
www.EBooksWorld.ir

ASP.NET Core: Cloud-ready,
Enterprise Web Application
Development

www.EBooksWorld.ir

Table of Contents

ASP.NET Core: Cloud-ready, Enterprise Web Application Development
ASP.NET Core: Cloud-ready, Enterprise Web Application Development
Credits
Preface

What this learning path covers
What you need for this learning path
Who this learning path is for
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions

1. Module 1
1. Introduction to ASP.NET Core

How web applications work
So what is an HTTP protocol?

Request-response pattern
Stateless nature of HTTP

Client-side and server-side
HTTP methods

GET method
POST method

What is ASP.NET?
ASP.NET Web Forms
ASP.NET Web Pages
ASP.NET MVC

Features of ASP.NET MVC
Convention over configuration
Separation of concerns
Control over the generated HTML
Better support for unit testing

ASP.NET 5
Features of ASP.NET 5

Summary
2. Setting Up the Environment

Purpose of IDE

www.EBooksWorld.ir

Visual Studio offerings
System requirements

Visual Studio Community 2015
Visual Studio Professional
Visual Studio Enterprise
Visual Studio Test Professional

Installing Visual Studio Community
Installing ASP.NET 5
Project structure in ASP.NET 5 application

File-based project
Support for full .NET and .NET core
The Project.json package
Controllers
Models
Views
Migrations
The wwwroot folder
Other files

Summary
3. Controllers

Role of the Controller in ASP.NET MVC applications
Introduction to routing
Creating ASP.NET 5 application
Installing the ASP.NET Core NuGet package in your application
Our first Controller

IActionResult
Adding Views
Adding Models
Passing data from Controller to View
Filters

Authorization filters
Resource filters
Action filters
Exception filters
Result filters

Summary
4. Views

The View engine and the Razor View engine
Razor View engine

Programming in Razor View engine
Variables in Razor View

www.EBooksWorld.ir

The for loop
The while loop
The foreach loop
The if condition

Layout
Creating _ViewStart.cshtml
Creating _Layout.cshtml
Adding a page-specific View

Generating HTML
HTML Helpers

Partial View
Calling the Partial View

View components
Creating a View component

Tag Helpers
Creating custom Tag Helpers

Summary
5. Models

Models
Models specific to a View component
Note on ViewModels
Data flow with respect to a Model

Model binding
The Entity Framework

The Entity Framework is independent of ASP.NET MVC
Creating console applications with the Entity Framework
Installing the Entity Framework 7 NuGet package

Using the NuGet Package Manager
Using the Package Manager Console

Installing Entity Framework commands
Creating Model classes
Creating the DbContext class

Create a migration
How the SaveChanges method works
Updating the record
Deleting the record

Using the Entity Framework in ASP.NET MVC applications
Database migration
Summary

6. Validation
Client-side and server-side validation

www.EBooksWorld.ir

Server-side validation
Updating View models with the Data Annotation attribute
Updating the View model to display the validation error message
Updating the controller action method to verify the model state

Client-side validation
Implementation
Summary

7. Routing
Convention-based routing

Example 1
Example 2
Example 3
Example 4

Attribute-based routing
Route attribute at the controller level
Passing routing values in HTTP action verbs in the Controller
Route Constraints
Summary

8. Beautifying ASP.NET MVC Applications with Bootstrap
Knowing HTML and CSS
Bootstrap

Bootstrap Grid system
Forms

Inline forms
Horizontal forms

Table CSS classes
Striped tables
Hover tables
Bordered tables
Contextual classes in table

Buttons
Button sizes

Contextual colors
Using Bootstrap in your ASP.NET MVC application
Installing with Bower
HTML doctype
Summary

9. Deployment of ASP.NET Core Application
The project.json file

The dependencies node
The frameworks node

www.EBooksWorld.ir

Microsoft Azure
Signing up to Microsoft Azure
Prerequisites to Azure deployment

Deploying the ASP.NET Core application in Azure
Deploying the ASP.NET Core web application in the Linux environment

Creating a Linux machine
Installing the PuTTY client
Installing of .NET Core in a Linux machine

Creating a new ASP.NET 5 project
Configuring the Nginx server
Summary

10. Building HTTP-based Web Services Using ASP.NET Web API
HTTP basics

HTTP verbs
GET method
PUT method
POST method
DELETE method
Fiddler tool

Dependency Injection
Delete method

The Web API method for deleting a resource
Web Repository layer code for deleting the employee data

Summary
11. Improving Performance of an ASP.NET Core Application

The UI layer
Reducing the number of HTTP requests

Using GZip compression
Using the Content Delivery Network (CDN)
Using JavaScript wherever possible
Using CSS stylesheets

Minification of JavaScript and CSS files and their combination
The caching process

Client-side caching
Response caching

The web/application layer
No business logic in Views
Using asynchronous logging
The DB layer

Understanding the queries generated by the ORM
Using classic ADO.NET if you really want to

www.EBooksWorld.ir

Return only the required data
Fine tuning the indices
Using the correct column type and size for your database columns
Avoiding correlated subqueries

Generic performance improvement tips
Avoiding the Response.Redirect method
Using string builder

Summary
12. ASP.NET Core Identity

Authentication
Authorization
Adding the relevant dependencies to the project.json file

Adding ApplicationUser and ApplicationDbContext classes
Configuring the application to use Identity
Creating ViewModels
Creating Controllers and associated action methods
Creating Views
E-mail and SMS services
Securing an action method in a Controller
Summary

2. Module 2
1. Getting Ready

Two players one goal
What's new in Angular 2?
The ASP.NET Core revolution

The field of choice – single-page application
Common features of a competitive SPA
Product owner expectations

A sample single-page application project
The vision
Core requirements

Preparing the workspace
Setting up the project
Package and resource managers
Installing the packages

NuGet and ASP.NET
Project.json
Startup.cs
Testing the HTTP request pipeline
Newtonsoft.Json

JavaScript, TypeScript, or Dart?

www.EBooksWorld.ir

Adding the tsconfig.json file
Introducing NPM
Working with Gulp

Dependent tasks
Using Grunt instead of Gulp

Adding Angular 2
Using NPM
Adding Typings
Using a CDN

Upgrading the typescriptServices.js file
Setting up the client code

The component file
A word on components and modules

The module file
The bootstrap file
The module loader configuration file

Why use a dynamic module loader?
The index.html file

First run
Caching issues
The new ASP.NET Core configuration pattern

A faster alternative using scaffolding tools
The reasons to say no (not yet)
A quick scaffolding sample

References
Suggested topics
Summary

2. ASP.NET Controllers and Server-Side Routes
Data flow

The role of the ViewModel
Our first Controller

The ItemViewModel
The ItemsController

Understanding routes
Defining routing

Routing through the ages
Handling routes in ASP.NET Core

Convention-based routing
Attribute-based routing
Three choices to route them all

Adding more routes

www.EBooksWorld.ir

The dummy data provider
Dealing with single items
Suggested topics
Summary

3. Angular 2 Components and Client-Side Routing
Master-detail binding

The Item class
The ItemService class
The ItemListComponent class

A quick implementation test
The ItemDetailComponent class

Adding the @angular/forms library
Updating the root module
Connecting the dots

Testing it up
Adding additional lists

Multiple component instances
Two-way data binding

Disabling two-way data binding
Client-side routing

Adding the @angular/router library
PathLocationStrategy versus HashLocationStrategy

Refactoring our app
Adding the AppRouting scheme
Adding the HomeComponent
Adding new components

AboutComponent
LoginComponent
PageNotFoundComponent

Updating the root module
Revising the master-detail strategy

Adding the ItemDetail route
Changing the ItemListComponent
Updating the ItemDetailComponent

Full routing test
Handling rewrites in ASP.NET Core

Showing the issue
Understanding the causes
Implementing the fix
Validating the outcome

Suggested topics

www.EBooksWorld.ir

Summary
4. The Data Model

Getting ready
Installing the EntityFramework Core
Data modeling approaches

The model-first approach
Pros
Cons

The database-first approach
Pros
Cons

The code-first approach
Pros
Cons

Making a choice
Creating entities

Items
Comments
Users

Defining relationships
Setting up DbContext

Database initialization strategies
Choosing the database engine

Updating appsettings.json
Creating the database

Updating Startup.cs
Configuring the EF tools
Adding the initial migration

Understanding migrations
Implementing a data seed strategy

Creating a DbSeeder class
Private members
Constructor
Public methods
Seed methods
Utility methods

Adding the DbSeeder to Startup.cs
Handling exceptions

Seeding the database
Updating the ItemsController

Installing TinyMapper

www.EBooksWorld.ir

Implementing the mapping
Testing the data provider
Suggested topics
Summary

5. Persisting Changes
Add, update, and delete items

Updating the Web API
Adapting the client

Improving the ItemService
Updating the GUI

Add new
Update and Delete
Testing it out
Adding a new test
Update test
Delete test

Splitting the ItemDetail component
Adding the ItemDetailView component
Refactoring ItemDetail into ItemDetailEdit
Updating the Root module
Updating the Routes
Tracking the outdated references
Implementing the tab menu

Template
Class code
Styles

Testing it out
Suggested topics
Summary

6. Applying Styles
How bad is it, doc?
Introducing LESS

Style sheet languages
CSS

CSS code sample
What is LESS and why to use it

Variables
Import directives
Nested selectors
Mixins
Extend pseudo-class

www.EBooksWorld.ir

LESS docs and support
Systematically Awesome Style Sheets, Stylus, and other alternatives

Configuring LESS
Adding the LESS file
Updating Gulp script
Linking the stylesheet
Testing it up

DIY versus framework-based styling
Do it yourself approach

Pros
Cons

Framework-based approach
Pros
Cons

Conclusions
Adding Bootstrap

Choosing a native directives module
Installing ng2-bootstrap

Applying styles
Main navigation bar

Detecting the active route
Welcome View
Item Detail View

Display mode
Edit mode

Conclusions
Suggested topics
Summary

7. Authentication and Authorization
Do we really need these?
Authentication

Third-party authentication
Authorization

Third-party authorization
Proprietary or third-party?
Choosing an authentication mode
Installing AspNetCore.Identity

Adding the package
Updating the project classes

ApplicationDbContext.cs
ApplicationUser.cs

www.EBooksWorld.ir

Startup.cs
DbSeeder.cs

Updating the database
Authentication methods

Sessions
Tokens
Signatures
Two-factor
Conclusions

Implementing JSON web token authentication
JWT provider

Private members
Static members
Constructor
Public methods
Private methods
Extension methods
Full source code

Adding the middleware to the pipeline
Angular 2 login form

Adding styles
Updating the root module file
UI and validation test

AuthService component
Updating the AppModule
Updating the LoginComponent
Login test

AuthHttp wrapper
Adding authorization rules

Adapting the client
Testing the client

Protecting the server
Retrieving the user ID
Authorization test

Suggested topics
Summary

8. Third-Party Authentication and External Providers
Introducing OpenID connect servers
Installing OpenIddict

Adding MyGet to the package sources
Installing the OpenIddict package

www.EBooksWorld.ir

Updating ApplicationUser and ApplicationDbContext
Adding a new migration
Updating the DbSeeder

Moving literal values to appsettings.json
Configuring the Startup class
Updating the Web.Config rewrite rules
Seeding the database

External authentication providers
OAuth2 authorization flow
Facebook

Creating a Facebook App
Storing the keys in App settings
Adding the Facebook middleware
Adding the AccountsController

BaseController
AccountsController
Namespaces
Class declaration
Constructor
ExternalLogin
ExternalLoginCallBack
Logout

Updating the ItemsController
Configuring the client

Updating the LoginComponent
Updating the AuthService
Updating the AppComponent
Understanding zones

Testing it out
Google
Twitter

Elevated permissions request
Troubleshooting

Conclusions
Suggested topics
Summary

9. User Registration and Account Edit
User Registration

UserViewModel
AccountsController

Get

www.EBooksWorld.ir

Add
E-mail confirmation

Update
Delete

User class
AuthService
UserEditComponent
Connecting the dots

Updating the root module
Implementing the route
Adding the Register link
Defining the styles
Updating the menu

Testing it out
Edit Account

Two routes, one component
Adapting the UserEditComponent
Updating the navigation menu

Adding styles
Final test

Conclusions
Suggested topics
Summary

10. Finalization and Deployment
Switching to SQL Server
Installing SQL Server 2016 Express
Installing SQL Server Management Studio

Configuring the database
Changing the authentication mode
Adding the OpenGameList database
Adding the OpenGameList login
Mapping the login to the database
Adding a SQL Server connection string
Creating an application settings file for production

Updating AppSettings
Updating external providers
Configuring the publishOptions
Checking the Startup class
Updating the launchSettings.json

Publishing our native web application
Creating a Publish profile

www.EBooksWorld.ir

File System Publish profile
FTP Publish profile

Configuring IIS
Installing the ASP.NET Core module for IIS
Adding the website
Configuring the Application Pool

Firing up the engine
Troubleshooting

The Kestrel test
Suggested topics
Summary

3. Module 3
1. Why Performance Is a Feature

Performance as a feature
Common classes of performance problems

Language considerations
Types of performance problems

When performance matters
Slower is sometimes better

Why issues are missed
Measuring

The benefits of planning ahead
Understanding hardware

Storage access speeds
Scaling approach changes

Tools and costs
Tools
Looking at some alternative tools

The new .NET
Summary

2. Measuring Performance Bottlenecks
Tools

SQL
SQL Server Profiler

Executing a simple query
MiniProfiler

Application profiling
Glimpse

Using Glimpse
IDE

Monitoring HTTP

www.EBooksWorld.ir

Browsers
Chrome
Firefox

Fiddler
Network

Microsoft Message Analyzer
Wireshark

Roll your own
Science

Repeatability
Only change one thing

Summary
3. Fixing Common Performance Problems

Latency
Asynchronous operations

Simple asynchronous tools
Background queuing
Hangfire

Select N+1 problems
Efficient paging
Static site generators

Pragmatic solutions with hardware
A desktop example
Web applications

Oversized images
Image resolution
Image format

Summary
4. Addressing Network Performance

Internet protocols
TCP/IP

Slow-start
HTTP

Headers
HTTP methods
Status codes
Encryption

Key exchange
Delay diagnostics
Performance tweaks

HTTP/2

www.EBooksWorld.ir

WebSockets
Compression

Lossless compression algorithms
Bundling and minification

Bundling
Minification
Changes in ASP.NET Core

Image optimization
PNG
JPEG
Other image formats
Resizing images

Caching
Browser
Server
Proxy servers between you and your users

CDNs
Summary

5. Optimizing I/O Performance
Input/output

Categories of I/O
Disks
Virtual file systems
Databases
APIs

Network diagnostics tools
Ping
Tracert
Nslookup
Build your own

Solutions
Batching API requests
Efficient DB operations

Database tuning
Reporting

Aggregates
Sampling

Inserting data
GUIDs

Advanced DB topics
Simulation and testing

www.EBooksWorld.ir

Summary
6. Understanding Code Execution and Asynchronous Operations

Getting started with the core projects
.NET Core
ASP.NET Core

Kestrel
Data structures

Lists
Dictionaries
Collection benchmarks
Bloom filters

Hashing and checksums
Hashing benchmarks

Serialization
SIMD CPU instructions
Parallel programming

Task Parallel Library
Parallel LINQ
Parallel benchmarking
Parallel programming limitations

Practices to avoid
Reflection
Regular expressions
String concatenation in tight loops
Dynamic typing
Synchronous operations
Exceptions

Summary
7. Learning Caching and Message Queuing

Why caching is hard
Web caching

Caching background
HTTP headers
Cache busting

Service workers
Service worker example

Web and proxy servers
IIS
Varnish

Working with a content delivery network
When not to cache

www.EBooksWorld.ir

Application layer caching
Redis
Database result set caching

Message queuing
Coffee shop analogy
Message queuing styles
Common messaging patterns

Unicast
Pub/sub

RabbitMQ
Queuing frameworks and libraries

Summary
8. The Downsides of Performance-Enhancing Tools

Managing complexity
Understanding complexity
Complexity reduction

Frameworks
Architecture

Monolith versus microservices
Architecture comparison

Refactoring
A culture of high performance

A blameless culture
Intellectual dishonesty
Slow down to go faster
From the ground up
Shared values

The price of performance
Distributed debugging

Logging
Error logging
Application Insights
Integrated logging
Centralized logging

Statistics
Managing stale caches
Summary

9. Monitoring Performance Regressions
Profiling and measurement
Testing

Automated testing

www.EBooksWorld.ir

Continuous integration
Slow testing
Fixing performance regressions
Load testing
Realism

Realistic environments
Realistic workloads

Feature switching
Experimenting for science
A/B testing
User interface testing

Web UI testing tools
Automating UI performance tests

Staying alert
DevOps

DevOps tooling
Provisioning
Monitoring

Hosting
Summary

10. The Way Ahead
Reviewing what we learned
Further reading

Going native
Processor architecture
Hardware is hard
Machine learning
Big data and MapReduce
Orleans
Custom transports
Advanced hashing

Library and framework support
The future
Summary

Bibliography

www.EBooksWorld.ir

ASP.NET Core: Cloud-ready,
Enterprise Web Application
Development

www.EBooksWorld.ir

ASP.NET Core: Cloud-ready,
Enterprise Web Application
Development

Create fast, scalable, and high performance applications with C# and
ASP.NET Core

A course in three modules

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

ASP.NET Core: Cloud-ready,
Enterprise Web Application
Development
Copyright © 2017 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of
the information presented. However, the information contained in this course is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: June 2017

Production reference: 1020617

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN-13P 978-1-78829-652-6

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

www.EBooksWorld.ir

Credits
Authors

Mugilan T. S. Ragupathi

Valerio De Sanctis

James Singleton

Reviewers

Anuraj Parameswaran

Mustafa Erhan Ersoy

Anand Ranjan Pandey

Vincent Maverick Durano

Jason De Oliveira

Content Development Editor

Kinnari Sanghvi

Graphics

Abhinash Sahu

Production Coordinator

Shraddha Falebhai

www.EBooksWorld.ir

Preface
If your website is dynamic and you have to use some server-side scripting, you can
use ASP.NET, and the fact that you are using AngularJS won't make your server-side
code more MVC. If you want to be able to structure your server-side application as
MVC, you'll rather pick ASP.NET MVC. The learning path aims to help you learn the
fundamentals of ASP.NET Core MVC and apply that knowledge to building
applications using ASP.NET Core. This book also aims to serve as a solid guide for
beginners who want to learn ASP.NET MVC.

The learning path is to demonstrate that it is still possible to develop great web
applications from scratch, providing that we use the proper tools and have the
patience to understand how we can blend them together to achieve what we want.
Luckily enough, the insane amount of additional work required nowadays can be
mitigated by a lot of powerful frameworks that make their way through the
development scene: we’re talking of serverside runtime environments like ASP.NET
and Node.js and also of many client-side frameworks such as Bootstrap, jQuery,
React, AngularJS and Angular 2. We chose to focus on two of them – ASP.NET Core
to cover the server-side aspects, Angular 2 to deal with the client-side not only for
their stunning set of features and elegant design, but also because they happen to have
something revolutionary in common: they are both a complete rewrite of their
massively-popular previous installments, who played a leading role in their
respective field.

It will make you realize the importance for web applications. We will introduce
performance improvements along with the trade-offs that they entail. We will strike a
balance between premature optimization and inefficient code by taking a scientific
and evidence-based approach, focusing on the big problems and avoiding changes
that have little impact. This book addresses web application performance-
improvement techniques from both a general standpoint (HTTP, HTTPS, HTTP/2,
TCP/IP, database access, compression, I/O, asset optimization, caching, message
queuing, and other concerns) and from a C#, ASP.NET Core, and .NET Core
perspective. This includes delving into the details of the latest frameworks and
demonstrating software design patterns that improve performance. We will highlight
common performance pitfalls, which can often occur unnoticed on developer
workstations, along with strategies to detect and resolve these issues early. By
understanding and addressing challenges upfront, you can avoid nasty surprises when
it comes to deployment time.

www.EBooksWorld.ir

What this learning path covers
Module 1, Learning ASP.NET Core MVC Programming, introduces you to
fundamentals of ASP.NET and how it fits in the ASP.Net ecosystem. Further, it helps
you to set up the development environment. You will learn what an action method and
a Controller does from the perspective of an overall ASP.NET MVC application. It
explains various basic programming constructs(conditionals, loops and so on) with
the examples using Razor view engine. You will also learn role of models and how
to use javaScript and JQuery libraries for validation. Further, you will learn routing
module and deployment of ASP.NET Core application. You will use HTTP-based
services and learn how to implement them using the Web API. It explains the
approaches to analyzing of performance and measures for improvement in various
layers of your application and the security aspects of your application .

Module 2, ASP.NET Core and Angular 2, introduces the ASP.NET Core and Angular
2 frameworks. The reader will learn how to handle the HTTP request-response cycle
and also how to configure the improved routing logic built upon the .NET Core
pipeline. We will also explain how the client-side routing works in a SPA and what
we need do to implement a viable routing pattern for our project using the
PathLocationStrategy. You will learn to build proper, DBMS-based Data Model
using Entity Framework Core and update the application code to make full usage of
the EF Core entities defined in the data model. You will learn applying styles and the
most relevant auth-related concepts for building a web application. It further expands
the authentication and authorization topics introducing OpenIddict. It discusses
account-related features such as user registration and edit account mechanism.
Further, it describes the most common tasks to publish a potentially shippable web
application onto a production server.

Module 3, ASP.NET Core 1.0 High Performance, shows you why you need to care
about the performance of your software. We will highlight a few ways of manually
monitoring performance and some helpful tools that you can use to measure statistics.
It looks at some of the most frequent performance mistake and show you how to fix
simple issues across a range of different application areas. It digs into the networking
layer that underpins all web applications. You will learn how to batch your requests
and optimizing database usage with aggregates or sampling, aiming to reduce the data
and time required. You will learn caching and message queuing along with discussing
the negatives of performance- enhancing tools. It will explain how to measure
performance from an automation and Continuous Integration (CI) perspective. Lastly,
it briefly sums up the lessons of the module and then has a look at some advanced
topics that you may like to read more about.

www.EBooksWorld.ir

www.EBooksWorld.ir

What you need for this learning path
To start programming the ASP.NET MVC applications, you will need Visual Studio
Community 2015 IDE. This is a fully featured IDE available for building desktops
and web applications. You will also need various packages and frameworks, such as
NuGet, Bootstrap, and project.json, the installation and configuration of which will
be explained in the course.

You should acquire :

1. Windows 7 SP1 or newer, up to and including Windows 10.
2. Visual Studio 2015 with Update 3 (or newer): any version will work, including

the freely available Community Edition.
3. Microsoft SQL Server 2014 (o newer) for Chapter 10, Finalization and

Deployment only: any version will work, including the freely available Express
Edition.

4. Windows Server 2008 R2 (or newer) for Chapter 10, Finalization and
Deployment only.

5. All ASP.NET, Angular 2, JavaScript and CSS packages used throughout the
book are open-source and freely available for download using Visual Studio
package managers such as NuGet, MyGet, NPM and Bower.

You will also need a development environment to follow the code examples in this
module, either Visual Studio Community 2015 or Visual Studio Code if you're not on
Windows. You can also use your text editor of choice and the .NET command line
tool. If you use Visual Studio, then you should also install the .NET Core SDK and
tooling and the latest NuGet extension. For some of the chapters, you will also need
SQL Server 2014 Express. You can use 2016 too, particularly if you are on Linux.
However, you can also use Azure and run against a cloud database.

There are other tools that we will cover, but we will introduce these as they are used.
The detailed software/hardware list is uploaded along with the code files.

www.EBooksWorld.ir

Who this learning path is for
This book is for developers who want to learn to build web applications using
ASP.NET Core, developers who want to make a career building web applications
using Microsoft technology, and developers who are working on other web
frameworks and want to learn ASP.NET Core.

www.EBooksWorld.ir

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and
mention the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.EBooksWorld.ir

mailto:feedback@packtpub.com
https://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

www.EBooksWorld.ir

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course's webpage at the Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at
https://github.com/PacktPublishing/ASP-NET-Core-Cloud-ready-Enterprise-Web-
Application-Development. We also have other code bundles from our rich catalog of
books, videos, and courses available at https://github.com/PacktPublishing/. Check
them out!

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/ASP-NET-Core-Cloud-ready-Enterprise-Web-Application-Development
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our courses—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
course. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the course in
the search field. The required information will appear under the Errata section.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

www.EBooksWorld.ir

mailto:copyright@packtpub.com

Questions
If you have a problem with any aspect of this course, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

www.EBooksWorld.ir

mailto:questions@packtpub.com

Part 1. Module 1
Learning ASP.NET Core MVC Programming

Learn the fundamentals of ASP.NET MVC and build realworld web
applications using ASP.NET Core MVC

www.EBooksWorld.ir

Chapter 1. Introduction to ASP.NET
Core
ASP.NET Core, the latest version of ASP.NET MVC from Microsoft, is the server-
side web application development framework which helps you to build web
applications effectively. This runs on top of the ASP.NET 5 platform, which enables
your application to be run on a wide variety of platforms, including Linux and Mac
OS X. This opens up heaps of opportunities and it is exciting to be a .NET developer
in these times.

In this chapter, you'll learn about the following topics:

Fundamental concepts about web applications—HTTP, client-side, and server-
side
Three programming models of ASP.NET—ASP.NET Web Forms, ASP.NET
Web Pages, and ASP.NET MVC
Philosophy of ASP.NET MVC
Features of ASP.NET Core and ASP.NET 5

Before discussing the ASP.NET Core and its features, let us understand the
fundamentals of web applications development. I strongly believe the principle that if
you want to be an expert at something, you need to be very good at the
fundamentals. It will be helpful in debugging the issues and fixing them.

Having said that we are going to discuss the following key fundamentals:

How web applications work, and a bit about HTTP
Client-side and server-side
HTTP methods

Just three key concepts. No big deal!

www.EBooksWorld.ir

How web applications work
All web applications, irrespective of whether they are built using ASP.NET MVC,
Ruby on Rails, or any other new shiny technology, work on the HTTP protocol. Some
applications use HTTPS (a secure version of HTTP), where data is encrypted before
passing through the wire. But HTTPS still uses HTTP.

www.EBooksWorld.ir

So what is an HTTP protocol?
HTTP stands for Hyper Text Transfer Protocol and is an application protocol
which is designed for distributed hypermedia systems. "Hyper Text" in Hyper Text
Transfer Protocol refers to the structured text that uses hyperlinks for traversing
between the documents. Standards for HTTP were developed by the Internet
Engineering Task Force (IETF) and the World Wide Web Consortium(W3C). The
current version of HTTP is HTTP/2 and was standardized in 2015. It is supported by
the majority of web browsers, such as Internet Explorer, Chrome, and Firefox.

The HTTP protocol (a protocol is nothing but a set of rules which govern the
communication) is a stateless protocol that follows the request-response pattern.

Request-response pattern

Before talking about the request-response pattern, let us discuss a couple of terms:
Client and server. A server is a computing resource that receives the requests from
the clients and serves them. A server, typically, is a high-powered machine with huge
memory to process many requests. A client is a computing resource that sends a
request and receives the response. A client, typically, could be a web server or any
application that sends the requests.

Coming back to the request-response pattern, when you request a resource from a
server, the server responds to you with the requested resource. A resource could be
anything—a web page, text file, an image , or another data format.

You fire a request. The server responds with the resource. This is called a request-
response pattern.

www.EBooksWorld.ir

Stateless nature of HTTP

When you request for the same resource again, the server responds to you with the
requested resource again without having any knowledge of the fact that the same was
requested and served earlier. The HTTP protocol inherently does not have any
knowledge of the state knowledge of any of the previous requests received and
served. There are several mechanisms available that maintain the state, but the HTTP
protocol by itself does not maintain the state. We will explain the mechanisms to
maintain the state later.

Let me explain to you about the statelessness and the request-response pattern to you
with a simple practical example:

1. You type the following URL: https://en.wikipedia.org/wiki/ASP.NET_MVC.
This is a Wikipedia web page about ASP.NET MVC.

2. From the preceding URL, the browser fires a request to the Wikipedia server.
3. The web server at Wikipedia serves you the ASP.NET MVC web page.
4. Your browser receives that web page and presents it.
5. You request the same page again by typing the same URL again

(https://en.wikipedia.org/wiki/ASP.NET_MVC) and press Enter.
6. The browser again fires the request to the Wikipedia server.
7. Wikipedia serves you the same ASP.NET MVC web page without being aware

of the fact that the same resource was requested previously from the same
resource.

Note

As mentioned earlier, there are several mechanisms to maintain the state. Let us
assume, for the time being, that no such mechanism is implemented here. I know that I
am being too simplistic here, but this explains the point.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/ASP.NET_MVC
https://en.wikipedia.org/wiki/ASP.NET_MVC

Client-side and server-side
It is necessary to understand the client-side and server-side of web applications and
what can be done either side. With respect to web applications, your client is the
browser and your server could be the web server/application server.

The browser side is whatever that happens in your browser. It is the place where
your JavaScript code runs and your HTML elements reside.

The server-side is whatever happens at the server at the other end of your computer.
The request that you fire from your browser has to travel through the wire (probably
across the network) to execute some server-side code and returns the appropriate
response. Your browser is oblivious to the server-side technology or the language
your server-side code is written in. The server-side is also the place where your C#
code resides.

Let us discuss some of the facts to make things clear:

Fact 1: All browsers can only understand HTML, CSS, and JavaScript,
irrespective of the browser vendor.

You might be using Internet Explorer, Firefox, Chrome, or any other
browser. Still, the fact that your browser can understand only HTML, CSS,
and JavaScript holds true. It cannot understand C#. It cannot understand
Java. Nor Ruby. Only HTML, CSS, and JavaScript. This is the reason why
you can access the web applications, built using any technology could be
accessed by the same browser.

www.EBooksWorld.ir

Fact 2: The purpose of any web development framework is to convert your
server-side code to HTML, CSS, and JavaScript.

This is related to the previous point. As browsers can only understand
HTML, CSS, and JavaScript, all the web development technologies should
convert your server-side code to HTML, CSS, and JavaScript so that your
browser can understand. This is the primary purpose of any web
development framework. This is true for whether you build your web
applications using ASP.NET MVC, ASP.NET Web Forms, Ruby on Rails,
or J2EE. Each web development framework may have a unique
concept/implementation regarding how to generate the HTML, CSS, and
JavaScript, and may handle features such as security performance
differently. But still, each framework has to produce the HTML, because
that's what your browsers understand.

www.EBooksWorld.ir

HTTP methods
Even though all the requests of the HTTP protocol follow the request-response
pattern, the way the requests are sent can vary from one to the next. The HTTP
method defines how the request is being sent to the server.

The available methods in HTTP are GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS,
CONNECT, and PATCH. In most of the web applications, the GET and POST methods are
widely used. In this section, we will discuss these methods. Later, we will discuss
other HTTP methods on a need-to-know basis.

www.EBooksWorld.ir

GET method
GET is a method of the HTTP protocol which is used to get a resource from the
server. Requests which use the GET method should only retrieve the data and should
not have any side effect. This means that if you fire the same GET request, again and
again, you should get the same data, and there should not be any change in the state of
the server, as a result of this GET request.

In the GET method, the parameters are sent as part of the request URL and therefore
will be visible to the end user. The advantage of this approach is that the user can
bookmark the URL and visit the page again whenever they want. An example is
www.yourwebsite.com?tech=mvc6&db=sql.

We are passing a couple of parameters in the preceding GET request. tech is the first
parameter with the value mvc6 and db is the second parameter with the value sql.
Assume your website takes the preceding parameters with values and searches in
your database to retrieve the blog posts that talk about mvc6 and sql before
presenting those blog posts to the user.

The disadvantage of the GET method is that, as the data is passed in clear text in the
URL as parameters, it cannot be used to send the sensitive information.

Moreover, most browsers have limitations on the number of characters in the URL,

www.EBooksWorld.ir

http://www.yourwebsite.com?tech=mvc6&db=sql

so, when using GET requests, we cannot send large amounts of data.

www.EBooksWorld.ir

POST method
The POST request is generally used to update or create resources at the server.

Data is passed in the body of the request. This has the following implications:

You can send sensitive information to the server, as the data is embedded in the
body of the request and it will not be visible to the end user in the URL.
As the data is not sent through the request URL, it does not take up space in the
URL and therefore it has no issues with the URL length limitations.

As we have covered the fundamentals, we can now proceed to discuss ASP.NET.

www.EBooksWorld.ir

What is ASP.NET?
ASP.NET is a server-side web application development framework allowing
developers to build web applications, websites, and web services. It was first
introduced by Microsoft in early 2002, and in these 14 years, it has undergone a lot
of changes.

Basically, ASP.NET has three programming models:

ASP.NET Web Forms
ASP.NET Web Pages
ASP.NET MVC

Even though the end result of all of the preceding programming models is to produce
the dynamic web pages effectively, the methodologies that they follow differ from
each other. Let us discuss each one of these programming models to understand their
principles.

www.EBooksWorld.ir

ASP.NET Web Forms
Historically, when ASP.NET was first introduced, ASP.NET Web Forms was the
only programming model available to programmers to develop web applications in
ASP.NET.

The ASP.NET Web Forms model abstracted the web so that it can maintain the state
even though the web is inherently stateless.

It also supports the event-driven programming model at the server-side. This has
helped desktop application developers to have a smooth transition in moving into
web application development.

Like PHP and several other web application frameworks, ASP.NET Web Forms is a
file-based framework where users access the web page by means of accessing a file
at the server. The server will process your request, convert all of your server-side
components in that file to HTML, and send it back to the requesting client.

Each web page in ASP.NET Web Forms is represented by two files: .aspx and
.aspx.cs or .aspx.vb. The .aspx file contains your front end components-all of
your ASP controls and your HTML elements. The .aspx.cs (if you are using C# as
the code-behind language) or .aspx.vb (if you are using Visual Basic as the code-
behind programming language) contains the code for events which are happening at
the web page.

This was the predominant programming model prior to the arrival of ASP.NET MVC,
and this programming model is still being used to maintain the production
applications that were written using this model.

www.EBooksWorld.ir

ASP.NET Web Pages
ASP.NET Web Pages are primarily targeted at small web applications where the
data-processing logic is written directly on the web page.

www.EBooksWorld.ir

ASP.NET MVC
ASP.NET MVC is the implementation of the MVC pattern in ASP.NET. The
disadvantages of ASP.NET Web Forms, such as limited control over the generation
of HTML are resolved in ASP.NET MVC. As most of the modern applications are
controlled by client-side JavaScript libraries/frameworks, such as jQuery,
KnockoutJS, and AngularJS, having complete control over the generated HTML is
of paramount importance.

Let us talk a bit about the Model-View-Controller pattern and how it benefits the web
application development.

Model-View-Controller (MVC) pattern: This is a software architectural pattern
which helps in defining the responsibility for each of the components and how they fit
together in achieving the overall goal. This pattern is primarily used in building user
interfaces, and is applicable in many areas including developing desktop
applications and web applications. But I am going to explain the MVC pattern from
the context of web development.

Primarily, the MVC pattern has three components:

Model: This component represents your domain data. Please note that this is not
your database. This model component can talk to your database, but the model
only represents your domain data. For example, if you are building an e-
commerce web application, the model component may contain classes such as
Product, Supplier, and Inventory.
View: This component is responsible for what to present to the user. Usually,
this component would contain your HTML and CSS files. This may also include
the layout information governing how your web application looks to the end
user.
Controller: As the name implies, the controller is responsible for interacting
with different components. It receives the request (through the routing module),
talks to the model, and sends the appropriate view to the user.

www.EBooksWorld.ir

This separation of responsibilities brings great flexibility to the web application
development, allowing each area to be managed separately and independently.

www.EBooksWorld.ir

Features of ASP.NET MVC
ASP.NET MVC is an opinionated application development framework that prefers
some functionality to be handled in a certain unique way. Let us discuss each of the
features of ASP.NET MVC, along with the benefits they bring to the table.

www.EBooksWorld.ir

Convention over configuration
This is a design methodology that significantly reduces the number of decisions while
developing the application, and thus making it simpler.

If you have built any application using any technology, you might be using some kind
of XML file where you have to configure everything in it. Even for the simpler
straightforward things, we might have to configure the things over there.

ASP.NET MVC embraces convention over configuration completely. It is the
philosophy where you can be certain of how it is going to work without ever
configuring same.

Let me give you a simple example. All Controller code resides in the Controller
folder, and Views have a separate folder for each of the Controllers. Whenever a
request comes, ASP.NET MVC knows where to find the Controller and its associated
View without any configuration. This methodology results in less configuration and
less time in debugging.

www.EBooksWorld.ir

Separation of concerns
As discussed earlier, ASP.NET MVC has three major components—Model,
Controller, and Views. This clearly separates the responsibilities so that the UI
designer or UI developer can work on the View while backend developers can work
on the Model to build a data domain for the application or to talk to the database. As
the duties of each of the components are clearly defined and separated, the work can
be done in parallel.

www.EBooksWorld.ir

Control over the generated HTML
If you have any experience in building an ASP.NET Web Forms application, you
might have used ASP controls such as asp:textbox. Even though these controls have
a lot of benefits, they have their cons as well. Developers cannot have complete
control over the generated HTML when using these controls. Of course, you can set
some properties in ASP control which in turn set some attributes in your generated
HTML. But complete control is not possible. ASP.NET MVC HTML helpers and Tag
helpers in ASP.NET Core provide better control over the generated HTML.

www.EBooksWorld.ir

Better support for unit testing
As each of the components is separated and compartmentalized, creating the unit test
cases becomes easier to achieve:

Unified MVC and Web API Controller in ASP.NET Core: In earlier versions
of ASP.NET MVC, different controllers were used for MVC
(System.Web.MVC.Controller) and Web API
(System.Web.Http.ApiController). In ASP.NET Core, there is only one
base controller that supports creating both MVC controllers and Web API
controllers. With respect to routing, all the controllers use the same routes. Of
course, you can use convention-based routing or attribute-based routing
depending on your needs.
Note about Web API: Web API is the Microsoft technology for building web
services over the HTTP protocol. HTTP is not only limited to serving web
pages. Web API could be used for building API services and data. The
advantage of this approach is that the services which are built using Web API
could be consumed by a wide range of clients such as, browsers, mobile
applications, and desktop applications.

The code for the earlier version of ASP.NET MVC (till ASP.NET MVC 5) is as
follows:

publicclassValuesController : ApiController
{
 // GET api/values
 publicIEnumerable<string>Get()
 {
 returnnewstring[] { "value1","value2"};
 }
}
Code for ASP.NET Core:
publicclassValuesController:Controller
{
 //GET api/values
 [HttpGet]
 publicIEnumerable<string>Get()
 {
 returnnewstring[] { "value1","value2"};
 }
}

www.EBooksWorld.ir

ASP.NET 5
ASP.NET 5 is the latest framework from Microsoft for building modern cloud-based
applications using .NET. It is a cross-platform framework so that you can run your
applications built on ASP.NET 5 on any platform, such as Linux or Mac OS X and
also on Microsoft Windows, obviously. ASP.NET 5 is open source, and the complete
source code is available on GitHub at https://github.com/aspnet/home .

The latest version of ASP.NET MVC, ASP.NET Core—runs on the ASP.NET 5
platform.

www.EBooksWorld.ir

https://github.com/aspnet/home

Features of ASP.NET 5
Cross-platform support: Applications that are built on top of ASP.NET 5 can
run on any platform where ASP.NET 5 is installed. This means that the
applications that you build on ASP.NET 5 can run on Apple OS X and Linux
machines. Deploying ASP.NET Core on a Linux machine will be explained in a
later chapter.
Better support for client-side development: ASP.NET 5 is designed to work
seamlessly with a range of client-side frameworks, such as AngularJs,
Knockout, Bootstrap, and React.js.

www.EBooksWorld.ir

Summary
In this chapter, we have learned the basics of web development, including what
constitutes the server-side and client-side. We have even discussed the features of
ASP.NET Core and ASP.NET 5.

www.EBooksWorld.ir

Chapter 2. Setting Up the Environment
In any development project, it is vital to set up the right kind of development
environment so that you can concentrate on the developing the solution rather than
solving environment issues or configuration problems. With respect to .NET, Visual
Studio is the defacto standard IDE (Integrated Development Environment) for
building web applications in .NET.

In this chapter, you'll be learning about the following topics:

Purpose of IDE
Different offerings of Visual Studio
Installation of Visual Studio Community 2015
Creating your first ASP.NET MVC 5 project and project structure

www.EBooksWorld.ir

Purpose of IDE
First of all, let us see why we need an IDE, when you can type the code in Notepad,
compile it, and execute it.

When you develop a web application, you might need the following things to be
productive:

Code editor: This is the text editor where you type your code. Your code editor
should be able to recognize different constructs such as the if condition, for
loop of your programming language. In Visual Studio, all of your keywords
would be highlighted in blue color.
Intellisense: Intellisense is a context aware code-completion feature available
in most modern IDEs including Visual Studio. One such example is when you
type a dot after an object; this Intellisense feature lists out all the methods
available on the object. This helps the developers to write code faster and
easier.
Build/Publish: It would be helpful if you could build or publish the application
using a single click or single command. Visual Studio provides several options
out-of-the-box to build a separate project or to build the complete solution in
a single click. This makes the build and deployment of your application easier.
Templates: Depending on the type of the application, you might have to create
different folders and files along with the boilerplate code. So, it'll be very
helpful if your IDE supports the creation of different kinds of template. Visual
Studio generates different kinds of templates with the code for ASP.NET Web
Forms, MVC, and Web API to get you up-and-running.
Ease of adding items: Your IDE should allow you to add different kinds of
items with ease. For example, you should be able to add an XML file without
any issues. And if there is any problem with the structure of your XML file, it
should be able to highlight the issue and provide information to help you to fix
the issues.

www.EBooksWorld.ir

Visual Studio offerings
There are different versions of Visual Studio 2015 available to satisfy the various
needs of developers/organizations. Primarily, there are four versions of Visual Studio
2015:

Visual Studio Community
Visual Studio Professional
Visual Studio Enterprise
Visual Studio Test Professional

www.EBooksWorld.ir

System requirements
Visual Studio can be installed on computers running Windows 7 Service Pack 1
operating system and above. You can get to know the complete list of requirements
from the following URL:

https://www.visualstudio.com/en-us/downloads/visual-studio-2015-system-
requirements-vs.aspx

Visual Studio Community 2015

This is a fully featured IDE available for building desktops, web applications, and
cloud services. It is available free of cost for individual users.

You can download Visual Studio Community from the following URL:

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

Throughout this book, we will be using the Visual Studio Community version for
development as it is available free of cost to individual developers.

Visual Studio Professional

As the name implies, Visual Studio Professional is targeted at professional
developers and contains features such as Code Lens for improving your team's
productivity. It also has features for greater collaboration within the team.

Visual Studio Enterprise

Visual Studio Enterprise is the full-blown version of Visual Studio with a complete
set of features for collaboration, including a team foundation server, modeling, and
testing.

Visual Studio Test Professional

Visual Studio Test Professional is primarily aimed for the testing team or people who
are involved in the testing, which might include developers. In any software
development methodology, either the waterfall model or agile developers need to
execute the development suite test cases for the code they are developing.

www.EBooksWorld.ir

https://www.visualstudio.com/en-us/downloads/visual-studio-2015-system-requirements-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

Installing Visual Studio Community
Follow the given steps to install Visual Studio Community 2015:

1. Visit the following link to download Visual Studio Community 2015:

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

2. Click on the Download Community 2015 button. Save the file in a folder where
you can retrieve it easily later:

3. Run the downloaded executable file:

www.EBooksWorld.ir

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

4. Click on Run and the following screen will appear:

www.EBooksWorld.ir

There are two types of installation—default and custom installation. The default
installation installs the most commonly used features and this will cover most
developer use cases of the developer. Custom installation helps you to customize the
components that you want to install:

1. Click on the Install button after selecting the installation type.
2. Depending on your memory and processor speed, the installation will take 1 to

2 hours to install.

www.EBooksWorld.ir

3. Once all the components are installed, you will see the following Setup
Completed screen:

www.EBooksWorld.ir

www.EBooksWorld.ir

Installing ASP.NET 5
When we install the Visual Studio Community 2015 edition, ASP.NET 5 will be
installed by default. As the ASP.NET Core application runs on top of ASP.NET 5,
we need to install ASP.NET 5. There are a couple of ways to install ASP.NET 5:

Get ASP.NET 5 from https://get.asp.net/

Another option is to install from the New Project template in Visual Studio

This option is a bit easier as you don't need to search and install.

The following are the detailed steps:

1. Create a new project by selecting File | New | Project or using the shortcut Ctrl
+ Shift + N:

www.EBooksWorld.ir

https://get.asp.net/

2. Select ASP.NET Web Application and enter the project name and click on OK:

www.EBooksWorld.ir

3. The following window will appear to select a template. Select the Get
ASP.NET 5 RC option as shown in the following screenshot:

4. When you click on OK in the preceding screen, the following window will
appear:

www.EBooksWorld.ir

5. When you click on the Run or Save button in the preceding dialog, you will get
the following screen asking for ASP.NET 5 Setup. Select the checkbox, I agree
to the license terms and conditions and click on the Install button:

6. Installing of ASP.NET 5 might take a couple of hours. Once it is completed
you'll get the following screen:

www.EBooksWorld.ir

During the process of installing ASP.NET 5 RC1 Update 1, it might ask you to close
the Visual Studio. If asked, please do so.

www.EBooksWorld.ir

Project structure in ASP.NET 5
application
Once ASP.NET 5 RC1 is successfully installed, open the Visual Studio, create a new
project and select the ASP.NET 5 Web Application as shown in the following
screenshot:

A new project will be created and the structure will be like following:

www.EBooksWorld.ir

www.EBooksWorld.ir

File-based project
Whenever you add a file or folder in your file system (inside the ASP.NET 5 project
folder), the changes will be automatically reflected in your application.

Support for full .NET and .NET core

You might have noticed a couple of references in the preceding project: DNX 4.5.1
and DNX Core 5.0. DNX 4.5.1 provides functionalities of full-blown .NET whereas
DNX Core 5.0 supports only the core functionalities, which would be used if you are
deploying the application across cross-platforms such as Apple OS X, Linux. The
development and deployment of an ASP.NET Core application on a Linux machine
will be explained in a later chapter.

The Project.json package

Usually, in an ASP.NET web application, we would have the assemblies as
references and the list of references in a C# project file. But in an ASP.NET 5
application, we have a JSON file by name Project.json, which will contain all the
necessary configurations with all its .NET dependencies in the form of NuGet
packages. This makes dependency management easier. NuGet is a package manager,
provided by Microsoft, which makes package installation and uninstallation easier.
Prior to NuGet, all dependencies had to be installed manually. The dependencies
section identifies the list of dependent packages available for the application. The
frameworks section informs us about frameworks, supported by the application. The
scripts section identifies the script to be executed during the build process of the
application. Include and exclude properties can be used in any section to include or
exclude any item.

Controllers

This folder contains all of your controller files. Controllers are responsible for
handling requests, communicating models, and generating the views.

Models

All of your classes representing domain data will be present in this folder.

Views

Views are files that contain your frontend components and are presented to the end
users of the application. This folder contains all of your Razor View files.

Migrations

www.EBooksWorld.ir

Any database-related migrations will be available in this folder. Database migrations
are the C# files which contain the history of any database changes done through an
Entity Framework (an ORM framework). This will be explained in detail in a later
chapter.

The wwwroot folder

This folder acts as a root folder and it is the ideal container to place all of your static
files such as CSS and JavaScript files. All the files which are placed in wwwroot
folder can be directly accessed from the path without going through the controller.

Other files

The appsettings.json file is the config file where you can configure application
level settings. Bower, npm (Node Package Manager), and gulpfile.js are client-
side technologies, supported by ASP.NET 5 applications.

www.EBooksWorld.ir

Summary
In this chapter, you learned about the offerings in Visual Studio. Step-by-step
instructions are provided for installing the Visual Studio Community version, freely
available for individual developers. We have also discussed the new project
structure of the ASP.NET 5 application and the changes when compared to the
previous versions.

In the next chapter, we are going to discuss the controllers and their roles and
functionalities. We'll also build a controller and associated action methods and see
how they work.

www.EBooksWorld.ir

Chapter 3. Controllers
As discussed in the first chapter, all web applications receive requests from the
server and produce a response, that is delivered back to the end user. A Controller
does the job of receiving the request and producing the output based on the input data
in ASP.NET MVC.

In this chapter, you'll be learning about the following topics:

Role of the Controller in ASP.NET MVC applications
Routing introduction and concepts
Creating your first ASP.NET 5 application
Installation of the ASP.NET Core NuGet packages in your application
Creation of your first Controller and action method, which returns a simple
Hello World
Adding a View and making the changes that allow your Controller to use that
View
Adding a Model and passing that Model data to your View

www.EBooksWorld.ir

Role of the Controller in ASP.NET
MVC applications
At the high level, the Controller orchestrates between the Model and the View, and
sends the output back to the user. This is also the place where authentication is
usually done through action filters. Action filters will be discussed in detail in the
Filters section of this chapter. The following figure illustrates the high-level flow of
a request (with the steps) in ASP.Net MVC and shows us how the Controller fits into
the big picture:

The following is the sequence of events that will happen at high level when the user
is accessing the ASP.NET Core application:

1. The user types the URL in the browser.
2. Based on the pattern of the URL, the routing engine selects the appropriate

Controller.
3. The Controller talks to the Model to get any relevant data through its action

methods. Action methods are methods within a controller class.
4. The Controller then passes the data to the View to present it in a viewable

format, typically as HTML elements.
5. The View is finally delivered to the user, which he would be viewing in his

browser.

Before discussing the controller, let us discuss the fundamentals of routing concepts,
as the routing engine only chooses the appropriate controller and action method
at runtime.

www.EBooksWorld.ir

www.EBooksWorld.ir

Introduction to routing
The routing engine is responsible for getting the incoming request and routing that
request to the appropriate Controller based on the URL pattern. We can configure the
routing engine so that it can choose the appropriate controller based on the relevant
information.

By convention, ASP.NET MVC follows this pattern: Controller/Action/Id.

If the user types the URL http://yourwebsite.com/Hello/Greeting/1, the
routing engine selects the Hello controller class and Greeting action method
within the HelloController, and passes the Id value as 1. You can give default
values to some of the parameters and make some of the parameters optional.

The following is the sample configuration:

The template: "{controller=Hello}/{action=Greeting}/{id?}");

In the preceding configuration, we are giving three instructions to the routing engine:

Use the routing pattern controller/action/id.
Use the default values Hello and Greeting for the controller and action
respectively, if the values for controller or action are not supplied in the
URL.
Make the Id parameter optional so that the URL does not need to have this
information. If the URL contains this Id information, it will use it. Otherwise,
the Id information will not be passed to the action method.

Let us discuss how the routing engine selects the controller classes, action
methods, and Id values for different URLs:

URL1:http://localhost/
Controller: Hello
Action method: Greeting
Id: no value is passed for the id parameter

Reasoning: The Hello controller is passed as the default value as per the routing
configuration, as no value is passed as the Controller in the URL.

The following action method will be picked up by the routing handler when the
preceding URL is passed:

public class HelloController : Controller {
 public ActionResult Greeting(int id) {
 return View();

www.EBooksWorld.ir

 }
}

URL2: http://localhost/Hello/Greeting2
Controller: Hello
Action method: Greeting2
Id: no value is passed for the id parameter

Reasoning: The Hello controller will be chosen as the URL contains Hello as the
first parameter, and the Greeting2 action method will be chosen as the URL contains
Greeting2 as the second parameter. Please note that the default value mentioned in
the configuration would be picked only when no value is present in the URL. As the
id parameter is optional and the URL does not contain the value for id, no value is
passed to the id parameter.

The following action method Greeting2 will be picked up by the routing handler
when the preceding URL is passed:

public class HelloController : Controller {
 public ActionResult Greeting(int id) {
 return View();
 }

 public ActionResult Greeting2(int id) {
 return View();
 }
}

URL3: http://localhost/Hello2/Greeting2
Controller: Hello2
Action method: Greeting2
Id: no value is passed for the id parameter

Reasoning: As Hello2 is passed as the first parameter, the Hello2 controller will be
selected, and Greeting2 is the action method selected since Greeting2 is passed as
the second parameter. As the id parameter is optional and no value is passed for the
parameter id, no value will be passed for the id.

The following action method will be picked up by the routing handler when the
preceding URL is passed:

public class Hello2Controller : Controller {
 public ActionResult Greeting2(int id) {
 return View();
 }
}
URL4: http://localhost/Hello3/Greeting2/1
Controller: Hello3

www.EBooksWorld.ir

Action method: Greeting2
Id: 1

Reasoning: Hello3 is the controller selected as it is mentioned as the first parameter,
Greeting4 is the action method, and 1 is the value passed as the id.

The following action method will be picked up the routing handler when the
preceding URL is passed:

public class Hello3Controller : Controller {
 public ActionResult Greeting2(int id) {
 return View();
 }
}

We will discuss routing in detail in a later chapter.

Once the request reaches the controller, the controller will create a response by
talking to the Model and may pass the data to View and the View will then be
rendered to the end user.

www.EBooksWorld.ir

Creating ASP.NET 5 application
It's time to get our hands dirty. Let us create a simple ASP.NET 5 application. Fire up
Visual Studio and follow these steps:

1. Create a project by selecting File | New Project in Visual Studio. The first
option is for creating an earlier version of the ASP.NET Web application. The
second option is for creating the ASP.NET Core application using the .NET
Core framework. The third option is for creating the ASP.NET Core application
using the .NET framework. The difference between the second and third option
is that the .NET framework supports all the functionalities of existing .NET
frameworks whereas .NET Core supports only the core functionalities. The
advantage of using the .NET core library is that it can be deployed on any
platform.

2. Select the Empty template from the list of ASP.NET 5 templates. The second
option is for creating the Web API application (for building the HTTP-based
services) and the third option is for creating a web application containing some
basic functionalities which you can run just from out of the box without you ever
needing to write anything.

www.EBooksWorld.ir

3. Once you click OK in the window as shown in the preceding screenshot, (after
selecting the Empty template option) a solution will be created as shown in the
following screenshot:

www.EBooksWorld.ir

4. When you run the application (by pressing F5) without any changes, you'll get
the simple Hello World! text on your screen as shown in the following
screenshot:

We have not done any coding in this newly created application. So, have you thought
about how it displays the text Hello World!?

The answer lies in the Startup.cs file, which contains a class by the name
of Startup. This class contains the Main method, which acts as the entry point for
the web application. If you have used any of the previous versions of ASP.NET
MVC, or even ASP.NET Web Forms, this would not be the case.

ASP.NET 5 runtime calls the ConfigureServices and Configure methods. For
example, if you want to configure any service, you can add it here. Any custom
configuration for your application can be added to this Configure method:

public void ConfigureServices(IServiceCollection services) {

}

// This method gets called by the runtime. Use this method to
configure the HTTP request pipeline.
public void Configure(IApplicationBuilder app) {
 app.UseIISPlatformHandler();
 app.Run(async (context) => {
 await context.Response.WriteAsync("Hello World!");
 });

}

There are only a couple of statements in the Configure method. The first statement
tells the run-time to use the IISPlatformHandler for handling all the incoming
HTTP requests. Let us leave aside async, await, and context for the moment in the

www.EBooksWorld.ir

second statement, which we will discuss later. In essence, the second statement tells
the run-time to return Hello World! for all the incoming requests irrespective of the
incoming URL.

When you type the URL http://localhost:50140/Hello in your browser, it will
still return the same Hello World!.

This is the reason we got the Hello World! when we ran the application.

As we have chosen the Empty template while creating the ASP.NET 5 application,
no component will have been installed. Even MVC wouldn't be installed by default
when you select the Empty template as we did.

You can confirm it by opening the project.json file, where you can see no
ASP.NET MVC is mentioned in the list of dependencies:

"dependencies": {
 "Microsoft.AspNet.IISPlatformHandler": "1.0.0-rc1-final",
 "Microsoft.AspNet.Server.Kestrel": "1.0.0-rc1-final"
},

So first, let us install the ASP.Net Core package for our application.

www.EBooksWorld.ir

Installing the ASP.NET Core NuGet
package in your application
Follow these steps to install the NuGet package of ASP.NET MVC:

1. Right click on the project, and select the Manage NuGet Packages option:

2. Select the Include Prerelease checkbox so that the NuGet Package Manager
will list out all the prerelease packages. Search for MVC and you'll get the
Microsoft.AspNet.MVC package, as shown in the following result, and click
on the Install button on the right-hand side:

www.EBooksWorld.ir

3. Review the changes:

www.EBooksWorld.ir

4. Once you click on Review Changes, the following dialog box will appear
where you need to accept the license terms:

The NuGet Package Manager will download and install the ASP.NET Core and
will update the project.json file and the associated references.

Now, your project.json file will have updated dependencies. The second line
Microsoft.AspNet.Mvc is added:

"dependencies": {
 "Microsoft.AspNet.IISPlatformHandler": "1.0.0-rc1-final",
 "Microsoft.AspNet.Mvc": "6.0.0-rc1-final",
 "Microsoft.AspNet.Server.Kestrel": "1.0.0-rc1-final"
},

Alternatively, you can also update the project.json with the NuGet package along
with the version information. The NuGet Package Manager will automatically
download and install them.

www.EBooksWorld.ir

ASP.NET Core is installed in our application. Now, we need to tell our application
to use ASP.NET MVC.

This needs a couple of changes to the Startup.cs file:

1. Configure the application to add the MVC service. This can be done by adding
the following line to the ConfigureServices method of the Startup class:

 services.AddMvc();

2. Configure the routing so that our correct controllers will be picked for the
incoming requests based on the URL entered. The following code snippet needs
to be updated in the Configure method of the Startup.cs
file:app.UseMvc(routes => {

app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

In the preceding statement, we are configuring the routes for our application.

In this chapter and most of the chapters in this book, we will write codes manually or
choose an Empty template instead of relying on scaffolding templates. For those who
are new to the term scaffolding, scaffolding is a feature that generates all the
necessary boilerplate code for you for the selected item (for example, the Controller)
instead of you needing to write everything. Though I agree that scaffolding templates
are useful and save time in generating the boilerplate code, they hide many of the
details that beginners have to understand. Once you write code manually, you'll know
all the intricacies of how each of the components is contributing to the big picture.
Once you are strong in the fundamentals, you can use scaffolding templates to save
you time in writing the boilerplate code.

www.EBooksWorld.ir

Our first Controller
Before creating the Controller, we need to remove the following app.Run statement
as this will return Hello World! for all the incoming requests. As we want incoming
requests to be handled by the controllers, we need to remove the following code from
the Configure method of the Startup class:

app.Run(async (context) => {
 await context.Response.WriteAsync("Hello World!");
});

We have installed the ASP.NET Core in our application. So, we are geared up to
creating our first ASP.NET Core controller. Create a folder with the name
Controllers and add a new Controller by selecting from the context menu as shown
in the following screenshot:

Once you select Add | New Item, you will be shown the following list of options. We
are going to add an MVC controller class to our project:

www.EBooksWorld.ir

A class will be created with the following content:

public class HomeController : Controller {
 // GET: /<controller>/
 public IActionResult Index() {
 return View();
 }
}

All controllers, both MVC and Web API controllers, inherit from the Controller
base class. In earlier versions of ASP.NET MVC, MVC controllers would inherit
from the Controller class and Web API controllers would inherit from the
APIController class.

In the preceding HomeController class, we have a single action method by
Index that returns the corresponding View. When you run the application as it is,
you'll get a 500 Internal Server Error. The reason being is that no View has been
created for the Index action of the HomeController and ASP.NET Core tries to
search for that View. As the View is not available, it returns a 500 Internal Server
Error.

Instead of creating and returning that View, let us make a simple change to this action
method. Let us return a string, Hello World! I am learning MVC 6!, and change
the return type of IActionResult:

www.EBooksWorld.ir

public string Index() {
 return "Hello World! I am learning MVC 6!";
}

Run the application. You'll see the Hello World! I am learning MVC 6! in your
browser as shown in the following screenshot. Please make sure that you remove the
app.Run statement in the Configure method as mentioned earlier:

Voila! We have changed the ASP.NET Core application to render the custom content
instead of the boring Hello World. What we have done may seem like a marginal
improvement, but we have used controllers and action methods in our ASP.NET Core
application, which has brought a lot of structure and flexibility to the web application
development.

The following is the sequence of steps that occur when we run the application:

1. The application runs on the URL http://localhost:50140, where 50140 is
the port number selected by IIS Express to run the application on my local
system. This number may vary.

2. As we have not passed any parameter, default values for the Controller and
action method will be selected. In our case, HomeController will be chosen
as the Controller and Index will be chosen as the action method in the

www.EBooksWorld.ir

HomeController. Since ID is the optional value and it is not passed, this ID
parameter is ignored.

3. After the Controller and action methods are selected by the routing engine,
control is passed to the action method of the selected controller. In our case, it
will be the Index action method of the HomeController.

4. In the Index action method, we are returning a string, Hello World! I am
learning ASP.Net MVC 6!. This text is returned from the controller, which
would then return back to the user.

www.EBooksWorld.ir

IActionResult
If you noticed, the default return type in the action method of the controller was
IActionResult and then we changed the return type to the string in order to return
the text Hello World....

The IActionResult is the interface that we can use to return different types of
ActionResult, ranging from a simple string to complex JSON data, so, we don't
need to change the return type of the action method to return the string.

In the earlier example, I have changed the return type to the string to make things
simple. Now, let us make a simple change to return the string by keeping the return
type (IActionResult) as it is:

// GET: /<controller>/
public IActionResult Index() {
 return Content("Hello World! I am learning MVC 6!");
}

While returning the string, we are using the virtual method, called Content from
the Controller class (the base controller from where HomeController is inherited
from) in the preceding action method. The purpose of this Content() method is to
convert the string to the type IActionResult.

Now, run the application. We should be getting the same result.

IActionResult is capable of returning different data types:

ContentResult: Can return a text result.
EmptyResult: Returns a null result.
FileResult: Returns a binary output to write to the response.
HttpStatusCodeResult: Provides a way to return.
JavaScriptResult: Returns a script that can be executed from the client side.
JSonResult: When you return a serialized JSON object.
RedirectResult: Redirects to another action method.
RedirectToRouteResult: Represents a result that performs a redirection by
using a specified route values dictionary.

www.EBooksWorld.ir

Adding Views
We were returning a simple string from the controller. Although that explains the
concept of how the Controller and action method works, it is not of much
practical use.

Let us create a new action method by the name, Index2:

public IActionResult Index2() {
 return View(); // View for this 'Index2' action method
}

Now, we have created the action method that returns a View. But we still have not
added the View for the same. By convention, ASP.NET MVC would try to search for
our View in the folder Views\{ControllerName}\{ActionMethod.cshtml}. With
respect to the preceding example, it will try to search for
Views\Home\Index2.cshtml. Please note that the name of the controller folder-
is Home , not HomeController. Only the prefix is needed as per convention. As this
folder structure and file are not available, you'll get a 500 Internal Server Error
when you try to access this action method through the URL
http://localhost:50140/Home/Index2.

So, let us create a folder structure. Right-click on the solution, select Add | New
Folder from the context menu, create a folder called Views, and then create a
subfolder by the name Home within the Views folder:

www.EBooksWorld.ir

Right click on the Home folder, and select Add | New Item from the context menu. A
dialog will appear as shown in the following screenshot. Give the name of the file as
Index2.cshtml, as our action method name is Index2. cshtml is the razor view
engine (this will be discussed in detail in the ViewEngines section of the Views
chapter) extension used when you are using C#.

A file by the name Index2.cshtml will be created when you click the Add button in
the preceding screen with the following content:

@* is the comment syntax in the razor view engine. You can write any C# code within
the @{} block.

Let us add a simple HTML block after the generated code:

<html>
 <body>

www.EBooksWorld.ir

 Hello! This is my first View
 </body>
</html>

Now, when you run the application, you will get the following output:

The following diagram explains the request flow and how we generate the response
through the View:

www.EBooksWorld.ir

Adding Models
Models represent your business domain classes. Now, we are going to learn about
how to use the Models in our controller. Create a Models folder and add a simple
Employee class. This is a just a plain old C# class:

public class Employee {
 public int EmployeeId { get; set; }
 public string Name { get; set; }
 public string Designation { get; set; }
}

Create a new action method, Employee, in our HomeController, and create an
object of the Employee Model with some values, and pass the Model to the View.
Our idea is to use the Model employee values in the View to present them to the user:

using Chapter3.Models;
public IActionResult Employee() {
 //Sample Model - Usually this comes from database
 Employee emp1 = new Employee {
 EmployeeId = 1,
 Name = "Jon Skeet",
 Designation = " Software Architect"
 };
 return View(emp1);
}

Now, we need to add the respective View for this action method. Add a new Razor
view file in the View\Home folder.

Add the following code snippet. Whatever comes after the @ symbol is considered as
Razor code. In the following code, we are trying to access the properties of the
Model object that is passed to our view. In our case, Model represents the employee
object that we have constructed in our action method. You can access the object
from View using the Model keyword:

<html>
 <body>
 Employee Name : @Model.Name

 Employee Designation: @Model.Designation

 </body>
</html>

When you run the application and type the URL
http://localhost:50140/Home/Employee, you'll see the following output:

www.EBooksWorld.ir

www.EBooksWorld.ir

Passing data from Controller to View
We have just discussed how to pass the data from the Controller to the View using the
Model object. While calling the View, we are passing the model data as a parameter.
But there are times when you want to pass some temporary data to the View from the
Controller. This temporary data may not deserve a model class. In such scenarios,
we can use either ViewBag or ViewData.

ViewData is the dictionary and ViewBag is the dynamic representation of the same
value.

Let us add the company name and company location property using ViewBag and
ViewData as shown in the following code snippet:

public IActionResult Employee() {
 //Sample Model - Usually this comes from database
 Employee emp1 = new Employee {
 EmployeeId = 1,
 Name = "Jon Skeet",
 Designation = " Software Architect"
 };

 ViewBag.Company = "Google Inc";
 ViewData["CompanyLocation"] = "United States";

 return View(emp1);
}

Make the respective changes in the View file as well so that we can display the
Company name and Company location values:

<html>
 <body>
 Employee Name : @Model.Name

 Employee Designation: @Model.Designation

 Company : @ViewBag.Company

 Company Location: @ViewData["CompanyLocation"]

 </body>
</html>

Run the application after making the preceding changes:

www.EBooksWorld.ir

ViewBag and ViewData represent the same collection, even though the entries in the
collection are accessed through different methods. ViewBag values are dynamic
values and are executed at run-time, whereas the ViewData is accessed through the
dictionary.

To test this, let us make a simple change to our view file:

Employee Name : @Model.Name

Employee Designation: @Model.Designation

Company : @ViewData["Company"]

Company Location : @ViewBag.CompanyLocation

Even though I have stored the Company value using ViewBag in the Controller, I am
accessing the same using ViewData. The same is the case for the Company Location
value, we have stored the value using ViewData in the Controller, but we are
accessing the value using ViewBag.

When you run the application after making the preceding changes, you'll see the same
result as you have seen before.

www.EBooksWorld.ir

Filters
Filters in ASP.NET MVC enable you to run code before or after a particular stage in
the execution pipeline. They can be configured globally per-controller or per-action.

There are different kinds of filters, and each filter is executed at a different stage in
the pipeline. For example, action filters are executed when the action method is
executed.

Let us use a simple example to see how an action filter (a type of filter) works.

I have created a simple controller, DateController, where I am just displaying the
time. In this action method, I am using a predefined action filter by the name
of ResponseCache, that caches the response for the duration specified in seconds. In
the following code snippet, we have mentioned the duration as 600 seconds. So, the
response will be cached for 10 minutes.

public class DateController : Controller {
 [ResponseCache(Duration = 600)]
 public IActionResult Index() {
 return Content(DateTime.Now.ToShortTimeString());
 }
}

When I run it for the first time, it displays the time as expected. But when you refresh
the browser (which indirectly fires the request again), the time is not updated as the
response is cached already by the application. In the following screenshot, even
though the time is 7:43, the application is still showing as 7:40:

www.EBooksWorld.ir

The following are the predefined types of filters available in ASP.NET Core.

www.EBooksWorld.ir

Authorization filters
These are used for authorization and are mainly intended to determine whether the
current user is authorized for the request being made.

www.EBooksWorld.ir

Resource filters
These are the filters that handle the request after authorization and are the last one to
handle the request before it leaves the filter pipeline. They are used to implement
caching or by passing the filter pipeline.

www.EBooksWorld.ir

Action filters
These wrap calls to individual action method calls and can manipulate the
arguments passed in the action as well as the action result returned from it.

www.EBooksWorld.ir

Exception filters
These are used to manage the unhandled exceptions in ASP.NET MVC.

www.EBooksWorld.ir

Result filters
This wrap the individual action results and they only run when the action method is
executed successfully.

www.EBooksWorld.ir

Summary
In this chapter, we have built our first ASP.NET 5 application from scratch and we
have installed ASP.NET Core in our ASP.NET 5 application. We have learned how
the controller fits into the overall ASP.NET MVC application and learned how to
build your first controller with the action methods. We also learned about how to
use Model and View in our Controller. We have also discussed different ways to
pass the data from the Controller to the View using ViewBag and ViewData. We have
also learned about filters in ASP.NET MVC and how to make use of predefined
filters in ASP.NET Core.

www.EBooksWorld.ir

Chapter 4. Views
Views are the actual output of the application that is delivered to the user. It is what
they actually see when they access your application from the screen. All the
components, be it menus, input elements, dialog boxes, and everything the user sees
comes from your Views only. If you do not provide good user experience when
accessing your application, users will not care how great your application is. So,
Views play a critical role when building an ASP.NET MVC application.

In this chapter, we'll cover the following topics:

The purpose of View Engine and Razor View Engine
Programming in Razor View Engine and different programming constructs
Layout in ASP.NET Core and its features
HTML Helpers
Partial Views
Tag Helpers

www.EBooksWorld.ir

The View engine and the Razor View
engine
As discussed in Chapter 1, Introduction to ASP.NET Core, a browser can only
understand HTML, CSS, and JavaScript. The purpose of the View engine is to
generate the HTML code from your View and send it to the browser so that it can
understand the content. Primarily, there are two different types of View engines—
Razor View engine and Webform View engine. Although these two View engines
come out of the box with ASP.NET MVC, you can use any custom View engine.

www.EBooksWorld.ir

Razor View engine
The Razor View engine is the default and recommended View engine in ASP.NET
Core, and going forward, this may be the only View engine coming out of the box
when you install ASP.NET MVC.

You can mix a C# code and HTML code in your Razor View and the Razor View
engine is intelligent enough to distinguish between these two and generate the
expected output. In some scenarios, we may have to give additional information to
Razor View to produce the appropriate results. Razor code blocks start with the @
symbol and do not require a closing @.

Programming in Razor View engine

Programming in Razor View engine is just like you program in C#. The difference is
that, in Razor View engine, your C# code will get mixed with HTML to produce the
desired HTML output.

Variables in Razor View

You can declare a variable inside the razor block and use that variable using the @
symbol.

Note

For all the examples in this chapter, we will only present the code samples of the
view.

Let's discuss this with an example.

1. Create a Controllers folder and a Controller called HomeController.
2. Create a folder called Views, a subfolder called Home, and a View file called

Index.cshtml by right-clicking the context menu and selecting Add | New Item
and then MVC Razor View from the list.

The HomeController.cs file will have following code:

public class HomeController : Controller
{
 // GET: /<controller>/
 public IActionResult Index()
 {
 return View();
 }
}

www.EBooksWorld.ir

Next is the updated Razor View where we will declare a variable and use it. The
first five lines and the last two lines are simple HTML elements.

We will concentrate on the lines that are bold. Then, we will create a Razor block
using @ { … } and declaring a variable inside it. The Razor block ends with the
closing curly bracket. The snippet Value: is considered as simple HTML text. As
we would like to use the razor variable value, we will use @i to instruct the Razor
View engine that i is not a normal HTML text; and it is a Razor construct and is to be
treated accordingly. The complete HTML code is as follows:

<html>
 <head>
 <title> Views demo</title>
 </head>
 <body>
 @{
 int i = 5;

 }
 Value: @i
 </body>
</html>

When you run the application, you'll see the following output:

Please note that when you access the razor variable, you will need to use the @
symbol. Without this, Razor View engine sees the i as text and not as an expression.

The following screenshot is the result you will get when you access the variable
without @ symbol:

www.EBooksWorld.ir

The for loop

You can use most of the programming constructs available in C# in Razor View. The
following piece of code is the for loop construct where we loop through five times
and print the variable name:

@{
 for (int i = 0; i < 5; i++)
 {
 @(i+1)
 }
 }

The following are a few points to be noted:

As the for loop is a razor code, we should enclose the loop with the @ symbol to
indicate that the code that follows is a Razor code and not normal HTML.
Whenever we use an HTML element or tag, Razor View engine falls back to
HTML mode. If you want to use any Razor expression within the HTML tags,
you will want to include the @ symbol again to tell the Razor View engine that
whatever follows is a Razor code and not an HTML element. This is the reason
we use the @ symbol again in the preceding expression, even within the parent
root-level razor code.

The complete code for the View is as follows:

<html>
 <head>
 <title> Views demo</title>
 </head>
 <body>

 @{
 for (int i = 0; i < 5; i++)
 {
 @(i+1)
 }
 }

www.EBooksWorld.ir

 </body>
</html>

The while loop

The following piece of code is the while loop implementation for the same loop.
Please note that the emboldened expressions increment the variable i. We will not
use the @ symbol as it is not within the HTML element:

@{
 int i = 0;
 while(i<5)
 {
 @(i + 1)
 i++;
 }
 }

The foreach loop

The foreach loop in Razor View is the same as the foreach loop in C#. In the
following code, we will initialize a list of integers, iterate through the list and print it
as a list item:

 @{
 List<int> integers = new List<int>
 {
 1,2,3,4,5
 };
 foreach (int i in integers)
 {
 @i
 }
 }

The if condition

In the following code, we will check if the value of the variable is less than 10. If it
is less than 10, we will print i is less than 10, otherwise, we will say i is
greater than 10. You may wonder why we have to include the text tag and what
its purpose is. As we are inside the Razor View code block, the text i is less
than 10 will be considered as Razor expression, but it is not.

This text tag is to instruct the Razor View engine that whatever follows the text tag
is to be considered as a text and not as a Razor expression:

@{

www.EBooksWorld.ir

 int i = 5;
 if (i < 10)
 {
 <text>i is less than 10</text>
 }
 else
 {
 <text>i is greater than 10</text>
 }
 }

www.EBooksWorld.ir

Layout
In all the previous examples we discussed, we have done the complete View coding
in a single file. This will result in a lack of flexibility and reduced reusability.

Consider the following web page structure where the Top Section contains the
company logo or banner and the Side Section contains the links to various sections of
the site. The Content Section changes for every page.

If we code the complete content in a single view, we may have to duplicate the Top
Section and Side Section in every page. If we want to change anything in the Side
Section, we will have to change all the files. This clearly shows that a single View
file is not the best solution.

The layout comes to the rescue in this scenario. The layout defines the site structure
that can be reused across all the web pages. The layout does not even need to have
something like the top section or side section; it can contain even a simple HTML
structure where you can have common content and the body content will be rendered

www.EBooksWorld.ir

from individual view.

Let's build our first layout. In order to use the layout, you will need to have the
following three things:

1. Inform the name of the layout file—this information should be made available in
_ViewStart.cshtml. By convention, the names of all the shared files will start
with an underscore and this file is located directly under the Views folder.

2. Create the Layout file—by convention, the name of the file is _Layout.cshtml
and it will be located in the Shared folder. All the shared content, such as
partial views, will also be available here. Partial Views will be discussed later
in this chapter.

3. Create the content View file—this View file is almost same as the earlier View
files that we created so far with only one difference; only page-specific content
will be available in this file, and this means that you'll not have any html, head,
or title tags here.

After the creation of _ViewStart.cshtml, _Layout.cshtml, and page-specific
View files, the folder structure will be like the preceding snapshot.

www.EBooksWorld.ir

Creating _ViewStart.cshtml
Right-click on the Views folder and select Add New Item from the Context menu.
Then, select MVC View Start Page from the Add New Item dialog box as shown in
the following screenshot:

When you click the Add button, it will create a file with the following content:

@{
 Layout = "_Layout";
 }

www.EBooksWorld.ir

Creating _Layout.cshtml
Create a folder called Shared within the Views folder. Then, right-click on the
Shared folder and select Add New Item from the Context menu as shown in the
following screenshot:

When you click the Add button, it will create _Layout.cshtml with the following
content:

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width" />
<title>@ViewBag.Title</title>
</head>
<body>
<div>
@RenderBody()

</div>
</body>
</html>

The preceding layout file is a simple HTML content with a couple of Razor
expressions. @ViewBag. The title is used to display the title information passed from

www.EBooksWorld.ir

the Controller and @RenderBody is the Razor expression that calls the page specific
View and merges that content over there.

www.EBooksWorld.ir

Adding a page-specific View
Before adding the View, we will need to add an action method in our
HomeController file from which we will be calling our page-specific view.

Let's add an action method named Index2 as follows:

public IActionResult Index2()
{
 ViewBag.Title = "This is Index2";
 return View();
}

The ViewBag is used to pass information from the Controller to the View. Here, we
are passing the Title information from the action method to the View.

Now, right-click on the Views folder, select Add | New Item, select MVC View
Page, and save the file as Index2.cshtml.

In the generated view, I have added simple Hello text. This text will be rendered in
the body of the layout page. The complete code of the View file is as follows:

@*
For more information on enabling MVC for empty projects, visit
http://go.microsoft.com/fwlink/?LinkID=397860
*@
@{
 …
 }
 Hello. This text will be rendered in body of the layout page

Everything is set now. Run the application and type the URL
http://localhost:50132/Home/Index2 in the browser. Please note that the port
number after the local host may vary when you run the application from your PC.

www.EBooksWorld.ir

As expected, you'll see the text seen in the preceding picture. However, our point is
not about the text. It's about the structure of the generated HTML content.

View the source by pressing Ctrl + U (on the Chrome browser in Windows). You'll
see the following HTML content:

The top content (the html, head, body, and div opening tags) and bottom content
(the html, head, body, and div closing tags) come from the layout file and the text
comes from the View specific to the page.

www.EBooksWorld.ir

Generating HTML
As discussed in Chapter 1, Introduction to ASP.NET Core, browsers can understand
only HTML, CSS, and JavaScript, irrespective of the technology that you use to build
the web application. This holds true when building the application in ASP.NET MVC
as well.

Most applications get the user input, process the input, and then store the required
information in the database to retrieve them later. In the context of web applications,
Form HTML elements are used to get the user input.

The following are a couple of ways to generate HTML elements in ASP.NET Core:

HTML Helpers
Tag Helpers

HTML Helpers are server-side methods that aid in generating HTML elements,
which can be understood by the browsers. HTML helpers were the primary method
of generating the HTML elements up till ASP.NET MVC 5.

Tag Helpers, introduced in ASP.NET Core, also produce HTML elements. Tag
helpers, which we will discuss in a later section of this chapter, will look just like
HTML elements where you add attributes to identify them as Tag Helpers. The
advantage of using Tag helpers over HTML helpers is that the user interfaces
designers/engineers do not need to worry about Razor code. They just code with
HTML elements and additional attributes.

Before discussing HTML helpers and Tag helpers, let's take a step back and talk
about why we need them in the first place.

Let's consider a simple form, as shown in the following picture, where we would
like to get the user's name and their age. If the user enters her age, we will display
You are eligible to vote!. If not, we will display You are not eligible to
vote now:

www.EBooksWorld.ir

The following is the HTML code to show the preceding simple form:

<form>
 <table>
 <tr>
 <td>
 <label for="txtName">Name</label>
 </td>
 <td>
 <input type="text" id="txtName" />
 </td>
 </tr>
 <tr>
 <td>
 <label for="txtAge">Age</label>
 </td>
 <td>
 <input type="text" id="txtAge" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" />
 </td>
 </tr>
 </table>
</form>

This method of coding HTML elements directly is time-consuming and error-prone.
For example, in the preceding form, the label and input HTML elements refer to the
same element (txtName in the first group and txtAge in the second group). If we
hand-code the HTML element, there is a possibility of a typo error in building the
HTML element.

www.EBooksWorld.ir

HTML Helpers
HTML helpers are server-side methods that generate HTML for you. We can generate
the same form using HTML helpers as follows (HTML.BeginForm, @Html.Label,
and @Html.TextBox generate the HTML form element, label, and textbox elements,
respectively):

@using (Html.BeginForm())
 {
 <table>
 <tr>
 <td>@Html.Label("Name")</td>
 <td>@Html.TextBox("txtName")</td>
 </tr>
 <tr>
 <td>@Html.Label("Age")</td>
 <td>@Html.TextBox("txtAge")</td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Submit" /></td>
 </tr>
 </table>
}

www.EBooksWorld.ir

You might wonder why we need to use HTML helpers when we can write the HTML
code manually. Things will get more complex when we pass the model from the
Controller to the view. Using HTML helpers, we can directly build form elements
from Models files so that they will pick the names from the Models that you are
using.

For example, let's create a folder called Models and a class called Person. This
class will act as a model as shown in the following screenshot:

The Person class is just a POCO (Plain Old C# Object) class and will act as a
model. The complete code for this class is as follows:

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
}

Let's create a new action method called ValidateAge. In this method, we will create
an empty Person class and pass the Model to the View. We will also create a
dynamic property called Title in ViewBag so that we can display this value in
View:

[HttpGet]
public IActionResult ValidateAge()
{

www.EBooksWorld.ir

 ViewBag.Title = "Validate Age for voting";
 Person person1 = new Person();
 return View(person1);
}

In the view, create the form using the following HTML Helpers:

@model Chapter4.Models.Person
@using (Html.BeginForm("ValidateAge", "Home", FormMethod.Post))
 {
 <table>
 <tr>
 <td>@Html.LabelFor(Model => Model.Name) </td>
 <td>@Html.TextBoxFor(Model => Model.Name) </td>
 </tr>
 <tr>
 <td>@Html.LabelFor(Model => Model.Age)</td>
 <td>@Html.TextBoxFor(Model => Model.Age)</td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Submit" /></td>
 </tr>
 </table>
}

In the first line, we are telling the View that we are passing the Model of type Person
class. This enables you to use the strong type of Model, that is, when you type Model
and a dot, IntelliSense provides you with all the properties of the Person class

In the second line, we are using the overloaded BeginForm HTML helpers which
accept three parameters—the action method name, the Controller name, and the Form
method.

Simply, when the user submits the form, the information should be passed to the
mentioned action of the Controller.

In the LabelFor and TextBox For HTML helpers, we are just passing Model
properties (name and age); it automatically queries and gets the Model properties and
builds the respective HTML elements. This is one of the primary advantages of using
HTML helpers. Without using the HTML helpers, this process might become
complex.

Now, let's write the respective POST action method in the same way. In the following
POST action method, based on the age entered in the form, we set the dynamic
property as Message.

[HttpPost]
public IActionResult ValidateAge(Person person1)

www.EBooksWorld.ir

{
 if(person1.Age>=18)
 {
 ViewBag.Message = "You are eligible to Vote!";
 }
 else
 {
 ViewBag.Message = "Sorry.You are not old enough to vote!";
 }
 return View();
}

It is to be noted that both the GET and POST action method refer to the same View
—ValidateAge.cshtml. Add the following content to the View just above the form
element:

@if(ViewBag.Message!=null)
 {
 @ViewBag.Message
 }

Once the user submits the form, the POST action method sets the dynamic Message
property in ViewBag. However, the value of this property will be null when the View
is rendered as part of the GET request. If the value is not null, insert the message at the
top of the page.

When you run the application, you'll get the following output:

www.EBooksWorld.ir

Partial View
Partial Views are just Views that can be reused across your application. Partial
Views can be thought of as pluggable reusable blocks that you can call from
anywhere and have the content of the partial view displayed.

Consider the following structure of a web page—it's the same layout page that we
used earlier, but with a couple of changes. The Latest News block is added to the
Side Section and the Login block is added to the Top Section. These blocks are not
restricted to the Top Section or Side Section and can be used anywhere in your
application, including your Content Section as shown in the following figure:

These Partial Views are not restricted to static content and can contain form
elements. In the preceding screenshot, the Latest News Partial View contains the text
content and the login Partial View contains form elements to get the e-mail ID and
password.

Location of Partial Views—Framework does not restrict the location of the Partial

www.EBooksWorld.ir

View. However, by convention, if your Partial View will be used only by your
Controller, you can create that Partial View in the Controller-specific Views folder.
For example, if your Partial View will only be used in HomeController file, you
can create that Partial View in the Views\Home folder.

Let's take look at how to create a Partial View and use it.

As discussed earlier, a Partial View is just like a normal View. So, we will create a
Partial View in the same way we create normal View.

Right-click on the Shared folder and select Add | New Item. By convention, like all
shared content, the name of the Partial View will also start with "_"(underscore), as
shown in the following screenshot:

Tip

We are creating this Partial View based on the assumption that it can be used from
anywhere in the application.

In the generated Partial View, I have added the following simple static content—a
text and a simple table:

This content and below table is coming from partial view
<table border="1">

www.EBooksWorld.ir

 <tr>
 <th>Employee No</th>
 <th>Employee Name</th>
 </tr>
 <tr>
 <td>10012</td>
 <td>Jon Skeet</td>
 </tr>
 <tr>
 <td>10013</td>
 <td>Scott Guthrie</td>
 </tr>
</table>

www.EBooksWorld.ir

Calling the Partial View
A Partial View can be called using the @Html.Partial HTML helper.

In our case, we will be calling the Partial View from Index2.cshtml file. The
parameter that you pass will be the name of the partial file. It will search for the
Partial View by that name and render that complete content as part of
the Index2.cshtml file.

The content of Index2.html file will now be as follows:

Hello. This text will be rendered in body of the layout page

@Html.Partial("_PartialHelloWorld")

Now, run the application and access the URL
http://localhost:50132/Home/Index2. You'll see the following output:

www.EBooksWorld.ir

View components
View components are a new feature introduced in ASP.NET Core, they are almost
similar to Partial Views but is more powerful. When you use Partial Views, you have
dependency over the Controller. However, when you use the ViewComponent
attribute, you do not have to depend on the Controller, so we will establish
separation of concerns and have better testability. Even though the existing Partial
View HTML helper is still supported, it is preferable to use the View component
whenever you want to show a reusable piece of information when you are using
.NET Core.

www.EBooksWorld.ir

Creating a View component
You can create a ViewComponent using any of the following:

Create a class by deriving from the ViewComponent attribute
Decorate a class with the [ViewComponent] attribute or derive it from the class
that has the [ViewComponent] attribute
You can use the convention by creating a class that ends with a suffix
ViewComponent attribute

Whatever option you choose, this ViewComponent should be public, non-nested, and
non-abstract classes.

Like Controllers, you can use the Dependency Injection (via a constructor) in the
ViewComponent attribute as well. As the ViewComponent attribute is separate from
the Controller lifecycle, you may not be able to use the action filters in
ViewComponents.

There is a method called Invoke (or InvokeAync, the asynchronous equivalent of
Invoke), that will return the IComponentViewResult interface. This method is
similar to the action method of the Controller that will return the View.

Let's get our hands dirty by creating a ViewComponent attribute.

Create a new folder called ViewComponents in your project and a new class called
SimpleViewComponent, as shown in the following screenshot:

The SimpleViewComponent file that we created will look like the following:

www.EBooksWorld.ir

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Mvc;

namespace Chapter4.ViewComponents
{
 public class SimpleViewComponent :ViewComponent
 {
 public IViewComponentResult Invoke()
 {
 var data = GetSampleData();
 return View(data);
 }
 /// <summary>
 /// This is a simple private method to return some dummy data
 /// </summary>
 /// <returns></returns>

 private List<string> GetSampleData()
 {
 List<string> data = new List<string>();
 data.Add("One");
 data.Add("Two");
 data.Add("Three");
 return data;
 }
 }
}

We just have a couple of methods, one to populate the data and the other is the
Invoke method where we will render the View.

Once you have created the ViewComponent attribute, you will need to include the
ViewComponent namespace in the Views_ViewImports.cshtml file so that the
ViewComponents attributes can be available for all the Views. The highlighted code
snippet in the following is added to the View:

@using Chapter4
@using Chapter4.Models
@using Chapter4.ViewComponents

@addTagHelper "*, Microsoft.AspNet.Mvc.TagHelpers"

We have created the ViewComponent and made them available to all of the Views.
A simple action method in the HomeController file just returns the View:

public ActionResult Sample()
{

www.EBooksWorld.ir

return View();
}

In the associated View, we can just invoke the component as shown in the following
code snippet:

<p>
 This is a sample web page

 <div>
 @Component.Invoke("Simple")
 </div>
</p>

When you invoke the component, it will search in the following two folders:

The Views\<controller_name>\Components\<view component name>\
<view name> folder
The Views\Shared\Components\<view_component_name>/<view_name>
folder

The default View name of the View component is Default, which makes your file
name for the View Default.cshtml. So, we will need to create the
Default.cshtml file in Views\Shared\Simple\Default.cshtml folder, as shown
in the following screenshot:

In the the View (Default.cshtml file) of the ViewComponent file, we are just
iterating the items in the model and displaying them as an unordered list item, as
shown in the following code:

@model IEnumerable<string>

www.EBooksWorld.ir

<h3> Sample list</h3>

 @foreach(var item in Model)
 {
 @item
 }

When you run the application and access the URL
(http://localhost:50132/Home/Sample), you should see the following output:

The first line, This is a sample web page, comes from the parent View file
(sample.cshtml) whereas the subsequent list comes from ViewComponent attribute.

The ViewComponent attributes are usually referred in the Views. However, if you
want to call the ViewComponent directly from your Controller, you can do so.

