useful features to Visual Studi
developers. Requires Visual Studio 2015

SPFastDeploy
Extension to deploy single file resource (scripts, css, etc) o on-premises
and Office 365 SharePoint app model.

CompileSass
‘Compiles Sass files in the background when scss files are saved in Visual
Studio. Resulting files will end in min.css.

Web Extension Pack
The easiest way to set up Visual Studio for the ultimate web
development experience.

indscape Web Workbench
1

web essentials.

Created by: Mads Kistensen
Version: 10203
Downloads: 191477

Rating: /- (87 Votes)
More Information

Report Extension to Microsoft

images/00189.jpeg
MainPagexaml # X

5" Phone (1920 x 1080) 300% scale [= m

Bounce Ball

images/00190.jpeg
D4 Chapter09 - Microsoft Visual Studio

File Edit View Project Build Debug Team Design Format Tools Test Web Essentials Analyze Window

[<Id B -2 W2 - | Debug ~ AnyCPU ~ Ch09_BouncingBall (Universal Win ~ B Simulator ~

images/00193.jpeg
/mvc - F12 Developer Tools - Microsoft Edge

F12 DOM Explorer Console Debugger Network

B (ﬂi =S = Y~ Contenttype

images/00194.jpeg
GET text/html

images/00187.jpeg
Cho9_BouncingBall

Bounce Ball

images/00188.jpeg
MainPagexaml + X

23" Desktop (1920 x 1080) 100% scale

Bounce Ball

images/00185.jpeg

images/00186.jpeg
® BounceBall timeline recording is off.

images/00202.jpeg
B3 About - Ch14_ WebApp X =+

= O localhost

Ch14_WebApp

Home
About

Contact

) 2016 - Ch14_WebApp

images/00203.jpeg
@o 0@ p=
Seach Sluton bplorr Culv) B -

& Solution ‘Chapter14’ (1 project)
4 & Solution Items
&7 globaljson
4 s
4 @3] Ch14 WebApp
b & Properties
b = References
4 @ wwwroot
b W css
b o images
b s
b b
LT referencesjs
B faviconico
¥ web.config
7" Dependencies

b & npm
] Controllers
€ HomeController.cs

&) Views

b Home

b Shared
Viewlmports cshtml
_Viewstartcshtml

&T appsettingsjson

T gulpfilejs

T projectjson

£ Project Readme html

€ Startup.cs

images/00200.jpeg
£ About- Ch14 WebApp X+

<« O | tocahost

Your application description page.

Use this area to provide additional information.

©2016 - Ch14_WebApp

images/00201.jpeg
5 About - Ch14 WebApp X+

O localhost

About.

Your application description page.

Use this area to provide additional information

©2016 - Ch14_WebApp

images/00204.jpeg
Package source: nuget.org ~ &% | Default project: ' src\Ch14_WebApp

PM> Install-Package EntityFramework.MicrosoftSqlServer -Pre

Installing NuGet package EntityFramework.MicrosoftsqlServer.7.0.0-rc1-final.

Successfully installed 'EntityFramework.Microsoftsqlserver 7.0.0-rc1-final' to Ch14_WebApp

PM> Install-Package EntityFramework.Commands -Pre

Installing NuGet package EntityFramework.Commands.7..-rc1-final.

Successfully installed 'EntityFramework.Commands 7.0.6-rc1-final' to Ch1d_WebApp

PM> Install-Package EntityFramework.MicrosoftSqlServer.Design -Pre

Installing NuGet package EntityFramework.MicrosoftSqlServer.Design.7.0.@-rcl-final.

Succ‘essfully installed 'EntityFramework.MicrosoftsqlServer.Design 7.0.0-rci-final' to Ch1d_WebApp
PM>

images/00195.jpeg
Headers | Body Parameters Cookies Timings
Request URL: hitp://www.asp.net/mvc

Request Method: GET

Status Code: Il 200/ OK

4 Request Headers

Accept: text/html, application/xhtm+xml, image/jxr, */*
Accept-Encoding: gzip, deflate

Accept-Language: en-US, en-GB; =07, en; 4=03
Connection: Keep-Alive

Cookie: omnilD=26a92247_baba_4d8_b19b_1739f9a04c2a; _.
Host: wwwaspnet

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) Appl.

4 Response Headers

Cache-Control: private
Content-Encoding: gzip
Content-Length: 17191

Content-Type: text/html; charset=utf-8
Date: Thu, 05 Nov 2015 07:5329 GMT
Server. Microsoft-115/8.0

Vary: Accept-Encading

X-Frame-Options: SAMEORIGIN

X-Powered-By: ARR/25

images/00198.jpeg
Solution Explorer
@ o--aB L=
Search Solution Explorer (Ctrl+;) P~

%] Solution ‘Chapter14' (1 project)
4] Solution Items
£T globaljson

4 Gl src

4] ch14 WebApp
K Properties
=B References
@ wwwroot
7! Dependencies
[Controllers
I Views
g appsettings.json
IT gulpfilejs
g project.json
‘.I’J Project_Readme.html
C# Startup.cs

4
4
4
4
4
4

images/00199.jpeg
£ Home Page - Ch14 Wek X+

© | e

Application
uses

+ Sample pages using
ASP.NET MVC 6

+ Gulp and Bower for
managing client-side
libraries

Learn More

How to Overview

Add a Controller and View
Add an appsetting in config

and access itin app. Fundamenta
Manage User Secrets ich as Startup
using Secret Manager eware.
Use logging to log a Working with Data

m

Run & Deploy

Run your app
Run your app on .NET

Run command

Microsoft Azur

images/00196.jpeg
Project
b Recent
4 Installed

4 Templates
4 Visual C#
b Windows
Web
Android
b Cloud
Extensibility
v ios

Mobile Apps

v Online

Name:
Location:

Solution name:

Ch14 WebApp
Ci\Code
Chapteri4

NET Framework 461~ Sort by: Default

-
R slank app (Universal windows)

o
Windows Forms Application

e

WPF Application

o
Bl console Applcation

Click here to go online and find templat

Visual C#

Visual C#

Visual C#

Visual C#

Search Installed Templates (Ctrl+E) P -

Type: Visual C#

A project template for creating
ASP.NET applications. You can create
ASP.NET Web Forms, MVC, or Web APl
applications and add many other
features in ASP.NET.
'@ Application Insights
] Add Application Insights to project
Optimize performance and
monitor usage in your live
application.

s6dotnetcore@outiook.com. >

Browse...