I have called the Sample action method to call the Simple ViewComponent directly
instead of calling it through some other View as follows:

public ActionResult Sample()
{
 return ViewComponent("Simple");
 //return View();
}

www.EBooksWorld.ir

Thus, these ViewComponents have far more flexibility and features, such as
Dependency Injection, when compared to old HTML Partial Views. This
ensures ViewComponents are separately tested.

www.EBooksWorld.ir

Tag Helpers
Tag Helpers are a new feature in ASP.NET Core; they help generate the HTML
elements. In HTML helpers, we will write a C#/Razor code to generate the HTML.
The disadvantage associated with this approach is that many frontend engineers will
not know C#/Razor code. They work on plain HTML, CSS, and JavaScript. Tag
Helpers look just like HTML code but have all the features of server-side rendering.
You can even build your custom Tag Helper for your needs.

Let's take a look at how to use a Tag Helper. In order to use the Tag helper, you will
need to install the Microsoft.AspNet.Mvc.TagHelpers NuGet package.

Open the Package Manager Console window by selecting View | Other Windows |
Package Manager Console, as shown in the following screenshot:

www.EBooksWorld.ir

You can install TagHelpers methods by entering the following command in
the Package Manager Console window, the following command:

Install-Package Microsoft.AspNet.Mvc.TagHelpers -Pre

The following response will appear when you've entered the command:

www.EBooksWorld.ir

Once the TagHelpers package is installed, we will need to call ViewImports file,
where we will add the TagHelpers directive so that Tag Helpers are available to
our Views.

Right-click on the Views folder and select the Add New Item option from the
Context menu; you'll see the following screen:

Add the following content to the _ViewImports.cs file. The first couple of lines
tells ASP.NET MVC to include the necessary namespaces. The last line tells
ASP.NET MVC to include all the TagHelpers available in
Microsoft.AspNet.Mvc.TagHelpers. The first parameter indicates the name of

www.EBooksWorld.ir

TagHelper. We have used *, which means that we may want to use all the Tag
Helpers. The second parameter indicates the assembly where the TagHelpers will
be available:

@using Chapter4
@using Chapter4.Models
@addTagHelper "*, Microsoft.AspNet.Mvc.TagHelpers"

As we are creating the _ViewImports.cshtml file directly under the Views folder,
as shown in the following screenshot, the Tag Helpers will be available for all the
Views:

Had we included the _ViewImports.cshtml file under the Home folder, the Tag
Helpers would be available only for the Views under the Home folder.

Let's add a simple action method called Index3 in the HomeController file, and in
the associated View, we will use Tag Helpers as shown in the following code:

public IActionResult Index3()
{
 ViewBag.Title = "This is Index3";
 Person person = new Person();
 return View(person);
}

Add the corresponding View (Index3.cshtml file) for the Index3 action method
with the following code:

@model Chapter4.Models.Person
<form asp-controller="Home" asp-action="Index3">
 <table>
 <tr>
 <td><labelasp-for="Name"></label></td>
 <td><input asp-for="Name" /></td>
 </tr>
 <tr>
 <td><labelasp-for="Age"></label></td>
 <td><inputasp-for="Age" /></td>
 </tr>
 <tr>

www.EBooksWorld.ir

 <td colspan="2"><input type="submit" value="Submit" /></td>
 </tr>
 </table>
</form>

The following are a few things that you need to note in the preceding code, for the use
of Tag Helpers:

All the form elements look just like standard HTML elements with just a few
changes in the attributes. This makes frontend developers work independently,
without learning HTML/Razor code and thus more easily achieving the
separation which concerns.
The first line of the preceding view indicates the type of model data passed to
the view from the Controller.
The Form element has a couple of attributes named asp-controller and asp-
action which represent Controller names and action method names
respectively.
The Label and input tag helpers are just like HTML elements, with just an
additional asp-for attribute. The values for these attributes represent the model
properties. You can take advantage of IntelliSense when entering the values for
these attributes.

www.EBooksWorld.ir

Creating custom Tag Helpers
ASP.NET Core provides many built-in Tag Helpers to help you create the necessary
HTML elements for many scenarios. However, this process is not comprehensive and
is exhaustive. Sometimes, you may want to make some changes in the generated
HTML element, or you may want to create an HTML element with new properties or
a new HTML element altogether. You are not restricted to using only the existing Tag
Helpers in the ASP.NET Core application. You can create your own Tag Helper if the
existing Tag Helpers do not suit your needs. Let's create a simple Tag Helper to
create an e-mail link:

There are a couple of ways to create Tag Helpers to implement the ITagHelper
interface or inherit the TagHelper class. The TagHelper class has a Process
method that you can override to write your custom Tag Helpers. The TagHelper
class also has the TagHelperOutput parameter, which you can use to write and
generate the desired output HTML. So, it is preferable to create Tag Helpers by
inheriting from the TagHelper class.

Our objective is to write a custom e-mail Tag Helper so that when someone uses that
Tag Helper, which is <email mailTo="mugil@greatestretailstore.com">
</email>, it should be converted to the following line of code:

Drop us a mail

The following are the steps that need to be performed to create the custom Tag
Helper in the ASP.NET Core application.

Create a folder called TagHelper and add a new item named the
EmailTagHelper.cs file. By convention, all Tag Helpers class should end with
TagHelper, even though we can override this convention.

www.EBooksWorld.ir

Once you have created the file, you will need to override the Process method to
generate the desired HTML output:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Razor.TagHelpers;

namespace Chapter4.TagHelpers
{
 public class EmailTagHelper : TagHelper
 {
 public override void Process(TagHelperContext context,
TagHelperOutput output)
 {
 string emailTo=
context.AllAttributes["mailTo"].Value.ToString();
 output.TagName = "a";
 output.Attributes["href"] = "mailto:" + emailTo;
 output.Content.SetContent("Drop us a mail");
 }
 }
}

The parameters used in the preceding code are explained as follows:

The context parameter will give you all the information that you supply at Tag
Helper. For example, in the
<emailmailTo="mugil@greatestretailstore.com"></email> Tag Helper,
you can get the mailTo attribute and its associated value from the context
parameter. In the first line of the preceding Process method, we will get the

www.EBooksWorld.ir

mailTo attribute value and use that value to create an attribute in the generated
HTML (anchor tag).
The output parameter is of type TagHelperOutput, which is used to generate
the desired HTML output.
The output.Content.SetContent parameter will set the text that is to be
displayed for the anchor tag.

We have created the e-mail Tag Helper. Now, we have to make it available to our
Views so that we can make use of that Tag Helper in our Views. Edit
Views_ViewImports.cshtml to include the namespace of the TagHelpers and add
the associated TagHelpers. In the following _ViewImports.cshtml file, we have
added the content highlighted in bold:

@using Chapter4
@using Chapter4.Models
@using Chapter4.TagHelpers
@addTagHelper "*, Microsoft.AspNet.Mvc.TagHelpers"
@addTagHelper "*, Chapter4"

The "*" symbol in the following line tells the view engine to include all the
TagHelpers in the Chapter4 namespace:

@addTagHelper "*, Chapter4"

You can only specific TagHelpers, For example, the following line will include only
the EmailTagHelper so it is available for our Views:

@addTagHelper "Chapter4.TagHelpers.EmailTagHelper, Chapter4"

Let's create a simple action method in our Home Controller. In the view of the
associated action method, we will use the e-mail Tag Helper:

public IActionResult AboutUs()
{
 return View();
}

The following is the view of the preceding AboutUs action method:

<h3>About Us</h3>
We are one of the biggest electronics retail store serving millions
of people across the nation. blah.blah. blah

If you want to hear great offers from us
<email mailTo="mugil@greatestretailstore.com"></email>

When you run the application and access the

www.EBooksWorld.ir

http://localhost:50132/Home/AboutUs URL, you will see the following output:

Here, we created an anchor tag with the mailto attribute and the email value as
the href attribute value.

I have opened the Developer Tools window (Press F12 to do this and select the
DOM Explorer tab) to see the generated HTML.

www.EBooksWorld.ir

Summary
In this chapter, you learned what a View engine is and how to build a View using the
Razor view engine. We also discussed different programming constructs that you can
make use of in Razor to produce the desired HTML output. Then, you learned about
Layout and how to provide a consistent site structure across all of the pages in your
ASP.NET MVC application. Later, we discussed how to promote re-usability using
Partial Views with an example. Finally, you learned how to use Tag Helpers to
produce clean HTML.

www.EBooksWorld.ir

Chapter 5. Models
Data is the heart of every application. A user enters data into the application, edits
the entered data, and searches the data. We can even say that an application that we
build is just an interface for the operations that we perform on the application data.
So, it is absolutely necessary for any framework to provide a mechanism to handle
data operations easier and more manageable. Models in ASP.NET MVC are used to
represent the business domain data.

In this chapter, you'll be learning about the following topics:

Models and their purpose
Creating a simple model and using it in the controller and views of the
ASP.NET MVC application
Creating a model specific to a View model
Data flow in an ASP.NET MVC application in the context of models and
ViewModels

Purpose of the Entity Framework along with its features and benefits
Adding, updating, and deleting data using the Entity Framework
Using the Entity Framework in ASP.NET MVC applications

www.EBooksWorld.ir

Models
Models are simple POCO (Plain Old C# Objects) classes representing your
business domain data. For an e-commerce business, model classes would be
Product, Order, and Inventory. If you are building an application for a university,
model classes would be Student, Teacher, and Subject. Models represent the
business domain data in your application and they are not aware of the underlying
database that is being used in your application. In fact, you don't even need a
database to work with models.

They can represent the data stored in an XML file or CSV file or any other data in
your application. Having said that, these models could be used to interact with your
database (in most cases) but they don't have any dependency to the database.

The following steps describe how to create an ASP.NET Core application that uses
Models:

1. Make sure to create an ASP.NET 5 application with an empty template. Install
the ASP.NET Core NuGet package and configure this, as discussed in an earlier
chapter.

2. Create a Controllers folder and create a HomeController with a single
Index action method.

3. Create the following folder/files for the Views model:
Views: This folder is inside your project.
Views_ViewStart.cshtml: This identifies the name of the Layout file.
Views\Shared folder: This folder holds all the shared View components
for your application.
Shared_Layout.cshtml: This file identifies what your web application
structure should look like.
Views\Home folder: This folder contains all of the Views of your
HomeController.
Views\Home\Index.cshtml: This is the view corresponding to the Index
action method of HomeController.

Now, we have created an ASP.NET Core application with Controllers and Views.

Let us create a Models folder in our application; this folder will contain all of your
model files. In a real world application, this folder and the respective model files
would reside in separate projects. For the sake of simplicity, we are keeping the
Models folder and its files in the same project.

www.EBooksWorld.ir

Let us create a simple model class Product model, in the Models folder:

public class Product {
 public int ProductId { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
}

This Product model class is no different from any other C# class and contains a few
properties about the product.

Update the Index action method in HomeController to use the Product model, as
shown in the following code snippet. We are building the model data and passing the
model data to the View so that it can be shown to the users. However, it is NOT
recommended to build the Model data in the controller's action methods as it violates
the separation of concerns. For the sake of simplicity only, we are building the Model
data in an action method.

public IActionResult Index() {
 /* Build the products model. It is NOT RECOMMENDED to build
models in Controller action methods like this. In real world
appication, these models and the respective Data Access
Layer(DAL) would be in separate projects. We are creating it here

www.EBooksWorld.ir

to make things simpler to explain */
 List<Product> Products = new List<Product> {
 new Product {
 Name = "Mobile Phone",
 Price = 300
 },
 new Product {
 Name = "Laptop",
 Price = 1000
 },
 new Product {
 Name = "Tablet",
 Price = 600
 }
 };
 return View(Products);
}

Update the corresponding Index View method to use the Model data loop through
each product and show it as an unordered list item. The @model in the first line
represents the Model metadata; the type of data being passed to the View. The Model
in the for…each loop represents the actual data itself, a list of products in our case:

@model List<Chapter5.Models.Product>

 @foreach (var Product in Model) {
 @Product.Name
 }

When you run the application, you'll get the following output:

We have successfully created a Model and have used it in our Controller and View.

www.EBooksWorld.ir

Let us create a comparatively complex Model class, Order (Order.cs in the Models
folder), which contains a list of products and their total amount:

public class Order {
 public int OrderId { get; set; }
 public List<Product> Products { get; set; }
 public decimal Total { get; set; }
}

Now, we have to update the Index action method to use the Order model. Once we
build the list of products, we are assigning the products list to the Order property and
calculating the total cost of the order. These calculations would usually be done as
part of the business layer. Again, for the sake of simplicity, we are building the data
Model and calculations here in the action; this should never be the case in a real
world application.

The code highlighted in bold is the changes that we have made in the action method:

public IActionResult Index() {
 /* Build the products model. It is NOT RECOMMENDED to build
models in Controller action methods like this. In real world
appication, these models and the respective Data Access
Layer(DAL) would be in separate projects. We are creating it here
to make things simpler to explain */

www.EBooksWorld.ir

 List<Product> Products = new List<Product> {
 new Product {
 Name = "Mobile Phone",
 Price = 300
 },
 new Product {
 Name = "Laptop",
 Price = 1000
 },
 new Product {
 Name = "Tablet",
 Price = 600
 }
 };

 Order order = new Order();
 order.Products = Products;
 order.Total = Products.Sum(product => product.Price);

 return View(order);
}

The View is updated to accommodate the Model changes. Model metadata (@model)
is changed to indicate that the Order information is passed to the View instead of the
list of products.

Then, we are showing the list of products in table format. Please note that all of the
Model data (Order object and its properties, in this case) can be accessed through
the Model. For example, the Products class can be accessed through
Model.Products and the value of the Total can be obtained through Model.Total:

@model Chapter5.Models.Order

<table border="1">

 <tr>
 <th>Product Name</th>
 <th>Price</th>
 </tr>

 @foreach (var Product in Model.Products){
 <tr>
 <td>@Product.Name</td>
 <td>@Product.Price</td>
 </tr>
 }
 <tr>
 <td>Total</td>
 <td>@Model.Total</td>
 </tr>

www.EBooksWorld.ir

</table>

When you run the application, you'll see the following output:

www.EBooksWorld.ir

Models specific to a View component
There are scenarios where you might want to update only a few properties in a large
Model or you might want to create a new Model based on a few models. In such
scenarios, it is better to create a new Model specific to the View.

For example, let us assume that we are building a screen where you update the price
of the product. This simple screen may contain only three properties—product ID,
product name, and price of the product. But the product's Model may contain more
than 30 properties to hold all details of the product such as manufacturer, color, size,
and other properties. Instead of sending the complete Model with all the properties,
we can create a new Model specific to this view with only a few properties—ID,
Name, and Price.

www.EBooksWorld.ir

Note on ViewModels
The ViewModels are entities where when you update the Model, your View would
get updated automatically and vice versa. In many online articles and even in some
books, they are referring to ViewModels when they are actually trying to mean
Models specific to the View.

In ViewModels, binding is two ways—when you update either the Model or the
View, the other one would get updated automatically. Let us consider a simple
example; you have a form with various fields on the left-hand side and print preview
on the right side. In this case, whatever you type in real time in the form will be
reflected immediately on the right side. In such cases, you can use pure View models
when you type, your ViewModel would be updated and that ViewModel would be
consumed in the right-hand side print preview. These pure ViewModels are being
used in advanced JavaScript frameworks such as Knockout or AngularJS.

In Models specific to the View, we are binding in only one way from the Model to
the View. Here, we are sending a Model specific to the View instead of the generic
Model (which represents a business domain class).

However, in this book, we will be referring to Models specific to View as
ViewModel for brevity. Unless otherwise specified, you should read all ViewModels
as Models specific to View. So, I am making the same mistake made by other authors

.

www.EBooksWorld.ir

Data flow with respect to a Model
The following block diagram shows the data flow in an ASP.NET MVC application:

Data Source represents your application data. The application data could reside
anywhere—from full-fledged RDBMS such as SQL servers to simple Excel
spreadsheets, or anything in between.

Models represent the business domain data for your application and are independent
of the data source being used. The same model could be used with different data
sources.

We can use the Model as-is in our views to get data or to present it. But in some
views, you might not need all the properties of the model. So, instead of sending the
entire Model to the View, we create models specific to the View and use them in our
View. This makes things simpler.

The following is the high-level sequence of events that happens when you store or
retrieve a record in ASP.NET Core using the Model:

1. Users enter the data in a form (created using Views) in the application. The
fields in the form do not need to represent the complete model as we need only a
few properties in the Model.

2. The entered data is passed to the controller where Model binding happens.
Model binding is the process where the data entered in the View gets mapped to
the Model or ViewModel.

3. If the data is received in the ViewModel, then we would be converting the
ViewModel to the Model.

www.EBooksWorld.ir

4. Finally, the Model data is stored in the data source.

Till now, we have been handling only in-memory data in our application. In almost
all real world applications, some form of the database will be used for data storage,
access, and retrieval. In the next section, we will discuss the Entity Framework
(ORM framework), which makes data access simpler from a .NET application.

www.EBooksWorld.ir

Model binding
Model binding is the process of mapping the Model data coming from the View to the
ViewModel parameter of the action method in the Controller.

Let us consider a simple form with a couple of form fields—Name and EmailID. On
the submission of the form, these values would be mapped to the ViewModel object
of the action method of the Controller. Model binding takes care of this mapping. The
Model binder looks for a match in the form fields, query strings, and request
parameters.

In the preceding example, any class with these properties would be picked up by
ModelBinder without any issues.

As the following Person class contains the Name and EmailID properties, the model
binder would not complain about using this model for mapping the entered values in
the form:

public class Person {
 public string Name { get; set; }
 public string EmailID { get; set; }
}

The following code snippet shows how to use the Person class in the action method:

public ActionResult Add(Person p) {
 return View();
}

www.EBooksWorld.ir

The Entity Framework
The Entity Framework is the Object Relational Mapping (ORM) framework that
enables developers to work on domain-specific objects directly for data access
instead of working on database queries. This reduces a lot of the code complexity in
the data access layer in the application.

Before discussing the Entity Framework and its features, let us pause for a moment
and think about the steps that we follow when we try to save some information to the
database when using ADO.NET:

1. Construct the business domain object.
2. Create a connection to your database.
3. Open the connection.
4. Create a command object along with the command type.
5. Add the properties of your business domain object to the parameters of the

command object.
6. Execute the command that saves the data into the database.

We have to follow the previously mentioned six steps for common operations such as
saving a piece of data into the database.

If you are using an ORM framework such as the Entity Framework, you just need
three steps:

1. Construct the business domain object.
2. Create the DbContext class for your business domain object. The instance of

the DbContext class represents the session with the database.
3. Save it to the database using the instance of the DBContext class.

You might wonder how that is possible.

As a matter of fact, in the background, the Entity Framework creates a connection to
the database and executes the query to save the business domain object to the
database. To make it simple, the Entity Framework writes all the data access code for
you so that you can concentrate on achieving the business functionality of the
application rather than writing the database layer code.

www.EBooksWorld.ir

The Entity Framework is independent of
ASP.NET MVC
As discussed earlier, the Entity Framework is an ORM framework for accessing data
and is independent of ASP.NET MVC. The Entity Framework could be used in
Windows Communication Foundation (WCF) services, Web API services, and
even in console applications. You could use the Entity Framework in any type of
application and make use of it to access data using objects. The concepts and the
functionalities of the Entity Framework remain the same, irrespective of the type of
application that you use it with.

Now, we are going to use the Entity Framework with the console application. This
allows us to concentrate on the task at hand and demonstrate the functionalities of the
Entity Framework instead of working on the boilerplate code of the ASP.NET Core
application. In a later part of this chapter, we will integrate the Entity Framework
with the ASP.NET Core application.

The latest version of the Entity Framework for the SQL server is 7.0.0 and it is still
in beta at the time of writing this book. EF7 (Entity Framework 7) brings significant
changes when compared to its previous version (Entity Framework 6). However,
EF7 is the recommended version when building ASP.NET 5 applications and hence
we will be using this version in this book.

Note

We need a database to explain many of the features of the Entity Framework. Please
install SQL Server 2014 Express on your PC before continuing further. Step by step
instructions for installing SQL Server 2014 Express and SQL Server Management
Studio is given in Appendix A.

www.EBooksWorld.ir

Creating console applications with the Entity
Framework
Follow these steps to create a simple console application:

1. Select File | New Project and select Console Application.
2. Name the project and click on OK.

www.EBooksWorld.ir

Installing the Entity Framework 7 NuGet
package
There are two ways to install any NuGet package in your application:

Using the NuGet Package Manager
Using Package Manager Console

Using the NuGet Package Manager

People who prefer graphical interfaces can use this option:

1. Right-click on the console project and select Manage NuGet Packages from
the context menu:

www.EBooksWorld.ir

2. Search for EntityFramework.MicrosoftSqlServer in the NuGet package and
make sure the Include prerelease checkbox is checked. Click on Install once
you select EntityFramework.MicrosoftSqlServer and select Latest pre-
release 7.0.0-rc1-final (at the time of writing this book). You can select any
latest version of Entity Framework 7:

3. Once you click on Install, the NuGet package manager will ask you to review
the changes. Click on OK:

www.EBooksWorld.ir

4. Click on I Accept in the License Acceptance window:

www.EBooksWorld.ir

5. Once you click on I Accept, it will install the Entity Framework with all its
dependencies. In the Output window, you will get the Finished message once
the installation is complete:

Using the Package Manager Console

To install the NuGet package using the Package Manager Console, follow these steps:

1. Open the Package Manager Console window by selecting the menu option
View | Other Windows | Package Manager Console.

www.EBooksWorld.ir

2. Type Install-Package EntityFramework.MicrosoftSqlServer - Pre in
the Package Manager Console window as shown in the following screenshot:

3. Once the installation is complete, a message, Successfully installed
'EntityFramework.MicrosoftSqlServer 7.0.0-rc1-final', will be shown:

www.EBooksWorld.ir

www.EBooksWorld.ir

Installing Entity Framework commands
We need to install the Entity Framework commands package in order to perform
migration activities. Migration includes the creation of a database and its associated
tables. Any changes in the schema will also be taken care of by migration:

As discussed earlier, we need to follow three steps in order to interact with the
database when we are using the Entity Framework:

1. Create the Model classes.
2. Create the DbContext class for your business domain object. The instance of

the DbContext class represents the session with the database.
3. Construct the business domain object and save it to the database using the

instance of the DBContext class.

Let us discuss each of the preceding steps in details and try to save an object to the
database.

Creating Model classes

The Model classes are simple POCO objects, which can be used with the Entity
Framework.

Let us create a POCO class for our business domain object, the Employee class in
our case. I have created a new file named Employee.cs in our console application
with the following content. This Employee class contains a few properties of an
employee and has no special properties or fields to make it work with the Entity
Framework.

Let's take a look at the following code snippet:

public class Employee {
 public int EmployeeId { get; set; }

www.EBooksWorld.ir

 public string Name { get; set; }
 public decimal Salary { get; set; }
 public string Designation { get; set; }
}

By convention, if the property name is Id or ClassName+Id, it will be considered as
a primary key by Entity Framework while creating the database table.

Properties with string data types will be created as fields of the type
nvarchar(max). However, we can override this behavior by using annotations,
which we will be discussed later.

Creating the DbContext class

The instance of the DbContext class represents the session to the database and this
DbContext class does most of the heavy lifting of your data access for your
application.

Create a new class by the named EmployeeDbContext with the following content:

using Microsoft.Data.Entity;
using System.Configuration;

namespace ConsoleEF7 {
 public class EmployeeDbContext : DbContext{
 public DbSet<Employee> Employees {get; set;}

 protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder) {string connectionString =
ConfigurationManager.ConnectionStrings
["SqlServerExpress"].ConnectionString;
 optionsBuilder.UseSqlServer(connectionString);
 base.OnConfiguring(optionsBuilder);
 }
 }
}

Configure it using App.Config:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0"
 sku=".NETFramework,Version=v4.6.1" />
 </startup>
 <connectionStrings>
 <add name="SqlServerExpress" connectionString="Data Source=
MUGIL-PC\SQLEXPRESS;Initial Catalog=EF7Console;Integrated
Security=True"/>

www.EBooksWorld.ir

 </connectionStrings>
</configuration>

There are a few things to be noted in the preceding code snippet:

Include the Microsoft.Data.Entity namespace as the DbContext class
available in this namespace. Our connection string is available in the
App.Config file. In order to read the contents of the App.Config file, we are
including the ConfigurationManager class in System.Configuration.
In order to use the DbContext API, a class has to be created which inherits from
the DbContext class so that we can access methods of the DbContext API. We
have created the EmployeeDbContext class which was inherited from
DbContext class.
DbSet is a class which allows operations of the Entity Framework to be
performed for a given Entity type. We need to create the DbSet object for each
of the Entity types that we use in our application. In this example, we are using
only one DbSet object as we are working with the Employee class.

www.EBooksWorld.ir

Create a migration
Migration is the process of recording all the changes of your database. Add-
Migration is the Entity Framework command for adding migration:

1. Once you add the migration, you can revoke the changes by executing the
 Remove-Migration Entity Framework command.

This is what the migrations directory looks like:

www.EBooksWorld.ir

2. Update the database by issuing the Entity Framework command Update-
Database , which updates the database tables as per the information available
in the migration. As we have installed the EntityFramework.Commands
package earlier, these commands will be available for the application:

3. Once you update the database, you can see the changes in the database by
connecting to SQL Server Management Studio:

4. Perform the database operation to save the business domain object in the
database. You can create the database manually or, if the database is not

www.EBooksWorld.ir

available, it will create one for you.

The Main method is updated with the following code:

class Program {
 static void Main(string[] args) {
 AddEmployee();
 }

 static void AddEmployee() {
 using (var db = new EmployeeDbContext()) {
 Employee employee= new Employee {
 Designation = "Software Engineer",
 Name = "Scott",
 Salary = 5600
 };

 db.Employees.Add(employee);
 int recordsInserted = db.SaveChanges();
 Console.WriteLine("Number of records inserted:" +
recordsInserted);
 Console.ReadLine();
 }
 }
}

Firstly, we are constructing the business domain object. Then, we are adding the
constructed Employee object to the employee's DbSet of the DbContext class.
Finally, we are calling the SaveChanges method DbContext API, which will save
all the pending changes to the database.

You might be wondering how it can save it to the database when we have not even
given the connection string.

Let us discuss what happens behind the scenes when we run the program:

When you make changes to any of the DbSet collection, the Entity Framework
checks whether the database exists. If it does not exist, it creates a new one
using the pattern <Namespace of DbContextName>. In our case, a database
called by EF6.EmployeeDbContext would be created.
Then, it creates database tables for the entities declared in DbSet. By
convention, the Entity Framework uses the pluralized form of Entity for the table
names. As we have declared DbSet for the Employee entity, the Entity
Framework creates a pluralized form of Employee and creates the table
named Employees.

The creation of the database and tables happens when the following code is

www.EBooksWorld.ir

executed:

db.Employees.Add(employee);

When SaveChanges method is executed, the data in the Employee object will get
saved to the database and returns the number of records affected. In the preceding
case, it returns 1.

When you run the application again, the first two steps mentioned previously will be
skipped as the database and table will have already been created.

When you query the database, you can see the newly inserted record:

www.EBooksWorld.ir

How the SaveChanges method works
When we are making changes, the Entity Framework tracks the state of each of the
objects and executes the appropriate query when SaveChanges method is called.

For example, when we add an Employee object to the employees' collection
(DbSet), this object is being tracked as Entity in the Added state. When
SaveChanges is called, the Entity Framework creates an insert query for the same
and executes it. The same is the case with updating and deleting the object. The Entity
Framework sets the Entity state of the respective objects to Modified and
Deleted. When SaveChanges is called, it creates and executes the Update and
Delete queries.

The preceding figure explains how the SaveChanges method works at a high-level
for different types of change. We have a couple of POCO objects (Object 1 and
Object 2), which have been added to the employees' DbSet object. Let us assume
Object 3 and Object 4 have been modified and objects Object 5 and Object 6 are
in Deleted state. When you call SaveChanges method, it creates three sets of
queries. The first set of queries is for the addition of objects, resulting in insert
queries getting executed against the database. In the second set of queries, Update
queries are created and executed for the objects whose state is modified. Finally,
Delete queries are executed for the objects for all the Deleted state objects.

www.EBooksWorld.ir

Updating the record
Let us try to update the salary of an inserted employee record using the Entity
Framework:

static void UpdateSalary() {
 using (var db = new EmployeeDbContext()){
 Employee employee = db.Employees.Where(emp => emp.EmployeeId
== 1).FirstOrDefault();
 if(employee!=null){
 employee.Salary = 6500;
 int recordsUpdated = db.SaveChanges();
 Console.WriteLine("Records updated:" + recordsUpdated);
 Console.ReadLine();
 }
 }
}

In the preceding method, we find the employee with EmployeeId = 1. Then, we
update the salary of the employee to 6500 and save the employee object to the
database. Please note that, in the preceding method, we interact with the database a
couple of times—once to find the correct employee record (read operation) and
again to update the record (update operation).

static void Main(string[] args){
 UpdateSalary();
}

The Main method is updated to call the UpdateSalary method. When you query the
database, you should see the record with the updated information:

www.EBooksWorld.ir

Deleting the record
Deleting the record is a bit tricky as it involves setting the state directly. In the
following method, firstly we get the object and setting the state of the object to
Deleted. Then calling the SaveChanges method will generate the delete query for
the object and execute it, which in turn will eventually delete the record in the
database:

static void DeleteEmployee() {
 using (var db = new EmployeeDbContext()) {
 Employee employeeToBeDeleted = db.Employees.Where(emp =>
emp.EmployeeId == 1).FirstOrDefault();
 if (employeeToBeDeleted != null) {
 db.Entry(employeeToBeDeleted).State =
Microsoft.Data.Entity.EntityState.Deleted;
 int recordsDeleted = db.SaveChanges();
 Console.WriteLine("Number of records deleted:" +
recordsDeleted);
 Console.ReadLine();
 }
 }
}

static void Main(string[] args) {
 DeleteEmployee();
}

www.EBooksWorld.ir

Using the Entity Framework in
ASP.NET MVC applications
There is not much difference between using the Entity Framework in a console
application and ASP.NET MVC application. Now, we are going to build a simple
application with a single screen as shown in the following image. In this screen, we
will have a form where the user will enter the information about the employee; once
the user submits the form, the information will be saved to the database and reflected
in the following screenshots:

We can create a simple Model for the employee. We need to build a ViewModel for
this View, as we need to get the employee information from the user and we need to
show a list of employees as well on the same screen.

Let us create an ASP.NET Core application, adding the employee and showing the
list of employees. The following is the step-by-step instructions to create the
application for the previously mentioned objective:

www.EBooksWorld.ir

1. Create an ASP.NET Core project in Visual Studio by selecting an empty
ASP.NET 5 application.

2. Install the ASP.NET Core NuGet package.
3. Install the Entity Framework 7 NuGet package and ef EntityFramework

commands (for database migration) as explained earlier in this chapter.
4. Add config.json to declare the connection string of the database:

{
 "Data": {
 "DefaultConnection": {
 "ConnectionString": "Data Source=MUGIL-
PC\\SQLEXPRESS;Initial Catalog=Validation;Integrated
Security=True"
 }
 }
}

5. Update project.json to include EntityFramework 7 and EntityFramework
commands. The changes are highlighted in bold:

{
 "version": "1.0.0-*",
 "compilationOptions":{
 "emitEntryPoint": true
 },

 "dependencies": {
 "Microsoft.AspNet.IISPlatformHandler": "1.0.0-rc1-
final",
 "Microsoft.AspNet.Mvc": "6.0.0-rc1-final",
 "Microsoft.AspNet.Server.Kestrel": "1.0.0-rc1-final",
 "EntityFramework.MicrosoftSqlServer": "7.0.0-rc1-
final",
 "EntityFramework.Commands": "7.0.0-rc1-final"
 },

 "commands": {
 "web": "Microsoft.AspNet.Server.Kestrel",
 "ef": "EntityFramework.Commands"
 },

 "frameworks": {
 "dnx451": { },
 "dnxcore50": { }
 },

 "exclude": [
 "wwwroot",
 "node_modules"
],
 "publishExclude": [

www.EBooksWorld.ir

 "**.user",
 "**.vspscc"
]
}

6. Configure MVC in the Startup class (Startup.cs):
In the constructor, we are building the configuration by reading the
config.json file
Add the MVC service and the Entity Framework service to the services in
the ConfigureServices method
Configure the MVC routing in the Configure method:

using Microsoft.AspNet.Builder;
using Microsoft.AspNet.Hosting;
using Microsoft.AspNet.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Validation.Models;
using Microsoft.Data.Entity;
using Microsoft.Extensions.PlatformAbstractions;

namespace Validation {
 public class Startup {
 public IConfigurationRoot Configuration { get; set; }

public Startup(IHostingEnvironment env,
IApplicationEnvironment appEnv) {
 var builder = new ConfigurationBuilder()
 .AddJsonFile("config.json")
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

// This method gets called by the runtime. Use this method
to add services to the container.
// For more information on how to configure your
application, visit http
://go.microsoft.com/fwlink/?LinkID=398940

public void ConfigureServices(IServiceCollection services)
{
services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<EmployeeDbContext>(options => {
 options.UseSqlServer(Configuration.Get<string>
("Data:DefaultConnection:ConnectionString"));
 });
 services.AddMvc();
 }
// This method gets called by the runtime. Use this method
to configure the HTTP request pipeline.

www.EBooksWorld.ir

public void Configure(IApplicationBuilder app) {
 app.UseIISPlatformHandler();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Employee}/ {action=Index}/{id?}");
 });
 }
// Entry point for the application.
 public static void Main(string[] args) =>
WebApplication.Run<Startup>(args);
 }
 }

7. Create Models and DbContext classes.
8. Create the Models folder and add the Employee model class and

EmployeeDbContext class.
9. Create the Employee Model class (Employee.cs in the Models folder):

public class Employee {
 public int EmployeeId { get; set; }
 public string Name { get; set; }
 public string Designation { get; set; }
 public decimal Salary { get; set; }
}

10. Create EmployeeDbContext (EmployeeDbContext.cs in the Models folder):

using Microsoft.Data.Entity;
using Microsoft.Extensions.Configuration;

namespace Validation.Models {
 public class EmployeeDbContext : DbContext {

 public IConfigurationRoot Configuration { get; set; }

 public DbSet<Employee> Employees { get; set; }

 public EmployeeDbContext() {
 var builder = new ConfigurationBuilder()
 .AddJsonFile("config.json")
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 protected override void OnConfiguring
(DbContextOptionsBuilder optionsBuilder) {
optionsBuilder.UseSqlServer (Configuration.Get<string>
("Data:DefaultConnection:ConnectionString"));
 base.OnConfiguring(optionsBuilder);
 }

www.EBooksWorld.ir

 }
}

11. Create ViewModels:
As we are going to show a list of employees and the form to add
employees in the same screen, we are going to build a Model specific to
this View. This model will contain information about the list of employees
and the employee to be added.

12. Create the ViewModels folder and add the EmployeeAddViewModel:

using MVCEF7.Models;

namespace MVCEF7.ViewModels {
 public class EmployeeAddViewModel {
 public List<Employee> EmployeesList { get; set; }
 public Employee NewEmployee { get; set; }
 }
}

This ViewModel has a couple of properties. EmployeesList and
NewEmployee. EmployeesList will contain the list of employees. This list
would be fetched from the database. NewEmployee will hold the employee
information entered by the user.

13. Create Controllers to handle the incoming requests:
Create a Controllers folder and add the EmployeeController class
with a couple of action methods-one for GET and another for POST. The
Index action method corresponding to the GET action method will be
called when you access the URL (http://localhost/Employee/Index)
or when you run the application. The POST Index action method will be
called when you submit the form as following:

public IActionResult Index() {
 EmployeeAddViewModel employeeAddViewModel = new
EmployeeAddViewModel();
 using (var db = new EmployeeDbContext()) {
 employeeAddViewModel.EmployeesList =
db.Employees.ToList();
 employeeAddViewModel.NewEmployee = new Employee();

 }
 return View(employeeAddViewModel);
}

In the preceding GET Index action method, we are creating the ViewModel
object and passing it to the View.
The following code uses POST Index action method:

[HttpPost]
public IActionResult Index(EmployeeAddViewModel

www.EBooksWorld.ir

employeeAddViewModel) {

 using (var db = new EmployeeDbContext()) {
 db.Employees.Add(employeeAddViewModel.NewEmployee);
 db.SaveChanges();
 //Redirect to get Index GET method
 return RedirectToAction("Index");
 }

}

We get the NewEmployee property in the ViewModel, which contains the
information on the user. Save it to the database. Once we save the
employee information to the database and we redirect the control to the
GET Index action method, the GET Index action method will again show
the form to enter the employee information and the list of employees in
table format.

14. Add the Views folder:
1. Create Views_ViewStart.cshtml with the following content:

@{
 Layout = "_Layout";
}

2. Create Views\Shared_Layout.cshtml with the following content:

<!DOCTYPE html>

<html>
 <head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 </head>
 <body>
 <div>
 @RenderBody()
 </div>
 </body>
</html>

3. Create Views\Employee\Index.cshtml with the following content:

@model MVCEF.ViewModels.EmployeeAddViewModel
@*
//For more information on enabling MVC for empty projects,
visit http://go.microsoft.com/fwlink/?LinkID=397860
*@
@{
}

<div>

www.EBooksWorld.ir

 @using (Html.BeginForm("Index", "Employee",
FormMethod.Post)) {
 <table>
 <tr>
 <td>@Html.LabelFor(Model =>
Model.NewEmployee.Name)</td>
 <td>@Html.TextBoxFor(Model =>
Model.NewEmployee.Name)</td>
 </tr>
 <tr>
 <td>@Html.LabelFor(Model =>
Model.NewEmployee.Designation)</td>
 <td>@Html.TextBoxFor(Model =>
Model.NewEmployee.Designation)</td>
 </tr>
 <tr>
 <td>@Html.LabelFor(Model =>
Model.NewEmployee.Salary)</td>
 <td>@Html.TextBoxFor(Model =>
Model.NewEmployee.Salary)</td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit"
value="Submit"/>
 </td>
 </tr>
 </table>

 }
</div>

 List of employees:

<div>
 <table border="1">
 <tr>
 <th> ID </th>
 <th> Name </th>
 <th> Designation </th>
 <th> Salary </th>
 </tr>
 @foreach(var employee in Model.EmployeesList) {
 <tr>
 <td>@employee.EmployeeId</td>
 <td>@employee.Name</td>
 <td>@employee.Designation</td>
 <td>@employee.Salary</td>
 </tr>
 }
 </table>
</div>

www.EBooksWorld.ir

In the preceding Index view, we create a form where we get the employee
information from the user in the topmost div. In the next div, we show the list of
employees in a tabular format.

Once we create all the folders and the files, the project structure should look like the
following:

www.EBooksWorld.ir

Database migration
We have created the business entity—the Employee class. Now, we can proceed with
the migration. Migration is a two-step process: in the first step, we create the
migration files. This can be done by executing the following command from the
command prompt from the context of the project:

dnx ef migrations add InitialMigration

This command will create the migration files in your project, as shown in the
following screenshot:

www.EBooksWorld.ir

Then execute the following command to create the database:

www.EBooksWorld.ir

This command will read the migration files created in the previous step and create
the database along with the associated tables:

www.EBooksWorld.ir

Run the application. You will get the following screen, where the user can enter the
employee information in the form. As we are using the strongly typed model in our
view, it takes the default values for all the properties. The Name and Designation
are properties of type string and the default values are empty string for these
fields, Salary is of type decimal and the default value for decimal is 0 hence 0 is
shown in the form when it is loaded for the Salary field.

As there are no records, we are showing 0 records in the List of employees table:

When you enter the information in the form and submit it, the information gets saved
in the database and all the database records in the Employees table will be presented
as follows:

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In this chapter, we learned what a Model is and how it fits in the ASP.NET MVC
application. Then, we created a simple Model, built model data in a Controller,
passed the Model to the View, and shown the data using the View. We have learned
about the Models specific to a View and have discussed the flow of the data with
respect to Models. We learned about the Entity Framework, an ORM framework from
Microsoft, and how it simplifies database access from your .NET application. We
have created simple console application where we have inserted, updated, and
deleted the records. Finally, we have built an ASP.NET Core application that uses
Model, ViewModel, and Entity Framework.

www.EBooksWorld.ir

Chapter 6. Validation
We can never rely on the data entered by users. Sometimes they might be ignorant
about the application and thus they may be entering incorrect data unknowingly. At
other times, some malign users may want to corrupt the application by entering
inappropriate data into it. In either case, we need to validate the input data before
storing the data for further processing.

In this chapter, you'll be learning about the following topics:

Different types of validation
Server-side validation with an example
Client-side validation with an example
Unobtrusive JavaScript validation using jQuery unobtrusive libraries, where we
don't have to write separate code for validation

In an ideal case, users will enter valid data in a proper format in your application.
But, as you might realize, the real world is not so ideal. Users will enter incorrect
data in your application. As a developer, it is the responsibility of us to validate the
user input in our application. If the entered input is not valid, you need to inform the
user, saying what has gone wrong, so that the user can correct the input data and
submit the form again.

Validation can be done on the client-side or the server-side or at both ends. If the
validation is done before sending the data to the server, it is called client-side
validation. For example, if the user does not enter any data in a mandatory field, we
can validate (by finding the data that is not entered) the form, at the client-side itself.
There is no need to send the form data to the server. JavaScript is the most commonly
used language being used for client-side validation.

If the validation is done at the server-side (sending the form data to the server), it is

www.EBooksWorld.ir

called server-side validation. For instance, you might want to validate data entered
by the user against the data in the database. In this case, it is preferable to do server-
side validation as we cannot have all the data in the database at the client-side.

www.EBooksWorld.ir

Client-side and server-side validation
In the real world, it's not a case of either server-side or client-side validation. We
can have both types of validation at the same time. In fact, it is recommended to
validate the data at both ends to avoid unnecessary processing.

The preceding figure shows the validation is being performed at both the client-side
and the server-side. If the data is not entered into the required field, we can catch that
issue at the client-side itself. There is no need to send the data to the server to finally
find out that there is no data entered. Once all the required data is entered, the data is
sent back to the server to validate the entered data based on some business logic. If
the validation fails, the form data is sent again to the browser with the error message
so that the user can send the data again.

We have covered enough theory about the need for validation and the types of
validations typically used in the application. Let us get our hands dirty by adding
validation to the application that we built in the previous chapter.

The following screenshot is the form that we have built in the previous chapter. There
is nothing fancy in this form—just three fields. When a user enters the data in the
form, the data is stored in the database and the entire employee information is fetched
back and shown in a tabular format.

www.EBooksWorld.ir

In the existing application that we have built, we do not show any message to the user
even when the user does not enter any information in any of the fields and submits it.
Instead, we silently store the default values for the fields (empty values for string
types and 0.00 for decimal types) as shown in the following screenshot:

www.EBooksWorld.ir

But this should not be the case. We should inform the user saying that the data entered
is not valid and ask the user to correct the input data.

www.EBooksWorld.ir

Server-side validation
Let us continue with the application that we built in the previous chapter. To do
server-side validation, we need to do the following:

1. Add Data Annotation attributes to the ViewModels model class. The input data
is validated against this metadata and the model state is updated automatically.

2. Update the view method to display the validation message for each of the fields.
The span tag helper with the asp-validation-for attribute will be used to
display the validation error message.

3. Update the controller action method to verify the model state. If the model state
is valid, we insert the data into the database. Otherwise, the View model is
updated and the view method is rendered again with the validation error
message so that the user can update with valid input data and submit the form
again.

www.EBooksWorld.ir

Updating View models with the Data
Annotation attribute
The Data Annotation attributes defines the validation rules for the properties of the
Model/ViewModel. If the input data does not match with the attribute definition in the
model, the validation will fail, which in turn makes the associated model state
invalid.

There are several Data Annotation attributes available to validate the data. The
following are the most commonly used Data Annotations attributes:

Required: This attribute indicates the property is required.
Range: This attribute defines the minimum and maximum constraints.
MinLength: This defines the minimum length a property must have in order for
the validation to succeed.
MaxLength: As the name implies, this attribute defines the maximum length of
the property. If the length of the property value exceeds the maximum length, the
validation would fail.
RegularExpression: We can use a regular expression for data validation if we
use this attribute.

As Data Annotation attributes are available in the
System.ComponentModel.DataAnnotations namespace, we need to include this
namespace. The following is the updated View model code:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Threading.Tasks;
using Validation.Models;

namespace Validation.ViewModels
{
 public class EmployeeAddViewModel
 {
 public List<Employee> EmployeesList { get; set; }
 [Required(ErrorMessage ="Employee Name is required")]
 public string Name { get; set; }

 [Required(ErrorMessage ="Employee Designation is
required")]
 [MinLength(5, ErrorMessage = "Minimum length of designation
should be 5 characters")]
 public string Designation { get; set; }

www.EBooksWorld.ir

 [Required]
 [Range(1000,9999.99)]
 public decimal Salary { get; set; }
 }
}

We have added Data Annotation attributes for all the three properties—Name,
Designation, and Salary.

The ErrorMessage attribute displays a message to be displayed when the validation
fails. If there is a failure of validation and if there is no ErrorMessage mentioned,
the default error message will be displayed.

www.EBooksWorld.ir

Updating the View model to display the
validation error message
For each of the fields, we have added a span tag where the error message is
displayed in a red color when the validation fails. When the validation succeeds,
there will be no error message displayed. The attribute value of asp-validation-
for represents the field name for which the validation error message has to be
displayed. For example, we have used the span tag with the asp-validation-for
attribute and with the value Name, which tells ASP.NET MVC to display the
validation error message for the Name field:

<form asp-controller="Employee" asp-action="Index">
 <table>
 <tr>
 <td><label asp-for="Name"></label></td>
 <td><input asp-for="Name" /></td>
 <td><span asp-validation-for="Name"
style="color:red"></td>
 </tr>
 <tr>
 <td><label asp-for="Designation"></label> </td>
 <td><input asp-for="Designation" /></td>
 <td><span asp-validation-for="Designation"
style="color:red"> </td>
 </tr>
 <tr>
 <td><label asp-for="Salary"></label></td>
 <td><input asp-for="Salary"></td>
 <td> <span asp-validation-for="Salary"
style="color:red"> </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit"
id="submitbutton" value="Submit" /></td>
 </tr>
 </table>
 </form>

www.EBooksWorld.ir

Updating the controller action method to verify
the model state
The model state is automatically updated based on the Data Annotation attribute
specified on our View model and the input data. We are verifying whether the model
state is valid in the following Index method, which is a POST action method. If the
model state is valid (when the validation succeeds), we save the entered data to the
database. If the validation fails, then the ModelState is set to invalid
automatically. Then, we would populate the ViewModel with the entered data and
render the View method again so that the user can correct the input data and re-submit
the data:

[HttpPost]
 public IActionResult Index(EmployeeAddViewModel
employeeAddViewModel)
{
 if (ModelState.IsValid)
 {
 using (var db = new EmployeeDbContext())
 {
 Employee newEmployee = new Employee
 {
 Name = employeeAddViewModel.Name,
 Designation = employeeAddViewModel.Designation,
 Salary = employeeAddViewModel.Salary
 };
 db.Employees.Add(newEmployee);
 db.SaveChanges();
 //Redirect to get Index GET method
 return RedirectToAction("Index");
 }
 }
 using (var db = new EmployeeDbContext())
 {
 employeeAddViewModel.EmployeesList =
db.Employees.ToList();
 }
 return View(employeeAddViewModel);
}

When you run the application after making aforementioned changes and submit the
form without entering the values, error messages will be displayed beside the fields
as shown in the following screenshot. Please note that, even in the case of a
validation error, we display the employees' data in the following table, which is
achieved by using the code block in the previous code snippet.

www.EBooksWorld.ir

There are a few things to be noted in the previous validation and its error message:

If the validation fails, error messages are displayed as expected.
If there is more than one validation for a field, it will display one error message
at a time. For example, we have a couple of validations for Designation field—
the Required and MinLength attributes. If there is no data entered for the field,
only the required field error message will be displayed. Only when the required
field error is resolved (by entering some characters in the field), the second
validation error message will be displayed.
If no error message is available and if the validation fails, the default error
message is displayed. We have not given any error message for the Salary field.
So, when the validation fails for that field, ASP.NET MVC displays the default
error message based on the field name and the type of validation failure.

www.EBooksWorld.ir

The preceding figure depicts the high-level sequence of events in server-side
validation and is described as follows:

1. The user enters the invalid data.
2. Based on the Data Annotations attribute in the View model, the model state is

updated automatically. This happens during the model binding process where
the data in the view method is mapped to the data in the model or View model.

3. In the controller's action method, we are verifying the model state.
4. If the model state is valid, we are saving the entered data to the database.
5. If the model state is not valid, we are rending the View model again with the

validation error message so that the user can correct the input data and submit
the form again with the valid input data.

www.EBooksWorld.ir

Client-side validation
There are scenarios where we don't need to go to the server to validate the input
data. In the preceding example of the server-side validation, we do not need to go to
the server to verify whether the user has entered the data for the Name field. We can
validate at the client-side itself. This prevents round-trips to the server and reduces
the server load.

We are going to use JavaScript to validate the data from the client-side. JavaScript is
a high-level, interpreted language which is primarily used in client-side
programming.

Note

These days, JavaScript is also being used at the server-side as part of Node.js.

We are going to make a couple of changes in our View model (Index.cshtml file) to
validate the form at the client-side:

1. Changes in the form: add the id attribute to all the span tags so that we can
access this HTML element to display the HTML error message. On submission
of the form, call a JavaScript function to validate the input data.

2. Add the script HTML element and create a JavaScript function to validate the
input data.

In the following code, we are calling the validateForm JavaScript function on
submission of the form. If the validateForm function returns true, the data will be
sent to the server. Otherwise, the data will not be sent. We have added the id
attribute for all the span tags so that we can identify the span tags and display the
validation error messages over there:

<form asp-controller="Employee" asp-action="Index" onsubmit="return
validateForm()">
 <table>
 <tr>
 <td><label asp-for="Name"></label></td>
 <td><input asp-for="Name" /></td>
 <td><span id="validationName" asp-validation-
for="Name" style="color:red"></td>
 </tr>
 <tr>
 <td><label asp-for="Designation"></label> </td>
 <td><input asp-for="Designation" /></td>
 <td><span id="validationDesignation" asp-
validation-for="Designation" style="color:red"> </td>

www.EBooksWorld.ir

 </tr>
 <tr>
 <td><label asp-for="Salary"></label></td>
 <td><input asp-for="Salary"></td>
 <td> <span id="validationSalary" asp-validation-
for="Salary" style="color:red"> </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit"
id="submitbutton" value="Submit" /></td>
 </tr>
 </table>
</form>

We have added the JavaScript function to validate all three fields. We get the values
of all the three fields and we store them in separate variables. Then we verify
whether the value of each of the variables is null or empty. If the value is empty, we
get the span element for the respective field and set the text context with the
validation error message:

<script type="text/javascript">
 function validateForm() {
 var isValidForm = true;
 var nameValue = document.getElementById("Name").value;
 var designationValue =
document.getElementById("Designation").value;
 var salaryValue =
document.getElementById("Salary").value;

 //Validate the name field
 if (nameValue == null || nameValue == "") {

document.getElementById("validationName").textContent = "Employee
Name is required - from client side";
 isValidForm = false;
 }

 //validate the designation field
 if (designationValue == null || designationValue == "")
{

document.getElementById("validationDesignation").textContent =
"Employee Designation is required - from client side";
 isValidForm = false;
 }

 //validate the salary field - if it is empty
 if (salaryValue == null || salaryValue == "") {

document.getElementById("validationSalary").textContent = "Employee
Salary is required - from client side";

www.EBooksWorld.ir

 isValidForm = false;
 }else if (Number(salaryValue) == NaN ||
Number(salaryValue)<=0.0) {

document.getElementById("validationSalary").textContent = "Please
enter valid number for salary field - from client side";
 isValidForm = false;
 }

 return isValidForm;

 }

</script>

When you run the application and submit the form without entering the data, you'll get
the error message generated from the client-side itself without ever going to the
server.

In real-world applications, we would not be hand coding the validation code at the
JavaScript. Instead, most applications use unobtrusive validation, where we do not
write JavaScript code for validating each of the fields. Simply adding the respective
JavaScript libraries will do.

You might wonder how the fields get validated without ever writing the code. The
magic lies in the data- attributes added to the input HTML elements based on the

www.EBooksWorld.ir

Data Annotation attributes. This jQuery unobtrusive library gets a list of fields for
which data- attributes are added and it gets validated.

Run the application and press Ctrl + U to see the source code. The source code will
look something like the following:

Different attributes will be added to different kinds of Data Annotation attributes. For
the fields to be validated, the data-val attribute would be set to true. For the
properties which are marked as required in the View model, the data-val-
required attribute will have the value of the error message of the associated
property.

www.EBooksWorld.ir

Implementation
There will be a layout file (_Layout.cshtml) to define the layout structure of your
web application. As JavaScript libraries are going to be used in all the pages, this is
the right place to add common functionalities such as unobtrusive validation. Just add
the JavaScript libraries (highlighted in bold) to the layout file (_Layout.cshtml) so
that they will be available for all the View files:

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>

 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-
2.2.3.js"></script>
 <script
src="https://ajax.aspnetcdn.com/ajax/jquery.validate/1.14.0/jquery.
validate.min.js"></script>
 <script
src="https://ajax.aspnetcdn.com/ajax/mvc/5.2.3/jquery.validate.unob
trusive.min.js"></script>
</body>
</html>

There is no change to the View model except for the removal of the JavaScript
function we wrote earlier for validating the fields. The complete code for the view is
as following:

@model Validation.ViewModels.EmployeeAddViewModel

<div>

 <form asp-controller="Employee" asp-action="Index"
method="post" role="form">
 <table>
 <tr>
 <td><label asp-for="Name"></label></td>
 <td><input asp-for="Name" /></td>
 <td><span id="validationName" asp-validation-
for="Name" style="color:red"></td>
 </tr>
 <tr>

www.EBooksWorld.ir

 <td><label asp-for="Designation"></label> </td>
 <td><input asp-for="Designation" /></td>
 <td><span id="validationDesignation" asp-
validation-for="Designation" style="color:red"> </td>
 </tr>
 <tr>
 <td><label asp-for="Salary"></label></td>
 <td><input asp-for="Salary"></td>
 <td> <span id="validationSalary" asp-validation-
for="Salary" style="color:red"> </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit"
id="submitbutton" value="Submit" /></td>
 </tr>

 </table>
 </form>

</div>

 List of employees:

<div>
 <table border="1">
 <tr>
 <th> ID </th>
 <th> Name </th>
 <th> Designation </th>
 <th> Salary </th>
 </tr>
 @foreach (var employee in Model.EmployeesList)
 {
 <tr>
 <td>@employee.EmployeeId</td>
 <td>@employee.Name</td>
 <td>@employee.Designation</td>
 <td>@employee.Salary</td>
 </tr>
 }
 </table>

</div>

www.EBooksWorld.ir

The preceding diagram depicts the unobtrusive client validation process:

1. Data Annotations are added to Model/ViewModels.
2. The view takes Model/ViewModels and generates the HTML.
3. The generated HTML from the View model contains data-* attributes:

For the fields for which the Required attribute is set, the data-val-
required attribute is created with the error message as its value.
For the fields with the MinLength Data Annotation attribute, the data-
val-minlength attribute is set with the error message as its value.
For the range Data Annotation, the data-val-range attribute is set with
the error message as its value. The data-val-range-max represents the
maximum value in the range and the data-val-range-min attribute
represents the minimum value in the range.

4. The jQuery unobtrusive validation library reads these elements with data-*
attributes and does the client-side validation. This allows the developer to not
write the separation validation code using JavaScript as everything is resolved
by the configuration itself.

www.EBooksWorld.ir

Summary
In this chapter, we have learned about the need for validation and the different kinds
of validation available. We have even discussed how client-side and server-side
validation work, along with the pros and cons of each type of validation. Later, we
made code changes to validate the input data at the server-side. Then we used
JavaScript to validate the input data in the client-side itself. Finally, we used the
jQuery unobtrusive library to do the client-side validation without ever writing the
JavaScript code to validate the input data at the client-side.

In the next chapter, we will discuss the routing principle and how to customize it. In
an earlier chapter, we saw the basics of routing in an ASP.NET 5 application. Now
we are going to explore the topic in depth.

www.EBooksWorld.ir

Chapter 7. Routing
Routing is one of the important concepts in the ASP.NET MVC application as it takes
care of incoming requests and maps them to the appropriate controller's actions.

In this chapter, we are going to learn about the following topics:

Using the MapRoute method to configure routing
Different types of routing with examples—convention and attribute-based
Using HTTP verbs in attribute-based routing

We briefly discussed routing in Chapter 3 , Controllers. In this chapter, we are going
to discuss routing along with several options available to customize it in ASP.NET
Core.

www.EBooksWorld.ir

Convention-based routing
The routing engine is responsible for mapping the incoming requests to the
appropriate action method of the controller.

In the Configure method of the Startup class, we have mapped the following route:

app.UseMvc(routes =>
 {
 routes.MapRoute(name: "default",
 template: "{controller=Employee}/{action=Index}/{id?}");
 });

The MapRoute method has two parameters:

name: This represents the name of the route as we could configure multiple
routes for the same application.
template: This signifies the actual configuration for the route. There are three
parts to this configuration value. As we are supplying default parameters, if the
values are not passed, it will take the default parameter values.
{controller=Employee}: The first value acts as the name of the controller and
we use the Employee controller as the default controller when the controller
value is not available in the URL.
{action=Index}: The Index action method will be acting as the default action
method and the second parameter from the URL will be taken as the action
method name.
{id?}: By specifying "?" after the id parameter, we are saying that id is the
optional parameter. If the value is passed as the third parameter, the id value
will be taken. Otherwise, it would not be considered.

There is another method with the same functionality. The
app.UseMvcWithDefaultRoute() method configures the route "
{controller=Employee}/{action=Index}/{id?}". But we have used the earlier
method to show that we can customize the route as we want.

Let us see a few examples and observe how our routing engine works. We are
assuming the following routing for the preceding examples:

"{controller=Employee}/{action=Index}/{id?}"

www.EBooksWorld.ir

Example 1
URL-http://localhost:49831/

In this URL, we have not passed a value for the controller, action, or id. Since
we have not passed anything, it would take the default values for the controller and
the action. So, the URL is converted into the following URL by the routing engine:

http://localhost:49831/Employee/Index

www.EBooksWorld.ir

Example 2
URL-http://localhost:49831/Employee/

In this URL, we have passed the value for the controller (the first parameter),
which is Employee, whereas we did not pass anything for action method (the
second parameter) or id (the third parameter). So, the URL will be converted into the
following URL by taking the default value for the action method:

http://localhost:49831/Employee/Index

www.EBooksWorld.ir

Example 3
URL-http://localhost:49831/Manager/List

The routing engine will take the first parameter, Manager, as the controller method
name and the second parameter, List, as the action method name.

www.EBooksWorld.ir

Example 4
URL-http://localhost:49831/Manager/Details/2

We have passed all three parameters in this URL. So, the first parameter value,
Manager, will be considered as the controller method name, the second parameter
value will be considered as the action method name, and the third parameter value
will be considered as the id method name.

When defining the map route, we have used the MapRoute method with a couple of
parameters. The first parameter, name, represents the name of the route and the
second parameter, template, represents the URL pattern to be matched along with
the default values:

routes.MapRoute(name: "default",
 template: "
{controller=Employee}/{action=Index}/{id?}");

There are other overloaded variations of this MapRoute method. The following is
another commonly overloaded MapRoute method, where the incoming URL pattern
and the default values are passed for different parameters. The name of the route is
FirstRoute and this route will be applied for all URLs starting with Home. The
default values for the controller and the action are Home and Index2 respectively:

routes.MapRoute(name:"FirstRoute",
 template:"Home",
 defaults:new {controller ="Home", action="Index2"});

You can define any number of routing maps for your ASP.NET MVC application.
There is no restriction or limit on the routing maps. Let us add another routing map to
our application. We have added another route map called FirstRoute to our
application (highlighted in bold):

public void Configure(IApplicationBuilder app)
 {
 app.UseIISPlatformHandler();
 app.UseMvc(routes =>
 {
 routes.MapRoute(name:"FirstRoute",
 template:"Home", defaults:new {controller ="Home",
action="Index2"});

 routes.MapRoute(name: "default",
 template: "
{controller=Employee}/{action=Index}/{id?}");
 });

www.EBooksWorld.ir

 }

And we have added another controller method by the name HomeController with
a couple of simple action methods returning different strings:

public class HomeController : Controller
 {
 // GET: /<controller>/
 public IActionResult Index()
 {
 return Content("Index action method");
 }

 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }
 }

When you try to access the application through the URL,
http://localhost:49831/Hello, both routing maps, FirstRoute and the
default, match with the URL pattern.

Which map routing, do you think, will get applied in this scenario?

The routing engine maps the incoming URL based on the following factors:

1. Matching pattern.
2. On the order defined in the routing engine.

The first factor is an obvious one. For a routing map to be picked up by the routing
engine, the pattern of the incoming URL should get matched with the defined template
in the routing map.

The second factor is subtle but important. If more than one routing map matches with
the incoming URL, the routing engine will pick the first URL as defined in the
configuration. For example, if the incoming URL matches with both the FirstRoute
and default maps, the routing engine will pick the FirstRoute map as it was
defined first in the configuration.

www.EBooksWorld.ir

If the routing engine could not map the incoming URL to any of the mapping routes,
we get an HTTP 404 error, meaning that no resource could be found. You can see
the status (200 means OK, 404 means No resource found) by looking at the Network
tab in the developer tools as shown in the following screenshot:

www.EBooksWorld.ir

Attribute-based routing
Until now, we have used convention-based routing. In convention-based routing, we
define the routing templates (which are just parameterized strings) in a centralized
place these are applicable to all the available controllers. The problem with
convention-based routing is that, if we want to define different URL patterns for
different controllers, we need to define a custom URL pattern that is common to all
the controllers. This makes things difficult.

There is another option for configuring the routing engine-attribute-based routing. In
attribute-based routing, instead of configuring all the routing in a centralized location,
the configuration will happen at the controller level.

Let us see an example of attribute-based routing.

First, let us remove the convention-based routing that we created earlier in the
Configure method in the startup.cs class file:

public void Configure(IApplicationBuilder app)
 {
 app.UseIISPlatformHandler();
 app.UseMvc();
 //app.UseMvc(routes =>
 //{
 // routes.MapRoute(name: "FirstRoute",
 // template: "Hello",
 // defaults: new { controller = "Home",
 // action = "Index2" });

 // routes.MapRoute(name: "default",
 // template:"
 //
{controller=Employee}/{action=Index}/{id?}");
 //});
 }

Then, we can configure the routing at the controller itself. In the following code, we
have added the routing configuration for the home controller that we created earlier:

namespace Validation.Controllers
{
 public class HomeController : Controller
 {
 // GET: /<controller>/
 [Route("Home")]
 public IActionResult Index()
 {

www.EBooksWorld.ir

 return Content("Index action method");
 }
 [Route("Home/Index3")]
 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }
 }
}

We have used the Route attribute in the action methods of the controller. The value
passed in the Route attribute will be acting as the URL pattern. For example, when
we access the URL http://localhost:49831/Home/, the Index method of
HomeController will be called. When we access the URL
http://localhost:49831/Home/Index3, the Index2 method of HomeController
will be called. Please note that the URL pattern and action method name do not need
to match. In the preceding example, we are calling the Index2 action method but the
URL pattern uses Index3, http://localhost:49831/Home/Index3.

When you use attribute-based routing and convention-based routing together,
attribute-based routing will take precedence.

www.EBooksWorld.ir

Route attribute at the controller level
You will notice that, with the URL pattern for the action methods, Index and
Index2, we repeat the controller name, Home, in both URL patterns, Home and
Home/Index3. Instead of repeating the controller method name (or any common
part in the URL) at the action method level, we can define it at the controller
level.

In the following code, the common part of the URL (Home) is defined at the
controller level and the unique part is defined at the action method level. When
the URL pattern is getting mapped to the action methods of the controller, both route
parts (at the controller level and at the action method level) are merged and
matched. So there will be no difference between the routes defined earlier and those
that follow.

If you want two parameters in attribute-based routing, you can pass them within curly
braces. In the following example, we did this for the SayHello action method.

For example, the URL pattern http://localhost:49831/Home/Index3, will still
get mapped to Index2 method of the Homecontroller:

namespace Validation.Controllers
{
 [Route("Home")]
 public class HomeController : Controller
 {
 // GET: /<controller>/
 [Route("")]
 public IActionResult Index()
 {
 return Content("Index action method");
 }

 [Route("Index3")]
 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }

 [Route("SayHello/{id}")]
 public IActionResult SayHello(int id)
 {
 return Content("Say Hello action method"+id);
 }
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Passing routing values in HTTP action
verbs in the Controller
Instead of passing the routing values as Route attributes, we can even pass the
routing values in HTTP action verbs such as HTTPGet and HTTPPost.

In the following code, we have used the HTTPGet attribute to pass the route values.
For the Index method, we did not pass any value and hence no route value will get
appended to the route value defined at the controller method level. For the Index2
method, we are passing the value Index3 and Index3 will get appended to the route
value defined at the controller level. Please note that only URLs with GET methods
will be mapped to the action methods. If you access the same URL pattern with the
POST method, these routes will not get matched and hence these action methods will
not get called.

namespace Validation.Controllers
{
 [Route("Home")]
 public class HomeController : Controller
 {
 // GET: /<controller>/
 [HttpGet()]
 public IActionResult Index()
 {
 return Content("Index action method");
 }

 [HttpGet("Index3")]
 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }
 }
}

www.EBooksWorld.ir

Route Constraints
Route Constraints enable you to constrain the type of values that you pass to the
controller action. For example, if you want to restrict the value to be passed to the
int type int, you can do so. The following is one such instance:

[HttpGet("details/{id:int?}")]
 public IActionResult Details(int id)
 {
 return View();
 }

ASP.NET 5 (ASP.NET Core) even supports default parameter values so that you can
pass the default parameters:

[HttpGet("details/{id:int = 123}")]
 public IActionResult Details(int id)
 {
 return View();
 }

www.EBooksWorld.ir

Summary
In this chapter, we have learned about routing and how it works. We learned about
different kinds of routing available. We discussed convention-based routing and
attribute-based routing with different examples. We also discussed route constraints
and the default parameter values that could be passed.

In the next chapter, we are going to see how we can make the application look good.

www.EBooksWorld.ir

Chapter 8. Beautifying ASP.NET MVC
Applications with Bootstrap
You might have created an application with all the required functionalities. It may
even work perfectly without any issues in all scenarios. But the success of your
application depends on how well your users can access it. Your application should
look good (if not great) and be user-friendly in order for it to be a success.

In this chapter, you are going to learn about the following topics:

Role of HTML and CSS in the ASP.NET Core application
Characteristics of front-end frameworks and different frameworks available
Bootstrap and its grid system along its features
CSS classes available in Bootstrap for form elements such as input and select
elements
CSS classes for different types of HTML elements such as table
Using Bootstrap in your ASP.NET Core application

Before discussing how to make our application look good, let us take a step back and
discuss the roles that HTML and CSS play in your application.

www.EBooksWorld.ir

Knowing HTML and CSS
As mentioned earlier, all browsers can only understand HTML, CSS, and JavaScript.
So, the applications that you build should produce output as HTML, CSS, and
JavaScript. This holds true for web applications built using other technologies such
as Java or Ruby on Rails. Having said that, we will only discuss HTML and CSS.

HTML (Hyper Text Markup Language) is used to structure the content in your
web pages. For example, you can add content in a title tag so that it will be
available in a browser's tab or window. Let us see an example.

Open any text editor (you can even use Notepad), type the following HTML content
and the save file as Bootstrap.html. Please note the extension .html:

<!DOCTYPE html>
<html>
<head>
 <title> Beautify your ASP.NET MVC applications using Bootstrap
</title>
</head>
<body>
 <h1> Bootstrap </h1>
 <p>
 Bootstrap is the most popular HTML, CSS, and JS framework
for developing responsive, mobile first projects on the web.
 </p>
</body>
</html>

The first line tells that the HTML content follows HTML 5 standards (the latest and
the current version of HTML) and should be interpreted as such. The html tag tells
the browser it is the start of an HTML document. Information in the head
tag represents metadata and tells the browser to the web page rather than the web
page itself. Examples include the page title, description about the page, and
keywords for the search engine optimization. All the contents of the body tag will be
shown in the browser's main window. In the preceding HTML code, we have made
Bootstrap the heading and the rest of the content has been made as a paragraph.

Open the file in the browser and you should see something like the following
screenshot:

www.EBooksWorld.ir

You will notice the content placed in the title tag shown as the browser's tab title,
the heading content is made bold and bigger in size, and the paragraph starts on a new
line.

CSS is all about styling. You can use CSS to customize how each of the elements in
your web page looks. You can change the color of the button, the font of the heading
text, the border size of a table, and so on. You can include CSS styles either inline or
using a separate file. If you are using inline CSS, it should be within a style tag. If
you are using external CSS, we can make use of a link tag and refer to the external
CSS file.

CSS is nothing but a set of rules used for the presentation. Each rule consists of two
parts—a selector for which a declaration has to be applied and a declaration
containing the styling information. The styling information has a property and a value
for the property.

Let us take the following simple CSS rule:

 h1{
 color : #0094ff;
 }

This CSS rule states that all the heading text should be in a blue color. h1 is the
selector, which tells the browser the following declaration has to be applied for all

www.EBooksWorld.ir

h1 tags. In the declaration, we are setting the blue color (#0094ff is blue in
hexadecimal format).

The following is the updated HTML file where I've updated the CSS styles
(highlighted in bold):

<!DOCTYPE html>
<html>
<head>
 <title> Beautify your ASP.NET MVC applications using Bootstrap
</title>
 <style type="text/css">

 body{
 font-family:Arial,Verdana,sans-serif;
 }

 h1{
 color : #0094ff;
 }

 p {
 color: #5f5e5e;
 }
 </style>

</head>
<body>
 <h1> Bootstrap </h1>
 <p>
 Bootstrap is the most popular HTML, CSS, and JS framework
for developing responsive, mobile first projects on the web.
 </p>
</body>
</html>

When you open the file in a browser after making the style changes, you will get the
following output:

www.EBooksWorld.ir

Having said that, you need to create CSS rules to make the elements in your web
application look good. But creating different styles for each element is a time-
consuming and tedious task. You can choose from any of the frontend frameworks
available.

Any application should have the following characteristics:

Consistency: The elements and the controls that are being used by your
application should be familiar to the user. For example, if you use a drop-down
list, the user should be able to select only one value from it.
Responsive: The application that you build should look good across all devices
of different sizes. The code that you write should adapt to the screen size of the
device of your users.
Mobile-friendly: This is related to the preceding point. These days, many
applications being accessed from mobile devices rather than desktops or
laptops. We have to make sure that the application that we build will look great
on mobile devices.
Customizable: If you are going to use any front-end application framework, it
should be customizable according to your needs. For example, if you want to
update the heading text color, you should be able to update or override the CSS
file to make the necessary changes.
Easy to get started: The learning curve for learning your front-end framework
should be minimal as you should be spending time on delivering value to the

www.EBooksWorld.ir

customer—building and delivering the solution. We are not getting paid to learn
a new fancy front-end framework.

There are few front-end frameworks available such as Bootstrap, Foundation, and
PureCSS. In this chapter, we are going to use the Bootstrap framework as it is the
most widely used front-end framework.

www.EBooksWorld.ir

Bootstrap
Bootstrap is the most popular HTML, CSS, and JS framework for developing
responsive, mobile-first projects on the web and you can access it at
http://getbootstrap.com/ .

Bootstrap has many features that meet the various needs of a web application. It has
different CSS classes for each of the HTML elements so that you can use it without
touching any CSS code. However, if you wish to override it, you can do so.

Let us look at each of the features of Bootstrap in brief.

www.EBooksWorld.ir

http://getbootstrap.com/

Bootstrap Grid system
The grid system in Bootstrap helps you to create a responsive layout for your
application. This feature makes your application look great in all devices of different
shapes including mobile devices.

Bootstrap provides a fluid grid system, which scales up to twelve columns as the
device or viewport size increases. You can think of grid system as being like columns
in an Excel sheet (like the one in the following screenshot):

We can combine multiple columns to create a wider column. In the second row in the
preceding screenshot, we have used a single column (using class .col-md-1) twelve
times. In the third row, we are using a CSS class (.col-md-2) to create six wider
columns instead of twelve shorter columns. Likewise, we are creating a lesser
number of wider columns.

www.EBooksWorld.ir

Forms
All form controls receive global styling when you use Bootstrap in your application.
The following is one such example (the screenshot is taken from the Bootstrap site):

The following is the code for the preceding form. Related HTML elements are
grouped together in the form. For example, the labels for the Email and Email
address input text boxes are grouped together. The same is the case for Password
and File input.

www.EBooksWorld.ir

Inline forms

Inline forms are forms where all the form elements are on the same line (as shown in
the following screenshot). We need to add the class form-inline to the form
element.

Horizontal forms

In horizontal forms, we have each element group on a separate line; Email label,
Email input on a line and Password label, Password input on a line (as shown in the
following screenshot):

To apply the horizontal form styling, we just need to add the class form-horizontal
as in the following code. Just like other forms, we need to group the related HTML
elements together by applying the CSS class form-group:

www.EBooksWorld.ir

www.EBooksWorld.ir

Table CSS classes
For basic styling, add the base CSS class table to the table HTML element as
shown in the following screenshot:

Striped tables

In a striped table, the background of alternate rows will be of the same color. In the
following screenshot, the background color of the first row and third row are the
same color. You can apply the table-striped class to apply the striped table
behavior to the table HTML element.

Hover tables

When you move your mouse over any of the rows in the table, the background color
of the row is changed. This hover behavior can be achieved by applying the CSS
class table-hover along with the class table to the HTML table element.

www.EBooksWorld.ir

Bordered tables

We can have a bordered table (as in the following screenshot), if we apply the CSS
class table-bordered to the table element.

Contextual classes in table

There are times when you want to highlight rows based on the data value. For
example, if you are showing inventory data in tabular format, you might want to
highlight the rows with a red background color for the items whose count is less than
the stipulated count. In this case, you can apply a danger class to table rows to
highlight them in a red color. There are different types of contextual class available
for highlighting in different colors. You can apply these classes to individual cells
instead of the complete rows.

www.EBooksWorld.ir

www.EBooksWorld.ir

Buttons
There are different styling options available for making buttons appear in different
colors. For all the buttons, the base button class btn has to be applied:

The btn-primary button class is used to highlight the button in blue whereas
the btn-success button class highlights the button in green. In the preceding
screenshot, different options for styling the button are shown.

Button sizes

You can change the size of the button according to your needs. The btn-lg class can
be applied to a large button and the btn-sm class can be applied to buttons to make
them appear small. The following are the different options available to control the
size of the button.

www.EBooksWorld.ir

www.EBooksWorld.ir

Contextual colors
Based on the context, you might want to change the color of the text. For example, you
might want to make the text appear in green if the previous operation is successful.
For an unsuccessful operation, you might want to show the error message in a red. In
such scenarios, you might use this helper CSS classes to show them in different
colors.

We have seen various features of Bootstrap. Now, let us use Bootstrap to make our
application look good. Basically, we have two major components in our view—a
form at the top to get the input from the user and a table at the bottom to display the
results in a table.

www.EBooksWorld.ir

Using Bootstrap in your ASP.NET
MVC application
There are different ways to get Bootstrap for your application:

Refer to the Bootstrap file available at the CDN (Content Delivery Network) in
your application
Download the source code
Install with Bower
Compile with Grunt

Of these options, the easiest option is the first one.

Open the layout file (_Layout.cshtml) in the application that we created earlier.
Include the CSS files at the top (within the head tag) and the scripts at the bottom (at
the end of the body tag):

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <!-- Latest compiled and minified CSS -->
 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap
.min.css" integrity="sha384-
1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7"
crossorigin="anonymous">
 <!-- Optional theme -->
 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap
-theme.min.css" integrity="sha384-
fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzapT0u7EYsXMjQV+0En5r"
crossorigin="anonymous">

</head>
<body>
 <div>
 @RenderBody()
 </div>

 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-
2.2.3.js"></script>
 <script
src="https://ajax.aspnetcdn.com/ajax/jquery.validate/1.14.0/jquery.
validate.min.js"></script>

www.EBooksWorld.ir

 <script
src="https://ajax.aspnetcdn.com/ajax/mvc/5.2.3/jquery.validate.unob
trusive.min.js"></script>
 <!-- Latest compiled and minified JavaScript -->
 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.m
in.js" integrity="sha384-
0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
crossorigin="anonymous"></script>
</body>
</html>

www.EBooksWorld.ir

Installing with Bower
Right click on the Project menu and select the Manage Bower Packages option
from the context menu:

Once you select Manage Bower Packages, you will be able to install or uninstall

www.EBooksWorld.ir

the Bower package just as you installed or uninstalled the NuGet package.

www.EBooksWorld.ir

HTML doctype
Bootstrap makes use of certain HTML elements and CSS properties that require the
use of HTML 5 doctype. By default, the view that you create in ASP.NET Core will
have HTML 5 doctype only. So, we do not need to do anything regarding this.

<!DOCTYPE html>

<html lang="en">
...
</html>

Let us make the following changes to our screen to make use of Bootstrap:

Apply the CSS class form-horizontal to the form.
For the label, input, and validation error spans use the CSS col-sm-2, col-sm-
4, and col-sm-3 classes respectively
For labels, apply the CSS class control-label
For input HTML elements, the form-control CSS class is applied
For each of the form groups (containing the HTML elements such as label and
input), apply the CSS class form-group
For all validation error messages, apply the text-danger CSS class so that
they will be shown in red
Apply the table, table-bordered CSS class to style the table

The following is the complete updated view code; we have used Bootstrap CSS
classes to make our application look great:

@model Validation.ViewModels.EmployeeAddViewModel

<div>

 <form asp-controller="Employee" asp-action="Index"
method="post" role="form" class="form-horizontal">

 <div class="form-group">
 <label asp-for="Name" class="col-sm-2 control-label">
</label>
 <div class="col-sm-4">
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="col-sm-3 text-danger">
 <span id="validationName" asp-validation-for="Name"
>
 </div>

www.EBooksWorld.ir

 </div>

 <div class="form-group">
 <label asp-for="Designation" class="col-sm-2 control-
label"></label>
 <div class="col-sm-4">
 <input asp-for="Designation" class="form-control"
/>
 </div>
 <div class="col-sm-3 text-danger">
 <span id="validationDesignation" asp-validation-
for="Designation" >
 </div>
 </div>

 <div class="form-group">
 <label asp-for="Salary" class="col-sm-2 control-label">
</label>
 <div class="col-sm-4">
 <input asp-for="Salary" class="form-control" />
 </div>
 <div class="col-sm-3 text-danger">
 <span id="validationSalary" asp-validation-
for="Salary" >
 </div>
 </div>

 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-10">
 <button type="submit" class="btn btn-
primary">Submit</button>
 </div>
 </div>

 </form>

</div>

<h4> List of employees:</h4>

 <table class="table table-bordered">
 <tr>
 <th> ID </th>
 <th> Name </th>
 <th> Designation </th>
 <th> Salary </th>
 </tr>
 @foreach (var employee in Model.EmployeesList)

www.EBooksWorld.ir

 {
 <tr>
 <td>@employee.EmployeeId</td>
 <td>@employee.Name</td>
 <td>@employee.Designation</td>
 <td>@employee.Salary</td>
 </tr>
 }
 </table>

After making the preceding changes, when you run the application, your screen
should look something like the following:

www.EBooksWorld.ir

Summary
In this chapter, we have learned about the role of HTML and CSS in any web
application including the ASP.NET Core application. We have analyzed the needs of
a frontend framework and discussed the features of Bootstrap—the most popular
HTML, CSS, and JS framework for developing responsive, mobile-first projects on
the web. We have discussed CSS and components available in Bootstrap for different
types of HTML elements with examples. Finally, we have discussed how to
incorporate Bootstrap in our ASP.NET Core application.

www.EBooksWorld.ir

Chapter 9. Deployment of ASP.NET
Core Application
Once we have completed the development for our ASP.NET core application, we
need to deploy the application so that it can be accessed by our users.

In any application, irrespective of whether it is the web, desktop, or mobile
application, not all the functionalities have been achieved through code. In fact, you
should not try to achieve everything through code.

In this chapter, you are going to learn about the following topics:

Configuration in the ASP.NET Core application
Signing up to the Microsoft Azure platform
Deploying the ASP.NET Core application to the Azure Cloud platform

If you have built a web application using any of the previous versions of ASP.NET
MVC, there will be a file by the name of Web.config (an XML file) where you can
configure all the dependencies for your application. But in ASP.NET Core, there will
be no Web.config file in your solution:

Instead, we have project.json (a JSON file), where we will configure the
dependencies for your application. Before discussing the contents of project.json,

www.EBooksWorld.ir

let us discuss a bit about JSON.

JSON is an acronym of JavaScript Object Notation. It is the open standard data
exchange format. It will be in human-readable text and consist of attribute/value
pairs. Consider the following JSON, and let's dissect it to see what it represents:

{
 "addressess": [
 {
 "DoorNo": 16,
 "Street": "King Street",
 "areaname": "Mascot"
 },
 {
 "DoorNo": 12,
 "Street": "High Street",
 "areaname": "North Sydney"
 }
]
}

Each piece of data is an attribute value pair, separated by a colon. For example,
"DoorNo": 16 tells that the value for DoorNo variable is 16 in the first record. Each
attribute value pair (sometimes called a property) is separated by a comma. For
example, consider the following three properties:

"DoorNo": 16,
"Street": "King Street",
"areaname": "Mascot"

Each record or object is contained within a pair of curly braces. For example, the
following JSON data represents a record or an object:

{
 "DoorNo": 16,
 "Street": "King Street",
 "areaname": "Mascot"
}

Similar records can be grouped together and could be formed as an array (of
objects). Square brackets are used to represent the array in JSON format as in the
following example:

"addressess": [
 {
 "DoorNo": 16,
 "Street": "King Street",
 "areaname": "Mascot"
 },

www.EBooksWorld.ir

 {
 "DoorNo": 12,
 "Street": "High Street",
 "areaname": "North Sydney"
 }
]

If we have to represent the same data in XML format, you can do so as follows.
Please note that for each piece of information, we should have a start tag and an end
tag (ends with "/"):

<addresses>
 <address>
 <DoorNo>16</DoorNo>
 <Street>King Street</Street>
 <areaname>Mascot</areaname>
 </address>

 <address>
 <DoorNo>12</DoorNo>
 <Street>High Street</Street>
 <areaname>North Sydney</areaname>
 </address>
</addresses>

www.EBooksWorld.ir

The project.json file
All of the project configuration should go into the project.json file for the
ASP.NET Core application. The following is the project.json file that was created
when using the predefined ASP.NET Core web application template:

There are different predefined nodes in this JSON file for different functionalities.
Let us take some important nodes in this project.json file and discuss them.

www.EBooksWorld.ir

The dependencies node
The dependencies node lists all the dependencies for your ASP.NET Core
application.

The following is a fragment of the dependencies node in the ASP.NET Core
application. Each dependency is an attribute value pair where the attribute represents
the dependency and the value represents the version of the dependency. If you need to
provide more information for the dependency, you can have a nested JSON
configuration as it is in Microsoft.NETCore.App:

"dependencies":{
 "Microsoft.NETCore.App":{
 "version": "1.0.0-rc2-3002702",
 "type": "platform"
 },
 "Microsoft.ApplicationInsights.AspNetCore": "1.0.0-rc2-final",
 "Microsoft.AspNetCore.Authentication.Cookies": "1.0.0-rc2-
final",

www.EBooksWorld.ir

The frameworks node
In this node, we mention the frameworks that we depend on for the ASP.NET Core
application. dotnet5.6 represents the full blown .NET framework and dnxcore50
represents the .NET Core framework containing the subset of functionalities of the
complete .NET framework:

"frameworks":{
 "netcoreapp1.0":{
 "imports":[
 "dotnet5.6",
 "dnxcore50",
 "portable-net45+win8"
]
 }
 },

www.EBooksWorld.ir

Microsoft Azure
Microsoft Azure is a cloud computing platform and infrastructure from Microsoft for
building, deploying, and managing applications and services. It supports different
programming languages and arrays of services.

You can deploy your application in any server with Internet Information Service
(IIS) in your network. But this restricts your application to being accessed only from
within your network, assuming your server could only be accessed from within your
network (as in most network setups). In this section, we are going to deploy the
ASP.NET Core application in Microsoft Azure so that your users across the globe
can access your application.

www.EBooksWorld.ir

Signing up to Microsoft Azure
In order for your application to be deployed to Azure, you need to have an account
with Azure. You can create an Azure account for free and you'll have sufficient
credits to deploy your application for free within the first 30 days (
https://azure.microsoft.com/en-in/):

Click the Try for free button or Free Account link in the top right-hand corner and
you'll be forwarded to the following page:

www.EBooksWorld.ir

https://azure.microsoft.com/en-in/

Click the Start now button and you'll be redirected to the following page. Enter your
Microsoft account credentials and click the Sign In button. If you don't have a
Microsoft account, you can create one by clicking on the sign up now link at the
bottom of the page:

www.EBooksWorld.ir

As I have a Microsoft account already, I have signed in with my credentials. Once
you have signed-in, you will be asked for details about your country, first name,
second name, and your work phone, as follows:

www.EBooksWorld.ir

Once you have entered all the necessary details, you will be asked for your country
code and phone number so that Azure can text you or call you to verify you are a real
person and not a robot . If you choose the option of text me, you will get a code to
your mobile phone; you need to enter it in the last field and click Verify Code:

Once you have been verified by phone, you need to enter your credit card information
in the following form. You'll be billed for approximately $1 and it will be refunded
within five to six business days back to your account. This information is collected to
identify the user's identity and the user will not be billed unless the user explicitly
opted for the paid service:

www.EBooksWorld.ir

Once you enter your credit card information and click Next, you will have to agree to
the subscription agreement as the final step in the sign-up process:

www.EBooksWorld.ir

Once you click the Sign up button, it will take another five minutes to complete the
process. You'll be shown the following screen until the process completes:

Once the sign-up process completes, you'll be shown the following screen. You'll
also get a confirmation e-mail (to the e-mail ID that you gave in the first step) with
the subscription details:

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites to Azure deployment
In order to publish the ASP.NET Core application to Azure from the Visual Studio
2015 Community Edition, you should have Visual Studio 2015 Update 2 installed (at
least) and you should install/enable the SQL Server Data Tools.

Note

If you have the latest version of VS 2015, there is no need to install Update 2.

You can download the Visual Studio 2015 Update 2 from the URL at
https://www.visualstudio.com/en-us/news/vs2015-update2-vs.aspx and install it.

To install the SQL Server Data Tools, go to Control Panel | Programs and Features.
Right-click on the Microsoft Visual Studio Community 2015 and select the Change,
option, as shown in the following screenshot:

Once you click on Change option, you will get the following window—where you

www.EBooksWorld.ir

https://www.visualstudio.com/en-us/news/vs2015-update2-vs.aspx

have to choose the Modify button. Once you click the Modify button, you'll be given
an option where you can modify the Visual Studio installation options. I have
selected Microsoft SQL Server Data Tools , as depicted in the following
screenshot:

Once you click Next, Visual Studio will install the SQL Server Data Tools and once
it is completed, you will get the following screen, which shows the setup completion
status:

www.EBooksWorld.ir

www.EBooksWorld.ir

Deploying the ASP.NET Core
application in Azure
Let's create an ASP.NET Core application that we can deploy in Microsoft Azure:

The ASP.NET Core application will be created once you click the OK button:

www.EBooksWorld.ir

As the default ASP.NET Core Web Application template uses the Entity Framework,
we need to execute the following command in order to create the database migration:

dotnet ef database update

Once you enter the command in Command Prompt (in the project's path), the
migration file will be created. This migration file will contain all the changes to the
database. This migration will be applied at the time of deployment at Azure so that
Azure can create the necessary database scripts for Azure deployment:

www.EBooksWorld.ir

Once the database migration is completed, right-click on the created Core application
and select the Publish option, as shown in the following screenshot:

www.EBooksWorld.ir

When you click the Publish option, you'll be shown the following screen, depicting
various publishing options available for you:

www.EBooksWorld.ir

Please select the Microsoft Azure App Service option to publish the web
application on the Microsoft Azure platform:

www.EBooksWorld.ir

Click on the New button, and you will get the following screen:

www.EBooksWorld.ir

You can change the web app name to whatever name you would like to have. I have
changed the web app name to learningmvc6.

Click on the New button beside the Resource Group and enter the name for the
resource group. The resource group is just a tag where you can group all of your
computing resources so that if you want to delete all the resources, you can just
delete the resource group. For example, a resource group could comprise of a web
server and a database server—you can think of it like a collection of resources.

Now, click on the New button beside the App Service Plan. You will get the
following window where you can choose the location and size of your web
application container. Your location could be anywhere from South Central US to
Europe, from Japan to Canada. Your application container could be anything from
free to a machine with 7 GB RAM. I have chosen the free option as our objective is
to deploy the ASP.NET Core application in a cloud environment rather than to deploy
an application which is to be accessed by millions of users. Of course, you can
achieve the same with ASP.NET Core and Microsoft Azure:

www.EBooksWorld.ir

Now, we can configure the SQL database which is available as an additional Azure
service.

www.EBooksWorld.ir

Click on the + button which is available at the top section which will lead us to the
configuration of the SQL database.

www.EBooksWorld.ir

If you have any existing SQL server in the Azure environment, you can use it. As I
don't have any such server, I am going to create a SQL server by clicking the New
button beside SQL Server:

www.EBooksWorld.ir

Please enter the administrator user name and password for the SQL Server and click
OK. You will see the following screen:

www.EBooksWorld.ir

Once you click OK, you will get the following screen:

www.EBooksWorld.ir

Click OK on the preceding screen and we will see the Create App Service screen:

www.EBooksWorld.ir

Click Create once we have configured all the required Azure services:

www.EBooksWorld.ir

The preceding screen shows the deployment configuration options, such as the Site
name and Destination URL for our application. Click Next on the preceding screen:

www.EBooksWorld.ir

It is important to note that you need to expand the Databases option and Entity
Framework Migrations options and select both the checkboxes. The first checkbox
represents the connection string that should be used at runtime and the second
checkbox represents the database migration that should be applied on publication.

www.EBooksWorld.ir

The preceding screen is the preview screen where you can see the files that would be
deployed when you publish. This is an optional step—if you want to see the files,
you can click the Start Preview button. Or else, you can click the Publish button to
publish the web application in the Azure platform.