Create directory for solution

[] Add to source control

images/00197.jpeg
Ch14_ WebApp
Select a template:
ASP.NET 4.6.1 Templates

i S N s B (R i

Empty Web Forms MvC Web API

4 4 cx
=
ol o N
Azure APl App Azure Mobile Azure Mobile
App Service

Single Page
Application

ASP.NET 5 Templates

s
&
Empty Web API

Application

Add folders and core references for:

Web Forms MVC | | WebAPI

| Add unit tests

Test project name: | Ch14 WebApp Tests

A project template for creating an ASP.NET 5
application. The template uses ASP.NET MVC and can
be used to build Web Applications and RESTful HTTP
Services.

Learn more

Change Authentication

Authentication: No Authentication

S Microsoft Azure
(®) [Host in the cloud

[App Senice

images/00213.jpeg
B localhost X+ - BEN x
&« > 0 ‘rocalhosmww hippe: Y = L

"(503) 555-9831"}, {"Orders": [, "Ship

[{"Orders’

1,"ShipperID":1, "CompanyName" : "Speedy Express","Phone

images/00214.jpeg
Appamlcs ShippersControllercs

NuGet Package Manager: Ch14_WinApp

Installed Updates Package source: nugetorg

web api cient 9 ncluce prerslesse

~ B Microsoft AspNet WebApi.Client

Voo s saes23

Ap Miguel A Gonzalez, 114 downloads
A collection of useful tools for accessing RESTful AP! backends using the ASPNET

images/00211.jpeg
3 Products That Cost Mon X

&« O localhost

Products That Cost More Than $30.00

Category Name Company Name Product Name UnitPrice Units In Stock
Condiments Grandma Kelly's Homestead Northwoods Cranberry Sauce 40.00 6
Meat/Poultry Tokyo Traders Mishi Kobe Niku 97.00 29

Seafood Tokyo Traders Tkura 31.00 31

Dairy Products Cooperativa de Quesos ‘Las Cabras'

i Queso Manchego La Pastora 38.00 86

MeatiPoultry Paviova, Ltd Alice Mutton 39.00 0

Seafood Pavlova, Ltd. Carnarvon Tigers 62.50

images/00212.jpeg
Add New Item - Ch14 WebApp
4 Installed
4 DNX

Client-side

Server-side
Powershell

b Online

Sort by: Default
—
& s

O interface

o
4] mve controier Cass

&

-
[wcvenrese
&
B e view utoge
v
@] MVC View Start Page

lick

ShippersController.cs

Search Installed Templates (Ctrl+E)

Type: DNX
Web AP Controller Class

images/00205.jpeg
4 .| Models

c#
c#
cH
c#
c#
c#
cH
c#
c#
c#
cH
c#
c#
c#

Categories.cs
CustomerCustomerDemo.cs
CustomerDemographics.cs
Customers.cs
Employees.cs
EmployeeTerritories.cs
NorthwindContext.cs
Order_Details.cs

Orders.cs

Products.cs

Region.cs

Shippers.cs

Suppliers.cs

Territories.cs

images/00206.jpeg
£ Home Page - Ch1d_Wet X

O localhost

Northwind

We have had 366 visitors this month.

Products

Chai costs $18.00 Gumbar Gummibérchen costs $31.23
Chang costs $19.00 Schoggi Schokolade costs $43.90
Aniseed Syrup costs §10.00 Rossle Sauerkraut costs $45.60
Chef Anton's Cajun Seasoning costs Thiringer Rostbratwurst costs $123.79
§22.00 Nord-Ost Matjeshering costs $25.89
Chef Anton's Gumbo Mix costs $21.35 Gorgonzola Telino costs $12.50
Grandma's Boysenberry Spread costs Mascarpone Fabioli costs $32.00
St con 5

Tourtiére costs $7.45

Paté chinois costs $24.00

Gnocehi di nonna Alice costs $38.00
Ravioll Angelo costs $19.50
Escargots de Bourgogne costs $13.25
Radlette Courdavault costs $55.00
Camembert Pierrot costs $34.00

images/00209.jpeg
51 Home Page - Ch14_Wet X

O localhost

Enter

Camarvon Tigers costs $62.50
Teatime Chocolate Biscuits costs $9.20
Sir Rodney's Marmalade costs $81.00
Sir Rodney's Scones costs $10.00
Gustaf's Knéckebrod costs $21.00
Tunnbréd costs $9.00

Guarana Fantéstica costs $4.50

NuNuCa Nut-Nougat-Creme costs $14.00

aproduct price || Submit Query

©2016 - Ch14_WebApp

Rogede sid costs $9.50

Spegesild costs $12.00

Zaanse koeken costs $9.50
Chocolade costs $12.75

Maxilaku costs $20.00

Valkoinen suklaa costs $16.25
Manjimup Dried Apples costs $53.00

Perth Pasties costs $32.80

R6d Kaviar costs $15.00

Longiife Tofu costs $10.00

Rhonbrau Klosterbier costs $7.75
Lakkalikoori costs $18.00

Original Frankiurter grine Softe costs
$13.00

Bob's Burger costs $520.00

Bob's Burger costs $500.00

images/00210.jpeg
3 Products That Cost Mon X

O

<

localhost

Products That Cost More Than $50.00

CategoryName
MeatiPoultry
Seafood
Confections
Meat/Poultry
Beverages

Produce

CompanyName
Tokyo Traders

Paviova, Ltd.

Specialty Biscuits, Ltd

Plutzer Lebensmittelgrofmarkte AG
Aux joyeux ecclésiastiques.

G'day, Mate

ProductName
Mishi Kobe Niku
Carnarvon Tigers

Sir Rodney's Marmalade
Thringer Rostbratwurst
Cdte de Blaye

Manjimup Dried Apples

UnitPrice

97.00

62.50

81.00

123.79

263.50

53.00

UnitsinStock

29

42

40

images/00207.jpeg
Add New Item - Ch14 WebApp

4 Installed Sort by: | Default Search Installed Templates (Cti+E) P ~

4 DNX e “ Type: DNX
&) Class ype:
Client-side J

MVC View Page with Razor syntax
Senver-side

Powershell

Interface.

b Online MVC Controller Class

Web API Controller Class

MVC View Layout Page

MVC View Start Page

lick

ProductDetail shtm!

images/00208.jpeg
B3 Product Detail - Gumba X 4

&« O localhost

Product Detail

Product ID
Product Name
Category ID
Unit Price
Units In Stock

©2016 - Ch14_WebApp

2
Gumbar Gummibarchen
3

§31.23

15

images/00224.jpeg
Edit View

@ Code File

Goto Window Help

EXPLORE
4 WORKING FILES 2 UNSAVED

“:) ® project.json
® program.cs
4 CONSOLEAPP
B s
project.json

629 project.lock json

 project.json
{

"dependencies": {

“commands": {
“ConsoleApp":

"ConsoleApp"
}
“frameworks'
"dnx451":
“dnxcores
“dependencies”: {
“Systen. Console

1

"4.0.0-beta-*"

images/00222.jpeg
[XX] ") WebApp — bash — 100x7

dnvm use <semver>|<alias>|<package>|none [-p|-persistent]
cture>]

<semver>|<alias>|<package> add DNX bin to path of current command line

[-r|-runtime <runtime>] [-a|-arch <archite |\

none remove DNX bin from path of current command line
-p|-persistent set selected version as default
~r|-runtine <runtime> runtime flavor to use [mono or coreclr] (default: mono)

-a|-arch <architecture> architecture to use (x64)

images/00223.jpeg
[WebApp — bash — 100x13

markjprice:WebApp $ dnvm use 1.0.0-rcl-updatel -runtime coreclr -arch x64 -persistent]
Adding /usr/local/lib/dnx/runtimes/dnx-coreclr-darwin-x64.1.0.0-rcl-updatel/bin to process PATH

Updating alias ‘default’ to 'dnx-coreclr-darwin-x64.1.0.0-rcl-updatel®
markjprice:WebApp § dnvm list -detailed

Active Version
-rc1-final
-rc1-final
-rc1-updatel
-rci-updatel

markjprice:WebApp $ Il

Runtine Architecture OperatingSysten Alias

coreclr x64
coreclr x64
mono

coreclr x64

Location

Linux /usr/local/lib/dnx/runtimes
win /usr/local/lib/dnx/runtimes
Llinux/0sx ~/.dnx/runtimes

darwin default /usr/local/lib/dnx/runtimes

images/00216.jpeg
Ch10_WinApp
Shippers

ShipperID 1
Company NameSpeedy Express
Phone (503) 555-9831

Shipper ID 3
Company NameFederal Shippin
Phone (503) 555-9931

Shipper D 2
Company NameUnited Package
Phone (503) 555-3199

images/00217.jpeg
Visual Studio Code

images/00215.jpeg
Solution 'Chapter14' Property Pages

O current selection

QO single star ji

P e |
Code Analysis Settings

Debug Source Files

Iiple startup projects:
b Configuration Properties Oribsimrzkes

Project Action
Ch14_WebApp Start without debugging
Ch14_WinApp Start

images/00220.jpeg
@ Terminal Shell Edit View Window Help

2 markjprice — bash — 80x34

markjprice:~ $ dnvm upgrade

Determining latest version

Latest version is 1.0.0-rcl-updatel

Downloading dnx-mono.1.0.0-rcl-updatel from https://www.nuget.org/api/v2
Download: https://www.nuget.org/api/v2/package/dnx-mono/1.0.0-rc1-updatel
Y 100, 0%
Installing to /Users/markjprice/.dnx/runtimes/dnx-mono.1.0.0-rcl-updatel
Adding /Users/markjprice/.dnx/runtimes/dnx-mono.1.0.0-rcl-updatel/bin to process
PATH

Setting alias 'default' to 'dnx-mono.1.0.0-rcl-updatel’

markjprice:~ $ source dnvm.sh

markjprice:~ $ dnvm

E_NCMT R

/o BRI NI
b

.NET Version Manager - Version 1.0.0-rc2-15546
By Microsoft Open Technologies, Inc.

DNVM can be used to download versions of the .NET Execution Environment and mana
ge which version you are using.

You can control the URL of the stable and unstable channel by setting the DNX_FE
ED and DNX_UNSTABLE_FEED variables.

Current feed settings:

Default Stable: https://www.nuget.org/api/v2

Default Unstable: https://www.myget.org/F/aspnetvnext/api/v2
Current Stable Override: <none>

Current Unstable Override: <none>

Use dnvm [help|-h|-help|--help] to display help text.

markjprice:~ $ [l

images/00221.jpeg
@ Terminal Shell Edit View Window Help

LK % markjprice — bash — 100x10

markjprice:~ $ dnvm list -detailed

Active Version Runtime Architecture OperatingSystem Alias Location

1.0.0-rc1-final coreclr x64
1.0.0-rc1-final coreclr x64

* 1.0.0-rcl-updatel mono

1.0.0-rcl-updatel coreclr x64

markjprice:~ $ I

Llinux /usr/local/lib/dnx/runtimes

win /usr/local/lib/dnx/runtimes
Llinux/osx default ~/.dnx/runtimes
darwin /usr/local/lib/dnx/runtimes

images/00218.jpeg
@ Code File Edit View Goto Window Help

Untitied-1 '