Once you click the Publish button, our ASP.NET Core application will be deployed
in Azure and your application URL will be opened on successful publication. You
will get the following screen:

www.EBooksWorld.ir

www.EBooksWorld.ir

Deploying the ASP.NET Core web
application in the Linux environment
In this section of the chapter, we are going to learn how to create and deploy the
ASP.NET Core web application in the Linux platform. I am going to deploy the
application in the cloud using Amazon Web Services (AWS). Obviously, you don't
need AWS to deploy the ASP.NET Core application on Linux. I am just using it so
that I do not need to install Linux on my local machine. And another advantage of
hosting with AWS (or any other public cloud service provider or any hosting
provider) is that I can access the web application from anywhere as it will be
publicly available.

We have the following prerequisites to create and deploy in the Linux environment:

Linux machine
Putty client (if you are using a remote Linux machine)

www.EBooksWorld.ir

Creating a Linux machine
We are going to use AWS to create a Linux machine. The advantage of using AWS or
any other cloud provider is that we can use their service only when we need it and
we can wind down the machine when you are done with it. You only need to pay for
the time when you are using it. For the first year, AWS has a free tier where you can
host the machine (if it is eligible for the free tier) without having to pay anything. I
have been using AWS for more than couple of years to try out many things in the
cloud, hence I am not eligible for the free tier.

However, you can install Linux on your Windows PC by using any virtualization
software. Ubuntu Linux has the option of booting up from the USB drive itself so that
you don't need to disturb anything in your local PC.

Once you sign-up for an AWS account, you can go to the EC2 dashboard, where you
can create EC2 instances:

Click Launch Instance in the preceding screen. A wizard will be launched where it
will help you in selecting and configuring the instances. In this step, we are selecting
the Ubuntu Linux server because of its ease of use.

www.EBooksWorld.ir

There are different kinds of instances available in AWS ranging from nano (with 0.5
GB RAM) to large machines (with 1952 GB RAM). We are going to choose micro
instance as it is eligible for the free tier:

In previous step, we can configure the instances for the cloud. We can create an auto

www.EBooksWorld.ir

scale group where the AWS cloud will spin up the instances automatically when the
load is high. As our objective is to create and deploy the ASP.NET Core web
application, we are going to leave the default values as they are and click Next: Add
Storage to move to the next screen:

The micro instances do not come with any external storage. Hence, we need to add
the storage in order to use it. We have three options for storage to choose from:
General Purpose SSD, Provisioned SSD, and Magnetic SSD. Out of the three, the
General Purpose SSD is the storage that would be usually used.

When your application is making high input-output operations, the throughput may
come down. But in the Provisioned SSD you can maintain the required throughput
from the storage device. Magnetic storage is just an old type of storage. We are going
to use the General Purpose 8 GB Solid State Drive (SSD) as it serves our purpose
well.

www.EBooksWorld.ir

If you are using multiple instances, you can tag them so that you can control the
instances by using the tag name. As we are going to launch only one instance, I am
just going to leave it blank and move on to the next step:

www.EBooksWorld.ir

In this step, we can configure the security group for the instance—which ports should
be opened for the incoming traffic. The general rule in any configuration is to only
open up the ports what you need and nothing else. You also need to tell the IP (or its
range) from where the machine could be accessed from. As it is a demo application,
we are going to open ports 22, for Secure Shell (SSH); for using PuTTY, and 80, for
accessing the Core web application.

Once you have configured the Security Groups, click Review and Launch.

On the following screen, you can review the chosen options:

www.EBooksWorld.ir

You can click Launch once you are fine with the selected options. Otherwise, you
can go back to the previous step to reconfigure them with the correct values.

When you click Launch, it will ask you to choose a key pair which you will be using
to log into any AWS server. If you do not have one, you can create one. As I have
created one already, I am going to use the existing one, as shown in the following
screenshot:

www.EBooksWorld.ir

Select the key pair and click Launch Instances. AWS will spin up new instances for
us and the status will be shown (as in the following screenshot). The instance ID will
also be available (boxed in the screenshot):

www.EBooksWorld.ir

Clicking on the blue colored link will fetch you the status (as shown in the following
screenshot). The Public DNS and Public IP are important values which you will be
using to connect to that server. Hence, I've boxed them in the screenshot:

www.EBooksWorld.ir

Installing the PuTTY client
Having created a new Linux server where we can create an ASP.NET 5 web
application and host it, we need to install the PuTTY client, a small application that
can send commands to the Linux server and receive the responses. As we are going
to install the application in a Linux server, we need to have a way for connecting
from your Windows PC to the Linux server. The PuTTY client application does
exactly that.

You can download the PuTTY client by
visiting http://www.chiark.greenend.org.uk/~sgtatham/putty/ .

Click on the Download link and select the link (boxed in the screenshot) in the
following screen:

www.EBooksWorld.ir

http://www.chiark.greenend.org.uk/~sgtatham/putty/

It will download the MSI file. Once it's downloaded, launch the installer and you'll
be shown the following welcome screen:

Click Next and you'll see following screen:

www.EBooksWorld.ir

Choose the installation folder—you can leave it as it is and click Next:

www.EBooksWorld.ir

Select the product features which you want to install. You can leave the default
selection and click Install. Once it is installed, you will be shown the following
screen:

Click Finish and launch the PuTTY application. It will open the PuTTY configuration
window, where we are going to enter the hostname and authentication details. The
hostname is <username>@<public DNS>. In our case, it is ubuntu@ec2-107-22-
121-81.compute-1.amazonaws.com. Ubuntu is the default user for the Ubuntu AMI
that we have chosen. We can get the public DNS value in the status window as shown
earlier:

www.EBooksWorld.ir

For authentication, select Connection | SSH | Auth in the left-hand pane and select
the PPK file (private key file) that we created earlier:

www.EBooksWorld.ir

Click Open. You'll get a warning asking you whether you trust this host. Click yes
and you'll be shown the Command Prompt of the Linux screen.

www.EBooksWorld.ir

Next, we need to install .NET Core before creating the ASP.NET 5 application and
eventually host them.

www.EBooksWorld.ir

Installing of .NET Core in a Linux machine
In order to install .NET Core on Ubuntu, we need to first set up the apt and get feed
that hosts the package that we need. Enter the following commands:

sudo sh -c 'echo "deb [arch=amd64] https://apt-
mo.trafficmanager.net/repos/dotnet-release/ trusty main" >
/etc/apt/sources.list.d/dotnetdev.list'sudo apt-key adv --keyserver
apt-mo.trafficmanager.net --recv-keys 417A0893

You will get the following screen:

Then update it by issuing the following command, which will download the required
packages and install them:

sudo apt-get update

You will see the following screen for this command:

www.EBooksWorld.ir

Install the .NET Core with the following command:

sudo apt-get install dotnet-dev-1.0.0-preview2-003121

The following screen will be displayed:

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating a new ASP.NET 5 project
Issue the following commands to create a new directory where we will create the
ASP.NET 5 application. The first command (mkdir - make directory) is for creating
a directory in Linux and the second command (cd - change directory) is for going
inside the folder. And the last command is the command line to create a .NET Core
application:

mkdir aspnetcoreapp
cd aspnetcoreapp
dotnet new

The following screen will be displayed:

This will create the .NET Core application, which has a couple of files
—Program.cs and project.json. It's a bare minimum application that does not
have even Startup file.

We need to add the Kestrel HTTP Server package as a dependency in
project.json. You can edit the file by issuing the command vi project.json . By
default, the vi editor will open the file in read-only mode. You need to press Esc + I

www.EBooksWorld.ir

in order to make it to the edit mode. Add the line
"Microsoft.AspNetCore.Server.Kestrel": "1.0.0" as shown in the following
screenshot:

Press the Escape key and ":" and type wq to write into and quit the vi editor.

As we have added the dependency, we need to restore the packages by executing the
following command:

dotnet restore

Once you enter this command, all the packages will be restored as shown in the
following screenshot:

www.EBooksWorld.ir

Create a new file, Startup.cs, with the following content. You can create a new file
by issuing the command vi Startup.cs . As usual, we need to press Esc + I to make
the file in write and read mode. Paste the following content (you can paste it by right-
clicking on the mouse after copying it from here):

using System;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
namespace aspnetcoreapp
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app)
 {
 app.Run(context =>
 {
 return context.Response.WriteAsync("This is ASP.NET Core
application running in Linux!");
 });
 }
 }
}

www.EBooksWorld.ir

Press Esc + : and type wq, to save the file. Update the Program.cs file with the
following content:

namespace aspnetcoreapp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .Build();
 host.Run();
 }
 }
}

You'll see the following screen:

We have created the ASP.NET Core web application. Now we need to install Nginx,
a reverse proxy server, which enables you to offload work such as serving static
content, caching, and compressing requests. You can configure Nginx to listen on a
particular port (we'll discuss the details later in this chapter). You can install Nginx

www.EBooksWorld.ir

by issuing the following command:

sudo apt-get install nginx

Once it is installed, you can issue the following command to start the service:

sudo service nginx start

When you'll run the command, you'll see the following screen:

www.EBooksWorld.ir

Configuring the Nginx server
Configure the Nginx server by modifying the file (/etc/nginx/sites-
available/default) to have the following content—so that Nginx will forward the
request to ASP.NET. In order to modify this file, you need to have sufficient rights—
try switching to a super user. The Sudo su is the command for switching it to a super
user. See the following code:

server {
 listen 80;
 location / {
 proxy_pass http://localhost:5000;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection keep-alive;
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }
}

The code looks like the following:

www.EBooksWorld.ir

Run the application by executing the following command:

dotnet run

You will see the following screen:

Now access the application from your browser using the public DNS (AWS created
the public DNS when the instance was launched):

www.EBooksWorld.ir

Voila! We have created the ASP.NET Core web application and launched it in the
Linux box. We have even used the cloud through Amazon Web Services (AWS).

www.EBooksWorld.ir

Summary
In this chapter, you have learned about the different components available in the
project.json file, where all the configuration of your ASP.NET Core goes. We
have discussed how to sign up to the Microsoft Azure cloud platform and deploy the
ASP.NET Core application in the Azure platform. We have also learned how to
create and deploy the ASP.NET Core web application in Linux using Amazon Web
Services in the cloud.

www.EBooksWorld.ir

Chapter 10. Building HTTP-based Web
Services Using ASP.NET Web API
So far, we have learned how to create web applications using ASP.NET Core. But
there are times when simply creating a web application is not enough. Let's assume
you are using ASP.NET Core to create a web application that provides weather
information for all the cities across the world. People access your web application to
find out weather information, and they are satisfied with the service. But this weather
information may be needed by many other websites or web applications, such as
tourism websites, news websites, and many other mobile applications.

Instead of writing the code all over again for their websites, you can create and
publish the web services and the websites can consume the required web services
whenever they need to.

In this chapter, you are going to learn about the following topics:

What an HTTP-based service is and how it is useful
What Fiddler is
How to compose an HTTP request using Fiddler and fire the same in order to
get an HTTP response
How to design and implement the HTTP service using Web API

Microsoft provides ASP.NET Web API for programmers to build HTTP-based
services. But HTTP is not just used to serve the webpages. You can use HTTP as a
platform. This brings several advantages:

As web services built using ASP.NET Web API use HTTP for communication,
these web services can be consumed from all kinds of applications from
console applications to web applications, and from WCF services to mobile
applications
Whenever there is any change in the logic/code of the web services, the clients
(the websites that consume the services) do not need to change anything. They
can consume the web services just as they were consuming them earlier

www.EBooksWorld.ir

HTTP basics
HTTP is a powerful platform for building services. You can use the existing HTTP
verbs to build services. For example, you can use the existing HTTP verb GET to get
the list of products or POST to update information about the product. Let's take a
quick look at how HTTP works with respect to building the services.

There is no difference in the underlying mechanism between serving the HTML pages
in ASP.NET MVC and serving the data in the context of HTTP services. Both follow
a request-response pattern and the same routing mechanism.

An HTTP request can be sent from any client (desktop, laptop, tablet, mobile, and so
on) to the server and the server will respond back with an HTTP response. An HTTP
response can be sent to the client in any format such as JSON or XML. This is shown
in the following figure:

In the preceding diagram, a request is sent from the desktop computer (it could
equally be sent from a mobile or tablet; it makes no difference) and the server sends
back the HTTP response for the request. As HTTP is supported in most of the
devices, it is ubiquitous.

www.EBooksWorld.ir

HTTP verbs
HTTP verbs describe how the request has to be sent. These are the methods defined
in HTTP that dictate how the HTTP requests are sent from the client to the server

www.EBooksWorld.ir

GET method
When we use an HTTP GET request, the information is passed through the URL
itself:

GET api/employees/{id}

This GET request gets the employee information based on the passed ID. The
advantage of using the GET request is that it is lightweight, and all the required
information will be passed in the URL or header itself, as shown in the following
diagram:

www.EBooksWorld.ir

PUT method
The PUT method is used to create a resource or to update it. PUT is an idempotent
operation, meaning that the expected behavior would not change even if it is executed
multiple times:

www.EBooksWorld.ir

POST method
You can use POST to create or update the resource. Usually, POST is used to create
the resource rather than update it. As per HTTP standards, whenever you create a
new resource, you should return a 201 HTTP status code:

www.EBooksWorld.ir

DELETE method
The DELETE method is used to delete the resource. Usually, when you delete a
resource, you would be passing the ID as a parameter, and you would not be passing
anything in the body of the request:

Usually, HTTP services would be consumed by other applications and services.
Applications that consume services are referred to as clients. One of the options to
test HTTP services is to build the clients. But this would be time-consuming, and we
may throw away the client code once we test the HTTP services.

Another option, which is widely used, is to use applications that enable us to fire
HTTP requests and monitor the responses. There are many applications available,
Fiddler being one such widely used application.

www.EBooksWorld.ir

Fiddler tool
Fiddler is the proxy server application used to monitor the HTTP and HTTPS traffic.
You can monitor the requests that are being sent to the server from the client, the
responses that are sent to the client, and the responses that are being received from
the server. It is like seeing the traffic in the pipe between the server and the client.
You can even compose a request, fire it, and analyze the response received without
ever needing to write the client for the services.

You can download Fiddler at http://www.telerik.com/fiddler. You'll see the
following window:

Enough theory. Let us create a simple web service using ASP.NET Web API.

Fire up Visual Studio 2015:

www.EBooksWorld.ir

http://www.telerik.com/fiddler

When you click OK, a Web API solution will be created. Just as the ASP.NET Core
application controller inherits from the Controller class.

www.EBooksWorld.ir

The Web API class will also inherit from the same Controller class. This is the
difference between ASP.NET Core and earlier versions of ASP.NET MVC. In earlier
versions, all Web API controller classes inherited from the ApiController class. In
ASP.NET 5, it has been unified, and the same base Controller class is being used for
both building web applications and services.

The following is the ValuesController class that will be created by default when
you choose the Web API template option when creating the project:

www.EBooksWorld.ir

Before we create our own custom Controller, let's analyze the default API Controller.
In the ValuesController file, several API methods are already defined.

There are two overloaded GET methods—one with a parameter and another without a
parameter. The GET method without a parameter returns all the resources of the type.
In this case, we are returning just a couple of strings. In the real world, we would be
returning the metadata of the resources. For example, if we fire the GET request on the
movies API Controller, it would return information about all the movies. The GET
method with an id parameter returns the resource whose ID matches with the passed
ID. For example, if you pass a movie ID, it would return the information about that
movie. The body of the other methods, such as PUT, POST, and DELETE, are empty in
this Controller, and we will talk about these methods later.

When you run the application, you will get the following output:

By default, it fires a request to api/values, and the values are displayed in the

www.EBooksWorld.ir

browser.

Let's learn how to fire an HTTP request from the Fiddler application. Open the
Fiddler application. In the bottom left-hand corner, select the Web Browsers option
in the red box. Choosing this option will enable us to view the traffic coming from
the Web Browsers:

Select the Composer tab, enter the URL http://localhost:49933/api/values,
as shown in the following screenshot, and click the Execute button in the top right-
hand corner:

www.EBooksWorld.ir

Once you click the Execute button, an HTTP session will be created, visible on the
left-hand side pane (highlighted in the blue box). Click on the session and select the
Inspectors tab on the top right-hand side pane. Select the JSON tab in the bottom
right-hand side pane (highlighted by the purple-bordered box in the following
screenshot).

You can see the JSON data returned from the HTTP request—value1 and value2
in the following screenshot:

www.EBooksWorld.ir

Now it's our turn to write a custom API.

In this custom API, we are going to provide API methods to create an employee
object, list all the employee objects, and delete an employee object.

First, let us create a model for the employee. We need to create a folder to hold these
models. Right-click on the project, select Add | New folder, and name the folder as
Models:

www.EBooksWorld.ir

Right-click on the Models folder and select Add | New Item… to create an employee
model class. This employee model class is just a POCO class. See the following
code:

public class Employee
{
 public int Id {get; set;}
 public string FirstName {get; set;}
 public string LastName {get; set;}
 public string Department {get; set;}
}

Then, we define the repository interface to handle the model:

public interface IEmployeeRepository
{
 void AddEmployee(Employee e);
 IEnumerable<Employee> GetAllEmployees();
 Employee GetEmployee(int id);
 Employee RemoveEmployee(int id);
 void UpdateEmployee(Employee employee);
}

Then we implement the interface for this model:

public class EmployeeRepository : IEmployeeRepository
{
 private static List<Employee> employees = new List<Employee>();

 public EmployeeRepository()
 {

www.EBooksWorld.ir

 Employee employee1 = new Employee
 {
 FirstName = "Mugil",
 LastName = "Ragu",
 Department = "Finance",
 Id = 1
 };

 Employee employee2 = new Employee
 {
 FirstName = "John",
 LastName = "Skeet",
 Department = "IT",
 Id = 2
 };

 employees.Add(employee1);
 employees.Add(employee2);
 }

 public IEnumerable<Employee> GetAllEmployees()
 {
 return employees;
 }

 public void AddEmployee(Employee e)
 {
 e.Id = GetNextRandomId();
 employees.Add(e);
 }

 public Employee GetEmployee(int id)
 {
 return employees.Where(emp => emp.Id == id).FirstOrDefault();
 }

 public Employee RemoveEmployee(int id)
 {
 Employee employee = employees.Where(emp => emp.Id ==
id).FirstOrDefault();
 if (employee !=null)
 {
 employees.Remove(employee);
 }
 return employee;
 }

 public void UpdateEmployee(Employee emp)
 {
 Employee employee = employees.Where(e => e.Id ==
emp.Id).FirstOrDefault();

www.EBooksWorld.ir

 if(employee != null)
 {
 employee.Department = emp.Department;
 employee.FirstName = emp.FirstName;
 employee.LastName = emp.LastName;
 }
 }

 private int GetNextRandomId()
 {
 int id = -1;
 bool isIdExists;
 Random random = new Random();
 do
 {
 id = random.Next();
 isIdExists = employees.Any(emp => emp.Id == id);
 } while (isIdExists);
 return id;
 }
}

There are few things to be noted in the implementation class:

We have decided not to use the database as our objective is to create an HTTP
service using Web API, and not to write the data access code.
We are using an in-memory list to hold the data. All the operations will be
performed on this list. As a matter of fact, the data could be in any form, ranging
from relational databases to a simple in-memory list.
In the constructor method, we are adding an object to the list. This list will be
acting as the database for our HTTP service.
The GetAllEmployees API method will return all the employees as the
IEnumerable interface.
The AddEmployee method will add the employee (passed as a parameter) to the
list.
The GetEmployee method will return the employee whose ID matches that of
the parameter.
The RemoveEmployee method will remove the employee from the list.
The UpdateEmployee method will update the employee information.
The GetNextRandomId method will return the next available random integer.
This integer value is being used to generate the employee ID.

www.EBooksWorld.ir

Dependency Injection
In most real-world projects, we do not instantiate any objects using the new instance
in any of the Controllers, the reason being that we don't want to have tight coupling
between the dependent components (between the Controller and the repository).
Instead, we pass an interface to the Controller, and the Dependency Injection
container (such as Unity) will create an object for us when it is needed for the
Controller. This design pattern is commonly referred to as Inversion of Control.

Let's say that a class by the name of ClassA uses another class, ClassB. In this case, it
is enough for ClassA to know about the behavior, methods, and properties of ClassB,
and it doesn't need the internal implementation details of ClassB. So, we can abstract
ClassB and make an interface out of the class, and then have that interface as the
parameter instead of the concrete class. The advantage of this approach is that we
can pass any class at runtime as long as it implements a commonly agreed contract
(interface).

In ASP.NET 5 (including ASP.NET Core and Web API), we have inbuilt support for
Dependency Injection. In the ConfigureServices method, we have added the line
(highlighted in bold) that performs the Dependency Injection. We instruct the inbuilt
Dependency Injection container to create the EmployeeRepository class wherever
we are referring to the IEmployeeRepository interface and we also instruct it to be
a singleton; meaning that the same object (which is to be created by the Dependency
Injection container) is to be shared for the entire lifecycle of the application:

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddApplicationInsightsTelemetry(Configuration);
 services.AddMvc();
 services.AddSingleton<IEmployeeRepository, EmployeeRepository>();

}

In the preceding code, we have used the Singleton pattern for the Dependency
Injection, which creates services only the first time they are requested. There are
other types of lifetime services such as Transient and Scoped. Transient lifetime
services are created each time they are requested and Scoped lifetime services are
created once per request. The following are code snippets created when you use such
lifetimes:

services.AddTransient
 <IEmployeeRepository, EmployeeRepository>();

www.EBooksWorld.ir

services.AddScoped <
IEmployeeRepository, EmployeeRepository>();

Now it's time to get into the meat of the action creating the API controller. Right-click
on the Controllers folder and select Add | New Item. Then select Web API
Controller Class from the list, as shown in the following screenshot. Name your
Controller, and click the Add button:

Remove the generated code in the Controller and add the following constructor:

public EmployeeController(IEmployeeRepository employeesRepo)
{
 employeeRepository = employeesRepo;
}
private IEmployeeRepository employeeRepository {get; set;}

In the preceding constructor, we are injecting the dependency. At the time of calling
this constructor, the EmployeeRepository object will be created.

Let us implement a couple of GET methods—the first one will return all the
employees' details and the second GET method will return the employee based on the
passed employee ID:

www.EBooksWorld.ir

public IEnumerable<Employee> GetAll()
{
 return employeeRepository.GetAllEmployees();
}

[HttpGet("{id}",Name ="GetEmployee")]
public IActionResult GetById(int id)
{
 var employee = employeeRepository.GetEmployee(id);
 if(employee == null)
 {
 return NotFound();
 }
 return new ObjectResult(employee);
}

Let us call these HTTP methods from Fiddler.

Run the solution, open the Fiddler application, and click on the Composer tab.

Select the HTTP method (we have chosen the GET method as we have a GET API
method) and enter the URL http://localhost:49933/api/employee .

Please note that when I run my application, it runs on port 49933; the port number
will be different in your case, so construct your URL accordingly.

Once you enter the URL and the method is selected, click the Execute button as
shown in the following screenshot:

www.EBooksWorld.ir

Once you click the Execute button, an HTTP session will be created, and the request
will be fired.

Click on the session on the left-hand side pane (as shown in the following
screenshot) and select the Inspectors tab in the right-hand side pane. You can view
the result in the JSON tab in the bottom right-hand side pane:

www.EBooksWorld.ir

Let us fire another HTTP request to get a particular employee's information, say the
employee whose ID is 2. We would construct the URL by appending the ID
http://localhost:49933/api/employee/2 as following:

Select the recently created HTTP session and click on it:

You can see the result in JSON format in the right-hand side pane.

www.EBooksWorld.ir

Now, we are going to add Create, Update, and Delete operations to our service. To
start with, we are going to provide the Create functionality to add employees' to our
service:

[HttpPost]
public IActionResult Add([FromBody] Employee emp)
{
 if (emp == null)
 {
 return BadRequest();
 }
 employeeRepository.AddEmployee(emp);
 return CreatedAtRoute("GetEmployee", new { id = emp.Id }, emp);
}

The following points should be considered when following the preceding Add
method:

1. We are passing the Employee object as a parameter. We are instructing the Add
method to take that object from the body of the request by specifying a
[FromBody] attribute:

If no employee object is passed, we would be returning the bad request to
the calling client
If it is not null, we would be calling the repository method to add the
employee to our list (in the real world, we would be adding it to the
database)

2. Once we have added the employee, we are returning the 201 status code (as per
the HTTP standards) when a new resource is created.

Open the Fiddler application and follow these steps to add the employee:

1. Select the HTTP method as POST and enter the URL
http://localhost:54504/api/employee/.

2. You need to specify the content type as application/json in the request
header. Please see the following screenshot, where we have added Content-
Type: application/json to the request header.

3. As mentioned in the code, we have to pass the employee object in the form of
JSON in the body of the request. In the following request, we have formed a
JSON that contains the properties of the Employee object with the values in the
brackets { "FirstName" : "James", "LastName" : "Anderson","Department" :
"IT"}:

www.EBooksWorld.ir

Once you have composed the request, you can click the Execute button to fire the
request. This will return the 201 HTTP status code, which is the standard HTTP
response for creating a new resource:

As soon as we have created the resource in the server, we are redirecting the
response to get the newly created resource. This occurs when we call the
CreatedAtRoute method with the newly created employee ID passed as a
parameter.

Click on the session on the left-hand side and select the Inspector tab in the right-
hand side pane. Now you can see the response of the request. The response contains

www.EBooksWorld.ir

the Employee object which was newly created in the server. We have to note that the
ID of the Employee object is generated at the server, and is available in the
following response. In this case, the ID generated for the employee is 1771082655:

In the bottom right-hand side panel in the preceding Fiddler window, we can see the
complete JSON response of the newly created resource.

Now we are going to add a Web API method to update the resource. The method for
updating the resource is very similar to that used to create the resource, with only
a few differences. When we created the resource, we used the HTTP POST method,
whereas when we updated the resource, we used the HTTP PUT method.

If the passed employee ID could not be found in the repository, we return a 404 error
response, the HTTP standard error response for a resource that has not been found.

The following is the Web API controller method code for updating the resource:

[HttpPut]
public IActionResult Update([FromBody] Employee emp)
{
 if(emp == null)
 {
 return BadRequest();
 }
 Employee employee = employeeRepository.GetEmployee(emp.Id);
 if(employee == null)
 {

www.EBooksWorld.ir

 return NotFound();
 }
 employeeRepository.UpdateEmployee(emp);
 return new NoContentResult();
}

The following is the repository layer code for updating the employee:

public void UpdateEmployee(Employee emp)
{
 Employee employee = employees.Where(e => e.Id ==
emp.Id).FirstOrDefault();
 if (employee != null)
 {
 employee.Department = emp.Department;
 employee.FirstName = emp.FirstName;
 employee.LastName = emp.LastName;
 }
}

Open the Fiddler application, and compose a request of HTTP PUT. As we are going
to pass the Employee object in the body of the request, we need to mention the
content type as application/json. In the body of the request, we need to supply the
Employee object in JSON format, as shown in the following screenshot:

www.EBooksWorld.ir

When you click the Execute button, the HTTP PUT request will be fired and our Web
API method will get called. Once it succeeds, the HTTP 204 response will be
returned:

www.EBooksWorld.ir

Delete method
The HTTP DELETE method should be used when deleting a resource. There is no need
to pass anything in the body of the request.

The Web API method for deleting a resource

The Delete Web API method has a void return type, which will return an HTTP 200
response:

[HttpDelete("{id}")]
public void Delete(int id)
{
 employeeRepository.RemoveEmployee(id);
}

Web Repository layer code for deleting the employee data

In the following repository layer method, we are removing the employee (whose ID
matches with that of the parameter passed) from the internal list of employees. But in
the real world, we would be interacting with the database to delete that particular
employee. Consider the following code:

public Employee RemoveEmployee(int id)
{
 Employee employee = employees.Where(emp => emp.Id ==
id).FirstOrDefault();
 if(employee != null)
 {
 employees.Remove(employee);
 }
 return employee;
}

Open the Fiddler application, select the DELETE HTTP method, pass the URL with the
parameter, and click on the Execute button. Please note that we are not passing the
content type in the request header as we are not passing any employee object in the
body of the request:

www.EBooksWorld.ir

As we are returning void, the Web API DELETE method returns an HTTP 200 status,
as you can see in the left-hand side pane of the Fiddler application:

www.EBooksWorld.ir

Summary
In this chapter, you learned about the HTTP service and its purpose. We discussed
how to design and implement the HTTP service using Web API. We used the Fiddler
tool to construct the HTTP request and get the response back. We also learned how to
write the Web API method to perform CRUD operations end to end, from writing the
Web API methods to firing the requests and getting the responses back.

www.EBooksWorld.ir

Chapter 11. Improving Performance of
an ASP.NET Core Application
When you think about frequently accessed applications (the ones that we use daily),
such as Google, YouTube, and Facebook, it is the performance of these applications
that distinguishes them from similar applications. Think for a moment. If Google took
more than 10 seconds to provide search results, most people would switch over to
Bing or some other search engine. So, performance is one of the primary factors in an
application's success.

In this chapter, we are going to learn about the following things:

The approach to analyzing the performance issues of an application
How to make use of browser developer tools to analyze the performance of an
application
Performance improvements in the UI layer
Performance improvements in the web/application layer
Performance improvements in the database layer

Normally, when people talk about the performance of an application, they think about
the application's speed. Though speed contributes significantly to the performance of
the application, we also need to consider maintainability, scalability, and reusability
of the application.

A well-maintained code will be clear and have less technical debt, which in turn will
increase the productivity of the developer. When we write code based on service-
oriented architecture or micro services, our code will be more usable by others. This
would also make our code scalable.

Normally, people think about the performance of the application when they have
almost completed the development of the application and pilot users are complaining
about the speed of the application. The right time to discuss performance is before
the development of the application; we need to work with the product owners,
business analysts, and actual users in order to arrive at a standard of an acceptable
level of performance for the application. Then we design and code with this expected
level of performance as our goal.

This also depends on the domain of the application. For example, a mission-critical
healthcare application would demand great performance (they might expect
responses in less than a second), whereas the performance of a back-office
application may not demand so much. So, it is critical to understand the domain in

www.EBooksWorld.ir

which we are working.

If you have been asked to tune the performance of an existing application, it is also
important to understand the existing architecture of the application. With ASP.NET
Core, you can build a simple CRUD application to a mission-critical application
serving millions of users across the world. A large application might have many
other components, such as a load balancer, separate caching servers, Content
Delivery Networks (CDN), an array of slave DB servers, and so on. So, when you
analyze the performance of the application, first you need to study architecture,
analyze each of the individual components involved, measure the performance of
each of the components, and try to optimize them when the application does not suit
your acceptable performance. The main thing is not to jump into performance
improvement techniques without studying and analyzing the architecture of the
application. If you are creating a new application, you can think about performance
right from the start of the application's creation.

We will examine a typical web application setup, shown in the following
screenshot. We will then analyze it and consider how to improve it:

The following steps show the process of using a web application:

1. The user accesses an ASP.NET Core web application from a browser, such as

www.EBooksWorld.ir

Internet Explorer, Firefox, or Chrome. When the user types the URL into the
browser and presses the Enter key, the browser creates a session and fires the
HTTP request. This is not specific to an ASP.NET Core application. This
behavior is the same for all web applications, irrespective of the technology on
which they are built.

2. The request reaches the web server. If it is a simple request, the web server
itself will serve that request. Serving a static HTML file is a typical example of
this. If the request is a bit complex, for example, returning some data based on
the business logic, the request will be forwarded to the application server.

3. The application server will query the database to get the data. Then it might do
some business processing on the received data before returning the data to the
web server. Sometimes, the web server might act as an application server for a
smaller web application.

4. Then, the web server will return the response, typically in HTML, to the
requesting client.

Thus, we can categorize these components into three layers—the UI layer, the
web/application layer, and the DB layer. With respect to improving the overall
performance of the ASP.NET Core application, we need to have a thorough look at
how we can improve the performance of each of the layers.

Before implementing any performance improvement techniques, we need to first
analyze the performance in each of the layers in the application. Only then can we
suggest ways improve the overall performance of the application.

www.EBooksWorld.ir

The UI layer
The UI layer represents all the events (and associated stuff) happening between the
browser and the server. There are many events, including, but not limited to, the
following:

Firing the HTTP request
Getting the response
Downloading the resources
Rendering them in the browser
Any JavaScript code execution

www.EBooksWorld.ir

Reducing the number of HTTP
requests
A typical web page might not have only HTML content. It may have references to
CSS files, JS files, and images, or other sources. So, when you try to access a web
page, the client will fire HTTP requests for each of these references and download
those references from the server to the client.

Browser developer tools come in handy when you want to analyze the HTTP requests
being fired from the client. Most of the browsers have developer tools that you can
make use of.

When you press F12 in Internet Explorer, the Developer Tools window will open at
the bottom of the Internet Explorer window, as shown in the following screenshot:

Click on the Network tab. Before entering the URL in the browser, click the Start
button (the green play button), or click the green play button and refresh the page:

www.EBooksWorld.ir

Once you press the Network tab's start button, Internet Explorer's Network tab will
listen to each of the requests that are fired from the current tab. Each request will
contain information, such as the URL, protocol, method, result (the HTTP status
code), and other information.

I ran the application again with (Tracking Network Requests option ON) and I
could see the requests being tracked, as shown in the following screenshot:

www.EBooksWorld.ir

There are many useful pieces of data available in the Network tab. To begin with, the
URL column shows the resource that is being accessed. The Protocol column, as the
name implies, shows the protocol being used for accessing the resource.

To begin with, the URL column shows the resource that is being accessed. The
Protocol column, as the name implies, shows the protocol being used for accessing
the resource. The Method column shows the type of request, and in the Result
column, we can see the HTTP status code of the request (HTTP 200 response means
a successful GET request).

The Type column shows the type of resource that is being accessed, and the Taken
column shows how much time it has taken to receive the file from the server. The
Received column shows the size of the file that was downloaded as part of the
request.

www.EBooksWorld.ir

Using GZip compression
When you are serving the content, you can compress the content using GZip so that a
smaller amount of data will be sent across the wire. You need to add the appropriate
HTTP headers so that the browser can understand the mode of content being
delivered. In IIS, this option is enabled for static resources by default. You can verify
this by accessing the applicationHost.config file at the path
C:\Windows\System32\inetsrv\config:

<httpCompression directory="%SystemDrive%\inetpub\temp\IIS
Temporary Compressed Files">
 <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" />
 <staticTypes>
 <add mimeType="text/*" enabled="true" />
 <add mimeType="message/*" enabled="true" />
 <add mimeType="application/x-javascript" enabled="true" />
 <add mimeType="application/atom+xml" enabled="true" />
 <add mimeType="application/xaml+xml" enabled="true" />
 <add mimeType="*/*" enabled="false" />
 </staticTypes>
</httpCompression>

If it is not available in your applicationHost.config file, you have to make the
necessary changes.

www.EBooksWorld.ir

Using the Content Delivery Network (CDN)
A Content Delivery Network is a system of distributed servers situated across the
globe to serve the content based on the geographical location from where the content
is accessed. Amazon's CloudFront is one example of a CDN. Amazon has edge
locations (locations where servers are located) all over the world so that content can
be served to users from the nearest location.

In the following line, we are accessing the jQuery from the CDN provided by the
official jQuery website:

<script src="https://code.jquery.com/jquery-3.1.1.min.js" >
</script>

www.EBooksWorld.ir

Using JavaScript wherever possible
If you can use JavaScript to achieve a functionality, then do it. For example, before
validating the data of the form on the server, always try to do client-side validation
first. This approach has a couple of advantages—the site will be very fast, as
everything is done at the client-side itself, and the server would handle a larger
number of requests, as some of the requests are handled on the client-side.

www.EBooksWorld.ir

Using CSS stylesheets
As the browser renders the web page progressively (the browser will display
whatever content it has, as soon as it receives it), it is better to place the stylesheets
at the top rather than at the end of the web page. If we place the stylesheets at the
bottom, it prohibits the progressive rendering as the browser has to redraw the
content with the styles.

Most of the browsers will block parallel downloads when it comes to downloading
the JavaScript files, so it is better to place the script at the bottom. This means that
your content is shown to the user while the browser downloads the scripts. The
following is the sample layout file created in an ASP.NET Core application where
CSS files are referenced at the top and JavaScript files are referenced at the bottom:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>

 <!-- Latest compiled and minified CSS -->

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap
.min.css" integrity="sha384-
1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7"
crossorigin="anonymous">

 <!-- Optional theme -->

 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap
-theme.min.css" integrity="sha384-
fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzapT0u7EYsXMjQV+0En5r"
crossorigin="anonymous">

 </head>
 <body>
 <div>
 @RenderBody()
 </div>
 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-
2.2.3.js"></script>

 <script
src="https://ajax.aspnetcdn.com/ajax/jquery.validate/1.14.0/jquery.
validate.min.js"></script>

www.EBooksWorld.ir

 <script
src="https://ajax.aspnetcdn.com/ajax/mvc/5.2.3/jquery.validate.unob
trusive.min.js"></script>

 <!-- Latest compiled and minified JavaScript -->
 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.m
in.js" integrity="sha384-
0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
crossorigin="anonymous"></script>

 </body>
</html>

www.EBooksWorld.ir

Minification of JavaScript and CSS
files and their combination
The time taken to download the related resources of a web page is directly
proportional to the size of the files that are downloaded. If we reduce the size of the
file without changing the actual content, it will greatly increase the performance.
Minification is the process of changing the content of the file in order to reduce the
size of the file. Removing the extraneous white spaces and changing the variable
names to shorter names are both common techniques used in the minification process.

Popular JavaScript libraries such as jQuery and frontend frameworks provide
minified files by default. You can use them as they are. In the following screenshot, I
have downloaded the compressed version of jQuery. You can minify the custom
JavaScript and CSS files that you have written for your application:

Bundling is the process where you can combine two or more files into one. Bundling
and minification, when used together, will reduce the size of the payload, thereby
increasing the performance of the application.

You can install the Bundler & Minifier Visual Studio extension from the following
URL:

https://visualstudiogallery.msdn.microsoft.com/9ec27da7-e24b-4d56-8064-

www.EBooksWorld.ir

https://visualstudiogallery.msdn.microsoft.com/9ec27da7-e24b-4d56-8064-fd7e88ac1c40

fd7e88ac1c40

Once you have installed this Visual Studio extension, you can select the files that you
want to bundle and minify by selecting the files and selecting the Bundler & Minifier
option from the Context menu, brought up by right-clicking. It is shown in the
following screenshot:

Once you select the Bundle and Minify Files option, it will ask you to save the
bundled file as shown in the following screenshot:

www.EBooksWorld.ir

You can name the file of your wish and save the file. Once you save the file, another
file would have been created in your solution—in our case, it is the
bundleconfig.json file:

This file will have the information on the input files and the bundled output file. The
following is one such example:

www.EBooksWorld.ir

[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css"
]
 },

{
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
],
 "minify": {
 "enabled": true,
 "renameLocals": true
 }
},

{
 "outputFileName": "wwwroot/css/bundle.css",
 "inputFiles": [
 "wwwroot/css/site.css",
 "wwwroot/css/StyleSheet1.css"
]
 }
]

You can use this bundled file in your application, resulting in increased performance.

www.EBooksWorld.ir

The caching process
Caching is the process of copying the data and having it in memory instead of getting
the data again through an external resource, such as a network, file, or database. The
data used in caching is ephemeral and can be removed at any time. As we are
directly accessing the data, caching can greatly improve the performance of the
application.

Caching can be done in any of the layers—client-side at the browser, at the proxy
server (or at some middleware), or at the web/application server. For database layer
caching, we might not need to do any custom coding. Based on the type of database
server being used, you might need to make some configuration changes. However,
most of the databases these days are powerful enough to cache the data as and when
it is needed.

www.EBooksWorld.ir

Client-side caching
We can cache at the client-side if we add the appropriate HTTP response headers.
For example, if we want to cache all the static assets, such as CSS, images, and
JavaScript files, we can add the max-age response header in the Cache-Control
header:

In the preceding screenshot of the Developer Tool window's Network tab, when the
requests are fired again, we get HTTP 304 response (Not modified) as the response.
This means the same files are not transferred back twice across the wire, as they are
available in the browser itself.

Implementing browser caching for static files is pretty easy, and it involves just a
couple of steps—adding dependencies and configuring the application.

Add the following NuGet package to the list of dependencies in the project.json
file:

"Microsoft.AspNet.StaticFiles": "1.0.0-rc1-final"

Add the following namespaces to the Startup.cs file and configure the application
to use those static files:

www.EBooksWorld.ir

using Microsoft.AspNet.StaticFiles;
using Microsoft.Net.Http.Headers;

public void Configure(IApplicationBuilder app)
{
 app.UseIISPlatformHandler();
 app.UseMvc();
 app.UseMvc(routes =>
 {
 routes.MapRoute(name:"default", template:"
{controller=Employee}/{action=Index}/{id?}");});

 app.UseStaticFiles(new StaticFileOptions
()

 {
 OnPrepareResponse = (context) =>
 {

 var headers = context.Context.Response.GetTypedHeaders();

 headers.CacheControl = new CacheControlHeaderValue()

 {

 MaxAge = TimeSpan.FromSeconds(60),

 };

 }

 });
}

www.EBooksWorld.ir

Response caching
In response caching, cache-related HTTP headers are added to HTTP responses
when MVC actions are returned. The Cache-Control header is the primary HTTP
header that gets added to the response.

The preceding diagram shows response caching in action. In the first request, we are
calling a Controller's action method; the request comes from the client and passes
through the proxy server, actually hitting the web server. As we have added a
response cache, any subsequent requests will not be forwarded to the web server,
and the responses will be returned from the proxy server itself. This will reduce the
number of requests to the web server, which in turn will reduce the load on the web
server.

www.EBooksWorld.ir

Caching the response of the Controller's action method is pretty easy. Just add the
ResponseCache attribute with a duration parameter. In the following action method,
we have added the response cache with a duration of 60 seconds, so that, for the next
60 seconds, if any requests come again, the responses will be returned from the proxy
server itself instead of going to the web server:

[ResponseCache(Duration = 60)]
public IActionResult Index()
{
 EmployeeAddViewModel employeeAddViewModel = new
EmployeeAddViewModel();
 using (var db = new EmployeeDbContext())
 {
 employeeAddViewModel.EmployeesList = db.Employees.ToList();
 }
 return View(employeeAddViewModel);
}

www.EBooksWorld.ir

The web/application layer
The web/application layer is composed of whatever happens between receiving the
request from the client and sending back the response (or querying the DB layer to get
the required data). Most of the web/application layer will be in a server-side
language, such as C#, so when you try to optimize the web/application layer, you
need to incorporate the best practices of ASP.NET MVC and C#.

www.EBooksWorld.ir

No business logic in Views
A View is what is rendered to the browser, and it can contain presentation logic.
Presentation logic represents where and how the data is to be displayed.
ViewModels (actually, models specific to the View) are models that hold the data for
a particular view.

Neither Views nor ViewModels should contain any business logic as this violates the
separation of concerns principle.

Look at the following Razor View code. We are just looping through the list in the
model and presenting the data in tabular format—nothing else:

<h4> List of employees:</h4>

 <table class="table table-bordered">
 <tr>
 <th> ID </th>
 <th> Name </th>
 <th> Designation </th>
 <th> Salary </th>
 </tr>
 @foreach (var employee in Model.EmployeesList)
 {
 <tr>
 <td>@employee.EmployeeId</td>
 <td>@employee.Name</td>
 <td>@employee.Designation</td>
 <td>@employee.Salary</td>
 </tr>
 }
 </table>

In some code, there might be a repository layer in ViewModel, which should never
be the case. Please be extra cautious about what is there in the View/ViewModel
code.

www.EBooksWorld.ir

Using asynchronous logging
Try to use asynchronous logging, wherever possible, to improve the performance.
Most logging frameworks, such as Log4Net, provide an option for logging
asynchronously. With respect to the ASP.NET Core, you can implement the logging
through a Dependency Injection.

The following is a typical example of the implementation of a logging framework in
an MVC Controller:

public class EmployeeController : Controller
{
 private readonly IEmployeeRepository _employeeRepo;
 private readonly ILogger<EmployeeController> _logger;
 public EmployeeController(IEmployeeRepository employeeRepository,
 ILogger<EmployeeController> logger)
 {
 _employeeRepo = employeeRepository;
 _logger = logger;
 }
 [HttpGet]
 public IEnumerable<Employee> GetAll()
 {
 _logger.LogInformation(LoggingEvents.LIST_ITEMS, "Listing all
employees");
 return _employeeRepo.GetAll();
 }
}

www.EBooksWorld.ir

The DB layer
Though the DB layer is not directly related to ASP.NET Core applications, it is the
developer's responsibility to take complete ownership of the application's
performance, and that includes taking care of the database's performance as well. We
will now look at a few of the areas in the DB layer that we need to consider when
improving the performance of an ASP.NET Core application.

Understanding the queries generated by the ORM

In most applications these days, we use Object-Relational Mapping (ORM), such
as Entity Framework or NHibernate. As you might know, the primary objective of
the ORM is to enable you to write the data access layer using domain-based classes
and objects instead of writing queries directly. However, it does not mean that you
never need to understand the basics of the SQL queries generated, or the optimization
of these queries. Sometimes, the generated query from Entity Framework may not be
optimized, so a better practice would be to run the profiler, analyze the generated
queries, and tune them as per your needs. You can use the interceptors in Entity
Framework to log the SQL queries.

Using classic ADO.NET if you really want to

ASP.NET Core is just a web development framework, and it is not tied to any data
access framework or technology. If the ORM that you use in your application does
not support the performance that you expect it to, you can use the classic ADO.NET
and manually write the queries/stored procedures.

Return only the required data

Always return only the data that you need nothing more, nothing less. This approach
reduces the data that we send across the wire (from the database server to the
web/application server).

For example, we would not use the following:

Select * from employees

Instead, we would use this:

Select FirstName,LastName from employees

The latter query would get only the required fields from the table, and, thus, only the
required data is passed across to the calling client.

Fine tuning the indices

www.EBooksWorld.ir

Beginners tend to add indices whenever they face a problem with the database.
Adding an index to every column in the table is bad practice, and will reduce
performance. The right approach is to take the list of queries that are most frequently
executed. Once you have this list, try to fine tune them—remove unnecessary joins,
avoid correlated subqueries, and so on. Only when you have tried and exhausted all
query tuning options at your end should you start adding the indices. The important
thing to note here is that you should add indices only on the required number of
columns.

Using the correct column type and size for your database columns

When you want to use int as a datatype for a column, use an integer. Don't use double.
This will save a lot of space if you have lots of rows in your table.

Avoiding correlated subqueries

Correlated subqueries use values from their parent query, which in turn makes it run
row by row. This would significantly affect the query performance.

The following is one such example of a correlated subquery:

SELECT e.Name,
e.City,
(SELECT DepartmentName FROM EmployeeDepartment WHERE ID =
e.DepartmentId)
AS DepartmentName
FROM Employee e

www.EBooksWorld.ir

Generic performance improvement tips
Here are a couple of pointers to improve the overall application performance in an
ASP.NET Core Web Application.

www.EBooksWorld.ir

Avoiding the Response.Redirect method
When we want to do client-side redirection, developers can call
the Response.Redirect method with the URL passed as a parameter. But there is a
small problem with this approach. If we use Response.Redirect, the browser will
send the request to the server again, which needs another round trip to the server. So,
if possible, it is better to avoid the Response.Redirect method and instead use
RedirectToAction method if possible.

www.EBooksWorld.ir

Using string builder
If your application involves a lot of string manipulation, it is preferable to use string
builder instead of the usual string concatenation. String concatenation results in
creating a new string object for each of the operations, whereas string builder works
on the single object itself. We can achieve significantly better performance when we
use string builder in large string manipulation operations.

www.EBooksWorld.ir

Summary
In this chapter, we have learned how to analyze the performance of web applications
and which layers to target when improving the performance. Then we discussed how
to improve the performance in each of the layers—the UI layer, the web/application
layer, and the DB layer.

www.EBooksWorld.ir

Chapter 12. ASP.NET Core Identity
Security is essential to all types of applications, including web applications. Would
you use Facebook if anyone could update your status by impersonating you? If that
were possible, then no one would come back to Facebook. From this example, we
can see that security is not so much a feature as it is a necessity for all applications.

In this chapter, we are going to learn about the following topics:

Authentication and authorization
ASP.NET Identity
How to implement security in an ASP.NET Core application using ASP.NET
Identity with Entity Framework

When we talk about the security of an application, we primarily want to prevent any
unauthorized access, meaning that only the people who have access to the information
should be able to access it—nothing more, nothing less.

Before proceeding further, I would like to clarify some of the core concepts
regarding security.

www.EBooksWorld.ir

Authentication
Authentication is the process of validating whether the user has access to the system.
In any application, users will be authenticated first. This can be achieved by asking
the user to enter their user ID and password.

www.EBooksWorld.ir

Authorization
Authorization is the process where we verify whether the user has access to the
requested resource. They might have legitimate access to the system, but they might
not have access to the requested resource as they do not have the required access.
For example, only the admin user can access the configuration page of the
application, whereas normal users should not be allowed to use this page.

ASP.NET Identity provides several features for securing the application.

Let us consider the following simple scenario where the user tries to access the
Secure Page, a page to which only authorized people should have access. As the
user is not logged in, they will be redirected to the Login Page so that we can
authenticate and authorize the user. Upon successful authentication, the user is
redirected to the Secure Page. If for any reason, we can not authenticate and
authorize the user, we can redirect them to the "Access denied" Page:

ASP.NET Core Identity is a membership system that enables you to secure the
application easily, and which has features such as adding login functionality to your
application. The following are the steps that we need to follow in order to use
ASP.NET Identity (with Entity Framework) for our application:

1. Add the relevant dependencies to the project.json file.

www.EBooksWorld.ir

2. Create an appsettings.json file and store the database connection string.
3. Create an ApplicationUser class and ApplicationDbContext class.
4. Configure the application to use ASP.NET Identity.
5. Create ViewModels for registration and login.
6. Create the necessary controller and associated action methods and Views.

www.EBooksWorld.ir

Adding the relevant dependencies to the
project.json file
If you want to use ASP.NET Identity with Entity Framework in your application, you
need to add the following dependencies:

"EntityFramework.Commands": "7.0.0-rc1-final",
 "EntityFramework.MicrosoftSqlServer": "7.0.0-rc1-final",
 "Microsoft.AspNet.Authentication.Cookies": "1.0.0-rc1-final",

Create an appsettings.json file and store the database connection string.

Create a file with the name appsettings.json at the root level of the project, as
shown in the following screenshot:

Store the following connection string in appsettings.json. This connection string
will be used by ASP.NET Identity to store the data in relevant tables:

{
 "Data": {
 "DefaultConnection": {
 "ConnectionString": "Server=
(localdb)\\mssqllocaldb;Database=aspnet_security;Trusted_Connection
=True;MultipleActiveResultSets=true"
 }
 }
}

www.EBooksWorld.ir

Adding ApplicationUser and
ApplicationDbContext classes
Create a Models folder and a couple of files—ApplicationDbContext.cs and
ApplicationUser.cs—as shown in the following screenshot:

The ApplicationUser class inherits from the IdentityUser class (available at the
AspNet.Identity.EntityFramework6 namespace) as follows:

public class ApplicationUser : IdentityUser
{
..
}

You can add properties to the user as per the needs of your application. I have not
added any properties as I would like to keep things simple to show the features of
ASP.NET Identity.

The ApplicationDbContext class inherits from the IdentityDbContext class of
ApplicationUser. In the constructor method, we pass the connectionstring,
which is eventually passed to the base class.

Even the OnModelCreating method is overridden. If you want to change any table
names (to be generated by Identity), you can do so as follows:

public class ApplicationDbContext :
IdentityDbContext<ApplicationUser>
 {
 public ApplicationDbContext(string nameOrConnectionString)
: base(nameOrConnectionString) { }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 base.OnModelCreating(modelBuilder);
 }
 }

www.EBooksWorld.ir

Once we create the Models file, we need to configure the application and services.
You can configure these in Configure and ConfigureServices, which are found in
the Startup class.

www.EBooksWorld.ir

Configuring the application to use
Identity
In order to use Identity, we just need to add the following line in the Configure
method of the Startup class:

app.UseIdentity();

The complete Configure method is shown in the following code, along with the call
of the UseIdentity method, which is app.UseIdentity():

public void Configure(IApplicationBuilder app, IHostingEnvironment
env, ILoggerFactory loggerFactory)
 {

loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseBrowserLink();
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");

 app.UseIISPlatformHandler(options =>
options.AuthenticationDescriptions.Clear());

 app.UseStaticFiles();

 app.UseIdentity();

 // To configure external authentication please see
http://go.microsoft.com/fwlink/?LinkID=532715

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "
{controller=Home}/{action=Index}/{id?}");
 });
 }

www.EBooksWorld.ir

In the ConfigureServices method, we will make the following changes:

We will add the ApplicationDbContext class with the connection string taken
from the appsettings.json file
We will add Identity with UserStore and RoleStore
Finally, we will ask ASP.NET Core to return AuthMessageSender whenever
we ask for the IEmailSender and ISMSSender classes

public void ConfigureServices(IServiceCollection services
{
// Add framework services.

 services.AddScoped<ApplicationDbContext>(f => {
 return new
ApplicationDbContext(Configuration["Data:DefaultConnection:Conn
ectionString"]);
 });

 services.AddIdentity<ApplicationUser, IdentityRole>
()
 .AddUserStore<UserStore<ApplicationUser,
ApplicationDbContext>>()
 .AddRoleStore<RoleStore<ApplicationDbContext>>
()
 .AddDefaultTokenProviders();

 services.AddMvc();

 // Add application services.
 services.AddTransient<IEmailSender,
AuthMessageSender>();
 services.AddTransient<ISmsSender,
AuthMessageSender>();
 }

www.EBooksWorld.ir

Creating ViewModels
Next, we will be creating several ViewModels that we will be using in our Views
model.

To start with, we will create a RegisterViewModel class that contains three
properties—Email, Password, and ConfirmPassword. We decorate the properties
with appropriate attributes so that we can use client-side validation using an
unobtrusive jQuery validation. We are making all the fields required as follows:

public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }

 [Required]
 [StringLength(100, ErrorMessage = "The {0} must be at least
{2} characters long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm password")]
 [Compare("Password", ErrorMessage = "The password and
confirmation password do not match.")]
 public string ConfirmPassword { get; set; }
 }

Now, we can create the LoginViewModel model, which the user can use to log in to
your application. There is an additional property, RememberMe, which, when
checked, will enable you to log in without having to enter the password again:

public class LoginViewModel
 {
 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Controllers and associated
action methods
Now we need to create an AccountController class, where we will define the
action methods for authentication and authorization:

public class AccountController : Controller
 {
 private readonly UserManager<ApplicationUser> _userManager;
 private readonly SignInManager<ApplicationUser>
_signInManager;
 private readonly IEmailSender _emailSender;
 private readonly ISmsSender _smsSender;
 private readonly ILogger _logger;

 public AccountController(
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager,
 IEmailSender emailSender,
 ISmsSender smsSender,
 ILoggerFactory loggerFactory)
 {
 _userManager = userManager;
 _signInManager = signInManager;
 _emailSender = emailSender;
 _smsSender = smsSender;
 _logger = loggerFactory.CreateLogger<AccountController>
();
 }
 }

In the preceding code, we are using services provided by different components.
UserManager and SignInManager are provided by ASP.NET Identity. The
IEmailSender and ISmsSender are custom classes that we have written which will
be used for sending e-mails and SMS messages. We will look more at e-mail and
SMS later in this chapter. Logging is provided by the Microsoft Logging extension.
The following is a simple login HTTPGET method. It simply stores the URL from
where the Login method is accessed and returns the login page:

[HttpGet]
 [AllowAnonymous]
 public IActionResult Login(string returnUrl = null)
 {
 ViewData["ReturnUrl"] = returnUrl;
 return View();
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Views
Now, we will create respective View page for the login. In this View page, we are
just showing the following details:

@using System.Collections.Generic
@using Microsoft.AspNet.Http
@using Microsoft.AspNet.Http.Authentication
@using AspNet.Identity.EntityFramework6

@model LoginViewModel
@inject SignInManager<ApplicationUser> SignInManager

@{
 ViewData["Title"] = "Log in";
}

<h2>@ViewData["Title"].</h2>
<div class="row">
 <div class="col-md-8">
 <section>
 <form asp-controller="Account" asp-action="Login" asp-
route-returnurl="@ViewData["ReturnUrl"]" method="post" class="form-
horizontal" role="form">
 <h4>Use a local account to log in.</h4>
 <hr />
 <div asp-validation-summary="ValidationSummary.All"
class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Email" class="col-md-2 control-
label"></label>
 <div class="col-md-10">
 <input asp-for="Email" class="form-control"
/>
 <span asp-validation-for="Email"
class="text-danger">
 </div>
 </div>
 <div class="form-group">
 <label asp-for="Password" class="col-md-2
control-label"></label>
 <div class="col-md-10">
 <input asp-for="Password" class="form-
control" />
 <span asp-validation-for="Password"
class="text-danger">
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">

www.EBooksWorld.ir

 <div class="checkbox">
 <input asp-for="RememberMe" />
 <label asp-for="RememberMe"></label>
 </div>
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <button type="submit" class="btn btn-
default">Log in</button>
 </div>
 </div>
 <p>
 <a asp-action="Register">Register as a new
user?
 </p>
 <p>
 <a asp-action="ForgotPassword">Forgot your
password?
 </p>
 </form>
 </section>
 </div>

</div>

@section Scripts {
 @{ await Html.RenderPartialAsync("_ValidationScriptsPartial");
}
}

www.EBooksWorld.ir

When the user logs into the application for the first time, they might not have any
login credentials, so our application should provide a feature that they can use to
create a login for themselves. We will create a simple Register action method that
will just return a View with which the user can register themselves:

[HttpGet]
[AllowAnonymous]
public IActionResult Register()
{
 return View();
}

We will also create the corresponding View that contains input controls for e-mail,
password, password confirmation, and a Register button:

@model RegisterViewModel
@{
 ViewData["Title"] = "Register";
}

<h2>@ViewData["Title"].</h2>

www.EBooksWorld.ir

<form asp-controller="Account" asp-action="Register" method="post"
class="form-horizontal" role="form">
 <h4>Create a new account.</h4>
 <hr />
 <div asp-validation-summary="ValidationSummary.All"
class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Email" class="col-md-2 control-label">
</label>
 <div class="col-md-10">
 <input asp-for="Email" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Password" class="col-md-2 control-label">
</label>
 <div class="col-md-10">
 <input asp-for="Password" class="form-control" />
 <span asp-validation-for="Password" class="text-
danger">
 </div>
 </div>
 <div class="form-group">
 <label asp-for="ConfirmPassword" class="col-md-2 control-
label"></label>
 <div class="col-md-10">
 <input asp-for="ConfirmPassword" class="form-control"
/>
 <span asp-validation-for="ConfirmPassword" class="text-
danger">
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <button type="submit" class="btn btn-
default">Register</button>
 </div>
 </div>
</form>

@section Scripts {
 @{ await Html.RenderPartialAsync("_ValidationScriptsPartial");
}
}

The following is the corresponding POST action method for registration. Here, the
program checks whether the model is valid, and, if it is valid, it will create an
ApplicationUser object using the model data and call the Identity API (the
CreateAsync method). If it can create the user variable, the user will log in using

www.EBooksWorld.ir

that user ID and be redirected to the Home page:

[HttpPost]
 [AllowAnonymous]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Register(RegisterViewModel
model)
 {
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser { UserName =
model.Email, Email = model.Email };
 var result = await _userManager.CreateAsync(user,
model.Password);
 if (result.Succeeded)
 {
 await _signInManager.SignInAsync(user,
isPersistent: false);
 return
RedirectToAction(nameof(HomeController.Index), "Home");
 }
 AddErrors(result);
 }

 return View(model);
 }

The log-out functionality is pretty simple. It just needs to call the SignoutAsync
method of Identity API and be redirected to the Index page:

[HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> LogOff()
 {
 await _signInManager.SignOutAsync();
 _logger.LogInformation(4, "User logged out.");
 return RedirectToAction(nameof(HomeController.Index),
"Home");
 }

Coming back to the log-in functionality, the following is the respective action method.
We are calling the PasswordSignInAsync method of Identity API. Upon a successful
login, we redirect the URL from where the log-in functionality is accessed:

[HttpPost]
 [AllowAnonymous]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Login(LoginViewModel
model, string returnUrl = null)
 {
 ViewData["ReturnUrl"] = returnUrl;

www.EBooksWorld.ir

 if (ModelState.IsValid)
 {
 var result = await
_signInManager.PasswordSignInAsync(model.Email, model.Password,
model.RememberMe, lockoutOnFailure: false);
 if (result.Succeeded)
 {
 return RedirectToLocal(returnUrl);
 }

 }
 // If there is any error, display the form again
 return View(model);
 }

www.EBooksWorld.ir

E-mail and SMS services
If you want to add e-mail and SMS services to your application's authentication
capabilities, you can do so by creating the interfaces and classes shown here:

public interface IEmailSender
{
 Task SendEmailAsync(string email, string subject, string
message)
 }
 public interface ISmsSender
 {
 Task SendSmsAsync(string number, string message);
 }
public class AuthMessageSender : IEmailSender, ISmsSender
 {
 public Task SendEmailAsync(string email, string subject,
string message)
 {
 // We can plug in our email service here to send an
email.
 return Task.FromResult(0);
 }
 public Task SendSmsAsync(string number, string message)
 {
 // We can plug in our SMS service here to send a text
message.
 return Task.FromResult(0);
 }
 }

www.EBooksWorld.ir

Securing an action method in a
Controller
For the sake of explanation, let us assume that the About page is a secure page and
only authenticated users should be able to access it.

We just have to decorate the About action method in the Home controller with
an[Authorize] attribute:

[Authorize]
 public IActionResult About()
 {
 ViewData["Message"] = "This is my about page";
 return View();
 }

Making the preceding change will redirect the user to the log-in page when the user
tries to access the log-in page without logging in to the application:

www.EBooksWorld.ir

In the following screenshot, you will notice an additional query parameter,
ReturnURL, in the URL. This ReturnURL parameter will redirect the application to
that specific page (the value passed in the ReturnURL parameter—Home/About in
our case).

Once you log in, you'll be redirected to the page that you requested earlier:

When you register a new user, the details of the user will be stored in the relevant
tables created by ASP.NET Identity.

Open the SQL Server Object Explorer window by selecting the option View | SQL
Server Object Explorer, as shown in the following screenshot:

www.EBooksWorld.ir

Once you select the SQL Server Object Explorer option, you will see a window
similar to the following screenshot. ASP.NET Identity creates a database for us by
using Entity Framework and the connection string that we provided earlier in the
appsettings.json package.

ASP.NET Identity creates several tables to maintain identity-related information and
the database migration history of Entity Framework. As we are using ASP.NET
Identity at the basic level, none of the identity-related tables will get populated, apart
from dbo.AspNetUsers.:

www.EBooksWorld.ir

You can right-click on the dbo.AspNetUsers table and select View Data to see the
data:

As only one user has been registered in our application, only one row has been
created. Please note that the hashed password (marked by ASP.NET Identity for us)

www.EBooksWorld.ir

and no blank passwords will get stored in the table.

www.EBooksWorld.ir

Summary
In this chapter, we learned about authentication and authorization. We also learned
how to implement ASP.NET Identity in an ASP.NET Core application by following a
step-by-step process. We also discussed the tables involved in ASP.NET Identity and
learned how to see the data created by ASP.NET Identity.

www.EBooksWorld.ir

Part 2. Module 2
ASP.NET Core and Angular 2

Create powerful applications for the modern web

www.EBooksWorld.ir

Chapter 1. Getting Ready
ASP.NET Core MVC is a web framework, built on top of the core .NET framework,
specifically made for building efficient web applications and APIs that will be able
to be reached by a massive range of clients including web browsers, mobile devices,
smart TVs, web-based home automation tools, and more.

Angular 2 is the second major installment of AngularJS, a world-renowned
development framework born with the idea of giving the coder the toolbox needed to
build reactive, cross-platform web-based apps, which are optimized for desktop and
mobile: it features a structure-rich templating approach which is based upon a
natural, easy-to-write, and readable syntax.

These two frameworks were put together with the same assumption in mind: the
HTTP protocol is not limited to serving web pages, it can be also used as a viable
platform to build web-based APIs to effectively send and receive data. This theory
has slowly made its way through the first 20 years of the World Wide Web and is
now an undeniable, widely acknowledged statement, and also a fundamental pillar of
almost every modern web development approach.

As for the reasons behind this perspective switch, there are plenty of good reasons
for it, the most important of them being related to the intrinsic characteristics of the
HTTP protocol. It is simple to use, flexible enough to match most development needs
in the always-changing environment which the World Wide Web happens to be, not to
mention how universal it has become nowadays, almost any platform that you can
think of has an HTTP library, so HTTP services can reach a broad range of clients,
including browsers, mobile devices, and traditional desktop applications.

www.EBooksWorld.ir

Two players one goal
From the perspective of a fully-functional web-based application, we could say that
the Web API interface provided with the ASP.NET Core framework is a
programmatic set of server-side handlers used by the server to expose a number of
hooks and/or endpoints to a defined request-response message system, typically
expressed in structured markup languages such as JSON or XML. This "exposition"
is provided using the HTTP protocol thanks to a publicly available web server
(typically IIS). Similarly, Angular can be described as a modern, feature-rich client-
side library that gives the browser the ability to bind input and/or output parts of an
HTML web page to a flexible, reusable, and easily testable JavaScript model.

These assumptions allow us to answer a simple, yet inevitable question: can we put
together the server-side strengths of ASP.NET Core's Web API capabilities with the
frontend capabilities of the Angular library in order to build a modern, feature-rich,
and production-ready web application?

The answer, in short, is yes. In the following chapters, we'll see how we can do that
by analyzing all the fundamental aspects of a well-written, properly designed web-
based product and how ASP.NET Core and/or Angular can be used to handle each
one of them.

www.EBooksWorld.ir

What's new in Angular 2?
The new major version of Angular is a complete rewrite of the previous one, entirely
based upon TypeScript and ECMAScript 6 specifications. The choice of not making
it backward compatible with the previous installment clearly demonstrates the
intention of the authors to adopt a completely new approach, any developer who
already knows AngularJS will undoubtedly face a huge number of breaking changes,
not only in the code syntax but also in the way of thinking and designing your client
app. Angular 2 is highly modular, entirely component-based, features a new and
improved dependency injection model and has the main goal of being able to easily
integrate with other server-side and client-side frameworks.

However, the most important reason why we're picking Angular 2 over other
excellent JS libraries such as ReactJS and EmberJS is the fact that it arrives with a
huge stack of features out of the box, making it way simpler to use than the
aforementioned competitors. If we combine that with the consistency given by
TypeScript language we could very well say that, despite being the youngster,
Angular 2 has embraced the framework approach more convincingly than the others.
That's a great reason to invest in it, hoping it will keep up with these compelling
promises.

www.EBooksWorld.ir

The ASP.NET Core revolution
Summarizing what has happened in the ASP.NET world within the last year is not an
easy task, in short, we could say that we're undoubtedly facing the most important
series of changes in the .NET Framework since the year it came to life. ASP.NET
Core is a complete re-implementation of ASP.NET, which unites all the previous
web application technologies such as MVC, Web API and Web Pages into a single
programming module, formerly known as MVC6. The new framework introduces a
fully featured cross-platform component, also known as .NET Core, shipped with a
brand new open source .NET Compiler Platform (currently known as Roslyn), a
cross-platform runtime (known as CoreCLR), and an improved x64 Just-In-Time
compiler (RyuJIT).

Note

You might be wondering what happened to ASP.NET 5 and Web API 2, as these used
to be quite popular names until mid-2016.

ASP.NET 5 was the original name of ASP.NET Core, before the developers chose to
rename it to emphasize the fact that it is a complete rewrite. The reasons for that,
together with the Microsoft vision about the new product, are further explained in the
following blog post from Scott Hanselman that anticipated the changes on January 16,
2016:

http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx

For those who don't know, Scott Hanselman has been the outreach and community
manager for .NET/ASP.NET/IIS/Azure and Visual Studio since 2007.

Additional information regarding the perspective switch is also available in the
following article by the senior Microsoft developer (and NuGet Program Manager)
Jeffrey T. Fritz: https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-
asp-net-core-and-net-core/

As for Web API 2, it was a dedicated framework for building HTTP services
returning pure JSON or XML data instead of web pages. Initially born as an
alternative to the MVC platform, it has been merged with the latter into the new,
general-purpose web application framework known as MVC6, which is now shipped
as a separate module of ASP.NET Core.

www.EBooksWorld.ir

http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/

The field of choice – single-page
application
In order to demonstrate how ASP.NET Core and Angular 2 can work together to their
full extent, we couldn't think of anything better than building a single-page application
project. The reason for that is quite obvious: although neither ASP.NET Core nor
Angular came into being with the specific purpose of building a SPA, there is no
better approach for showcasing some of the best features they have to offer
nowadays: we're talking about HTML5 pushState API, webhooks, data transport-
based requests, dynamic web components, UI data bindings, and a stateless, AJAX-
driven architecture capable of flawlessly encompassing all of these.

www.EBooksWorld.ir

Common features of a competitive SPA
If you have never worked on building single-page applications, you need to know
what you'll be facing. If you already have, feel free to skip to the following
paragraph, unless you don't mind taking another look at the key features provided by
any competitive SPA:

No server-side round-trips: A competitive SPA is able to redraw any part of
the client UI without requiring a full server-side round-trip to retrieve a full
HTML page. This is mostly achieved by implementing a separation of concerns
design principle, meaning that the data will be separated from the presentation
of data by using a model layer that will handle the former, and a view layer that
reads from the latter.
Efficient routing: A competitive SPA is able to keep track of the user current
state and location during his whole navigation experience using organized,
JavaScript-based routers. This is usually accomplished in one of two ways: the
Hashbang technique and HTML5 History API usage. We'll talk about both of
them in Chapter 2, ASP.NET Controllers and Server-side Routes.
Performance and flexibility: A competitive SPA usually transfers all of its UI
to the client thanks to its JavaScript SDK of choice (Angular, JQuery, Bootstrap,
and so on). This is often good for network performance, as increasing client-
side rendering and offline processing reduces the UI impact over the network.
But the real deal brought about by this approach is the flexibility granted to the
UI, as the developer will be able to completely rewrite the application's
frontend with little to no impact on the server, aside from a few static resource
files.

The list could easily grow, as these are only some of the major advantages of a
properly designed, competitive SPA. These aspects play a major role nowadays, as
many business websites and services are switching from their traditional multi-page
application (also known as MPA) mindset to fully committed or hybrid single-page
application based approaches. The latter have become increasingly popular since
2015 and are commonly called Native Web Applications (NWAs) because they tend
to implement a number of small-scale, single-page modules bound together upon a
multi-page skeleton rather than building a single, monolithic SPA.

Furthermore, there are also a lot of enterprise level single-page applications and
NWAs flawlessly serving thousands of users everyday, examples include WhatsApp
Web, Teleport Web, and Flickr, plus a wide amount of Google web services
including Gmail, Contacts, Spreadsheet, Maps, and more. Most of these services are
not there, thanks to the heat of the moment; they were intentionally built that way
years ago, and they are meant to stay.

www.EBooksWorld.ir

www.EBooksWorld.ir

Product owner expectations
One the most interesting, yet underrated, concepts brought out by many modern agile
software development frameworks such as SCRUM is the importance given to the
meanings and definitions of roles. Among these, there's nothing as important as the
product owner, also known as the customer inExtreme Programming methodology,
or customer representative elsewhere. In case you don't know, he's the guy that brings
the expectations you'll struggle to satisfy to the development table. He will tell you
what's most important to deliver and when; he will prioritize your work based on its
manifest business value rather than its underlying architectural value; he'll be entitled
by the management to take decisions and make tough calls, sometimes these are great,
sometimes not so, that will often have a significant impact on your development
schedule. In short, he's the one in charge of the project, that's why, in order to deliver
a web application matching his expectancies, you'll need to understand his vision and
feel it as if it were yours.

This is always true, even if your project's product owner is your dad, wife, or best
friend; even if he happens to be you.

Now that we've made that clear, let's take a look to some of the most common product
owner's expectations for a typical web-based single-page application project, we
ought to see if the choice of using ASP.NET Core and Angular is good enough to
fulfill each one of them:

Early release(s): No matter whether you're selling a bunch of salad or web-
based services, the customer will always want to see what he's buying. If you're
using SCRUM, you'll have to release a potentially-shippable product at the end
of each sprint; in a Waterfall-based approach you'll have Milestones, and so on.
One thing is for sure, the best thing you can do in order to efficiently organize
your development is to adopt an iterative and/or modular-oriented approach.
ASP.NET Core and Angular, along with the strong separation of
concerns granted by their underlying MVC or MVVM based patterns, will
gracefully push you into the mindset needed to do just that.
GUI over backend: You'll often be asked to work on the GUI and frontend
functionalities because they will be the only real viewable and measurable thing
for the customer. This basically means that you'll have to mock up the data
model and start to work on the frontend as soon as possible, delaying everything
that goes on under the hood, even if that means leaving it empty, we could say
that the hood is what you need the most. Please notice that this kind of approach
is not necessarily bad, by all means, we're not tying up the donkey where the
(product) owner wants. On the other hand, the choice of using ASP.NET Core
together with Angular will grant you the chance of easily decoupling the

www.EBooksWorld.ir

presentation layer and the data layer implementing the first and mocking the
latter, which is a great thing to do. You'll be able to see where you're going
before wasting valuable time or being forced to make potentially wrong
decisions. ASP.NET Core's Web API interface will provide the proper tools to
do that by allowing you to create a sample web application skeleton in a matter
of seconds using Visual Studio Controller templates and in-memory data
contexts powered by the Entity Framework 6, which you will be able to access
using entity models and code-first. As soon as you do that, you'll be able to
switch to the GUI design using the Angular 2 presentation layer toolbox as often
as you want until you reach the desired results. Once you are satisfied, you'll
just need to properly implement the web API controller interfaces and hook up
the actual data.
Fast completion: None of them will work unless you also manage to get
everything done in a reasonable time span. This is one of the key reasons for
choosing to adopt a server-side framework and a client-side framework
working together with ease. ASP.NET Core and Angular 2 are the tools of
choice not only because they're both built on solid, consistent ground, but also
because they're meant to do precisely that: get the job done on their respective
side and provide a usable interface to the other partner.
Adaptability: As stated by the Agile manifesto, being able to respond to change
requests is more important than following a plan. This is especially true in
software development, where we could even claim that anything that cannot
handle change is a failed project. That's another great reason to embrace the
separation of concerns enforced by our two frameworks of choice, as this grants
the developer the ability to manage, and even welcome, to some extent, most of
the layout or structural changes that will be expected during the development
phase.

That's about it. Notice that we didn't cover everything here, as it would be
impossible without undertaking an actual assignment. We just tried to give an
extensive answer to the following general questions. If we were to build SPA, would
ASP.NET Core and Angular 2 be an appropriate choice? The answer is undoubtedly
yes, especially when used together. Does it mean that we're done already? Not a
chance, as we have no intention of taking this assumption for granted. Conversely, it's
time for us to demonstrate it by ceasing to speak in general terms and starting to put
things in motion.

www.EBooksWorld.ir

A sample single-page application
project
What we need now is to conceive a suitable test-case scenario similar to the ones we
will eventually have to deal with: a fully featured, production-ready single-page
application project complete with all the core aspects you would expect from a
potentially shippable product.

In order to do this, the first thing we need to do is to become our own customer for a
minute and come up with an idea, a vision to share with our own other self. We'll
then be able to put our developer shoes back on and split our abstract plan into a list
of items we'll need to implement: these will be the core requirements of our own
project. Finally, we'll set up our workstation by getting the required packages, adding
the resource files, and configuring both the ASP.NET Core and Angular 2
frameworks into the Visual Studio 2015 IDE.

www.EBooksWorld.ir

The vision
If we're going to demonstrate the key features of ASP.NET Core and Angular we can't
really take into consideration the number of presentation-oriented websites such as
demos, product galleries, corporate or marketing showcases, photo/video/media
reels, and so on, as we need something that can show the asynchronous and parallel
request processing capabilities of both frameworks to their full extent. In order to
fulfill these expectations, we would instead need something similar to a blog engine,
a content-management system, and/or a groupware platform such as a community
forum or a wiki.

The latter seems to be the most appropriate, as it will mean going through a number
of implementation challenges including account management, login/session handling,
search-based navigation, full-text search queries, titles and contents indexing, multi-
language support, markup syntax rendering, dynamic media handling and a not-so-
trivial data model on top of an ever-growing, potentially huge amount of data.

The application we are going to build won't be just a shallow demonstration; we
won't throw some working code here and there and expect the reader to connect the
dots. Our objective is to create a solid, realistic application using our frameworks of
choice while following the current development best practices. Each chapter will be
dedicated to a single core aspect and if you feel like you already know your way
there, feel free to skip to the next one. Conversely, if you're willing to follow us
through the whole loop, you'll have a great journey through the most useful aspects of
ASP.NET Core and Angular 2 and how they can work together to deliver the most
common and useful web development tasks, from the most trivial ones to the more
complex beasts. It's an investment that will pay dividends, as it will leave you with a
maintainable, extensible, and well-structured project, plus the knowledge needed to
build your own.

To avoid making things too boring, we'll pick an enjoyable, enticing theme from the
entertainment industry: a collaborative, wiki-enabled database of open-source video
games, where registered users will be able to add/modify entries.

We'll call it OpenGameList, also known as opengamelist.com. Luckily enough,
the domain was still available at the time of writing this book. If you go there now,
you'll be able to see what we're going to build from scratch (don't do that if you don't
like spoilers, as it could ruin some of your fun).

www.EBooksWorld.ir

Core requirements
Our application will follow a rather classic approach: our users will be able to
browse the latest entries and navigate through the wiki using internal wiki links or
via simple or complex search queries. If they're authenticated, they'll also be allowed
to switch to edit mode to modify an item or add a new one, otherwise, they'll be
prompted to enter their credentials via a classic login or registration form. On top of
all that, we'll also add an administration area where we can do our management stuff
such as deleting entries, editing/disabling/deleting users, running maintenance tasks,
and so on.

Let's break down these requirements to a list of development topics:

Routing: The app will be able to properly respond to client requests, that is to
say, routing them accordingly to what they're up to.
Data model: We'll definitely adopt a database engine to store our entries and
the proper tools to access it in a modern, fashionable way. In order do so, we
need to define our data architecture by setting up Data Repositories and Domain
Entities that will be handled by the server and hooked to Angular 2 through
ASP.NET Core's Web API controller interfaces.
Web API controllers: From an MVC-based architectural perspective, one of
the main differences between multi-page and single-page applications is that the
former's controllers are designed to return views, while the latter ones, also
known as API controllers, return serialized data. These are what we will need
to implement to put Angular 2 components in charge of the presentation layer.
Angular components: Switching to client-side, we will need to define a set of
components to handle UI elements and state changes. As you probably already
know, components are the most fundamental elements in Angular 2, replacing
Angular 1's controllers and scopes. We'll get to know more about them soon
enough.
Authentication: Soon enough we'll have the need to empower our application
with a membership context, that way we'll be able to restrict CRUD operations
to authenticated users only, keep track of each user actions, prepare the
administration layer, and so on.

These will be our main development challenges: if we don't know how to properly
handle them, we won't be able to succeed.

The following chapters will address each one of them: we'll also cover other
important aspects such as SEO, security, and deployment, as they will be very
important when you are ready to publish your application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Preparing the workspace
The first thing we have to do is to set up our workstation: it won't be
difficult because we only need a small set of essential tools. These include Visual
Studio 2015, the web platform installer, .NET Framework 4.5 or higher, a web
server such as IIS or IIS Express, and a decent source code control system such as
Git, Mercurial, or Team Foundation, which we will take for granted as you most
likely already have them in place. Just make sure you're all set with these before
going further.

Note

IMPORTANT

If you haven't already, be sure to download and install Visual Studio 2015 Update 3
and the .NET Core for Visual Studio Tools Preview 2. These are the latest updates
at the time of writing, but will be updated in the near future.

These updates will address some important issues for web development tools, as
well as adding improved support for TypeScript, NPM, and other components that
we'll be using later on:

Visual Studio 2015 Update 3: http://go.microsoft.com/fwlink/?LinkId=691129
.NET Core for Visual Studio Tools Preview
2.0.1: https://go.microsoft.com/fwlink/?LinkID=824849

www.EBooksWorld.ir

http://go.microsoft.com/fwlink/?LinkId=691129
https://go.microsoft.com/fwlink/?LinkID=824849

Setting up the project
The first thing we need to do is to create a new ASP.NET Core web application
project:

1. Fire up Visual Studio 2015 and, from the File menu, expand New and select
Project to open a new project modal window.

2. From the Templates tree, expand the Visual C# node and select the Web
subfolder: the right section of the modal window will be populated by a number
of available project templates. Among these, there are two choices for creating
an ASP.NET Core web application project: the first one, optimized for cross-
platform deployment, entirely relies upon the new .NET Core Framework; the
other one, ideal for a Windows environment, is based upon the latest .NET
Framework version (4.6.1 at the time of writing).

3. The good thing here is that, thanks to the ASP.NET Core versatility, we are free
to choose the approach we like the most, as both frameworks are mature enough
to support almost everything we will use within this book. The only relevant
downside of the .NET Core choice is the lack of compatibility with some NuGet
packages that haven't been ported there yet: that's why, at least for our example,
we'll be choosing to stick with the full-scale .NET Framework. In order to do
that, select the ASP.NET Core Web Application (.NET Framework) template
and fill in the relevant Name, Location, and Solution name fields. We'll name

www.EBooksWorld.ir

the solution OpenGameList, while the project will be called
OpenGameListWebApp,as shown in the previous screenshot. Once done, click
OK to continue.

4. In the next modal window, we can further customize our template by choosing
the default contents to include in our project (Empty, Web API, or Web
Application) and the authentication mechanism, should we want to use one.
Choose Web API and No authentication, then click the OK button to create the
project.

5. If you're used to the Visual Studio Web Application Project templates from
previous ASP.NET versions you may be tempted to choose Empty instead, thus
avoiding the insane amount of sample classes, folders, and components,
including a number of potentially outdated versions of various client-side
frameworks such as Bootstrap, KnockoutJS, JQuery, and more. Luckily, these
new ASP.NET Core project templates are extremely lightweight - the one we
did choose comes with nothing more than a /Controller/ folder, a
ValuesController.cs sample, and some useful references in the Startup.cs
file.

www.EBooksWorld.ir

Package and resource managers
Now that our project has been created, it's time to add the resources we're going to
use. As we already mentioned, the layout of a standard ASP.NET Core solution is
quite different from what it used to be. The main differences are:

The solution's projects are now created in a /src/ folder by default. This is just
a convention, though, as they can be placed anywhere.
There is a brand-new wwwroot folder, which will contain the compiled, ready-
to-publish contents of our application, while everything else will be the project
source code.

Other things worth noting are a Controller folder, containing a sample
ValueController.cs class, a Startup.cs file containing the application class and
a couple of other files we'll address in a while.

The first thing we need to do is to add a folder called Scripts to the root of our
project. We'll use this folder to place all of our JavaScript files, and then we'll
combine and minify these using a JavaScript Task Runner such as Gulp, this way
we'll make sure that the resulting file will be added to the wwwroot folder

www.EBooksWorld.ir

automatically after each build.

www.EBooksWorld.ir

Installing the packages
Now it's time to make a good use of the three package managers natively supported
by ASP.NET, namely NuGet, NPM, and Bower. These tools will allow you to
gather all the resources you need to build your application: they will download all
the resources and their dependencies automatically, so you needn't do it manually,
thus saving a lot of time. In case you're wondering why we need three of them, it can
be useful to briefly recap their scope:

NuGet: This will take care of all the .NET native and third-party packages such
as Entity Framework, ASP.NET MVC, and so on. The full package list is stored
in the project.json file so they can be retrieved and/or checked for updates at
any time.
NPM: This was the default package manager for the JavaScript runtime
environment known as Node.js. Over the last few years, though, it has also been
used to host a number of projects, libraries, and frameworks of any kind,
including Angular 2. The package list is stored in the package.json file.
Bower: Another package management system for client-side programming,
created by Twitter and maintained on GitHub, specifically designed for frontend
development such as jQuery, Bootstrap, and AngularJS. It depends on
Node.js and NPM and works under git. Its configuration file is called
bower.json. Notice that, since the Angular 2 team is pushing their code using
NPM rather than Bower, we won't be using it in our project.

NuGet and ASP.NET

ASP.NET Core gives us at least four different ways to add NuGet packages to our
project:

Using the Visual Studio powered GUI, accessible by right-clicking the project
and choosing Manage NuGet Packages.
Using the Package Manager Console, with the well-renowned Install-
Package command followed by the package name and build version.
Using the on-screen helper tools provided by Intellisense, limited to the native
.NET modules/libraries.
Directly adding the package reference to the project's NPM configuration file,
also known as project.json.

The first three methods, although being absolutely viable, are basically shortcuts for
populating the fourth one; the latter has the advantage of being the less opaque one, so
we'll just use it.

Project.json

www.EBooksWorld.ir

Open the project.json file, find the dependencies section and add the following
packages to the list (new lines are highlighted):

 "dependencies": {
 "Microsoft.AspNetCore.Mvc": "1.0.0",
 "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
 "Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
 "Microsoft.Extensions.Configuration.EnvironmentVariables":
"1.0.0",
 "Microsoft.Extensions.Configuration.FileExtensions": "1.0.0",
 "Microsoft.Extensions.Configuration.Json": "1.0.0",
 "Microsoft.Extensions.Logging": "1.0.0",
 "Microsoft.Extensions.Logging.Console": "1.0.0",
 "Microsoft.Extensions.Logging.Debug": "1.0.0",
 "Microsoft.Extensions.Options.ConfigurationExtensions":
"1.0.0",
 "Microsoft.AspNetCore.Diagnostics": "1.0.0",

 "Microsoft.AspNetCore.Routing": "1.0.0",

 "Microsoft.AspNetCore.Authentication.JwtBearer": "1.0.0",

 "Microsoft.AspNetCore.StaticFiles": "1.0.0",

 "Microsoft.VisualStudio.Web.BrowserLink.Loader": "14.0.0"
 }

We have added a space to visually separate the default dependencies required by all
ASP.NET Core projects from our newly added ones.

Tip

The listed builds are the latest at the time of writing, but they won't last forever: as
soon as ASP.NET Core passes its initial release (1.0.0 at the time of writing), these
numbers will gradually increase over time, whenever a new version comes out. To
check the latest version of each package, just place the cursor between the quotes and
delete the version number, a dynamic drop-down list will be shown containing all the
latest versions for that given module.

While we're here, it can be useful to check which version of the .NET Framework we
are targeting by looking at the frameworks key. Since we choose the .NET
Framework template, we should find something like this:

 "frameworks": {
 "net461": { }
 },

This will most likely change in the future, so be sure to target a version compatible

www.EBooksWorld.ir

with the packages you want to use. For the purpose of this book, the .NET
Framework 4.6.1 will do the job.

As soon as we save the project.json file, Visual Studio will start to retrieve the
missing packages from the web. Wait for it to finish, then proceed with opening the
Startup.cs file, which is also in the project root.

Startup.cs

If you're a seasoned .NET developer you might already be familiar with the
Startup.cs file, introduced in OWIN-based applications to replace most of the
tasks previously handled by the good old Global.asax file. In ASP.NET Core, the
Startup.cs file serves the same purpose as the OWIN startup class, being nothing
less than the application main entry point, it is the place where we can add services,
choose which application modules and middleware functions to load, handle
dependency injection tasks, and configure the pipeline.

However, the similarities end here, the class has been completely rewritten to be as
pluggable and lightweight as possible, meaning that it will include and load only
what's strictly necessary to fulfill our application's tasks.

To better understand this, let's take a look at the following lines taken from the
Startup.cs source code shipped with the ASP.NET Core Web API project template
we chose:

// This method gets called by the runtime. Use this method to
configure the HTTP request pipeline.
public void Configure(IApplicationBuilder app, IHostingEnvironment
env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseMvc();
}

Notice how empty our application's HTTP request pipeline is, it won't ever serve
static files, since there is nothing telling it to do so. To better understand it, let's
perform a quick test before proceeding.

Testing the HTTP request pipeline

In order to check that the ASP.NET pipeline is properly working, click on the Start
Debugging option in the Debug menu, or just hit the F5 hotkey. If everything is OK,
your default web browser will open pointing to the following
URL: http://localhost:14600/api/values.

www.EBooksWorld.ir

The page content will show the following:

If we're seeing the preceding screenshot, it means that the request pipeline is working
fine, the MVC module has been added within the Startup.cs file and it's working as
expected. That's because there's a sample ValueController.cs class in the
/Controllers/ folder, conveniently added by the Web API project template we
chose a while ago, that behaves exactly like this.