@ Untitled-1 m x
I

o

¥

®

images/00219.jpeg
o220 % markjprice — bash — 80x21
Last login: Sun Jan 17 07:28:23 on ttys00e B
markjprice:~ § ls -a

.subversion
. .vscode
.CFUserTextEncoding AndroidStudioProjects
.DS_Store Applications
.Trash Applications (Parallels)
.android Desktop
.bash_history Documents
.bash_profile Downloads
.config Dropbox
.cups GitRepository
.dnx Library
.dropbox Movies
.gradle Music
«local Pictures
.npm Projects
.pia_manager Public
.pia_manager_crash. log SampleWebApplication

.rnd
markjprice:~ $ [l

images/00233.jpeg
localhost

WebApplicationBasic

Learn More

Application uses

« Sample pages using ASPNET MVC 6
 Gulp and Bower for managing client-side libraries
« Theming using Bootstrap

How to

e Add a

Controller and

images/00234.jpeg
@ Terminal Shell Edit View Window Help

LK) WebApp — mono-sgen — 80x25

Application started. Press Ctrl+C to shut down. =
info

info

info

info

info
info

info
info

info

info

images/00227.jpeg
@ Terminal Shell Edit View Window Help

[.) [HelloWeb — bash — 86x22

Installing runtime.osx.10.10.System.Security.Cryptography.Algorithns.4.0.0-beta-23516 B
Installing System.Text.Encoding.Extensions.4.0.0

Installing System.Security.Cryptography.OpenSsl.4.0.0-beta-23516
Installing System.Reflection.Emit.Lightweight.4.0.0-beta-23109
Installing System.Threading.Thread.4.0.0-beta-23516

Installing runtime.unix.System.Globalization.Extensions.4.0.1-beta-23516
Installing System.Collections.Concurrent.4.0.0

Installing System.I0.4.0.10

Installing System.Runtime.Numerics.4.0.0

Installing System.Globalization.Calendars.4.0.0

Writing lock file

Restore complete, 260590ms elapsed

NuGet Config files used:
/Users/markjprice/.config/NuGet/nuget.config

Feeds used:
https://api.nuget.org/v3-flatcontainer/

Installed:
179 package(s) to /Users/markjprice/.dnx/packages
markjprice:Helloweb $ Ji

images/00228.jpeg
@ Terminal Shell Edit View Window Help

eoe HelloWeb — mono-sgen — 86x13

markjprice:HelloWeb $ dnx web]
Hosting environment: Production

Now listening on: http://localhost:5004

Application started. Press Ctrl+C to shut down.

info

info
info

info

images/00225.jpeg
ene . [ConsoleApp — bash — 75x19

markjprice:ConsoleApp $ dnu restore
Microsoft .NET Development Utility CoreClr-x64-1.0.0-rc1-16231

GET https://api.nuget.org/v3/index.json

0K https://api.nuget.org/v3/index.json 939ms
Restoring packages for /Users/markjprice/ConsoleApp/project.json

GET https://api.nuget.org/v3-flatcontainer/system.console/index. json

0K https://api.nuget.org/v3-flatcontainer/system.console/index.json 481ms
wWriting lock file
Restore complete, 1373ms elapsed

NuGet Config files used:
/users/markjprice/.config/NuGet/nuget. config

Feeds used:
https://api.nuget.org/v3-flatcontainer/
markjprice:ConsoleApp $ dnx ConsoleApp run
Hello C#, running cross-platform!
markjprice:ConsoleApp $ I

images/00226.jpeg
@ Code File Edit View Goto Window Help

@ ExpLoR: |Info] There are unresolved dependencies from /project json’. Please execu... m x
4 WORKING FILES i
e “version®: "1.0.0-",
p Hn) "dependencies": {
startup.cs "Kestrel": "1.0.0-+",
0 4 HELLOWEB "Microsoft.AspNet.Diagnostics": "1.0.0-#"
® startup.cs "kestrel": "Microsoft.AspNet.Hosting —server Kestrel -
},
“frameworks": {
i}
“dnxcore50": { }
}

images/00231.jpeg
& Terminal Shell Edit View Window Help

ene 1 markjprice — bash — 80x52
markjprice:~ $ yo aspnet 5|

| Welcome to the |
| marvellous ASP.NET 5 |
| |

generator

7 What type of application do you want to create? heb Application Basic [without
7 What's the name of your ASP.NET application? iebinn
create WebApp/gulpfile.js
create WebApp/Dockerfile
create WebApp/.bowerrc
create WebApp/.gitignore
create WebApp/bower. json
create WebApp/appsettings. json
create WebApp/package. json
create WebApp/project. json
create WebApp/README.md
create WebApp/Startup.cs
create WebApp/Controllers/HomeController.cs
create WebApp/Views/_ViewInports. cshtml
create WebApp/Views/_ViewStart. cshtml
Create WebApp/Views/Hone/About. cshtml
Create WebApp/Views/Home/Contact. cshtml
create WebApp/Views/Home/Index. cshtml
create WebApp/Views/Shared/_Layout. cshtml
create WebApp/Views/Shared/Error. cshtml
create WebApp/wnroot/css/site. css
Create WebApp/wairoot/css/site.min.css
create WebApp/wawroot/favicon. ico
create WebApp/waroot/inages/ASP-NET-Banners-01.png
Create WebApp/wnuroot/inages/ASP-NET-Banners-02.png
Create WebApp/wairoot/ inages/Banner-01-Azure. png
create WebApp/wwwroot/inages/Banner-82-VS. png
Create WebApp/wmairoot/js/site. is
Create WebApp/waeroot/js/site.min.js
Create WebApp/wwwroot/web. contig