Now let's try to request the static Project_Readme.html file, also added by our
chosen template in the project root. In order to reach it, we need to move it inside the
/wwwroot/ folder. Once done, it should be reachable by pointing at the following
URL: http://localhost:14600/Project_Readme.html.

However, if we try to do that, and then issue that request using the same browser we
used before, we would get the following response:

www.EBooksWorld.ir

This HTTP 404 error clearly demonstrates what we've just said, the HTTP request
pipeline won't serve static files, simply because we didn't tell it to. However, we can
easily fix that behavior by adding them to the pipeline within the Startup.cs file
(new lines highlighted):

// This method gets called by the runtime. Use this method to
configure the HTTP request pipeline.
public void Configure(IApplicationBuilder app, IHostingEnvironment
env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 // Configure a rewrite rule to auto-lookup for standard default
files such as index.html.
 app.UseDefaultFiles();

 // Serve static files (html, css, js, images & more). See also
the following URL:

 // https://docs.asp.net/en/latest/fundamentals/static-
files.html for further reference.

 app.UseStaticFiles();

 // Add MVC to the pipeline

www.EBooksWorld.ir

 app.UseMvc();
}

While we are here, we also added the following:

A rewrite rule to enable support for the most common default files (such as
index.htm, index.html, and so on), which will be automatically served
without the user having to fully qualify the URI.
A series of comments to better clarify the meaning of each module, including a
reference link to the official ASP.NET Core documentation.

If we run our application again, we should now be welcomed with the following:

That's it. We have enabled static file support, so that we'll be able to serve not only
HTML but also CSS, JS files, and so on. Delete the Project_Readme.html and get
ready to install an important third-party NuGet package that we'll be using a lot in the
following chapters.

Newtonsoft.Json

If you're working with ASP.NET and you've never heard about Newtonsoft.Json
(formerly Json.NET), you've almost certainly missed something that could've eased
your job, big time. We're talking about one of the finest libraries - and most useful
tools, ever developed for .NET, at least for the writer. It's a very efficient (and thus

www.EBooksWorld.ir

very popular), high-performance JSON serializer, deserializer, and all-around
framework for .NET, which also happens to be completely open source.

We won't dig into it anymore here, as we'll be using it soon enough. For now, let's
just install it by right-clicking on our solution's node in the Solution Explorer, then
choosing Manage NuGet Packages for this Solution... to open up the following
panel:

Search for Newtonsoft.Json to make it appear if it isn't there already, then left-click
to select it. Ensure to select the latest stable version (9.0.1 at the time of writing),
click on Install, and then wait for the installer to complete its job.

That's it for now: if we open the project.json file now, we can see that the
Newtonsoft.Json package reference has been added at the end of the
dependencies section, together with the other project-specific dependencies we've
manually added before. We'll be installing other packages using the GUI in the
following chapters, as soon as we need them, now that we know how easy it is to do
that.

JavaScript, TypeScript, or Dart?

Now it's time to choose the client programming language to adopt. Given the fact
we're planning to use Angular 2, our choices are basically the following three: good
old JavaScript, its Microsoft superset known as TypeScript, or the Google growing
beast known as Dart.

www.EBooksWorld.ir

In this project, we're going to use TypeScript for a number of good reasons, the most
important of them are as follows:

TypeScript has a number of features that JavaScript doesn't, such as static
typing, classes, and interfaces. Using it in Visual Studio also gives us the chance
to benefit from the built-in IntelliSense, which, together with its distinctive
features, will allow us to spot most programming errors as we type the code,
potentially saving a great amount of time.
For a large client-side project, TypeScript will allow us to produce a more
robust code, which will also be fully deployable anywhere a plain JavaScript
file would run. As a matter of fact, since TypeScript is a superset of JavaScript
it can be used alongside any JavaScript code without problems.
Dart is a wonderful newcomer, and it will probably surpass its ECMA script-
rivals soon. Currently though, it is still quite immature in terms of available
third-party libraries, documentation, development support, and overall
community knowledge.

We're not the only ones praising TypeScript: it's something acknowledged by the
Angular team itself, considering the fact that the Angular 2 source code has been
written using TypeScript, as proudly announced by Microsoft in the following MDSN
blog post: https://blogs.msdn.microsoft.com/typescript/2015/03/05/angular-2-built-
on-typescript/.

Adding the tsconfig.json file

The first thing we hav to do to set up TypeScript is to add a tsconfig.json file to
our root project.

In the e to do to set up TypeScript is to add a tsconfig.json file to our root
project. In the Solution Explorer, right-click on the root project node and select
Add, then New Item; switch to the client-side from the top left tree view, then select
TypeScript Configuration File, and add the tsconfig.json file to the project root.

www.EBooksWorld.ir

https://blogs.msdn.microsoft.com/typescript/2015/03/05/angular-2-built-on-typescript/

The tsconfig.json file will be generated with its default set of options, which are
good for most scenarios but not ideal for what we're going to do. That's why we need
to add/change some settings until it will look like the following:

{
 "compileOnSave": false,
 "compilerOptions": {
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "module": "system",
 "moduleResolution": "node",
 "noImplicitAny": false,
 "noEmitOnError": false,
 "removeComments": false,
 "target": "es5"
 },
 "exclude": [
 "node_modules",
 "wwwroot"
]
}

These instructions will influence how Intellisense and our external TypeScript
compiler will work; two things that will help us, big time.

www.EBooksWorld.ir

Wait a minute, did we just say external TypeScript compiler? What about the built-in,
integrated TypeScript compile feature provided by the Visual Studio IDE?

Well, we just said that one of TypeScript's biggest advantages is that we can use it
anywhere a plain JavaScript file would run, that's because any .ts file can be
compiled into a .js file without any problem. The compile task is handled by the
TypeScript compiler itself, also known as tsc, which can be run directly from the
Visual Studio IDE with the help of the tsconfig.json we added in the preceding
paragraph. That file, as we've just seen, contains a wide set of compiling options
such as creating source maps, creating definition files, concatenating everything into
a single output file, and so on. Looking great, isn't it?

Unfortunately, not so much. Although Visual Studio 2015 does a pretty decent job of
acting as a bridge between our TypeScript sources and tsc, it still lacks an important
key feature, it doesn't give the option to minify/uglify the resulting JS files, thus
leaving them uncompressed after the compile task.

Such feature can be trivial during development, yet it happens to be quite important in
production because we'll definitely want to cloak our source code before publishing
it. That's why the best thing we can do is to stop the Visual Studio IDE from
compiling TypeScript files and implement a custom alternative that does support
minify/uglify.

Note

In case you're wondering about what the terms minify and/or uglify actually mean, we
strongly suggest that you read the following Wikipedia page:
https://en.wikipedia.org/wiki/Minification_(programming).

Luckily, we're going to use something we would need anyway, a dedicated,
streamlined, and modern task runner that goes by the name of Gulp. In order to install
it, though, we need to set up the appropriate package manager.

Introducing NPM

NPM is the tool we will use to add some important packages to our project, the most
relevant ones being Gulp and Angular 2. To install it, do the following:

1. Go to the Solution Explorer.
2. Right-click on the root project node.
3. Select Add, then New Item.
4. Switch to Client-side from the top left tree view, then select NPM

Configuration File, and add the package.json file to the project root.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Minification_(programming)

Change the contents of the automatically-generated package.json file to match the
following:

{
 "version": "1.0.0",
 "name": "opengamelistwebapp",
 "private": true,
 "dependencies": {
 },
 "devDependencies": {
 "gulp": "^3.9.1",
 "gulp-clean": "^0.3.2",
 "gulp-concat": "^2.6.0",
 "gulp-sourcemaps": "^1.6.0",
 "gulp-typescript": "^2.13.6",
 "gulp-uglify": "^2.0.0",
 "typescript": "^1.8.10"
 }
}

Please notice that, at the time of writing, Gulp 3.9.1 is the latest version. You can
check the most recent build by checking the Visual Studio Intellisense, which is able
to perform impressive real-time update checks upon each package's latest build just
like it does within the project.json file:

www.EBooksWorld.ir

As an alternative, you can always visit the Gulp project NPM page at
https://www.npmjs.com/package/gulp and change the build version numbers
accordingly.

Notice that you aren't forced to input precise build numbers, as you can also use the
standard npmjs syntax to specify auto-update rules bound to custom version ranges
using the supported prefixes, such as the following:

The Tilde (~): ~1.1.4 will match all 1.1.x versions, excluding 1.2.0, 1.0.x and
so on.
The Caret ()̂: ^1.1.4 will match everything above 1.1.4, excluding 2.0.0 and
above.

This is another scenario where Intellisense will come in handy, as it will also suggest
how to do it.

Note

For an extensive list of available npmjs commands and prefixes, you can also check
out the official npmjs documentation at https://docs.npmjs.com/files/package.json.

Working with Gulp

As you most likely already know, Gulp is a powerful task runner toolkit that we will
use to automate some time-consuming tasks in our development workflow. If you
never worked with a task runner, think of it as a batch file or, even better, a
PowerShell script powered with some useful web development tools such as file

www.EBooksWorld.ir

https://www.npmjs.com/package/gulp
https://docs.npmjs.com/files/package.json

concatenation, js/css shrinking, and more.

You will notice that, together with Gulp, we're also installing some Gulp-related
plugins:

gulp-clean: This deletes the contents of the destination folders
gulp-concat: This merges multiple files into one
gulp-sourcemaps: This generates the Source Maps
gulp-typescript: This compiles TypeScript files into JS
gulp-uglify: This minifies JavaScript files

Configuring Gulp is as simple as adding the Gulp Configuration file to your project.
You can do that just like you did with the NPM Configuration file, right-click on the
root project node in the Solution Explorer and select Add, then New Item. From the
client-side tree panel, locate and select the Gulp Configuration file and add a
gulpfile.js file to the project root.

The Gulp configuration file, generally known as Gulpfile, is basically a list of tasks
and commands that Gulp will execute, written using a mostly readable JavaScript
syntax. Working with it can be tricky at first, especially if you want to use it to handle
complex tasks. Digging too much into it would take us out of the scope of this book,
so we'll just see how we can tell it to do a rather simple set of jobs, merge all the
JavaScript files in the /Scripts/ folder, minus those in a directory for third-party
scripts/libraries, into a single, minified all.min.js file which will be generated
into the wwwroot folder. This can be obtained with the following code:

var gulp = require('gulp'),
 gp_clean = require('gulp-clean'),
 gp_concat = require('gulp-concat'),
 gp_sourcemaps = require('gulp-sourcemaps'),
 gp_typescript = require('gulp-typescript'),
 gp_uglify = require('gulp-uglify');

/// Define paths
var srcPaths = {
 app: ['Scripts/app/main.ts', 'Scripts/app/**/*.ts'],
 js: ['Scripts/js/**/*.js']
};

var destPaths = {
 app: 'wwwroot/app/',
 js: 'wwwroot/js/'
};
// Compile, minify and create sourcemaps all TypeScript files and
place them to wwwroot/app, together with their js.map files.
gulp.task('app', function () {
 return gulp.src(srcPaths.app)

www.EBooksWorld.ir

 .pipe(gp_sourcemaps.init())

.pipe(gp_typescript(require('./tsconfig.json').compilerOptions))
 .pipe(gp_uglify({ mangle: false }))
 .pipe(gp_sourcemaps.write('/'))
 .pipe(gulp.dest(destPaths.app));
});

// Delete wwwroot/app contents
gulp.task('app_clean', function () {
 return gulp.src(destPaths.app + "*", { read: false })
 .pipe(gp_clean({ force: true }));
});

// Copy all JS files from external libraries to wwwroot/js
gulp.task('js', function () {
 return gulp.src(srcPaths.js)
 // .pipe(gp_uglify({ mangle: false })) // disable uglify
 // .pipe(gp_concat('all-js.min.js')) // disable concat
 .pipe(gulp.dest(destPaths.js));
});

// Delete wwwroot/js contents
gulp.task('js_clean', function () {
 return gulp.src(destPaths.js + "*", { read: false })
 .pipe(gp_clean({ force: true }));
});

// Watch specified files and define what to do upon file changes
gulp.task('watch', function () {
 gulp.watch([srcPaths.app, srcPaths.js], ['app', 'js']);
});
// Global cleanup task
gulp.task('cleanup', ['app_clean', 'js_clean']);

// Define the default task so it will launch all other tasks
gulp.task('default', ['app', 'js', 'watch']);

Here's a brief explanation of what these commands actually do:

In lines 1-6, we set up Gulp and the required plugins. Notice that every one of
them will be initialized into a variable, as that's the way Gulp works.
In lines 8-17,we define the file paths we will use. Doing that here will allow us
to write them only once, thus making the Gulp file easier to maintain. Notice that
we're splitting the source and the destination paths into two distinct objects, this
will mentally help us to keep the development environment separated from the
production one.
In lines 19-27, we have the app task, which is the most important and complex
one. This task makes use of three different plugins: sourcemaps, typescript, and
uglify. Notice how each line is bound to a specific plugin action, which takes

www.EBooksWorld.ir

care of a single job, following the "It should do one thing" paradigm Gulp is
all about. Line 21 defines the source files, line 22 initializes the sourcemaps
plugin, line 23 instructs the plugin to fetch the TypeScript compiler options from
the tsconfig.json file, and so on.
In lines 29-33, we have the app_clean task, which will erase every file and
subfolder within the wwwroot/app target path.
In lines 35-39, we define the js task, which is meant to publish external
JavaScript libraries manually added to the project. This is a rather simple task,
as it performs a mere copy of the .js files from a source folder into its
production counterpart. Notice how we could easily choose to also minify
and/or concatenate the source files into a single one by uncommenting a few
lines of code. However, since this task is meant to handle third-party JavaScript
libraries, it would be wise not to manipulate their code.
In lines 43-47, there's the js_clean task that will erase everything within the
wwwroot/js target path.
In lines 49-52, we have the watch task. This is basically a file
watcher/monitoring task that will execute the app and js tasks if one or more of
their source files will change.
In lines 54-55, we created a cleanup task that will erase the content of all
destination paths by launching the app_clean and js_clean tasks. It can be
useful to reset these folders to their initial state.
Last but not least, in lines 57-58, we define the default task that will execute
all the other tasks, including watch, within a single call. This is the one we will
launch.

Note

It's worth noting that the uglify plugin requires the mangle option to be set to false:
this is a workaround for a bug in the Angular 2 RC5 that will hopefully be fixed in
future releases. For more info regarding this topic, check out the following URL from
the official Angular 2 GitHub repository:
https://github.com/angular/angular/issues/10618.

To execute the Gulp file, right-click on it from the Solution Explorer and choose
Task Runner Explorer, or open it manually by selecting it from File, Other
Windows in the Visual Studio 2015 main menu bar. Once opened, click the refresh
button, then right-click the default task and select Run to activate it.

www.EBooksWorld.ir

https://github.com/angular/angular/issues/10618

Once you do that, the watch task we just created will silently run in background,
keeping tracks of our changes and act accordingly. Notice the default (running) word
within the tab label, which will remind us that there is still an ongoing task: closing
that console window will immediately shut it down.

That's everything we'll ever need from Gulp for this project; there's no need for us to
go further. If you want to learn more about Gulp and its configuration file syntax, you
will find a lot of resources and documentation, together with a lot of useful samples,
in the official website at the following address: http://gulpjs.com/.

Dependent tasks

Since we're going to do a lot of modifications to the files contained in the
/Scripts/app/ folder within the following chapters, it would be great if the
app_clean task could run automatically before the app task: such behavior would
ensure that we'll always get rid of outdated and orphaned files without having to
manually perform the cleanup. Luckily enough, Gulp allows us to easily do that by
passing an optional array of dependent tasks that will be launched before the main
one.

Let's go back to the line where we defined the app task and add the following
(updated code are highlighted):

gulp.task('app', ['app_clean'], function () {

That's it. From now on the app task will launch the app_clean dependent task and
wait for its completion before executing itself, meaning that the /wwwroot/app/

www.EBooksWorld.ir

http://gulpjs.com/

folder contents will be erased before the arrival of the new file, this is precisely
what we wanted.

Note

It's worth noting that the synchronous behavior of the app_clean task is guaranteed
by its return value, whenever a dependent task is returning itself, the main task will
wait for its completion before running.

Using Grunt instead of Gulp

Before Gulp was widely welcomed by the web application development community,
Grunt used to be the king of the hill. Does that mean the former killed the latter?
Well, most certainly not. Grunt is still an excellent tool and can be a great alternative
to Gulp, especially if you already know how to use it. Unless you do, though, we
suggest starting with Gulp because we think that it has a fair edge on code flexibility,
and also a more streamlined approach. However, if you don't feel like using it,
sticking to Grunt and its renowned plugins is just as good, you won't ever get fired
for such a choice.

Using Grunt instead of Gulp is as easy as doing the following:

1. In NPM'spackage.json file, replace the Gulp references - together with the
relevant plugins, with the Grunt packages.

2. In the Solution Explorer, add a gruntfile.js file instead of a gulpfile.js.
3. In the gruntfile.js, rewrite the same tasks defined previously using the Grunt

syntax.

This is a good example of the Grunt-powered package.json:

{
 "version": "1.0.0",
 "name": "opengamelistwebapp",
 "private": true,
 "dependencies": {
 },
 "devDependencies": {
 "grunt": "^0.4.5",
 "grunt-contrib-clean": "^1.0.0",
 "grunt-contrib-copy": "^1.0.0",
 "grunt-contrib-uglify": "^1.0.0",
 "grunt-contrib-watch": "^0.6.1",
 "grunt-ts": "^5.3.2",
 }
}

www.EBooksWorld.ir

And this is how the gruntfile.js would look after porting all the Gulp tasks
defined previously to Grunt syntax:

module.exports = function (grunt) {
 grunt.loadNpmTasks('grunt-contrib-clean');
 grunt.loadNpmTasks('grunt-contrib-copy');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.loadNpmTasks('grunt-ts');

 grunt.initConfig({
 clean: [
 'Scripts/app/*',
 'Scripts/js/*'
],
 ts: {
 base: {
 src: [
 'Scripts/app/main.ts',
 'Scripts/app/**/*.ts'
],
 outDir: 'wwwroot/ app',
 tsconfig: './tsconfig.json'
 }
 },

 uglify: {
 my_target: {
 files: [{
 expand: true,
 cwd: 'wwwroot/ app',
 src: ['**/*.js'],
 dest: 'wwwroot/ app'
 }]
 },
 options: {
 sourceMap: true
 }
 },

 // Copy all JS files from external libraries and required
NPM packages to wwwroot/js
 copy: {
 main: {
 files: [{
 expand: true,
 flatten: true,
 src: [
 'Scripts/js/**/*.js'
],
 dest: 'wwwroot/js/',
 filter: 'isFile'

www.EBooksWorld.ir

 }]
 }
 },

 // Watch specified files and define what to do upon file
changes
 watch: {
 scripts: {
 files: [
 'Scripts/**/*.ts',
 'Scripts/**/*.js',
],
 tasks: ['clean', 'ts
', 'uglify', 'copy']
 }
 }
 });

 // Global cleanup task
 grunt.registerTask('cleanup', ['clean']);

 // Define the default task so it will launch all other tasks
 grunt.registerTask('default', ['clean', 'ts', 'uglify', 'copy',
'watch']);
};

As we can see, the syntax is very different but the underlying logic and features are
quite similar, we still have a bunch of dedicated tasks to handle TypeScript files,
minify actions, copy operations, and monitor content change, and then the default one
to wrap everything up. Notice how, just like we did with Gulp, the TypeScript
compiler options are fetched from the tsconfig.json file so we don't have to write
them a second time.

Note

To learn more about Grunt and its configuration file syntax you can visit the official
website at the following address: http://gruntjs.com/.

That's basically all we need to know about task runners. Too bad we don't yet have
any TS and/or JS files to properly test what we just did! Don't worry, though, we'll
get there soon enough. Before that, let's finish our NPM journey by bringing the last
(but not least) of our players into the loop.

Adding Angular 2

There are basically two ways to get Angular 2, both with their pros and cons, using
NPM, which implies fetching the latest build and hosting the code within our project,
or by a dedicated set of links to a suitable CDN.

www.EBooksWorld.ir

http://gruntjs.com/

Using NPM

To install Angular 2 using NPM we need to open the package.json file and add a
bunch of packages under the dependencies node. This is how the file should look
like at the end (Angular lines are highlighted):

{
 "version": "1.0.0",
 "name": "OpenGameListWebApp",
 "private": true,
 "dependencies": {
 "@angular/common": "2.0.0-rc.5",

 "@angular/compiler": "2.0.0-rc.5",

 "@angular/core": "2.0.0-rc.5",

 "@angular/http": "2.0.0-rc.5",

 "@angular/platform-browser": "2.0.0-rc.5",

 "@angular/platform-browser-dynamic": "2.0.0-rc.5",

 "@angular/upgrade": "2.0.0-rc.5",

 "core-js": "^2.4.1",

 "reflect-metadata": "^0.1.3",

 "rxjs": "5.0.0-beta.6",

 "systemjs": "^0.19.37",

 "zone.js": "^0.6.12"
 },
 "devDependencies": {
 "gulp": "^3.9.1",
 "gulp-clean": "^0.3.2",
 "gulp-concat": "^2.6.0",
 "gulp-sourcemaps": "^1.6.0",
 "gulp-typescript": "^2.13.6",
 "gulp-uglify": "^2.0.0",
 "typescript": "^1.8.10"
 }
}

The packages starting with the @ symbol are part of the Angular 2 bundle, which, at
the time of writing, reached its Release Candidate 5 (RC5) development stage. The
other ones are a set of ES6 shims (core-js), polyfills (reflect-metadata),
loading libraries (systemjs), dependencies (rxjs), and helper tools (zone.js).

www.EBooksWorld.ir

All of these packages are required for a number of good reasons:

They ensure backward-compatibility between the new ECMAScript v6 (ES6)
language features - used by most Angular 2 packages, and ECMAScript v5
(ES5), which will be our compilation target.
They make our code compatible with the most common/used web browsers,
including older ones.
They adopt a modern, module-based loading API to handle the required JS
dependencies in an efficient way.
They use Angular 2 features to their full extent.

Note

All this information can be quite confusing, especially for old-school JavaScript
developers, but don't worry, we're going to come back to these topics later on.

As usual, all of these packages will be downloaded in the background by the IDE as
soon as you Save the file. Eventually, you will have a local instance of Angular 2
available under the following folder:

<project_root>/node_modules/@angular/

It's worth noting that we have also added a new script node that will execute a
post-install command against the typings package we just added.

Now we need to move these files to the wwwroot folder. We can achieve this by
adding a dedicated task to our Gulp configuration file as follows (new lines are
highlighted):

/*
This file in the main entry point for defining Gulp tasks and using
Gulp plugins.
Click here to learn more. http://go.microsoft.com/fwlink/?
LinkId=518007
*/
var gulp = require('gulp'),
 gp_clean = require('gulp-clean),
 gp_concat = require('gulp-concat'),
 gp_sourcemaps = require('gulp-sourcemaps'),
 gp_typescript = require('gulp-typescript'),
 gp_uglify = require('gulp-uglify');

/// Define paths
var srcPaths = {
 app: ['Scripts/app/main.ts', 'Scripts/app/**/*.ts'],
 js: [
 'Scripts/js/**/*.js',
 'node_modules/core-js/client/shim.min.js',

www.EBooksWorld.ir

 'node_modules/zone.js/dist/zone.js',

 'node_modules/reflect-metadata/Reflect.js',

 'node_modules/systemjs/dist/system.src.js',

 'node_modules/typescript/lib/typescript.js'

],

 js_angular: [

 'node_modules/@angular/**'

],

 js_rxjs: [

 'node_modules/rxjs/**'

]
};

var destPaths = {
 app: 'wwwroot/app/',
 js: 'wwwroot/js/',
 js_angular: 'wwwroot/js/@angular/',

 js_rxjs: 'wwwroot/js/rxjs/'
};

// Compile, minify and create sourcemaps all TypeScript files and
place them to wwwroot/app, together with their js.map files.
gulp.task('app', ['app_clean'], function () {
 return gulp.src(srcPaths.app)
 .pipe(gp_sourcemaps.init())

.pipe(gp_typescript(require('./tsconfig.json').compilerOptions))
 .pipe(gp_uglify({ mangle: false }))
 .pipe(gp_sourcemaps.write('/'))
 .pipe(gulp.dest(destPaths.app));
});

// Delete wwwroot/app contents
gulp.task('app_clean', function () {
 return gulp.src(destPaths.app + "*", { read: false })
 .pipe(gp_clean({ force: true }));
});

// Copy all JS files from external libraries to wwwroot/js
gulp.task('js', function () {

www.EBooksWorld.ir

 gulp.src(srcPaths.js_angular)

 .pipe(gulp.dest(destPaths.js_angular));

 gulp.src(srcPaths.js_rxjs)

 .pipe(gulp.dest(destPaths.js_rxjs));
 return gulp.src(srcPaths.js)
 // .pipe(gp_uglify({ mangle: false })) // disable uglify
 // .pipe(gp_concat('all-js.min.js')) // disable concat
 .pipe(gulp.dest(destPaths.js));
});

// Delete wwwroot/js contents
gulp.task('js_clean', function () {
 return gulp.src(destPaths.js + "*", { read: false })
 .pipe(gp_clean({ force: true }));
});

// Watch specified files and define what to do upon file changes
gulp.task('watch', function () {
 gulp.watch([srcPaths.app, srcPaths.js], ['app', 'js']);
});

// Global cleanup task
gulp.task('cleanup', ['app_clean', 'js_clean']);

// Define the default task so it will launch all other tasks
gulp.task('default', ['app', 'js', 'watch']);

As you can see, it hasn't changed much, we just added a bunch of JS files that we
need to copy from the /node_modules/ folder into the wwwroot/js/ folder, the
same one we were already using to host third-party libraries. There's nothing odd
there, NPM package files are external libraries, after all. For this very reason, it is
also preferable to restrain ourselves from uglifying and/or concatenating them. It's
also worth noting that we defined a separate, dedicated folder for Angular 2 and
Rxjs packages, since both of them are spanned into multiple files.

Adding Typings

Before moving forward, there is another thing we need to take care of. Since we plan
to transpile our TypeScript code into ECMAScript5, we have added the core-js
NPM module into our package.json file. In case you've never heard of it, let's just
say that it happens to be a standard JavaScript library providing a great set of
polyfills for ES6, which is precisely what we need.

Note

If you would like to know more about the core-js, here's the URL to the project's

www.EBooksWorld.ir

official GitHub repository: https://github.com/zloirock/core-js.

The only problem is that it doesn't come with a proper TypeScript definition file,
meaning that both of our TypeScript compilers, either Visual Studio's or Gulp's, won't
be aware of its existence, thus throwing a fair amount of TS2304 (type not found)
exceptions upon each build attempt.

The best thing we can do in order to fix that is to add the proper type definitions to
our project. To do that, open the package.json file again and add the following
(new lines are highlighted):

{
 "version": "1.0.0",
 "name": "opengamelistwebapp",
 "private": true,
 "dependencies": {
 "@angular/common": "2.0.0-rc.5",
 "@angular/compiler": "2.0.0-rc.5",
 "@angular/core": "2.0.0-rc.5",
 "@angular/http": "2.0.0-rc.5",
 "@angular/platform-browser": "2.0.0-rc.5",
 "@angular/platform-browser-dynamic": "2.0.0-rc.5",
 "@angular/upgrade": "2.0.0-rc.5",

 "core-js": "^2.4.1",
 "reflect-metadata": "^0.1.8",
 "rxjs": "5.0.0-beta.6",
 "systemjs": "^0.19.37",
 "typings": "^1.3.2",
 "zone.js": "^0.6.12"
 },
 "devDependencies": {
 "gulp": "^3.9.1",
 "gulp-concat": "^2.6.0",
 "gulp-sourcemaps": "^1.6.0",
 "gulp-typescript": "^2.13.6",
 "gulp-uglify": "^2.0.0",
 "typescript": "^1.8.10"
 },
 "scripts": {

 "postinstall": "typings install dt~core-js --global"

 }
}

We can see that there are two new things here:

A new NPM package called typings, which is a TypeScript type definition

www.EBooksWorld.ir

https://github.com/zloirock/core-js

manager. In other words, a tool we can use to retrieve type definitions from the
web.
A whole new script key containing a small command that will be executed
during the post-install phase. This basically means that the script will trigger
every time we change something within the package.json file, right after all
the NPM modules are retrieved and installed (or removed).

As soon as we Save our package.json file, a new typings folder will be added to
our OpenGameListWebApp project's root, containing the type definition file we
need.

Tip

If typings didn't install successfully during the Save, try to use the Restore Package
option by right-clicking on the project's Dependencies node. Another way is to use
the command line to install the typings explicitly. To do this, navigate to the root
folder of your app and press CTRL+SHIFT, then select Open command window
here. In the command line, type the following command: > npm run typings install
That should do the trick.

Using a CDN

At the time of writing, the only valid CDN hosting Angular 2 updated builds is
npmcdn.com. If we want to use it, we can avoid updating our gulpfile.js file and
wait until we are working on the index.html and systemjs.config.js files. Keep
reading, as we'll get there shortly.

Upgrading the typescriptServices.js file

At the time of writing, adding Angular 2 via NPM would produce the following
TypeScript compilation error:

Invalid module name in augmentation, module '../../Observable' cannot be
found.

This is due to a known bug in the TypeScript version currently shipped with Visual
Studio 2015. The most effective way to fix that is to replace this local VS2015 file:
C:\Program Files (x86)\Microsoft Visual Studio
14.0\Common7\IDE\CommonExtensions

\Microsoft\TypeScript\typescriptServices.js.

With the following remote file:

https://raw.githubusercontent.com/Microsoft/TypeScript/Fix8518/lib/typescriptServices.js

www.EBooksWorld.ir

Doing that will also fix a couple more errors we will most likely get in Chapter
3, Angular 2 Components and Client-Side Routing. Needless to say, it's highly
advisable to make a backup of the original file before replacing it.

Additional information regarding the bug is available through the following URLs:
https://github.com/Microsoft/TypeScript/issues/8518 and
https://github.com/Microsoft/TypeScript/pull/7507.

www.EBooksWorld.ir

https://github.com/Microsoft/TypeScript/issues/8518
https://github.com/Microsoft/TypeScript/pull/7507

Setting up the client code
It's time to lay down the first bricks of our app, a working skeleton, used as a starting
point for what we're going to do in the next chapters. It will consist of:

An Angular 2 component file: Scripts/app/app.component.ts
An Angular 2 module file: Scripts/app/app.module.ts
An Angular 2 bootstrap file: Scripts/app/main.ts
A module loader configuration file: wwwroot/systemjs.config.js
An HTML file to wrap everything up: wwwroot/index.html

The component file

The component is the most basic and fundamental concept in Angular 2. Think of it
like a class that controls a specific piece of a web page where we can either display
some data to each user and/or respond to their feedbacks. We can say that our
Angular 2 app will be almost entirely built upon multiple Components serving
specific purposes-most of them will be reusable, others will be only used once. They
can also either be as small as a few lines or they can result in a ridiculously long
piece of code.

Luckily, our first component is quite simple. In the Solution Explorer, right-click on
the /Scripts/app/ folder and add a new app.component.ts file:

Once created, feed it with the following code:

import {Component} from "@angular/core";

www.EBooksWorld.ir

@Component({
 selector: "opengamelist",
 template: `<h1>OpenGameList</h1><div>Work in progress...</div>`
})

export class AppComponent { }

That's it. Let's see what we just did here in detail:

In line 1, we're importing the Component function from the Angular 2 main
library, which is @angular/core. The Component function is what we need to
define a Component's metadata for a class, which basically means being able to
make Components, this is a required step for what we'll do next.
In line 3-6, we're creating our first Component by applying the Component
function to the class. In TypeScript, we do that by prefixing it with the @ symbol
and invoking it just above the component class. In other words, the @Component
instruction tells Angular that this class is an Angular component. Notice that the
selector and template fields are passed as a configuration object, as we will
analyze them soon enough.
In line 8, we're defining the AppComponent class. Notice the export keyword,
which will allow us to import it from other components. The act of exporting
makes our app.component.js file a module.

A word on components and modules

Angular 2 is a modular framework: this means that Angular 2 apps are also modular,
as they consist of many files dedicated to a specific purpose. Typically, most
application files export a single Componentclass, which is a class bundled with
component metadata. Our app.component.js file, for example, exports the
AppComponent class decorated with its component metadata, thus being a Module
file exporting a Component class. We could also say that the Component is the
content, while the Module is the file itself. We'll see how to import Components in
the next chapter.

The module file

Angular Modules, also known as NgModules, have been introduced in Angular 2
RC5, which is the latest version at the time of writing, and are a great and powerful
way to organize and bootstrap any Angular 2 application. They help developers to
consolidate their own set of components, directives, and pipes into reusable blocks.

Note

If you've already played with previous versions of Angular 2, you will find the

www.EBooksWorld.ir

following URL useful to understand the transition by checking out the following
URL:

https://angular.io/docs/ts/latest/cookbook/rc4-to-rc5.html.

Every Angular 2 application since RC5 must have at least one module, which is
conventionally called the root module and given the AppModule class name.

From the Solution Explorer, right-click on the /Scripts/app/ folder, add a new
app.module.ts file, and fill it with the following code:

///<reference path="../../typings/index.d.ts"/>
import {NgModule} from "@angular/core";
import {BrowserModule} from "@angular/platform-browser";
import {HttpModule} from "@angular/http";
import "rxjs/Rx";

import {AppComponent} from "./app.component";

@NgModule({
 // directives, components, and pipes
 declarations: [
 AppComponent
],
 // modules
 imports: [
 BrowserModule,
 HttpModule
],
 // providers
 providers: [
],
 bootstrap: [
 AppComponent
]
})
export class AppModule { }

Again, let's take a look at what we just wrote:

In line 1, we added a reference to the type definitions we fetched during the
previous section to ensure our TypeScript compiler(s) could find it. Notice that,
if we're using a CDN or a pre-compiled version of Angular 2, we could (and
should) definitely remove this line.
In lines 2-4, we import the basic Angular 2 modules that we will need right
from the start.
In line 5, we import the rxjs library definition file(s), which will be useful to
compile the Angular 2 libraries.

www.EBooksWorld.ir

https://angular.io/docs/ts/latest/cookbook/rc4-to-rc5.html

In line 7, right after the first empty line, we import the application root
component that we just wrote.
In line 9, we declare our root NgModule. As we can see it consists in an array of
named arrays, each one containing a set of Angular 2 objects that serves a
common purpose: directives, components, pipes, modules, and providers. The
last one of them contains the component(s) we want to bootstrap, which in our
case is the AppComponent one.

Working with the root module only is a very viable approach until the Angular 2 app
grows to a certain size. When it becomes bigger, it will be more practical to refactor
it into a number of feature modules, each one of them grouping together a set of
related tasks.

The bootstrap file

Now that we have our root module, we need to bootstrap it. From the Solution
Explorer, right-click on the /Scripts/app/ folder and add a new main.ts file, then
fill it with the following code:

import {platformBrowserDynamic} from "@angular/platform-browser-
dynamic";
import {AppModule} from "./app.module";

platformBrowserDynamic().bootstrapModule(AppModule);

Now we're just missing an entry point to load with the browser. Let's add it right
now.

The module loader configuration file

In this application, we're going to use the SystemJS module loader library to load
our application and all the required Angular 2 modules and dependencies. In order to
do that, we have to add a systemjs.config.js file to the wwwroot folder and
define a number of configuration rules within it, as follows:

(function (global) {
 // map tells the System loader where to look for things
 var map = {
 'app': 'app', // our application files
 '@angular': 'js/@angular', // angular2 packages
 'rxjs': 'js/rxjs' // Rxjs package
 };

 // packages tells the System loader which filename and/or
extensions to look for by default (when none are specified)
 var packages = {
 'app': { main: 'main.js', defaultExtension: 'js' },

www.EBooksWorld.ir

 'rxjs': { defaultExtension: 'js' }
 };

 // configure @angular packages
 var ngPackageNames = [
 'common',
 'compiler',
 'core',
 'http',
 'platform-browser',
 'platform-browser-dynamic',
 'upgrade',
];

 function packIndex(pkgName) {
 packages['@angular/' + pkgName] = { main: 'index.js',
defaultExtension: 'js' };
 }

 function packUmd(pkgName) {
 packages['@angular/' + pkgName] = { main: '/bundles/' +
pkgName + '.umd.js', defaultExtension: 'js' };
 };

 var setPackageConfig = System.packageWithIndex ? packIndex :
packUmd;
 ngPackageNames.forEach(setPackageConfig);
 var config = {
 map: map,
 packages: packages
 }
 System.config(config);
})(this);

The code is pretty much self-documented with inline comments, yet it could be useful
to highlight the most relevant tasks:

The map variable will host the three dynamic packages we're using SystemJS
for, all of them relative to /wwwroot/: app for our application; js/@angular
for Angular 2 and js/rxjs for Rxjs.
The packages variable will set the default filename and/or extension values for
each package. These will be used whenever we define an import statement
without specifying them.
The rest of the file is dedicated to dynamically loading the Angular 2 built-in
packages.

If we want to use a CDN instead of relying upon the local JS folder, we only need to
perform a minor update within the previous code, in the map section, as follows:

www.EBooksWorld.ir

 var map = {
 'app': 'app', // our application files
 '@angular': 'js/@angular', // angular2 packages
 'rxjs': 'https://npmcdn.com/rxjs@5.0.0-beta.6' // Rxjs
package (CDN)
 };

And also within the two module loader functions:

 function packIndex(pkgName) {
 packages['https://npmcdn.com/' + pkgName] = { main:
'index.js', defaultExtension: 'js' };
 }

 function packUmd(pkgName) {
 packages['https://npmcdn.com/' + pkgName] = { main:
'/bundles/' + pkgName + '.umd.js', defaultExtension: 'js' };
 };

Note

For further info regarding SystemJS and its Configuration API, including advanced
options, we strongly suggest reading the official documentation on the project's
GitHub page:

https://github.com/systemjs/systemjs and
https://github.com/systemjs/systemjs/blob/master/docs/config-api.md.

Why use a dynamic module loader?

Before going further, it might be useful to explain why we worked so hard with a
module loader instead of adding all the relevant JS files into the index.html file
right from the start.

To keep it simple, we did it because it's the only way to efficiently handle any
modern JavaScript modular system such as Angular 2, Rxjs and also all
applications based upon them, including the one we're working on right now.

What's a modular system exactly? It's nothing more than a package, library, or
application split into a series of smaller files which depend on each other using
reference statements such as import, require, and so on. ASP.NET, Java, Python,
and most compilation-based languages have it. That's not the case with script-based
languages such as PHP and JavaScript: they that are doomed to pre-load everything
in the memory before being able to determine whether they'll be using it or not. All of
these changes, with the introduction of ECMAScript 6 (ES6), bring a fully-featured
module and dependency management solution for JavaScript. SystemJS basically
acts as an ES6-polyfill for browsers that don't support it already, allowing us to get

www.EBooksWorld.ir

https://github.com/systemjs/systemjs
https://github.com/systemjs/systemjs/blob/master/docs/config-api.md

that module system working in modern browsers. Since both Angular 2 and Rxjs
leverage that dynamic-loading approach, implementing it within our project will
result in a huge performance gain.

Note

Keep in mind that SystemJS is not the only choice we have to load Angular 2
packages: there are other good choices out there, for example the popular module
bundler known as webpack. Should we want to use that instead, here's a great guide
for doing that:

https://angular.io/docs/ts/latest/guide/webpack.html.

The index.html file

The HTML file serves two main purposes: being an entry point for the browser so it
can load the client-script files and execute the application, and laying out the DOM
structure used by Angular 2 to display it. In the Solution Explorer, right-click on the
wwwroot folder and add a new index.html file, then fill it with the following code:

<!DOCTYPE html>
<html>
<head>
 <base href="/">
 <title>OpenGameList</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1">

 <!-- Step 1. Load libraries -->
 <!-- Polyfill(s) for older browsers -->
 <script src="js/shim.min.js"></script>
 <script src="js/zone.js"></script>
 <script src="js/Reflect.js"></script>
 <script src="js/system.src.js"></script>

 <!-- Step 2. Configure SystemJS -->
 <script src="systemjs.config.js"></script>
 <script>
 System.import('app').catch(function(err){ console.error(err);
});
 </script>
</head>

<!-- Step 3. Display the application -->
<body>
 <!-- Application PlaceHolder -->
 <opengamelist>Loading...</opengamelist>
</body>
</html>

www.EBooksWorld.ir

https://angular.io/docs/ts/latest/guide/webpack.html

After adding the index.html file, we need to set it as the main entry point when
executing our app in the Debug mode. In the Solution Explorer, right-click on the
project node and select Properties, then switch to the Debug tab and change the
Launch URL parameter accordingly.

Note

While we're here, we might also take the chance to set the HTTP port that will be
used by the local web server during development by changing the numeric part of the
App URL textbox value. As we can see in the preceding screenshot, we're going to
use 14600 throughout the whole book.

If we want to use a CDN instead of local JS files, we can replace the <script>
elements right below the Step 1 comment with the following:

 <script src="https://cdnjs.cloudflare.com/ajax/libs/core-
js/2.4.1/shim.min.js"></script>
 <script src="https://npmcdn.com/zone.js@0.6.12"></script>
 <script src="https://npmcdn.com/reflect-metadata@0.1.3">
</script>
 <script src="https://cdnjs.cloudflare.com/ajax/
libs/systemjs/0.19.37/system.js"></script>

www.EBooksWorld.ir

These are the latest versions at the time of writing. Be sure to replace them with the
most recent Angular 2-compatible versions.

www.EBooksWorld.ir

First run
Now that we've set everything up, it's time to take a look at where we're doing. The
first thing we should do is to turn our task runner on:

1. Expand the root node, right-click to the default task, and hit Run.
2. From the Solution Explorer, right-click on your gulpfile.js file and select

Task Runner Explorer.
3. If you did everything correctly, the Task Runner will silently execute its tasks,

keeping the one named watch active in background.

4. Right after that we can hit F5 (or left-click the Start Debugging button) and test
our still rather minimalistic, yet fully functional, home screen.

www.EBooksWorld.ir

If things are working as they should, we will see something very close to the
preceding image. That's pretty good. Before going further, let's check if our task
runner and its plugins are also working as they should.

Back in Visual Studio, open the /Scripts/app/app.component.ts file and change
the <div> content with the highlighted text as follows:

import {Component} from "@angular/core";

@Component({
 selector: "opengamelist",
 template: `<h1>OpenGameList</h1><div>...the best is yet to
come!</div>`
})

export class AppComponent { }

After you're done, hit CTRL + S or Save, then move back to the browser and issue a
page refresh by hitting F5 to see if the task runner did its job. If it did, you should see
something like the following:

So far so good, we have just set up a working skeleton of what's about to come.

www.EBooksWorld.ir

Caching issues
If you're not seeing this, and the page is still showing the Work in progress..., phrase,
chances are that you have caching issues. This is quite a common issue, since our
client code relies upon static files (such as index.html) which are served by default
with a set of cache-control HTTP headers to ensure a proper client-side cache.
This is usually great for production, but it can be quite annoying while our app is in
the development stage. If we want to fix it, we need to change the default caching
behavior for static files.

If we were developing an ASP.NET 4 web application, we could do that by adding
some lines to our main application's web.config file such as the following:

 <caching enabled="false" />
 <staticContent>
 <clientCache cacheControlMode="DisableCache" />
 </staticContent>
 <httpProtocol>
 <customHeaders>
 <add name="Cache-Control" value="no-cache, no-store" />
 <add name="Pragma" value="no-cache" />
 <add name="Expires" value="-1" />
 </customHeaders>
 </httpProtocol>

And that should be it.

However, that's not the case. The new ASP.NET Core's configuration system has
been re-architected from scratch and is now quite different from the previous
versions. The most important consequence of this is that XML configuration files
such as web.config , together with the whole System.Configuration namespace,
are not part of the new pattern and shouldn't be used anymore.

www.EBooksWorld.ir

The new ASP.NET Core configuration pattern
The new configuration model is based upon key/value settings that can be retrieved
from a wide variety of sources, including, and mostly being, Json files. Once
retrieved, they can be accessed within our code in a strongly-typed fashion. We can
take a look at the new pattern by watching a couple of lines contained within the
Startup class constructor, which is contained in the Startup.cs file (relevant lines
are highlighted):

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: true,
reloadOnChange: true)

 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",
optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
}

And also the appsettings.json file they refer to:

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

Now that we understand the basics, let's see how we can solve that caching issue by
taking advantage of the new configuration model.

The first thing to do is to understand how we can modify the default HTTP headers
for static files. As a matter of fact, we can do that by adding a custom set of options
to the app.UseDefaultFiles() method we added to the Startup class earlier. In
order to do that, open the Startup.cs and change that part of code in the following
way (new/modified lines are highlighted):

// Configure a rewrite rule to auto-lookup for standard default
files such as index.html.
app.UseDefaultFiles();

www.EBooksWorld.ir

// Serve static files (html, css, js, images & more). See also the
following URL:
// https://docs.asp.net/en/latest/fundamentals/static-files.html
for further reference.
app.UseStaticFiles(new StaticFileOptions()
{

 OnPrepareResponse = (context) =>

 {

 // Disable caching for all static files.

 context.Context.Response.Headers["Cache-Control"] = "no-
cache, no-store";

 context.Context.Response.Headers["Pragma"] = "no-cache";

 context.Context.Response.Headers["Expires"] = "-1";

 }
});

That wasn't hard at all. However, we're not done yet, now that we've learned how to
change the default behavior, we just need to change these static values with some
convenient references pointing to the appsettings.json file.

To do that, we can add the following key/value section to the appsettings.json
file in the following way (new lines are highlighted):

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 },

 "StaticFiles": {

 "Headers": {

 "Cache-Control": "no-cache, no-store",

 "Pragma": "no-cache",

 "Expires": "-1"

www.EBooksWorld.ir

 }

 }
}

And then change the preceding Startup.cs code accordingly (modified lines are
highlighted):

// Configure a rewrite rule to auto-lookup for standard default
files such as index.html.
app.UseDefaultFiles();

// Serve static files (html, css, js, images & more). See also the
following URL:
// https://docs.asp.net/en/latest/fundamentals/static-files.html
for further reference.
app.UseStaticFiles(new StaticFileOptions()
{

 OnPrepareResponse = (context) =>

 {

 // Disable caching for all static files.

 context.Context.Response.Headers["Cache-Control"] =
 Configuration["StaticFiles:Headers:Cache-Control"];

 context.Context.Response.Headers["Pragma"] =
 Configuration["StaticFiles:Headers:Pragma"];

 context.Context.Response.Headers["Expires"] =
 Configuration["StaticFiles:Headers:Expires"];

 }
});

That's about it. Learning how to use this pattern is strongly advisable, as it's a great
and effective way to properly configure our application's settings.

www.EBooksWorld.ir

A faster alternative using scaffolding
tools
In the latest few paragraphs, we basically built our very own server-side and client-
side environment by configuring everything manually. Truth be told, what we just did
is neither the quickest nor the most effective way to start a project involving a client-
side framework such as Angular 2, as a matter of fact, we could achieve the same
results in a fraction of the time we just spent by using the ASP.NET Core project
scaffolding tools such as Yeoman, which are available through NPM, together with a
proper generator template such as aspnetcore-spa.

Not only will these tools generate a fully-functional ASP.NET Core and Angular 2
boilerplate, much like the one we just made, they'll also take care of a number of
issues beforehand that we would otherwise have to manually set up later. These
include server-side pre-rendering, efficient cache management, optimized production
builds, and much more. On top of that, they can be easily enhanced with other helper
packages such as WebPack and JavaScriptServices, a great set of tools and
middlewares for building SPA projects with ASP.NET Core and Angular 2.

www.EBooksWorld.ir

The reasons to say no (not yet)
All of this sounds so exciting that we may well ask ourselves why in the world didn't
we go for that?

The reason is simple, what we just made, together with a lot of things we'll assemble
during the course of the following chapters, is also part of our learning process. In
other words, this is why we're reading this book instead of just copying some
working samples from a bunch of web pages, or GitHub projects, and putting them
together. This doesn't mean we don't have to use Yeoman, as a matter of fact, we will
be using it, together with a lot of other great tools that will speed up our development
and help us to write better code. Eventually, just not on our first run, that's for sure.
We don't want our journey to be spoiled, do we?

www.EBooksWorld.ir

A quick scaffolding sample
However, it's also true that taking a look at these tools, and eventually being able to
properly use them, can easily be seen as part of our learning process. If you want to
do that, you need to have Node.js installed, unless you prefer to use what's bundled
with Visual Studio 2015.

Open a command prompt with administrative rights and navigate through
theNode.js installation folder. If you're using the one shipped with VS2015 it should
be something like the following: C:\Program Files (x86)\Microsoft Visual
Studio 14.0\Web\External.

If you went for a new install, it should be the following (for x64 architectures):
C:\Program Files\Nodejs.

Once there, type the following command and execute it to update NPM to the latest
version:

npm install npm -g

Then type and execute the following to install Yeoman together with the
aspnetcore-spa generator:

npm install -g yo generator-aspnetcore-spa

Finally, type and execute the following commands to create your application's entry
point:

cd C:\Projects\Your-SPA-folder\
yo aspnetcore-spa

That's about it. For further reference regarding how to use Yeoman, it's strongly
advisable to take a look at the official documentation at the following URL:
http://yeoman.io/learning/.

If you're bold enough to also install WebPack and JavaScriptServices, you should
definitely read the ASP.NET Core JavaScript Services official documentation,
written by Steve Sanderson, who is the author of the JavaScriptServices project and
the KnockoutJs library, as well as being a Microsoft employee:
https://github.com/aspnet/JavaScriptServices#javascriptservices.

Note

Before moving forward, it's very important to understand the fact that we will not

www.EBooksWorld.ir

http://yeoman.io/learning/
https://github.com/aspnet/JavaScriptServices#javascriptservices

cover these packages throughout the book. We will take it for granted that we don't
have these features available, so we will often spend some time designing and
building our own implementation. That's why we don't suggest that you do that during
the first reading.

www.EBooksWorld.ir

References
Native Web Apps, Henrik Joreteg, 2015.
Manifesto for Agile Software Development, Kent Beck, Mike Beedle and many
others, 2001

www.EBooksWorld.ir

Suggested topics
SCRUM, Extreme Programming, MVC and MVVM architectural patterns, ASP.NET
Core, .NET Core, Roslyn, CoreCLR, RyuJIT, task runner, Gulp, Grunt, NuGet, NPM,
ECMAScript 6, Bower, SystemJS, Rxjs, Cache-Control, HTTP Headers.

www.EBooksWorld.ir

Summary
So far, so good, we have just set up a working skeleton of what's about to come.
Before moving further, let's quickly recap what we just did in this first chapter.

We briefly described our platforms of choice, ASP.NET Core and Angular 2, and
acknowledged their combined potential in the process of building a modern web
application. Then we chose a NWA with a single-page application approach as the
ideal field of choice for testing what our frameworks are able to do (and how to do
it).

In an attempt to reproduce a realistic production-case scenario, we also went through
the most common SPA features: first from a technical point of view, then by putting us
in the shoes of a typical product owner and trying to enumerate his expectations. We
also made a quick list of everything we need to put together a potentially shippable
product featuring all the expected goodies.

Eventually, we spent an appropriate amount of time setting up our development
environment. This included installing package managers, choosing a suitable client-
side framework, introducing task runners and configuring both ASP.NET Core and
Angular 2.

Finally, we performed a quick test to see that all the bricks we'd lain were in place
and ready to hold their ground against what's coming next, setting up a request-
response cycle, building our very first controller, defining efficient routing strategies,
and more.

www.EBooksWorld.ir

Chapter 2. ASP.NET Controllers and
Server-Side Routes
Now that we have our skeleton up and running, it's time to explore the client-server
interaction capabilities of our frameworks. To put it in other words, we need to
understand how Angular 2 will be able to fetch data from ASP.NET Core using its
brand new Core Web API structure. We won't be worrying about how will ASP.NET
Core retrieve these data, be it from session objects, data stores, DBMS, or any
possible data source. All of that will come later on. For now, we'll just put together
some sample static data in order to understand how to pass them back and forth by
using a well-structured, highly configurable, and viable interface.

www.EBooksWorld.ir

Data flow
As you might already know, a Native Web App following the single-page application
approach will roughly handle the client-server communication in the following way:

In case you're wondering about what these Async Data Requests actually are, the
answer is simple: everything, as long as it needs to retrieve data from the server,
which is something that most of the common user interactions will normally do,
including (yet not limited to): pressing a button to show more data or to edit/delete
something, following a link to another app view, submitting a form, and so on.

In other words, unless the task is so trivial, or it involves a minimal amount of data,
that the client can entirely handle it, meaning that it already has everything that they
need. Examples of such tasks are as follows: show/hide element toggles, in-page
navigation elements (such as internal anchors), and any temporary job requiring a

www.EBooksWorld.ir

confirmation or save button to be pressed before actually being processed.

The preceding diagram shows, in a nutshell, what we're going to do: define and
implement a pattern to serve these JSON-based, server-side responses that our
application will need to handle the upcoming requests. Since we've chosen a strong,
data-driven application pattern such as a Wiki, we'll surely need to put together a
bunch of common CRUD-based requests revolving around a defined object which
will represent our entries. For the sake of simplicity, we'll call it "item" from now
on.

These requests will address some common CMS-inspired tasks such as displaying a
list of items, viewing/editing the selected item's details, handling filters and text-
based search queries, and also deleting an item.

Before going further, let's have a more detailed look at what happens between any of
these Data Requests issued by the client and JSON Responses sent out by the
server, that is, what's usually called the request/response flow:

www.EBooksWorld.ir

As we can see, in order to respond to any client-issued Data Request we need to
build a server-side Core Web API Controller featuring the following capabilities:

Read and/or Write data using the Data Access Layer
Organize this data in a suitable JSON-serializable ViewModel
Serialize the ViewModel and send it to the client as a Response

Based on these points, we could easily conclude that the ViewModel is the key item
here. That's not always correct: it could or couldn't be the case, depending on the
project we're building. To better clarify that, before going further, it could be useful
to spend a couple of words on the ViewModel object itself.

www.EBooksWorld.ir

The role of the ViewModel
We all know that a ViewModel is a container-type class, which represents only the
data we want to display on our web page. In any standard MVC-based ASP.NET
application, the ViewModel is instantiated by the Controller in response to a GET
request using the data fetched from the model. Once built, the ViewModel is passed
to the View, where it's used to populate the page contents/input fields.

The main reason for building a ViewModel instead of directly passing the model
entities is that it only represents the data that we want to use and nothing else. All the
unnecessary properties that are in the model domain object will be left out, keeping
the data transfer as lightweight as possible. Another advantage is the additional
security it gives since we can protect any field from being serialized and passed
through the HTTP channel.

In a standard Web API context, where the data is passed using RESTful conventions
via serialized formats such as JSON or XML, the ViewModel could be easily
replaced by a JSON-serializable dynamic object created on the fly, such as this:

var response = new {
 Id = "1",
 Title = "The title",
 Description = "The description"
};

This approach is often viable for small or sample projects, where creating one (or
many) ViewModel classes could be a waste of time. However, that's not our case.
Conversely, our project will greatly benefit from having a well-defined, strongly
typed ViewModel structure, even if they will all be eventually converted into JSON
strings.

www.EBooksWorld.ir

Our first Controller
Now that we have a clear vision of the request/response flow and its main actors, we
can start building something up. Let's start with the Welcome View, which is the first
page that any user will see upon connecting to our Native Web App. This is
something that in a standard web application would be called Home Page, but since
we are following a single-page application approach, that name isn't appropriate.
After all, we're not going to have more than one page.

In most wikis, the Welcome View/Home Page contains a brief text explaining the
context/topic of the project and then one or more lists of items ordered and/or filtered
in various ways, such as:

The last inserted ones (most recent first)
The most relevant/visited ones (most viewed first)
Some random items (in random order)

Let's try to do something like that. This will be our master plan for a suitable
Welcome View:

www.EBooksWorld.ir

In order to do that, we're going to need the following set of API calls:

api/items/GetLatest (to fetch the last inserted items)
api/items/GetMostViewed (to fetch the last inserted items)
api/items/GetRandom (to fetch the last inserted items)

As we can see, all of them will be returning a list of items ordered by a well-defined
logic. That's why, before working on them, we should provide ourselves with a
suitable ViewModel.

www.EBooksWorld.ir

The ItemViewModel
One of the biggest advantages in building a Native Web App using ASP.NET and
Angular 2 is that we can start writing our code without worrying too much about data
sources because they will come later and only after we're sure about what we really
need. This is not a requirement either. You are also free to start with your data source
for a number of the following good reasons:

You already have a clear idea of what you'll need
You already have your entity set(s) and/or a defined/populated data structure to
work with
You're used to starting with the data and subsequently moving to the GUI

All the preceding reasons are perfectly fine. You won't ever get fired for doing that.
Yet, the chance to start with the frontend might help you a lot if you're still unsure
about what your application will look like, either in terms of GUI and/or data. In
building this Native Web App, we'll take advantage of that. Hence, why we'll start
defining our ItemViewModel instead of creating its data source and entity class?

From Solution Explorer, right-click to the project root node and Add a New Folder
named ViewModels. Once created, right-click on it and Add a New Item. From the
server-side elements, pick a standard Class, name it ItemViewModel.cs, and hit the
Add button. Then, type in the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Threading.Tasks;
using Newtonsoft.Json;

namespace OpenGameListWebApp.ViewModels
{
 [JsonObject(MemberSerialization.OptOut)]
 public class ItemViewModel
 {
 #region Constructor
 public ItemViewModel()
 {

 }
 #endregion Constructor

 #region Properties
 public int Id { get; set; }
 public string Title { get; set; }

www.EBooksWorld.ir

 public string Description { get; set; }
 public string Text { get; set; }
 public string Notes { get; set; }
 [DefaultValue(0)]
 public int Type { get; set; }
 [DefaultValue(0)]
 public int Flags { get; set; }
 public string UserId { get; set; }
 [JsonIgnore]
 public int ViewCount { get; set; }
 public DateTime CreatedDate { get; set; }
 public DateTime LastModifiedDate { get; set; }
 #endregion Properties
 }
}

As we can see, we're defining a rather complex class. This isn't something we could
easily handle using a dynamic object created on the fly; hence why we're using a
ViewModel instead?

Remember the Newtonsoft's Json.NETpackage we installed in Chapter 1, Getting
Ready, using NuGet? We'll start using it in this class by including its namespace in
line 6 and decorating our newly created Item class with a JsonObject attribute in
line 10. That attribute can be used to set a list of behaviors of the
JsonSerializer/JsonDeserializer methods, overriding the default ones. Notice
that we used MemberSerialization.OptOut, meaning that any field will be
serialized into JSON unless being decorated by an explicit JsonIgnoreAttribute
or NonSerializedAttribute. We're making this choice because we're going to
need most of our ViewModel's properties serialized, as we'll be seeing soon enough.

www.EBooksWorld.ir

The ItemsController
Now that we have our ItemViewModel class, let's use it to return some server-side
data. From your project's root node, open the /Controllers/ folder, right-click on
it, select Add | New Item, then create a Web API Controller Class, name it
ItemsController.cs , and click on the Add button to create it.

The controller will be created with a bunch of sample methods, they are identical to
those present in the default ValuesController.cs, which we already tested in
Chapter 1, Getting Ready, and hence, we don't need to keep them. Delete the entire
file content and replace it with the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using OpenGameListWebApp.ViewModels;
using Newtonsoft.Json;

namespace OpenGameListWebApp.Controllers
{
 [Route("api/[controller]")]
 public class ItemsController : Controller
 {
 // GET api/items/GetLatest/5
 [HttpGet("GetLatest/{num}")]
 public JsonResult GetLatest(int num)
 {
 var arr = new List<ItemViewModel>();
 for (int i = 1; i <= num; i++) arr.Add(new
ItemViewModel() {
 Id = i,
 Title = String.Format("Item {0} Title", i),
 Description = String.Format("Item {0} Description",
i)
 });
 var settings = new JsonSerializerSettings() {
 Formatting = Formatting.Indented
 };
 return new JsonResult(arr, settings);
 }
 }
}

This controller will be in charge of all item-related operations within our app.

As we can see, we started defining a GetLatest method accepting a single integer

www.EBooksWorld.ir

parameter value. The method accepts any GET request using the custom routing rules
configured via the HttpGetAttribute, this approach is called attribute routing,
and we'll be digging more into it later in this chapter. For now, let's stick to the code
inside the method itself.

The behavior is really simple since we don't have a data source we're basically
mocking a bunch of ItemViewModel objects. Notice that, although it's just a fake
response, we're doing it in a structured and credible way, respecting the number of
items issued by the request and also providing different content for each one of them.

It's also worth noticing that we're using a JsonResult return type, which is the best
thing we can do as long as we're working with ViewModel classes featuring the
JsonObject attribute provided by the Json.NET framework. That's definitely better
than returning plain string or IEnumerable<string> types, as it will automatically
take care of serializing the outcome and setting the appropriate response headers
(Content-Type, charset, and so on).

Let's try our controller by running our app in the debug mode: select Debug | Start
Debugging from the main menu or press F5 . The default browser should open,
pointing to the index.html page because we set it as the Launch URL in our
project's debug properties. To test our brand new API Controller, we need to
manually replace the URL with the following:

 /api/items/GetLatest/5

If we have done everything correctly, it will show something like the following:

www.EBooksWorld.ir

Our first controller is up and running. As you can see, the ViewCount property is not
present in the JSON-serialized output: that's by design since it has been flagged with
the JsonIgnore attribute, meaning that we're explicitly opting it out.

Now that we've seen that it works, we can come back to the routing aspect of what
we just did: since it is a major topic, it's well worth some of our time.

www.EBooksWorld.ir

Understanding routes
In Chapter 1, Getting Ready, we acknowledged the fact that the ASP.NET Core
pipeline has been completely rewritten in order to merge the MVC and WebAPI
modules into a single, lightweight framework to handle both worlds. Although this
certainly is a good thing, it comes with the usual downside that we need to learn a lot
of new stuff. Handling routes is a perfect example of this, as the new approach
defines some major breaking changes from the past.

www.EBooksWorld.ir

Defining routing
The first thing we should do is give out a proper definition of what routing actually
is.

To cut it simple, we could say that URL routing is the server-side feature that allows
a web developer to handle HTTP requests pointing to URIs not mapping to physical
files. Such techniques could be used for a number of different reasons, including the
following:

Giving dynamic pages semantic, meaningful, and human-readable names in
order to advantage readability and/or search-engine optimization (SEO)
Renaming or moving one or more physical files within your project's folder tree
without being forced to change their URLs
Setup aliases and redirects

Routing through the ages

In earlier times, when ASP.NET was just Web Forms, URL routing was strictly
bound to physical files. To implement viable URL convention patterns the developers
were forced to install/configure a dedicated URL rewriting tool using either an
external ISAPI filter such as Helicontech's SAPI Rewrite or start with IIS7-the IIS
URL Rewrite Module.

When ASP.NET MVC was released, the routing pattern was completely rewritten:
the developers could set up their own convention-based routes in a dedicated file
(RouteConfig.cs and Global.asax, depending on the template) using the
Routes.MapRoute method. If you've played along with MVC 1-5 or WebAPI 1
and/or 2, snippets like this should be quite familiar to you:

routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index", id =
UrlParameter.Optional }
);

This method of defining routes, strictly based upon pattern matching techniques used
to relate any given URL requests to specific controller actions, went by the name of
convention-based routing.

ASP.NET MVC5 brought something new, as it was the first version supporting the
so-called attribute-based routing. This approach was designed as an effort to give
developers a more versatile approach. If you used it at least once you'll probably

www.EBooksWorld.ir

agree that it was a great addition to the framework, as it allowed the developers to
define routes within the controller file. Even those who chose to keep the convention-
based approach could find it useful for one-time overrides such as the following,
without having to sort it out using some regular expressions:

[RoutePrefix("v2Products")]
public class ProductsController : Controller
{
 [Route("v2Index")]
 public ActionResult Index()
 {
 return View();
 }
}

In ASP.NET Core MVC (MVC 6), with the routing pipeline being completely
rewritten, attribute-based routing is quickly becoming a de facto standard, replacing
the convention, based approach in most boilerplates and code samples. Setting
routing conventions using the Routes.MapRoute() method is still possible, yet it
ceased to be the preferred way of work. You won't be finding anything like that in the
new Startup.cs file, which contains a very small amount of code and (apparently)
nothing about routes.

Handling routes in ASP.NET Core

We could say that the reason behind the Routes.MapRoute method disappearance in
the application's main configuration file is due to the fact that there's no need to set up
default routes anymore. Routing is handled by the two brand new
services.AddMvc() and services.UseMvc() methods called within the
Startup.cs file, which respectively register MVC using the dependency injection
framework built into ASP.NET Core and add a set of default routes to our app.

We can take a look at what happens under the hood looking at the current
implementation of the services.UseMvc() method in the framework code (relevant
lines are highlighted):

public static IApplicationBuilder UseMvc(
 [NotNull] this IApplicationBuilder app,
 [NotNull] Action<IRouteBuilder> configureRoutes)
{
 // Verify if AddMvc was done before calling UseMvc
 // We use the MvcMarkerService to make sure if all the services
were added.

MvcServicesHelper.ThrowIfMvcNotRegistered(app.ApplicationServices);

www.EBooksWorld.ir

 var routes = new RouteBuilder
 {
 DefaultHandler = new MvcRouteHandler(),
 ServiceProvider = app.ApplicationServices
 };

 configureRoutes(routes);

 // Adding the attribute route comes after running the user-code
because
 // we want to respect any changes to the DefaultHandler.
 routes.Routes.Insert(0,
 AttributeRouting.CreateAttributeMegaRoute(

 routes.DefaultHandler,

 app.ApplicationServices));

 return app.UseRouter(routes.Build());
}

The good thing about this is the fact that the framework now handles all the hard
work, iterating through all the controller's actions and setting up their default routes,
thereby saving us some work. It is worth noticing that the default ruleset follows the
standard RESTful conventions, meaning that it will be restricted to the following
action names: Get, Post, Put, and Delete. We could say here that ASP.NET Core is
enforcing a strict WebAPI-oriented approach, which is to be expected, since it
incorporates the whole ASP.NET Core framework.

Following the RESTful convention is generally a great thing to do, especially if we
aim to create a set of pragmatic, RESTful-based public APIs to be used by other
developers. Conversely, if we're developing our own app and want to keep our API
accessible only to our eyes, going for custom routing standards is just as viable. As a
matter of fact, it could even be a better choice to shield our controllers against most
trivial forms of request flood and/or DDoS-based attacks. Luckily enough, both the
convention-based routing and the attribute-based routing are still alive and well,
allowing you to set up your own standards.

Convention-based routing

If we feel like using the most classic routing approach, we can easily resurrect our
beloved MapRoute() method by enhancing the app.UseMvc() call within the
Startup.cs file in the following way:

app.UseMvc(routes =>
{
 // Route Sample A

www.EBooksWorld.ir

 routes.MapRoute(
 name: "RouteSampleA",
 template: "MyOwnGet",
 defaults: new {
 controller = "Items",
 action = "Get"
 }
);
 // Route Sample B
 routes.MapRoute(
 name: "RouteSampleB",
 template: "MyOwnPost",
 defaults: new {
 controller = "Items",
 action = "Post"
 }
);
});

Attribute-based routing

The previously shown ItemsController.cs makes good use of the attribute-based
routing approach, featuring it either at the controller level:

[Route("api/[controller]")]
public class ItemsController : Controller

And also featuring it at the action method level:

[HttpGet("GetLatest")]
public JsonResult GetLatest()

Three choices to route them all

Long story short, ASP.NET Core is giving us three different choices for handling
routes: enforcing the standard RESTful conventions, reverting back to the good old
convention-based routing, or decorating the controller files with the attribute-based
routing.

It's also worth noticing that attribute-based routes, if/when defined, would override
any matching convention-based pattern. Both of them if/when defined, would
override the default RESTful conventions created by the built-in UseMvc() method.

In this chapter, we're going to use all of these approaches in order to learn when,
where, and how to properly make use of either of them.

www.EBooksWorld.ir

Adding more routes
Let's get back to our ItemsController. Now that we're aware of the routing patterns
we can use, we can use that knowledge to implement the API calls we're still
missing.

Open the ItemsController.cs file and add the following code (new lines are
highlighted):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using OpenGameListWebApp.ViewModels;
using Newtonsoft.Json;

namespace OpenGameListWebApp.Controllers
{
 [Route("api/[controller]")]
 public class ItemsController : Controller
 {
 #region Attribute-based Routing
 /// <summary>
 /// GET: api/items/GetLatest/{n}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of {n} Json-serialized objects
representing the last inserted items.</returns>
 [HttpGet("GetLatest/{n}")]
 public IActionResult GetLatest(int n)
 {
 var items = GetSampleItems().OrderByDescending(i =>
 i.CreatedDate).Take(n);

 return new JsonResult(items, DefaultJsonSettings);

 }

 /// <summary>

 /// GET: api/items/GetMostViewed/{n}

 /// ROUTING TYPE: attribute-based

 /// </summary>

 /// <returns>An array of {n} Json-serialized objects
representing
 the items with most user views.</returns>

www.EBooksWorld.ir

 [HttpGet("GetMostViewed/{n}")]

 public IActionResult GetMostViewed(int n)

 {

 var items = GetSampleItems().OrderByDescending(i =>
 i.ViewCount).Take(n);

 return new JsonResult(items, DefaultJsonSettings);

 }

 /// <summary>

 /// GET: api/items/GetRandom/{n}

 /// ROUTING TYPE: attribute-based

 /// </summary>

 /// <returns>An array of {n} Json-serialized objects
representing
 some randomly-picked items.</returns>

 [HttpGet("GetRandom/{n}")]

 public IActionResult GetRandom(int n)

 {

 var items = GetSampleItems().OrderBy(i =>
Guid.NewGuid()).Take(n);

 return new JsonResult(items, DefaultJsonSettings);

 }

 #endregion

 #region Private Members

 /// <summary>

 /// Generate a sample array of source Items to emulate a
database
 (for testing purposes only).

 /// </summary>

 /// <param name="num">The number of items to generate:

www.EBooksWorld.ir

 default is 999</param>

 /// <returns>a defined number of mock items (for testing
purpose only)
 </returns>

 private List<ItemViewModel> GetSampleItems(int num = 999)

 {

 List<ItemViewModel> lst = new List<ItemViewModel>();

 DateTime date = new DateTime(2015, 12, 31).AddDays(-
num);

 for (int id = 1; id <= num; id++)

 {

 lst.Add(new ItemViewModel()

 {

 Id = id,

 Title = String.Format("Item {0} Title", id),

 Description = String.Format("This is a sample
description
 for item {0}: Lorem ipsum dolor sit amet.",
id),

 CreatedDate = date.AddDays(id),

 LastModifiedDate = date.AddDays(id),

 ViewCount = num - id

 });

 }

 return lst;

 }

 /// <summary>

 /// Returns a suitable JsonSerializerSettings object that
can
 be used to generate the JsonResult return value for this
Controller's

www.EBooksWorld.ir

 methods.

 /// </summary>

 private JsonSerializerSettings DefaultJsonSettings

 {

 get

 {

 return new JsonSerializerSettings()

 {

 Formatting = Formatting.Indented

 };

 }

 }

 #endregion
 }
}

We did a lot of things there, that's for sure. Let's see what's new:

We added the GetMostViewed(n) and GetRandom(n) methods, which are built
upon the same mocking logic used for GetLatest(n). Either one requires a
single parameter of integer type to specify the (maximum) number of items to
retrieve.
We added some new private members:

The GetLatestItems() method to generate some sample Item objects
when we need them. This method is an improved version of the dummy
item generator loop we had inside the previous GetLatest() method
implementation, as it acts more like a dummy data provider. We'll discuss
this in more detail later on.
The DefaultJsonSettings property, so we won't have to manually
instantiate a JsonSerializerSetting object every time.

We also decorated each class member with a dedicated <summary>
documentation tag explaining what it does and its return value. These tags will
be used by IntelliSense to show real-time information about the type within the
Visual Studio GUI. They will also come in handy when we want to generate an
autogenerated XML documentation for our project by using industry-standard

www.EBooksWorld.ir

documentation tools such as Sandcastle.
Finally, we added some #region/#endregion pre-processor directives to
separate our code into blocks. We'll do this a lot from now on, as this will
greatly increase our source code readability and usability, allowing us to
expand or collapse different sections/parts when we don't need them, thus
focusing more on what we're working on.

Tip

For more info regarding documentation tags, take a look at the following MSDN
official documentation page: https://msdn.microsoft.com/library/2d6dt3kf.aspx.

If you want to know more about C# pre-processor directives, this is the one to check
out instead: https://msdn.microsoft.com/library/9a1ybwek.aspx.

The dummy data provider

Our new GetLatestItems() method deserves a couple more words. As we can
easily see, it emulates the role of a data provider, returning a list of items in a
credible fashion. Notice that we built it in a way that it will always return identical
items, as long as the num parameter value remains the same:

The generated items Id will follow a linear sequence, from 1 to num.
Any generated item will have incremental CreatedDate and
LastModifiedDate values based upon their Id: the higher the Id is, the most
recent the two dates will be, up to 31 December, 2015. This follows the
assumption that most recent items will have a higher Id, as it normally is for
DBMS records featuring numeric, auto-incremental keys.
Any generated item will have a decreasing ViewCount value based upon their
Id: the higher the Id is, the less it will be. This follows the assumption that
newer items will generally get fewer views than older ones.

While it obviously lacks any insert/update/delete features, this dummy data provider
is viable enough to serve our purposes until we'll replace it with an actual,
persistence-based data source.

Note

Technically speaking, we could do something better than we did by using one of the
many Mocking Frameworks available through NuGet: Moq, NMock3, NSubstitute, or
Rhino, just to name a few.

These frameworks are the ideal choice when using a test-driven development (TDD)
approach, which is not the case in this book. In this specific scenario, our dummy

www.EBooksWorld.ir

https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/9a1ybwek.aspx

data provider is still a viable way to get what we need while keeping the focus on
our main topic: ASP.NET Core and Angular 2 interaction.

www.EBooksWorld.ir

Dealing with single items
Our updated ItemsController class has everything we need to build our Welcome
View: as soon as we learn how to call it from our client code, we'll be able to fetch
the required data to populate all the item lists we expect to have within our GUI.

However, we don't have anything yet to handle any kind of user interaction. When our
users click an item, they will surely expect to read something more about it; ideally,
they will want to see something similar to a detail page.

To put it in other words: since our Welcome View features a list of clickable items,
sooner or later we'll have to give our users the chance to select one of them, ideally
with a left mouse click and display the selected item's details: something like a
master/detail navigation pattern of any sort.

We're not dealing with the client-side code yet, so we don't know how we'll present
such a scenario to the user. However, we already know what we'll eventually need:
an API call to retrieve a single Item by passing its unique Id. To do that we need to
provide our controller with the appropriate API method, which could be something
like this:

/api/items/Get/{id}

This means that we need to add something more to our ItemsController source
code. While we're at it, let's take the chance to make some more improvements:

A sample method based upon the standard RESTful conventions, just to
demonstrate how we can handle that
A parameterless overload for each method, to make their usage easier
A couple more private properties to define:

The default number of items to retrieve using the parameterless overload
The maximum number of items to retrieve within a single API call

The resulting code can be seen as follows (new lines are highlighted):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using OpenGameListWebApp.ViewModels;
using Newtonsoft.Json;

namespace OpenGameListWebApp.Controllers
{

www.EBooksWorld.ir

 [Route("api/[controller]")]
 public class ItemsController : Controller
 {
 #region RESTful Conventions

 /// <summary>

 /// GET: api/items

 /// </summary>

 /// <returns>Nothing: this method will raise a HttpNotFound
HTTP
 exception, since we're not supporting this API call.
</returns>

 [HttpGet()]

 public IActionResult Get()

 {

 return NotFound(new { Error = "not found" });

 }

 /// <summary>

 /// GET: api/items/{id}

 /// ROUTING TYPE: attribute-based

 /// </summary>

 /// <returns>A Json-serialized object representing a single
item.
 </returns>

 [HttpGet("{id}")]

 public IActionResult Get(int id)

 {

 return new JsonResult(GetSampleItems()

 .Where(i => i.Id == id)

 .FirstOrDefault(),

 DefaultJsonSettings);

www.EBooksWorld.ir

 }

 #endregion

 #region Attribute-based Routing

 /// <summary>

 /// GET: api/items/GetLatest

 /// ROUTING TYPE: attribute-based

 /// </summary>

 /// <returns>An array of a default number of Json-
serialized
 objects representing the last inserted items.</returns>

 [HttpGet("GetLatest")]

 public IActionResult GetLatest()

 {

 return GetLatest(DefaultNumberOfItems);

 }

 /// <summary>
 /// GET: api/items/GetLatest/{n}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of {n} Json-serialized objects
representing the last inserted items.</returns>
 [HttpGet("GetLatest/{n}")]
 public IActionResult GetLatest(int n)
 {
 if (n > MaxNumberOfItems) n = MaxNumberOfItems;
 var items = GetSampleItems().OrderByDescending(i =>
i.CreatedDate).Take(n);
 return new JsonResult(items, DefaultJsonSettings);
 }

 /// <summary>

 /// GET: api/items/GetMostViewed

 /// ROUTING TYPE: attribute-based

 /// </summary>

 /// <returns>An array of a default number of Json-

www.EBooksWorld.ir

serialized
 objects representing the items with most user views.
</returns>

 [HttpGet("GetMostViewed")]

 public IActionResult GetMostViewed()

 {

 return GetMostViewed(DefaultNumberOfItems);

 }

 /// <summary>
 /// GET: api/items/GetMostViewed/{n}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of {n} Json-serialized objects
representing the items with most user views.</returns>
 [HttpGet("GetMostViewed/{n}")]
 public IActionResult GetMostViewed(int n)
 {
 if (n > MaxNumberOfItems) n = MaxNumberOfItems;
 var items = GetSampleItems().OrderByDescending(i =>
i.ViewCount).Take(n);
 return new JsonResult(items, DefaultJsonSettings);
 }

 /// <summary>

 /// GET: api/items/GetRandom

 /// ROUTING TYPE: attribute-based

 /// </summary>

 /// <returns>An array of a default number of
 Json-serialized objects representing some randomly-picked
items.
 </returns>

 [HttpGet("GetRandom")]

 public IActionResult GetRandom()

 {

 return GetRandom(DefaultNumberOfItems);

 }

www.EBooksWorld.ir

 /// <summary>
 /// GET: api/items/GetRandom/{n}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of {n} Json-serialized objects
representing some randomly-picked items.</returns>
 [HttpGet("GetRandom/{n}")]
 public IActionResult GetRandom(int n)
 {
 if (n > MaxNumberOfItems) n = MaxNumberOfItems;
 var items = GetSampleItems().OrderBy(i =>
Guid.NewGuid()).Take(n);
 return new JsonResult(items, DefaultJsonSettings);
 }
 #endregion

 #region Private Members
 /// <summary>
 /// Generate a sample array of source Items to emulate a
database (for testing purposes only).
 /// </summary>
 /// <param name="num">The number of items to generate:
default is 999</param>
 /// <returns>a defined number of mock items (for testing
purpose only)</returns>
 private List<ItemViewModel> GetSampleItems(int num = 999)
 {
 List<ItemViewModel> lst = new List<ItemViewModel>();
 DateTime date = new DateTime(2015, 12, 31).AddDays(-
num);
 for (int id = 1; id <= num; id++)
 {
 date = date.AddDays(1);
 lst.Add(new ItemViewModel()
 {
 Id = id,
 Title = String.Format("Item {0} Title", id),
 Description = String.Format("This is a sample
description for item {0}: Lorem ipsum dolor sit amet.", id),
 CreatedDate = date,
 LastModifiedDate = date,
 ViewCount = num - id
 });
 }
 return lst;
 }

 /// <summary>
 /// Returns a suitable JsonSerializerSettings object that
can be used to generate the JsonResult return value for this
Controller's methods.
 /// </summary>

www.EBooksWorld.ir

 private JsonSerializerSettings DefaultJsonSettings
 {
 get
 {
 return new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 };
 }
 }

 /// <summary>

 /// Returns the default number of items to retrieve when
using the
 parameterless overloads of the API methods retrieving item
lists.

 /// </summary>

 private int DefaultNumberOfItems

 {

 get

 {

 return 5;

 }

 }

 /// <summary>

 /// Returns the maximum number of items to retrieve when
using the
 API methods retrieving item lists.

 /// </summary>

 private int MaxNumberOfItems

 {

 get

 {

 return 100;

www.EBooksWorld.ir

 }

 }
 #endregion
 }
}

We've already explained the new goodies out there, yet it can be useful to focus on a
couple of them:

Our brand new Get() method won't do anything more than return a 404 HTTP
Error with a custom error string. We added it to grant an explicit response to
that RESTful default call and also to demonstrate how we can choose between
handling them or not.
The DefaultNumberOfItems and MaxNumberOfItems have been added to store
their values in a centralized way, so we can avoid repeating them multiple
times. We made them as properties, but they could also be defined as constants
or private variables as well since they are meant to be for internal use only; we
won't reference them outside this class or anywhere else.

Let's test our new methods: select Debug | Start Debugging from the main menu (or
hit F5) and type the following URLs in the browser's address bar:

 /api/items

/api/items/5

www.EBooksWorld.ir

As we've already said, the 404 Page Not Found error in response to the first HTTP
request is perfectly fine; we did it on purpose to demonstrate how we can handle
these kinds of errors. This is also good practice when dealing with ASP.NET Core
API interfaces; since we chose to not accept any /api/items get call without
parameters, we want the client to be aware of that.

So far, so good; we've got ourselves a number of server-side APIs to retrieve JSON
arrays filled by a client-defined (or default) number of latest items, and an additional
one to retrieve a single item from its unique ID. All of these calls will be very handy
in the following chapter, where we'll start developing client-side components using
Angular 2.

www.EBooksWorld.ir

Suggested topics
HTTP request, HTTP response, convention-based routing, attribute-based routing,
RESTful conventions, mock objects, test-driven development, XML documentation
tags, and C# preprocessor directives.

www.EBooksWorld.ir

Summary
We spent some time putting the standard application data flow under our lens: a two-
way communication pattern between the server and their clients, built upon the HTTP
protocol. We acknowledged the fact that we'll be mostly dealing with JSON-
serializable object such as Items, so we chose to equip ourselves with an
ItemViewModel server-side class, together with an ItemsController that will
actively use it to expose the data to the client.

We started building our MVC6-based Web API interface by implementing a number
of methods required to create the client-side UI we chose for our Welcome View,
consisting of three item listings to show to our users: last inserted ones, most viewed
ones, and some random picks. We routed the requests to them by using a custom set of
attribute-based routing rules, which seemed to be the best choice for our specific
scenario.

While we were there, we also took the chance to add a dedicated method to retrieve
a single Item from its unique Id, assuming that we were going to need it for sure.

In the next chapter, we will see how we can consume the ASP.NET Core Web API
using Angular 2 in order to build an interactive user interface for our application.

www.EBooksWorld.ir

Chapter 3. Angular 2 Components and
Client-Side Routing
Our server-side Web API is working fine; however, the ItemsController is still
missing parts that we're going to need eventually, such as the POST-based methods to
insert, update, and delete items. There's no sense in adding them now since we're still
mocking up our objects. We'll implement these soon enough when we switch to a real
data model.

For the time being, let's see how we can make good use of what we just did by
implementing a basic master-detail navigation pattern using Angular 2, which is our
application client framework of choice.

Let's summarize what we're going to do in this chapter:

Greet our users with a Welcome View with three different lists of items: latest,
most viewed, and random. We'll populate these by fetching the relevant data
using the ItemsController API methods built inChapter 2, ASP.NET
Controllers and Server-Side Routes.
Let our users navigate to an Item Detail View upon clicking on any item.
Allow our users to go back from the Item Detail View to the Welcome View
upon clicking on a back link.

This isn't anything different from a standard, straightforward master-detail pattern.
When we're done, users will be able to perform a basic navigation loop like the
following:

www.EBooksWorld.ir

Notice that we will also give the user the chance to modify some item fields,
reflecting these changes in the underlying client-side data model. Doing this in
Angular 2 is a rather seamless task due to the framework's built-in two-way data
binding features.

Persisting these changes to the application's data source is a whole different story
though, as it requires us to implement a couple more features:

1. A dedicated server-side API that will receive the updated data from the client
model and sync it to the server model.

2. A client-side update command pattern, such as a button, a focus event, or
something like that, that will trigger the aforementioned update API call.

www.EBooksWorld.ir

This is something we'll do in the next chapter by implementing a persistent data
source and replacing our dummy data provider sample with a working one. We won't
be able to properly handle any persisting update command until then.

www.EBooksWorld.ir

Master-detail binding
Our main focus now is to implement a master-detail navigation pattern. We'll do that
in two steps:

1. Putting together a temporary, component-based master-detail relationship based
upon the Angular 2 data-binding feature.

2. Replacing the preceding with a view-based navigation pattern with full client-
side routing support.

Truth be told, step 1 isn't mandatory. We could just implement step 2 and get the task
over with. However, by choosing to do that, we would skip some really important
concepts regarding Angular 2 and its interactions with the Web API structure we just
built. This stuff will come in very handy later on; therefore, it's highly recommended
that we restrain ourselves from rushing things.

www.EBooksWorld.ir

The Item class
The first thing we need to do is to add the Item class to our Angular-enabled client.
Wait a minute... should we really do that? Can't we just use the raw JSON data sent
by the controller's Get and GetLatest methods defined earlier, consuming them as
anonymous JavaScript objects?

Theoretically speaking, we could try as much as we could output raw JSON from the
controller instead of creating our ItemViewModel class. In a well-written app,
though, we should always restrain ourselves from the temptation to handle raw JSON
data and/or to use anonymous objects for a number of good reasons:

We're using TypeScript because we want to work with type definitions:
anonymous objects and undefined properties are the exact opposite and lead into
the JavaScript way of doing things, which is something we wanted to avoid in
the first place.
Anonymous objects are not easy to validate. We don't want our data items to be
error prone, being forced to deal with missing properties or anything like that.
Anonymous objects are hardly reusable and won't benefit from many Angular 2
handy features, such as the object mapping, which will require our objects to be
actual instances of an interface and/or a type.

The first two points are very important, especially if we're aiming for a production-
ready application. However, point 3 is also crucial as long as we want to use
Angular 2 to its full extent. If that's still the case, using an undefined array of
properties like raw JSON data basically would be out of the question. We're going to
use objects, i.e., actual instances of classes.

That's why we need a client-side, TypeScript Item class to properly map our JSON-
serialized ItemViewModel class.

From theSolution Explorer, add a new TypeScript File in the /Scripts/app/
folder, call it item.ts, and fill it with the following code:

export class Item {
 constructor(
 public Id: number,
 public Title: string,
 public Description: string
) { }
}

Notice that we're not adding all the properties present in the ItemViewModel class.
As a general rule of thumb, we'll be keeping these classes as lightweight as possible,

www.EBooksWorld.ir

defining only what we know we're going to use for sure. We can always add more
properties later, as soon as we need them.

www.EBooksWorld.ir

The ItemService class
Now that we can properly handle JSON-serialized Item objects, we need to set up a
service to fetch the required data from the Web API. We'll do that by issuing a request
to the ItemsController we built in the first part of this chapter.

We will do that using HTTP, which is the primary protocol for browser/server
communication. Notice that thanks to the features introduced with HTML5, this is not
our only option anymore. We could use the WebSocket protocol as well. We won't
cover it in this chapter, though, as the HTTP request pattern is still viable enough to
do what we need to do: fetch a JSON array of Item objects.

To be more specific, we're going to use the Angular HTTP client to communicate via
XMLHttpRequest (XHR), which is a rather complex HTTP-based API that provides
client functionality for transferring data between a client and a server. We won't have
to dig too much into it, though, as Angular greatly simplifies the application
programming with an easy-to-use interface featuring a small number of high-level
methods.

From the Solution Explorer, add a new TypeScript File in the /Scripts/app/
folder, call it item.service.ts, and fill it with the following code:

import {Injectable} from "@angular/core";
import {Http, Response} from "@angular/http";
import {Observable} from "rxjs/Observable";
import {Item} from "./item";

@Injectable()
export class ItemService {
 constructor(private http: Http) { }

 private baseUrl = "api/items/"; // web api URL

 // calls the [GET] /api/items/GetLatest/{n} Web API method to
retrieve the latest items.
 getLatest(num?: number) {
 var url = this.baseUrl + "GetLatest/";
 if (num != null) { url += num; }
 return this.http.get(url)
 .map(response => response.json())
 .catch(this.handleError);
 }

 // calls the [GET] /api/items/GetMostViewed/{n} Web API method
to retrieve the most viewed items.
 getMostViewed(num?: number) {
 var url = this.baseUrl + "GetMostViewed/";

www.EBooksWorld.ir

 if (num != null) { url += num; }
 return this.http.get(url)
 .map(response => response.json())
 .catch(this.handleError);
 }

 // calls the [GET] /api/items/GetRandom/{n} Web API method to
retrieve n random items.
 getRandom(num?: number) {
 var url = this.baseUrl + "GetRandom/";
 if (num != null) { url += num; }
 return this.http.get(url)
 .map(response => response.json())
 .catch(this.handleError);
 }

 // calls the [GET] /api/items/{id} Web API method to retrieve
the item with the given id.
 get(id: number) {
 if (id == null) { throw new Error("id is required."); }
 var url = this.baseUrl + id;
 return this.http.get(url)
 .map(res => <Item>res.json())
 .catch(this.handleError);
 }

 private handleError(error: Response) {
 // output errors to the console.
 console.error(error);
 return Observable.throw(error.json().error || "Server
error");
 }
}

You will notice some major similarities between the preceding code and the
ItemsController.cs source code. It's rather obvious since this is the class that our
client will use to fetch the data from that Web API controller itself.

Let's see what these lines of code will actually do:

In lines 1-4, we're importing the modules we need to perform our tasks. Notice
that, in line 4, we're importing the Item class we created in the previous
chapter, as we're going to use it here.
In line 6, we make use of the Injectable decorator, declaring that ours is an
Injectable class. Doing this will attach a set of metadata to our class that will
be consumed by the DI system upon instantiation. Basically, what we're doing
here is telling the DI injector that the constructor parameter(s) should be
instantiated using their declared type(s). The TypeScript code allows a very
fluent syntax to achieve this result at constructor level, as can be seen in line 8.

www.EBooksWorld.ir

In line 10, we define a variable containing our Web API-based URL, so we
won't have to write it multiple times. Avoiding repetition is always a good thing
and is one of the main rules to follow in order to write decent code.
In the subsequent lines, we create our getLatest(), getMostViewed(),
getRandom(), and Get() client-side methods that will call their Web API
counterpart. Notice that the method names differ in the naming conventions, as
we're respecting Javascript's camelCase here, while the ItemsController
follows the PascalCase (also known as UpperCamelCase) .NET standard. We
should also note how the retrieved ItemViewModel array of data is mapped to
an equal number of Item objects by making use of the Angular native mapping
module.
Finally, there's a rudimental implementation of an exception handling method
that will be triggered by the preceding two data-fetching methods, in the case of
an error. For now, we'll just output the errors to the browser console.

Now that we've got an Item and an ItemService, we should have everything we
need to display our listing of items except one thing: the Angular-based component
that will dynamically build the list in plain HTML code. Let's close this gap.

Tip

If you get the odd TypeScript compilation error after implementing this class, you
might need to replace the typescriptServices.js file, as mentioned in Chapter 1,
Getting Ready.

www.EBooksWorld.ir

The ItemListComponent class
What we're going to do here is to create a dedicated component to handle the
"display a list of items task." We could also do that in our already-present
AppComponent class, but our app is growing fast. Sooner or later we will have to
split it into multiple, reusable assets. That being the case, there's no reason to do it
right from the start. To be more specific, we're aiming to have the following file
structure:

app.component.ts: Our Welcome View, with a number of references to sub-
components enclosed by a lightweight HTML skeleton
item-list.component.ts: A flexible, reusable item listing component that
can be easily included by any view, one or multiple times

We'll stick to this pattern from now on, create a separate xyz.component.ts file for
any component we'll require. Let's start with building the first one.

Again, from the Solution Explorer, add a new TypeScript File in the
/Scripts/app/ folder, call it item-list.component.ts, and fill it with the
following code:

import {Component, OnInit} from "@angular/core";
import {Item} from "./item";
import {ItemService} from "./item.service";

@Component({
 selector: "item-list",
 template: `
 <h2>Latest Items:</h2>
 <ul class="items">
 <li *ngFor="let item of items"
 [class.selected]="item === selectedItem"
 (click)="onSelect(item)">
 {{item.Title}}

 `,
 styles: [`
 ul.items li {
 cursor: pointer;
 }
 ul.items li.selected {
 background-color: #cccccc;
 }
 `]
})

www.EBooksWorld.ir

export class ItemListComponent implements OnInit {
 selectedItem: Item;
 items: Item[];
 errorMessage: string;

 constructor(private itemService: ItemService) { }

 ngOnInit() {
 this.getLatest();
 }

 getLatest() {
 this.itemService.getLatest()
 .subscribe(
 latestItems => this.items = latestItems,
 error => this.errorMessage = <any>error
);
 }

 onSelect(item: Item) {
 this.selectedItem = item;
 console.log("item with Id " + this.selectedItem.Id + " has
been selected.");
 }
}

That's quite an amount of non-trivial source code. Let's see what we just did in
detail:

In line 1, we imported the Angular classes that we require. Since we're creating
a component, we require the Component base class and need to implement the
OnInit interface because our component will need to execute something upon
its initialization.
In lines 2-3, we import our previously created Item and ItemService classes.
No surprises here, since we're obviously using them here.
In lines 5-25, we set up the component UI aspect and settings. In particular,
we'll perform the following tasks:

Line 6: We're defining the selector, which is the custom HTML element
that will be replaced by the component itself.
Lines 7-16: We're creating the HTML structure of what will be rendered
on screen. Note that we used a bit of Angular 2 Template Syntax there in
order to get the job done. Specifically, we used a master template, a ngFor
directive, a property binding, and an event binding. Notice how each
command relies on some local properties and/or methods: item, items,
selectedItem, and onSelect(). We will explain them soon enough, as
they are declared further down.
Lines 17-24: We're adding some minimalistic CSS styles in order to have

www.EBooksWorld.ir

some visual feedback about what we're going to do, which is to change the
background color of the currently selected item. We'll do something way
better later on.

In lines 27-51, we can find the core ItemListComponent class declaration,
together with all its properties, constructor and methods:

Lines 28-30: Here, we define our class Properties, the same that we
used in our template (see lines 7-16).
Line 32: The class constructor. Notice how we make use of the Angular 2
native dependency injection features. We're not instantiating the
ItemService object, we let the framework do that instead. This means that
our ItemsComponent class won't be creating an ItemService, it will just
consume it right on the spot. While we're there we also made good use of
the flexible constructor syntax provided by TypeScript, allowing us to
declare the parameter and the property in a single shot.
Lines 34-36: The ngOnInit implementation, which is pretty much
straightforward. The getLatest() internal method will be executed upon
initialization and that's it.
Lines 38-50: these are the two methods that will be used, respectively, to
retrieve the items (getLatest), and to handle the only user interaction we
need our class to be aware of - the left-button mouse click (onSelect).

Note

If you feel curious about the aforementioned Angular 2 Template Syntax, don't worry!
We're going to talk way more about that in a while. Nonetheless, if you just can't wait
to get a hold on that, you can take a look at the official documentation available on
the Angular 2 website:

https://angular.io/docs/ts/latest/guide/template-syntax.html.

A quick implementation test

We just added three major things to our client-side app: a class (Item), a JSON-
consuming service (ItemService), and a UI component specifically designed to use
them both (ItemListComponent). Before going further, it may be a good call to see
the results of our work up to this point to ensure that everything is working as
expected.

The first thing we need to do is to add these new features to our application's root
module. Open the /Scripts/app/app.module.ts file and add the following (new
lines are highlighted):

www.EBooksWorld.ir

https://angular.io/docs/ts/latest/guide/template-syntax.html

///<reference path="../../typings/index.d.ts"/>
import {NgModule} from "@angular/core";
import {BrowserModule} from "@angular/platform-browser";
import {HttpModule} from "@angular/http";
import "rxjs/Rx";

import {AppComponent} from "./app.component";
import {ItemListComponent} from "./item-list.component";

import {ItemService} from "./item.service";

@NgModule({
 // directives, components, and pipes
 declarations: [
 AppComponent,
 ItemListComponent
],
 // modules
 imports: [
 BrowserModule,
 HttpModule
],
 // providers
 providers: [
 ItemService
],
 bootstrap: [
 AppComponent
]
})
export class AppModule { }

Let's now get back to our /Scripts/app/app.component.ts file, which is
supposed to draw our Welcome View, and thus is the starting point of our whole app.
We left it out near the end of Chapter 1, Getting Ready, when we used a minimalistic
template, featuring a "... the best is yet to come!" catchphrase as its main content. Do
you remember?

It's time to deliver something better. Replace it with the following code:

import {Component} from "@angular/core";

@Component({
 selector: "opengamelist",
 template: `
 <h1>{{title}}</h1>

 <item-list></item-list>

www.EBooksWorld.ir

 `
})

export class AppComponent {
 title = "OpenGameList";
}

Let's say a few words about what we're doing here:

In the template, we replaced our previous hello-worldish catchphrase with
the <item-list> custom element, which is the defined selector of the
ItemListComponent template. This basically means that an
ItemListComponent will be instantiated there.
While we were there, we added a title variable within the AppComponent class
and used it in the template as well.

As soon as we perform these changes, we can launch our application in the debug
mode by selecting Debug | Start Debugging from the main menu or by hitting F5 and
see if everything is working correctly. If that's the case, we should be able to see
something like this:

www.EBooksWorld.ir

You should also be able to select any item with a left mouse click. The currently
selected item will change its background color accordingly.

Tip

Remember to activate the Gulp (or Grunt) default task, otherwise, your code
changes won't be copied to the /wwwroot/ folder. If you'd forgotten to do that, you
can do it now. Right-click on the gulpfile.js (or gruntfile.js) file and select
the Task Runner Explorer. Once there, right-click on the default task, and activate it
by clicking on Run.

This is more than enough to tell us that everything is going well. Now that we're sure
about it, we can go back to work and add the component that will handle the item's
detail view.

www.EBooksWorld.ir

The ItemDetailComponent class
Once again, from the Solution Explorer, add a new TypeScript File in the
/Scripts/app/ folder, call it item-detail.component.ts, and fill it with the
following code:

import {Component, Input} from "@angular/core";
import {Item} from "./item";

@Component({
 selector: "item-detail",
 template: `
 <div *ngIf="item" class="item-details">
 <h2>{{item.Title}} - Detail View</h2>

 <label>Title:</label>
 <input [(ngModel)]="item.Title"
placeholder="Insert the title..."/>

 <label>Description:</label>
 <textarea [(ngModel)]="item.Description"
placeholder="Insert a suitable description..."></textarea>

 </div>
 `,
 styles: [`
 .item-details {
 margin: 5px;
 padding: 5px 10px;
 border: 1px solid black;
 background-color: #dddddd;
 width: 300px;
 }
 .item-details * {
 vertical-align: middle;
 }
 .item-details ul li {
 padding: 5px 0;
 }
 `]
})

export class ItemDetailComponent {
 @Input("item") item: Item;
}

Here we go. Let's take a quick look at what we're doing here:

www.EBooksWorld.ir

In lines 1-2, we're importing what we need. Notice that we're importing the
Input module from Angular 2 Core, which we need to create a data-bound
input property (see line 39). Needless to say, we also need to reference our
Item class, as this component will display our item's details.
In line 5, we define the selector, the custom HTML element that will be
replaced by the component itself.
In lines 6-22, we're creating the template UI, a simple HTML snippet to present
our item details on screen. It's worth noting that the input elements of our simple
form feature a strange ngModel attribute between parentheses and brackets.
We'll dig into that in a while, but for now, let's just say that it's the directive that
will enable the two-way data binding feature of Angular 2.
In lines 23-37, we're adding another minimalistic set of CSS rules. This will
still lead to a rather ugly outcome, but there's nothing to worry about. We're not
in the styling phase yet, that will come later on. For now, let's just put something
up in order to distinguish this component's HTML from the rest.
Finally, in lines 40-42, we're declaring our ItemDetailComponent class. Note
that it only has a single item property. We have also defined it as using
a @Input() decorator function (see line 1), that will add the required metadata
to make this property available for property binding. We need to do this because
we expect this property to be populated from a binding expression within a
parent component. We're going to do that in the next paragraph.

Note

The @Input() decorator function deserves a couple more words. Note that it accepts
an optional alias parameter, which we explicitly added ("item") to demonstrate how
it works under the hood. When we add our ItemDetailComponent in a parent
component, we will also need to pass the item object to show. We'll do that using a
custom attribute in the following way:

<item-detail *ngIf="selectedItem" [item]="selectedItem"></item-
detail>

The alias parameter will be used to determine the attribute hosting the property
binding. Its value will be dynamically bound to our target input property.

That being the case, you might be wondering why we called it optional. That's
because it can be skipped as long as the attribute name matches the target input
property name. In our case, they share the same name, so we could safely remove it.

More information regarding the input property is available through the following
Angular 2 official documentation page:
https://angular.io/docs/ts/latest/guide/attribute-

www.EBooksWorld.ir

directives.html#!#why-input.

Adding the @angular/forms library

Although the ItemDetailComponent component doesn't yet contain a proper <form>
element, it has some input elements that can greatly benefit from the Angular 2 two-
way data binding feature. To implement it, though, we need to add the
@angular/forms library to our NPM package list.

To do that, open the package.json file and add the following highlighted line to the
dependencies section, right below the other @angular packages:

 "@angular/common": "2.0.0-rc.5",
 "@angular/compiler": "2.0.0-rc.5",
 "@angular/core": "2.0.0-rc.5",
 "@angular/http": "2.0.0-rc.5",
 "@angular/platform-browser": "2.0.0-rc.5",
 "@angular/platform-browser-dynamic": "2.0.0-rc.5",
 "@angular/upgrade": "2.0.0-rc.5",
 "@angular/forms": "0.3.0",

Subsequently, open the /wwwroot/systemjs.config.js file and append the
following highlighted line to the ngPackageNames array:

// configure @angular packages
var ngPackageNames = [
 'common',
 'compiler',
 'core',
 'http',
 'platform-browser',
 'platform-browser-dynamic',
 'upgrade',
 'forms'
];

This will allow us to import the FormsModule within our application's root module
in the following paragraph, thereby enabling the two-way data binding feature.

Updating the root module

Every time we add an Angular 2 component we also need to import and declare it to
our root module (or a nested module, which we don't have). The
ItemDetailComponent won't be an exception, so we have to add it just like we did
with the ItemListComponent a short while ago. On top of that, since the same rule
also applies to modules and providers, we need to do that for the FormsModule as
well.

www.EBooksWorld.ir

Open the /Scripts/app/app.module.ts file and update its contents accordingly
(new lines are highlighted):

///<reference path="../../typings/index.d.ts"/>
import {NgModule} from "@angular/core";
import {BrowserModule} from "@angular/platform-browser";
import {HttpModule} from "@angular/http";
import {FormsModule} from "@angular/forms";
import "rxjs/Rx";

import {AppComponent} from "./app.component";
import {ItemListComponent} from "./item-list.component";
import {ItemDetailComponent} from "./item-detail.component";
import {ItemService} from "./item.service";

@NgModule({
 // directives, components, and pipes
 declarations: [
 AppComponent,
 ItemListComponent,
 ItemDetailComponent
],
 // modules
 imports: [
 BrowserModule,
 HttpModule,
 FormsModule
],
 // providers
 providers: [
 ItemService
],
 bootstrap: [
 AppComponent

})
export class AppModule { }

Connecting the dots

Now that we have a component to display our item's details, we need to connect it to
the item listing one we created previously. Doing that is as easy as adding a couple of
lines to our ItemListComponent class.

From theSolution Explorer, open the /Scripts/app/item-list.component.ts
file and change it as we have in the following code (added lines are highlighted):

import {Component, OnInit} from '@angular/core';
import {Item} from "./item";
import {ItemService} from "./item.service";

www.EBooksWorld.ir

@Component({
 selector: "item-list",
 template: `
 <h2>Latest Items:</h2>
 <ul class="items">
 <li *ngFor="let item of items"
 [class.selected]="item === selectedItem"
 (click)="onSelect(item)">
 {{item.Title}}

 <item-detail *ngIf="selectedItem" [item]="selectedItem">
</item-detail>
 `,
 styles: [`
 ul.items li {
 cursor: pointer;
 }
 ul.items li.selected {
 background-color: #dddddd;
 }
 `]
})

export class ItemListComponent implements OnInit {
 selectedItem: Item;
 items: Item[];
 errorMessage: string;

 constructor(private itemService: ItemService) { }

 ngOnInit() {
 this.getLatest();
 }

 getLatest() {
 this.itemService.getLatest()
 .subscribe(
 latestItems => this.items = latestItems,
 error => this.errorMessage = <any>error
);
 }

 onSelect(item: Item) {
 this.selectedItem = item;
 console.log("item with Id " + this.selectedItem.Id + " has
been selected.");
 }
}

All we did here was to add an <item-detail> element with an item property,

www.EBooksWorld.ir

which is the target of a property binding. This is the reason why it is in square
brackets, to the left of the equal sign. We already knew about it from the previous
paragraph, when we were referring to the @Input() decorator attribute and its
optional alias parameter.

Note

It's worth noting that we don't need to import the ItemDetailComponent to use the
<item-detail> element, as the compiler will automatically fetch that from the
AppModule. That's precisely what our root module is for. Before Angular 2 RC5, we
had to manually handle the required import throughout all the component files,
resulting in major (and also error-prone) code repetition.

www.EBooksWorld.ir

Testing it up
It's time to perform a full test of what we've built up to this point.

Click on Debug | Start Debugging (or hit F5) to display the same view from
Image03.02 again, then browse through the items by clicking the left mouse button.
You should be presented with something like the following:

If everything is working as it should, as we change the selectedItem the Detail
View panel should be updated as well, showing that item's details.

www.EBooksWorld.ir

Adding additional lists
Our welcome page isn't done yet. Two out of three item lists are yet to be done, at
least on the client side. We're talking about the most viewed items and the randomly
picked ones, so let's add them to the loop. We basically have two ways to do this:

1. Adding two more Angular components that are very similar to the
ItemListComponent one.

2. Extending our ItemListComponent and making it configurable, thereby making
it able to handle all the three item listings.

Adding two more components would be rather easy. We could clone the item-
list.component.ts file a couple of times, change the inner method of the two new
files to make it fetch the relevant data from the other Web API method (respectively,
GetMostViewed() and GetRandom()), define a different selector, add it to the
AppComponent template code and we would be done.

Yet, it would also be a horrible approach. Let's restrain us from cloning any part of
our code, unless there's really no other way to get the things done. We're using
Angular 2 because we want to build versatile and reusable components, and we're
going to stick to this path as much as we can. We also don't want to spawn
unnecessary components, as it would be a pain to keep them in sync each and every
time we have to apply a definition update, a member rename, an interface change, or
any other source code modification that will affect either of them.

For the previous reasons, we'll definitely choose the second option. Not to mention
the fact that it will be just as easy, once we know how to do it properly.

Tip

Regarding that choice, it's easy to see that we've already started off on the right foot.
We called it ItemListComponent, instead of LatestItemsComponent because we
never really wanted to have it showing the last inserted items only. We could say that
we already knew that we would be choosing the second option right from the start.
It's hardly a surprise, though, since we're fully committed to building reusable
components.

www.EBooksWorld.ir

Multiple component instances
The first thing we need to do is to configure the AppComponent HTML template to
make it render a couple more <item-list> component tags. While doing that, we
also need to find a way to uniquely identify them in order to issue a different
behavior for each instance: latest items, most viewed items, and random items.

Open the app.component.ts file and update our previous code in the following way
(added/modified lines are highlighted):

import {Component} from '@angular/core';

@Component({
 selector: "opengamelist",
 template: `
 <h1>{{title}}</h1>

 <item-list class="latest"></item-list>

 <item-list class="most-viewed"></item-list>

 <item-list class="random"></item-list>

 `,

 styles: [`

 item-list {

 min-width: 332px;

 border: 1px solid #aaaaaa;

 display: inline-block;

 margin: 0 10px;

 padding: 10px;

 }

 item-list.latest {

 background-color: #f9f9f9;

 }

www.EBooksWorld.ir

 item-list.most-viewed {

 background-color: #f0f0f0;

 }

 item-list.random {

 background-color: #e9e9e9;

 }

 `]
})

export class AppComponent {
 title = 'OpenGameList';
}

Let's take a closer look at what we did here:

We added two more <item-list> elements.
We defined a standard class attribute with a different value for each instance.
This is what we will use to uniquely identify each one of them. Notice that we
could've used the id attribute, or any other standard or custom attribute. Using
class seems to be a rather elegant choice, as it can also be used to apply
different styles.
We took the chance to implement some minimalistic CSS styles to arrange the
three elements horizontally and add some space between them. Since they have
different class attribute values now, we also gave a unique background color to
each element.

We're halfway through. Now we need to change the ItemListComponent class
accordingly, so it can follow a different behavior depending on the type of attribute
value.

Here's how we can do that (added/modified lines are highlighted):

import {Component, Input, OnInit} from "@angular/core";
import {Item} from './item';
import {ItemService} from './item.service';

@Component({
 selector: "item-list",
 template: `

 <h2>{{title}}</h2>

www.EBooksWorld.ir

 <ul class="items">
 <li *ngFor="let item of items"
 [class.selected]="item === selectedItem"
 (click)="onSelect(item)">
 {{item.Title}}

 <item-detail *ngIf="selectedItem" [item]="selectedItem">
</item-detail>
 `,
 styles: [`
 ul.items li {
 cursor: pointer;
 }
 ul.items li.selected {
 background-color: #dddddd;
 }
 `]
})

export class ItemListComponent implements OnInit {
 @Input() class: string;

 title: string;
 selectedItem: Item;
 items: Item[];
 errorMessage: string;

 constructor(private itemService: ItemService) { }

 ngOnInit() {
 console.log("ItemListComponent instantiated with the
following type: "+this.class);

 var s = null;

 switch (this.class) {

 case "latest":

 default:

 this.title = "Latest Items";

 s = this.itemService.getLatest();

 break;

 case "most-viewed":

 this.title = "Most Viewed Items";

www.EBooksWorld.ir

 s = this.itemService.getMostViewed();

 break;

 case "random":

 this.title = "Random Items";

 s = this.itemService.getRandom();

 break;

 }

 s.subscribe(

 items => this.items = items,

 error => this.errorMessage = <any>error

);
 }

 onSelect(item: Item) {
 this.selectedItem = item;
 console.log("item with Id " + this.selectedItem.Id + " has
been selected.");
 }
}

We have a fair amount of changes here. Let's see what we did:

In line 1, we added a reference to an old friend, the Input module from Angular
2 Core. We need it here so our class will be able to issue a data binding
between the class input property (see line 39) and the attribute with the same
name we defined in AppComponent within the previous code sample.
In line 8, we replaced our static title string with a local title variable, thereby
making it dynamic. From now on, this component's title will have to change
accordingly with the class attribute value of the current instance.
In line 29, we defined the class input property we mentioned previously. We'll
be using it to determine how to initialize the current instance (see lines 37-59).
In the subsequent lines, we implemented a brand new whole initialization logic
based upon the preceding defined class input property. To be more specific,
we switch through the three supported types and set the title and the service
method accordingly.

Tip

www.EBooksWorld.ir

You might have noticed that the getLatest() method is gone. We removed it
because we transferred all the service method calls within the ngOnInit() method,
so there's no need to keep it. That's a relief, as its name would also be rather obsolete
now anyway.

It's time to see the results of what we just did. As usual, doing that is just as easy as
hitting F5 and waiting for our default browser to load:

Our application is growing fast. We've got the Web API together with a small, yet
versatile set of working Angular 2 components able to fetch and display our sample
data.

We're still missing a fair amount of features, though, such as the following:

Two-way binding
Client-side routing

It's time to add both of them.

www.EBooksWorld.ir

Two-way data binding
We already mentioned it a number of times, as it is one of the most convenient and
widely known features of Angular 2, as well as many other reactive frameworks out
there. Nonetheless, before going further, let's make sure we know what we're talking
about.

Two-way data binding, also known as two-way binding, means that whenever the
data model changes, the UI changes accordingly and vice versa. To be more specific:

Whenever the model is updated, the changes are immediately reflected to the
views implementing it.
Whenever the view is updated, the changes are immediately reflected in the
underlying model.

From a practical development perspective, two-way data binding will help us a lot
because we won't have to manually synchronize the UI components with the data
model.

The good news is, since we're using Angular 2, we're already set, and thanks to the
ngModel we implemented earlier, our application is already equipped with a fully
functional two-way data binding between the Item model and the two component
classes implementing it: ItemListComponents and ItemDetailComponent.

We can easily check this out: hit F5 again to run the application in the Debug mode,
then select an item and change its Title property using the input textbox provided by
the ItemDetailComponent. You will notice that any change will be immediately
reflected to the ItemListComponent accordingly:

www.EBooksWorld.ir

As we've already said, all of these things happen on the client side only. To persist
them through the server model, we would need to implement a fully featured data
source, which is something we're going to do in the next chapter.

www.EBooksWorld.ir

Disabling two-way data binding
Wherever we don't want to have a two-way binding relationship, we can easily turn
it off removing the parentheses around the ngModel directive, leaving only the
brackets:

<input [ngModel]="item.Title" placeholder="Insert the title..." />

Note

The parentheses within brackets that enable two-way binding [()] are widely known
as banana brackets. This funny name has its roots in the Adventure in Angular
podcast episode 078, featuring Brad Green, Misko Hevery, and Igor Minar, in which
they referred to that syntax by calling it a box of bananas". Other than being an
impressive visualization, the banana-box concept greatly helps to avoid common
mistakes such as placing the brackets inside the parentheses.

www.EBooksWorld.ir

Client-side routing
Our master-detail relationship is indeed working, yet it has some major flaws. The
current in-page navigation approach, for example, is completely different from the
original plan. We wanted our users to switch back and forth between the Welcome
View and a dedicated Item Detail View, but instead we're opening a detail panel
under the first one. No, not just one. Three different panels, one for each item list.
That doesn't make any sense! We need to fix that as soon as possible.

While doing that, we also have another severe issue to solve. You might have noticed
that regardless of what we do within our app, the URL in the browser's address bar is
always the same. This means that we won't be able to share, say, a URL that will
directly lead to a specific item detail view, we'll be forced to share the starting
URL because it is the only supported one.

Wait a minute! Isn't it our native web application's most expected behavior? This is
what the single-page approach is all about after all, isn't it?

The answer is no. The single-page application approach has nothing to do with
keeping an immutable URL in the browser's address bar. URLs are not pages. As the
name suggests, they are unique identifiers for accessing resources.

standard web applications are usually built upon a rather small number of pages that
answer to multiple URLs and serve specific contents based upon query string
parameter values and/or URL rewriting techniques. single-page applications make no
exceptions, as they can adapt their inner state accordingly to the request URL and
also track the user navigation by updating the browser's address bar accordingly.

This technique is called client-side routing, which has the same meaning as
navigation. In order to add this much-needed feature, we're going to equip our
application with a router, which is the mechanism that will handle the navigation
from view to view.

www.EBooksWorld.ir

Adding the @angular/router library
Luckily, we won't have to implement the router from scratch as there is already an
excellent routing service, known as Angular 2 Component Router that seamlessly
does all the hard work. We just need to install it, since it's not part of the Angular 2
core modules. We can still get it through NPM and then import it in our application
just like we did with the @angular/forms.

Open the package.json file and append the following line to the dependencies
section, right below the @angular/forms package:

 "@angular/router": "3.0.0-rc.1",

Right after that, open the /Scripts/app/app.module.ts file and add the following
highlighted lines:

///<reference path="../../typings/index.d.ts"/>
import {NgModule} from "@angular/core";
import {BrowserModule} from "@angular/platform-browser";
import {HttpModule} from "@angular/http";
import {FormsModule} from "@angular/forms";
import {RouterModule} from "@angular/router";
import "rxjs/Rx";

import {AppComponent} from "./app.component";
import {ItemListComponent} from "./item-list.component";
import {ItemDetailComponent} from "./item-detail.component";
import {ItemService} from "./item.service";

@NgModule({
 // directives, components, and pipes
 declarations: [
 AppComponent,
 ItemListComponent,
 ItemDetailComponent
],
 // modules
 imports: [
 BrowserModule,
 HttpModule,
 FormsModule,
 RouterModule
],
 // providers
 providers: [
 ItemService
],
 bootstrap: [
 AppComponent

www.EBooksWorld.ir

]
})
export class AppModule { }

Last but not least, open the /wwwroot/systemjs.config.js file and update the
ngPackageNames array accordingly:

var ngPackageNames = [
 'common',
 'compiler',
 'core',
 'http',
 'platform-browser',
 'platform-browser-dynamic',
 'upgrade',
 'forms',
 'router'
];

Now that we made the component router available, we need to properly implement
and configure it within our Angular 2 application to provide it with a decent
navigation pattern. While doing this we'll also take the chance to refactor our app to
make it more similar to our original plan.

PathLocationStrategy versus HashLocationStrategy

Before doing that, we need to understand how the router can help us to achieve what
we want, which is changing the browser's location and history whenever the user
navigates within the app, without triggering a new page request to the server.

We can configure the router to follow one of two different patterns:

PathLocationStrategy or HashLocationStrategy. The former is based upon the
HTML5 history.pushState technique, which is by far the preferable one,
however, such a technique won't work well on older browsers because they will
automatically send a page request every time the current location.href value
changes, ruining the whole SPA approach, i.e., unless the change is limited to the part
of the URL after the hash character (#).

The HashLocationStrategy pattern is mostly a workaround that exploits such
behavior, as it will instruct the router to compose all the navigation URLs prepending
them with a hash character (#) in the following way:

http://localhost:14600/app/#/item-detail/2

The Angular 2 routing library uses PathLocationStrategy by default, hence our

www.EBooksWorld.ir

app will do the same. Should we prefer to take the other route, we can switch to
HashLocationStrategy with an override during the bootstrap phase and we will
see how to do that in a short while.

www.EBooksWorld.ir

Refactoring our app
The other step is a bit more complex, as it involves not only changing some of our
application files in order to make the router service available but also changing the
component file structure to make it routing-friendly. We should start with the latter,
since it will necessarily involve some minor refactoring.

Let's try to get a visual picture of what we need to do before proceeding. It's time to
get rid of this working, yet rather inconsistent, cascading structure:

And switch to this truly navigable one:

www.EBooksWorld.ir

In order to achieve such a result, we need to take care of the following stuff:

Add an AppRouting scheme: This is nothing more than a configuration object
containing an array of routing rules called routes. Each one of them connects a
URL path to a component, thus telling the client how to navigate.
Add a new HomeComponent: This will behave just like the AppComponent
does, so the latter can become a container of many different components, and
configure it into the aforementioned AppRouting scheme.
Add more sample components: This tests the routing behavior with a number
of different requests and configures them into the AppRouting scheme as well.

Let's do it.

Adding the AppRouting scheme

From the Solution Explorer, right-click on the /Scripts/app/ folder and add a new
app.routing.ts TypeScript file. Once done, fill it with the following code:

import {ModuleWithProviders} from "@angular/core";
import {Routes, RouterModule} from "@angular/router";

import {HomeComponent} from "./home.component";
import {AboutComponent} from "./about.component";
import {LoginComponent} from "./login.component";
import {PageNotFoundComponent} from "./page-not-found.component";

www.EBooksWorld.ir

const appRoutes: Routes = [
 {
 path: "",
 component: HomeComponent
 },
 {
 path: "home",
 redirectTo: ""
 },
 {
 path: "about",
 component: AboutComponent
 },
 {
 path: "login",
 component: LoginComponent
 },
 {
 path: '**',
 component: PageNotFoundComponent
 }
];

export const AppRoutingProviders: any[] = [
];

export const AppRouting: ModuleWithProviders =
RouterModule.forRoot(appRoutes);

The content is quite self-explanatory. As we can see, it's merely a list of routing rules
(we'll call them routes from now on) connecting a given path with a corresponding
component of our choice. Just by looking at them we can easily infer the underlying
logic:

1. All requests to / (the site root) will be routed to the HomeComponent.
2. All request to /home will be redirected to / (the site root).
3. All request to /about will be routed to the AboutComponent.
4. All request to /login will be routed to the LoginComponent.
5. All other requests will be routed to the PageNotFoundComponent.

As we can see there are two routes that behave quite differently from the other ones:

Route #2 features a redirect instead of a rewrite. This means that it will tell
the browser to go somewhere else instead of directly handling the request.
Route #5 is basically a catch-all rule that will take care of any unmanned
scenario, that is all the requests not directly handled by other routes.

Adding the HomeComponent

www.EBooksWorld.ir

The next thing we need to do is to create a brand new HomeComponent that will
basically behave just like the AppComponent actually does. The simplest way to
achieve such a result is to copy our current app.component.ts file contents into a
new home.component.ts file. Needless to say, since we're creating a new
component, we also need to change the selector, class, and the title variable
accordingly.

Here's how the new home.component.ts file should appear after our copy and
replace work (relevant changes are highlighted):

import {Component} from "@angular/core";

@Component({
 selector: "home",
 template: `
 <h2>{{title}}</h2>
 <item-list class="latest"></item-list>
 <item-list class="most-viewed"></item-list>
 <item-list class="random"></item-list>
 `,
 styles: [`
 item-list {
 min-width: 332px;
 border: 1px solid #aaaaaa;
 display: inline-block;
 margin: 0 10px;
 padding: 10px;
 }
 item-list.latest {
 background-color: #f9f9f9;
 }
 item-list.most-viewed {
 background-color: #f0f0f0;
 }
 item-list.random {
 background-color: #e9e9e9;
 }
 `]
})

export class HomeComponent {

 title = "Welcome View";

}

As soon as we do that we can update the AppComponent file to act like a container of
the currently active Component, as defined by the AppRouting scheme.

www.EBooksWorld.ir

Open the app.component.ts file and entirely replace its now-replicated content
with the following (relevant lines highlighted):

import {Component} from "@angular/core";

@Component({
 selector: "opengamelist",
 template: `
 <h1>{{title}}</h1>
 <div class="menu">

 Home

 | <a class="about" [routerLink]="
['about']">About

 | <a class="login" [routerLink]="
['login']">Login

 </div>

 <router-outlet></router-outlet>
 `
})

export class AppComponent {
 title = "OpenGameList";
}

What we did here is pretty simple: we created a simple minimalistic HTML menu
that we can use to test our routing engine. The [routerLink] attribute directive will
tell the component router to populate the <router-outlet> element below with the
component corresponding to the given path.

That's more or less how the component router works to its simplest extent. While
being only a fraction of its many available features, this is already a good portion of
what we need to make our application work like we want it to.

Adding new components

It's definitely time to create the missing components we defined earlier within the
app.routing.ts file, otherwise we would be unable to run our app. These are the
following components:

AboutComponent

LoginComponent

PageNotFoundComponent

www.EBooksWorld.ir

They won't be much more than a placeholder, at least for now. We will properly
implement each one of them as soon as we need to.

AboutComponent

From the Solution Explorer, add a new about.component.ts file in the
Scripts/app folder and fill it with the following code:

import {Component} from "@angular/core";

@Component({
 selector: "about",
 template: `
 <h2>{{title}}</h2>
 <div>
 OpenGameList: a production-ready, fully-featured SPA
sample powered by ASP.NET Core Web API and Angular 2.
 </div>
 `
})

export class AboutComponent {
 title = "About";
}

To be honest, we ought to say that our app is neither production-ready nor fully
featured yet, but that's what we're aiming for, so a little encouragement won't hurt. It
won't be a lie forever, after all!

LoginComponent

Going back to the Solution Explorer, add another file in that same folder, name it
login.component.ts, and fill it with following code:

import {Component} from "@angular/core";

@Component({
 selector: "login",
 template: `
 <h2>{{title}}</h2>
 <div>
 TODO: Not implemented yet.
 </div>
 `
})

export class LoginComponent {
 title = "Login";
}

www.EBooksWorld.ir

As we have already said, this is just a placeholder. There's no way we can
implement the login now, as we're still missing a real, persistent data source. Rest
assured, though we could arrange another dummy data provider, there's no need to do
that since we'll start implementing the real deal in the following chapter.

PageNotFoundComponent

Last but not least, add a new /Scripts/app/login.component.ts file with the
following code:

import {Component} from "@angular/core";

@Component({
 selector: "page-not-found",
 template: `
 <h2>{{title}}</h2>
 <div>
 Oops.. This page does not exist (yet!).
 </div>
 `
})

export class PageNotFoundComponent {
 title = "Page not Found";
}

Doing this will put our Angular 2 application back on track, meaning that we should
be able to compile it again. However, if we try to run it, we'll hit some run-time
errors due to the fact that the AppModule is still completely unaware of what we did.
This is an expected behavior. Now that we're done adding new stuff, we need to
bring our root module up to speed.

Updating the root module

Open the /Scripts/app/app.module.ts file and add the new content accordingly
(new lines highlighted):

///<reference path="../../typings/index.d.ts"/>
import {NgModule} from "@angular/core";
import {BrowserModule} from "@angular/platform-browser";
import {HttpModule} from "@angular/http";
import {FormsModule} from "@angular/forms";
import {RouterModule} from "@angular/router";
import "rxjs/Rx";

import {AboutComponent} from "./about.component";

import {AppComponent} from "./app.component";

www.EBooksWorld.ir

import {HomeComponent} from "./home.component";
import {ItemDetailComponent} from "./item-detail.component";
import {ItemListComponent} from "./item-list.component";
import {LoginComponent} from "./login.component";
import {PageNotFoundComponent} from "./page-not-found.component";
import {AppRouting} from "./app.routing";
import {ItemService} from "./item.service";

@NgModule({
 // directives, components, and pipes
 declarations: [
 AboutComponent,
 AppComponent,
 HomeComponent,
 ItemListComponent,
 ItemDetailComponent,
 LoginComponent,

 PageNotFoundComponent
],
 // modules
 imports: [
 BrowserModule,
 HttpModule,
 FormsModule,
 RouterModule,
 AppRouting
],
 // providers
 providers: [
 ItemService
],
 bootstrap: [
 AppComponent
]
})
export class AppModule { }

As we can see, to ensure that our routing rules are applied we have to add the
AppRouting constant defined within the app.routing.ts file to the AppModule's
import section.

Doing all that will put our Angular 2 application back on track, meaning that we
should be able to compile it again.

Note

While we were there, we took the chance to separate the import references by type
and sort them into alphabetical order. This will help us to manage them, as their

www.EBooksWorld.ir

number will further increase throughout the book.

Revising the master-detail strategy

We're not done yet. Our current implementation features a fully functional master-
slave binding relationship between the ItemListComponent and the corresponding
ItemDetailComponent. While it has been very useful to demonstrate how two-way
binding works, it's time to replace it with a more reasonable, route-based navigation
mechanism.

In order to do that, we need to do the following:

1. Add another route to the AppComponent class for the ItemDetailComponent.
2. Change the ItemListComponent behavior so it will issue a routing action

towards the ItemDetailComponent instead of showing a built-in instance of it.
3. Modify the ItemDetailComponent initialization pattern to make it fetch the

item data from the Id contained within the routing rule instead of relying upon
an item object instantiated by the parent ItemListComponent.

Adding the ItemDetail route

Open the /Scripts/app/app.routing.ts file and add the following route to the
appRoutes array, right below the one pointing to the LoginComponent:

 {
 path: "item/:id",
 component: ItemDetailComponent
 },

Consequently, add the relevant reference to the import statements on top:

import {ItemDetailComponent} from "./item-detail.component";

Changing the ItemListComponent

Right after that, open the item-list.component.tsfile and update its code as
follows (changed lines are highlighted):

import {Component, Input, OnInit} from "@angular/core";
import {Router} from "@angular/router";
import {Item} from "./item";
import {ItemService} from "./item.service";

@Component({
 selector: "item-list",
 template: `
 <h2>{{title}}</h2>
 <ul class="items">

www.EBooksWorld.ir

 <li *ngFor="let item of items"
 [class.selected]="item === selectedItem"
 (click)="onSelect(item)">
 {{item.Title}}

 `,
 styles: [`
 ul.items li {
 cursor: pointer;
 }
 ul.items li.selected {
 background-color: #dddddd;
 }
 `]
})

export class ItemListComponent implements OnInit {

 selectedItem: Item;
 @Input() class: string;
 title: string;
 items: Item[];
 errorMessage: string;

 constructor(private itemService: ItemService, private router:
Router) { }

 ngOnInit() {
 console.log("ItemListComponent instantiated with the
following class: " + this.class);
 var s = null;
 switch (this.class) {
 case "latest":
 default:
 this.title = "Latest Items";
 s = this.itemService.getLatest();
 break;
 case "most-viewed":
 this.title = "Most Viewed Items";
 s = this.itemService.getMostViewed();
 break;
 case "random":
 this.title = "Random Items";
 s = this.itemService.getRandom();
 break;
 }
 s.subscribe(
 items => this.items = items,
 error => this.errorMessage = <any>error
);
 }

www.EBooksWorld.ir

 onSelect(item: Item) {
 this.selectedItem = item;
 console.log("Item " + this.selectedItem.Id + " has been
clicked: loading ItemDetailComponent...");

 this.router.navigate(["item", this.selectedItem.Id]);
 }
}

We have a small number of important changes here:

Within the class constructor, we defined a new DI for an object of the type
Router to consume within our class. In order to use that, we also added the
required import reference at the beginning of the file.
Near the end of the file, we changed the implementation of the OnSelect event
delegate to tell the router to trigger the ItemDetail route instead of loading a
local ItemDetailComponent as we were doing before.
Consequently, we removed the <item-detail> tag from the template HTML
code accordingly.

Updating the ItemDetailComponent

The last thing we need to change is the ItemDetailComponent behavior, as it won't
be able to get its required item data from a parent ItemListComponent anymore.
We need to make it be able to fetch the data by itself using the only parameter it will
receive from its routing entry, the unique Id of the item to display.

In order to do that, we need to add a couple of references at the beginning of the file:

import {Router, ActivatedRoute} from "@angular/router";

This way we'll be able to get the Id from the request URL and issue a call to the
itemService.get(id) method to retrieve the item accordingly. That's why we also
need to add a reference to the ItemService itself:

import {ItemService} from "./item.service";

What else do we need to do? Since we're removing the parent property binding, we
can safely remove the reference to the Input interface module as well as the @Input
decorator from our local item variable. We're not using them here anymore.

Yet we will need to retrieve the item data, which is something that's normally done
during the initialization phase. That's why we need to add a reference to the OnInit
interface we used before:

import {Component, OnInit} from "@angular/core";

www.EBooksWorld.ir

We will also need a local variable to host the retrieved item, an improved
constructor to instantiate an ActivatedRoute object instance through DI and an
OnInit method to consume it when the class is initialized:

export class ItemDetailComponent {
 item: Item;

 constructor(private itemService: ItemService,
 private activatedRoute: ActivatedRoute) {
 }

 ngOnInit() {
 var id = +this.activatedRoute.params['id'];
 if (id) {
 this.itemService.get(id).subscribe(item => this.item =
item);
 console.log(this.item);
 }
 }
}

Here's the full, updated ItemDetailComponent code with the relevant new/updated
lines highlighted:

import {Component, OnInit} from "@angular/core";
import {Router, ActivatedRoute} from "@angular/router";
import {Item} from "./item";
import {ItemService} from "./item.service";

@Component({
 selector: "item-detail",
 template: `
 <div *ngIf="item" class="item-details">
 <h2>{{item.Title}} - Detail View</h2>

 <label>Title:</label>
 <input [(ngModel)]="item.Title"
placeholder="Insert the title..."/>

 <label>Description:</label>
 <textarea [(ngModel)]="item.Description"
placeholder="Insert a suitable description..."></textarea>

 </div>
 `,
 styles: [`
 .item-details {
 margin: 5px;

www.EBooksWorld.ir

 padding: 5px 10px;
 border: 1px solid black;
 background-color: #dddddd;
 width: 300px;
 }
 .item-details * {
 vertical-align: middle;
 }
 .item-details ul li {
 padding: 5px 0;
 }
 `]
})

export class ItemDetailComponent {
 item: Item;

 constructor(private itemService: ItemService,

 private router: Router,

 private activatedRoute: ActivatedRoute) {

 }

 ngOnInit() {

 var id = +this.activatedRoute.snapshot.params["id"];

 if (id) {

 this.itemService.get(id).subscribe(

 item => this.item = item

);

 }

 else {

 console.log("Invalid id: routing back to home...");

 this.router.navigate([""]);

 }

 }
}

The use of the injected ActivatedRoute object instance here is a bit cryptic, so it

www.EBooksWorld.ir

deserves a brief explanation.

As we can easily see, it is an object containing information about route parameters,
query parameters and URL fragments for the currently active route. In order to access
the id query parameter, we need to look into the params property, which happens to
be an Observable object. This basically means that we would normally need to
subscribe to it in the following way:

this.activatedRoute.params.subscribe(
 params => {
 let id = +params['id'];
 // do something with id
 });

This would indeed work, however, we were able to retrieve the id parameter using
less code and avoiding the Observable entirely thanks to the snapshot property,
which returns a flattened representation of the currently active route. As a general
rule of thumb, we can and should use the snapshot whenever we don't need to
actively monitor the Observable changes.

Note

Observables are one of the most interesting features introduced by Angular 2. We'll
talk more about them in Chapter 5, Persisting Changes.

This ItemDetailComponent update was the last thing we needed to do to finalize
our refactoring task. The revamp of our app's client-side navigation is now complete.
Before going further, let's perform a full routing and navigation test to see if
everything is looking good up to this point.

www.EBooksWorld.ir

Full routing test
It's time to hit F5 and see if our refactoring worked out well. If we did everything
correctly, we should be greeted with something like this:

That's definitely the Welcome View we wanted. Let's see if the improved master-
detail navigation pattern is working as well by left-clicking on one of the items. The
view should change, displaying the item detail data.

www.EBooksWorld.ir

Notice how the URL in the address bar properly switches from localhost to
localhost/item/{n}, reflecting the user navigation up to this point.

Since the master-detail route is working well, let's test our new navigation menu.
Clicking on the About link element should update our page in the following way:

www.EBooksWorld.ir

If this all works, there's no reason why the Login link shouldn't be working as well:

Finally, we can go back to the Home view and bring back the initial layout:

If we look closely at this welcome page we'll be able to see a small difference with
the former one. The Random Items listing is showing different items. This is

www.EBooksWorld.ir

working as indented since we want our app to always refresh that content by issuing
a new API call each time. Neither Angular 2 nor the Web API will serve cached
content unless we instruct them to do so.

Tip

Conversely, the web server and/or the browser could definitely do that due to their
default behavior for static files, that's why we explicitly disabled file caching in
Chapter 1, Getting Ready.

www.EBooksWorld.ir

Handling rewrites in ASP.NET Core
In for a penny, in for a pound, there's still an issue we need to address before going
further. We address that within our final test as it's something that can be better
demonstrated here.

Showing the issue

We might notice that, if we issue a browser refresh by hitting F5 on any page, we'll
end up with an HTTP 404 error (page not found). This is what happens when we try
this from the About view:

The same problem will occur whenever we try to refresh any of our app's URL
including the Item Detail View, the Login View, and even the Welcome View. This
is unacceptable for a production-ready app because our users won't be able to
properly bookmark or share anything from our app, the sole exception being the
localhost/index.html default starting URL.

Understanding the causes

The reasons for this are very simple. We have never told our web application how to
properly handle these URLs; hence, it follows the default behavior: it looks for a
matching HttpModule and checks the filesystem for a file or folder having the same
name, then it gives up by returning an HTTP 404 error (page not found).

You might wonder why the issue is not affecting the Welcome View. If we navigate
back there, then manually remove the index.html part and hit F5 right after that, it

www.EBooksWorld.ir

will still work like a charm.

The reason for that is simple. Remember that app.UseDefaultFiles() line of code
we added in the Setup.cs file back in Chapter 1, Getting Ready? That's it! Our
index.html is clearly a default file, meaning that the web application will look for
it even if it's not part of the requesting URL. Unfortunately, this behavior won't be
able to solve the issue on any internal page. In order to fix that, we need to find a way
to implement a custom set of URL rewriting rules.

Implementing the fix

In for a penny, in for a pound. We can tell our web server to rewrite all routing URLs,
including the root one, to the index.html file by adding the following lines to the
<system.webServer> section of our app's root web.config file:

<rewrite>
 <rules>
 <rule name="Angular 2 pushState routing" stopProcessing="true">
 <match url=".*" />
 <conditions logicalGrouping="MatchAll">
 <add input="{REQUEST_FILENAME}" matchType="IsFile"
negate="true" />
 <add input="{REQUEST_FILENAME}" matchType="IsDirectory"
negate="true" />
 <add input="{REQUEST_FILENAME}" pattern=".*\.[\d\w]+$"
negate="true" />
 <add input="{REQUEST_URI}" pattern="^/(api)" negate="true"
/>
 </conditions>
 <action type="Rewrite" url="/index.html" />
 </rule>
 </rules>
</rewrite>

By implementing these rules we're basically asking our web server (IIS or IIS
Express) to readdress any incoming request to the /index.html file, with the sole
exception of those pointing to:

Any existing file, to preserve references to actual .js, .css, .pdf, image files,
and more.
Any existing folder, to preserve references to actual, potentially browsable
and/or Angular-unrelated subfolders.
Any URL starting with /api, to preserve any call to our Web API Controllers.

It's worth mentioning that this implementation will only work under IIS if the URL
Rewrite Module is properly installed. Conversely, IIS Express won't have this issue
since that module is bundled as a built-in feature with all the latest versions.

www.EBooksWorld.ir

Note

We won't be digging into the URL Rewrite Module or URL Rewriting anytime soon.
If you want to retrieve additional info regarding how it works and/or have a better
grip of its rule/match/conditions syntax, we suggest reading the following official
MSDN documentation page:

http://www.iis.net/learn/extensions/url-rewrite-module/creating-rewrite-rules-for-
the-url-rewrite-module.

Here's how the web.config file will look after these changes (new lines are
highlighted):

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <!--
 Configure your application settings in appsettings.json. Learn
more at http://go.microsoft.com/fwlink/?LinkId=786380
 -->
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*"
modules="AspNetCoreModule" resourceType="Unspecified"/>
 </handlers>
 <aspNetCore processPath="%LAUNCHER_PATH%"
arguments="%LAUNCHER_ARGS%" stdoutLogEnabled="true"
stdoutLogFile=".\logs\stdout" forwardWindowsAuthToken="false" />
 <rewrite>

 <rules>

 <rule name="Angular 2 pushState routing"
stopProcessing="true">

 <match url=".*" />

 <conditions logicalGrouping="MatchAll">

 <add input="{REQUEST_FILENAME}" matchType="IsFile"
negate="true" />

 <add input="{REQUEST_FILENAME}" matchType="IsDirectory"
negate="true" />

 <add input="{REQUEST_FILENAME}" pattern=".*\.[\d\w]+$"
negate="true" />

 <add input="{REQUEST_URI}" pattern="^/(api)"
negate="true" />

www.EBooksWorld.ir

http://www.iis.net/learn/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module

 </conditions>

 <action type="Rewrite" url="/index.html" />

 </rule>

 </rules>

 </rewrite>
 </system.webServer>
</configuration>

Validating the outcome

Time to check out if the preceding implementation solves our 404 problems or not.
Run the app again in debug mode (by hitting F5 from Visual Studio IDE), wait for the
browser to load the Welcome View, then refresh it by hitting F5 . This time, instead
of an HTTP 404 error (page not found), you should be able to see an actual page
reload with the same contents as before (except for Random Items, as they will be
reshuffled as always). Move to the About View and do the same, then follow-up with
the Login View and the Item Detail View as well.

www.EBooksWorld.ir

Suggested topics
XHR, two-way data binding, master-detail navigation patterns,
PathLocationStrategy, HashLocationStrategy, location.pushState, URL
Rewrite Module, URL Rewriting, JavaScriptServices.

www.EBooksWorld.ir

Summary
A lot of things have happened here. We turned our attention to the client-side
components of our app, switching the focus from the Web API to Angular 2; we chose
to implement a Welcome View featuring multiple listings of clickable items, giving
our users the chance to navigate to their detail page through a classic master-detail
relationship.

To achieve such a result we created a bunch of Angular components: the Item class
for the model, the ItemService class to retrieve the required data from the Web API
and the ItemListComponent class to show them; then we connected them all using
our already-existing AppComponent, updating it accordingly; we also added multiple
lists to the Welcome View, improving our ItemListComponent and turning it into a
versatile, reusable class.

Everything we did was indeed working, but it didn't match our expectations in terms
of seamless navigation between views; we chose to address this issue with the help
of the Angular 2 routing library; implementing the library triggered a major refactor
of our components, which helped us to greatly improve our previous master-detail
approach.

As soon as we had built our improved, navigation-based pattern we performed a
final test to see if everything was working as expected. It turned out that our web
server couldn't handle our new client-side routes, so we added a set of URL
Rewrite rules to the web.config file to fix the issue.

Within the previous chapter we implemented a minimalistic, dummy-based, yet
functional Web API; in this chapter, we built an unpolished, ugly-looking yet working
Angular 2 client-side app. In the following chapters, we'll address these flaws by
adding a data model, an improved set of controller methods and also some styling to
improve the UI appearance.

www.EBooksWorld.ir

Chapter 4. The Data Model
Our app is growing fine, yet it's starting to show its limits. There's no way we can
add, update or delete our items, or properly implement our Login View, since it
would require handling some sort of user authentication in terms of credential storage
and session persistence, to say the least. Truth be told, we can't even say we're
actually showing something close to our original plan. Our items don't resemble
open-source game entries at all, they're more like a generic container put together in a
rather random fashion by a sample, method acting as a Dummy Data Provider.

It's time to get rid of that provisional demo and start working on the real thing. We
won't use Angular for that, as what we need to implement has little or nothing to do
with the client-side portion of our app. Nonetheless, we're fully aware of the fact that
most entities of the Data Model we're about to build will have their correspondence
in an Angular model class, just like we did with the C# ItemViewModel and the
TypeScript Item classes, as long as we don't forget we're doing this to feed Angular,
we'll be good.

www.EBooksWorld.ir

Getting ready
We need to do a lot of things here, so it's better to avoid wasting our time by
introducing the whole data model concept, as well as the various meanings of these
two words. The experienced reader, as well as the seasoned developer, will be most
likely aware of all the relevant stuff. We'll just say that, when we're talking about
data model, we don't mean anything more or anything less than a lightweight,
definitely-typed set of entity classes representing persistent, code-driven data
structures that we can use as resources within our Web API code.

We used the term persistent here for a reason: we want our data structure to be
stored in a database. That's rather obvious for any application based upon data.
OpenGameList, won't be an exception since we want it to act as a directory of open
source games, which is more than just requiring a database, our app is basically a
database by itself.

www.EBooksWorld.ir

Installing the EntityFramework Core
We're going to create ours with the help of the EntityFramework Core (EF Core),
the well-known open-source object-relational mapper (ORM) for ADO.NET
developed by Microsoft. The reasons for such a choice are many:

Seamless integration with the Visual Studio IDE
A conceptual model based upon entity classes (Entity Data Model (EDM)) that
will enable us to work with data using domain-specific objects without the need
to write data-access code, which is precisely what we're looking for
Easy to deploy, use and maintain in development and production phases
Compatible with all the major open-source and commercial SQL-based engines,
including MSSQL, MySQL, PostgreSQL, Oracle, and more, thanks to the
official and/or third-party EF-compatible connectors available via NuGet

Note

It's worth mentioning that the EF Core was previously known as EntityFramework 7
until its latest RC release. The name change follows the ASP.NET 5/ASP.NET Core
perspective switch we've already talked about, as it also emphasizes the EF Core
major rewrite/redesign.

You might be wondering why we're choosing to adopt a SQL-based approach instead
of going for a NoSQL alternative. There are many good NoSQL products such as
MongoDB, RavenDB, and CouchDB that happen to have a C# connector library.
What about using one of them instead?

The answer is rather simple: they are not supported yet by the EF Core 1.0.0, which,
at the time of writing, happens to be the latest stable release. If we look at the EF
Core team backlog we can see that non-relational database providers, such as Azure
Table Storage, Redis, and others, are indeed mentioned for upcoming support, but it's
unlikely that we'll be able to see any of them implemented within the EF Core's future
releases as well.

Note

If you want to know more about the upcoming release, and/or if you feel bold enough
to use it anyway maybe with a NoSQL DB as well, we suggest reading more about
the EF Core project status by visiting the following links:

Project roadmap:

https://github.com/aspnet/EntityFramework/wiki/Roadmap
Source code on GitHub:

www.EBooksWorld.ir

https://github.com/aspnet/EntityFramework/wiki/Roadmap

https://github.com/aspnet/EntityFramework
Official documentation:

https://docs.efproject.net/en/latest/

In order to install the EF Core, we need to add the relevant packages to the
dependencies section of our project.json file. We can easily do that using the
visual GUI like we did for the Newtonsoft.json package in the following way:

1. Right-click on the OpenGameListWebApp project.
2. Select Manage NuGet Packages.
3. Ensure that the Package source drop-down list is set to All and also that the

Include prerelease switch is checked.
4. Go to the Browse tab and search for the packages containing the

EntityFrameworkCore keyword.

Next, install the following packages:

Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore

Microsoft.AspNetCore.Identity.EntityFrameworkCore

Microsoft.EntityFrameworkCore

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.EntityFrameworkCore.Design

www.EBooksWorld.ir

https://github.com/aspnet/EntityFramework
https://docs.efproject.net/en/latest/

Alternatively, we could add the relevant packages manually within the
project.json file as follows (new lines highlighted):

 "dependencies": {
 "Microsoft.AspNetCore.Mvc": "1.0.0",
 "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
 "Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
 "Microsoft.Extensions.Configuration.EnvironmentVariables":
"1.0.0",
 "Microsoft.Extensions.Configuration.FileExtensions": "1.0.0",
 "Microsoft.Extensions.Configuration.Json": "1.0.0",
 "Microsoft.Extensions.Logging": "1.0.0",
 "Microsoft.Extensions.Logging.Console": "1.0.0",
 "Microsoft.Extensions.Logging.Debug": "1.0.0",
 "Microsoft.Extensions.Options.ConfigurationExtensions":
"1.0.0",

 "Microsoft.AspNetCore.Diagnostics": "1.0.0",
 "Microsoft.AspNetCore.Routing": "1.0.0",
 "Microsoft.AspNetCore.Authentication.JwtBearer": "1.0.0",
 "Microsoft.AspNetCore.StaticFiles": "1.0.0",
 "Microsoft.VisualStudio.Web.BrowserLink.Loader": "14.0.0",
 "Newtonsoft.Json": "9.0.1",

 "Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore":
"1.0.0",

 "Microsoft.AspNetCore.Identity.EntityFrameworkCore": "1.0.0",

 "Microsoft.EntityFrameworkCore": "1.0.0",

 "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0",

 "Microsoft.EntityFrameworkCore.Design": "1.0.0-preview2-final",
 }

Note

At the time of writing, the latest released version of EF Core was 1.0.0, with the sole
exception of Microsoft.EntityFrameworkCore.Design, which is still in 1.0.0-
preview2. We're going to use these builds in our project.

As usual, the advantage of doing it manually is that we can keep the packages more
organized by separating them into commented blocks.

Among the installed namespaces we can easily see the presence of the
EntityFrameworkCore.SqlServer, a highly versatile connector providing an
interface with the whole MSSQL server database family: SQL Server 2008-2014, as
well as the Express and Compact editions for personal and development usage.

www.EBooksWorld.ir

We're free to choose between using one of them and picking another DBMS engine
such as MySQL, PostgreSQL, or any other EF-compatible product. Should we take
this decision now? It entirely depends on the data modeling approach we want to
adopt. For the time being and for the sake of simplicity, we'll be sticking to it.

www.EBooksWorld.ir

Data modeling approaches
Now that we have EF installed, we have to choose between one of the three
available approaches to model the data structure: model-first, database-first and
code-first. Each one of them comes with its fair amount of advantages and
disadvantages, as the experienced readers and seasoned .NET developers will most
certainly know. While we won't dig too much into these, it could be useful to briefly
summarize each one of them before making the choice.

The model-first approach

If you're not familiar with the Visual Studio IDE design tools such as the XML-based
DataSet Schema (XSD) and the Entity Designer Model XML (EDMX) visual
interface, the model-first approach can be rather confusing. The key to understanding
it is to acknowledge the fact that the word model here is meant to define a visual
diagram built with the design tools. This diagram will then be used by the framework
to autogenerate the database SQL script and the data model source code files.

To summarize, we can say that choosing the model-first option means working on a
visual EDMX diagram and letting EF create/update the rest accordingly.

www.EBooksWorld.ir

The model-first approach

Pros

We will be able to create the database scheme and the class diagram as a whole
using a visual design tool, which could be great when the data structure is quite
big.
Whenever the database changes, the model can be updated accordingly without
data loss.

Cons

The diagram-driven, autogenerated SQL scripts could lead to data loss in case
of updates. An easy workaround for that would be generating the scripts on disk
and manually modifying them, which would require decent SQL knowledge.
Dealing with the diagram can be tricky, especially if we want to have precise
control over our model classes. We wouldn't always be able to get what we
want, as the actual source code would be auto-generated by a tool.

The database-first approach

Given the disadvantages of the model-first approach, we might think that the
database-first approach might be the way to go. This could be true if we either have a
database already or don't mind building it beforehand. That being the case, the
database-first approach is similar to the model-first one, except it goes the other way
around. Instead of designing EDMX manually and generating the SQL script to create
the database, we build the latter and then generate the former using the ED Designer
tool.

We can summarize it by saying that choosing the Database-first approach means
building the database and letting EF create/update the rest accordingly.

www.EBooksWorld.ir

The database-first approach

Pros

If we have an already-existing database in place, this will most likely be the
way as it will spare us the need to re-create it.
The risk of data-loss will be kept to a minimum because any change or update
will be always performed on the database.

Cons

Manually updating the database can be tricky if we're dealing with clusters,
multiple instances or a number of development/testing/production environments,
as we will have to manually keep them in sync instead of relying upon code-
driven updates/migrations or autogenerated SQL scripts.
We would have even less control over the autogenerated model classes (and
their source code) than if we were using the model-first approach. It would
require an extensive knowledge of EF conventions and standards, otherwise,
we'll often struggle to get what we want.

The code-first approach

Last but not least comes the EF flagship approach since EF4, which enables an
elegant, highly efficient data model development workflow. The appeal of this
approach can easily be found in its premise: the code-first approach allows the

www.EBooksWorld.ir

developer to define model objects using only standard classes, without the need for
any design tool, XML mapping files or cumbersome piles of autogenerated code.

To summarize, we could say that choosing the code-first approach means writing the
Data Model entity classes we'll be using within our project and letting EF generate
the database accordingly.

The code-first approach

Pros

No need for diagrams and visual tools whatsoever, which could be great for
small-to-medium size projects as it would save us a lot of time.
A fluent code API that allows the developer to follow a convention over
configuration approach, and to handle the most common scenarios, while also
giving him the chance to switch to custom, attribute-based implementation
overrides whenever he needs to customize the database mapping.

Cons

A good knowledge of C# and updated EF conventions is required.
Maintaining the database could be tricky sometimes, as well as handling updates
without suffering data loss. The migrations support, added in 4.3 to overcome
the issue which has been continuously updated since then, greatly mitigates the

www.EBooksWorld.ir

problem, although it has also affected the learning curve in a negative way.
Making a choice

As we can easily see by judging the advantage and disadvantage listings, there is no
such thing as an overall better or best approach. Conversely, we could say that each
project scenario will likely have a most suitable approach.

Regarding our project, considering the fact we don't have a database yet and we're
aiming for a flexible, mutable small-scale data structure, adopting the code-first
approach would probably be a good choice. That's what we're going to do, starting
from the following paragraph.

www.EBooksWorld.ir

Creating entities
We're definitely going to use one of the big advantages of the Code-First approach
and start writing our entity classes immediately, without worrying too much about the
database engine we're going to use.

Note

Truth be told, we already know something about what we're eventually going to use.
We won't be adopting a NoSQL solution, as they are not supported by EF yet; we also
don't want to commit ourselves into purchasing expensive license plans, so Oracle
and the commercial editions of SQL Server are most likely out of the picture as well.

This leaves us with relatively few choices: SQL Server Compact Edition, SQL
Server Express, MySQL, or other less-known solutions such as PostgreSql. That
being said, adopting the code-first approach will give us the chance to postpone the
call until our data model is ready.

www.EBooksWorld.ir

Items
Select the OpenGameListWebApp project from the Solution Explorer, then do the
following tasks:

1. Create a /Data/ folder: this will be where all our EF-related classes will
reside.

2. Create a /Data/Items/ folder.
3. Right-click on that folder and select Add... | New Item.
4. From the Visual C# items | Code | Class.
5. Name the new class Item.cs and create it.

As for the source code, we could start with something like the following:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace OpenGameListWebApp.Data.Items
{
 public class Item
 {
 #region Constructor
 public Item()
 {

 }

www.EBooksWorld.ir

 #endregion Constructor

 #region Properties
 [Key]
 [Required]
 public int Id { get; set; }
 [Required]
 public string Title { get; set; }
 public string Description { get; set; }
 public string Text { get; set; }
 public string Notes { get; set; }
 [Required]
 public int Type { get; set; }
 [Required]
 public int Flags { get; set; }
 [Required]
 public string UserId { get; set; }
 [Required]
 public int ViewCount { get; set; }
 [Required]
 public DateTime CreatedDate { get; set; }
 [Required]
 public DateTime LastModifiedDate { get; set; }
 #endregion Properties
 }
}

Note the presence of the UserId foreign key. We'll get to them soon.

Note

It's also worth noting that we used a lot of Data Annotations attributes, those being
the most convenient way to override the default the code-first conventions.

If you want to know more about Data Annotations in the EF Core, we strongly
suggest reading the official documentation at the following URL:

https://docs.efproject.net/en/latest/modeling/index.html.

As we can easily see, this entity class is very similar to the ItemViewModel class we
created in Chapter 2, ASP.NET Controllers and Server-Side Routes. That's perfectly
fine because that class was originally meant to resemble the public properties of the
Web API underlying model, which is precisely what we're defining now.

The following diagram can help to better understand this:

www.EBooksWorld.ir

https://docs.efproject.net/en/latest/modeling/index.html

As we can see, we're creating the entity that will be used by EF to generate the
database (using the code-first approach) and also translate (using property mapping)
into the ItemViewModel we'll be using to serve our content to our Angular client.

As we might guess, the Item entity alone will hardly be enough. In order to complete
our initial requirements we need to define a couple more entity classes:

Comments, where we can store the comments related to each Item (if any).
Users, which will serve as the main reference for all items and comments and
also handle the authentication/login phase.

www.EBooksWorld.ir

Comments
Let's start with the first one by doing the following:

1. Create a /Data/Comments/ folder.
2. Right-click to that folder and select Add... | New Item.
3. From the Visual C# items | Code | Class.
4. Name the new class Comment.cs and create it.

As for the code itself, here's a good start:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace OpenGameListWebApp.Data.Comments
{
 public class Comment
 {
 #region Constructor
 public Comment()
 {

 }
 #endregion Constructor

 #region Properties
 [Key]
 [Required]
 public int Id { get; set; }
 [Required]
 public int ItemId { get; set; }
 [Required]
 public string Text { get; set; }
 [Required]
 public int Type { get; set; }
 [Required]
 public int Flags { get; set; }
 [Required]
 public string UserId { get; set; }
 public int? ParentId { get; set; }
 [Required]
 public DateTime CreatedDate { get; set; }
 [Required]
 public DateTime LastModifiedDate { get; set; }
 #endregion Properties
 }
}

www.EBooksWorld.ir

That's it. Notice that we have three foreign keys here:

ItemId, pointing to the specific item a comment is about. This is a required
field, since there won't be any comment without a related item.
UserId, pointing to the comment's author, which is something we'll arguably set
when we'll define the User entity later on. This is also a required field, as we're
not planning to support any comment without an author.
ParentId, pointing to the master comment this entry is replying to, or null if the
comment is not a reply. This is a classic implementation of the standard
recursive foreign key pattern (also known as the root-leaf or parent-child),
which is one of the most common ways to handle threading.

To better understand how ParentId will work, consider the following image:

www.EBooksWorld.ir

Users
It's time to add the ApplicationUser entity. Create a new /Data/Users/ folder,
add an ApplicationUser.cs class and fill it up with the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace OpenGameListWebApp.Data.Users
{
 public class ApplicationUser
 {
 #region Constructor
 public ApplicationUser()
 {

 }
 #endregion Constructor

 #region Properties
 [Key]
 [Required]
 public string Id { get; set; }
 [Required]
 [MaxLength(128)]
 public string UserName { get; set; }
 [Required]
 public string Email { get; set; }
 public string DisplayName { get; set; }
 public string Notes { get; set; }
 [Required]
 public int Type { get; set; }
 [Required]
 public int Flags { get; set; }
 [Required]
 public DateTime CreatedDate { get; set; }
 [Required]
 public DateTime LastModifiedDate { get; set; }
 #endregion Properties
 }
}

Here we go. Note that there are no foreign keys here, since the one-to-many relations
with items and comments will be handled on the other side.

www.EBooksWorld.ir

Note

We could ask ourselves why we used the ApplicationUser class name instead of
User. The answer is pretty simple: ApplicationUser is the conventional name
given to the class of the custom implementation of the IdentityUser base class used
by the ASP.NET Identity module. We're using it in compliance with that convention,
as we plan to implement this module later on.

www.EBooksWorld.ir

Defining relationships
Now that we have built our main entity skeleton we need to create some relationships
between them. We want to be able to do stuff like retrieving an Item, browsing to
their related Comments, then getting the ApplicationUser for each one of them, and
also the other way around. We can easily do that by implementing a set of related
entity properties: EF will load them on demand using its default lazy-load retrieval
feature.

The first thing we'll do is to add a new region to our Item class, containing two new
properties:

#region Related Properties
/// <summary>
/// Current Item's Author: this property will be loaded on first
use using EF's Lazy-Loading feature.
/// </summary>
[ForeignKey("UserId")]
public virtual ApplicationUser Author { get; set; }

/// <summary>
/// Current Item's Comment list: this property will be loaded on
first use using EF's Lazy-Loading feature.
/// </summary>
public virtual List<Comment> Comments { get; set; }
#endregion Related Properties

To do this, we also have to add a reference to the following namespaces at the
beginning of the file:

using OpenGameListWebApp.Data.Users;
using OpenGameListWebApp.Data.Comments;

Anyone who has some experience of EF won't miss the ForeignKey data annotation.
This is one of the many code-first configuration overrides we'll need to use to have
our data model properly built. There's nothing complex here, we're just telling EF
that this property should be loaded using the UserId field. Needless to say, this will
also create a one-to-many binding relationship (also known as a constraint), so long
as our database supports it.

Tip

In order to use the ForeignKey attribute (and all the other EF data annotation),
remember to add the System.ComponentModel.DataAnnotations.Schema within
the using section of the Item class.

www.EBooksWorld.ir

Let's do the same with the Comments class:

#region Related Properties
/// <summary>
/// Current Comment's Item: this property will be loaded on first
use using EF's Lazy-Loading feature.
/// </summary>
[ForeignKey("ItemId")]
public virtual Item Item { get; set; }

/// <summary>
/// Current Comment's Author: this property will be loaded on first
use using EF's Lazy-Loading feature.
/// </summary>
[ForeignKey("UserId")]
public virtual ApplicationUser Author { get; set; }

/// <summary>
/// Parent comment, or NULL if this is a root comment: this
property will be loaded on first use using EF's Lazy-Loading
feature.
/// </summary>
[ForeignKey("ParentId")]
public virtual Comment Parent { get; set; }

/// <summary>
/// Children comments (if present).
/// </summary>
public virtual List<Comment> Children { get; set; }
#endregion Related Properties

Again, remember to also add a reference to the following namespaces:

using OpenGameListWebApp.Data.Items;
using OpenGameListWebApp.Data.Users;

The Related Properties region is slightly more crowded here, as we have three
foreign keys, but the beef is the same. For each Comment, we want to retrieve the
related item, the user who wrote it, and also the parent comment it's replying to (if
any): therefore, we define four properties and decorate them with the ForeignKey
data annotation attribute; we also add a fourth property to keep track of the child
comments (if present).

Last but not least, let's move on to the ApplicationUser entity class and add the
following code to it:

#region Related Properties
/// <summary>
/// A list of items wrote by this user: this property will be
loaded on first use using EF's Lazy-Loading feature.

www.EBooksWorld.ir

/// </summary>
public virtual List<Item> Items { get; set; }

/// <summary>
/// A list of comments wrote by this user: this property will be
loaded on first use using EF's Lazy-Loading feature.
/// </summary>
public virtual List<Comment> Comments { get; set; }
#endregion Related Properties

And the required namespace references as well:

using OpenGameListWebApp.Data.Items;
using OpenGameListWebApp.Data.Comments;

There's nothing fancy here, just a couple of lists we can use to track down all the
contents posted by each user.

You will easily notice that each foreign key spawned the following:

A single object entity property with the same type of the entity we're referring to
in the class containing the foreign key
A type-defined listing property in the related class

This pattern won't change as long as we're defining one-to-many relationships only,
an object to the left, leading to a list of related objects to the right.

Are we done with our entities? Yes.

Are we ready to deploy our code-first database? Hardly. Before doing that, we need
to do two things:

1. Set up an appropriate database context.
2. Enable the code-first migrations support to our project.

Let's do that right away.

www.EBooksWorld.ir

Setting up DbContext
To interact with data as objects/entity classes, EF uses the
Microsoft.EntityFrameworkCore.DbContext class also called DbContext or
simply Context. This class is in charge of all the entity objects during execution,
including populating them with data from the database, keeping track of changes, and
persisting them to the database during CRUD operations.

We can easily create our very own DbContext class for our project, which we will
call ApplicationDbContext, by performing the following tasks:

Right-click on the /OpenGameList/Data folder and add a new
ApplicationDbContext.cs class. Fill it up with the following code:

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;
using OpenGameListWebApp.Data.Items;
using OpenGameListWebApp.Data.Users;
using OpenGameListWebApp.Data.Comments;

namespace OpenGameListWebApp.Data
{
 public class ApplicationDbContext : DbContext
 {
 #region Constructor
 public ApplicationDbContext(DbContextOptions options) :
base(options)
 {
 }
 #endregion Constructor

 #region Methods
 protected override void OnModelCreating(ModelBuilder
modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

modelBuilder.Entity<ApplicationUser>().ToTable("Users");
 modelBuilder.Entity<ApplicationUser>().HasMany(u =>
u.Items).WithOne(i => i.Author);
 modelBuilder.Entity<ApplicationUser>().HasMany(u =>
u.Comments).WithOne(c => c.Author).HasPrincipalKey(u => u.Id);

 modelBuilder.Entity<Item>().ToTable("Items");
 modelBuilder.Entity<Item>().Property(i =>
i.Id).ValueGeneratedOnAdd();
 modelBuilder.Entity<Item>().HasOne(i =>

www.EBooksWorld.ir

i.Author).WithMany(u => u.Items);
 modelBuilder.Entity<Item>().HasMany(i =>
i.Comments).WithOne(c => c.Item);

 modelBuilder.Entity<Comment>().ToTable("Comments");
 modelBuilder.Entity<Comment>().HasOne(c =>
c.Author).WithMany(u => u.Comments).HasForeignKey(c =>
c.UserId).OnDelete(DeleteBehavior.Restrict);
 modelBuilder.Entity<Comment>().HasOne(c =>
c.Item).WithMany(i => i.Comments);
 modelBuilder.Entity<Comment>().HasOne(c =>
c.Parent).WithMany(c => c.Children);
 modelBuilder.Entity<Comment>().HasMany(c =>
c.Children).WithOne(c => c.Parent);
 }
 #endregion Methods

 #region Properties
 public DbSet<Item> Items { get; set; }
 public DbSet<Comment> Comments { get; set; }
 public DbSet<ApplicationUser> Users { get; set; }
 #endregion Properties
 }
}

There are a number of things worth noting here:

In the second constructor method's implementation, we set the DbInitializer,
which is the class that will handle the database initialization strategy. If you're
used to EF6 you know why we need to do this, otherwise don't worry as we'll
get there in the following paragraph.
We overrode the OnModelCreating method to manually define our data model
relationships for our ApplicationUser, Item, and Comment entity classes.
Notice that we manually configured the table names for each entity using the
modelBuilder.Entity<TEntityType>().ToTable method. We did that with
the sole purpose of showing how easy it is to customize the code-first generated
database.
Finally, we added a DbSet property for each of our entities, so we can easily
access them later on.

www.EBooksWorld.ir

Database initialization strategies
Creating the database for the first time isn't the only thing we need to worry about, for
example, how can we keep tracks of the changes that will definitely occur to our data
model?

In EF's previous versions, we could choose between one of the database management
patterns (known as database initializers or DbInitializers) offered by the code-first
approach, that is picking the appropriate database initialization strategy for our
specific needs: CreateDatabaseIfNotExists,
DropCreateDatabaseIfModelChanges, DropCreateDatabaseAlways, and
MigrateDatabaseToLatestVersion. Additionally, if we need to address specific
requirements, we could also set up our own custom initializer by extending one of the
preceding options and overriding their core methods.

The major flaw of DbInitializers was that they were not that immediate and
streamlined for the average developer. They were viable, yet difficult to handle
without an extensive knowledge of the whole EF logic.

In EF Core the pattern has been greatly simplified: there are no DbInitializers and
automatic migrations have also been removed. The database initialization aspect is
now entirely handled through PowerShell commands, with the sole exception of a
small set of commands that can be placed directly on the DbContext implementation
constructor to partially automatize the process:

Database.EnsureCreated()

Database.EnsureDeleted()

Database.Migrate()

There's currently no way to create migrations programmatically, they must be added
via PowerShell, as we're going to do shortly.

www.EBooksWorld.ir

Choosing the database engine
Before doing that though, we need to choose which database engine we would like to
use. We're going to take this as an opportunity to demonstrate the versatility of the
code-first approach.

From the main menu, select View | SQL Server Object Explorer and look through
the list of available development-ready databases:

Open the SQL server node to show the localdb instances installed on your system. If
you have one or more instances of SQL Server/SQL Express installed, you will also
find a reference for each one of them.

Tip

If you have no entries there (no SQL server node), you are most likely missing the
SQL Server Data Tools components from your Visual Studio 2015 installation. In
order to fix that you need to close Visual Studio, go to Control Panel | Programs and
Features, then select Microsoft Visual Studio 2015 and choose Change: you'll be
able to modify your existing installation by adding the SQL Server Data Tools
components. Once you're done, restart Visual Studio: the default localdb instance
should be ready and available.

For now, our pick will be the default localdb instance that comes with Visual Studio
2015, which goes by the name of (localdb)\MSSQLLocalDB. We need to keep track
of that name, as we'll be using it in the appsettings.json file in a short while.

www.EBooksWorld.ir

Note

The default localdb instance we just chose might be viable enough for development,
but it won't work in production. Don't worry, though, we will choose a whole
different database engine when we get to deployment phase. As we said before,
we're doing that on purpose in order to demonstrate the versatility of the code-first
approach.

www.EBooksWorld.ir

Updating appsettings.json
From the Solution Explorer, expand the OpenGameListWebApp project root node,
open the appsettings.json file, and add the following (new lines highlighted):

{
 "Data": {

 "DefaultConnection": {

 "ConnectionString": "Data Source=
(localdb)\\MSSQLLocalDB;Initial Catalog=OpenGameList;Integrated
Security=True; MultipleActiveResultSets=True"

 }

 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 },
 "StaticFiles": {
 "Headers": {
 "Cache-Control": "no-cache, no-store",
 "Pragma": "no-cache",
 "Expires": "-1"
 }
 }
}

This is the connection string we'll be referencing to in the Startup.cs file later on.

www.EBooksWorld.ir

Creating the database
Now that we have our own DbContext and a valid Connection String, we can
easily add the initial migration and create our database.

www.EBooksWorld.ir

Updating Startup.cs
The first thing we have to do is add the EF support and our ApplicationDbContext
implementation to our application startup class. Open the Startup.cs file and
update the ConfigureServices method in the following way (new lines are
highlighted):

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 // Add EntityFramework's Identity support.

 services.AddEntityFramework();

 // Add ApplicationDbContext.

 services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration["Data:DefaultConnection:Connecti
onString"])
);
}

These new code lines will also require the following namespace references:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using OpenGameListWebApp.Data;

www.EBooksWorld.ir

Configuring the EF tools
Before we can use the required PowerShell commands we need to properly
configure the EF Core tools. To do that, open the project.json file, locate the tools
section, and add the following (new lines are highlighted):

 "tools": {
 "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-
preview2-final",
 "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final"
 }

Right after that, it may be wise to issue a full rebuild to make sure there are no build
errors in our updated code.

www.EBooksWorld.ir

Adding the initial migration
Right after that, open a PowerShell command prompt and navigate through the
project's root folder, which in our example is as follows:

C:\Projects\OpenGameList\src\OpenGameListWebApp\

Once there, type the following command to add the first migration:

dotnet ef migrations add "Initial" -o "Data\Migrations"

Tip

The optional -o parameter can be used to change the location where the migration
code-generated files will be created. If we don't specify it, a root-level
/Migrations/ folder will be created and used as the default. Since we put all the
EF Core classes into the /Data/ folder, it's advisable to store migrations there as
well.

Wait for the migration to be created, then type the following to execute it:

dotnet ef database update

Once done, open the Server Object Explorer and check that the OpenGameList
database has been created, together with all their relevant tables:

Note

Those who have used migrations before might be asking why we didn't use the Visual

www.EBooksWorld.ir

Studio's Package Manager Console to execute these commands, just like it used to be
done in the past. The reason is simple: Unfortunately doing this won't work because
the commands need to be executed within the project root folder, which is not where
the Package Manager Console commands get executed. It is also unknown if that
behavior will change in the near future, even though it would definitely make sense.

If we go back to Visual Studio, we can see that there's a new /Data/Migrations/
folder containing the EF Core code-generated files.

Understanding migrations

Before going further it may be useful to spend a short while explaining what code-
first migrations actually are and the advantages we gain by using them.

Whenever we're developing an application and defining a data model, we can be
sure that it will change a number of times for many good reasons: new requirements
from the product owner, optimization processes, consolidation phases and so on. A
bunch of properties will be added, deleted, or have their type changed. Chances are
that sooner or later we'll be adding new entities as well, and/or changing their
relation pattern according to our ever-changing needs.

Each time we do something like that, we'll also put our data model out of sync with
its underlying, code-first generated database. This usually won't be a problem when
we're debugging our app within a development environment because that scenario
usually allows us to recreate the database from scratch whenever the project changes.

Upon deploying the application into production we'll be facing a whole different
story. As long as we're handling real data, dropping and recreating our database
won't be an option anymore, which is precisely what the code-first migrations feature
is meant to address, giving the developer a chance to alter the database schema
without having to drop/recreate the whole thing.

Note

We won't dig more into this topic: EF Core is a world on its own and talking too
much about it would undoubtedly bring us far from the scope of this book.

If you want to go further, we can suggest starting with the official documentation
hosted by the EF Core documentation website at the following URL:

https://ef.readthedocs.io/en/latest/.

www.EBooksWorld.ir

https://ef.readthedocs.io/en/latest/

www.EBooksWorld.ir

Implementing a data seed strategy
We have created the database, yet it's still completely empty. In order to test it against
our existing application, it could be useful to find an easy way to add some sample
data programmatically.

In the most recent EF versions, up to and including EF6, it was possible to do that
using the DbMigrationsConfiguration.Seed() method. Unfortunately though, a
migrations configuration doesn't exist in EF Core: this seems to be more an
implementation choice than a lack of features since the seeding tasks can now be
handled directly within the Startup.cs file.

Note

Although this is definitely true, there is still a controversy going on between the EF
Core developers community regarding that specific aspect. The absence of a high-
level API and/or a consolidated pattern to run seeding after applying migrations is
indeed something that should be addressed somehow, as executing such a delicate
task during application running creates a number of issues, and it doesn't seem to be a
viable solution in most scenarios.

www.EBooksWorld.ir

Creating a DbSeeder class
Let's start with adding a DbSeeder.cs class in the /Data/ folder. This class will be
using the ApplicationDbContext to create sample data, so we'll have to find a way
to have it available there without creating an additional instance. We can do that
using the ASP.NET Core DI pattern in the following way:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.ChangeTracking;
using OpenGameListWebApp.Data;
using OpenGameListWebApp.Data.Comments;
using OpenGameListWebApp.Data.Items;
using OpenGameListWebApp.Data.Users;
using System;
using System.Linq;
using System.Threading.Tasks;

public class DbSeeder
{
 #region Private Members
 private ApplicationDbContext DbContext;
 #endregion Private Members

 #region Constructor
 public DbSeeder(ApplicationDbContext dbContext)
 {
 DbContext = dbContext;
 }
 #endregion Constructor

 #region Public Methods
 public async Task SeedAsync()
 {
 // Create the Db if it doesn't exist
 DbContext.Database.EnsureCreated();
 // Create default Users
 if (await DbContext.Users.CountAsync() == 0) CreateUsers();
 // Create default Items (if there are none) and Comments
 if (await DbContext.Items.CountAsync() == 0) CreateItems();
 }
 #endregion Public Methods

 #region Seed Methods
private void CreateUsers()
 {
 // local variables
 DateTime createdDate = new DateTime(2016, 03, 01, 12, 30,
00);
 DateTime lastModifiedDate = DateTime.Now;

www.EBooksWorld.ir

 // Create the "Admin" ApplicationUser account (if it
doesn't exist already)
 var user_Admin = new ApplicationUser() { Id =
Guid.NewGuid().ToString(), UserName = "Admin", Email =
"admin@opengamelist.com", CreatedDate = createdDate,
LastModifiedDate = lastModifiedDate };

 // Insert "Admin" into the Database
 DbContext.Users.Add(user_Admin);

#if DEBUG
 // Create some sample registered user accounts (if they
don't exist already)
 var user_Ryan = new ApplicationUser() { Id =
Guid.NewGuid().ToString(), UserName = "Ryan", Email =
"ryan@opengamelist.com", CreatedDate = createdDate,
LastModifiedDate = lastModifiedDate };
 var user_Solice = new ApplicationUser() { Id =
Guid.NewGuid().ToString(), UserName = "Solice", Email =
"solice@opengamelist.com", CreatedDate = createdDate,
LastModifiedDate = lastModifiedDate };
 var user_Vodan = new ApplicationUser() { Id =
Guid.NewGuid().ToString(), UserName = "Vodan", Email =
"vodan@opengamelist.com", CreatedDate = createdDate,
LastModifiedDate = lastModifiedDate };

 // Insert sample registered users into the Database
 DbContext.Users.AddRange(user_Ryan, user_Solice,
user_Vodan);
#endif
 DbContext.SaveChanges();
 }

 private void CreateItems()
 {
 // local variables
 DateTime createdDate = new DateTime(2016, 03, 01, 12, 30,
00);
 DateTime lastModifiedDate = DateTime.Now;

 var authorId = DbContext.Users.Where(u => u.UserName ==
"Admin").FirstOrDefault().Id;

#if DEBUG
 var num = 1000; // create 1000 sample items
 for (int id = 1; id <= num; id++)
 {
 DbContext.Items.Add(GetSampleItem(id, authorId, num -
id, new DateTime(2015, 12, 31).AddDays(-num)));
 }
#endif

www.EBooksWorld.ir

 EntityEntry<Item> e1 = DbContext.Items.Add(new Item()
 {
 UserId = authorId,
 Title = "Magarena",
 Description = "Single-player fantasy card game similar
to Magic: The Gathering",
 Text = @"Loosely based on Magic: The Gathering, the
game lets you play against a computer opponent or another human
being.
 The game features a well-developed
AI, an intuitive and clear interface and an enticing level of
gameplay.",
 Notes = "This is a sample record created by the Code-
First Configuration class",
 ViewCount = 2343,
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 });

 EntityEntry<Item> e2 = DbContext.Items.Add(new Item()
 {
 UserId = authorId,
 Title = "Minetest",
 Description = "Open-Source alternative to Minecraft",
 Text = @"The Minetest gameplay is very similar to
Minecraft's: you are playing in a 3D open world, where you can
create and/or remove various types of blocks.
 Minetest feature both single-player and
multi-player game modes.
 It also has support for custom mods,
additional texture packs and other custom/personalization options.
 Minetest has been released in 2015 under
GNU Lesser General Public License.",
 Notes = "This is a sample record created by the Code-
First Configuration class",
 ViewCount = 4180,
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 });

 EntityEntry<Item> e3 = DbContext.Items.Add(new Item()
 {
 UserId = authorId,
 Title = "Relic Hunters Zero",
 Description = "A free game about shooting evil space
ducks with tiny, cute guns.",
 Text = @"Relic Hunters Zero is fast, tactical and also
very smooth to play.
 It also enables the users to look at the
source code, so they can can get creative and keep this game alive,
fun and free for years to come.
 The game is also available on Steam.",

www.EBooksWorld.ir

 Notes = "This is a sample record created by the Code-
First Configuration class",
 ViewCount = 5203,
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 });

 EntityEntry<Item> e4 = DbContext.Items.Add(new Item()
 {
 UserId = authorId,
 Title = "SuperTux",
 Description = "A classic 2D jump and run, side-
scrolling game similar to the Super Mario series.",
 Text = @"The game is currently under Milestone 3. The
Milestone 2, which is currently out, features the following:
 - a nearly completely rewritten game engine
based on OpenGL, OpenAL, SDL2, ...
 - support for translations
 - in-game manager for downloadable add-ons
and translations
 - Bonus Island III, a for now unfinished
Forest Island and the development levels in Incubator Island
 - a final boss in Icy Island
 - new and improved soundtracks and sound
effects
 ... and much more!
 The game has been released under the GNU
GPL license.",
 Notes = "This is a sample record created by the Code-
First Configuration class",
 ViewCount = 9602,
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 });

 EntityEntry<Item> e5 = DbContext.Items.Add(new Item()
 {
 UserId = authorId,
 Title = "Scrabble3D",
 Description = "A 3D-based revamp to the classic
Scrabble game.",
 Text = @"Scrabble3D extends the gameplay of the classic
game Scrabble by adding a new whole third dimension.
 Other than playing left to right or top to
bottom, you'll be able to place your tiles above or beyond other
tiles.
 Since the game features more fields, it
also uses a larger letter set.
 You can either play against the computer,
players from your LAN or from the Internet.
 The game also features a set of game
servers where you can challenge players from all over the world and

www.EBooksWorld.ir

get ranked into an official, ELO-based rating/ladder system.
 ",
 Notes = "This is a sample record created by the Code-
First Configuration class",
 ViewCount = 6754,
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 });

 // Create default Comments (if there are none)
 if (DbContext.Comments.Count() == 0)
 {
 int numComments = 10; // comments per item
 for (int i = 1; i <= numComments; i++)
DbContext.Comments.Add(GetSampleComment(i, e1.Entity.Id, authorId,
createdDate.AddDays(i)));
 for (int i = 1; i <= numComments; i++)
DbContext.Comments.Add(GetSampleComment(i, e2.Entity.Id, authorId,
createdDate.AddDays(i)));
 for (int i = 1; i <= numComments; i++)
DbContext.Comments.Add(GetSampleComment(i, e3.Entity.Id, authorId,
createdDate.AddDays(i)));
 for (int i = 1; i <= numComments; i++)
DbContext.Comments.Add(GetSampleComment(i, e4.Entity.Id, authorId,
createdDate.AddDays(i)));
 for (int i = 1; i <= numComments; i++)
DbContext.Comments.Add(GetSampleComment(i, e5.Entity.Id, authorId,
createdDate.AddDays(i)));
 }
 DbContext.SaveChanges();
 }
 #endregion Seed Methods

 #region Utility Methods
 /// <summary>
 /// Generate a sample item to populate the DB.
 /// </summary>
 /// <param name="userId">the author ID</param>
 /// <param name="id">the item ID</param>
 /// <param name="createdDate">the item CreatedDate</param>
 /// <returns></returns>
 private Item GetSampleItem(int id, string authorId, int
viewCount, DateTime createdDate)
 {
 return new Item()
 {
 UserId = authorId,
 Title = String.Format("Item {0} Title", id),
 Description = String.Format("This is a sample
description for item {0}: Lorem ipsum dolor sit amet.", id),
 Notes = "This is a sample record created by the Code-
First Configuration class",

www.EBooksWorld.ir

 ViewCount = viewCount,
 CreatedDate = createdDate,
 LastModifiedDate = createdDate
 };
 }

 /// <summary>
 /// Generate a sample array of Comments (for testing purposes
only).
 /// </summary>
 /// <param name="n"></param>
 /// <param name="item"></param>
 /// <param name="authorID"></param>
 /// <returns></returns>
 private Comment GetSampleComment(int n, int itemId, string
authorId, DateTime createdDate)
 {
 return new Comment()
 {
 ItemId = itemId,
 UserId = authorId,
 ParentId = null,
 Text = String.Format("Sample comment #{0} for the item
#{1}", n, itemId),
 CreatedDate = createdDate,
 LastModifiedDate = createdDate
 };
 }
 #endregion Utility Methods
}

That's an impressive amount of code, yet there's nothing to worry about since it's full
of repeating tasks. To properly understand what we're doing here let's split it into six
parts, each one corresponding to a #region section we defined within the source
code:

The Private Members, where we define the DbContext object that we'll be
using a lot in the methods in the following sections.
The Constructor region, containing the aforementioned DbContext using DI.
The Seed region, containing the only public method of this class: SeedAsync,
which is in charge of the seeding task by making use of the other private
methods defined in the following section.
The Create Entities region, containing a couple of methods that will create
the Admin user (plus a set of sample users) plus a grand total of 105 generic
Item entities.
The Utility Methods region, containing some internal functions used to create
sample Item and Comment entities with bulk strategies.