Your project is now created, you can use the following commands to get going
cd "WebApp”
dnu restore
dnu build (optional, build will also happen when it's run)
dnx web

markjprice:~ s Il

images/00232.jpeg
ece WebApp — mono-sgen — 80x25

markjprice:~ $ cd WebApp
markjprice:WebApp $ 1s -a

: Dockerfile bower. json
£ README . md gqulpfile.js
.bowerrc Startup.cs package. json
.gitignore Views project.json
Controllers appsettings. json wiwroot

markjprice:WebApp $ dnu restore
Microsoft .NET Development Utility Mono-x64-1.0.0-rc1-16231

CACHE https://api.nuget.org/v3/index.json
Restoring packages for /Users/markjprice/WebApp/project.json
writing lock file
Restore complete, 12683ms elapsed

NuGet Config files used:
/Users/markjprice/.config/NuGet/nuget.config

Feeds used:
https://api.nuget.org/v3-flatcontainer/

markjprice:WebApp $ dnx web

Hosting environment: Production

Now listening on: http://localhost:5000

Application started. Press Ctrl+C to shut down.

images/00229.jpeg
Welcome

Your ASP.NET 5 application has been successfully
started

Learn more about the Microsoft

components

images/00230.jpeg
nodejs.org

neden

HOME | ABOUT DOWNLOADS | DOCS | FOUNDATION | GETINVOLVED | SECURITY | News

Node.js®is a JavaScript runtime built on . Node.js
uses an event-driven, non-blocking I/0 model that makes it lightweight and efficient.
Node.js' package ecosystem, ,is the largest ecosystem of open source libraries in

the world.

Download for OS X (x64)

images/00235.jpeg
o
+ wonka ruzs
N o
o ‘v:':'moﬂlrdw.m

e
® e

Contact.cshtmi
Index.cshtmi
4 Shared
_Layout.cshtml
Error.cshtm
_Viewimports.cshtmi
_ViewStart.cshtmi
4 wwwroot
boss
» images
bis
favicon.ico
web.config
bowerrc
gitignore
appsettings.json
bowerjson
Dockerfie.
guipfiejs
package json

projectiockjson
README.md

BPLORE

projectjson

<
“version": "1.0,0-+",
“compilation0ptions": {
“emitEntryPoint": true

'WebApp"

“dependencies": {
“Microsoft.AspNet.Diagnostics

'1.0.0-rc1-final",
icrosoft.AspNet.IISPlatformHandler": “1.0.0-rci-final",
ticrosoft.AspNet Mvc": "6.0.0-rcl-final",
ticrosoft.AspNet . Mc. TagHepers"s “6.0.0-rc1-fina
icrosoft.AspNet.Server.Kestre! '1.0.0-rc1-final
licrosoft.AspNet.StaticFile: '1.0.0-rc1-final",
ficrosoft.AspNet. Tooling.Razor: “1.0.0-rci-final",
licrosoft.Extensions.Configuration.FileProviderExtension:
ficrosoft. Extensions. Configuration. Json"s “1.0.0-rcl-final
Microsoft.Extensions.Logging"s “1.0.0-rci-final",
licrosoft.Extensions.Logging.Console’ .0.0-rc1-final",
lcrosoft. Extensions. Logging.Debug": "1.0,0-rcl-final"

b2

“commands"
“web":
b

7
licrosoft. Aspet. Server. Kestrel"

“frameworks": {
“dnxds1": {3,

“dnxcores0":
b

4

“node_modules*,
ower_components"

“publishexclude”: [
“node_nodules”,
“bower_conponents",

images/00004.jpeg
oq Visual Studio :

Community 2015
with Update 1

Select eatures
Siiverignt Uevelopment Kit B
b [¥| Universal Windows App Development Tools
B Cross Platform Mobile Development
V| C#/NET Xamarin) Brd Party]
HTML/JavaScript (Apache Cordova) Update 4
b [Visual C+ + Mobile Development
| Microsoft Visual Studio Emulator for Android (November
» [m| Common Tools and Software Development Kits
m Common Tools
| Gt for Windows [3rd Party]
/| Github Extension for Visual Studio. [3rd Partyl
Visual Studio Extensibilty Tools Update 1

————————————

“

W Select Al Reset Defauits

S T K
T

images/00002.jpeg

images/00244.jpeg
[l C:\Users\markjprice\.dnx\runtimes\dnx-coreclr-win-x64.1.0.0-rc1-updatel\.. — [} X
© Microsoft.Extensions.DependencyInjection.DataProtectionservices[]

User profile is available. Using 'C:\Users\markjprice\AppData\Local\ASP.NET\DataProtection-Ke)
s' as key repository and Windows DPAPI to encrypt keys at rest.

Hosting environment: Development
Now listening on: http://localhost:5660
Application started. Press Ctrl+C to shut down.

images/00003.jpeg
oq Visual Studio :

Community 2015
with Update 1

Choose your installaton location
rogram Files (86)\Microsoft Visual Studio 140

Setup requires up to 8 GB across all drives.

Choose the type of instalation
® Default

Includes C#/VB, Web and Desktop features

Custom

Allows you to customize features for your installation

You can add or remove additional features at any time after setup via
Programs and Features in the Control Panel,

By clicking the "Install” button, | acknowledge that | accept the License:
Terms and Privacy Statement.

Cancel @ install

images/00238.jpeg
[N) 7 markjprice — bash — 80x21

markjprice:~ $ dotnet L]
.NET Command Line Tools (1.0.0)
Usage: dotnet [common-options] [command] [arguments]

Arguments:
[command] The command to execute
[arguments] Arguments to pass to the command

Common Options (passed before the command):
~v|--verbose Enable verbose output

—-version Display .NET CLI Version Info
Common Commands :
new Initialize a basic .NET project
restore Restore dependencies specified in the .NET project
compile Compiles a .NET project
publish Publishes a .NET project for deployment (including the runtime)
run Compiles and immediately executes a .NET project
repl Launch an interactive session (read, eval, print, loop)
pack Creates a NuGet package

markjprice:~ $ I

images/00239.jpeg
LK) {1 ConsoleApp2 — bash — 80x5

Installed: L]
67 package(s) to /Users/markjprice/.dnx/packages

markjprice:ConsoleApp2 $ dotnet run

Hello C#, Welcome .NET Core!

markjprice:ConsoleApp2 $ [l

images/00236.jpeg
EXPLORE >dny

4 WORKING FILI jrx: Restore Packages

EAEnAEEy dnx: Run Command
4 Controllers

HomeController.cs
4 Views
4 Home
About.cshtml

emLtENTryFoINT : true

7

tooling": {
“defaultNamespace": "WebApp"

h

BLOR

images/00237.jpeg
project.json - WebApp

\
@ EXPLORE | m *

4 WORKING FIL! jn, restore - (WebApp) /Users/markijprice/WebApp

Jo) - LT “compilationOptions'
4 Controllers emitEntryPoint”

true

images/00242.jpeg
chi6 Quiziebapp + X

Application
Build

Brofie.