Private members

www.EBooksWorld.ir

Here we can find the reference for the ApplicationDbContext instance that we'll
be using throughout all the classes.

Constructor

Within this region, we can find a classic class constructor implementing the standard
DI pattern provided by the ASP.NET Core. An ApplicationDbContext will be
requested of the DI container using the instantiation mode configured within the
Startup.cs file and assigned to the DbContext private variable defined earlier for
further reference.

Public methods

This region contains the SeedAsync method, the only one that can be called from
outside to initiate or update the seeding task. It has been set to call the CreateUsers
and/or CreateItems methods only if there are no users/items in the database already,
to ensure that they won't get executed multiple times. There's not much else to say
here, other than this being an async method to comply with the used EF Core async
methods.

Seed methods

This region contains all the internal methods that actually insert one or more entities
in our database: CreateUsers and CreateItems.

CreateUsers: This method will add one or more ApplicationUsers to the
database that will be used as authors for the Items and Comments that will be
added soon after. It's worth mentioning that we used a C# pre-processor
directive here (also known as conditional compilation directive), so we can use
two different behaviors for our testing environment and for production. We don't
want to create the sample users in our production environment, so we've put that
part of code inside a conditional compilation block that gets executed only if the
application is running in Debug mode.
CreateItems: This method will add a number of Items to the Database that
will populate the item listings of our web application. It will also conditionally
create some sample Comments for each one of them by using the same
compilation directives used within the CreateUsers method described
previously. In our production environment, we'll have only five sample items
and no comments.

Utility methods

We have two methods here: GetSampleItem and GetSampleComment. Both of them
come with a self-explanatory name, as they will return a sample Item or Comment

www.EBooksWorld.ir

with some minimal, parameter-dependent logic to show small differences between
them.

Notice that these methods don't write anything into the database, they only return
sample entities that will be persisted by the caller methods mentioned previously.

Note

Notice how we implemented our Seed() method to be as conservative as possible,
as it will be executed each and every time our data model changes. We don't want any
user, item, or comment to be added twice, not to mention repeating role assignments.
In order to avoid this, we make sure that all entities are not already present in the
database right before adding them.

www.EBooksWorld.ir

Adding the DbSeeder to Startup.cs
Our next task will be adding the DbSeeder to our Startup class. Since we've used
DI, we need to do that using DI as well, adding it to the list of available services
handled by the DI container (new lines are highlighted):

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 // Add EntityFramework's Identity support.
 services.AddEntityFramework();

 // Add ApplicationDbContext.
 services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration["Data:DefaultConnection:Connecti
onString"])
);

 // Add ApplicationDbContext's DbSeeder

 services.AddSingleton<DbSeeder>();
}

Notice how we used the AddSingleton operation mode, so that a single instance of
it will be created for the whole application lifetime.

We can now use the DbSeeder in the Startup.cs Configure method, providing
that we add the required parameter to have it injected there. Here's how it should be
changed to reflect these changes (new/updated lines highlighted):

public void Configure(IApplicationBuilder app, IHostingEnvironment
env, ILoggerFactory loggerFactory, DbSeeder dbSeeder)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 // Configure a rewrite rule to auto-lookup for standard default
files such as index.html.
 app.UseDefaultFiles();

 // Serve static files (html, css, js, images & more). See also
the following URL:
 // https://docs.asp.net/en/latest/fundamentals/static-
files.html for further reference.
 app.UseStaticFiles(new StaticFileOptions()
 {

www.EBooksWorld.ir

 OnPrepareResponse = (context) =>
 {
 // Disable caching for all static files.
 context.Context.Response.Headers["Cache-Control"] =
Configuration["StaticFiles:Headers:Cache-Control"];
 context.Context.Response.Headers["Pragma"] =
Configuration["StaticFiles:Headers:Pragma"];
 context.Context.Response.Headers["Expires"] =
Configuration["StaticFiles:Headers:Expires"];
 }
 });

 // Add MVC to the pipeline
 app.UseMvc();

 // Seed the Database (if needed)

 try

 {

 dbSeeder.SeedAsync().Wait();

 }

 catch (AggregateException e)

 {

 throw new Exception(e.ToString());

 }
}

Note

We won't talk about DI any further, as it would bring us far from the scope of this
book. For those who want to understand more about DI in ASP.NET we strongly
suggest reading this awesome article by Steve Smith in the ASP.NET official
documentation website:

http://docs.asp.net/en/latest/fundamentals/dependency-injection.html.

Handling exceptions

Notice how we wrapped the dbSeeder.SeedAsync().Wait() call in a try-catch
block to handle a specific type of Exception: the AggregateException, which is
commonly used to group together multiple exceptions that might simultaneously occur
during the execution of parallel processes. Needless to say, these are extensively

www.EBooksWorld.ir

http://docs.asp.net/en/latest/fundamentals/dependency-injection.html

used by EF Core.

The only real downside of AggregateException lies in the fact that we have to
navigate through the InnerExceptions container property to figure out what really
happened, which can be quite annoying. That's why it might be useful to catch and
display them in a human-readable fashion. Luckily, the
AggregateException.ToString() method implementation does exactly that, as it
conveniently formats the inner exception messages for readability, with separators
between them.

If we need further data about one or more InnerExceptions, we can still do that by
placing a breakpoint inside the catch statement and analyzing them using the Watch
panel.

www.EBooksWorld.ir

Seeding the database
We're now ready to seed our database. Since we hooked the DbSeeder.SeedAsync
to the Startup class, it'll be as easy as hitting F5 and letting the application work its
magic. If we have done everything correctly, our database should be populated in no
time. In order to check that, we can:

1. Open the Server Object Explorer panel.
2. Expand the nodes up to our OpenGameList database.
3. Right-click on the dbo.Items table and select View Data.

Upon doing that, we should see something like the following:

www.EBooksWorld.ir

Updating the ItemsController
Last but not least, we need to modify our ItemsController to use the
ApplicationDbContext to retrieve data, getting rid of our dummy data provider
once and for all.

In order to do that, the first thing we need to do is find an efficient way to map each
Item entity to a corresponding ItemViewModel object, as our new data provider
won't generate them anymore. We can achieve such a result in a number of ways,
including the following:

Adding a Helper method, such as GetItemViewModel(Item item), handling
the mapping manually with a few lines of code
Adding a Constructor method, such as ItemViewModel(Item item), doing
pretty much the same thing as the aforementioned helper method
Adding one of the many object-to-object auto-mapping tools freely available via
NuGet and configuring it to handle the mapping automatically whenever we
need it

We'll definitely go for the latter.

Installing TinyMapper

ASP.NET features a lot of object-to-object mapping tools, AutoMapper being the
most used and acknowledged one. You're free to use the one you like the most and/or
are most used to. For the purpose of this book we're going to use TinyMapper
because it's lightweight, simple to use, and often performs better than its big brothers.

From the Solution Explorer, right-click on the OpenGameListWebApp project and
select Manage NuGet Packages. Make sure the Browse tab is selected, then type
TinyMapper into the search box and press Enter . Select the appropriate result and
hit the Install button to add it.

www.EBooksWorld.ir

Alternatively, you can manually install it via the Package Manager Console by typing
the following command:

Install-Package TinyMapper

Note

The only real downside to TinyMapper is the lack of compatibility with the .NET
Core CLR, meaning that we won't be able to use it unless we target the .NET
Framework runtime. That's precisely what we did back in Chapter 1, Getting Ready,
meaning that we're good to go. However, should we ever want to target the .NET
Core runtime in the future, we will definitely have to replace it.

Implementing the mapping

Like most mappers, TinyMapper does its job using two main methods:

1. TinyMapper.Bind, to define/configure a binding between a source type and a
target type.

2. TinyMapper.Map, to perform an actual map from the source object to target
object.

We're going to register all the bindings on application start, so we'll be able to use
the Map method only within our Web API controllers.

Open the Startup.cs file and add the following lines to the Configure method

www.EBooksWorld.ir

(new lines highlighted):

public void Configure(IApplicationBuilder app, IHostingEnvironment
env, ILoggerFactory loggerFactory, DbSeeder dbSeeder)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 // Configure a rewrite rule to auto-lookup for standard default
files such as index.html.
 app.UseDefaultFiles();

 // Serve static files (html, css, js, images & more). See also
the following URL:
 // https://docs.asp.net/en/latest/fundamentals/static-
files.html for further reference.
 app.UseStaticFiles(new StaticFileOptions()
 {
 OnPrepareResponse = (context) =>
 {
 // Disable caching for all static files.
 context.Context.Response.Headers["Cache-Control"] =
Configuration["StaticFiles:Headers:Cache-Control"];
 context.Context.Response.Headers["Pragma"] =
Configuration["StaticFiles:Headers:Pragma"];
 context.Context.Response.Headers["Expires"] =
Configuration["StaticFiles:Headers:Expires"];
 }
 });

 // Add MVC to the pipeline
 app.UseMvc();

 // TinyMapper binding configuration
 TinyMapper.Bind<Item, ItemViewModel>();

 // Seed the Database (if needed)
 try
 {
 dbSeeder.SeedAsync().Wait();
 }
 catch (AggregateException e)
 {
 throw new Exception(e.ToString());
 }
}

On top of that, we also need to add the following references to the top of the file:

using Nelibur.ObjectMapper;
using OpenGameListWebApp.Data.Items;
using OpenGameListWebApp.ViewModels;

www.EBooksWorld.ir

We're almost done. The last thing we need to do is open the ItemsController.cs
file and do the following:

1. Add a private variable of the ApplicationDbContext type to host the
DbContext.

2. Add a Constructor method to instantiate it via DI and set it to the private
variable defined earlier.

3. Change the data-retrieval lines of code within the Get, GetLatest,
GetMostViewed, and GetRandom methods to use the new DbContext instead of
the old GetSampleItems method.

4. Update the last line of the aforementioned methods to return one or more
ItemViewModel objects created via TinyMapper.

5. Remove the old GetSampleItems method entirely, as we don't need it anymore.

Here's the updated source code (new/modified lines are highlighted):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Mvc;
using OpenGameListWebApp.ViewModels;
using Newtonsoft.Json;
using OpenGameListWebApp.Data;

using OpenGameListWebApp.Data.Items;

using Nelibur.ObjectMapper;

namespace OpenGameListWebApp.Controllers
{
 [Route("api/[controller]")]
 public class ItemsController : Controller
 {
 #region Private Fields

 private ApplicationDbContext DbContext;

 #endregion Private Fields

 #region Constructor

 public ItemsController(ApplicationDbContext context)

 {

 // Dependency Injetion

www.EBooksWorld.ir

 DbContext = context;

 }

 #endregion Constructor

 #region RESTful Conventions
 /// <summary>
 /// GET: api/items
 /// </summary>
 /// <returns>Nothing: this method will raise a NotFound
HTTP exception, since we're not supporting this API call.</returns>
 [HttpGet()]
 public IActionResult Get()
 {
 return NotFound(new { Error = "not found" });
 }
 #endregion

 #region Attribute-based Routing
 /// <summary>
 /// GET: api/items/{id}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>A Json-serialized object representing a single
item.</returns>
 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 var item = DbContext.Items.Where(i => i.Id ==
id).FirstOrDefault();
 return new JsonResult(TinyMapper.Map<ItemViewModel>
(item), DefaultJsonSettings);
 }

 /// <summary>
 /// GET: api/items/GetLatest
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of a default number of Json-
serialized objects representing the last inserted items.</returns>
 [HttpGet("GetLatest")]
 public IActionResult GetLatest()
 {
 return GetLatest(DefaultNumberOfItems);
 }

 /// <summary>
 /// GET: api/items/GetLatest/{n}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of {n} Json-serialized objects

www.EBooksWorld.ir

representing the last inserted items.</returns>
 [HttpGet("GetLatest/{n}")]
 public IActionResult GetLatest(int n)
 {
 if (n > MaxNumberOfItems) n = MaxNumberOfItems;
 var items = DbContext.Items.OrderByDescending(i =>
i.CreatedDate).Take(n).ToArray();

 return new JsonResult(ToItemViewModelList(items),
DefaultJsonSettings);
 }

 /// <summary>
 /// GET: api/items/GetMostViewed
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of a default number of Json-
serialized objects representing the items with most user views.
</returns>
 [HttpGet("GetMostViewed")]
 public IActionResult GetMostViewed()
 {
 return GetMostViewed(DefaultNumberOfItems);
 }

 /// <summary>
 /// GET: api/items/GetMostViewed/{n}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of {n} Json-serialized objects
representing the items with most user views.</returns>
 [HttpGet("GetMostViewed/{n}")]
 public IActionResult GetMostViewed(int n)
 {
 if (n > MaxNumberOfItems) n = MaxNumberOfItems;
 var items = DbContext.Items.OrderByDescending(i =>
i.ViewCount).Take(n).ToArray();

 return new JsonResult(ToItemViewModelList(items),
DefaultJsonSettings);
 }

 /// <summary>
 /// GET: api/items/GetMostViewed
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of a default number of Json-
serialized objects representing some randomly-picked items.
</returns>
 [HttpGet("GetRandom")]
 public IActionResult GetRandom()
 {

www.EBooksWorld.ir

 return GetRandom(DefaultNumberOfItems);
 }

 /// <summary>
 /// GET: api/items/GetRandom/{n}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>An array of {n} Json-serialized objects
representing some randomly-picked items.</returns>
 [HttpGet("GetRandom/{n}")]
 public IActionResult GetRandom(int n)
 {
 if (n > MaxNumberOfItems) n = MaxNumberOfItems;
 var items = DbContext.Items.OrderBy(i =>
Guid.NewGuid()).Take(n).ToArray();

 return new JsonResult(ToItemViewModelList(items),
DefaultJsonSettings);
 }
 #endregion

 #region Private Members
 /// <summary>

 /// Maps a collection of Item entities into a list of
ItemViewModel objects.

 /// </summary>

 /// <param name="items">An IEnumerable collection of item
entities</param>

 /// <returns>a mapped list of ItemViewModel
objects</returns>
 private List<ItemViewModel>
ToItemViewModelList(IEnumerable<Item> items)

 {

 var lst = new List<ItemViewModel>();

 foreach (var i in items)
lst.Add(TinyMapper.Map<ItemViewModel>(i));

 return lst;

 }

 /// <summary>
 /// Returns a suitable JsonSerializerSettings object that
can be used to generate the JsonResult return value for this
Controller's methods.

www.EBooksWorld.ir

 /// </summary>
 private JsonSerializerSettings DefaultJsonSettings
 {
 get
 {
 return new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 };
 }
 }

 /// <summary>
 /// Returns the default number of items to retrieve when
using the parameterless overloads of the API methods retrieving
item lists.
 /// </summary>
 private int DefaultNumberOfItems
 {
 get
 {
 return 5;
 }
 }

 /// <summary>
 /// Returns the maximum number of items to retrieve when
using the API methods retrieving item lists.
 /// </summary>
 private int MaxNumberOfItems
 {
 get
 {
 return 100;
 }
 }
 #endregion
 }
}

That's it. Notice that we also have added a private ToItemViewModelList() utility
method to centralize the Model-to-ViewModel mapping task, avoiding code
repetition and making it easier to update.

www.EBooksWorld.ir

Testing the data provider
Before going further, it's time to perform a final test to see if our
ApplicationDbContext is working as expected.

To do that, just launch the application in Debug mode by hitting the F5 key. If
everything has been implemented properly you should be presented with a Welcome
View similar to the following one:

Although it doesn't seem too different from what we already had by the end of
Chapter 3, Angular 2 Components and Client-Side Routing, we know that a lot of
stuff has changed under the hood. Our application is now equipped with a persistent
database built on top of a real data model handled by an EF-powered, migrations-
aware DbContext available through DI upon a per-request scope.

www.EBooksWorld.ir

Suggested topics
Data model, data provider, ADO.NET, object relational mapper, EF, Entity class,
data annotations, NOSQL, MongoDB, RavenDB, DbContext,
AggregateException, CRUD operations, DI, ORM mapping.

www.EBooksWorld.ir

Summary
We started this chapter enumerating a number of things we couldn't implement due to
our dummy data provider limitations. In order to overcome these, we chose to
replace it with a real data provider built upon a persistent database.

ED Core seemed an obvious choice to get what we wanted, so we added its relevant
packages to our project. We briefly enumerated the available data modeling
approaches and we resorted to using code-first due to its flexibility.

Right after that, we proceeded to create our entity classes: Item, Comment, and
ApplicationUser, together with a set of relationships taking advantage of the
renowned EF's convention over configuration approach. Then we built our
ApplicationDbContext class accordingly.

After completing our data model we chose the database engine, quickly resorting to
the Visual Studio 2015 default LocalDb instance. We added the connection string to
the appsettings.json file and passed it to the ApplicationDbContext through the
Setup class. Doing this allowed us to add our first migration using PowerShell and,
once done, use code-first to generate our database accordingly.

We didn't want to leave our database empty, so we implemented a DbSeeder class to
seed it with some sample data by making good use of the ASP.NET Core DI
approach. Doing that took some reasonable, yet well spent, amount of time.

Finally, we switched back to the ItemsController class and updated it to make it
use the new data provider, replacing the outdated one. In order to do this in the best
possible way, we also installed TinyMapper, a fast and easy to use ORM mapping
tool that we used inside ItemsController to perform model-to-view model
conversions with ease.

After completing all these tasks, we ran our application in Debug mode to test that
everything was still working as intended. The Welcome View is very similar to the
one we had at the end of Chapter 3, Angular 2 Components and Client-Side Routing,
yet a lot of things have changed on the inside. Our application is now ready to grow
the way we want it to.

www.EBooksWorld.ir

Chapter 5. Persisting Changes
In the previous chapter, we replaced our dummy data provider with a real data
provider built upon EF Core using a code-first approach. Now that we have data
persistence, we're ready to entrust our users with the ability to interact with our
application; this means that we can implement some much needed features such as
login view, access control, and server-side sessions, as well as specific views to
create, edit, or delete our entities, whether they are Items, Comments, or Users,
ensuring that all the changes will be reflected in the database.

In this chapter we will take care of the latter, leaving the authentication features out;
we will address these later on, as they will have their own dedicated chapter.

www.EBooksWorld.ir

Add, update, and delete items
The first thing we'll do is to implement the add, update, and delete methods for our
Web API's ItemsController. We'll adhere to RESTful conventions and good
practices, using the proper HTTP verb for each scenario: POST for create, PUT for
update, and DELETE for delete.

Note

From now on, we won't explain how to select, open, add, rename, delete, or
otherwise interact with your ASP.NET and/or Angular 2 files from Solution
Explorer; we take for granted that you already know (or have figured out) how to
navigate the GUI and what to do with the code samples.

www.EBooksWorld.ir

Updating the Web API
Here are the new ItemsController.cs-relevant methods (new/updated lines are
highlighted):

 #region RESTful Conventions
 /// <summary>
 /// GET: api/items
 /// </summary>
 /// <returns>Nothing: this method will raise a NotFound
HTTP exception, since we're not supporting this API call.</returns>
 [HttpGet()]
 public IActionResult Get()
 {
 return NotFound(new { Error = "not found" });
 }

 /// <summary>
 /// GET: api/items/{id}
 /// ROUTING TYPE: attribute-based
 /// </summary>
 /// <returns>A Json-serialized object representing a single
item.</returns>
 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 var item = DbContext.Items.Where(i => i.Id ==
id).FirstOrDefault();

 if (item != null) return new
JsonResult(TinyMapper.Map<ItemViewModel>(item),
DefaultJsonSettings);

 else return NotFound(new { Error = String.Format("Item
ID {0} has not been found", id) });
 }

 /// <summary>

 /// POST: api/items

 /// </summary>

 /// <returns>Creates a new Item and return it accordingly.
</returns>
 [HttpPost()]

 public IActionResult Add([FromBody]ItemViewModel ivm)

 {

www.EBooksWorld.ir

 if (ivm != null)

 {

 // create a new Item with the client-sent json data

 var item = TinyMapper.Map<Item>(ivm);

 // override any property that could be wise to set
from server-side only

 item.CreatedDate =

 item.LastModifiedDate = DateTime.Now;

 // TODO: replace the following with the current
user's id when authentication will be available.

 item.UserId = DbContext.Users.Where(u => u.UserName
== "Admin").FirstOrDefault().Id;

 // add the new item

 DbContext.Items.Add(item);

 // persist the changes into the Database.

 DbContext.SaveChanges();

 // return the newly-created Item to the client.

 return new JsonResult(TinyMapper.Map<ItemViewModel>
(item), DefaultJsonSettings);

 }

 // return a generic HTTP Status 500 (Not Found) if the
client payload is invalid.

 return new StatusCodeResult(500);

 }

 /// <summary>

 /// PUT: api/items/{id}

 /// </summary>

 /// <returns>Updates an existing Item and return it
accordingly.

www.EBooksWorld.ir

</returns>

 [HttpPut("{id}")]

 public IActionResult Update(int id, [FromBody]ItemViewModel
ivm)

 {

 if (ivm != null)

 {

 var item = DbContext.Items.Where(i => i.Id ==
 id).FirstOrDefault();

 if (item != null)

 {

 // handle the update (on per-property basis)

 item.UserId = ivm.UserId;

 item.Description = ivm.Description;

 item.Flags = ivm.Flags;

 item.Notes = ivm.Notes;

 item.Text = ivm.Text;

 item.Title = ivm.Title;

 item.Type = ivm.Type;

 // override any property that could be wise to
set from server-side only

 item.LastModifiedDate = DateTime.Now;

 // persist the changes into the Database.

 DbContext.SaveChanges();

 // return the updated Item to the client.

 return new
JsonResult(TinyMapper.Map<ItemViewModel>(item),
DefaultJsonSettings);

 }

www.EBooksWorld.ir

 }

 // return a HTTP Status 404 (Not Found) if we couldn't
find a suitable item.

 return NotFound(new { Error = String.Format("Item ID
{0} has not been found", id) });

 }

 /// <summary>

 /// DELETE: api/items/{id}

 /// </summary>

 /// <returns>Deletes an Item, returning a HTTP status 200
(ok) when done.</returns>

 [HttpDelete("{id}")]

 public IActionResult Delete(int id)

 {

 var item = DbContext.Items.Where(i => i.Id ==
id).FirstOrDefault();

 if (item != null)

 {

 // remove the item to delete from the DbContext.

 DbContext.Items.Remove(item);

 // persist the changes into the Database.

 DbContext.SaveChanges();

 // return an HTTP Status 200 (OK).

 return new OkResult();

 }

 // return a HTTP Status 404 (Not Found) if we couldn't
find a suitable item.

 return NotFound(new { Error = String.Format("Item ID
{0} has not been found", id) });

www.EBooksWorld.ir

 }
 #endregion

For the sake of simplicity, we haven't pasted the whole file; since we're following the
RESTful conventions, we put all the new stuff into the region hosting these kinds of
methods. Just remember to add a using OpenGameListWebApp.Data.Items line at
the beginning of the file.

The code contains some comments that will help to focus on what we just did.
Nonetheless, it would be useful to highlights some specific aspects of the new
methods, such as the following:

We didn't have to use the Json.NET library at all here, as the ASP.NET
framework can automatically handle the conversion task between a JSON-type
input and a JsonSerializable object; all we did was specify an object of type
ItemViewModel as the main input parameter of the Add and Update methods
and tell the framework to retrieve it from the request body.
We used the TinyMapper mapping library at the end of the Add and Update
methods to return a new ItemViewModel to the client built upon the
created/modified Item. Notice how we didn't use it the other way around, that
is, to populate the Item properties from the ItemViewModel instance built upon
the JSON data sent by the client in the Update method, as we preferred to
manually treat and check each of the properties separately.

Note

We should also spend a few moments talking about what we didn't do here: no
error-handling strategies, no specific controls on user input, and no
authentication, just to name a few. This isn't a robust, production-ready code yet,
and we need to be fully aware of that. There's nothing wrong with it; we're still
in development phase, after all, and we'll refine these aspects once we get a
good grip on the Web API features we need to know.

www.EBooksWorld.ir

Adapting the client
Now that our Web API supports the four basic CRUD functions, we can modify our
Angular 2 client to make use of them.

Improving the ItemService

Let's start with updating the code of our ItemService class. Open the
/Scripts/app/item.service.ts file and change its contents with the following
code:

import {Injectable} from "@angular2core";
import {Http, Response, Headers, RequestOptions} from
"@angular/http";
import {Observable} from "rxjs/Observable";
import {Item} from "./item";

@Injectable()
export class ItemService {
 // private Data: { Latest: Item[], MostViewed: Item[], Random:
Item[] };
 private baseUrl = 'api/items/'; // URL to web api

 constructor(private http: Http) { }

 // calls the [GET] /api/items/GetLatest/{n} Web API method to
retrieve the latest items.
 getLatest(num?: number) {
 var url = this.baseUrl + "GetLatest/";
 if (num != null) url += num;
 return this.http.get(url)
 .map(response => response.json())
 .catch(this.handleError);
 }

 // calls the [GET] /api/items/GetMostViewed/{n} Web API method
to retrieve the most viewed items.
 getMostViewed(num?: number) {
 var url = this.baseUrl + "GetMostViewed/";
 if (num != null) url += num;
 return this.http.get(url)
 .map(response => response.json())
 .catch(this.handleError);
 }

 // calls the [GET] /api/items/GetRandom/{n} Web API method to
retrieve n random items.
 getRandom(num?: number) {
 var url = this.baseUrl + "GetRandom/";
 if (num != null) url += num;

www.EBooksWorld.ir

 return this.http.get(url)
 .map(response => response.json())
 .catch(this.handleError);
 }

 // calls the [GET] /api/items/{id} Web API method to retrieve
the item with the given id.
 get(id: number) {
 if (id == null) throw new Error("id is required.");
 var url = this.baseUrl + id;
 return this.http.get(url)
 .map(res => <Item>res.json())
 .catch(this.handleError);
 }

 // calls the [POST] /api/items/ Web API method to add a new
item.

 add(item: Item) {

 var url = this.baseUrl;

 return this.http.post(url, JSON.stringify(item),
 this.getRequestOptions())

 .map(response => response.json())

 .catch(this.handleError);

 }

 // calls the [PUT] /api/items/{id} Web API method to update an
existing item.

 update(item: Item) {

 var url = this.baseUrl + item.Id;

 return this.http.put(url, JSON.stringify(item),
this.getRequestOptions())

 .map(response => response.json())

 .catch(this.handleError);

 }

 // calls the [DELETE] /api/items/{id} Web API method to delete
the item with the given id.

 delete(id: number) {

www.EBooksWorld.ir

 var url = this.baseUrl + id;

 return this.http.delete(url)

 .catch(this.handleError);

 }

 // returns a viable RequestOptions object to handle Json
requests

 private getRequestOptions() {

 return new RequestOptions({

 headers: new Headers({

 "Content-Type": "application/json"

 })

 });

 }

 private handleError(error: Response) {
 // output errors to the console.
 console.error(error);
 return Observable.throw(error.json().error || 'Server
error');
 }
}

Let's see what we did here:

In line 2, we added a reference for the Response and RequestOptions classes
from the Angular 2 built-in http service.
We then implemented three public methods (add, update, and delete) to
handle the corresponding Web API calls we added earlier.
Since each of our new methods requires a RequestOptions object, we
eventually created a getRequestOptions method to avoid repeating the same
lines of codes multiple times. Since add and update are both sending JSON
data, having a centralized factory method returning a RequestOptions object is
definitely a good choice.

Updating the GUI

Now that we have these insert, update, and delete methods, we need to make the

www.EBooksWorld.ir

GUI aware of that by adding the relevant commands. The former should be put on our
main menu, while the other two will be added to the item's detail view. The reason
for that is simple: we want our users to be able to create a new item from any view,
or update/delete only the specific item they clicked on.

Add new

Let's start with the insert command. Open the \Scripts\app\app.component.ts
file and add the following element to our @Component's template (new/updated
lines are highlighted):

@Component({
 selector: "opengamelist",
 template: `
 <h1>{{title}}</h1>
 <div class="menu">
 Home
 | About
 | Login
 | Add New
 </div>
 <router-outlet></router-outlet>
 `
})

Notice that we're deliberately exploiting the item route we already have in place,
passing an id with a value of 0. This means that any item with an ID of 0, as per our
internal convention, should be treated by our ItemDetail component as a new, not-
yet-existing item.

Needless to say, in order to do that, we need to update our item-
detail.component.ts file accordingly (new/modified lines are highlighted):

import {Component, OnInit} from "@angular/core";
import {Router, ActivatedRoute} from "@angular/router";
import {Item} from "./item";
import {ItemService} from "./item.service";

@Component({
 selector: "item-detail",
 template: `
 <div *ngIf="item" class="item-details">
 <h2>{{item.Title}} - Detail View</h2>

 <label>Title:</label>
 <input [(ngModel)]="item.Title"
placeholder="Insert the title..."/>

www.EBooksWorld.ir

 <label>Description:</label>
 <textarea [(ngModel)]="item.Description"
placeholder="Insert a suitable description..."></textarea>

 <div *ngIf="item.Id == 0" class="commands insert">

 <input type="button" value="Save"
(click)="onInsert(item)" />

 <input type="button" value="Cancel"
(click)="onBack()" />

 </div>
 </div>
 `,
 styles: [`
 .item-details {
 margin: 5px;
 padding: 5px 10px;
 border: 1px solid black;
 background-color: #dddddd;
 width: 300px;
 }
 .item-details * {
 vertical-align: middle;
 }
 .item-details ul li {
 padding: 5px 0;
 }
 `]
})

export class ItemDetailComponent {
 item: Item;

 constructor(private itemService: ItemService,
 private router: Router,
 private activatedRoute: ActivatedRoute) {
 }

 ngOnInit() {
 var id = +this.activatedRoute.snapshot.params["id"];
 if (id) {
 this.itemService.get(id).subscribe(
 item => this.item = item
);
 }
 else if (id === 0) {

 console.log("id is 0: adding a new item...");

www.EBooksWorld.ir

 this.item = new Item(0, "New Item", null);

 }
 else {
 console.log("Invalid id: routing back to home...");
 this.router.navigate([""]);
 }
 }

 onInsert(item: Item) {

 this.itemService.add(item).subscribe(

 (data) => {

 this.item = data;

 console.log("Item " + this.item.Id + " has been
added.");

 this.router.navigate([""]);

 },

 (error) => console.log(error)

);

 }

 onBack() {

 this.router.navigate([""]);

 }
}

Let's see what we did here:

In the component's template section, we added a <div> element with an *ngIf
condition bound to the item.Id being 0 so that it will only be added into the
DOM if the user came here with the route designed for adding a new item.
Within the aforementioned <div> element, we added a couple of <input
type="button"> fields, namely Save and Cancel, which we bound to the new
onInsert and onBack methods (see later).
We modified the ngOnInit method's behavior to support our internal convention
that if the id is 0, it means that we're adding a new item.
We implemented a new onInsert method, which will call the add method of

www.EBooksWorld.ir

our ItemService class we created earlier for adding the item through our Web
API; we also added a subscription that will either return the user to the Home
route (the Welcome View) in the case of success, or output an error to the
console in the case of failure.
We implemented a new onBack method, which will just trigger the Home route,
returning the user back to the Welcome View without doing anything.

That's it for the Add New command; do not close the item-detail.component.ts
file, though, as we'll need to update it further in order to implement the next ones.

Update and Delete

As we said earlier, the Update and Delete commands will take place within the
ItemDetail component itself. This means that we'll need to keep working with the
item-detail.component.ts file, adding a couple more buttons to the template and
binding them to two new methods; that's basically the same thing we did in the
previous section with the Save/onInsert and Cancel/onBack buttons/methods.

Here is the updated template (new/modified lines are highlighted):

 template: `
 <div *ngIf="item" class="item-details">
 <h2>{{item.Title}} - Detail View</h2>

 <label>Title:</label>
 <input [(ngModel)]="item.Title"
placeholder="Insert the title..."/>

 <label>Description:</label>
 <textarea [(ngModel)]="item.Description"
placeholder="Insert a suitable description..."></textarea>

 <div *ngIf="item.Id == 0" class="commands insert">
 <input type="button" value="Save"
(click)="onInsert(item)" />
 <input type="button" value="Cancel"
(click)="onBack()" />
 </div>
 <div *ngIf="item.Id != 0" class="commands update">

 <input type="button" value="Update"
(click)="onUpdate(item)" />

 <input type="button" value="Delete"
(click)="onDelete(item)" />

www.EBooksWorld.ir

 <input type="button" value="Back" (click)="onBack()"
/>

 </div>
 </div>
 `,

And these are the new methods, to be placed just after the onInsert one:

onUpdate(item: Item) {
 this.itemService.update(item).subscribe(
 (data) => {
 this.item = data;
 console.log("Item " + this.item.Id + " has been
updated.");
 this.router.navigate([""]);
 },
 (error) => console.log(error)
);
}

onDelete(item: Item) {
 var id = item.Id;
 this.itemService.delete(id).subscribe(
 (data) => {
 console.log("Item " + id + " has been deleted.");
 this.router.navigate([""]);
 },
 (error) => console.log(error)
);
}

What we did here is quite simple:

We added another <div> element with an *ngIf condition that will handle the
opposite case as before: item.Id is not 0, which means that we're dealing with
an already existing item.
The new <div> has three <input type="button"> fields: Update, Delete,
and Back, bound respectively to the onUpdate, onDelete, and onBack methods
(see later).
We implemented the new onUpdate and onDelete methods, which will call the
update and delete method of our ItemService class, respectively; these will
update or delete the currently selected item through our Web API. Again, we
also added a subscription that will either return the user to the Welcome View
or output an error to the console log.
We didn't implement a new method for the Back button because we already
have the onBack method, which does what we need, returning the user back to
the Welcome View without doing anything.

www.EBooksWorld.ir

With these additions, our GUI should be ready; before going further, let's perform a
full surface test.

Note

While we don't want to talk too much about Angular 2 and its http class, we should
definitely spend a few words talking about its new abstraction pattern based upon
observables.

One of the most relevant differences with the previous approach is that observables
have a lazy behavior by design, meaning that they won't fire unless there is a valid
subscription issued by a .subscribe() function call. This is a major perspective
switch from the AngularJS Promises, which would execute right off the bat
regardless of how the client code will use their result afterward.

Another important difference involves the .subscribe() function, which will be
fired upon completion of the ItemService's add task. In Angular 2, subscriptions are
designed to work just like a standard .then() or .complete() function featured in
most async-based JavaScript libraries (AngularJS/Promises, JQuery/AJAX, and
more), with the key difference that they are also bound to the Observable itself; this
means that they won't just trigger once and resolve, but they will be executed each
and every time the Observable completes its task(s) until it ceases to exist, unless
they get cancelled by calling the .unsubscribe() function method on their
Observable.

That said, we can easily notice that these HTTP requests are hardly a good example
to demonstrate the advantages of this behavior, as these are observables that will fire
only once; we'll see it better when we implement some reactive functionalities such
as search with autocomplete and similar stuff.

Testing it out

Before hitting F5 to launch the application in Debug mode, ensure that the Gulp (or
Grunt) default task is properly running in the Task Runner Explorer, otherwise,
the compiled scripts in the www folder won't be updated and you won't see the new
stuff.

This is how our Welcome View should appear now:

www.EBooksWorld.ir

Notice the Add New menu command; by clicking on that, we will be brought to the
updated Item - Detail View:

As we can see, the ItemDetail component is now aware of the fact that we're in the
process of adding a new item; we can tell that by looking at the Save and Cancel
buttons, which we know are only available when we're dealing with a new item, and
also by examining the routed URL: /item/0 matches our internal convention that an
item with an id of 0 is a new, not-yet-existing item.

So far, so good; let's now click on the Cancel button. That should bring us back to the

www.EBooksWorld.ir

Welcome View. From there, click on one of the items contained in the Last Inserted
listing panel, for example, Magarena. The Item - Detail View should be displayed
again, this time in Update mode:

Again, we can confirm that by looking at the button set, Update, Delete, and Back
are precisely what we're expecting to see when updating an item.

We're not done yet; now that we have tested the GUI, we need to see whether the
insert, update, and delete methods are actually working. Ideally, the changes
should be immediately seen by the user, meaning that:

Whenever we add a new item, we want it to be shown in the Welcome View as
the first entry of the Last Inserted Items panel as soon as we are sent back
there
Whenever we modify an item title, we want to see it updated in the Welcome
View item listings (if present) as soon as we are sent back there
Whenever we delete an item, we want it to disappear from the Welcome View
as soon as we are sent back there

Adding a new test

From the Welcome View, click on the Add New menu item again to load the Item -
Detail View in insert mode. Write Sample Item in the Title textbox and Sample
Description in the Description text area; notice that, thanks to the Angular 2 two-

www.EBooksWorld.ir

way binding, the title shown within the view will be updated in real time as soon as
we start typing, following our changes:

Now press the Save button to see whether the changes will be reflected in the
Welcome View; if we did everything correctly, there's no reason why they shouldn't.
We can also get a summary of the tasks performed by our application by looking at
the developer Console log. In order to show it, press F12 if we're using Microsoft
Edge, or CTRL + ALT + J in case we're using Google Chrome or Mozilla Firefox:

www.EBooksWorld.ir

Everything is working as intended. Let's do a quick recap of what is happening under
the hood:

When the user clicks on the Add New menu item command, the application will
show the Item - Detail View with an id of 0, which is our internal convention
to trigger the insert mode.
When the user fills up the Title and Description fields and confirms the insert
operation by clicking on the Save button, the application will fire the onInsert
function, which will use the ItemService to return an Observable object
ready to issue an HTTP call to persist these changes to the database using the
Web API Add method.
The Observable object has a lazy behavior by design, meaning that it won't fire
without a subscription. The onInsert method handles it fluently with a
.subscribe() call which will trigger the Observable job and also set up a
series of tasks to perform upon its completion:

In the case of success, update the local item object, output a message in the
Console log, and re-route the user to the Welcome View
In the case of failure, output the error in the Console log
As soon as the user is sent back to the Welcome View, all the
ItemListComponents will get re-instantiated again, so they will always
load and display an updated set of lists containing the new item.

www.EBooksWorld.ir

Update test

Let's try to modify the title of the new item and see whether our application behaves
just as expected.

From the Welcome View, click on the Sample Item we just created; the Item -
Detail View should be displayed in update mode, allowing us to change the item's
field. Again thanks to the two-way binding, the title will be updated in real time as
we type:

When we're done, we can click on the Update button to verify whether the changes
are reflected in the Welcome View:

www.EBooksWorld.ir

So far, so good. Again, let's see how it worked behind the scenes:

Whenever the user selects an item from the Welcome View, the application will
show the Item - Detail View in the update mode accordingly.
Whenever the user performs a change to the item and confirms the operation by
clicking on the Update button, the application will fire the onUpdate function.
This will use the ItemService to return an Observable object ready to issue
an HTTP call to persist these changes to the database using the Web API Update
method.
The Observable object will immediately fire thanks to the fluent
.subscribe() call issued by the onUpdate function, which will also perform
the following tasks:

In the case of success, update the local item object, output a message in the
Console log, and re-route the user to the Welcome View
In the case of failure, output the error in the Console log
As soon as the user is sent back to the Welcome View, all the
ItemListComponents will get re-instantiated again, so they will always
load and display an updated set of item listings.

Delete test

www.EBooksWorld.ir

Last but not least, we need to test the delete command.

From the Welcome View, click on the newly created (and updated) Another Title
item to show the Item - Detail View in update mode. Immediately after clicking on
the Delete button, we will be routed back to the Welcome View, where we can
confirm that the item has actually gone:

Everyone should have already figured it out by now, yet it's still useful to recap the
workflow:

When the user selects an Item from the Welcome View, the application will
show the Item - Detail View in the update mode.
When the user clicks on the Delete button, the application will fire the
onDelete function, which will use the ItemService to return an Observable
object ready to issue an HTTP call to delete the item from the database using the
Web API Delete method.
The Observable object will immediately fire thanks to the fluent
.subscribe() call issued by the onDelete function, which will also perform
the following tasks:

In the case of success, re-route the user to the Welcome View

www.EBooksWorld.ir

In the case of failure, output the error in the Console log
As soon as the user is sent back to the Welcome View, all the
ItemListComponents will get re-instantiated again, so they will always
load and display an updated set of item listings (without the deleted item).

www.EBooksWorld.ir

Splitting the ItemDetail component
Our application is going just fine, yet there are still some oddities that we should
address as soon as we can. One of the most critical ones is that our
ItemDetail component is acting like an editor way more than a viewer. Ideally,
when the user clicks on an item, they should be presented with a view showing the
item data in the display-only mode, with labels and text paragraphs instead of
textboxes and text areas.

To better understand it, let's take a look at the following screenshot:

Source: Wikipedia

That's precisely what we're missing right now (and also the result we want to
achieve). In order to do that, we need to split our current ItemDetail component
into two different classes:

ItemDetailView, to show the item just like the left side of the previous
screenshot (DISPLAY MODE)
ItemDetailEdit, to allow the user to insert or update items (EDIT MODE)

Most GUIs start with the former, allowing an authorized user to access the latter by
clicking on an Edit button, link, or tab. Wikipedia/MediaWiki is no exception, as we
can clearly see by looking at the tab menu near the top-right corner.

Note

www.EBooksWorld.ir

Notice that we put Insert and Update together; the reason for that is simple, they
usually share the same fields, with very few exceptions, so it's usually fine to handle
them within the same component class. As a matter of fact, we already did that within
our current ItemDetail component, which is basically the ItemEdit we're talking
about.

That said, here's a brief summary of what we're about to do:

1. Add a new ItemDetailView component.
2. Rename the existing ItemDetail to ItemDetailEdit, because that's what it is.
3. Update the application Root module according to these changes.
4. Replace the ItemDetail route with two new ones pointing to the new

ItemDetailView and ItemDetailEdit components; the former one will be
called upon clicking on an item from the Welcome View, while the latter will
be activated within it.

5. Change all occurrences pointing to ItemDetail to ItemDetailView or
ItemDetailEdit throughout the whole project.

6. Add a tab menu UI element to connect the ItemDetailView and
ItemDetailEdit components, following the same Wikipedia/MediaWiki
interface approach.

Let's get to work.

www.EBooksWorld.ir

Adding the ItemDetailView component
We'll start by adding a new item-detail-view.component.ts TypeScript file into
the /Scripts/app/ folder. The code will be quite similar to the existing
ItemDetail component, except for the following:

We will have headers, labels, and paragraphs here, instead of textboxes and text
areas.
We won't have the onInsert, onUpdate, and onDelete functions, as they serve
no purpose in a display-only component. We will have an onEdit function
instead, which will be used to switch to the ItemEdit component upon user
interaction.

Here's suitable source code for the new ItemDetailViewComponent class:

import {Component, OnInit} from "@angular/core";
import {Router, ActivatedRoute} from "@angular/router";
import {Item} from "./item";
import {ItemService} from "./item.service";

@Component({
 selector: "item-detail-view",
 template: `
 <div *ngIf="item" class="item-details">
 <h2>{{item.Title}}</h2>
 <p>{{item.Description}}</p>
 </div>
 `,
 styles: [`
 .item-details {
 margin: 5px;
 padding: 5px 10px;
 border: 1px solid black;
 background-color: #dddddd;
 width: 300px;
 }
 .item-details * {
 vertical-align: middle;
 }
 .item-details ul li {
 padding: 5px 0;
 }
 `]
})

export class ItemDetailViewComponent {
 item: Item;

 constructor(private itemService: ItemService,

www.EBooksWorld.ir

 private router: Router,
 private activatedRoute: ActivatedRoute) {
 }

 ngOnInit() {
 var id = +this.activatedRoute.snapshot.params["id"];
 if (id) {
 this.itemService.get(id).subscribe(
 item => this.item = item
);
 }
 else if (id === 0) {
 console.log("id is 0: switching to edit mode...");
 this.router.navigate(["item/edit", 0]);
 }
 else {
 console.log("Invalid id: routing back to home...");
 this.router.navigate([""]);
 }
 }
}

Before going further, there are a couple things worthy of attention:

1. We added a reference to the item/edit route, which doesn't exist yet; we did
that on purpose because we know that we'll soon implement it.

2. We added an if condition within the ngOnInit() method to ensure that, if this
component is initialized with a non-existing or invalid id, we'll re-route the call
to the ItemDetailEdit component instead of handling it. That's perfectly fine,
assuming that this component will be unable to do its display-only job without a
valid id being passed together with the route; if something like that happens, we
could either display a "this item does not exist" error page, throw an exception,
or assume that the caller wants to create a new item and route them there
accordingly. Although displaying an error page is almost always the best choice
in such scenarios, we went for the routing for demonstration purposes.

www.EBooksWorld.ir

Refactoring ItemDetail into ItemDetailEdit
The next step is easy: we just have to rename ItemDetail to ItemDetailEdit
within the filesystem and inside the source code.

To complete the first step, right-click on the item-detail.component.ts file and
rename it to item-detail-edit.component.ts.

Right after that, we also need to open it and change a couple of references within the
source code.

The first thing we have to do is to change the selector from item-detail to item-
detail-edit:

selector: "item-detail-edit",

Then we need to change the class name from ItemDetailComponent to
ItemDetailEditComponent:

export class ItemDetailEditComponent {

That's it. We don't need to change anything else within this file for now, yet we're far
from being done; we still have to change all the references currently pointing to
ItemDetail throughout all the other class/components/files, replacing them with
ItemDetailEdit and/or ItemDetailView accordingly.

www.EBooksWorld.ir

Updating the Root module
Let's start with the /Scripts/app/app.module.ts file. Open it and change the
import line pointing to the old ItemDetailComponent in the following way:

import {ItemDetailEditComponent} from "./item-detail-
edit.component";
import {ItemDetailViewComponent} from "./item-detail-
view.component";

Then scroll down to the declarations section and do the same:

 declarations: [
 AboutComponent,
 AppComponent,
 HomeComponent,
 ItemListComponent,
 ItemDetailEditComponent,
 ItemDetailViewComponent,
 LoginComponent,
 PageNotFoundComponent
],

www.EBooksWorld.ir

Updating the Routes
The next thing we need to do is to update the /Scripts/app/app.routing.ts file.
Open it and change its content accordingly (added/modified parts are highlighted):

import {ModuleWithProviders} from "@angular/core";
import {Routes, RouterModule} from "@angular/router";

import {AboutComponent} from "./about.component";
import {HomeComponent} from "./home.component";
import {ItemDetailEditComponent} from "./item-detail-
edit.component";
import {ItemDetailViewComponent} from "./item-detail-
view.component";
import {LoginComponent} from "./login.component";
import {PageNotFoundComponent} from "./page-not-found.component";

const appRoutes: Routes = [
 {
 path: "",
 component: HomeComponent
 },
 {
 path: "home",
 redirectTo: ""
 },
 {
 path: "about",
 component: AboutComponent
 },
 {
 path: "login",
 component: LoginComponent
 },
 {

 path: "item/edit/:id",

 component: ItemDetailEditComponent

 },

 {

 path: "item/view/:id",

 component: ItemDetailViewComponent

 },
 {

www.EBooksWorld.ir

 path: '**',
 component: PageNotFoundComponent
 }
];

export const AppRoutingProviders: any[] = [
];

export const AppRouting: ModuleWithProviders =
RouterModule.forRoot(appRoutes);

As we can see, we performed two major changes here:

Near the top of the file, within the import section, we did the same changes we
made to the AppModule class a moment ago
We replaced the now obsolete item route with two new routes, item/edit and
item/view, respectively pointing to our brand new ItemDetailEdit and
ItemDetailView component classes

www.EBooksWorld.ir

Tracking the outdated references
Now we need to find all the references to the outdated ItemDetail component class
within our application files and update them accordingly. Luckily enough we're using
TypeScript, so we don't need to stoop to using find and replace or other loose
techniques; we just have to look at our Task Runner Explorer window and see if
there are compiler Errors:

As we can see, we're quite lucky: there are no errors, meaning that there is no other
class referencing the old ItemDetail class and/or the item-detail.component.ts
filename.

The routes, however, are a whole different story; they work as literals, so there is no
way the compiler will tell us anything. Luckily enough, there are only two
components that were using the old item route: AppComponent and
ItemListComponent.

To update the former, open the /Scripts/app/app.component.ts file and replace
the value of the routerLink directive for adding a new item (updated lines are
highlighted):

<h1>{{title}}</h1>
<div class="menu">

www.EBooksWorld.ir

 Home
 | About
 | Login
 | Add New
</div>
<router-outlet></router-outlet>

As for ItemListComponent, open the /Scripts/app/item-list.component.ts
file, scroll down to the onSelect method, and change its contents accordingly
(updated lines are highlighted):

 onSelect(item: Item) {
 this.selectedItem = item;
 console.log("Item " + this.selectedItem.Id + " has been
clicked: loading item viewer...");
 this.router.navigate(["item/view", this.selectedItem.Id]);
 }

www.EBooksWorld.ir

Implementing the tab menu
We're still missing something very important: there's no way we can switch from
ItemDetailView to ItemDetailEdit and vice versa, which is a required condition
for our application to work; as a matter of fact, we can't even properly test what
we've done up till now until we add something that would allow us to do that.

Without further ado, this means that it's time to implement the Wikipedia-style tab
menu we were talking about a while ago. In order to do that, we need to update the
following sections of the item-detail-view.component.ts and item-detail-
edit.component.ts files:

The template, because our tab menu will need an HTML structure
The class implementation code, since we will definitely need to implement an
event handler method to respond to user interaction (the actual tab click) and put
it into action accordingly
The styles, because we want our tab menu to blend with the components that
will implement it in a nicely fashion

Template

Open the item-detail-view.component.ts file and replace the content of the
template section with the following (new/updated lines are highlighted):

<div *ngIf="item" class="item-container">

 <div class="item-tab-menu">

 Edit

 View

 </div>

 <div class="item-details">

 <div class="mode">Display Mode</div>
 <h2>{{item.Title}}</h2>
 <p>{{item.Description}}</p>
 </div>
</div>

We changed quite a few things here, yet the template is simple enough to easily
understand what happened:

We wrapped everything within a div having an item-container CSS class.
Notice that we also conveniently moved the *ngIf expression there, removing it

www.EBooksWorld.ir

from the div.item-details element as the latter isn't the main container
anymore.
We added a div with an item-tab-menu CSS class that is going to be our tab
menu. It contains two span elements representing, respectively, the currently
selected tab (View) and the tab we can switch to (Edit). Notice
onItemDetailEdit(item) bound to the latter; we'll get to it soon enough.

Now open the item-detail-edit.component.ts file and again replace the
template section content with the following (new/updated lines are highlighted):

<div *ngIf="item" class="item-container">

 <div class="item-tab-menu">

 Edit

 <span *ngIf="item.Id != 0"
(click)="onItemDetailView(item)">View

 </div>

 <div class="item-details">

 <div class="mode">Edit Mode</div>

 <h2>{{item.Title}}</h2>

 <label>Title:</label>
 <input [(ngModel)]="item.Title" placeholder="Insert
the title..." />

 <label>Description:</label>
 <textarea [(ngModel)]="item.Description"
placeholder="Insert a suitable description..."></textarea>

 <div *ngIf="item.Id == 0" class="commands insert">
 <input type="button" value="Save"
(click)="onInsert(item)" />
 <input type="button" value="Cancel" (click)="onBack()"
/>
 </div>
 <div *ngIf="item.Id != 0" class="commands update">
 <input type="button" value="Update"
(click)="onUpdate(item)" />
 <input type="button" value="Delete"
(click)="onDelete(item)" />
 <input type="button" value="Cancel"

www.EBooksWorld.ir

(click)="onItemDetailView(item)" />
 </div>
 </div>
</div>

As we can see, a lot of stuff happened here as well:

Again, we wrapped everything into a div with an item-container CSS class,
moving the *ngIf expression there.
Again, we added the HTML structure of our tab menu; the two span elements
are the same, yet they have obviously switched their respective roles: the View
one has an onItemView(item) event attached, while Edit is now the selected
one, so isn't expected to do anything. Notice that we added another *ngIf
expression to the View tab menu item, meaning that it will show itself only if the
id item is not 0; this will prevent the View tab from being displayed whenever
this component is accessed for adding a new item. That's a good thing to
do since we wouldn't be able to "view" an item that doesn't exist in the database
yet.
We renamed the Back button Cancel and changed its behavior accordingly;
instead of going to the home/welcome view by using the onBack() method, it
will now route to the current item's ItemDetailView using the
onItemDetailView(item) method, which by the way is not implemented yet.

Class code

The next thing we have to do is to implement the missing methods that we already
took for granted in the previous paragraph.

Go back to the item-detail-view.component.ts file and add a new
onItemDetailEdit(item) method right after the ngOnInit one:

onItemDetailEdit(item: Item) {
 this.router.navigate(["item/edit", item.Id]);
}

Right after that, switch to the item-detail-edit.component.ts file and add the
following code after the onBack method, which should be the last one:

onItemDetailView(item: Item) {
 this.router.navigate(["item/view", item.Id]);
}

That's it; both of these routes have already been set, so there is nothing else to do
there.

Styles

www.EBooksWorld.ir

It's time to pimp our components a little; we won't do anything fancy. We'll leave it to
Chapter 6, Applying Styles, yet we could use a slightly improved GUI to better
acknowledge what we're doing.

Let's start with the item-detail-view.component.ts file: open it up, then replace
the content of the styles section with the following:

.item-container {
 width: 600px;
}

.item-tab-menu {
 margin-right: 30px;
}

.item-tab-menu span {
 background-color: #dddddd;
 border: 1px solid #666666;
 border-bottom: 0;
 cursor: pointer;
 display: block;
 float: right;
 margin: 0 0 -1px 5px;
 padding: 5px 10px 4px 10px;
 text-align: center;
 width: 60px;
}

.item-tab-menu span.selected {
 background-color: #eeeeee;
 cursor: auto;
 font-weight: bold;
 padding-bottom: 5px;
}

.item-details {
 background-color: #eeeeee;
 border: 1px solid black;
 clear: both;
 margin: 0;
 padding: 5px 10px;
}

.item-details * {
 vertical-align: middle;
}

.item-details .mode {
 font-size: 0.8em;
 color: #777777;
}

www.EBooksWorld.ir

.item-details ul li {
 padding: 5px 0;
}

Right after that, do the same with the styles section of the item-detail-
edit.component.ts file:

.item-container {
 width: 600px;
}

.item-tab-menu {
 margin-right: 30px;
}

.item-tab-menu span {
 background-color: #dddddd;
 border: 1px solid #666666;
 border-bottom: 0;
 cursor: pointer;
 display: block;
 float: right;
 margin: 0 0 -1px 5px;
 padding: 5px 10px 4px 10px;
 text-align: center;
 width: 60px;
}

.item-tab-menu span.selected {
 background-color: #eeeeee;
 cursor: auto;
 font-weight: bold;
 padding-bottom: 5px;
}

.item-details {
 background-color: #eeeeee;
 border: 1px solid black;
 clear: both;
 margin: 0;
 padding: 5px 10px;
}

.item-details * {
 vertical-align: middle;
}

.item-details .mode {
 font-size: 0.8em;
 color: #777777;
}

www.EBooksWorld.ir

.item-details ul li {
 padding: 5px 0;
}

.item-details input[type="text"] {
 display: block;
 width: 100%;
}

.item-details textarea {
 display: block;
 width: 100%;
 height: 60px;
}

.commands {
 text-align: right;
 margin: 10px 20px 10px 10px;
}

Not much to explain here; we just changed the aspect of these two controls so the tab
menu can fit into them in a decent-looking way for the upcoming test run.

www.EBooksWorld.ir

Testing it out
Now that our splitting job is finally over, it's time to perform an extensive test on
what we just did.

Launch the application by hitting F5 and check that the Home /welcome page is still
alive and well. We didn't change anything there, so we can go straight on to our brand
new ItemDetailView component by left-clicking on one of the elements within the
Latest Items listing, for example Magarena-X2.

If everything is working as it should, we should be greeted by something like the
following:

We can easily see that we opened the ItemDetailView in DISPLAY MODE
because:

The View tab is clearly selected
There's a DISPLAY MODE label in the top-left corner of the item containing
box
We don't see any input textboxes/text areas within the view

This is the first time we can see the Wikipedia-style tab menu we implemented in the

www.EBooksWorld.ir

previous paragraph; it seems to be working just like it should.

Let's now click on the Edit tab and see what happens:

The EDIT MODE seems to be looking fine as well. The tab menu is also still
working as expected, as the Edit tab is now clearly appearing as the one on top.

Let's try to append the following line to the description text area:

We can't call this a test without a sample update attempt.

Then, click on the Update button. As soon as we do that, we should see something
like this:

www.EBooksWorld.ir

The Update button routed us back to the Home/Welcome View; we never changed
its behavior, so it's still working like that. While this may have been viable when we
only had a single ItemDetail controller, now it most certainly isn't; it should bring
us back to ItemDisplayView, just like Wikipedia/MediaWiki works when we update
an item there.

In order to fix that, open the item-detail-edit.component.ts file and perform the
following changes to the onUpdate method (modified code is highlighted):

onUpdate(item: Item) {
 this.itemService.update(item).subscribe(
 (data) => {
 this.item = data;
 console.log("Item " + this.item.Id + " has been
updated.");
 this.router.navigate(["item/view", this.item.Id]);
 },
 (error) => console.log(error)
);
}

What we did here is quite obvious: We replaced the destination route from root one
(bound to HomeController) to item/view, which is connected to
ItemDetailViewController, also including the id parameter.

Let's test it out; hit F5 to re-run the application in Debug mode, then left-click on the
Magarena-X2 item to launch the ItemDetailView controller again. Once there, click
on the Edit tab and append another test line to the item's Description text area:

www.EBooksWorld.ir

The previous attempt wasn't good enough; now it should work.

When we're done, click on the Update button and see what happens:

It seems like it worked! We managed to split the ItemDetail controller into two,
reproducing a MediaWiki-like behavior when it comes to displaying and/or editing
our items.

www.EBooksWorld.ir

Suggested topics
RESTful conventions, HTTP verbs, HTTP status, Angular 2 observables, Angular 2
observers, Angular 2 subscriptions, MediaWiki, Cascading Style Sheets.

www.EBooksWorld.ir

Summary
Before going further, let's do a quick recap of what we did throughout this chapter.

Having replaced the fake data provider with a real one, we made good use of it by
implementing Add, Update, and Delete features for our ItemDetail controller. In
order to do this, we improved our ItemService, implementing the corresponding
add, update, and delete methods. Then we also updated the client GUI by creating
new buttons, event handlers, and routes to properly handle them.

While implementing the process of creating a new item, instead of adding a new
route, we chose to exploit the existing one already pointing to ItemDetail by
passing an id with a value of 0, thus creating an internal convention for our own
personal usage. Once done, we ran a full test of the updated UI to check that
everything worked out well.

It most certainly was, yet we started noticing that our controller looked like an editor
way more than a viewer. That didn't match the original plan, so we planned to split
the ItemDetail controller into two separate classes: ItemDetailView to show the
item in readable fashion (DISPLAY MODE) and ItemDetailEdit to handle add,
update, and delete commands (EDIT MODE). We also thought about making the
users able to toggle between them with the help of a dedicated tab menu just like to
the one used by MediaWiki.

Splitting the ItemDetail controller implied a straightforward, yet rather long, series
of tasks: we added a new TypeScript file for the ItemDetailView component, filling
it with suitable code, then we put in place a full code and filesystem refactoring of
the ItemDetail component, which we renamed to ItemDetailEdit everywhere; the
TypeScript compiler saved us some valuable time here, identifying the outdated
references and allowing us to promptly fix/update them.

Eventually we implemented the tab menu; in order to do that we had to perform some
changes to the controller's templates and styles sections, as well as implementing
the dedicated methods within the class code to handle the click event upon each tab.

After all these changes, we felt the urge to do another round of tests. It turned out it
was a good call, as we found a minor issue within the ItemDetailEdit controller's
onUpdate method, which was still calling the Home route upon completion instead
of the more appropriate ItemDetailView one; we fixed it smoothly, making our
application ready for the following chapters.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 6. Applying Styles
Up to this point, we have done our best to keep the layout as simple as we could, so
we could focus entirely on the server-side and client-side coding aspects of our app:
ASP.NET Core Web API Controllers, Angular 2, C#, and TypeScript. Keeping the
layout to a minimum is generally a wise approach when we're learning something
new, it also has a few downsides, though, the biggest one being the blatant fact that
our application is rather unattractive, to say the least: there is no user, client, or
customer that wouldn't say that... or worse.

www.EBooksWorld.ir

How bad is it, doc?
It almost entirely depends on what we're planning to do with the project we've been
working on; as we just said, while we're working our way through tutorials, demos,
or sample projects, it's not bad at all, for at least a couple of good reasons:

We will greatly benefit from keeping our focus on .NET and Angular 2, leaving
the rest for later; applying styles is something that w can easily do whenever we
feel like it, even if we don't have a decent grip on stylesheet language already.
It's generally a good idea to restrain ourselves from doing any relevant style
implementation until we can fully understand where and how to do that
conveniently; to put it in other words, we shouldn't do styles until we find a
suitable approach for doing that within the given scenario and/or environment.

That's why we chose to take this path in the first place; we're definitely in the
learning phase, after all. However, since we planned to build a production-ready
native web application, we can't restrain ourselves from applying some styling any
longer; there's no way that our imaginary product owner would be satisfied
otherwise. It's time to dress our (mostly) naked doll and make it as pretty as we can.

www.EBooksWorld.ir

Introducing LESS
If we've worked with style sheets within the last few years, there's no chance we
won't have heard of LESS; however, for the sake of those who didn't, let's take a few
words to talk about it. Before getting to that, though, we must briefly introduce the
concepts of style sheet language and Cascading Style Sheets (CSS).

Tip

This paragraph is mostly aimed at those who have never used LESS before. If you
have some experience with LESS already or feel like you don't need to know
anything else about why we're going to use it, you might as well skip it entirely and
jump to the next paragraph: Install and Configure LESS.

www.EBooksWorld.ir

Style sheet languages
A style sheet language, also known as style language, is a programming language used
to define the presentation layer's UI design rules of a structured document. We can
think of it as a skin or a theme that we can apply to a logical item (the structured
document) to change its appearance. For example, we can make it look blue, red, or
yellow; we can make the characters bigger or smaller, thinner or wider; we can
change the text spacing, alignment, and flow; and so on.

Using dedicated style sheet languages gives developers the chance to separate the
presentation layer's code and structure (respectively JavaScript and HTML) from
the UI design rules, thus enforcing the separation of concerns (SoC) principle
within the presentation layer itself.

When it comes to web pages, web applications, and anything else that mostly uses
HTML, XHTML, XML, and other markup language-based documents, the most
important style sheet language undoubtedly is CSS.

www.EBooksWorld.ir

CSS
It was December 17, 1996, when the World Wide Web Consortium (W3C) released
the official W3C CSS Recommendation for the style sheet language that would be
known as CSS1. CSS2 came less than two years later (May 1998), while its revised
version, CSS2.1, took considerably more time (June 2011).

Starting from CSS3, things started to become more complex, since the W3C ditched
the single, monolithic specification approach by splitting it into separate documents
called modules, each one of them following its very own publishing, acceptance, and
recommendation history. Starting in 2012, with four of these (Media Queries,
Namespaces, Selectors, and Color) being published as formal recommendations and
full CSS2.1 backward-compatibility, CSS3 quickly became the most adopted style
sheet language standard for the development of new websites.

CSS code sample

Regardless of their version, each adding new features while maintaining backward
compatibility with the previous one(s), CSS stick to the following syntax:

.item-details {
 background-color: #dddddd;
 border: 1px solid black;
 margin: 0;
 padding: 5px 10px;
}

We've seen this code before; it's a class we added in our application's item-
detail-view.component.ts file in a previous chapter. It says that any element with
the item-details class will have a light-grey background color, a black, solid, and
pixel-wide border, no margin against the surrounding elements, and a certain amount
of padding between its borders and the content. Simple enough, isn't it?

www.EBooksWorld.ir

What is LESS and why to use it
LESS is a cascading style sheet pre-processor; we can think of it as a server-side
script for CSS files, enabling us to do a number of things that CSS doesn't support
(yet), just like PHP and/or ASP can do for an HTML page. The following diagram
should help us to better understand the concept:

These are the main advantages of using a hypertext pre-processor instead of writing
raw HTML pages; we're talking about PHP, but the same goes for ASP.NET Web
Forms, Razor, and basically everything else.

The following are the advantages of using LESS instead of writing raw CSS files:

www.EBooksWorld.ir

As we can see, they serve the exact same purpose in terms of assisting, improving,
and enhancing the development effort.

Making the switch from static stylesheets to dynamic stylesheets is just as easy as
switching from static HTML pages to PHP or ASP dynamic pages; they both feature a
nested metalanguage that can extend the base static language in a pure backward-
compatible fashion. This means that a valid CSS file is also a valid LESS file, just as
a valid HTML file is also a valid PHP or ASP file.

There are also some key differences between hypertext pre-processors and stylesheet
pre-processors, the most important being how web servers deal with them.

Hypertext pre-processors such as PHP and ASP are compiled by the Web Server
upon each request; the Web Server compiles them on the fly and then serves the
resulting HTML for each request-response flow. Conversely, Stylesheet pre-
processor files are usually compiled into standard CSS files before being published;
in other words, the web service doesn't know about the existence of these files, as it
just serves the resulting CSS-compiled result.

This also means that using a stylesheet pre-processor will have no performance
impact on the server, unless we choose to install some experimental and still highly
inefficient handlers, extensions, modules, or client-side scripts that will compile the
source files on the fly.

Note

www.EBooksWorld.ir

IMPORTANT NOTE

From now on, we'll take for granted that the reader has a decent knowledge of CSS
files, syntax, selectors, and their common use within HTML pages.

If this is not the case, we strongly suggest to learn the core CSS concepts before
going further, using the Learning CSS website, maintained and hosted by W3C,
featuring a massive number of useful guides, tutorials, and articles:

https://www.w3.org/Style/CSS/learning.

Variables

Among the most valuable LESS features, there is variable support. This is a brief
example of what we can do with it:

// Variables can be declared as such:
@link-color: #red;
@link-color-hover: lightcoral;

// And then they can be referenced like this:
a, span. link {
 color: @link-color;
}

a:hover, span.link:hover {
 color: @link-color-hover;
}

As we might have noticed, double-slash style (//) inline comments are supported as
well, while CSS only allows the slash-asterisk (/**/) syntax.

Import directives

Another LESS key feature is the capability of importing other CSS and LESS files. If
we're familiar with the standard CSS @import, we know that it can only be used at
the beginning of the file to issue the loading of an external CSS file. With LESS, we
can do the following:

// look for a style.less file and process + import its contents.
@import "style";

// look for a style.less file and process + import its contents.
@import "style.less";

// look for a style.css file and import its contents (no
processing).
@import "style.css";

www.EBooksWorld.ir

https://www.w3.org/Style/CSS/learning

Notice that the behavior depends on the imported file extension. These defaults can
be overridden with the following options switches:

// link/use a Less file without including it in the output.
@import (reference) "something.less";

// include the file in the output without processing it.
@import (inline) "something.less";

// pretend this is a LESS file, regardless of the extension.
@import (less) "something.css";

// pretend this is a CSS file, regardless of the extension.
@import (css) "something.less";

// never include this file more than once (default behavior).
@import (once) "something.less";

// always include this file in the output, even multiple times.
@import (multiple) "something.less";

// do not break the compile operation if the file is not found.
@import (optional) "something.less";

If we need to specify multiple options within a single @import statement, we can
do that by separating each one of them with a comma:

// take it as a LESS file, import once, skip if not found.
@import (less,once,optional) "something.css";

Nested selectors

We will be able to nest selectors within other selectors, thus making our code more
succinct and readable. Just to use a quick example, we can shrink this:

item-list {
 border: 0;
 margin: 0;
 padding: 0;
 vertical-align: top;
 display: block;
}

item-list.latest {
 background-color: #f6f6f6;
}

item-list.latest h3 {
 background-image: url(/img/latest-icon.png);
}

www.EBooksWorld.ir

Into something like the following:

item-list {
 border: 0;
 margin: 0;
 padding: 0;
 vertical-align: top;
 display: block;
 &.latest {
 // the & char represents the current selector parent.
 // in this scenario, it stands for: item-list.latest.
 background-color: #f6f6f6;
 h3 {
 background-color: @color-latest;
 background-image: url(/img/latest-icon.png);
 }
 }
}

It might not be such a big deal for small-scale CSS files, yet it's a great readability
improvement for big ones.

Mixins

Being able to not repeat ourselves is a key principle of all computer programming
languages; however, it's not easy to respect that within standard CSS files, because
we would often be forced to write something like this:

.button-s {
 background-color: blue;
 border: 1px solid black;
 border-radius: 5px;
 font-family: Verdana;
 font-size: 0.8em;
 width: 100px;
}

.button-m {
 background-color: blue;
 border: 1px solid black;
 border-radius: 5px;
 font-family: Verdana;
 font-size: 1em;
 width: 200px;
}

.button-l {
 background-color: blue;
 border: 1px solid black;
 border-radius: 5px;
 font-family: Verdana;

www.EBooksWorld.ir

 font-size: 1.2em;
 width: 300px;
}

With LESS, we can shrink it into this:

.button-s {
 background-color: blue;
 border: 1px solid black;
 border-radius: 5px;
 font-family: Verdana;
 font-size: 0.8em;
 width: 100px;
}

.button-m {
 .button-s;
 font-size: 1em;
 width: 200px;
}

.button-l {
 .button-s;
 font-size: 1.2em;
 width: 300px;
}

In other words, a mixin is a selector reference within another selector. That's another
great feature that can save us a lot of time whenever we're dealing with large CSS
files.

Extend pseudo-class

Another great feature is the LESS :extend pseudo-class, which can be used to apply
all properties of a class to another class, optionally including, using the all
keyword, all the child classes and pseudo-classes. To use a quick example, take the
following CSS code:

.link {
 color: white;
 background-color: blue;
}

.link:before {
 content: ">";
}

.link-red {
 color: white;
 background-color: red;

www.EBooksWorld.ir

}

.link-red:before {
 content: ">";
}

This could be conveniently written this way using LESS:

.link {
 color: white;
 background-color: blue;
 :before {
 content: ">";
 }
}

.link-red {
 &:extend(.link all);
 background-color: red;
}

Notice how, since we've used the all keyword, we don't have to repeat the :before
pseudo-class of the base .link selector, as it will be applied to .link-red as well.

www.EBooksWorld.ir

LESS docs and support
We won't go any further than that with LESS, as it would take us far from the scope of
this book. From now on, we'll take for granted that everything that we're going to do
with it will be acknowledged and understood.

For the sake of simplicity, we won't use anything different from what we briefly
introduced in the previous chapters; however, we strongly suggest to take a look at
the advanced features (parametric mixins, functions, loops, guards, and more) as
soon as we have the chance; they can hardly fail to pay off. We can learn more about
them from the LESS official webpage at the following URL: http://lesscss.org/

www.EBooksWorld.ir

http://lesscss.org/

Systematically Awesome Style Sheets, Stylus,
and other alternatives
As most readers probably know, or can easily imagine, LESS is not the only style
sheet pre-processor language out there. As a matter of fact, it was released more than
two years after Systematically Awesome Style Sheets (Sass), also known as SCSS,
which had served the exact same purpose since 2007. Sass can offer basically the
same set of features as LESS and came out first, so why shouldn't it be used instead?

The answer is simple and strongly resembles what we have already said when we
had to choose between Gulp and Grunt in Chapter 1, Getting Ready,, no one will
ever get fired for picking Sass or other viable alternatives, such as Stylus and Switch
CSS, instead of LESS. We're free to choose the style sheet pre-processor we like the
most, as long as we can use it without issues, meaning that Visual Studio and/or the
Task Runner we chose is able to support it. Luckily enough, all of them are now
widely supported by many Visual Studio Extensions and Gulp plugins (or Grunt
modules), so it won't make any significant difference. That said, we're going to set up
and configure LESS because we find it more straightforward, easy to use, and
slightly more suited for a Windows environment than its counterparts, at least for
now.

www.EBooksWorld.ir

Configuring LESS
LESS happens to be written in JavaScript, so installing it can be as easy as
downloading its JavaScript library (less.js), linking it to our index.html page,
and letting its magic work without having to set up anything else.

Should we do that, then? Not a chance. As we said earlier, delegating the compilation
task on the client side would be highly inefficient, especially in a client-intensive
Angular 2-based native web app. This is what we're going to do instead:

Add a new style.less file to our project.
Update our Gulp script to process and compile it, outputting the resulting
style.css file into the /wwwroot/ folder.
Link the resulting .css file to the /wwwroot/index.html root application file.
Make a quick test before starting our styling job.

Let's get to work.

www.EBooksWorld.ir

Adding the LESS file
Considering how many files we've added so far, this is going to be a trivial task. Add
a new /less/ folder inside the /Scripts/ root directory, then right-click on it,
choose Add | New Item, and select LESS Style Sheet from the client-side set item
tab: name the new file style.less and click on OK.

Once done, open the newly created file and add the following content:

item-list {
 min-width: 332px;
 border: 1px solid #aaaaaa;
 display: inline-block;
 margin: 0 10px;
 padding: 10px;
 &.latest {
 background-color: #f9f9f9;
 }
 &.most-viewed {
 background-color: #f0f0f0;
 }
 &.random {
 background-color: #e9e9e9;
 }
}

We might recognize the preceding lines, as these are the styles of our
/Scripts/app/home.component.ts Angular 2 component file, we just applied
some mixins as described previously to shrink the code a bit.

www.EBooksWorld.ir

Updating Gulp script
The first thing we need to do is to add the LESS plugin for Gulp. Open the
package.json file, locate the devDependencies node and add the following line to
the gulp section. We'll be placing it right after the gulp-concat package to keep the
alphabetical sorting:

 "gulp": "^3.9.1",
 "gulp-clean": "^0.3.2",
 "gulp-concat": "^2.6.0",
 "gulp-less": "^3.1.0",
 "gulp-sourcemaps": "^1.6.0",
 "gulp-typescript": "^2.13.6",
 "gulp-uglify": "^2.0.0",
 "typescript": "^1.8.10"

As soon as we save the file we'll issue a real-time refresh to the project's NPM
dependencies.

Now switch to the gulpfile.js file and get ready to add/modify a few lines of code
(new/updated lines are highlighted):

var gulp = require('gulp'),
 gp_clean = require('gulp-clean'),
 gp_concat = require('gulp-concat'),
 gp_less = require('gulp-less'),
 gp_sourcemaps = require('gulp-sourcemaps'),
 gp_typescript = require('gulp-typescript'),
 gp_uglify = require('gulp-uglify');

/// Define paths
var srcPaths = {
 app: ['Scripts/app/main.ts', 'Scripts/app/**/*.ts'],
 js: [
 'Scripts/js/**/*.js',
 'node_modules/core-js/client/shim.min.js',
 'node_modules/zone.js/dist/zone.js',
 'node_modules/reflect-metadata/Reflect.js',
 'node_modules/systemjs/dist/system.src.js',
 'node_modules/typescript/lib/typescript.js'
],
 js_angular: [
 'node_modules/@angular/**'
],
 js_rxjs: [
 'node_modules/rxjs/**'
],
 less: [

www.EBooksWorld.ir

 'Scripts/less/**/*.less'

]
};

var destPaths = {
 app: 'wwwroot/app/',
 css: 'wwwroot/css/',
 js: 'wwwroot/js/',
 js_angular: 'wwwroot/js/@angular/',
 js_rxjs: 'wwwroot/js/rxjs/'
};

// Compile, minify and create sourcemaps all TypeScript files and
place them to wwwroot/app, together with their js.map files.
gulp.task('app', ['app_clean'], function () {
 return gulp.src(srcPaths.app)
 .pipe(gp_sourcemaps.init())

.pipe(gp_typescript(require('./tsconfig.json').compilerOptions))
 .pipe(gp_uglify({ mangle: false }))
 .pipe(gp_sourcemaps.write('/'))
 .pipe(gulp.dest(destPaths.app));
});

// Delete wwwroot/app contents
gulp.task('app_clean', function () {
 return gulp.src(destPaths.app + "*.*", { read: false })
 .pipe(gp_clean({ force: true }));
});

// Copy all JS files from external libraries to wwwroot/js
gulp.task('js', function () {
 gulp.src(srcPaths.js_angular)
 .pipe(gulp.dest(destPaths.js_angular));
 gulp.src(srcPaths.js_rxjs)
 .pipe(gulp.dest(destPaths.js_rxjs));
 return gulp.src(srcPaths.js)
 .pipe(gulp.dest(destPaths.js));
});

// Delete wwwroot/js contents
gulp.task('js_clean', function () {
 return gulp.src(destPaths.js + "*.*", { read: false })
 .pipe(gp_clean({ force: true }));
});

// Process all LESS files and output the resulting CSS in
wwwroot/css

gulp.task('less', ['less_clean'], function () {

www.EBooksWorld.ir

 return gulp.src(srcPaths.less)

 .pipe(gp_less())

 .pipe(gulp.dest(destPaths.css));

});

// Delete wwwroot/css contents

gulp.task('less_clean', function () {

 return gulp.src(destPaths.css + "*.*", { read: false })

 .pipe(gp_clean({ force: true }));

});

// Watch specified files and define what to do upon file changes
gulp.task('watch', function () {
 gulp.watch([
 srcPaths.app,
 srcPaths.js,
 srcPaths.less],
 ['app', 'js', 'less']);
});

// Global cleanup task
gulp.task('cleanup', ['app_clean', 'js_clean', 'less_clean']);

// Define the default task so it will launch all other tasks
gulp.task('default', ['app', 'js', 'less', 'watch']);

What we did here was quite straightforward:

At the beginning of the file, we added a reference to the gulp-less plugin,
assigning it to the gp_less variable just like we did with the other plugins.
We added the less key to the srcPaths variable; that key contains a listing of
the locations of all the .less files we want to process: everything inside
Scripts/less/, including subfolders, as long as it ends with the .less
extension.
We also added the css key to the destPaths variable, defining the folder where
the resulting compiled .css files will be generated.
Then we added two new tasks to instruct Gulp how to handle LESS files:

The less task to compile the .less files found inside the srcPaths.less
folder(s) and then output the result to the wwwroot/css target folder.
The less_clean task to erase the contents of the target folder; since it
does the same job as the other existing cleanup tasks, there's no need to

www.EBooksWorld.ir

explain how it works. We also added it as a dependent task to the previous
one, just like we did with the app_clean and app tasks back in Chapter 1,
Getting Ready.

As soon as we perform these changes and save the file, go to the Task Runner
Explorer panel in Visual Studio 2015. Once there, stop the Gulpdefault task, then
re-run it again: a new /wwwroot/css/ folder should be created shortly, together with
a freshly-compiled style.css file inside. Open it and ensure it has the same content
placed into the /Scripts/less/style.less file, then proceed to the next part.

www.EBooksWorld.ir

Linking the stylesheet
Open the /wwwroot/index.html file and add the following line within the <head>
block, right below the <meta> element:

<!-- Stylesheets -->
<link rel="stylesheet" type="text/css" href="/css/style.css"
media="screen" />

www.EBooksWorld.ir

Testing it up
Before going further, it's advisable to run a quick check in order to ensure that
everything we made so far is working as it should.

Open the /Scripts/app/home.component.ts file and remove everything within the
styles block so that it will look like the following:

styles: []

Alternatively, we could entirely remove it, as we're not going to use it anymore.

Once done, run the application in Debug mode by hitting F5 and check if the item-
list components still have their CSS styles applied to them:

They definitely should, since we placed them on the style.less file that, in its .css
compiled form, should now be linked to our application.

www.EBooksWorld.ir

DIY versus framework-based styling
Now that we have added a fully-functional style.less stylesheet file, we could
also move all our custom styles there, just like we did with the home.component.ts
file; the question is, are they really worth that much? Hardly, considering that we put
them together for demonstration purpose only, a quick'n'dirty, temporary solution
until we could commit ourselves to the upcoming styling phase. Now that the time has
come, we shouldn't bother too much about preserving these samples, we need to think
about switching from a full do-it-yourself approach to a framework-based one.

Anyone who is into CSS design is well aware of such a debate, which we could
summarize in the following single phrase:

Should we build our own grid-based responsive layout or use a responsive
design framework instead?

The answer is not that simple because either alternative has their set of advantages.
Let's try to perform a quick recap of the most relevant arguments.

www.EBooksWorld.ir

Do it yourself approach
The most classic approach: we build our very own grid-based layout, featuring a
custom set of resizing raster and/or vector set of images and icon files, following the
responsive design good practices and guidelines as issued by the famous Ethan
Marcotte 2010 article published in the A List Apart blog:
http://alistapart.com/article/responsive-web-design

And also follow the subsequent, improved theories and patterns described in his
following brief book (Responsive Web Design, A Book Apart, 2011).

Pros
Faster loading times, as we will be able to only code, add, and/or include what
we need.
Unique design (all framework-based websites are supposed to look the same).

Cons
Can be quite hard to handle, unless we're true CSS3/MediaQuery experts.
Slow development, due to the massive amount of required tests for all the
existing platforms (browsers, operating systems, mobile devices).
Hard to keep it updated to the latest standards since there will be no one that
will bother to test or improve that code other than us.

www.EBooksWorld.ir

http://alistapart.com/article/responsive-web-design

Framework-based approach
The common approach nowadays: we start from a consolidated, widely-accepted UI
frontend framework such as Bootstrap, Foundation, Pure, or YUI and customize it to
suit our needs. The word customizing can mean a number of things here, from picking
a skin to completely changing the structural behavior of most classes, depending on
how much we want to customize the results and/or how much time we are allowed to
spend doing that.

Pros
Development speed: These frameworks are a time-saver, as we will be able to
use reliable, cross-browser compatible code blocks instead of coding
everything from scratch.
Consistency: One of the biggest frontend framework achievements is that they
make designers and developers speak the same language, as they will both be
able to acknowledge, understand, and apply their changes to the project in a
consistent way.
Community support: Each framework has a huge support community, meaning
that we'll receive free code samples, support, and updates for as long as we
need to. This can be huge, especially if we want to achieve good results without
having to commit too much into cross-browser, responsive CSS design.

Cons
Limited knowledge: We didn't write that code, so we won't always be able to
understand what we're doing and why the stuff we're using behaves like that.
Performance heavy: Even the most lightweight and modular framework will
undoubtedly be packed with a lot of stuff we won't be using in our project: these
contents will be sent by the web server and loaded by the client anyway.
Updating issues: Whenever an improved build of the framework is out, we will
have to choose between updating it, and taking the risk of breaking something,
and not updating it, and risk losing the bug fixes and the added/improved
support for the new CSS standards.

www.EBooksWorld.ir

Conclusions
As we can see, both ways could be viable depending on our specific scenario;
therefore, the decision between going with a custom grid and adopting a framework-
based one should be made on a case-by-case basis.

That said, after our non-exhaustive analysis, we think that adopting a frontend
framework might be a good call for our project; we'll also be picking Bootstrap for
the task, since it happens to be one of the most suited ones for native web
applications based on Angular 2, as we'll be able to see in the following paragraphs.

Note

It's worth noting that by choosing Bootstrap we're ditching a great alternative that
will surely pave its way in the upcoming months: we're talking about material2, a
top-notch component library based upon material design.

The only reason we didn't pick it is that the project is still in alpha, yet there are
already a couple of demos out that demonstrate its striking potential. If we're bold
enough to try that, we can ditch this chapter entirely and learn our own way by
looking at the official project page at the following URL:

https://material.angular.io/ Or look at their source code repository on GitHub:
https://github.com/angular/material2

www.EBooksWorld.ir

https://material.angular.io/
https://github.com/angular/material2

Adding Bootstrap
Installing Bootstrap into our project is just as easy as adding the following line
within the <head> block of our wwwroot/index.html file:

<link
href="https://maxcdn.bootstrapcdn.com/bootswatch/3.3.6/yeti/bootstr
ap.min.css" rel="stylesheet" integrity="sha384-
yxFy3Tt84CcGRj9UI7RA25hoUMpUPoFzcdPtK3hBdNgEGnh9FdKgMVM+lbAZTKN2"
crossorigin="anonymous" />

Tip

It's advisable to place it right above the style.css link, so we'll be able to override
the Bootstrap default rules with our own style sheet file.

As we can see, we'll be using the Bootstrap 3 Yeti Theme (actually the 3.3.6 build,
the latest stable one at the time of writing), by linking a pre-built, minified .css file
hosted by MaxCDN, which is the primary content delivery network (CDN) for
Bootstrap and Bootswatch.

Tip

Using a CDN-hosted link for frontend frameworks is often a good practice and can be
very advisable in most cases, as it will remove some weight from our web server for
a relevant server-side performance benefit: however, it will also have some relevant
downsides, such as preventing us from modifying the source CSS (or LESS) file(s).
If we feel like we'll be needing that, and/or if we don't want a CDN for other good
reasons, we're also free to download the file locally and change the link so it will
point to the project filesystem instead. The choice, as always, is entirely up to the
developer.

We're choosing to stick with the v3 because Bootstrap 4, although almost ready, is
currently still in a beta release. We want to adopt a stable, reliable, and widely-
tested framework, we won't push things there, so we'll stick to the latest final instead.

Note

We chose the Yeti theme because it features a minimalistic, yet suitable style that will
nicely blend with our project; if you don't like it, you're free to choose another one
from the Bootswatch project's page:

http://bootswatch.com/ And here's a link to their primary CDN:
https://www.bootstrapcdn.com/bootswatch/

www.EBooksWorld.ir

http://bootswatch.com/
https://www.bootstrapcdn.com/bootswatch/

Choosing a native directives module
If we've already worked with Bootstrap, we know that placing a link to the .css file
isn't going to be enough: if we want to use transitions, modals, tabs, date/time
pickers, and a lot of advanced yet very useful components, we'll also have to add a
reference to the plugin's JavaScript code. In standard web projects, it's very common
to do that by adding some <script> references to the HTML page. We could include
each plugin individually, using their own Bootstrap *.js file, or all of them at once
with a single reference to the pre-compiled bootstrap.js or bootstrap.min.js
file, also available through various CDN repositories (including MaxCDN). In either
case, we'll also need to add a reference to the jQuery JavaScript library, since all
these plugins depend on jQuery.

However, since we're using Angular 2, we won't be following that route. We don't
need to add jQuery, bootstrap.js or any plugin's individual .js file since we can
install one of the available native directives modules specifically designed for
implementing Bootstrap components.

Before going any further, we should spend a bit of time addressing a very reasonable
question: why should we do that, instead of sticking to the good old jquery.js plus
bootstrap.js path?

The reason is quite simple, although it might not be easy to understand for those with
no Angular experience: we could say that it is strongly related to the unwritten yet
very important rule of writing expressive code, preventing ourselves from doing any
direct DOM manipulation unless it's unavoidable.

In Angular 2, there are few circumstances where directly manipulating the DOM is
really necessary. The framework provides a native set of powerful, high-level APIs
that can be used instead. Understanding, using, and leveraging these APIs is the best
thing a developer can do to write successful applications because of the following
distinctive advantages:

Unit testing: Manipulating the DOM adds browser dependencies and also a
level of complexity. Both of them will eventually lead to weaker and less
consistent tests.
Decoupling: Removing DOM dependencies will also allow our application to
run outside of a browser, for example, in Node.js or any Node.js yet non-web-
based environment, such as Electron.
Readability: Using Angular 2's template syntax instead of relying on Bootstrap's
attribute-based API or programmatic, JavaScript-based API will eventually
lead to smaller, more readable code.

www.EBooksWorld.ir

Maintainability: Relying on Angular 2, jQuery, and the Bootstrap plugin script
file(s) within the same project can be tricky and hard to maintain. The overhead
will also be quite relevant in terms of both size and performance since there is
an inevitable amount of repeated stuff in there.