A Command
Command: =

Application Arguments:

Working Directory:
[] Launch URL:

Use Specific Runime: Version
1.0.0-1-update1

Platform

NET Core

Architecture

images/00001.jpeg
Microsoft Microsoft Microsoft
CERTIFIED Specialist Specialist

Trainer Programming in C# Architecting Microsoft
Azure Solutions

images/00243.jpeg
Tools Test Web Essentials ~ Analyze ~ Window
Any CPU - P web~ G|

web

1IS Express

web

ef

Web Browser (Microsoft Edge)

CLR Type (Profile) Profile
Browse With. NET Framework

More Emulators... NET Core

images/00240.jpeg
[XX] [ConsoleApp2 — bash — 80x11

markjprice:ConsoleApp2 $ dotnet build B
Compiling ConsoleApp2 for DNXCore,Version=v5.0

Compilation succeeded.
© Warning(s)
© Error(s)

Time elapsed 00:00:02.1423081

markjprice:ConsoleApp2 $ I

images/00241.jpeg
WebApp
Select a template:
ASP.NET 4.6.1 Templates

i S N s B (R i

Empty Web Forms MvC Web API

4 4 cx
=
ol o N
Azure APl App Azure Mobile Azure Mobile
App Service

Single Page
Application

ASP.NET 5 Templates

s
&
Empty Web API

Application

Add folders and core references for:

Web Forms MVC | | WebAPI

| Add unit tests

Test project name: | Ch16 QuizWebApp.Tests

A project template for creating an ASP.NET 5
application. The template uses ASP.NET MVC and can
be used to build Web Applications and RESTful HTTP
Services.

Learn more

Change Authentication

Authentication: Individual User Accounts

S Microsoft Azure
(®) [Host in the cloud

[App Senice

images/00013.jpeg
- Developer Command Prompt for VS2015
Desktop app

M Visual Studio 2015
Desktop app

Apps
41 Windows Phone Developer Registration
41 Windows Phone Developer Registration 8.1

‘= Windows Software Development Kit

&R My stuff O web

deve|

images/00014.jpeg
Developer Command Prompt for V52015

A~
IC:\Program Files (x86)\Microsoft Visual Studio 14.0>cd c:\Code
c:\Code>csc myfirstapp.cs
Microsoft (R) Visual C# Compiler version 1.0.0.50618
ICopyright (C) Microsoft Corporation. All rights reserved.
c:\Code>dir
Volume in drive C has no label.
Volume Serial Number is DA®@4-7D8@
Directory of c:\Code
31/68/2015 ©9:02 <DIR> 3
31/68/2015 ©9:02 <DIR> o
31/68/2015 @8:51 79 myfirstapp.cs
31/@8/2015 ©9:02 3,584 myfirstapp.exe
2 File(s) 3,663 bytes
2 Dir(s) 19,865,178,112 bytes free
c : \Code>myfirstapp
Hello c#!
c : \Code> &

images/00007.jpeg
D st Page - Micosoft Visual o
> ami <] 2,

- | Sobtion xplorer

Discover Visual Studio Community 2015

Team Explorer

images/00008.jpeg
64 Visual Studio 2015
2 Pin this program to taskbar

X Close window

= ald

images/00005.jpeg
g Visual Studio

Welcome!
Connect to all your developer services.

Sign i to start using your Azure credits, publish code to a private Git
repasitary, sync your settings, and unlack the IDE.

Learm mare

Don't have an account? Sign up

Hot now, maybe later,

images/00006.jpeg
g Visual Studio

Hello,

u View your Visual Studio profile

Start with a familiar environment

Development Settings: | Visual C# 9

Choose your color theme

@® Blue O Dark O Light

0 Visual Studio g Visual Studio

You can always change these settings later.

Start Visual Studio

images/00011.jpeg
Tsave As
A © « Local Disk (C) > Code
Organise New folder

s Quick access Name.

4 OneDrive

' This PC

v o<

File name: | myfirstapp.cs
Save as type: Al Files

* Hide Folders Encoding: ANSI

v U search Code

Date modified

No items match your search.

Cancel

images/00012.jpeg
T myfirstapp.cs - Notepad - o
File Edit Format View Help

X

kclass Program { static void Main() { System.Console.WriteLine("Hello C#!"); } }

images/00009.jpeg
Y 4 | @ | Quick Launch (Ctrl+Q)

Solution

Total Notifications: 4 Dismiss All | ##

SUONeINON

Extension and Product Updates x

“Microsoft SQL Server Update for database
tooling* is available
Less than 1 minute ago

"Microsoft Azure SDK 2.7" is available
Less than 1 minute ago

An update to “NuGet Package Manager for
Visual Studio 2015" is available
Less than 1 minute ago

An update to "Microsoft Azure Storage
Connected Service" is available

Less than 1 minute ago

images/00010.jpeg
Microsoft Azure Storage Connected Service

Allows developers to create and connect to Azure
Storage accounts easily and with step-by-step guidance.

Download and Install

Downloading...