Now that we've cleared our mind, we can choose the Angular 2 native directive
modules we'll be using among the available ones. At the time of writing, the Angular
2 and Bootstrap communities seem to have put their hopes into these three very
promising GitHub projects:

https://github.com/valor-software/ng2-bootstrap
https://github.com/ng-bootstrap/core
https://github.com/mlaval/angular2-bootstrap

Among these, the first one, formerly ng2-bootstrap, seems to have the lead in terms
of features and contributors. It's also the only one that comes with an extensive
support of both Bootstrap 3 and 4, which is a very relevant thing for us since we'll be
using Bootstrap 3.

www.EBooksWorld.ir

https://github.com/valor-software/ng2-bootstrap
https://github.com/ng-bootstrap/core
https://github.com/mlaval/angular2-bootstrap

Installing ng2-bootstrap
The easiest way to install ng2-bootstrap is using NPM. However, it also has a
dependency on the moment JavaScript library, so we're going to install that as well.
As usual, we can do that by adding the following lines to the dependencies section
of our package.json file:

 "moment": "^2.14.1",
 "ng2-bootstrap": "^1.0.24",

As soon as we save the file, Visual Studio will fetch these NPM packages.

Right after that, we can add a reference to these new libraries to the srcPaths.js
array variable declared in our gulpfile.js file, as we can see in the following
excerpt (new lines have been highlighted):

var srcPaths = {
 app: ['Scripts/app/main.ts', 'Scripts/app/**/*.ts'],
 js: [
 'Scripts/js/**/*.js',
 'node_modules/core-js/client/shim.min.js',
 'node_modules/zone.js/dist/zone.js',
 'node_modules/reflect-metadata/Reflect.js',
 'node_modules/systemjs/dist/system.src.js',
 'node_modules/typescript/lib/typescript.js',
 'node_modules/ng2-bootstrap/bundles/ng2-bootstrap.min.js',

 'node_modules/moment/moment.js'
],
 js_angular: [
 'node_modules/@angular/**'
],
 js_rxjs: [
 'node_modules/rxjs/**'
],
 less: [
 'Scripts/less/**/*.less'
]
};

Last but not least, we need to add the <script> reference tags within our
wwwroot/index.html page, right after the other Angular 2 library files:

 <!-- Step 1. Load libraries -->
 <!-- Polyfill(s) for older browsers -->
 <script src="js/shim.min.js"></script>
 <script src="js/zone.js"></script>
 <script src="js/Reflect.js"></script>
 <script src="js/system.src.js"></script>

www.EBooksWorld.ir

 <!-- Angular2 Native Directives -->
 <script src="/js/moment.js"></script>
 <script src="/js/ng2-bootstrap.min.js"></script>

That's about it.

www.EBooksWorld.ir

Applying styles
We're ready to apply some styles to our project. Let's warm ourselves up with some
plain Bootstrap class-based styling: while we're there, we'll also add some custom
CSS classes and drop a couple of images here and there to make our native web app
look a bit more distinctive.

www.EBooksWorld.ir

Main navigation bar
Open the Scripts/app.component.ts file and, within the @Component section,
replace the whole template with the following content:

<nav class="navbar navbar-default navbar-fixed-top">
 <div class="container-fluid">
 <input type="checkbox" id="navbar-toggle-cbox">
 <div class="navbar-header">
 <label for="navbar-toggle-cbox" class="navbar-toggle
collapsed" data-toggle="collapse" data-target="#navbar" aria-
expanded="false" aria-controls="navbar">
 Toggle navigation

 </label>

 </div>
 <div class="collapse navbar-collapse" id="navbar">
 <ul class="nav navbar-nav">
 Home

 <a class="about" [routerLink]="
['about']">About
 <a class="login" [routerLink]="
['login']">Login
 <a class="add" [routerLink]="['item/edit',
0]">Add New

 </div>
 </div>
</nav>
<h1 class="header">{{title}}</h1>
<div class="main-container">
 <router-outlet></router-outlet>
</div>

What we did here was nothing special. We added a couple of Bootstrap classes to
our previous menu element and then wrapped it in a more accessible (and also
Bootstrap-styled) <nav> element. We also introduced two custom CSS classes:
header for the <h1> element and main-container for a brand new <div> element
we used to wrap the <router-outlet> container. Finally, we added an image
reference pointing to a logo.svg vector image file, so our navigation menu bar will
have something distinctive. Needless to say, before being able to see how this
restyling looks, we need to bring these custom items to life.

www.EBooksWorld.ir

Let's start with the CSS classes: open the /Scripts/less/style.less file and
append the following code:

h1.header {
 font-size: 40px;
 margin: 46px 0 0 0;
 padding: 20px 20px 20px 112px;
 background: url(/img/header-bg.png) no-repeat left top #efefef;
 text-align: left;
}

.navbar {
 margin-bottom: 0;
 img {
 width: 32px;
 height: 32px;
 margin: -4px 0 0 0;
 padding: 0;
 }

 #navbar-toggle-cbox {
 display:none;
 &:checked ~ .collapse {
 display: block;
 }
 }
}

We added another image reference here, a raster png that will serve as a background
for our <h1 class="header"> file. That's another file we need to add to our
project. In order to do that, create a new /img/ directory within the /wwwroot/ root
folder and place the logo.svg and the header-bg.png file there.

Tip

This isn't a book about web image design, so we won't cover the image creation
process. We'll just add some sample minimalistic images not too different from what
we could be using in a real-case scenario. They can be found online at the following
URL: http://www.opengamelist.com/img/ Just add the file name to that base URL to
view it online and/or download it; you can use this method for every image used
within this chapter. If you need a sample favicon, you can find the one we're using
here: http://www.opengamelist.com/favicon.ico Alternatively, you can design your
own ones or get some from one of the royalty-free image and icon libraries available
online.

Before going any further, it's time to run a quick test and see if everything is working
properly. As usual, all we need to do is hit F5 and take a look:

www.EBooksWorld.ir

http://www.opengamelist.com/img/
http://www.opengamelist.com/favicon.ico

Not that bad, considering where we came from. Nonetheless, we can already see a
minor flaw: the navigation bar doesn't tell us where we are, as the active route is not
highlighted in any way.

If we inspect the Angular 2-generated HTML code with a DOM inspector, we can
see that there actually is something that could help us to identify the active item: it's
the router-link-active CSS class, which Angular 2 assigns automatically to the
anchor who activated the route. Unfortunately, that class name cannot be changed and
Bootstrap doesn't support it, as it's expecting the active class to be used instead, not
to mention the fact that it also wants the class to be applied to the parent
element.

Taking these facts into account, we have the following options to achieve what we
want:

Completely ditch the Bootstrap standards, together with their .active class,
and define our own .router-link-active class instead with full custom CSS
code, logic and behavior.
Use a CSS3 parent selector such as li < a.router-link-active and write
our custom CSS code there. That rule will allow us to preserve some of the
Bootstrap logic, as we would style the element, but we would still be
forced to write a lot of custom CSS code.
Assign the Bootstrap class using JavaScript. We're joking, of course. There's no
way we would do that, not after all we said regarding avoiding DOM
manipulation earlier.
Detect the active route and act accordingly using Angular 2 native components.

www.EBooksWorld.ir

There's little doubt about which option we should choose.

Detecting the active route

A rather easy way to accomplish our task is using the Angular 2 Router class, which
is part of the component router we introduced in Chapter 3, Angular 2 Components
and Client-Side Routing. That class features a convenient isActive() method that
seems to be perfect for our needs. If we look at the official Angular 2 API
documentation at angular.io/docs/ we can read the following:

"Returns if the url is activated or not."

Tip

Source: https://angular.io/docs/ts/latest/api/router/index/Router-
class.html#!#isActive-anchor.

The method accepts either a URL string or a UrlTree object, meaning that we need
to generate one of them to use it. We can obtain the latter using
the router.createUrlTree method, both provided by that same class.

To cut it short, we just need to add the Router class to our Angular 2 component's
constructor, using dependency injection, just as we have done a number of times
already, and use the aforementioned methods to understand the currently active route.
Once we do that, we can easily add the active CSS class to the corresponding
element using the template syntax class bindings we've already used.

Let's put everything together. Open the app.component.ts file again and update it as
follows (new/modified code has been highlighted):

import {Component} from "@angular/core";
import {Router} from "@angular/router";

@Component({
 selector: "opengamelist",
 template: `
<nav class="navbar navbar-default navbar-fixed-top">
 <div class="container-fluid">
 <input type="checkbox" id="navbar-toggle-cbox">
 <div class="navbar-header">
 <label for="navbar-toggle-cbox" class="navbar-toggle
collapsed" data-toggle="collapse" data-target="#navbar" aria-
expanded="false" aria-controls="navbar">
 Toggle navigation

www.EBooksWorld.ir

 </label>

 </div>
 <div class="collapse navbar-collapse" id="navbar">
 <ul class="nav navbar-nav">
 <li [class.active]="isActive([''])">

 Home

 <li [class.active]="isActive(['about'])">

 <a class="about" [routerLink]="
['about']">About

 <li [class.active]="isActive(['login'])">

 <a class="login" [routerLink]="
['login']">Login

 <li [class.active]="isActive(['item/edit', 0])">

 <a class="add" [routerLink]="['item/edit',
0]">Add New

 </div>
 </div>
</nav>
<h1 class="header">{{title}}</h1>
<div class="main-container">
 <router-outlet></router-outlet>
</div>
 `
})

export class AppComponent {
 title = "OpenGameList";

 constructor(public router: Router) { }

 isActive(data: any[]): boolean {

www.EBooksWorld.ir

 return this.router.isActive(

 this.router.createUrlTree(data),

 true);

 }
}

Let's see what we did here:

At the top of the file, we added the Router class from the @angular2/router
package to the import list.
At the bottom of the file, we added the constructor method with a router object
instantiated through dependency injection. There's nothing new here, we already
did that in Chapter 3, Angular 2 Components and Client-Side Routing.
Right below the constructor, we added the isActive() internal helper
method to avoid repeating some required lines of code more than once. The
method accepts a required data variable that will be used to generate the
required UrlTree object using the router.createUrlTree method and pass it
to the router.isActive method. The latter will then return true if the given
UrlTree matches the active route, and false otherwise.
In the @Componenttemplate section, we use the isActive() internal method
result to determine which element should have the active CSS class
bound to itself using template syntax.

Before testing it, we might find it useful to customize the background color of the
active CSS class to make it more visible than the "black over dark grey" effect
featured by our Yeti Bootstrap theme.

Open the /Scripts/less/style.less file and append the following:

.navbar-default .navbar-nav>.active>a,

.navbar-default .navbar-nav>.active>a:hover,

.navbar-default .navbar-nav>.active>a:focus {
 background-color: #863500;
}

Now we can run another quick test to see if the results match the expectations. Hit F5
again and wait until we see the following:

www.EBooksWorld.ir

Click on the About, Login, and Add New navigation bar links to see the dark orange
background following and highlighting the active route. From now on, our valued
users will always know where they are.

www.EBooksWorld.ir

Welcome View
It's time to give our Welcome View a new and (hopefully) better look.

The app.component.ts file is fine as it is, so we won't be touching it again for a
while. We'll open the home.component.ts instead, and replace the existing template
in the following way (new/updated code has been highlighted):

<h2>
 A non-comprehensive directory of open-source video games

 available on the web

</h2>

<div class="col-md-4">
 <item-list class="latest"></item-list>
</div>

<div class="col-md-4">
 <item-list class="most-viewed"></item-list>
</div>

<div class="col-md-4">
 <item-list class="random"></item-list>
</div>

What we did here was wrap our existing <item-list> elements in a Bootstrap grid
system made of three <div> that will fill the viewport width. We also replaced the
<h2> text content with a viable payoff for our Welcome View, replacing the previous
working title.

Tip

For more information about the Bootstrap grid system you can check the official
documentation at the following URL:

http://getbootstrap.com/css/#grid

We already removed the styles within this file's @Component section, so we're done
here.

Let's move to the item-list.component.ts file. Remove the styles section as
well, then modify its template section in the following way (new/updated code has
been highlighted):

www.EBooksWorld.ir

http://getbootstrap.com/css/#grid

<h3>{{title}}</h3>

<ul class="items">
 <li *ngFor="let item of items"
 [class.selected]="item === selectedItem"
 (click)="onSelect(item)">
 <div class="title">{{item.Title}}</div>

 <div class="description">{{item.Description}}</div>

Again, we did nothing special here, we just added the item.Description to the
template right below the already existing item.Title and wrapped them both within
some <div> elements so we can style them.

Now that we have set up the templates, we can open the
/Scripts/less/style.less file and create some CSS classes. Here's how the
revamped file will look:

// Some Variables that will be used below
@color-latest: #5a4d74;
@color-most-viewed: #4d6552;
@color-random: #703535;

// Header styling
h1.header {
 font-size: 40px;
 margin: 46px 0 0 0;
 padding: 20px 20px 20px 112px;
 background: url(/img/header-bg.png) no-repeat left top #efefef;
 text-align: left;
}

// Navbar styling
.navbar {
 margin-bottom: 0;
 img {
 width: 32px;
 height: 32px;
 margin: -4px 0 0 0;
 padding: 0;
 }

 // Expand/collapse the navbar in mobile-friendly mode using
pure CSS styling.
 // ref.: http://stackoverflow.com/a/31506685/1233379
 #navbar-toggle-cbox {
 display:none;

www.EBooksWorld.ir

 &:checked ~ .collapse {
 display: block;
 }
 }
}

// Improve the visibility of the active navbar item (currently
active route)
.navbar-default .navbar-nav>.active>a,
.navbar-default .navbar-nav>.active>a:hover,
.navbar-default .navbar-nav>.active>a:focus {
 background-color: #863500;
}

h2 {
 margin: 20px;
 padding: 0;
 font-size: 1.4em;
 line-height: 1.4em;
 font-style: italic;
 color: #666666;
}

// item-list component(s) styling
item-list {
 border: 0;
 margin: 0;
 padding: 0;
 vertical-align: top;
 display: block;
 &.latest {
 background-color: #f6f6f6;
 h3 {
 background-color: @color-latest;
 background-image: url(/img/latest-icon.png);
 }
 }
 &.most-viewed {
 background-color: #f0f0f0;
 h3 {
 background-color: @color-most-viewed;
 background-image: url(/img/most-viewed-icon.png);
 }
 }
 &.random {
 background-color: #e9e9e9;
 h3 {
 background-color: @color-random;
 background-image: url(/img/random-icon.png);
 }
 }
 h3 {

www.EBooksWorld.ir

 color: #fefefe;
 margin: 0;
 padding: 10px 15px;
 background-repeat: no-repeat;
 background-position: 97% center;
 }
 ul {
 list-style-type: none;
 padding: 15px;
 li {
 cursor: pointer;
 margin-top: 20px;
 padding-top: 15px;
 border-top: 1px solid #c7c7c7;
 &:first-child {
 margin-top: 0;
 padding-top: 0;
 border-top-width: 0;
 }
 .title {
 font-size: 1.3em;
 font-weight: bold;
 }
 .description {
 margin-top: 3px;
 font-size: 15px;
 line-height: 1.5em;
 height: (15*1.5*2);
 overflow: hidden;
 display: -webkit-box;
 -webkit-line-clamp: 2;
 -webkit-box-orient: vertical;
 }
 }
 }
}

As we can see, there's quite a lot of new stuff here. For the sake of readability, we
also added some comments in order to explain the role of each CSS class. Let's focus
on the most important things:

We added a unique color and also an icon background image for each of our
<item-list> component headers.
We applied some styling to the <item-list> element and their children, up to
the item's Text and Description containers.
We improved the readability of the active <nav> element items and we also did
what it takes to make the navigation menu work properly in its collapsed,
mobile-friendly mode.

www.EBooksWorld.ir

What we did was nothing more than a styling sample to give our Welcome View a
fresh look: while we were there, we also took the chance to show some of the most
useful LESS features and capabilities.

We can see the results of our hard work by hitting F5:

That's another significant improvement: our Welcome View is now looking quite
good and, thanks to the Bootstrap grid system has gained some mobile-friendliness as
well. Here's how it would look on an Apple iPhone 6:

www.EBooksWorld.ir

www.EBooksWorld.ir

Not bad at all, is it? Let's try to keep that pace.

www.EBooksWorld.ir

Item Detail View
When we split our Item Detail View into two distinctive components (View mode
and Edit mode), we also gave them a minimalistic, wiki-like tabbed interface. Now
that we have Bootstrap we can further improve that approach by redesigning it into a
more intuitive, visually engaging view-editor interface.

Display mode

Open the /Scripts/app/item-detail-view.component.ts and remove the
@Component's styles section entirely. We won't need it anymore, as we'll be using
our style.less file from now on.

Right after that, replace the template section HTML content with the following code:

<div *ngIf="item">
 <h2>
 « Back to Home
 </h2>
 <div class="item-container">
 <ul class="nav nav-tabs">
 <li role="presentation">
 <a href="#"
(click)="onItemDetailEdit(item)">Edit

 <li role="presentation" class="active">
 View

 <div class="panel panel-default">
 <div class="panel-body">
 <div class="item-image-panel">
 <img src="/img/item-image-sample.png" alt="
{{item.Title}}" />
 <div class="caption">Sample image with caption.
</div>
 </div>
 <h3>{{item.Title}}</h3>
 <p>{{item.Description}}</p>
 <p>{{item.Text}}</p>
 </div>
 </div>
 </div>
</div>

There's a couple of things worth noting here:

We added a second <p> element to display the item.Text property
We don't support item image files yet, so we added a demo image to see how it

www.EBooksWorld.ir

might look
We added a reference to an onBack() method to allow the user to navigate back
to the Welcome View without having to resort to the navigation menu

The aforementioned onBack() method isn't there yet, so we need to implement it
within the component class code section in the following way (added lines have
been highlighted):

onItemDetailEdit(item: Item) {
 this.router.navigate(["item/edit", item.Id]);
 return false;
}

onBack() {

 this.router.navigate(['']);

}

Once we're done with that, we can get back to our styling task. Open the style.less
file and add the following code:

// Item Detail View & Edit components styling
@color-panel: #f9f9f9;

.item-container {
 margin: 0 20px;
 .nav.nav-tabs {
 padding-right: 20px;
 li {
 &.active a {
 font-weight: bold;
 background-color: @color-panel;
 }
 float:right;
 }
 }
 .panel.panel-default {
 background-color: @color-panel;
 border-top-width: 0;
 .item-image-panel {
 width: 170px;
 min-height: 170px;
 float: right;
 padding: 10px;
 background-color: #f2f2f2;
 border: 1px solid #cccccc;
 img {
 width: 150px;
 height: 150px;

www.EBooksWorld.ir

 border: 1px solid #e6e6e6;
 }
 .caption {
 margin-top: 5px;
 text-align: center;
 font-size: 0.8em;
 }
 }
 h3 {
 margin: 10px 0 20px 0;
 font-weight: bold;
 }
 }
}

Again, we're just applying some custom spacing, coloring, and aligning here and
there, leaving all the rest to the standard Bootstrap nav and panel classes.

Here's our improved Item Detail View in Display mode:

The mobile-friendly viewport mode is looking good as well:

www.EBooksWorld.ir

At this point, we can say that the Display mode is looking fine. Let's move to the
other tab.

Edit mode

When <form> elements are involved, UI styling usually gets tricky, as we need to
handle things such as form validation, required inputs, and other similar issues that
will most likely have some sort of impact on the styling job. However, thanks to
Bootstrap and Angular 2, it won't be that hard.

www.EBooksWorld.ir

Again, let's start with opening the /Scripts/app/item-detail-
edit.component.ts and remove the styles section of @Component.

Tip

To make things clear, we don't have anything against in-component styling. It's just
that we wouldn't be able to use LESS syntax sugar while being in there, not to
mention the fact that restraining ourselves from using that will also reduce the chance
of CSS code repetition between different components.

Right after that, move to the template section and replace its contents with the
following:

<div *ngIf="item">
 <h2>

 « Back to Home

 </h2>
 <div class="item-container">
 <ul class="nav nav-tabs">
 <li role="presentation" class="active">
 Edit

 <li role="presentation" *ngIf="item.Id != 0">
 <a href="#"
(click)="onItemDetailView(item)">View

 <div class="panel panel-default">
 <div class="panel-body">
 <form class="item-detail-edit">
 <h3>{{item.Title}}</h3>
 <div class="form-group">
 <label for="input-title">Title</label>
 <input id="input-title" name="input-title"
type="text" class="form-control" [(ngModel)]="item.Title"
placeholder="Insert the title..." />
 </div>
 <div class="form-group">
 <label for="input-
description">Description</label>
 <textarea id="input-description"
name="input-description" class="form-control"
[(ngModel)]="item.Description" placeholder="Insert a suitable
description..." required></textarea>
 </div>
 <div class="form-group">
 <label for="input-text">Text</label>
 <textarea id="input-text" name="input-text"

www.EBooksWorld.ir

class="form-control" [(ngModel)]="item.Text" placeholder="Insert a
suitable description..."></textarea>
 </div>
 <div *ngIf="item.Id == 0" class="commands
insert">
 <input type="button" class="btn btn-
primary" value="Save" (click)="onInsert(item)" />
 <input type="button" class="btn btn-
default" value="Cancel" (click)="onBack()" />
 </div>
 <div *ngIf="item.Id != 0" class="commands
update">
 <input type="button" class="btn btn-
primary" value="Update" (click)="onUpdate(item)" />
 <input type="button" class="btn btn-danger"
value="Delete" (click)="onDelete(item)" />
 <input type="button" class="btn btn-
default" value="Cancel" (click)="onItemDetailView(item)" />
 </div>
 </form>
 </div>
 </div>
 </div>
</div>

It seems like we've added a lot of new stuff here. Let's try to shed some light on what
we did:

The first lines of code are almost identical to the Display mode template: we
have the same <h2> pointing back to the Welcome View route and also an
identical element with the nav-tabs Bootstrap CSS class to render the
tabs.
Inside the panel we've declared the main <form> element and added a series of
<div> elements with the form-group class replacing our previous list-based
structure. This is the default CSS class used by Bootstrap to handle the various
input fields within a form. Inside each one of them, we placed the same
<input> and <textarea> we defined before for the Title item and
Description, plus a new one for the Text.
We added some <label> elements with proper Bootstrap CSS styling. Each one
of them is linked to their respective input field by using the for HTML attribute.
By looking at the <input> elements we can see that we're still using the same
two-way data binding, ngModel-based implementation logic that we put in
place when we created the template for this component for the first time. There's
no need to change that, since everything was already working well on that part.
However, we added an id attribute to have them linked to their respective
labels (as stated previously) and the form-control Bootstrap CSS class to
style them.

www.EBooksWorld.ir

Here are the custom classes to add to our style.less file. Instead of just appending
them at the end of the file, let's place them inside the existing .item-container
selector since they are only relevant within that scope:

// Form styling for item-detail-edit component
form.item-detail-edit {
 .empty-field {
 color: #f04124;
 }
 .form-group {
 label {
 font-size: 14px;
 font-weight: bold;
 display: block;
 background-color: #eaeaea;
 line-height: 1.4em;
 padding: 5px 10px;
 }
 textarea {
 &#input-description {
 height: 80px;
 }
 &#input-text {
 height: 150px;
 }
 }
 }
 .commands {
 text-align: right;
 input[type="button"] {
 margin-left: 5px;
 }
 }
}

Here's how the revamped Edit mode will look like after these changes:

www.EBooksWorld.ir

Not bad, but we can do better. We mentioned form validation and required items, yet
we have done nothing about that yet. Let's see how we can do that with the item's
Title property, which is definitely something that should never be empty or null in
any given circumstance.

In order to do that, we need to go back to the item-detail-edit.component.ts
file and apply the following changes.

In the template section, at the start of the existing <form> element, add the
following code:

<h3>
 {{item.Title}}

 Empty Title

</h3>

www.EBooksWorld.ir

Also in the template section, within the first form-group element, add the
following code:

<div class="form-group has-feedback" [ngClass]="{'has-success':
dTitle.valid, 'has-error': !dTitle.valid}">
 <label for="input-title">Title</label>
 <input id="input-title" name="input-title" type="text"
class="form-control" [(ngModel)]="item.Title" placeholder="Insert
the title..." required #dTitle="ngModel" />
 <span class="glyphicon form-control-feedback" aria-
hidden="true" [ngClass]="{'glyphicon-ok': dTitle.valid, 'glyphicon-
remove': ! dTitle.valid}">

 <div [hidden]=" dTitle.valid" class="alert alert-danger">

 You need to enter a valid Title.

 </div>
</div>

This is a quite complex implementation, so we should take our time to fully
understand it.

Let's start with the <input id="input-title"> element, it being the center of
everything. We can say that all the code we added here has the sole purpose of
making the GUI react in real time whenever this input field enters in an invalid state.
In order to achieve this outcome, we did the following:

We added the required attribute to the input tag to ensure that it will become
invalid whenever it's empty
We assigned its ngModel to a template reference variable that we called
dTitle, so we can track it in real time throughout our template
We used the dTitle variable's valid property value to show/hide elements
and/or assign CSS classes to impact the GUI, thus improving the user
experience in a number of ways

Here's a detailed list of what we did with the dTitle variable:

We added a inside the top <h3> element, (only visible when the title
control is not valid), featuring a short text whenever the item title is invalid.
We added two new Bootstrap CSS classes to the title's form-group element.
The first one (has-feedback) will always be present, while the second one
will vary: has-success if the dTitle.valid property is true, has-error
otherwise.
Right after the <input> element we added a Bootstrap glyphicon component,
which is basically a styled that will render the icon bound to its given

www.EBooksWorld.ir

class. That class will be determined by an [ngClass] conditional directive
based upon the dTitle.Valid property value: a green check if true, a red
cross otherwise.
We also added a standard alert panel that will be visible when the dTitle is not
valid, just like the within the <h3> mentioned before.

Note

In order to implement form validation, we were forced to introduce some rather
advanced Angular 2 concepts such as template reference variables (also known as
ref-vars), the ngControl attribute, and its strictly related ngControlName
directive.

To better understand these concepts, we strongly suggest reading the official Angular
2 API documentation at the following URLs:

https://angular.io/docs/ts/latest/guide/template-

syntax.html#!#ref-vars

https://angular.io/docs/ts/latest/api/core/DirectiveMetadata-

class.html#!#exportAs-anchor

https://angular.io/docs/ts/latest/api/common/index/NgControlName-
directive.html

It's time for us to open our style.less file again and add the new styling rules. This
time we have used a lot of Bootstrap CSS default classes, so the update will be
minimal:

.empty-field {
 color: #f04124;
 font-weight: normal;
 font-style: italic;
}

This selector should be kept inside the form.item-detail-edit block, as it's
strictly related to that context and won't be used elsewhere.

Once we've done that, we're free to hit F5 and see how all these efforts look on
screen:

www.EBooksWorld.ir

https://angular.io/docs/ts/latest/api/common/index/NgControlName-directive.html

Form featuring a valid title

As we can see, as long as there's a valid Title, the input field will now feature a
green border and also a green check to the right. Conversely, whenever the Title is
invalid or becomes empty, a number of UI alerts will come to life: a red border on
the input field, a red cross to the right, a red italic title, and also a white-on-red
warning panel telling the user that there's a problem with the form:

www.EBooksWorld.ir

Form featuring an invalid title

It might even be too much for a missing title, yet it has been useful to demonstrate
how much control we have upon the layout using Angular 2-plus-Bootstrap only: as a
matter of fact, we didn't have to write a single line of JavaScript code.

www.EBooksWorld.ir

Conclusions
That's it for now. We just added a simple yet very effective Angular 2 native form
validation control. Of course, it has some downsides, such as being client-side only:
no server-side feedback is handled in any way. Nonetheless, we can be greatly
satisfied with such an outcome.

If we want to further improve what we've done, we can always take a look at the
official Bootstrap form-styling documentation at the following URL:
http://getbootstrap.com/css/#forms

There are also a lot of examples that will most likely give we good suggestions about
how to properly style <input> elements and present them to the user in an effective
way.

www.EBooksWorld.ir

http://getbootstrap.com/css/#forms

Suggested topics
Style sheet language, SoC, CSS, CSS3, LESS, Sass , Stylus, Switch CSS, Material
Design, Material2, Bootstrap, Bootswatch, CDN, expressive Code, unit testing,
decoupling, Node.js, Electron, ng2-bootstrap, moment, CSS3 Parent Selector, grid
system, Angular 2, NgModel, template reference variables, Angular 2 directives.

www.EBooksWorld.ir

Summary
We started this chapter admitting that our ultra-minimalistic UI/UX approach
wouldn't work for a potentially shippable product that our Native Web Application
should eventually become. Having acknowledged that fact, we added a LESS-based
custom stylesheet file to our project. Before doing that, for the benefit of those not
familiar with the style sheet pre-processor approach, we spent some time
enumerating some of the LESS main advantages.

Right after adding the style.less file to our project, we had to choose between
adopting one of the popular CSS frameworks such as Bootstrap, YAML, or
Foundation, or stick to a full do-it-yourself approach. We briefly enumerated some
pros and cons of each alternative, then we opted for Bootstrap 3, mostly because of
its great mobile-friendly grid system, saving us the need to write a huge set of layout
rules. We chose a suitable theme, then imported it in the <head> section of our
index.html file right before our custom LESS file, so that we could use the latter to
apply some custom styling as well.

We then started to apply some Bootstrap and custom styling to the existing
components. We started with the navigation menu, replacing our plain list of links
with a Bootstrap navbar element. We also gave a brand new look and feel to the
Welcome View and Item Detail View (Display and Edit modes) UI layouts, trying
our best to make them prettier, more usable, and also mobile-friendly. While working
in edit mode, we introduced some rather advanced Angular 2 concepts in order to
implement a rudimental, client-only form validation pattern without writing a single
line of JavaScript code.

www.EBooksWorld.ir

Chapter 7. Authentication and
Authorization
Generally speaking, the term authentication refers to any process of verification that
someone, be it a human being or an automated system, is who (or what) it claims to
be. This is also true within the context of the World Wide Web (WWW), where that
same word is mostly used to denote any technique used by a website or service to
collect a set of login info from a user agent, typically a web browser, and
authenticate them using a membership and/or Identity service.

Authentication should never be confused with authorization, as it is a different
process and is in charge of a very different task: to give a quick definition, we could
say that the purpose of authorization is to confirm that the requesting user is allowed
to have access to the action they want to perform.

To better understand the distance between these two apparently similar concepts, we
could think of two real-world scenarios:

A free, yet registered account trying to gain access to a paid or premium only
service or feature: this is a common example of authenticated, yet not
authorized access.
An anonymous user trying to gain access to a publicly available page or file:
this is an example of non-authenticated, yet authorized access.

www.EBooksWorld.ir

Do we really need these?
As a matter of fact, implementing authentication and/or authorization logic isn't
mandatory for most web-based applications or services: there are a number of
websites that still don't do that, mostly because they serve contents that can be
accessed by anyone at any time. This used to be pretty common among most
corporate, marketing, and informative websites until some years ago: that was before
their owners learned how important it is to build a network of registered users and
how much these loyal contacts are worth nowadays.

We don't need to be experienced developers to acknowledge how much the World
Wide Web has changed in the last few years: each and every website, regardless of
its purpose, nowadays has an increasing and more or less legitimate interest in
tracking their users, giving them the chance to customize their navigation experience,
interacting with their social networks, collecting e-mail addresses, and so on. None
of the preceding could be done without an authentication mechanism of some sort.

There are billions of websites and services that require authentication to work
properly, as most of their content and/or intents depend upon the actions of registered
users: forums, blogs, shopping carts, subscription-based services, and even
collaborative tools such as wikis (including ours).

Long story short, the answer is yes: as long as we aim to be a decent wiki, there is no
doubt we should implement both an authentication and an authorization procedure. It
is the only way to determine who will be able to view, add, update, or delete our
valued items, not to mention perform administrative-level tasks, keep track of our
users, and handle a lot of important tasks.

www.EBooksWorld.ir

Authentication
Since the origin of the World Wide Web, the vast majority of authentication
techniques rely upon HTTP/HTTPS implementation standards, and all of them
work more or less in the following way:

1. A non-authenticated user-agent asks for a content that cannot be accessed
without some kind of permissions.

2. The web application returns an authentication request, usually in form of an
HTML page containing an empty web form to complete.

3. The user-agent fills up the web form with their credentials, usually a username
and a password, and then sends it back with a POST command, which is most
likely issued by a click on a Submit button.

4. The web application receives the POST data and calls the aforementioned
server-side implementation that will try to authenticate the user with the given
input and return an appropriate result.

5. If the result is successful, the web application will authenticate the user and
store the relevant data somewhere, depending on the chosen authentication
method: sessions/cookies, tokens, signatures, and so on (we'll talk about it later
on). Conversely, the result will be presented to the user as a readable outcome
inside an error page, possibly asking them to try again, contact an administrator,
or something else.

This is still the most common approach nowadays. Almost all websites we can think
of are using it, albeit with a number of big or small differences regarding security
layers, state management, JWT, or other RESTful tokens, basic or digest access,
single sign-on properties, and more.

www.EBooksWorld.ir

Third-party authentication
Being forced to have a potentially different username and password for each website
visit can be frustrating, other than requiring the users to develop custom password
storage techniques that might lead to security risks. In order to overcome this issue,
we can enhance, or even entirely replace, a standard HTTP-based authentication
technique with an authentication protocol based upon third-party providers. The most
notable of them is probably OpenID, available since 2005 and adopted early by some
big players such as Google and StackOverflow, who based their authentication
providers upon it. Here's how it works in few words:

Whenever our application receives an OpenID authentication request, it opens a
transparent connection interface through the requesting user and a trusted, third-
party authentication provider (for example, the Google Identity Provider): the
interface can be a popup, an AJAX, populated modal windows or an API call,
depending on the implementation.
The user sends his username and password to the aforementioned third-party
provider, who performs the authentication accordingly and communicates the
result to our application by redirecting the user back to where he came, together
with a security token that can be used to retrieve the authentication result.
Our application consumes the token to check the authentication result,
authenticating the user in case of success or sending an error response in case of
failure.

www.EBooksWorld.ir

Authorization
In most standard implementations, including those featured by ASP.NET, the
authorization phase kicks in right after the authentication, and it's mostly based on
permissions or roles: any authenticated user might have their own set of permissions
and/or belong to one or more roles, and thus be granted access to a specific set of
resources. These role-based checks are usually set by the developer in a declarative
fashion within the application source code and/or configuration files.

Authorization, like we said, shouldn't be confused with authentication, despite the
fact it could be easily exploited to perform an implicit authentication as well,
especially when it's delegated to a third-party actor.

www.EBooksWorld.ir

Third-party authorization
The best known third-party authorization protocol nowadays is OAuth, developed by
Blaine Cook and Chris Messina in 2006 and widely used by a lot of social networks,
including Facebook and Twitter. It basically works like this:

Whenever an existing user requests a set of permissions to our application via
OAuth, we open a transparent connection interface between them and a third-
party authorization provider that is trusted by our application (for example,
Facebook).
The provider acknowledges the user and, if they have the proper rights,
responds entrusting them with a temporary, specific access key.
The user presents the access key to our application and will be granted access.

Note

We can clearly see how easy it is to exploit this authorization logic for authentication
purposes as well; after all, if Facebook says I can do something, shouldn't it also
imply that I am who I claim to be? Isn't that enough?

The short answer is no. It might be the case for Facebook, because their OAuth
implementation implies that the subscriber receiving the authorization must have
authenticated himself to Facebook first; however, this guarantee is not written
anywhere, and even if Facebook won't ever change this, considering how many
websites are using it for authentication purposes, there is no written guarantee about
it. Theoretically speaking, they could split their authorization system from their
authentication protocol at any time, thus leading our application's authentication logic
to an unrecoverable state of inconsistency.

More generally, we can say that presuming something from something else is almost
always a bad practice unless that assumption lies upon very solid, well-documented
and (most importantly) highly guaranteed grounds.

www.EBooksWorld.ir

Proprietary or third-party?
Theoretically speaking, it's possible to entirely delegate the authentication and/or
authorization tasks to existing external, third-party providers such as those we
mentioned before: there are a lot of web and mobile applications that proudly follow
this route nowadays. There are a number of undeniable advantages in using such an
approach, including the following:

No user-specific DB tables/data models, just some provider-based identifiers
to use here and there as reference keys.
Immediate registration, since there's no need to fill in a registration form and
wait for a confirmation e-mail: no username, no password. This will be
appreciated by most users and probably increase our conversion rates as well.
Little or no privacy issues, as there's no personal or sensitive data on the
application server.
No need to handle usernames and passwords and implement automatic
recovery processes.
Fewer security-related issues such as form-based hacking attempts or brute
force login attempts.

Of course, there are also some downsides:

There won't be an actual user base so it would be hard to get an overview of
active users, get their e-mail address, do statistics, and so on.
The login phase might be resource-intensive, since it will always require an
external, back and forth secure connection with a third-party server.
All users will need to have (or open) an account with the chosen third-party
provider(s) in order to log in.
All users will need to trust our application because the third-party provider
will ask them to authorize it for accessing their data.
We will have to register our application with the provider in order to be able
to perform a number of required or optional tasks, such as receive our public
and secret keys, authorize one or more URI initiators, and choose the
information we want to collect.

Taking all these pros and cons into account, we could say that relying on third-party
providers and avoid implementing a proprietary membership provider might be a
great time-saving choice for small-scale apps, including ours.

However, we won't be taking that route, because we want the best of both worlds.
That's why we'll create an internal membership provider that will handle
authentication and provide its very own set of authorization rules. Nonetheless, our

www.EBooksWorld.ir

users will be also able to log in using their favorite third-party provider using the
built-in OAuth2 providers support provided by the AspNetCore.Identity
membership framework.

www.EBooksWorld.ir

Choosing an authentication mode
The authentication alternatives made available by ASP.NET Core are basically the
same supported by the previous versions of ASP.NET:

No authentication: If we don't feel like implementing anything or if we want to
use (or develop) something not relying upon the ASP.NET Identity system
Individual user accounts: When we want to set up an internal database to store
user data using the standard ASP.NET Identity interface
Azure Active Directory: Using a token-based set of API calls handled by the
Azure AD Authentication Library (ADAL)
Windows authentication: Viable for local-scope applications only

In Chapter 1, Getting Ready, when we created our project, we made the choice to go
with an empty project featuring no authentication. That was because we didn't want
Visual Studio to add AspNetCore.Identity support right from the start. Now that
we chose to use it, we need to manually add the proper packages.

www.EBooksWorld.ir

Installing AspNetCore.Identity
In order to set up and configure the AspNetCore.Identity framework, we need to
install the required NuGet package and perform a number of code changes in some
of our project's entity classes.

www.EBooksWorld.ir

Adding the package
The first thing we're going to do is to check for the existence of the
Microsoft.AspNetCore.Identity.EntityFrameworkCorelibrary package, which
we should have already added in Chapter 4, The Data Model. If we missed it, we
can fix the issue in a number of ways.

If we like to use the Package Manager Console, we can select the appropriate tab
and write the following command:

>
Install-Package Microsoft.AspNetCore.Identity.EntityFrameworkCore

If we prefer the Package Manager GUI interface, right-click in Solution Explorer
to the OpenGameListWebApp project node, select Manage NuGet Packages, and
act accordingly:

www.EBooksWorld.ir

As usual, we can also manage everything directly from the project.json file by
adding the following line to the dependencies section:

 "Microsoft.AspNetCore.Identity.EntityFrameworkCore": "1.0.0"

www.EBooksWorld.ir

Updating the project classes
Once done, we need to perform some changes to our project's classes to ensure a
proper Identity support.

ApplicationDbContext.cs

Open the Data/ApplicationDbContext.cs class file and perform the following
changes:

1. Add a using reference to
Microsoft.AspNetCore.Identity.EntityFrameworkCore, as required by
the new base class:

 using
Microsoft.AspNetCore.Identity.EntityFrameworkCore;

2. Change the base class from DbContext to
IdentityDbContext<ApplicationUser>:

 public class ApplicationDbContext :
IdentityDbContext<ApplicationUser>

3. Remove the DbSet<ApplicationUser> Users property, as the
IdentityDbContext base class already has it built in:

 #region Properties
 public DbSet<Item> Items { get; set; }
 public DbSet<Comment> Comments { get; set; }
 // public DbSet<ApplicationUser> Users { get; set; }
 #endregion Properties

ApplicationUser.cs

If we try to compile the project, this file will now produce an error, because our
existing ApplicationUser class does not extend the IdentityUser type, which is a
requirement for the TUser, generic type required by the IdentityDbContext class.
To solve the error, switch to the /ApplicationUsers/ApplicationUser.cs class
and add the IdentityUser base class in the following way:

namespace OpenGameListWebApp.Data.ApplicationUsers
{
 public class ApplicationUser : IdentityUser
 {

Needless to say, we'll have to add a reference to the AspNetCore.Identity
namespace here as well:

www.EBooksWorld.ir

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

As soon as we save the file, we'll get three green compilation notices for the Id,
Email, and UserName properties, as they are all already present in the
IdentityUser base class:

We don't need them anymore, so we can comment (or just remove) them as well:

//[Key]
//[Required]
//public string Id { get; set; }
//[Required]
//[MaxLength(128)]
//public string UserName { get; set; }
//[Required]
//public string Email { get; set; }

That's it! From now on, our ApplicationUser entity class is also an IdentityUser
that can be used by ASP.NET Identity for authentication and authorization
purposes.

Startup.cs

What we need to do now is to add the Identity-related services to our project's
startup class. Open the Startup.cs file and add the following to the
ConfigureServices method, right before the DbContext (new lines are
highlighted):

www.EBooksWorld.ir

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 // Add EntityFramework's Identity support.
 services.AddEntityFramework();

 // Add Identity Services & Stores

 services.AddIdentity<ApplicationUser, IdentityRole>(config => {

 config.User.RequireUniqueEmail = true;

 config.Password.RequireNonAlphanumeric = false;

 config.Cookies.ApplicationCookie.AutomaticChallenge =
false;

 })

 .AddEntityFrameworkStores<ApplicationDbContext>()

 .AddDefaultTokenProviders();

 // Add ApplicationDbContext.
 services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration["Data:DefaultConnection:Connecti
onString"])
);

 // Add ApplicationDbContext's DbSeeder
 services.AddSingleton<DbSeeder>();
}

In order to make it work, we also need to add the following namespaces:

using OpenGameListWebApp.Data.Users;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

DbSeeder.cs

Since we changed our ApplicationUser class to make it extend the IdentityUser
base class, we most likely broke the seeding mechanism we set up back in Chapter
4, The Data Model. On top of that, we should also create some sample roles, since
we now we can make good use of them. These are two good reasons to revise our
current DbSeeder class.

www.EBooksWorld.ir

Let's open our /Data/DbSeeder.cs file and update it accordingly. This is a fat class
in terms of source code lines, so we'll just show the relevant changes.

The first thing we need to do is to add a UserManager and a RoleManager, as they
are the required Asp.NetCore.Identity handler classes to properly work with
users and roles. We can define a private variable for each one of them within the
#Private Members region (new lines are highlighted):

#region Private Members
private ApplicationDbContext DbContext;
private RoleManager<IdentityRole> RoleManager;

private UserManager<ApplicationUser> UserManager;
#endregion Private Members

These references will require the following namespaces:

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

We can then instantiate these new properties within the Constructor using the same
dependency injection pattern we already used to instantiate our
ApplicationDbContext:

#region Constructor
public DbSeeder(ApplicationDbContext dbContext,
RoleManager<IdentityRole> roleManager, UserManager<ApplicationUser>
userManager)
 {
 DbContext = dbContext;
 RoleManager = roleManager;

 UserManager = userManager;
 }
#endregion Constructor

Right after that, we need to change our CreateUsers method to make use of these
handlers. Since they all feature methods enforcing async/await programming
pattern, we also need to make it async and change its return type from void to Task.
Therefore, we will also conveniently rename it CreateUsersAsync as well. Here's
the new method, rewritten from scratch:

private async Task CreateUsersAsync()
{
 // local variables
 DateTime createdDate = new DateTime(2016, 03, 01, 12, 30, 00);
 DateTime lastModifiedDate = DateTime.Now;
 string role_Administrators = "Administrators";

www.EBooksWorld.ir

 string role_Registered = "Registered";

 //Create Roles (if they doesn't exist yet)
 if (!await RoleManager.RoleExistsAsync(role_Administrators))
await RoleManager.CreateAsync(new
IdentityRole(role_Administrators));
 if (!await RoleManager.RoleExistsAsync(role_Registered)) await
RoleManager.CreateAsync(new IdentityRole(role_Registered));

 // Create the "Admin" ApplicationUser account (if it doesn't
exist already)
 var user_Admin = new ApplicationUser() {
 UserName = "Admin",
 Email = "admin@opengamelist.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };

 // Insert "Admin" into the Database and also assign the
"Administrator" role to him.
 if (await UserManager.FindByIdAsync(user_Admin.Id) == null)
 {
 await UserManager.CreateAsync(user_Admin, "Pass4Admin");
 await UserManager.AddToRoleAsync(user_Admin,
role_Administrators);
 // Remove Lockout and E-Mail confirmation.
 user_Admin.EmailConfirmed = true;
 user_Admin.LockoutEnabled = false;
 }

#if DEBUG
 // Create some sample registered user accounts (if they don't
exist already)
 var user_Ryan = new ApplicationUser() {
 UserName = "Ryan",
 Email = "ryan@opengamelist.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate,
 EmailConfirmed = true,
 LockoutEnabled = false
 };
 var user_Solice = new ApplicationUser() {
 UserName = "Solice",
 Email = "solice@opengamelist.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate,
 EmailConfirmed = true,
 LockoutEnabled = false
 };
 var user_Vodan = new ApplicationUser() {
 UserName = "Vodan",
 Email = "vodan@opengamelist.com",

www.EBooksWorld.ir

 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate,
 EmailConfirmed = true,
 LockoutEnabled = false
 };
 // Insert sample registered users into the Database and also
assign the "Registered" role to him.
 if (await UserManager.FindByIdAsync(user_Ryan.Id) == null)
 {
 await UserManager.CreateAsync(user_Ryan, "Pass4Ryan");
 await UserManager.AddToRoleAsync(user_Ryan,
role_Registered);
 // Remove Lockout and E-Mail confirmation.
 user_Ryan.EmailConfirmed = true;
 user_Ryan.LockoutEnabled = false;
 }
 if (await UserManager.FindByIdAsync(user_Solice.Id) == null)
 {
 await UserManager.CreateAsync(user_Solice, "Pass4Solice");
 await UserManager.AddToRoleAsync(user_Solice,
role_Registered);
 // Remove Lockout and E-Mail confirmation.
 user_Solice.EmailConfirmed = true;
 user_Solice.LockoutEnabled = false;
 }
 if (await UserManager.FindByIdAsync(user_Vodan.Id) == null)
 {
 await UserManager.CreateAsync(user_Vodan, "Pass4Vodan");
 await UserManager.AddToRoleAsync(user_Vodan,
role_Registered);
 // Remove Lockout and E-Mail confirmation.
 user_Vodan.EmailConfirmed = true;
 user_Vodan.LockoutEnabled = false;
 }
#endif
 await DbContext.SaveChangesAsync();
}

As we can see, we made some relevant changes here:

The DbContext.Add and DbContext.AddRange methods have been replaced
by those provided by the UserManager. This allow us to specify a password
that will be automatically hashed and also to avoid any explicit Id assignment,
as they will be auto-generated.
We used RoleManager to create two sample roles: administrators and
registered.
We modified our code to add the admin user to the administrators role and all
the other sample users to the registered role.

Once done, we need to update the SeedAsync method to reflect the rename we just

www.EBooksWorld.ir

did on CreateUsersAsync and also handle the fact that the latter is now
asynchronous as well:

#region Public Methods
public async Task SeedAsync()
{
 // Create default Users
 if (await DbContext.Users.CountAsync() == 0) await
CreateUsersAsync();
 // Create default Items (if there are none) and Comments
 if (await DbContext.Items.CountAsync() == 0) CreateItems();
}
#endregion Public Methods

With this, we're done updating our project's classes.

Before going further, it might be wise to issue a whole project rebuild to make sure
we're not getting build errors within our code.

www.EBooksWorld.ir

Updating the database
It's time to create a new migration and reflect the code changes to the database by
taking advantage of the code-first approach we chose in Chapter 4, The Data Model.

It's worth noting that if we were using Entity Framework 6, we could entirely skip
this step by implementing the auto-migration feature it used to have. Unfortunately,
there's no such thing in EF core, so we must add our migrations manually.

Let's open a Powershell command prompt and go to our project's root folder, then
write the following:

> dotnet ef migrations add "Identity" –o "Data\Migrations"

A new migration will be added to the project. Right after that, we could choose to
update our database...except it won't be a good idea. Applying the new migration
will most likely cause some data loss or other consistency issues due to the fact that
our ApplicationUser class experienced some major changes. Such a scenario is
also clearly stated by the yellow message shown by the Powershell tool upon
completing its given task:

Since we updated our DbSeeder class to support the new changes, the best thing we
can do would be letting it re-populate our database accordingly. Unfortunately, we
know perfectly well that as long as there are some existing users and items in the
database tables, it won't even run. This leaves us with nothing but one solution: drop
and recreate the database, so the DbSeeder will kick in and re-populate everything
on the first run.

Note

Although it might seem a horrible way to fix things, that's definitely not the case here,

www.EBooksWorld.ir

as we're still in development phase. We haven't touched our database contents yet, so
we won't mind them being re-seeded from scratch into a new, Identity-aware
form.

In order to do that, issue the following Powershell commands:

> dotnet ef database drop
> dotnet ef database update

We'll also have to hit Y to confirm the drop.

Once done, hit F5 and wait for the DbSeeder to kick in. After that, it will do its
magic. We'll have an updated database with full AspNetCore.Identity support.

www.EBooksWorld.ir

Authentication methods
Now that we have updated our database to support the AspNetCore.Identity
authentication workflow and patterns, we should choose which authentication method
to implement.

As we most certainly know, the HTTP protocol is stateless, meaning that whatever
we do during a request/response cycle will be lost before the subsequent request,
including the authentication result. The only way we have to overcome this is to store
that result somewhere, together with all its relevant data, such as user ID, login
date/time, and last request time.

www.EBooksWorld.ir

Sessions
Since few years ago, the most common and traditional method to do that was to store
this data on the server by using either a memory-based, disk-based, or external
session manager. Each session can be retrieved using a unique ID that the client
receives with the authentication response, usually inside a session cookie, that will
be transmitted to the server on each subsequent request.

Here's a brief diagram showing the Session-Based Authentication Flow:

This is still a very common technique used by most web applications. There's nothing
wrong with adopting this approach, as long as we are ok with its widely
acknowledged downsides, such as the following:

Memory issues: Whenever there are many authenticated users, the web server

www.EBooksWorld.ir

will consume more and more memory. Even if we use a file-based or external
session provider, there will nonetheless be an intensive IO, TCP, or socket
overhead.
Scalability issues: Replicating a session provider in a scalable web farm might
not be an easy task and will often lead to bottlenecks or wasted resources.
Cross-domain issues: Session cookies behave just like standard cookies, so
they cannot be easily shared among different origins/domains. These kinds of
problem can be often solved with some workarounds, yet they will often lead to
insecure scenariosto make things work.
Security issues: There is a wide and detailed literature of security-related
issues involving sessions and session cookies: XSS attacks, cross-site request
forgery, and a number of other threats that won't be covered here for the sake of
simplicity. Most of them can be mitigated by some countermeasures, yet they
could be difficult to handle for first-hand developers.

As these issues arose over the years, there's no doubt that most analysts and
developers put effort into figuring out different approaches.

www.EBooksWorld.ir

Tokens
Token-based authentication has been increasingly adopted by single-page
applications and mobile apps in the last few years for a number of undeniably good
reasons that we'll try to briefly summarize here.

The most important difference between session-based authentication and token-based
authentication is that the latter is stateless, meaning that we won't be storing any user-
specific information on the server memory, database, session provider, or other data
containers of any sort.

This single aspect solves most of the downsides that we pointed out earlier for
session-based authentication. We won't have sessions, so there won't be an increasing
overhead; we won't need a session provider, so scaling will be much easier; plus, for
browsers supporting LocalStorage, we won't be even using cookies, so we won't
get blocked by cross-origin restrictive policies and, hopefully, we'll get around most
security issues.

Here's a typical Token-Based Authentication Flow:

www.EBooksWorld.ir

As we can see, the various steps seem very similar. The only big deal is the fact that
we create/check tokens instead of creating/retrieving sessions from somewhere.

www.EBooksWorld.ir

Signatures
This is a method used by most modern API-based cloud-computing and storage
services, including Amazon Web Services (AWS). In contrast with session-based
and token-based approaches, which rely upon a transport layer that can be
theoretically accessed by/exposed to a third-party attacker, signature-based
authentication performs a hash of the whole request using a previously shared
private key. This ensures that no intruder or man-in-the-middle could ever act as the
requesting user, as they won't be able to sign the request.

www.EBooksWorld.ir

Two-factor
This is the standard authentication method used by most banking and financial
accounts, being arguably the most secure one. The implementation may vary, but it
always relies upon the following base workflow:

The user performs a standard login with a username and password.
The server identifies the user and prompts them with an additional, user-
specific request that can be only satisfied by something obtained or obtainable
through a different channel: an OTP password sent by SMS, a unique
authentication card with a number of answer codes, a dynamic PIN generated by
a proprietary device or a mobile app, and so on.
If the user gives the correct answer, they get authenticated using a standard
session-based or token-based method.

www.EBooksWorld.ir

Conclusions
After reviewing all these authentication methods, we're going to use a token-based
authentication approach featuring JSON Web Tokens (JWT), as it seems the most
viable one for our specific scenario.

JWT is a JSON-based open standard explicitly designed for native web applications,
available in multiple languages, such as .NET, Python, Java, PHP, Ruby,
JavaScript/NodeJS, and PERL. We're choosing it because it's becoming a de facto
standard for token authentication, as it's natively supported by most technologies.

For specific details about JWT, we recommend reading the following page:
https://jwt.io/

www.EBooksWorld.ir

https://jwt.io/

Implementing JSON web token
authentication
In order to handle JWT-based token authentication, we need to implement the
required middleware for doing these tasks:

Generating the JWT tokens upon username/password POST requests coming
from our client.
Validating any JWT token coming with requests by looking at their headers and
cookies

Although ASP.NET Core natively supports JWT tokens, the only available
middleware is the one validating the request headers (JwtBearerMiddleware).
This leaves us with two choices: manually implement what's missing or rely on a
third-party library that does just that. We'll try the hand-made route throughout the rest
of this chapter, leaving the other alternative to the following chapter.

The first thing to do is define the required steps we need to take care of:

1. Implement a custom JWT provider middleware to accept POST requests
carrying a username and password, and generate JWT tokens accordingly.

2. Add it to the HTTP request pipeline, together with a properly configured
JwtBearerMiddleware to validate incoming requests containing a JWT in their
headers block.

3. Create an Angular 2 Login form to allow our users to perform the login.
4. Create an Angular 2 Auth service that will handle login/logout and store the

JWT token so it can be reused.
5. Create an AuthHttp wrapper that will add the JWT (if present) to the headers

block of each request.

Sounds like a plan...let's do this.

www.EBooksWorld.ir

JWT provider
The first thing we need to do is to add the following packages to our project:

 "Microsoft.IdentityModel.Tokens": "5.0.0",
 "System.IdentityModel.Tokens.Jwt": "5.0.0"

As always, this can be done in a number of ways: NuGet, GUI, project.json, and
others. We already know how to do that. The most recent version as we write is
5.0.0 for both packages, but we can expect it to change in the near future.

Once done, right-click to the OpenGameListWebApp project and create a
/Classes/ folder. This is where we will put our custom implementations. We could
also call it /AppCode/, /Infrastructure/, or anything else that we like.

Right-click on the new folder, choose the Add | New Item option, and add a new
ASP.NET | Middleware Class, naming it JwtProvider.cs just like in the following
screenshot:

The new class will contain the default code for the ASP.NET core middleware class
implementation pattern. We need to implement a lot of stuff here, so we'll split the
content into several regions to make it more readable and understandable.

Private members

Let's add a private members region, wrapping the existing _next variable and

www.EBooksWorld.ir

adding the following (new lines highlighted):

#region private members
private readonly RequestDelegate _next;

// JWT-related members

private TimeSpan TokenExpiration;

private SigningCredentials SigningCredentials;

// EF and Identity members, available through DI

private ApplicationDbContext DbContext;

private UserManager<ApplicationUser> UserManager;

private SignInManager<ApplicationUser> SignInManager;

#endregion Private Members

Don't forget to add the required namespaces as well at the beginning of the file:

using Microsoft.IdentityModel.Tokens;
using Microsoft.AspNetCore.Identity;
using OpenGameListWebApp.Data.Users;
using OpenGameListWebApp.Data;
using System.Text;

As we can see, we're defining a number of variables here that we'll be using
internally. Most of them will be instantiated in the constructor, either
programmatically or by using the dependency injection pattern we've already used
several times.

Static members

This region includes the minimum amount of info needed to sign in using a JWT
token: a SecurityKey and an Issuer. We also define a TokenEndPoint here, which
is the URL path that we will use to process the incoming authentication login
requests. To put it in other words, it's the route that the JwtProvider will have to
intercept (right before the standard MVC routing strategy) to properly handle the
login requests:

#region Static Members
private static readonly string PrivateKey =
"private_key_1234567890";
public static readonly SymmetricSecurityKey SecurityKey = new
SymmetricSecurityKey(Encoding.ASCII.GetBytes(PrivateKey));
public static readonly string Issuer = "OpenGameListWebApp";

www.EBooksWorld.ir

public static string TokenEndPoint = "/api/connect/token";
#endregion Static Members

Notice that most of these static members have the public access modifier. That's
because we'll be using them outside of this class when we'll have to configure the
token verification middleware.

Tip

Hardcoding these values in the provider source code is not ideal in production
environments. We did it for the sake of simplicity, yet we should remember to adopt
better and most secure approaches, such as storing them within an environment
variable or a key management tool.

Constructor

Here's what the Constructor region looks like:

#region Constructor
public JwtProvider(
 RequestDelegate next,
 ApplicationDbContext dbContext,
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager)
{
 _next = next;

 // Instantiate JWT-related members
 TokenExpiration = TimeSpan.FromMinutes(10);
 SigningCredentials = new SigningCredentials(SecurityKey,
SecurityAlgorithms.HmacSha256);

 // Instantiate through Dependency Injection
 DbContext = dbContext;
 UserManager = userManager;
 SignInManager = signInManager;
}
#endregion Constructor

Here, we define the JWT token expiration time and encrypt the symmetrical security
key that will be used to validate JWTs using a standard HmacSha256 encryption
algorithm. We're also instantiating the EF/Identity members through DI, like we have
done a number of times.

Public methods

Let's move to the Invoke method, which we conveniently wrapped inside the public
methods region:

www.EBooksWorld.ir

#region public methods
public Task Invoke(HttpContext httpContext)
{
 // Check if the request path matches our TokenEndPoint
 if (!httpContext.Request.Path.Equals(TokenEndPoint,
StringComparison.Ordinal)) return _next(httpContext);

 // Check if the current request is a valid POST with the
appropriate content type (application/x-www-form-urlencoded)
 if (httpContext.Request.Method.Equals("POST") &&
httpContext.Request.HasFormContentType)
 {
 // OK: generate token and send it via a json-formatted string
 return CreateToken(httpContext);
 }
 else
 {
 // Not OK: output a 400 - Bad request HTTP error.
 httpContext.Response.StatusCode = 400;
 return httpContext.Response.WriteAsync("Bad request.");
 }
}
#endregion public methods

Here, we need to check whether the request path matches the chosen login path. If it
does, we continue execution, otherwise we entirely skip the request. Right after that,
we need to check whether the current request is a valid form-urlencoded POST. If
that's the case, we call the CreateToken internal method; otherwise, we return a 400
error response.

Private methods

The CreateToken method is where most of the magic takes place. We check the
given username and password against our internal Identity database and, depending
on the result, generate and return either a JWT token or an appropriate error
response:

#region Private Methods
private async Task CreateToken(HttpContext httpContext)
{
 try
 {
 // retrieve the relevant FORM data
 string username = httpContext.Request.Form["username"];
 string password = httpContext.Request.Form["password"];

 // check if there's an user with the given username
 var user = await UserManager.FindByNameAsync(username);
 // fallback to support e-mail address instead of username
 if (user == null && username.Contains("@")) user = await

www.EBooksWorld.ir

UserManager.FindByEmailAsync(username);

 var success = user != null && await
UserManager.CheckPasswordAsync(user, password);
 if (success)
 {
 DateTime now = DateTime.UtcNow;

 // add the registered claims for JWT (RFC7519).
 // For more info, see https:
 //tools.ietf.org/html/rfc7519#section-4.1
 var claims = new[] {
 new Claim(JwtRegisteredClaimNames.Iss, Issuer),
 new Claim(JwtRegisteredClaimNames.Sub, user.Id),
 new Claim(JwtRegisteredClaimNames.Jti,
Guid.NewGuid().ToString()),
 new Claim(JwtRegisteredClaimNames.Iat, new
DateTimeOffset(now).ToUnixTimeSeconds().ToString(),
ClaimValueTypes.Integer64)
 // TODO: add additional claims here
 };

 // Create the JWT and write it to a string
 var token = new JwtSecurityToken(
 claims: claims,
 notBefore: now,
 expires: now.Add(TokenExpiration),
 signingCredentials: SigningCredentials);
 var encodedToken = new
JwtSecurityTokenHandler().WriteToken(token);

 // build the json response
 var jwt = new {
 access_token = encodedToken,
 expiration = (int)TokenExpiration.TotalSeconds
 };

 // return token
 httpContext.Response.ContentType = "application/json";
 await
httpContext.Response.WriteAsync(JsonConvert.SerializeObject(jwt));
 return;
 }
 }
 catch (Exception ex)
 {
 // TODO: handle errors
 throw ex;
 }

 httpContext.Response.StatusCode = 400;
 await httpContext.Response.WriteAsync("Invalid username or

www.EBooksWorld.ir

password.");
}
#endregion Private Methods

This will also require the following namespace references:

using System.IdentityModel.Tokens.Jwt;
using System.Security.Claims;
using Newtonsoft.Json;

The code is pretty much self-documented using some inline comments indicating what
we're doing here and there. We can see how the username and password are
retrieved from the HttpContext and checked using the AspNetCore.Identity
UserManager class; if the user exists, we issue a JSON-formatted object containing a
JWT token and its expiration time, otherwise we return a HTTP 400 error.

Note

It's also worth noting that, as an additional feature, we configured the method to
allow clients to authenticate themselves using their e-mail address in place of the
username; we did that to demonstrate how versatile this implementation actually is,
since we do have full control over the whole authentication process.

Extension methods

The sample code provided for middleware classes includes a handy extension
method that we can use to add our newborn provider to the request pipeline. We don't
need to change it, so we'll just wrap it in an extension methods region:

#region Extension Methods
// Extension method used to add the middleware to the HTTP request
pipeline.
public static class JwtProviderExtensions
{
 public static IApplicationBuilder UseJwtProvider(this
IApplicationBuilder builder)
 {
 return builder.UseMiddleware<JwtProvider>();
 }
}
#endregion Extension Methods

Full source code

Here's how our JwtProvider class will look after all this hard work:

using System;
using System.Text;
using System.Threading.Tasks;

www.EBooksWorld.ir

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Http;
using Microsoft.IdentityModel.Tokens;
using OpenGameListWebApp.Data;
using Microsoft.AspNetCore.Identity;
using OpenGameListWebApp.Data.Users;
using System.IdentityModel.Tokens.Jwt;
using System.Security.Claims;
using Newtonsoft.Json;

namespace OpenGameListWebApp.Classes
{
 public class JwtProvider
 {
 #region Private Members
 private readonly RequestDelegate _next;

 // JWT-related members
 private TimeSpan TokenExpiration;
 private SigningCredentials SigningCredentials;

 // EF and Identity members, available through DI
 private ApplicationDbContext DbContext;
 private UserManager<ApplicationUser> UserManager;
 private SignInManager<ApplicationUser> SignInManager;
 #endregion Private Members

 #region Static Members
 private static readonly string PrivateKey =
"private_key_1234567890";
 public static readonly SymmetricSecurityKey SecurityKey =
new SymmetricSecurityKey(Encoding.ASCII.GetBytes(PrivateKey));
 public static readonly string Issuer =
"OpenGameListWebApp";
 public static string TokenEndPoint = "/api/connect/token";
 #endregion Static Members

 #region Constructor
 public JwtProvider(
 RequestDelegate next,
 ApplicationDbContext dbContext,
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager)
 {
 _next = next;

 // Instantiate JWT-related members
 TokenExpiration = TimeSpan.FromMinutes(10);
 SigningCredentials = new
SigningCredentials(SecurityKey, SecurityAlgorithms.HmacSha256);

 // Instantiate through Dependency Injection

www.EBooksWorld.ir

 DbContext = dbContext;
 UserManager = userManager;
 SignInManager = signInManager;
 }
 #endregion Constructor

 #region Public Methods
 public Task Invoke(HttpContext httpContext)
 {
 // Check if the request path matches our LoginPath
 if (!httpContext.Request.Path.Equals(TokenEndPoint,
StringComparison.Ordinal)) return _next(httpContext);

 // Check if the current request is a valid POST with
the appropriate content type (application/x-www-form-urlencoded)
 if (httpContext.Request.Method.Equals("POST") &&
httpContext.Request.HasFormContentType)
 {
 // OK: generate token and send it via a json-
formatted string
 return CreateToken(httpContext);
 }
 else
 {
 // Not OK: output a 400 - Bad request HTTP error.
 httpContext.Response.StatusCode = 400;
 return httpContext.Response.WriteAsync("Bad
request.");
 }
 }
 #endregion Public Methods

 #region Private Methods
 private async Task CreateToken(HttpContext httpContext)
 {
 try
 {
 // retrieve the relevant FORM data
 string username =
httpContext.Request.Form["username"];
 string password =
httpContext.Request.Form["password"];

 // check if there's an user with the given username
 var user = await
UserManager.FindByNameAsync(username);
 // fallback to support e-mail address instead of
username
 if (user == null && username.Contains("@")) user =
await UserManager.FindByEmailAsync(username);

 var success = user != null && await

www.EBooksWorld.ir

UserManager.CheckPasswordAsync(user, password);
 if (success)
 {
 DateTime now = DateTime.UtcNow;

 // add the registered claims for JWT (RFC7519).
 // For more info, see
https://tools.ietf.org/html/rfc7519#section-4.1
 var claims = new[] {
 new Claim(JwtRegisteredClaimNames.Iss,
Issuer),
 new Claim(JwtRegisteredClaimNames.Sub,
username),
 new Claim(JwtRegisteredClaimNames.Jti,
Guid.NewGuid().ToString()),
 new Claim(JwtRegisteredClaimNames.Iat, new
DateTimeOffset(now).ToUnixTimeSeconds().ToString(),
ClaimValueTypes.Integer64)
 // TODO: add additional claims here
 };

 // Create the JWT and write it to a string
 var token = new JwtSecurityToken(
 claims: claims,
 notBefore: now,
 expires: now.Add(TokenExpiration),
 signingCredentials: SigningCredentials);
 var encodedToken = new
JwtSecurityTokenHandler().WriteToken(token);

 // build the json response
 var jwt = new {
 access_token = encodedToken,
 expiration =
(int)TokenExpiration.TotalSeconds
 };

 // return token
 httpContext.Response.ContentType =
"application/json";
 await
httpContext.Response.WriteAsync(JsonConvert.SerializeObject(jwt));
 return;
 }
 }
 catch (Exception ex)
 {
 // TODO: handle errors
 }

 httpContext.Response.StatusCode = 400;
 await httpContext.Response.WriteAsync("Invalid username

www.EBooksWorld.ir

or password.");
 }
 #endregion Private Methods
 }

 #region Extension Methods
 // Extension method used to add the middleware to the HTTP
request pipeline.
 public static class JwtProviderExtensions
 {
 public static IApplicationBuilder UseJwtProvider(this
IApplicationBuilder builder)
 {
 return builder.UseMiddleware<JwtProvider>();
 }
 }
 #endregion Extension Methods
}

www.EBooksWorld.ir

Adding the middleware to the pipeline
Now that we have created our JwtProvider middleware, we can add it to the
request pipeline together with the built-in JwtBearerMiddleware. In order to do
that, open the Startup.cs file and add the following code to the Configure method
(new lines highlighted):

public void Configure(IApplicationBuilder app, IHostingEnvironment
env, ILoggerFactory loggerFactory, DbSeeder dbSeeder)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 // Configure a rewrite rule to auto-lookup for standard default
files such as index.html.
 app.UseDefaultFiles();

 // Serve static files (html, css, js, images & more). See also
the following URL:
 // https://docs.asp.net/en/latest/fundamentals/static-
files.html for further reference.
 app.UseStaticFiles(new StaticFileOptions()
 {
 OnPrepareResponse = (context) =>
 {
 // Disable caching for all static files.
 context.Context.Response.Headers["Cache-Control"] =
Configuration["StaticFiles:Headers:Cache-Control"];
 context.Context.Response.Headers["Pragma"] =
Configuration["StaticFiles:Headers:Pragma"];
 context.Context.Response.Headers["Expires"] =
Configuration["StaticFiles:Headers:Expires"];
 }
 });

 // Add a custom Jwt Provider to generate Tokens

 app.UseJwtProvider();

 // Add the Jwt Bearer Header Authentication to validate Tokens

 app.UseJwtBearerAuthentication(new JwtBearerOptions()

 {

 AutomaticAuthenticate = true,

 AutomaticChallenge = true,

 RequireHttpsMetadata = false,

www.EBooksWorld.ir

 TokenValidationParameters = new TokenValidationParameters()

 {

 IssuerSigningKey = JwtProvider.SecurityKey,

 ValidateIssuerSigningKey = true,

 ValidIssuer = JwtProvider.Issuer,

 ValidateIssuer = false,

 ValidateAudience = false

 }

 });

 // Add MVC to the pipeline
 app.UseMvc();

 // TinyMapper binding configuration
 TinyMapper.Bind<Item, ItemViewModel>();

 // Seed the Database (if needed)
 try
 {
 dbSeeder.SeedAsync().Wait();
 }
 catch (AggregateException e)
 {
 throw new Exception(e.ToString());
 }
}

To avoid compilation errors, be sure to declare the following namespaces to the
beginning of the file:

using OpenGameListWebApp.Classes;
using Microsoft.IdentityModel.Tokens;

It's important to focus on two important things here:

Middleware order does indeed count. Notice how MVC gets added after
JwtProvider and JwtBearerAuthentication, so the MVC default routing
strategies won't interfere with them.
There's no AspNetCore.Identity middleware in there. We purposely avoided
calling the app.UseIdentity() extension because it internally wraps
app.UseCookieAuthentication(), which is something we don't need. We

www.EBooksWorld.ir

might want to add it if we want to support cookies over headers, or even use
both of them.

Tip

To know more about what's under the hood of app.UseIdentity(), it can be useful
to take a look at the extension's source code, which is publicly available on GitHub
at the following URL:

https://github.com/aspnet/Identity/blob/dev/src/Microsoft.AspNetCore.Identity/BuilderExtensions.cs

With this, we're done with the server-side part of our job. Let's switch to the client
side.

www.EBooksWorld.ir

https://github.com/aspnet/Identity/blob/dev/src/Microsoft.AspNetCore.Identity/BuilderExtensions.cs

Angular 2 login form
Remember that /Scripts/app/login.component.ts sample we created back in
Chapter 3, Angular 2 Components and Client-Side Routing. The time has come to
update it into a proper login form.

Open that file and modify the existing, almost empty template with the following
code:

<div class="login-container">
 <h2 class="form-login-heading">Login</h2>
 <div class="alert alert-danger" role="alert"
*ngIf="loginError">
 Warning: Username or Password mismatch
 </div>
 <form class="form-login" [formGroup]="loginForm"
(submit)="performLogin($event)">
 <input formControlName="username" type="text" class="form-
control" placeholder="Your username or e-mail address" required
autofocus />
 <input formControlName="password" type="password"
class="form-control" placeholder="Your password" required />
 <div class="checkbox">
 <label>
 <input type="checkbox" value="remember-me">
 Remember me
 </label>
 </div>
 <button class="btn btn-lg btn-primary btn-block"
type="submit">Sign in</button>
 </form>
</div>

That's a simple login form with some Bootstrap and custom classes. Notice that we
also defined an ngFormModel and an event handler method called performLogin
that will trigger on each submit. Both should be added within the component's class
implementation in the following way (new lines highlighted):

export class LoginComponent {
 title = "Login";
 loginForm = null;

 constructor(private fb: FormBuilder) {

 this.loginForm = fb.group({

 username: ["", Validators.required],

 password: ["", Validators.required]

www.EBooksWorld.ir

 });

 }

 performLogin(e) {

 e.preventDefault();

 alert(JSON.stringify(this.loginForm.value));

 }
}

We're introducing two new classes here:

FormBuilder: This is a factory class for creating instances of type FormGroup,
which is how Angular 2 handles model-driven (or reactive) forms, we'll say
more regarding this topic in a short while.
Validators: Angular has three built-in form validations that can be applied using
this class. These are Validators.required, Validators.minLength(n), and
Validators.maxLength(n). The names are self-explanatory, so we'll just say
that we're using the first one, at least for now.

In order to use these classes, we need to add the following import statement at the
beginning of the file:

import {FormBuilder, Validators} from "@angular/forms";

As we can see, there's also a performLogin method that we didn't implement much.
We're just opening a UI alert to ensure us that everything is working so far, then bring
the user back to our welcome view.

While we're here, let's take the chance to also add the Router component, so we'll be
able to send the user somewhere right after the login. We can easily do that using the
same DI technique we've already used a number of times.

This is how the login.component.ts will look after these changes:

import {Component} from "@angular/core";
import {FormBuilder, Validators} from "@angular/forms";
import {Router} from "@angular/router";

@Component({
 selector: "login",
 template: `
 <div class="login-container">
 <h2 class="form-login-heading">Login</h2>

www.EBooksWorld.ir

 <form class="form-login" [ngFormModel]="loginForm"
(submit)="performLogin($event)">
 <input ngControl="username" type="text" class="form-
control" placeholder="Your username or e-mail address" required
autofocus />
 <input ngControl="password" type="password" class="form-
control" placeholder="Your password" required />
 <div class="checkbox">
 <label>
 <input type="checkbox" value="remember-me"> Remember me
 </label>
 </div>
 <button class="btn btn-lg btn-primary btn-block"
type="submit">Sign in</button>
 </form>
 </div>
 `
})

export class LoginComponent {
 title = "Login";
 loginForm = null;

 constructor(
 private fb: FormBuilder,
 private router: Router) {
 this.loginForm = fb.group({
 username: ["", Validators.required],
 password: ["", Validators.required]
 });
 }

 performLogin(e) {
 e.preventDefault();
 alert(JSON.stringify(this.loginForm.value));
 }
}

Adding styles

As for the custom CSS classes, we can add them to our Scripts/less/style.less
file:

.login-container {
 max-width: 330px;
 padding: 15px;
 .form-login {
 margin: 0 0 10px 20px;
 .checkbox {
 margin-bottom: 10px;
 }

www.EBooksWorld.ir

 input {
 margin-bottom: 10px;
 }
 }
}

Updating the root module file

Our renewed LoginComponent should compile just fine. However, if we try to run
the app now, we would get a full-scale Angular 2 runtime error in the browser's
console log:

Pretty scary, isn't it?

When we see something like that in Angular 2, it usually means that we're missing a
required module. That's exactly the case. In order to use reactive forms classes, we
need to open our /Scripts/app/app.module.ts file and append
ReactiveFormsModule to the following existing import statement, near the
beginning of the file:

import {FormsModule, ReactiveFormsModule} from "@angular/forms";

And also add it to the imports array as follows:

imports: [
 BrowserModule,

www.EBooksWorld.ir

 HttpModule,
 FormsModule,
 ReactiveFormsModule,
 RouterModule,
 AppRouting
],

Once done, our application will be able to run without errors.

Wait a minute...FormsModule has been there since Chapter 3, Angular 2 Components
and Client-Side Routing! On top of that, we even used it to build the
ItemDetailEditComponent form, which happens to work just fine! Why do we
need ReactiveFormsModule now?

As a matter of fact, we don't; we could stick to the FormsModule and build another
template-driven form just like the one we already did. As a matter of fact, since this
is a tutorial application, we took the chance to use the alternative strategy provided
by Angular 2 to build forms: the model-driven (or reactive) forms approach.

This clarification raises a predictable question: which one of them is better? The
answer is not easy, as both techniques have their advantages. To keep it extremely
simple, we can say that template-driven forms are generally simpler to pull off, but
they're rather difficult to test and validate as they become complex; conversely,
model-driven forms do have an harder learning curve but they usually perform better
when dealing with large forms, as they allow us to unit test their whole validation
logic.

Note

We won't explore these topics further, as they would take us way beyond the scope of
this book. For more info regarding template-driven and model-driven forms, we
strongly suggest reading the following article from the Angular 2 developers blog:

http://blog.angular-university.io/introduction-to-angular-2-forms-template-driven-vs-
model-driven/

And also check out the official Angular 2 documentation regarding forms:

https://angular.io/docs/ts/latest/guide/forms.html

UI and validation test

Let's do a quick test right now. Hit F5 and click on the Login top navigation bar. We
should be welcomed by something like this:

www.EBooksWorld.ir

http://blog.angular-university.io/introduction-to-angular-2-forms-template-driven-vs-model-driven/
https://angular.io/docs/ts/latest/guide/forms.html

Let's now check the validators by hitting the Sign in button, leaving the input fields
empty. We can see the two textboxes react accordingly, since they're both expecting a
required value:

www.EBooksWorld.ir

Finally, let's test the outcome JSON by filling up the input fields with some random
values and pressing the Sign in button again:

www.EBooksWorld.ir

That's it. It seems that our login form is working fine.

www.EBooksWorld.ir

AuthService component
Now we need to create a dedicated service to handle the login and logout operations.

Right-click on the /Scripts/app/ folder, select Add | New Item and add a new
auth.service.ts file to the project, then fill it with the following code:

import {Injectable, EventEmitter} from "@angular/core";
import {Http, Headers, Response, RequestOptions} from
"@angular/http";
import {Observable} from "rxjs/Observable";

@Injectable()
export class AuthService {
 authKey = "auth";

 constructor(private http: Http) {
 }

 login(username: string, password: string): any {
 var url = "api/connect/token"; // JwtProvider's LoginPath

 var data = {
 username: username,
 password: password,
 client_id: "OpenGameList",
 // required when signing up with username/password
 grant_type: "password",
 // space-separated list of scopes for which the token
is issued
 scope: "offline_access profile email"
 };

 return this.http.post(
 url,
 this.toUrlEncodedString(data),
 new RequestOptions({
 headers: new Headers({
 "Content-Type": "application/x-www-form-
urlencoded"
 })
 }))
 .map(response => {
 var auth = response.json();
 console.log("The following auth JSON object has
been received:");
 console.log(auth);
 this.setAuth(auth);
 return auth;
 });

www.EBooksWorld.ir

 }

 logout(): boolean {
 this.setAuth(null);
 return false;
 }

 // Converts a Json object to urlencoded format
 toUrlEncodedString(data: any) {
 var body = "";
 for (var key in data) {
 if (body.length) {
 body += "&";
 }
 body += key + "=";
 body += encodeURIComponent(data[key]);
 }
 return body;
 }

 // Persist auth into localStorage or removes it if a NULL
argument is given
 setAuth(auth: any): boolean {
 if (auth) {
 localStorage.setItem(this.authKey,
JSON.stringify(auth));
 }
 else {
 localStorage.removeItem(this.authKey);
 }
 return true;
 }

 // Retrieves the auth JSON object (or NULL if none)
 getAuth(): any {
 var i = localStorage.getItem(this.authKey);
 if (i) {
 return JSON.parse(i);
 }
 else {
 return null;
 }
 }

 // Returns TRUE if the user is logged in, FALSE otherwise.
 isLoggedIn(): boolean {
 return localStorage.getItem(this.authKey) != null;
 }
}

This code has some resemblance to the one we used in the item.service.ts class.

www.EBooksWorld.ir

This can be expected, since both are Angular 2 service-type components used to
instantiate service accessor objects, with the purpose of sending and receiving data
to and from the web APIs. However, there are some key differences that might be
worthy of attention:

The content-type set for the Login method's POST request has been set to
application/x-www-form-urlencoded instead of application/json to
comply with the requirements set in the JwtProvider class.
We store the result locally by making use of the localStorage object, which is
part of HTML5's Web Storage API. This is a local caching object that keeps its
content with no given expiration date. That's a great way to store our JWT-
related JSON response, as we want to keep it even when the browser is closed.
Before doing that, we choose to convert it into a string using
JSON.stringify, since not all localStorage browser implementations can
store JSON-type objects flawlessly.

Tip

Alternatively, in case we were to delete the token whenever the user closes the
specific browser tab, we could use the sessionStorage object, which stores data
only until the currently active session ends.

It's worth noting that we defined three methods to handle localStorage:
setAuth(), getAuth(), and isLoggedIn(). The first one is in charge of insert,
update, and delete operations; the second will retrieve the auth JSON object (if
any); and the last one can be used to check whether the current user is authenticated
or not, without having to JSON.parse it.

Updating the AppModule

In order to test our new AuthService component, we need to hook it up to the
AppModule and to the LoginComponent we created a short while ago.

Open the /Scripts/app/app.module.ts file and add the following import line
between the AppRouting and ItemService lines:

import {AppRouting} from "./app.routing";
import {AuthService} from "./auth.service";
import {ItemService} from "./item.service";

Then scroll down to the providers array and add it there too:

providers: [
 AuthService,
 ItemService
],

www.EBooksWorld.ir

Updating the LoginComponent

Once done, switch back to the Scripts/app/login.component.ts file and replace
the content of the source code as follows (new/updated lines are highlighted):

import {Component} from "@angular/core";
import {FormBuilder, Validators} from "@angular/forms";
import {Router} from "@angular/router";
import {AuthService} from "./auth.service";

@Component({
 selector: "login",
 template: `
 <div class="login-container">
 <h2 class="form-login-heading">Login</h2>
 <div class="alert alert-danger" role="alert"
*ngIf="loginError">Warning: Username or Password
mismatch</div>
 <form class="form-login" [formGroup]="loginForm"
(submit)="performLogin($event)">
 <input formControlName="username" type="text" class="form-
control" placeholder="Your username or e-mail address" required
autofocus />
 <input formControlName="password" type="password"
class="form-control" placeholder="Your password" required />
 <div class="checkbox">
 <label>
 <input type="checkbox" value="remember-me">
 Remember me
 </label>
 </div>
 <button class="btn btn-lg btn-primary btn-block"
type="submit">Sign in</button>
 </form>
 </div>
 `
})

export class LoginComponent {
 title = "Login";
 loginForm = null;
 loginError = false;

 constructor(
 private fb: FormBuilder,

private router: Router,
 private authService: AuthService) {
 this.loginForm = fb.group({
 username: ["", Validators.required],
 password: ["", Validators.required]

www.EBooksWorld.ir

 });
 }

 performLogin(e) {
 e.preventDefault();
 var username = this.loginForm.value.username;

 var password = this.loginForm.value.password;

 this.authService.login(username, password)

 .subscribe((data) => {

 // login successful

 this.loginError = false;

 var auth = this.authService.getAuth();

 alert("Our Token is: " + auth.access_token);

 this.router.navigate([""]);

 },

 (err) => {

 console.log(err);

 // login failure

 this.loginError = true;

 });
 }
}

What we did here is pretty straightforward:

We included the import reference for our AuthService component and added it
to the constructor, so we can have it available using DI.
We added a new loginError local variable that will reflect the outcome of the
last login attempt.
We added a <div> element acting as an alert, to be shown whenever the
loginError becomes true.
We modified the performLogin method to make it send the username and
password values to the AuthService component's login method, so it can
perform the following tasks:

Issue an HTTP request to the JwtProvider middleware

www.EBooksWorld.ir

Receive a valid JWT accordingly and persist it into the localStorage
object cache
Return true in case of success or false in case of failure
If everything goes as expected, we'll be shown a confirmation popup alert
and route the user back to the welcome view; otherwise, we'll show the
wrong username or password alert above the form

Login test

Let's run a quick test to see whether everything is working as expected. Hit F5, then
navigate through the login view using the top navigation menu. Once there, fill in the
login form with some incorrect data to test the Wrong Username or Password alert
and left-click on the Sign in button:

Now, let's test a successful login attempt by filling in the form again, this time using
the actual Admin user credentials as defined within the DbSeeder class:

E-mail: Admin

www.EBooksWorld.ir

mailto:admin@opengamelist.com

Password: Pass4Admin

Then, left-click on the Sign in button.

If everything has been set up properly, we should receive the following response:

If we see something like this, it means that our JwtProvider works!

All we need to do now is to find a way to put that token inside the headers of all our
subsequent requests, so we can check the token validation as well and complete our
authentication cycle.

www.EBooksWorld.ir

AuthHttp wrapper
A rather easy way to do that with Angular 2 is create a wrapper class that will
internally use the standard Http component right after having it configured to suit our
needs.

Right-click on the /Scripts/app/ folder, then select Add | New Item. Add a new
auth.http.ts file to the project and fill it with the following code:

import {Injectable} from '@angular/core';
import {Http, Headers} from '@angular/http';

@Injectable()
export class AuthHttp {
 http = null;
 authKey = "auth";

 constructor(http: Http) {
 this.http = http;
 }

 get(url, opts = {}) {
 this.configureAuth(opts);
 return this.http.get(url, opts);
 }

 post(url, data, opts = {}) {
 this.configureAuth(opts);
 return this.http.post(url, data, opts);
 }

 put(url, data, opts = {}) {
 this.configureAuth(opts);
 return this.http.put(url, data, opts);
 }

 delete(url, opts = {}) {
 this.configureAuth(opts);
 return this.http.delete(url, opts);
 }

 configureAuth(opts: any) {
 var i = localStorage.getItem(this.authKey);
 if (i != null) {
 var auth = JSON.parse(i);
 console.log(auth);
 if (auth.access_token != null) {
 if (opts.headers == null) {
 opts.headers = new Headers();
 }

www.EBooksWorld.ir

 opts.headers.set("Authorization", `Bearer
${auth.access_token}`);
 }
 }
 }
}

There's not much to say here, it's just a wrapper that calls the configureAuth
method internally to add the JWT token stored in the browser's localStorage ,if
any, to each request's headers.

Since we'll be using the AuthHttp wrapper anywhere in our application, the first
thing we need to do is add it to the application's root module, just like we did with
the AuthService a short while ago. Open the Scripts/app/app.module.ts file
and add the usual import line between AppRouting and AuthService:

import {AppRouting} from "./app.routing";
import {AuthHttp} from "./auth.http";
import {AuthService} from "./auth.service";

And also add it to the providers array as follows:

providers: [
 AuthHttp,
 AuthService,
 ItemService
],

Now we can update each and every Http reference included in our other Angular 2
files and replace them with AuthHttp. As we can easily guess, the affected
components are the two service classes we're using to connect through the web API
interface: auth.service.ts and item.service.ts.

For both of them, we need to add the following line at the beginning of the file:

import {AuthHttp} from "./auth.http";

And change the constructor parameters in the following way:

constructor(private http: AuthHttp) {

www.EBooksWorld.ir

Adding authorization rules
It's time to see whether our manual JWT-based auth implementation is working as
expected. Before doing that, though, we need to define some testable navigation
patterns that will allow us to differentiate the logged-in user from the anonymous one.
It's actually easy to do that, since we already have some content that should be made
accessible to authenticated users only. We need to handle them on the client side and
also on the server side.

Adapting the client

Let's start by updating the main menu navigation bar. Open the
Scripts/app/app.component.ts file and add the following import reference near
the top:

import {AuthService} from "./auth.service";

Right after that, change the template section in the following way (new/updated
lines are highlighted):

<nav class="navbar navbar-default navbar-fixed-top">
 <div class="container-fluid">
 <input type="checkbox" id="navbar-toggle-cbox">
 <div class="navbar-header">
 <label for="navbar-toggle-cbox" class="navbar-toggle
collapsed" data-toggle="collapse" data-target="#navbar" aria-
expanded="false" aria-controls="navbar">
 Toggle navigation

 </label>

 </div>
 <div class="collapse navbar-collapse" id="navbar">
 <ul class="nav navbar-nav">
 <li [class.active]="isActive([''])">
 Home

 <li [class.active]="isActive(['about'])">
 <a class="about" [routerLink]="
['about']">About

 <li *ngIf="!authService.isLoggedIn()"
 [class.active]="isActive(['login'])">

www.EBooksWorld.ir

 <a class="login" [routerLink]="
['login']">Login

 <li *ngIf="authService.isLoggedIn()">

 <a class="logout" href="javascript:void(0)"
 (click)="logout()">Logout

 <li *ngIf="authService.isLoggedIn()"
 [class.active]="isActive(['item/edit', 0])">

 <a class="add" [routerLink]="['item/edit',
0]">Add New

 </div>
 </div>
</nav>
<h1 class="header">{{title}}</h1>
<div class="main-container">
 <router-outlet></router-outlet>
</div>

What we did here is pretty easy to understand:

We added a ngIfbuilt-in directive tothe Login menu element, since we don't
want it to appear if the user is already logged in.
We also added another Logout menu element with similar yet opposing
behavior, as we don't want it to be seen if the user is not logged in. Clicking on
this element will trigger the logout() method, which we'll be adding shortly.
We added another ngIf condition to the New Item menu element, as it should
be seen by logged-in users only.