7.49 MB of 13.1 MB

images/00015.jpeg
, myfirstapp.exe - IL DASM

File View Help

P MANIFEST

E Program

b .class private auta ansi beforefieldinic
B ctor : void()

B Main : woid()

.assembly myfirstapp

images/00024.jpeg
static void Main(string[] args)

{

System.Console.WriteLine()

L A 1 of 19 ¥ void Console.WriteLine()
Writes the current line terminator to the standard output stream.

images/00018.jpeg
Project
b Recent
4 Installed

4 Templates
4 Visual C#
b Windows
Web
Android
b Cloud
Extensibility
v ios

Mobile Apps

v Online
Name:
Location:

Solution name:

Cho1_MyFirstApp
Ci\Code

NET Framework 461~ Sort by: Default

-

i
.

e

il

bl

Blank App (Universal Windows)

Windows Forms Application

WPF Application

Console Application

ASP.NET Web Application

Click here to go online and find templates.

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

[CropteroT

Search Installed Templates (Ctrl+E) P ~!

Type: Visual C#

A project for creating a command-ine
application

Create directory for solution
[] Add to source control

images/00019.jpeg
static void Main(string[] args)

{
EAAN

* OperatingSystem

{} Sys

namespace System
* SystemException

images/00016.jpeg
MANIFEST
Find Find Next

i// Hetadata version: uk.0.30319

.assembly extern mscorlib
{

.publickeytoken = (B7 7a 5C 56 19 34 E@ 89)
-ver 4:8:0:8

H

.assembly myfirstapp

<

images/00017.jpeg
7 Program:Main : void() - o X
Find Find Next

.method private hidebysig static void Main() cil managed
{
.entrypoint
// Code size 13 (0xd)
-maxstack 8
IL_0608: nop
IL_06801: 1ldstr “Hello C#t™
IL_06886: call void [mscorlib]System.Consol
IL_886b: nop
IL_806c: ret|
} /7 end of method Program::Hain

WriteLine(string)

images/00022.jpeg
static void Main(string[] args)

{

System.Console.

&

images/00023.jpeg
static void Main(string[] args)

{
System.Console.wn|

>

@ WriteLine

images/00020.jpeg
static void Main(string[] args)

{

* |AccessVioIationException
@ Action

images/00021.jpeg
static void Main(string[] args)

{
System.con

’l: ActivationContext

’l: BitConverter

T

3 Console

images/00025.jpeg
static void Main(string[] args)

{

System.Console.WritelLine("Hello C#!")

images/00026.jpeg
C:\Windows\system32\cmd.exe

Hello C#! A
Press any key to continue . . .

images/00029.jpeg
View | Project Build Debug
Code 57/

A
v

Solution Explorer Ctrl+W, S
Team Explorer Ctrl+, Ctrl+M

m g £

Server Explorer Ctrl+W, L
SQL Server Object Explorer Ctrl+’, Ctrl+S

c
k=

i)

Call Hierarchy Ctrl+W, K
Class View Ctrl+W, C
Code Definition Window Ctrl+W, D
Object Browser Ctrl+W, J

#1068 @

Error List Ctrl+W, E
Output Ctrl+W, O

images/00030.jpeg
Extensions and Update:
b Installed
4 Online

4 Visual Studio Gallery
b Controls
b Templates
b Tools
Search Results

Sort by: Relevance -

]
@

.NET Portability Analyzer
Evaluates p of across NET pl

ComponentOne Studio ASP.NET MVC Ed
Build modern, touch-first solutions without compromise. With
ComponentOne Studio ASP.NET MVC Edition, you'll get fast, lightweig.

portability

Created by: Microsoft
Version: 1200
Downloads: 8045

Rating: ¢ ¢ (2 Votes)
More Information

Report Extension to Microsoft

images/00027.jpeg
Error List
Entire Solution
Code

(<]

- | @ 26rors | 4 0Warnings | @ 0Messages | Build + IntelliSense | Search Error List
Description Project File

Program does not contain a static ‘Main' method suitable for an entry point Ch01 MyFirstApp CSC

€ CS0117 “Console’ does not contain a definition for ‘WriteLin' Cho1_MyFirstApp Program.cs

images/00028.jpeg
OEr ¥

Microsoft (R) Roslyn C# Compiler version 1.1.0.51109

Loading context from 'CSharpInteractive.rsp’.

Type "#help" for more information.
#r "System.Net.Http"
using System.Net.Http;
var client = new HttpClient();
client.BaseAddress = new Uri(“"http://www.microsoft.com/");
var response = await client.GetAsync("about");
response.StatusCode

> response.Content.Headers.GetValues("Content-Type")

string[1] { "text/html" }

> await response.Content.ReadAsStringAsync()

"<IDOCTYPE html ><html xmlns:mscom=\"http://schemas.microsoft.c
>

100% ~ 4

[CARCIEEY Package Manage... Error List Output Find Results 1 Task Runner Expl...

images/00033.jpeg
Entire Solution ~f| “0>Ennr5« | & oWarnings || @ 1 Message | v | Build + IntelliSense

Search Error List
Code Description Project File
<0 System.Console WriteLine(SystemString) ... ChO1_MyFirstApp Program.cs

System.Console WriteLine(SystemString)
Not supported on .NET Native Version=v1.0

images/00034.jpeg
IC:\Program Files (x86)\Microsoft Visual Studio 14.@>dotnet
.NET Command Line Tools (1.0.8)
Usage: dotnet [common-options] [command] [arguments]

IArguments:
[command] The command to execute
[arguments] Arguments to pass to the command

ICommon Options (passed before the command):
-v|--verbose Enable verbose output
--version Display .NET CLI Version Info

ICommon Commands :

new Initialize a basic .NET project

restore Restore dependencies specified in the .NET project

build Builds a .NET project

publish Publishes a .NET project for deployment (including the runtime)
run Compiles and immediately executes a .NET project

repl Launch an interactive session (read, eval, print, loop)

pack Creates a NuGet package

images/00031.jpeg
Options

Search Options (Ctrl+E) P Target Platforms

b Environment -NET Core

b Projects and Solutions [Jso
P Source Control
P Text Editor
b Debugging
b Performance Tools. NET Framework

5 11 O20 O30 O3s Cao

b Data Factory
b Database Tools [Jas2 [Jae 461

WA NET Native
b Graphics Diagnostics

b NuGet Package Manager
b Powershell Tools ASP.NET 5

b Python Tools

b SQL Server Tools

b Text Templating

b Web Essentials 3300

b Web Forms Designer

b Web Performance Test Tools More information is available at http://qo.microsoft com/flink/2Linkld=506955

NET Core (Cross-platform)

images/00032.jpeg
.NET Portability Report

Submission Id_c5a18f49-a75¢-49bc-b3ef-fb17ed93cag1

Contents

« Portability Summar,

Portability Summary
NET Core (Cross- NET NET ASP.NET
Assembly platform),Version=v5.0 Framework\Version=v4.5 Native,Version=v1.0 5Version=v10

Cho1 MyFirstApp, 10000 % 10000 % 9394% 10000 %
ion=1.0.0.0, Culture=neutral,

ChO1_MyFirstApp, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
(.NETFramework,Version=v4.6)

NET Core (Cross NET NET ASP.NET Recommended
Target type platform) Version=v5.0 ~FrameworkVersion=v45 Native,Version=v1.0 5Version=vi0 changes
System.Console o o] o

WriteLine

(System.String) ° o o °

images/00036.jpeg
IC:\Code\Chaptere1\Che1l_MySecondApp>dotnet build

Project Chel_MySecondApp will be compiled because expected outputs are missing.

ICompiling Chel_MySecondApp for DNXCore,Version=v5.©
[Compilation succeeded.

© Warning(s)

© Error(s)

ITime elapsed ©0:00:02.5705911

images/00037.jpeg
b Recent
4 Installed

4 Visual C#

b Windows
Web
Android
Cloud
Extensibility
i0s
Mobile Apps
MonoGame
Reporting
Silverlight

» Online

Name:

Location:

NET Framework 4.6.1

| g

ChO1_DotNetCore

C:\Code\Chapter01

Class Library (Package)

Class Library
Class Library (Portable)
Silverlight Application

Silverlight Class Library

~ Sortby: Default

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Click here to go online and find templates.

Search Installed Temp P ~

Type: Visual C#
PREVIEW - A project template for creating
a console application as a NuGet package

that can run on .NET Framework or .NET
Core.

images/00035.jpeg
- Developer Command Prompt for VS2015 = =l X

IC:\Code\Chaptere1\Che1l_MySecondApp>dotnet restore
info : Running restore with 16 concurrent jobs.
info : Restoring packages for C:\Code\Chapter@1\Ch@1l_MySecondApp\project.json.. .|

info : All packages are compatible with DNXCore,Version=v5.0.

info : All packages are compatible with DNXCore,Version=v5.8 (win7-x64).
info : All packages are compatible with DNXCore,Version=v5.8 (win7-x86).
info : Committing restore...

info : Restore completed in 2549ms.

IC:\Code\Chaptere1\Che1l_MySecondApp>dotnet run
Hello C#, Welcome .NET Core!

images/00040.jpeg
[C\Users\markjprice\.dnx\runtimes\dnx-coreclr-win-x64.1.0.0-rc1-update\.. — u]

Welcome, .NET Core!

images/00041.jpeg
@ ¥ | @ | Search Work Items (Ctrl+#)

Connect | Offline
Manage Connections v
4 Hosted Service Providers
Visual Studio Team Services
Microsoft Corporation
Services to help you ship high quality software. On time,
every time. Focus on your code. We'll simplify the rest.

Connect... Get started for free @

GitHub
GitHub, Inc.

Powerful collaboration, code review, and code
management for open source and private projects.

Connect...

D Local Git Repositories (1)

images/00038.jpeg
Console.|
& BackgroundColor
@ Beep
ferH
& BufferWidth

% CancelKeyPress
& Capslock

@ Clear

& Cursorleft

& CursorSize

int Console.BufferHeight { get; set;}
Gets or sets the height of the buffer area.

Ch01_DotNetCore.DNX 4.5.1 - Available
Ch01_DotNetCore.DNX Core 5.0 - Not Available

You can use the navigation bar to switch context.

images/00039.jpeg
Application
Build

Profile

Launch:

Command:

Working Directory:
[] Launch URL:

[] Use Specific Runtime:

Environment Variables:

Cho1_DotNetCore

Command

ChO1_DotNetCore

Version

100-rc1-updatet ¥

Platform
NET Core

Architecture

x64

Name Value

images/00044.jpeg
co@¥le

Home | csédtnetcore

4 GitHub

aiipieicisdctnieory

hitps//github.com/markjprice/cstdotnetcore

g |V srnches

PullRequests | N sme

= | Wi

Settings

4 Solutions
New...| Open.
5] Chapterdtsin | Chapterdt
3] Chapter02ain | Chapter02
3] Chapter3ain | Chapter0s
) Chapteroasin | Chapterc
5] Chapter0sisin | Chapterds
3] Chapterd6sin | Chapterds
B3] Chapterdisin | Chapter0?
3] ChapterdBain | Chapterds
3] Chapter09si | Chapter0s
5] Chaptertosin | chapterio
551 Chepterttsin | Chaptertt
3] Chapteri2sin | Chapteri2
3] Chaptertasin | Chapteris

Team Explorer

images/00042.jpeg
@ ¥ | 0 Search Work ltems (Ctrl+4

Connect | Offline

GitHub
GitHub, Inc.
Powerful collaboration, code review, and code

management for open source and private projects.

Connect... Sign up @

4 |ocal Git Repositories (1)
New + | Add ~ | Clone « | View Options v

https://github.com/markjprice/csédotnetcore.git
C:\Code\Repos\csédotnetcore

images/00043.jpeg
Local Git Repositories (1)
New + | Add ~ | Clone « | View Options v

Cloning repository...

Checking out working copy... (1410/3840)