In order to use the authService object, we also need to instantiate it through
dependency injection within the class constructor, which is another thing we have to
change (new/updated lines highlighted):

constructor(public router: Router, public authService: AuthService)
{ }

Finally, we need to implement that logout() method we talked about earlier:

logout(): boolean {
 // logs out the user, then redirects him to Welcome View.

www.EBooksWorld.ir

 if (this.authService.logout()) {
 this.router.navigate([""]);
 }
 return false;
}

Nothing odd here, just a standard logout and redirect behavior to adopt when the user
chooses to perform a logout.

The changes we applied to the AppComponent template should also be performed in
the ItemDetailViewComponent templates as well. Open Scripts/app/item-
detail-view.component.ts and add the import line:

import {AuthService} from "./auth.service";

Then move to the constructor and add the AuthService reference there for DI (new
code highlighted):

constructor(
 private authService: AuthService,
 private itemService: ItemService,
 private router: Router,
 private activatedRoute: ActivatedRoute) { }

And finally, update the template section accordingly, using the same ngIf built-in
directive we used before to show/hide the Edit tab accordingly to the current user's
logged in status:

<li *ngIf="authService.isLoggedIn()" role="presentation">
 <a href="javascript:void(0)"
(click)="onItemDetailEdit(item)">Edit

Testing the client

Let's hit F5 and see whether everything is working as it should. We should start as
anonymous users and see something like this:

www.EBooksWorld.ir

We can see that the New Item menu element is gone. That's expected; we're not
logged in, so we shouldn't be able to add a new item.

From there, we can click the Login menu element and be brought to the login view,
where we can input the admin credentials (admin/pass4admin, in case we forgot).
As soon as we hit the Sign In button, we will be routed back to the welcome view,
where we should be greeted by something like the following screenshot:

www.EBooksWorld.ir

The Login menu element is gone, replaced by Logout and Add New. We can then
click on Logout and see both of them replaced by the former again.

So far, so good. However, we're not done with the client yet. These modifications
prevent the user from clicking some links they're not allowed to see, yet they are
unable to stop the user from going to their given destinations. For example, the user
could manually input the routes within the browser's navigation bar and go to the
login view while being already logged in, or even worse access the add/edit item
view despite being anonymous.

In order to avoid that, we can add a login status check within the
login.component.ts constructor (new lines highlighted):

constructor(
 private fb: FormBuilder,
 private router: Router,
 private authService: AuthService) {
 if (this.authService.isLoggedIn()) {

 this.router.navigate([""]);

 }
 this.loginForm = fb.group({
 username: ["", Validators.required],
 password: ["", Validators.required]
 });
}

Also add it to the ngOnInit startup method within the item-detail-
edit.component.ts file:

ngOnInit() {
 if (!this.authService.isLoggedIn()) {

 this.router.navigate([""]);

 }
 var id = +this.activatedRoute.snapshot.params["id"];
 if (id) {
 this.itemService.get(id).subscribe(
 item => this.item = item
);
 }
 else if (id === 0) {
 console.log("id is 0: adding a new item...");
 this.item = new Item(0, "New Item", null);
 }
 else {

www.EBooksWorld.ir

 console.log("Invalid id: routing back to home...");
 this.router.navigate([""]);
 }
}

Doing this will also require adding the corresponding import reference line near the
topmost section of the item-detail-edit.component.ts file:

import {AuthService} from "./auth.service";

And the DI injection in the constructor method:

constructor(
 private authService: AuthService,
 private itemService: ItemService,
 private router: Router,
 private activatedRoute: ActivatedRoute) { }

That way, any unauthorized user will be bounced back whenever they try to manually
hack our route mechanism by issuing a direct request to these views.

Protecting the server

Now that our client is more or less ready, it's time to shield our web API interface
from unauthorized requests as well. We can easily do that using the [Authorize]
attribute, which can be used to restrict access to any controller and/or controller
method we don't want to open to unauthorized access.

To implement the required authorization behavior, it could be wise to use it on the
Add, Update, and Delete methods of our ItemsController class (new lines are
highlighted):

[HttpPost()]
[Authorize]
public IActionResult Add([FromBody]ItemViewModel ivm)
{
 [...]
}

[HttpPut("{id}")]
[Authorize]
public IActionResult Update(int id, [FromBody]ItemViewModel ivm)
{
 [...]
}

[HttpDelete("{id}")]
[Authorize]
public IActionResult Delete(int id)

www.EBooksWorld.ir

{
 [...]
}

In order to use the [Authorize] attribute, we also need to declare the following
namespace reference at the beginning of the file:

using Microsoft.AspNetCore.Authorization;

Now these methods are protected against unauthorized access, as they will accept
only requests coming from logged-in users/clients with a valid JWT token. Those who
don't have it will receive a 401 - Unauthorized HTTP error response.

Retrieving the user ID

Before closing the ItemsController class file, we should take the chance to
remove the item.UserId value override we defined back in Chapter 5, Persisting
Changes, when we had no authentication mechanism in place:

// TODO: replace the following with the current user's id when
authentication will be available.
item.UserId = DbContext.Users.Where(u => u.UserName ==
"Admin").FirstOrDefault().Id;

Now that we're working with real users, we definitely have to remove this ugly
workaround and find a way to retrieve the actual user ID. Luckily enough, when we
implemented our very own JWT provider earlier, we did actually put it in the claims
JWT token (JwtProvider class, CreateToken method):

new Claim(JwtRegisteredClaimNames.Sub, user.Id),

This means that we can retrieve it in the following way (updated code is
highlighted):

item.UserId = User.FindFirst(ClaimTypes.NameIdentifier).Value;>

Let's perform this change and move on.

Note

This minor update should be enough for now. However, it won't work when dealing
with external OpenId and/or OAuth2 providers, as they will put their own data in
these claims. Retrieving our local UserId in such scenarios will require some
additional work, such as querying a dedicated lookup table. We'll see more about this
during Chapter 8, Third-Party Authentication and External Providers.

Authorization test

www.EBooksWorld.ir

Before going further, it's definitely time to perform a client/server interaction test to
ensure that our authorization pattern is working as expected.

From the Visual Studio source code editing interface, we can put a breakpoint right
below the ItemsControllerAdd method:

Once done, we can hit F5, navigate from the welcome view to the login view, and
authenticate ourselves. Right after that, we'll be able to click upon the Add New
menu element.

From there, we can fill in the form with some random text and click on the Save
button. The form will consequently call the Add method of ItemsController,
hopefully triggering our breakpoint.

Open a Watch window (Debug | Windows | Watch | Watch 1) and check the
HttpContext.User.Identity.IsAuthenticated property value:

www.EBooksWorld.ir

If it's true, it means that we've been successfully authenticated. That shouldn't be
surprising, since our request already managed to get inside a method protected by an
[Authorize] attribute.

www.EBooksWorld.ir

Suggested topics
Authentication, authorization, HTTP protocol, Secure Socket Layer, Session State
Management, Indirection, Single Sign-On, Azure AD Authentication Library
(ADAL), AspNetCore Identity, OpenID, OAuth, Conversion Rate, Code-First
Migrations, IdentityUser, Stateless, Cross-Site Scripting (XSS), Cross-Site Request
Forgery (CSRF), LocalStorage, Web Storage API, Generic Types, JWT Tokens,
Claims, Refresh Tokens, Sliding Sessions.

www.EBooksWorld.ir

Summary
At the start of this chapter, we introduced the concepts of authentication and
authorization, acknowledging the fact that most applications, including ours, do
require a mechanism to properly handle authenticated and non-authenticated clients,
as well as authorized and unauthorized requests.

We took some time to properly understand the similarities and differences between
authentication and authorization, as well as the pros and cons of handling these tasks
using our own internal provider or delegating them to third-party providers such as
Google, Facebook, and Twitter. We also found out that, luckily enough, the
AspNetCore.Identity framework can be configured to achieve the best of both
worlds. To be able to use it we added the required packages to our project and did
what was needed to properly configure them, such as performing some changes in our
ApplicationUser and ApplicationDbContext classes and then adding a new
EntityFrameworkCore migration to update our database accordingly.

We briefly enumerated the various web-based authentication methods available
nowadays: sessions, tokens, signatures, and two-factor strategies of various sorts.
After careful consideration, we chose to implement a token-based approach using
Json Web Token (JWT), a solid and well-known standard for native web
applications.

Implementing JWT within our application took us some time, as we had to take care
of a number of steps: writing our own JwtProvider to generate the tokens; adding
them to the HTTP request pipeline, together with the AspNetCore-native
JwtBearerMiddleware needed to validate them; and finally, moving to our Angular
2 client app, creating a login form, an AuthService, and an AuthHttp wrapper
class to handle everything on the client side.

Right after that, we implemented the required server-side and client-side
authorization rules to protect some of our application views, routes, and APIs from
unauthorized access.

www.EBooksWorld.ir

Chapter 8. Third-Party Authentication
and External Providers
The hand-made authentication and authorization flow we put together in Chapter 7,
Authentication and Authorization, is pretty much working. However, it lacks some
very important features required for a production-ready environment, the most
important ones being token expiration, token refresh, and sliding session support.
Implementing them from scratch won't be easy and would take us far from the scope
of this book. Luckily enough, there are a number of third-party packages that already
went down that route with great results. Among them, the most promising one seems
to be OpenIddict, an open-source project featuring an OAuth2/OpenID Connect
provider based on ASP.NET Core Identity and
AspNet.Security.OpenIdConnect.Server (also known as ASOS).

In this chapter, we'll learn how to properly install and configure it, as well as
implement support for external authentication/authorization providers such as
Google, Facebook, and Twitter.

www.EBooksWorld.ir

Introducing OpenID connect servers
As the name suggests, OpenIddict is basically a (mostly) full-featured
OAuth2/OpenID connect server that can be easily plugged into any ASP.NET Core
application.

Note

In case we need a quick recap regarding OAuth2 and/or OpenID connect before
going further, we can check a lot of useful info by visiting the following URLs:

https://tools.ietf.org/html/rfc6749
http://openid.net/connect/faq/

The main purpose of OAuth2/OpenID connect server interfaces such as OpenIddict
is to support a wide amount of modern authentication standards, including, yet not
limited to, JWT. As a matter of fact, they're not that different from the JwtServer we
put together during the previous chapter, except that they come bundled with a lot of
additional features we're still missing, such as the aforementioned token refresh and
sliding expiration, thus releasing us from the need to manually implement them.

Choosing between replacing our custom JwtProvider with OpenIddict (or other
similar third-party solutions) or not is mostly a matter of personal choice, depending
on whether we feel more like coding our very own authentication layer or switching
to a community-oriented approach. It won't even impact what we'll do in this chapter,
as it will work with both.

Tip

If you choose to keep using your own JwtProvider, you might want to skip the next
paragraph entirely.

www.EBooksWorld.ir

https://tools.ietf.org/html/rfc6749
http://openid.net/connect/faq/

Installing OpenIddict
Let's start with the good news! Adding OpenIddict won't be hard, as we already did
most of the required work. It's also worth noting that doing it is not a required step,
as our hand-made alternative is working perfectly fine and will be fully compatible
with the rest of the chapters.

Note

The OpenIddict project is actively maintained by Kévin Chalet and licensed under
the Apache License: http://www.apache.org/licenses/LICENSE-2.0.html

This means that we are able to use, modify, and distribute it freely. For a better
overview of the product, we strongly suggest taking a look at the official GitHub
project page at the following URL:

https://github.com/openiddict/openiddict-core

www.EBooksWorld.ir

http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/openiddict/openiddict-core

Adding MyGet to the package sources
The first thing we need to do is to add a new package source to the Visual Studio
NuGet package manager:

Note

At the time of writing, this is a required step, asOpenIddict has not been released to
the official NuGet package archive. This will most likely change in the future, to the
point that it could be useful to perform a quick search through the official packages
before doing the following steps.

1. Right-click on the OpenGameListWebApp project node.
2. Select Manage NuGet Packages and open the pop-up window.
3. Locate the Package Source drop-down list to the upper-right corner and set it

to All, then click on the cogwheel icon to its immediate right to access the
Options modal window.

4. Left-click on the plus icon near the upper-right corner and add the following
package source:

Name : myget.org

Source: https://www.myget.org/F/aspnet-contrib/api/v3/index.json

Once done, click the Update button. Right after doing that, we should be able to see
something very similar to the following screenshot:

www.EBooksWorld.ir

Ensure that the checkbox to the left of the new package source is checked, then click
Ok to close the modal window.

www.EBooksWorld.ir

Installing the OpenIddict package
Now we can issue a search for OpenIddict and be sure to actually find something
relevant:

We're looking for the one called OpenIddict, which should be the first entry.

As always, ensure that the Include prerelease checkbox is checked to include the
latest versions of the packages. We'll be using the 1.0.0-alpha2-0419 build, since it's
the most recent one at the time of writing.

Tip

IMPORTANT It's worth noting that, being still in alpha stage, the upcoming releases
of OpenIddict might bring major changes to the interface, thus requiring some
changes/updates to the source code we'll be using throughout this chapter.

www.EBooksWorld.ir

Updating ApplicationUser and
ApplicationDbContext
This step might look familiar, as we already did something very similar when we
added AspNetCore.Identity. We basically need to change the base classes,
replacing IdentityUser and IdentityDbContext with OpenIddictUser and
OpenIddictDbContext.

These are the relevant code changes (new/updated code highlighted):

In the /Data/Users/ApplicationUser.cs file:

public class ApplicationUser: OpenIddictUser

In the /Data/ApplicationDbContext.cs file:

public class ApplicationDbContext :
OpenIddictDbContext<ApplicationUser>

We also need to declare the following namespace in both of these files:

using OpenIddict;

This concludes the OpenIddict package implementation. However, we still need to
update our database accordingly.

Note

We're about to venture again into migrations territory, so it might be wise to issue a
full rebuild of our project to ensure that our code will compile without errors.

www.EBooksWorld.ir

Adding a new migration
The OpenIddict module comes with a set of built-in entities that need to be added to
our existing database. Luckily enough, since we're using code-first migrations, this is
not a big deal.

Open a PowerShell command prompt and navigate through the project's root folder:

C:\Projects\OpenGameList\src\OpenGameListWebApp\

Once there, type the following command to add the new migration:

dotnet ef migrations add "OpenIddict" -o "Data\Migrations"

Wait for the migration to be created, then type the following to execute it:

dotnet ef database update

This will create the following new tables in our local database:

OpenIddictApplications
OpenIddictAuthorizations
OpenIddictScopes
OpenIddictTokens

Tip

If the tables are not there or you run into some other issues, it could mean that EF
Core is unable to handle a previously created migration. The best workaround to
solve these kinds of problems is to delete the Data\Migrations folder and then run
the preceding commands again. Alternatively, you can try the database drop and
database update commands, just like we did in Chapter 7, Authentication and
Authorization.

www.EBooksWorld.ir

Updating the DbSeeder
One of the new tables, OpenIddictApplications, needs to be populated with a
single row corresponding to our web application. The task can be easily performed
by our DbSeeder class, which happens to do just that.

Open the Data/DbSeeder.cs file and add the following code to the constructor
method (new lines are highlighted):

public async Task SeedAsync()
{
 // Create the Db if it doesn't exist
 DbContext.Database.EnsureCreated();
 // Create default Application

 if (!DbContext.Applications.Any()) CreateApplication();
 // Create default Users
 if (!DbContext.Users.Any()) await CreateUsersAsync();
 // Create default Items (if there are none) and Comments
 if (!DbContext.Items.Any()) CreateItems();
}

Right after that, locate the beginning of the Seed methods region and add the
following method:

private void CreateApplication()
{
 DbContext.Applications.Add(new OpenIddictApplication
 {
 Id = "OpenGameList",
 DisplayName = "OpenGameList",
 RedirectUri = "/api/connect/token",
 LogoutRedirectUri = "/",
 ClientId = "OpenGameList",
 ClientSecret =
Crypto.HashPassword("1234567890_my_client_secret"),
 Type = OpenIddictConstants.ClientTypes.Public
 });
 DbContext.SaveChanges();
}

Also, add the following required namespaces at the beginning of the file:

using OpenIddict;
using CryptoHelper;

Moving literal values to appsettings.json

As we can see, there are a lot of literal values here. Instead of having them hanging

www.EBooksWorld.ir

there, it could be wise to move them into the project's configuration file instead.
Remember the appsettings.json file that we used back in Chapter 4, The Data
Model, to add the database connection string? Open it, then add a new
Authentication root key with the following content (new lines are highlighted):

{
 "Authentication": {

 "OpenIddict": {

 "ApplicationId": "OpenGameList",

 "DisplayName": "OpenGameList",

 "TokenEndPoint": "/api/connect/token",

 "ClientId": "OpenGameList",

 "ClientSecret": "1234567890_my_client_secret"

 }

 },
 "Data": {
 "DefaultConnection": {
 "ConnectionString": "Data Source=
(localdb)\\MSSQLLocalDB;Initial Catalog=OpenGameList;Integrated
Security=True; MultipleActiveResultSets=True"
 }
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 },
 "StaticFiles": {
 "Headers": {
 "Cache-Control": "no-cache, no-store",
 "Pragma": "no-cache",
 "Expires": "-1"
 }
 }
}

We already know how to retrieve these values programmatically. As a matter of fact,
we already did that a number of times, using the Configuration property defined
within the Startup class. What we need to do now is to find a way to make it

www.EBooksWorld.ir

available through the DbSeeder class as well.

The best way to achieve that is via dependency injection (DI), just like we have
already done a number of times. However, in order to make it work, we need to
register a generic IConfiguration singleton object within the application's DI
system beforehand.

To do that, open the Startup.cs file and add the following lines at the beginning of
the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 // Add a reference to the Configuration object for DI
services.AddSingleton<IConfiguration>(

 c => { return Configuration; }

);

This will allow us to retrieve that singleton instance anywhere we want using DI.

Note

If we don't do that, we will get an InvalidOperationException error at runtime
because the DI manager won't be able to find any suitable IConfiguration
instances.

Let's make good use of what we just did. Open the DbSeeder.cs file and perform the
following changes (new lines highlighted):

#region Private Members
private ApplicationDbContext DbContext;
private RoleManager<IdentityRole> RoleManager;
private UserManager<ApplicationUser> UserManager;

private IConfiguration Configuration;

#endregion Private Members

#region Constructor
public DbSeeder(
 ApplicationDbContext dbContext,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager,
 IConfiguration configuration)
{
 DbContext = dbContext;
 RoleManager = roleManager;
 UserManager = userManager;

www.EBooksWorld.ir

 SignInManager = signInManager;
 Configuration = configuration;
}
#endregion Constructor

In order to use the IConfiguration interface, we also need to add the following
namespace reference at the beginning of the file:

using Microsoft.Extensions.Configuration;

Now that we have a IConfiguration instance, we can easily use it to replace the
literal values within the CreateApplication method:

private void CreateApplication()
{
 DbContext.Applications.Add(new OpenIddictApplication
 {
 Id =
Configuration["Authentication:OpenIddict:ApplicationId"],
 DisplayName =
Configuration["Authentication:OpenIddict:DisplayName"],
 RedirectUri =
Configuration["Authentication:OpenIddict:TokenEndPoint"],
 LogoutRedirectUri = "/",
 ClientId =
Configuration["Authentication:OpenIddict:ClientId"],
 ClientSecret =
Crypto.HashPassword(Configuration["Authentication:OpenIddict:Client
Secret"]),
 Type = OpenIddictConstants.ClientTypes.Public
 });
 DbContext.SaveChanges();
}

That's it.

www.EBooksWorld.ir

Configuring the Startup class
Last but not least, we need to add the OpenIddict service and middleware to our
application's Startup class.

Open the Startup.cs file, locate the ConfigureServices method and add the
following (new lines are highlighted):

public void ConfigureServices(IServiceCollection services)
{
 // Add a reference to the Configuration object for DI
 services.AddSingleton<IConfiguration>(
 c => { return Configuration; }
);

 // Add framework services.
 services.AddMvc();

 // Add EntityFramework's Identity support.
 services.AddEntityFramework();

 // Add Identity Services & Stores
 services.AddIdentity<ApplicationUser, IdentityRole>(config => {
 config.User.RequireUniqueEmail = true;
 config.Password.RequireNonAlphanumeric = false;
 config.Cookies.ApplicationCookie.AutomaticChallenge =
false;
 })
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 // Add ApplicationDbContext.
 services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration["Data:DefaultConnection:Connecti
onString"])
);

 // Register the OpenIddict services, including the default
Entity Framework stores.

 services.AddOpenIddict<ApplicationUser, ApplicationDbContext>()

 // Integrate with EFCore

 .AddEntityFramework<ApplicationDbContext>()

 // Use Json Web Tokens (JWT)

 .UseJsonWebTokens()

www.EBooksWorld.ir

 // Set a custom token endpoint (default is /connect/token)

.EnableTokenEndpoint(Configuration["Authentication:OpenIddict:Token
EndPoint"])

 // Set a custom auth endpoint (default is
/connect/authorize)

 .EnableAuthorizationEndpoint("/api/connect/authorize")

 // Allow client applications to use the grant_type=password
flow.

 .AllowPasswordFlow()

 // Enable support for both authorization & implicit flows

 .AllowAuthorizationCodeFlow()

 .AllowImplicitFlow()

 // Allow the client to refresh tokens.

 .AllowRefreshTokenFlow()

 // Disable the HTTPS requirement (not recommended in
production)

 .DisableHttpsRequirement()

 // Register a new ephemeral key for development.

 // We will register a X.509 certificate in production.

 .AddEphemeralSigningKey();

 // Add ApplicationDbContext's DbSeeder
 services.AddSingleton<DbSeeder>();
}

We can easily see how moving the TokenEndPoint value into the
appsettings.json file was well worth the effort, as we can easily retrieve it from
there. While we're here, we should take the chance to do the same with the
AuthorizationEndPoint value as well.

Open the appsettings.json file and add the following line right above the
TokenEndPoint key:

www.EBooksWorld.ir

 "AuthorizationEndPoint": "/api/connect/authorize",

Then go back to the Startup.cs file and reference it accordingly:

 .EnableAuthorizationEndpoint(Configuration["Authentication:OpenIdd
ict:AuthorizationEndPoint"])

So far, so good. Let's now scroll the Startup.cs file down to the Configure
method and change it like this (new/updated lines are highlighted):

public void Configure(IApplicationBuilder app, IHostingEnvironment
env, ILoggerFactory loggerFactory, DbSeeder dbSeeder)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 // Configure a rewrite rule to auto-lookup for standard default
files such as index.html.
 app.UseDefaultFiles();

 // Serve static files (html, css, js, images & more). See also
the following URL:
 // https://docs.asp.net/en/latest/fundamentals/static-
files.html for further reference.
 app.UseStaticFiles(new StaticFileOptions()
 {
 OnPrepareResponse = (context) =>
 {
 // Disable caching for all static files.
 context.Context.Response.Headers["Cache-Control"] =
Configuration["StaticFiles:Headers:Cache-Control"];
 context.Context.Response.Headers["Pragma"] =
Configuration["StaticFiles:Headers:Pragma"];
 context.Context.Response.Headers["Expires"] =
Configuration["StaticFiles:Headers:Expires"];
 }
 });

 // Add a custom Jwt Provider to generate Tokens
 // app.UseJwtProvider();

 // Add OpenIddict middleware

 // Note: UseOpenIddict() must be registered after
app.UseIdentity() and the external social providers.

 app.UseOpenIddict();

 // Add the Jwt Bearer Header Authentication to validate Tokens
 app.UseJwtBearerAuthentication(new JwtBearerOptions()
 {

www.EBooksWorld.ir

 AutomaticAuthenticate = true,
 AutomaticChallenge = true,
 RequireHttpsMetadata = false,

 Authority = "http://localhost:14600/",

 TokenValidationParameters = new TokenValidationParameters()
 {
 //IssuerSigningKey = JwtProvider.SecurityKey,

 //ValidateIssuerSigningKey = true,

 //ValidIssuer = JwtProvider.Issuer,
 ValidateIssuer = false,
 ValidateAudience = false
 }
 });

 // Add MVC to the pipeline
 app.UseMvc();

 // TinyMapper binding configuration
 TinyMapper.Bind<Item, ItemViewModel>();

 // Seed the Database (if needed)
 try
 {
 dbSeeder.SeedAsync().Wait();
 }
 catch (AggregateException e)
 {
 throw new Exception(e.ToString());
 }
}

Notice that we commented out the JwtProvider, together with some
TokenValidationParameters within the JwtBearerAuthentication
initialization; none of them are needed by the OpenIddict middleware. Conversely,
we had to specify an explicit Authority property value to allow the JWT bearer
middleware to download the signing key. Again, this is not something that should be
kept in literal form, as we'll need to change that value when we push everything into
production. The best thing to do is to move it into the configuration file, just like we
did with the other OpenIddict-related values.

Open the appsettings.json file and add the following key to the
Authentication:OpenIddict section:

"Authentication": {
 "OpenIddict": {

www.EBooksWorld.ir

 "ApplicationId": "OpenGameList",
 "DisplayName": "OpenGameList",
 "TokenEndPoint": "/api/connect/token",
 "ClientId": "OpenGameList",
 "ClientSecret": "1234567890_my_client_secret",
 "Authority": "http://localhost:14600/"
 }
}

Right after that, replace the literal value in Setup.cs accordingly:

Authority = Configuration["Authentication:OpenIddict:Authority"],

www.EBooksWorld.ir

Updating the Web.Config rewrite rules
It's time to update those rewrite rules that we pulled off back in Chapter 3, Angular 2
Components and Client-Side Routing. We need to do that to ensure that all the
OpenIddict's endpoint URIs will be reachable by any internal and external actor
involved in the authentication process.

To do that, open the web.config file and add the following lines to the
system.webServer > Rewrite section (new lines highlighted):

<rewrite>
 <rules>
 <rule name="Angular 2 pushState routing" stopProcessing="true">
 <match url=".*" />
 <conditions logicalGrouping="MatchAll">
 <add input="{REQUEST_FILENAME}" matchType="IsFile"
negate="true" />
 <add input="{REQUEST_FILENAME}" matchType="IsDirectory"
negate="true" />
 <add input="{REQUEST_FILENAME}" pattern=".*\.[\d\w]+$"
negate="true" />
 <add input="{REQUEST_URI}" pattern="^/(api)" negate="true"
/>

 <add input="{REQUEST_URI}" pattern="^/(.well-known)"
negate="true" />

 <add input="{REQUEST_URI}" pattern="^/(signin)"
negate="true" />
 </conditions>
 <action type="Rewrite" url="/index.html" />
 </rule>
 </rules>
</rewrite>

These lines will ensure that all the required OpenIddict endpoint URIs won't be
rewritten to the index.html file, just like it is for the URLs starting with /api.

Note

It's worth saying that we could also change all the endpoint URIs programmatically
instead of updating the rewrite rule. However, it would imply changing a lot of
default values, which is something that should be normally avoided when dealing
with complex package libraries such as EF Core, Identity Core, and OpenIddict.
Compared to that, the rewrite update we just made is definitely a simpler yet also
more secure approach.

www.EBooksWorld.ir

Seeding the database
We're ready to populate our database and test our new authentication provider. We
can do that by hitting F5, let the DbSeeder middleware fill the database with the new
required info, and checking out the resulting outcome.

If everything has been made correctly, we shouldn't be able to detect changes of any
sort in our application's behavior, as the new provider is expected to hook on the
same routes and use the same naming conventions as the previous one. This is hardly
a coincidence; we purposely implemented both of them using the same criteria in
order to make them interchangeable to the extent of our limited scenario.

www.EBooksWorld.ir

External authentication providers
Now that we finally have a fully-featured, JWT-based internal authentication
provider, we can start thinking about supporting other login alternatives. Hooking up
some external authentication providers such as Google, Facebook, and Twitter will
undoubtedly please our users and increase our application's overall appeal.

Luckily enough, AspNetCore.Identity comes bundled with a built-in set of
middleware classes for the most used OAuth2 providers that will simplify each of
these tasks.

www.EBooksWorld.ir

OAuth2 authorization flow
Before we start, let's do a quick recap of how the OAuth2 authorization flow actually
works:

This, in short, is what will happen under the hood. Luckily enough, the AspNetCore
middleware will do most of the job, as long as we provide a minimal amount of
infrastructural logic to our Web API.

www.EBooksWorld.ir

Facebook
Let's start with the big whale of the social networks.

The first thing we need to do is to obtain an AppId and an AppSecret that we can use
to perform our first request against Facebook's OAuth2 authentication workflow.

Note

To learn more about the OAuth2 authorization framework, we strongly suggest
reading the following URLs:

Official Page: http://oauth.net/2/
RFC 6749: https://tools.ietf.org/html/rfc6749

Creating a Facebook App

Go to the Facebook Developer page at the following URL:
https://developers.facebook.com/.

In order to use it, we need to log in using a Facebook Developer Account. Once
inside, click Add a New App:, select Website, fill in the required fields, and click
Create App ID:

www.EBooksWorld.ir

http://oauth.net/2/
https://tools.ietf.org/html/rfc6749
https://developers.facebook.com/

Note

It's worth saying that external provider web platforms are subject to frequent and
major changes. The actual Google, Facebook, and Twitter pages and forms might be
different from those depicted by the screenshots made at the time of writing.

As soon as we get past the CAPTCHA, a new Facebook app will be added to our
account and we'll be automatically brought to the Add Products selection screen.
Once there, we should be able to add a new Facebook Login product by clicking on
the Get Started button to the right:

A modal window will open with a number of OAuth2-related options. The default
values are OK, with the sole exception of the Valid OAuth redirect URIs textbox,
which needs to be updated with our current URL endpoint. Since we're in
development, we need to allow our local address and also the developer port we're
using:

www.EBooksWorld.ir

In the preceding example, we specified two valid URIs: localhost (which defaults
to port 80) and localhost:14600, which is the one used by Visual Studio during our
debug runs.

We don't need to configure anything else. Before leaving, we need to go to the
Dashboard and retrieve the App ID and App Secret values, as we'll need them soon
enough.

Tip

If you want to apply further access restrictions to your Facebook App, you can go to
Settings | Advanced and configure the Server IP whitelist on the Security panel.
However, once you input something there, the whitelist logic will immediately kick
in, blocking every other IP.

Storing the keys in App settings

Open the appsettings.json file, locate the Authentication root key we created
earlier, and add a new Facebook key right below OpenIddict. Once done, use it to
store the App ID and App Secret values of the previously-created Facebook app in
the following way:

"Authentication": {
 "OpenIddict": {
 "ApplicationId": "OpenGameList",
 "DisplayName": "OpenGameList",
 "TokenEndPoint": "/api/connect/token",

www.EBooksWorld.ir

 "ClientId": "OpenGameList",
 "ClientSecret": "1234567890_my_client_secret",
 "Authority": "http://localhost:14600/"
 },
 "Facebook": {

 "AppId": "__INSERT_APP_ID_HERE__",

 "AppSecret": "__INSERT_APP_SECRET_HERE__"

 }
}

Note

Storing these values in plain text inside the appsettings.json file is not
recommended, because they can be easily accessed by unauthorized people (network
admins, server admins, and so on) or even checked into some public source control
repositories by some developer's mistake. There are better alternatives nowadays,
such as the Secret Manager Tool, granting a better level of security.

For more info about how to use it, it's highly advisable to carefully read the
following guide from the official ASP.NET Core documentation website:

https://docs.asp.net/en/latest/security/app-secrets.html.

Adding the Facebook middleware

Now we need to add the Facebook middleware to the HTTP request pipeline.

Open the project.json file and add the following package:

 "Microsoft.AspNetCore.Authentication.Facebook": "1.0.0"

Once done, open up the Startup.cs file, locate the Configure method, and add the
following right above the JwtProvider/OpenIddict middleware, as follows (new
lines are highlighted):

public void Configure(IApplicationBuilder app, IHostingEnvironment
env, ILoggerFactory loggerFactory, DbSeeder dbSeeder)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 // Configure a rewrite rule to auto-lookup for standard default
files such as index.html.
 app.UseDefaultFiles();

 // Serve static files (html, css, js, images & more). See also

www.EBooksWorld.ir

https://docs.asp.net/en/latest/security/app-secrets.html

the following URL:
 // https://docs.asp.net/en/latest/fundamentals/static-
files.html for further reference.
 app.UseStaticFiles(new StaticFileOptions()
 {
 OnPrepareResponse = (context) =>
 {
 // Disable caching for all static files.
 context.Context.Response.Headers["Cache-Control"] =
Configuration["StaticFiles:Headers:Cache-Control"];
 context.Context.Response.Headers["Pragma"] =
Configuration["StaticFiles:Headers:Pragma"];
 context.Context.Response.Headers["Expires"] =
Configuration["StaticFiles:Headers:Expires"];
 }
 });
 // Add a custom Jwt Provider to generate Tokens
 // app.UseJwtProvider();

 // Add the AspNetCore.Identity middleware (required for
external auth providers)

 // IMPORTANT: This must be placed *BEFORE* OpenIddict and any
external provider's middleware

 app.UseIdentity();

 // Add external authentication middleware below.

 // To configure them please see
http://go.microsoft.com/fwlink/?LinkID=532715

 app.UseFacebookAuthentication(new FacebookOptions()

 {

 AutomaticAuthenticate = true,

 AutomaticChallenge = true,

 AppId = Configuration["Authentication:Facebook:AppId"],

 AppSecret =
Configuration["Authentication:Facebook:AppSecret"],

 CallbackPath = "/signin-facebook",

 Scope = { "email" }

 });
 // Add OpenIddict middleware
 // NOTE: UseOpenIddict() must be registered after

www.EBooksWorld.ir

app.UseIdentity()
 // and all the external social provider middlewares (if any).
 app.UseOpenIddict();

 // Add the Jwt Bearer Header Authentication to validate Tokens
 app.UseJwtBearerAuthentication(new JwtBearerOptions()
 {
 AutomaticAuthenticate = true,
 AutomaticChallenge = true,
 RequireHttpsMetadata = false,
 Authority =
Configuration["Authentication:OpenIddict:Authority"],
 TokenValidationParameters = new TokenValidationParameters()
 {
 //IssuerSigningKey = JwtProvider.SecurityKey,
 //ValidateIssuerSigningKey = true,
 //ValidIssuer = JwtProvider.Issuer,
 ValidateIssuer = false,
 ValidateAudience = false
 }
 });

 // Add MVC to the pipeline
 app.UseMvc();

 // TinyMapper binding configuration
 TinyMapper.Bind<Item, ItemViewModel>();

 // Seed the Database (if needed)
 try
 {
 dbSeeder.SeedAsync().Wait();
 }
 catch (AggregateException e)
 {
 throw new Exception(e.ToString());
 }
}

As we already said, the middleware order is very important. Any internal, external,
or third-party authentication middleware coming after UseMvc won't be able to hook
up on any route.

Adding the AccountsController

Since this is our first external provider, we need to do some extra work here, adding
a new controller to deal with a number of account-related tasks to use for this
provider and also for those that will come next. We'll also extensively use it during
Chapter 9, User Registration and Account Edit, when we'll be dealing with User
Registration and Edit Account functions. Its name will be AccountsController

www.EBooksWorld.ir

and it will have a lot of features in common with the already existing
ItemsController, such as an AccountDbContext DI instance to access the data
provider, a DefaultJsonSettings property to format JSON data, the code required
to fetch the authenticated user details, and so on.

Wait a minute... are we really going to duplicate all these code lines? We clearly
shouldn't, unless we want to completely ditch the DRY principle, which is something
that any developer should try to follow whenever they can.

Note

DRY stands for Don't Repeat Yourself and is a widely achieved principle of
software development. Whenever we violate it we fall into a WET approach, which
could mean Write Everything Twice, We Enjoy Typing or Waste Everyone's
Time, depending on what you like the most.

As a matter of fact, we can avoid a lot of code repetition by adding a
BaseController that will host these reusable objects, methods, and properties. This
has always been a rather common DRY pattern for MVC and Web API and it's still
very doable in ASP.NET Core.

BaseController

Let's do this. Right-click on the Controllers folder, select Add | New Item and add a
new Web API Controller class. Name it BaseController.cs and click OK to add
it to our project's tree:

www.EBooksWorld.ir

The BaseController will be the base class of our existing ItemsController and
also of the new AccountsController we're about to create, so we have to put there
everything that we reasonably expect both of them will use. With that in mind, this
could be a good start:

using System;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Identity;
using OpenGameListWebApp.Data;
using OpenGameListWebApp.Data.Users;
using Newtonsoft.Json;

namespace OpenGameListWebApp.Controllers
{
 [Route("api/[controller]")]
 public class BaseController : Controller
 {
 #region Common Fields
 protected ApplicationDbContext DbContext;
 protected SignInManager<ApplicationUser> SignInManager;
 protected UserManager<ApplicationUser> UserManager;
 #endregion Common Fields

 #region Constructor
 public BaseController(ApplicationDbContext context,
 SignInManager<ApplicationUser> signInManager,
 UserManager<ApplicationUser> userManager)
 {
 // Dependency Injection
 DbContext = context;
 SignInManager = signInManager;
 UserManager = userManager;
 }
 #endregion Constructor

 #region Common Methods
 /// <summary>
 /// Retrieves the .NET Core Identity User Id
 /// for the current ClaimsPrincipal.
 /// </summary>
 /// <returns></returns>
 public async Task<string> GetCurrentUserId()
 {
 // if the user is not authenticated, throw an exception
 if (!User.Identity.IsAuthenticated)
 throw new NotSupportedException();

 var info = await

www.EBooksWorld.ir

SignInManager.GetExternalLoginInfoAsync();
 if (info == null)
 // internal provider
 return
User.FindFirst(ClaimTypes.NameIdentifier).Value;
 else
 {
 // external provider
 var user = await UserManager.FindByLoginAsync(
 info.LoginProvider,
 info.ProviderKey);
 if (user == null) throw new
NotSupportedException();
 return user.Id;
 }
 }
 #endregion Common Methods

 #region Common Properties
 /// <summary>
 /// Returns a suitable JsonSerializerSettings object
 /// that can be used to generate the JsonResult return
value
 /// for this Controller's methods.
 /// </summary>
 protected JsonSerializerSettings DefaultJsonSettings
 {
 get
 {
 return new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 };
 }
 }
 #endregion Common Properties
 }
}

Let's see what we put in there:

Above the controller's class definition there's the [Route] attribute, which
defines the default routing scheme. Nothing new there, just the standard
api/[controller] attribute-based rule we've been using since Chapter 2, ASP.NET
Controllers and Server-Side Routes. Since we want it for all Controllers, we
chose to put it here so we won't have to type this single line of code more than
once.
Right before the constructor, we declared the local instances of the ASP.NET
Identity handlers we'll be using throughout all our Controllers. Since we're
going to need these everywhere, declaring them here is indeed the right thing to

www.EBooksWorld.ir

do to.
The GetCurrentUserId method is something we've already seen before. It
contains the one-liner we used back in Chapter 7, Authentication and
Authorization, to retrieve the authenticated user's Id. That time, we said that we
were going to change it in the near future and we actually did that: now it
supports both internal and external providers, which is precisely what we need.
We also took the chance to centralize it here, since we're going to use it more
than once.
The DefaultJsonSettings property is an old friend. We coded it back in
Chapter 2, ASP.NET Controllers and Server-Side Routes. We put it there for
obvious reasons, as this is something each Controller will most likely use.

AccountsController

Time to finally add the AccountsController to the loop. Once again, right-click on
the Controllers folder, select Add | New Item, and add another Web API Controller
class file. Name it AccountsController.cs and click OK.

Since we're going to write a good amount of code, we'll split it into multiple
sections, wrapping them into regions as much as we can.

Namespaces

Let's start with the namespaces that we'll be using throughout the controller:

using System;
using System.Linq;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using OpenGameListWebApp.Classes;
using OpenGameListWebApp.Data;
using OpenGameListWebApp.Data.Users;
using OpenGameListWebApp.ViewModels;

As usual, we need to add them to the beginning of the file.

Class declaration

We don't need to define a default routing scheme since we already put that in the
BaseController class. We just need to extend it within the class declaration, like
the following:

public class AccountsController : BaseController

www.EBooksWorld.ir

Constructor

We can use the constructor of the base class since we made it to suit our needs.

#region Constructor
public AccountsController(
 ApplicationDbContext context,
 SignInManager<ApplicationUser> signInManager,
 UserManager<ApplicationUser> userManager) : base(
 context,
 signInManager,
 userManager)
{ }
#endregion Constructor

Again, no big news here. This is the same DI pattern we've already used a number of
times before. We'll be able to use these instances by accessing the protected local
variables defined in the base class, which will be available here.

ExternalLogin

This is the method that our Angular 2 client will call whenever the user initiates an
external login request:

#region External Authentication Providers
// GET: /api/Accounts/ExternalLogin
[HttpGet("ExternalLogin/{provider}")]
public IActionResult ExternalLogin(string provider, string
returnUrl = null)
{
 switch (provider.ToLower())
 {
 case "facebook":
 case "google":
 case "twitter":
 // Request a redirect to the external login provider.
 var redirectUrl = Url.Action("ExternalLoginCallback",
"Accounts", new { ReturnUrl = returnUrl });
 var properties =
SignInManager.ConfigureExternalAuthenticationProperties(provider,
redirectUrl);
 return Challenge(properties, provider);
 default:
 return BadRequest(new { Error = String.Format("Provider
'{0}' is not supported.", provider) });
 }
}

Tip

www.EBooksWorld.ir

Notice that we started a new region here: it will contain the whole set of methods
required to properly handle the external authentication provider's authentication flow.

As we can see, it will configure the external request and initiates the authentication
workflow against the given provider, assuming it's among the supported ones. If it's
not, it will issue a 400 - Bad Request HTTP error response instead.

ExternalLoginCallBack

This method will be executed at the end of the OAuth2 workflow to handle the
authentication success or failure scenarios:

[HttpGet("ExternalLoginCallBack")]
public async Task<IActionResult> ExternalLoginCallback(string
returnUrl = null, string remoteError = null)
{
 try
 {
 // Check if the External Provider returned an error and act
accordingly
 if (remoteError != null)
 {
 throw new Exception(remoteError);
 }

 // Extract the login info obtained from the External
Provider
 ExternalLoginInfo info = await
SignInManager.GetExternalLoginInfoAsync();
 if (info == null)
 {
 // if there's none, emit an error
 throw new Exception("ERROR: No login info available.");
 }

 // Check if this user already registered himself with this
external provider before
 var user = await
UserManager.FindByLoginAsync(info.LoginProvider, info.ProviderKey);
 if (user == null)
 {
 // If we reach this point, it means that this user
never tried to logged in
 // using this external provider. However, it could have
used other providers
 // and /or have a local account.
 // We can find out if that's the case by looking for
his e-mail address.

 // Retrieve the 'emailaddress' claim

www.EBooksWorld.ir

 var emailKey =
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress
";
 var email = info.Principal.FindFirst(emailKey).Value;

 // Lookup if there's an username with this e-mail
address in the Db
 user = await UserManager.FindByEmailAsync(email);
 if (user == null)
 {
 // No user has been found: register a new user
using the info retrieved from the provider
 DateTime now = DateTime.Now;

 // Create a unique username using the
'nameidentifier' claim
 var idKey =
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifi
er";
 var username = String.Format("{0}{1}",
info.LoginProvider, info.Principal.FindFirst(idKey).Value);

 user = new ApplicationUser()
 {
 UserName = username,
 Email = email,
 CreatedDate = now,
 LastModifiedDate = now
 };

 // Add the user to the Db with a random password
 await UserManager.CreateAsync(user,
"Pass4External");

 // Assign the user to the 'Registered' role.
 await UserManager.AddToRoleAsync(user,
"Registered");

 // Remove Lockout and E-Mail confirmation
 user.EmailConfirmed = true;
 user.LockoutEnabled = false;
 }
 // Register this external provider to the user
 await UserManager.AddLoginAsync(user, info);

 // Persist everything into the Db
 await DbContext.SaveChangesAsync();
 }

 // create the auth JSON object
 var auth = new
 {

www.EBooksWorld.ir

 type = "External",
 providerName = info.LoginProvider
 };

 // output a <SCRIPT> tag to call a JS function registered
into the parent window global scope
 return Content(
 "<script type="text/javascript">" +
 "window.opener.externalProviderLogin(" +
JsonConvert.SerializeObject(auth) + ");" +
 "window.close();" +
 "</script>",
 "text/html"
);
 }
 catch (Exception ex)
 {
 // return a HTTP Status 400 (Bad Request) to the client
 return BadRequest(new { Error = ex.Message });
 }
}

This is where all the magic takes place, as we'll be checking for a number of things
and take action accordingly:

1. Before anything else, we wrap all the method into a try/catch block, so any
given Exception would result in a 400 - Bad Request HTTP error response.

2. We check the external provider error message (if any) by looking at the
remoteError parameter value. If something went bad, we throw an Exception
here, otherwise, we go ahead.

3. We extract the ExternalLoginInfo object using the SignInManager. This is a
strongly-typed .NET object containing the response data sent by the external
provider and decrypted by the Facebook middleware. In the unlikely case it
happens to be null, we throw an Exception, otherwise, we go ahead.

4. We check whenever the user already authenticated himself with this external
provider before using the UserManager.FindByLoginAsync method. If that's
the case, we skip to step 8; otherwise, we need to do additional checks.

5. We need to check whether the user registered himself before using different
providers. To do so, we retrieve the user e-mail from the ExternalLoginInfo
object, so we can perform a database lookup to see whether we already have it.
If that's the case, we skip to step 7; otherwise, we need to create it.

6. We create a new user using the data we can retrieve from the relevant
ExternalLoginInfo claims, including a temporary (yet unique) username and a
random password that they'll be able to change in the future. We also assign
them the registered user role.

7. We associate the user with this external provider, so we'll be ready to handle

www.EBooksWorld.ir

further authentication attempts (skipping steps 5-7).
8. We create an auth JSON object with some useful data.
9. Finally, we output a text/html response containing a <SCRIPT> tag that will be

executed by the client pop-up window to handle the external login on the client
side.

The last step is very important and deserves some explanation. As we might already
know, the OAuth2 authorization workflow is an interactive process where the user
has to manually accept a consent form. In order to support that, we'll need to call
these controller routes from a popup window. That's why we need to call a function
registered within the parent window (window.opener) and also close the current one
using window.close().

Logout

Since the external provider implementation is based on cookies, we need to create a
server-side method that will remove them (if present) when the user performs the
logout. The SignInManager.SignOutAsync method automatically handles that:

[HttpPost("Logout")]
public IActionResult Logout()
{
 if (HttpContext.User.Identity.IsAuthenticated)
 {
 SignInManager.SignOutAsync().Wait();
 }
 return Ok();
}
#endregion External Authentication Providers

Tip

We're closing the external authentication providers region right after this method.

Updating the ItemsController

Before moving to Angular 2, we should really bring the ItemsController up to date
with our recent changes. Open the /Controllers/ItemsController.cs file and
append the following namespaces to the already existing using list:

using Microsoft.AspNetCore.Identity;
using OpenGameListWebApp.Data.Users;

Right after that, change the class declaration and the constructor to extend the
BaseController in the following way:

www.EBooksWorld.ir

public class ItemsController : BaseController
{
 #region Constructor
 public ItemsController(

 ApplicationDbContext context,

 SignInManager<ApplicationUser> signInManager,

 UserManager<ApplicationUser> userManager) : base(

 context,

 signInManager,

 userManager)

 { }
 #endregion Constructor

The [Route] attribute can be deleted, as well as the whole private fields region
and the DefaultJsonSettings property near the end of the file. We'll get them all
from the BaseController.

We still need to perform some changes to the Add method, as it still contains the
outdated UserId retrieval method with no external provider support that we
implemented in Chapter 7, Authentication and Authorization. We need to replace it
with the updated version we implemented within the BaseController earlier:

item.UserId = await GetCurrentUserId();

However, since this is an async method, doing that will also require setting the
async method:

public async Task<IActionResult> Add([FromBody]ItemViewModel ivm)

The server-side implementation tasks are finally done. Now we can switch back to
Angular 2 and configure our client to properly handle what we just did.

Note

Before we continue, it might be wise to issue a full project Rebuild to ensure that
there are no compile errors up to this point.

Configuring the client

Let's do a quick inventory of what we need to do within our Angular 2 client app to
allow our users to log in with Facebook:

www.EBooksWorld.ir

1. Add a Login with Facebook button to our login view, bound to a method that
will fire the OAuth2 initial request to our Web API. We also need to do that
within a popup, since the user will be prompted by the Facebook consent form.

2. Change the logout() method within the AuthService class. We need it to issue
a call to the new Logout web API to remove the authentication cookie placed
by external providers (if any).

3. Update the AppComponent class with the new changes. Specifically, we need to
do the following:

Change the internal AppComponent.logout() handler to match the new
AuthService.logout() implementation.
Add an externalProviderLoginmethod to handle the external
authentication outcome response. We also need to make it available in the
global scope, as we know it will be called from a popup using the
window.opener interface.

Challenge accepted. Let's do this.

Updating the LoginComponent

Open the /Scripts/app/login.component.ts file, locate the template section,
and add the following (new lines are highlighted):

<div class="login-container">
 <h2 class="form-login-heading">Login</h2>
 <div class="alert alert-danger" role="alert"
*ngIf="loginError">
 Warning: Username or Password mismatch
 </div>
 <form class="form-login" [formGroup]="loginForm"
(submit)="performLogin($event)">
 <input formControlName="username" type="text" class="form-
control" placeholder="Your username or e-mail address" required
autofocus />
 <input formControlName="password" type="password"
class="form-control" placeholder="Your password" required />
 <div class="checkbox">
 <label>
 <input type="checkbox" value="remember-me">
 Remember me
 </label>
 </div>
 <button class="btn btn-lg btn-primary btn-block"
type="submit">Sign in</button>
 </form>
 <button class="btn btn-sm btn-default btn-block" type="submit"
(click)="callExternalLogin('Facebook')">

www.EBooksWorld.ir

 Login with Facebook

 </button>
</div>

Once done, scroll down to the class section and add the following code (new lines
are highlighted):

export class LoginComponent {
 title = "Login";
 loginForm = null;
 loginError = false;
 externalProviderWindow = null;

 constructor(
 private fb: FormBuilder,
 private router: Router,
 private authService: AuthService) {
 this.loginForm = fb.group({
 username: ["", Validators.required],
 password: ["", Validators.required]
 });
 }

 performLogin(e) {
 e.preventDefault();
 var username = this.loginForm.value.username;
 var password = this.loginForm.value.password;
 this.authService.login(username, password)
 .subscribe((data) => {
 // login successful
 this.loginError = false;
 var auth = this.authService.getAuth();
 alert("Our Token is: " + auth.access_token);
 this.router.navigate([""]);
 },
 (err) => {
 console.log(err);
 // login failure
 this.loginError = true;
 });
 }

 callExternalLogin(providerName: string) {

 var url = "api/Accounts/ExternalLogin/" + providerName;

 // minimalistic mobile devices support

www.EBooksWorld.ir

 var w = (screen.width >= 1050) ? 1050 : screen.width;

 var h = (screen.height >= 550) ? 550 : screen.height;

 var params =
"toolbar=yes,scrollbars=yes,resizable=yes,width=" + w + ", height="
+ h;

 // close previously opened windows (if any)

 if (this.externalProviderWindow) {

 this.externalProviderWindow.close();

 }

 this.externalProviderWindow = window.open(url,
"ExternalProvider", params, false);

 }
}

That's it.

Note

Even if we added some logic to make things work on mobile devices, manually
invoking window.open is not something we should be proud of. As a matter of fact,
it's never a good practice for mobile-friendly web applications. There are a lot of
existing client libraries, including Facebook and Google's OAuth2 JavaScript SDK,
that can show, resize, and handle pop up and modal windows in a much better way
than we can do in a bunch of JavaScript lines.

We're not using these to keep things as simple as possible, so we can focus on the
core aspect of the process, which relieves us from adding external libraries and
explaining how to properly use them. However, it's definitely advisable to migrate to
a more robust solution before going live.

Updating the AuthService

When we built the AuthService class back in Chapter 7, Authentication and
Authorization, we were thinking about supporting JWT tokens only. That's why we
implemented a simple logout() method that basically just deletes the JWT tokens
from localStorage and returns true. Now that we're adding the ASP.NET Core
middleware for external providers, we need to delete their cookies as well. That's
the reason why we added the Logout() Web API within our AccountsController,
which now we need to call from Angular 2.

www.EBooksWorld.ir

To do that, just open the Scripts/app/auth.service.ts file and change the
existing logout() method in the following way:

logout(): any {
 return this.http.post(
 "api/Accounts/Logout",
 null)
 .map(response => {
 this.setAuth(null);
 return true;
 })
 .catch(err => {
 return Observable.throw(err);
 });
}

That's pretty straightforward. Instead of just removing the JSON web token from
localStorage, we issue a call to the api/Accounts/Logout web API to delete the
cookies. The localStorage cleansing will happen right after that. That way, we'll
remove both the cookie-based external provider support and the JWT-based
implementation that handles our internal accounts.

Updating the AppComponent

We're not done yet. The modifications we made must be also properly handled by the
AppComponent, since it is our Angular 2 application's entry point. To be more
specific, we need to change the internal logout() method to match the changes we
made within the AuthService component and also implement the
externalProviderLogin method.

Open the /Scripts/app/app.component.ts file and add change the following
import line at the beginning of the file (new code is highlighted):

import {Component, NgZone} from "@angular/core";

Then change its class section just like the following (new/updated lines are
highlighted):

export class AppComponent {
 title = "OpenGameList";

 constructor(
 public router: Router,
 public authService: AuthService,
 public zone: NgZone) {
 if (!(<any>window).externalProviderLogin) {

 var self = this;

www.EBooksWorld.ir

 (<any>window).externalProviderLogin = function (auth) {

 self.zone.run(() => {

 self.externalProviderLogin(auth);

 });

 }

 }
 }

 isActive(data: any[]): boolean {
 return this.router.isActive(
 this.router.createUrlTree(data),
 true);
 }

 logout(): boolean {
 // logs out the user, then redirects him to Welcome View.
 this.authService.logout().subscribe(result => {

 if (result) {

 this.router.navigate([""]);

 }

 });

 return false;
 }

 externalProviderLogin(auth: any) {

 this.authService.setAuth(auth);

 console.log("External Login successful! Provider: "

 + this.authService.getAuth().providerName);

 this.router.navigate([""]);

 }
}

The update within the logout() method is not a big deal. We just encapsulated its
previous logic within a subscription to the updated AuthService.logout() return
value, so we can be sure that the routing call won't be issued before the Web API call

www.EBooksWorld.ir

has been completed.

However, the new code we wrote to properly implement the
externalProviderLogin method might be more difficult to understand, at least at
first glance. Let's take a look at the new stuff, starting from the bottom.

The externalProviderLogin method itself is actually pretty straightforward: we
receive the JSON auth object as input parameter and pass it to the authService that
will store it in localStorage, then we redirect the (externally) logged-in user back
to the welcome view.

Plain and simple, isn't it? If we could only call this method from outside our Angular
2 app, we would be done. That's precisely what we're doing within the constructor
method, which now contains a short, yet quite obscure, piece of code. Let's try to
understand what we're doing there.

Understanding zones

If we take another look at the constructor updated source code, we can see that
we're injecting something new here: a zone instance of NgZone type. What are these
zones and how do they work in Angular 2?

To get straight to the point, zones are execution contexts for encapsulating and
intercepting JavaScript-based asynchronous activities. Each zone acts as a separate,
persisting execution context that can be used to trace each asynchronous activity back
to its originating source.

For a short yet enlightening definition of what zones are, we can use the words of
Brian Ford of the Angular team during the presentation of the Zone.js library at Ng-
Conf 2014:

"You can think of it as thread-local storage for JavaScript VMs."

Note

The full talk is available at the following URL:

https://www.youtube.com/watch?v=3IqtmUscE_U.

As we already know, most modern JavaScript libraries execute a lot of asynchronous
activities, such as DOM events, promises, and XHR calls. Being able to track these
activities back to their issue would allow them to take action before and after each
activity completes, thus providing great control over the whole execution flow.

www.EBooksWorld.ir

https://www.youtube.com/watch?v=3IqtmUscE_U

This is most likely the reason that led Angular 2 developers to integrate the Zone.js
within their framework. As a matter of fact, Angular 2 runs the application and all of
its components in a specific zone, so it can listen to its own asynchronous events and
react accordingly, checking for data changes, updating the information shown on
screen via data binding, and so on.

We won't go further than that, as it would take us far from the scope of this book. The
only thing we need to understand here is that whenever we need to call one of our
application's methods from outside, we also need to run it within the Angular 2 zone;
if we don't do that, Angular 2 won't be able to track the originating source, meaning
that it won't react to model changes.

This is what would happen if we were to do that:

if (!(<any>window).externalProviderLogin) {
 (<any>window).externalProviderLogin = function (auth) {
 self.externalProviderLogin(auth);
 }
}

As we can see, there's no zone encapsulation anymore, so the method will be fired
from a global context and Angular 2 event hooks will be cut out. This doesn't
necessarily mean it won't work, but it would be a fire and forget way of exposing that
method.

In our specific scenario, since routing is involved, it won't be the proper way to
perform our task. We need to run our job within the same execution context used by
our application.

This is precisely what we did within our constructor method (zone-encapsulation
lines are highlighted):

if (!(<any>window).externalProviderLogin) {
 var self = this;
 (<any>window).externalProviderLogin = function (auth) {
 self.zone.run(() => {
 self.externalProviderLogin(auth);
 });
 }
}

Testing it out

It's time to run a full-surface test. Hit F5 and wait for the welcome screen, then click
the Login menu item to go to the updated login view:

www.EBooksWorld.ir

Click the Login with Facebook button. A pop-up window should appear shortly,
containing the Facebook consent form:

www.EBooksWorld.ir

Tip

If we have never authenticated ourselves with Facebook using this browser, a login
screen will be shown right before the consent form.

As soon as we click Okay, the OAuth2 authorization flow will continue. If we set
everything up correctly, the pop-up screen should eventually close, bringing us back
to the welcome view with an authenticated status. We can easily confirm our status by
checking the presence of the Logout and Add New menu items since we previously
set them to appear only if the user has been authenticated.

www.EBooksWorld.ir

Google
As we said earlier, implementing additional providers will be much easier, as the
external authentication infrastructure we built for Facebook will also take care of
them.

Let's start with the big G. Again, the first thing we need to do is to configure our web
application on Google servers to obtain the required credentials to configure the
ASP.NET middleware.

Open the following URL:

https://console.developers.google.com/projectselector/apis/credentials?pli=1

Select Create a new Project from the drop-down list, then give it a suitable name
and click the Create button:

On the following screen, click the Create credentials button and select OAuth
client ID:

www.EBooksWorld.ir

https://console.developers.google.com/projectselector/apis/credentials?pli=1

As soon as you confirm your choice, the Google platform will then warn you that you
must create an OAuth consent screen for your application. We can do that by
choosing an e-mail address and a product name shown to users (the remaining fields
are optional).

Once done, we'll be allowed to add the OAuth client ID. Choose Web Application
and fill in the form that will open with your application name and one (or more)
JavaScript origins. It's pretty much the same thing we did with Facebook, with the
only difference that we also have to specify the Authorized redirect URIs to match
the format that will be internally used by ASP.NET Core, which defaults to the
following: http://<hostname>:<port>/signin-google

www.EBooksWorld.ir

When we're ready, we can click on the Create button to get our new application's
ClientId and ClientSecret. We can then put them in our project's
appsettings.json file, right below the Facebook keys:

{
 "Authentication": {
 "Facebook": {
 "AppId": "___FB_APP_ID___",
 "AppSecret": "___FB_APP_SECRET___"
 },
 "Google": {

 "ClientId": "___GOOGLE_CLIENT_ID___",

 "ClientSecret": "___GOOGLE_CLIENT_SECRET___"

 }

www.EBooksWorld.ir

 }

Before leaving the Google platform, we also need to add support for the Google+
API, otherwise, the OAuth2 login won't be able to work. To do that, go to Library,
click the Google APIs tab, and look for Google+ API using the search textbox:

Select it, then click Enable to add the Google OAuth2 authorization flow support
to our application.

Once done, we have to add the Google authentication package to our project.json
file, right below the Facebook one:

"Microsoft.AspNetCore.Authentication.Google": "1.0.0"

Now we can open the Startup.cs file and add the Google Authentication
middleware to the Configure method, right below the Facebook one:

app.UseGoogleAuthentication(new GoogleOptions()
{
 AutomaticAuthenticate = true,
 AutomaticChallenge = true,
 ClientId = Configuration["Authentication:Google:ClientId"],
 ClientSecret =
Configuration["Authentication:Google:ClientSecret"],
 CallbackPath = "/signin-google",
 Scope = { "email" }

www.EBooksWorld.ir

});

Last but not least, we need to add the Login with Google button within the HTML
template of our Angular 2 application's AppComponent class. Open the
/Scripts/app/app.component.ts file and add the following right below the
existing Facebook button:

<button class="btn btn-sm btn-default btn-block" type="submit"
(click)="callExternalLogin('Google')">
 Login with Google
</button>

... and we're done.

www.EBooksWorld.ir

Twitter
Adding Twitter to the loop is relatively easy, as the Twitter API is way simpler to use
than Facebook's and Google's. However, it also has some pretty serious limitations
when compared to their big brothers:

It doesn't natively allow us to request the user's e-mail address, so we'll need to
do an additional step.
It requires a public facing URL to authenticate users. It won't work with
localhost or unreachable hostnames.

To add it to our supported external providers list, go to https://apps.twitter.com/, sign
in using your Twitter account, click on the Add Application button, then fill in the
relevant data on the Create an application form that will appear:

As soon as we accept the Developer Agreement, we'll be redirected to our new
Twitter application's settings page. There we can retrieve the application's
ConsumerKey and ConsumerSecret and paste them into our appsettings.json
file, right below the Facebook and Google ones:

"Twitter": {
 "ConsumerKey": "___TWITTER_CONSUMER_KEY___",
 "ConsumerSecret": "___TWITTER_SECRET_KEY___"

www.EBooksWorld.ir

}

Right after that, just like we did with Facebook and Google, we need to add the
Twitter authentication package to our project.json file:

"Microsoft.AspNetCore.Authentication.Twitter": "1.0.0"

We also need to add the corresponding middleware to the Startup.cs file:

app.UseTwitterAuthentication(new TwitterOptions()
{
 AutomaticAuthenticate = true,
 AutomaticChallenge = true,
 ConsumerKey =
Configuration["Authentication:Twitter:ConsumerKey"],
 ConsumerSecret =
Configuration["Authentication:Twitter:ConsumerSecret"],
 CallbackPath = "/signin-twitter"
});

And we also add the HTML button to the /Scripts/app/app.component.ts file:

<button class="btn btn-sm btn-default btn-block" type="submit"
(click)="callExternalLogin('Twitter')">
 Login with Twitter
</button>

Elevated permissions request

We're done coding, but we're not done yet because Twitter, just as we said at the
beginning of this paragraph, won't natively send us the user's e-mail address.

To fix that, we need to manually fill in an elevated permissions request form where
we ask Twitter to give to our application the chance to request e-mail addresses via
OAuth2.

In order to do that, we need to perform the following steps:

1. Visit the following URL: https://support.twitter.com/forms/platform.
2. Locate the radio button list and select I need access to special permissions.
3. Enter the same Application Name we used when we registered our application

with Twitter.
4. Enter the Application ID. This can be obtained by going to

https://apps.twitter.com/, selecting our Twitter app, and then looking at the
numeric parameter contained at the end of the URL itself.

5. Write the following within the Authorization Request text area: E-Mail
Address for OAuth2 sign-in.

www.EBooksWorld.ir

https://support.twitter.com/forms/platform
https://apps.twitter.com/

6. Click Submit button and wait for an e-mail response that will hopefully come in
few hours. The e-mail will contain the instruction we need to follow to be able
to request the user e-mail address. Until then the Twitter authentication won't
work, as our AccountsControllerExternalLoginCallback method will
throw an exception.

www.EBooksWorld.ir

Troubleshooting
Learning how to properly handle external authentication providers is one of the most
difficult aspects of this whole book. There are a lot of things that can go wrong, most
of them not even under our control: OpenIddict behavior, Facebook/Google/Twitter
configuration, permission handling, missing or incorrect endpoint URIs, security
issues, and so on.

Understanding everything will require time and can be frustrating at times. That said,
these are some useful suggestions that could save you a headache or two:

We should always check our development browser's console log and network
tabs, as these are an endless source of info regarding our web application's
overall status: HTTP 404 and/or 500 errors, missing resources, invalid
JavaScript code, and so on, not to mention the console messages sent by our
very own code.
Every time we get an Access Denied exception, we should clean all browser
cookies for our web application, especially the one called
Identity.External, and also the relevant entry in our browser's
localStorage. Both of them can be easily managed using the Application tab
of the Google Chrome development tools, accessible by pressing Shift + Ctrl +
J.
Every time our .NET application crashes without satisfying browser output
documenting the exception being thrown, we should check the Output tab of
Visual Studio 2015. A lot of .NET Core libraries write their exceptions there.
External OAuth2 providers will always give us the option to delete/deauthorize
our web application from their web interface. Whenever we encounter problems
with authentication, the best thing we can do to retrace our steps is to do
precisely that and start over.

www.EBooksWorld.ir

Conclusions
Here's how our application's login view should look after all this effort:

With this new authentication system, our application is now starting to become a
potentially shippable product. However, we don't have a user profile view to handle
user registrations, e-mail/password changes, and so on.

This feature, together with some other features, will be addressed in the following
chapter.

www.EBooksWorld.ir

Suggested topics
OpenID Connect, OpenIddict, OAuth2, OpenID Connect, RFC 6749, Secret Manager,
DRY, WET, Zones, Zone.js, LocalStorage, Cookies.

www.EBooksWorld.ir

Summary
Our JwtProvider was working fine, but it lacked some quite important features that
had to be implemented as well in order to use it in a production-ready application
such as the one we're aiming to build. To enable us to do that, we also identified
OpenIddict, a viable open-source OAuth2/OpenID Connect provider that leverages
ASP.NET Core Identity and ASOS, as a viable alternative, thus giving ourselves the
choice between going for it and sticking with our handmade solution.

As soon as we chose our path, we implemented some external OAuth2 authentication
providers such as Facebook, Google, and Twitter. The first was also the toughest
one, as we needed to create our web API interface and understand how to properly
handle the various scenarios for the first time. We definitely had an easier time with
the other two, even if each one of them presented their own set of issues we had to
address.

www.EBooksWorld.ir

Chapter 9. User Registration and
Account Edit
In this chapter, we'll be adding a couple more account-related features that are still
missing: user registration and edit user info.

www.EBooksWorld.ir

User Registration
To implement a User Registration logic, we need to take care of the following tasks:

Create a UserViewModel to send and receive data from and to the Web API, just
like we did with items back in Chapter 2, ASP.NET Controllers and Server-
Side Routes
Add the Get, Add, Update, and Delete RESTful methods to the
AccountsController Web API interface
Handle all these methods in Angular 2 by updating the AuthService class
Create a UserEditComponent class in our Angular 2 client to host the
registration form, hooking it to the AuthService accordingly
Update the other Angular 2 components, together with the existing client-side
routing structure, in order to properly integrate it within the application
workflow

Let's get it done.

www.EBooksWorld.ir

UserViewModel
Right-click on the /ViewModels/ folder and add a new C# class, naming it
UserViewModel.cs. Replace the default content with the following code:

using System;
using System.ComponentModel;
using Newtonsoft.Json;

namespace OpenGameListWebApp.ViewModels
{
 [JsonObject(MemberSerialization.OptOut)]
 public class UserViewModel
 {
 #region Constructor
 public UserViewModel()
 {

 }
 #endregion Constructor

 #region Properties
 public string UserName { get; set; }
 public string Password { get; set; }
 public string PasswordNew { get; set; }
 public string Email { get; set; }
 public string DisplayName { get; set; }
 #endregion Properties
 }
}

We only declared the properties we're going to send to and/or receive from our
Angular 2 client, just like we did with the ItemViewModel. The PasswordNew
property is the only special case since it doesn't exist in the ApplicationUser class.
We're going to use it by the end of this chapter, when we'll give our users some
account-editing capabilities, such as being able to change their password.

www.EBooksWorld.ir

AccountsController
Open the /Controllers/AccountsController.cs file we created in Chapter 8,
Third-Party Authentication and External Providers, then add the following region
between the existing constructor and external authentication providers regions:

#region RESTful Conventions
#endregion RESTful Conventions

This is where we're going to implement the Get, Add, Update, and Delete methods
to properly handle all requests regarding user accounts.

Get

The Get request is commonly used any time the client wants to retrieve updated info
regarding a given user.

To properly handle such requests, we need to define at least two implementations: a
parameterless one, returning the currently active/logged in account (if any), and
another one that will return the user corresponding to the requested ID.

The former is often used when the client needs to show the user their data, usually
within a standard view/edit account info screen; the latter is required whenever we
have a clickable user listing of any sort, or any other control that enables a visitor to
see their fellow user's info:

/// <summary>
/// GET: api/accounts
/// </summary>
/// <returns>A Json-serialized object representing the current
account.</returns>
[HttpGet()]
public async Task<IActionResult> Get()
{
 var id = await GetCurrentUserId();
 var user = DbContext.Users.Where(i => i.Id ==
id).FirstOrDefault();
 if (user != null) return new JsonResult(new UserViewModel()
 {
UserName = user.UserName,
Email = user.Email,
DisplayName = user.DisplayName
 }, DefaultJsonSettings);
 else return NotFound(new { error = String.Format("User ID {0}
has not been found", id) });
}

www.EBooksWorld.ir

/// <summary>
/// GET: api/accounts/{id}
/// ROUTING TYPE: attribute-based
/// </summary>
/// <returns>A Json-serialized object representing a single
account.</returns>
[httpget("{id}")]
public IActionResult Get(string id)
{
 return BadRequest(new { error = "not implemented (yet)." });
}

That's it. We don't have to implement the latter now, as we won't be using it by our
application in this phase. We don't plan to add a clickable list of active and/or
registered users, so we'll just emit a bad request HTTP error for now.

Add

This is a standard request to create a new user. We expect it to come right after the
(new) user submitted a properly filled in registration form, so we restrict the method
to POST requests only by using the HttpPost attribute:

/// <summary>
/// POST: api/accounts
/// </summary>
/// <returns>Creates a new User and return it accordingly.
</returns>
[HttpPost()]
public async Task<IActionResult> Add([FromBody]UserViewModel uvm)
{
 if (uvm != null)
 {
 try
 {
 // check if the Username/Email already exists
 ApplicationUser user = await
UserManager.FindByNameAsync(uvm.UserName);
 if (user != null) throw new Exception("UserName already
exists.");
 user = await UserManager.FindByEmailAsync(uvm.Email);
 if (user != null) throw new Exception("E-Mail already
exists.");

 var now = DateTime.Now;

 // create a new Item with the client-sent json data
 user = new ApplicationUser()
 {
 UserName = uvm.UserName,
 Email = uvm.Email,
 CreatedDate = now,

www.EBooksWorld.ir

 LastModifiedDate = now
 };

 // Add the user to the Db with a random password
 await UserManager.CreateAsync(user, uvm.Password);

 // Assign the user to the 'Registered' role.
 await UserManager.AddToRoleAsync(user, -Registered");

 // Remove Lockout and E-Mail confirmation
 user.EmailConfirmed = true;
 user.LockoutEnabled = false;

 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return the newly-created User to the client.
 return new JsonResult(new UserViewModel()
 {
 UserName = user.UserName,
 Email = user.Email,
 DisplayName = user.DisplayName
 }, DefaultJsonSettings);
 }
 catch (Exception e)
 {
 // return the error.
 return new JsonResult(new { error = e.Message });
 }
 }

 // return a generic HTTP Status 500 (Not Found) if the client
payload is invalid.
 return new StatusCodeResult(500);
}

The implementation is quite long, but the code should be understandable enough. We
check if the given username and/or e-mail address exist in our users archive. If they
do, we emit an error message; otherwise, we create a new user account and return its
relevant info in JSON format.

E-mail confirmation

We won't hide the fact that, for the sake of simplicity, we're purposely skipping the e-
mail confirmation step, which has always been a distinctive feature of ASP.NET
Identity as well as any existing web application since the dawn of time.

Luckily enough, implementing such a mechanism in ASP.NET Core isn't going to be
hard at all. The task could be basically split into three relevant steps:

www.EBooksWorld.ir

1. Instead of setting the user's EmailConfirmed property to true like we did, we
should issue a call to the GenerateEmailConfirmationTokenAsync() method
of UserManager.

2. The confirmation token should then be sent to the user's e-mail address so they
can send it back to our web application as a URL parameter or inside an e-mail
activation form.

3. Eventually, we should be able to validate it via a dedicated
AccountController Web API using the
UserManager.ConfirmEmailAsync() method.

Pretty straightforward, isn't it? Implementing it before going further is a great
exercise to test our skills up to this point.

Update

The Update method is used to alter the data of an existing user. It's often called at the
end of an edit profile info form of any sort, assuming that the currently active/logged
in user is updating their own data. It can also be used by high-privileged users, such
as administrators, to modify other user's data. However, we won't be supporting that
within our application's first release, so we might as well skip that:

/// <summary>
/// PUT: api/accounts/{id}
/// </summary>
/// <returns>Updates current User and return it accordingly.
</returns>
[HttpPut]
[Authorize]
public async Task<IActionResult> Update([FromBody]UserViewModel
uvm)
{
 if (uvm != null)
 {
 try
 {
 // retrieve user
 var id = await GetCurrentUserId();
 ApplicationUser user = await
UserManager.FindByIdAsync(id);
 if (user == null) throw new Exception("User not
found");

 // check for current password
 if (await UserManager.CheckPasswordAsync(user,
uvm.Password))
 {
 // current password ok, perform changes (if any)

www.EBooksWorld.ir

 bool hadChanges = false;

 if (user.Email != uvm.Email)
 {
 // check if the Email already exists
 ApplicationUser user2 = await
UserManager.FindByEmailAsync(uvm.Email);
 if (user2 != null && user.Id != user2.Id) throw
new Exception("E-Mail already exists.");
 else await UserManager.SetEmailAsync(user,
uvm.Email);
 hadChanges = true;
 }

 if (!string.IsNullOrEmpty(uvm.PasswordNew))
 {
 await UserManager.ChangePasswordAsync(user,
uvm.Password, uvm.PasswordNew);
 hadChanges = true;
 }

 if (user.DisplayName != uvm.DisplayName)
 {
 user.DisplayName = uvm.DisplayName;
 hadChanges = true;
 }

 if (hadChanges)
 {
 // if we had at least 1 change:
 // update LastModifiedDate
 user.LastModifiedDate = DateTime.Now;
 // persist the changes into the Database.
 DbContext.SaveChanges();
 }

 // return the updated User to the client.
 return new JsonResult(new UserViewModel()
 {
 UserName = user.UserName,
 Email = user.Email,
 DisplayName = user.DisplayName
 }, DefaultJsonSettings);
 }
 else throw new Exception("Old password mismatch");
 }
 catch (Exception e)
 {
 // return the error.
 return new JsonResult(new { error = e.Message });
 }
 }

www.EBooksWorld.ir

 // return a HTTP Status 404 (Not Found) if we couldn't find a
suitable item.
 return NotFound(new { error = String.Format("Current User has
not been found") });
}

Despite the fair amount of code, we should be able to understand everything. The
first thing we do is check for the user's current password, which is required to
perform any changes. If the password matches, we update the user fields accordingly
with the new data. If the e-mail has been changed, we also check within our database
to see if it already belongs to anyone else; if it does, we emit an error message.
Otherwise, we go ahead.

If all checks pass, we update the LastModifiedDate, persist the new user info
within our database, and return an updated set of data in JSON format; otherwise, we
return a HTTP Error 500.

Delete

The Delete method is almost always a prerogative of administrators unless we want
to allow our users to delete themselves. We're not planning to do that, neither are we
building an administration panel in this phase, so we can safely skip both
implementations for the time being:

/// <summary>
/// DELETE: api/accounts/
/// </summary>
/// <returns>Deletes current User, returning a HTTP status 200 (ok)
when done.</returns>
[HttpDelete()]
[Authorize]
public IActionResult Delete()
{
 return BadRequest(new { error = "not implemented (yet)." });
}

/// <summary>
/// DELETE: api/accounts/{id}
/// </summary>
/// <returns>Deletes an User, returning a HTTP status 200 (ok) when
done.</returns>
[HttpDelete("{id}")]
[Authorize]
public IActionResult Delete(string id)
{
 return BadRequest(new { error = "not implemented (yet)." });}

Now our Web API is ready to handle the most basic requests for adding and updating

www.EBooksWorld.ir

user accounts. We're going to call these new methods with our Angular 2 client in a
short while.

www.EBooksWorld.ir

User class
Time to switch to Angular 2. The first thing we need to do here is to add an Angular 2
User class. Right-click on /Scripts/app/, create a new user.ts TypeScript file,
and fill it with the following code:

export class User {
 constructor(
 public UserName: string,
 public Password: string,
 public PasswordNew: string,
 public Email: string,
 public DisplayName: string) {}
}

This will be the client-side counterpart of the UserViewModel Web API class we
just made.

www.EBooksWorld.ir

AuthService
Open the /Scripts/app/auth.service.ts file and add the following import
reference:

import {User} from "./user";

Then, implement the following methods:

get() {
 return this.http.get("api/Accounts")
 .map(response => response.json());
}

add(user: User) {
 return this.http.post(
 "api/Accounts",
 JSON.stringify(user),
 new RequestOptions({
 headers: new Headers({
 "Content-Type": "application/json"
 })
 }))
 .map(response => response.json());
}

update(user: User) {
 return this.http.put(
 "api/Accounts",
 JSON.stringify(user),
 new RequestOptions({
 headers: new Headers({
 "Content-Type": "application/json"
 })
 }))
 .map(response => response.json());
}

There's nothing special to explain here; we're just calling the Web APIs we added
before, returning the resulting JSON objects.

www.EBooksWorld.ir

UserEditComponent
Now we can create our User Registration form. Right-click on the /Scripts/app/
folder and add a new user-edit.component.ts TypeScript file. Since the code is a
bit complex, we'll split it up into parts.

Let's start with the import statements:

import {Component, OnInit} from "@angular/core";
import {FormBuilder, FormControl, FormGroup, Validators} from
"@angular/forms";
import {Router} from "@angular/router";
import {AuthService} from "./auth.service";
import {User} from "./user";

As we can see, we're referencing a lot of stuff here. By looking at the components
we're pulling off from the @angular2/forms package, we can already guess that
we're going to build a form using the model-driven pattern. We already used that
when we built our minimalistic login form, yet we'll definitely see more about it
here.

Here's the @Component section source code:

@Component({
 selector: "user-edit",
 template: `
<div class="user-container">
 <form class="form-user" [formGroup]="userForm"
(submit)="onSubmit()">
 <h2 class="form-user-heading">{{title}}</h2>
 <div class="form-group">
 <input formControlName="username" type="text"
class="form-control" placeholder="Choose an Username" autofocus />
 <span class="validator-label valid"
*ngIf="this.userForm.controls.username.valid">
 <span class="glyphicon glyphicon-ok" aria-
hidden="true">
 valid!

 <span class="validator-label invalid"
*ngIf="!this.userForm.controls.username.valid &&
!this.userForm.controls.username.pristine">
 <span class="glyphicon glyphicon-remove" aria-
hidden="true">
 invalid

 </div>
 <div class="form-group">

www.EBooksWorld.ir

 <input formControlName="email" type="text" class="form-
control" placeholder="Type your e-mail address" />
 <span class="validator-label valid"
*ngIf="this.userForm.controls.email.valid">
 <span class="glyphicon glyphicon-ok" aria-
hidden="true">
 valid!

 <span class="validator-label invalid"
*ngIf="!this.userForm.controls.email.valid &&
!this.userForm.controls.email.pristine">
 <span class="glyphicon glyphicon-remove" aria-
hidden="true">
 invalid

 </div>
 <div class="form-group">
 <input formControlName="password" type="password"
class="form-control" placeholder="Choose a Password" />
 <span class="validator-label valid"
*ngIf="this.userForm.controls.password.valid &&
!this.userForm.controls.password.pristine">
 <span class="glyphicon glyphicon-ok" aria-
hidden="true">
 valid!

 <span class="validator-label invalid"
*ngIf="!this.userForm.controls.password.valid &&
!this.userForm.controls.password.pristine">
 <span class="glyphicon glyphicon-remove" aria-
hidden="true">
 invalid

 </div>
 <div class="form-group">
 <input formControlName="passwordConfirm"
type="password" class="form-control" placeholder="Confirm your
Password" />
 <span class="validator-label valid"
*ngIf="this.userForm.controls.passwordConfirm.valid &&
!this.userForm.controls.password.pristine &&
!this.userForm.hasError('compareFailed')">
 <span class="glyphicon glyphicon-ok" aria-
hidden="true">
 valid!

 <span class="validator-label invalid" *ngIf="
(!this.userForm.controls.passwordConfirm.valid &&
!this.userForm.controls.passwordConfirm.pristine) ||
this.userForm.hasError('compareFailed')">
 <span class="glyphicon glyphicon-remove" aria-
hidden="true">

www.EBooksWorld.ir

 invalid

 </div>
 <div class="form-group">
 <input formControlName="displayName" type="text"
class="form-control" placeholder="Choose a Display Name" />
 </div>
 <div class="form-group">
 <input type="submit" class="btn btn-primary btn-block"
[disabled]="!userForm.valid" value="Register" />
 </div>
 </form>
</div>
 `
})

As expected, there's a lot of new stuff here. We made extensive use of the valid
property exposed by the FormGroup container and also by their inner FormControl
input controls, as it's a convenient way to check the status of these items in real time.

We're using these values to change the GUI behavior in a number of ways, including
disabling the Register button until the form is valid:

<input type="submit" class="btn btn-primary btn-block"
[disabled]="!userForm.valid" value="Register" />

Both the Form components and their Validators are set in the class source code,
which we split into three parts for better reading. The first one features the
constructor, which instantiates the services we'll be using via dependency
injection:

export class UserEditComponent {
 title = "New User Registration";
 userForm: FormGroup = null;
 errorMessage = null;

 constructor(
 private fb: FormBuilder,
 private router: Router,
 private authService: AuthService) {
 if (this.authService.isLoggedIn()) {

 this.router.navigate([""]);

 }
 }

We know these objects already, so there's no need to explain them again. We can even
recognize the highlighted part, as we already used it in our LoginComponent for the

www.EBooksWorld.ir

same purpose. If the user is already logged in, they shouldn't be allowed to fill in a
registration form, so we're redirecting them to the Welcome View.

Here's the ngOnInit method, where we initialize the form using FormBuilder:

ngOnInit() {
 this.userForm = this.fb.group(
 {
 username: ["", [
 Validators.required,
 Validators.pattern("[a-zA-Z0-9]+")
]],
 email: ["", [
 Validators.required,
 Validators.pattern("[a-z0-9!#$%&'*+/=?^_`{|}~-]+
(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-
9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?")
]],
 password: ["", [
 Validators.required,
 Validators.minLength(6)]],
 passwordConfirm: ["", [
 Validators.required,
 Validators.minLength(6)]],
 displayName: ["", null]
 },
 {
 validator: this.compareValidator('password',
'passwordConfirm')
 }
);
}

As we can see, we're using a wide set of Validators here. Most of them are
shipped with the @angular2/forms package:

Validators.required is an old friend, as we already used it for our login
form. Its behavior is quite self-explanatory: it will invalidate the control as long
as its value is empty. We're using this on all our input controls except for
displayName, since it's not a required field.
Validators.pattern is basically a regular expression (regex) validator. It
will check the control value against the given regex and invalidate it until it
matches. We used it together with a very basic regex to allow only alphanumeric
characters for the username, and then with a RFC 2822 compliant regex to
check for invalid e-mail addresses. Although it won't save us from scammers, it
will do a decent job to save our real users from the most common typing errors.
Validators.minLength does what its name suggests: it will invalidate the
control until its value reaches the specified minimum character count.

www.EBooksWorld.ir

The last validator we used, this.compareValidator, is a custom one: we made it
to check if the password and passwordConfirm input values are the same or not and
let the user know in real time, which is a common feature of modern registration
forms. Technically, it's nothing more than a standard function that we can append right
after the ngOnInit method:

compareValidator(fc1: string, fc2: string) {
 return (group: FormGroup): { [key: string]: any } => {
 let password = group.controls[fc1];
 let passwordConfirm = group.controls[fc2];
 if (password.value === passwordConfirm.value) {
 return null;
 }
 return { compareFailed: true }
 }
}

Note

It's worth noting that form-level validators such as this are required to either return
null if there are no errors, or a { [key: string]: any } object in case of failure.
The used key can be checked within the template by using the
FormControl.hasError(key) method, just like we did in the preceding form.

Right after that, we can implement the onSubmit function, which will be executed
when the Submit button is clicked:

onSubmit() {
 this.authService.add(this.userForm.value)
 .subscribe((data) => {
 if (data.error == null) {
 // registration successful
 this.errorMessage = null;
 this.authService.login(
 this.userForm.value.username,
 this.userForm.value.password)
 .subscribe((data) => {
 // login successful
 this.errorMessage = null;
 this.router.navigate([""]);
 },
 (err) => {
 console.log(err);
 // login failure
 this.errorMessage =
 "Warning: Username or Password
mismatch";
 });
 }

www.EBooksWorld.ir

 else {
 // registration failure
 this.errorMessage = data.error;
 }
 },
 (err) => {
 // server/connection error
 this.errorMessage = err;
 });
}

As we can see, if the onSubmit method is completed without errors we will issue a
call to authService.login to authenticate the user and, right after that, redirect
them back to the Welcome View.

Tip

Don't forget to add a closing parenthesis right after the onSubmit method to close the
class block.

www.EBooksWorld.ir

Connecting the dots
Now that we have set up our controller/service/component chain, we need to wrap
everything up within the client application's loop.

Updating the root module

Let's start by adding the new-born class to the application's root module. Open the
/Scripts/app/app.module.ts file, then add the following line to the import
references right after the PageNotFoundComponent:

import {UserEditComponent} from "./user-edit.component";

Don't forget to update the declarations array accordingly:

declarations: [
 AboutComponent,
 AppComponent,
 HomeComponent,
 ItemListComponent,
 ItemDetailEditComponent,
 ItemDetailViewComponent,
 LoginComponent,
 PageNotFoundComponent,
 UserEditComponent
],

Implementing the route

The next step will be adding the register route to the routing class file. Open the
/Scripts/app/app.routing.ts file and add this to the import references:

import {UserEditComponent} from "./user-edit.component";

Then scroll down to the routing rules and add the following, right after the Login
one:

{
 path: "register",
 component: UserEditComponent
},

That's it. Now that we've defined the route, we need to make good use of it.

Adding the Register link

Open the /Scripts/app/login.component.ts file and add this to the import
references:

www.EBooksWorld.ir

import {UserEditComponent} from "./user-edit.component";

Then scroll down to the template section and add the following (new lines
highlighted):

<div class="login-container">
 <h2 class="form-login-heading">Login</h2>
 <div class="alert alert-danger" role="alert"
*ngIf="loginError">
 Warning: Username or Password mismatch
 </div>
 <form class="form-login" [formGroup]="loginForm"
(submit)="performLogin($event)">
 <input formControlName="username" type="text" class="form-
control" placeholder="Your username or e-mail address" required
autofocus />
 <input formControlName="password" type="password"
class="form-control" placeholder="Your password" required />
 <div class="checkbox">
 <label>
 <input type="checkbox" value="remember-me">
 Remember me
 </label>
 </div>
 <button class="btn btn-lg btn-primary btn-block"
type="submit">Sign in</button>
 </form>
 <div class="register-link">

 Don't have an account yet?

 <a (click)="onRegister()">Click here to register!

 </div>
 <button class="btn btn-sm btn-default btn-block" type="submit"
(click)="callExternalLogin('Facebook')">
 Login with Facebook
 </button>
 <button class="btn btn-sm btn-default btn-block" type="submit"
(click)="callExternalLogin('Google')">
 Login with Google
 </button>
</div>

Keep scrolling down and implement the onRegister() method within the class
structure, right after the performLogin() method:

onRegister() {
 this.router.navigate(["register"]);
}

www.EBooksWorld.ir

With this, we're done here as well.

Defining the styles

Open the /Scripts/less/style.less file, then append the following to style up
the UserEditComponent we just made:

.user-container {
 max-width: 500px;
 padding: 15px;
 .form-user {
 margin-left: 20px;
 input {
 margin-bottom: 10px;
 margin-right: 5px;
 max-width: 330px;
 display: inline;
 }
 .validator-label {
 &.valid {
 color: green;
 }
 &.invalid {
 color: red;
 }
 }
 }
 .register-link {
 cursor:pointer;
 font-size: 0.8em;
 margin: 10px 0;
 }
}

Right after that, add the CSS class we attached to the link panel that we put in the
UserLoginComponent file:

.register-link {
 cursor:pointer;
 font-size: 0.8em;
 margin: 10px 0;
}

Updating the menu

Last but not least, we should find a way to let our users know that our Login view
now also features a link to the brand new User Registration feature we just made.
The best thing we can do is to bring the information up to the menu itself.

Switch back to the /Scripts/app/app.component.ts file and modify the

www.EBooksWorld.ir

navigation menu in the following way (updated code is highlighted):

<div class="collapse navbar-collapse" id="navbar">
 <ul class="nav navbar-nav">
 <li [class.active]="isActive([''])">
 Home

 <li [class.active]="isActive(['about'])">
 About

 <li *ngIf="!authService.isLoggedIn()"
[class.active]="isActive(['login']) || isActive(['register'])">
 Login /
Register

 <li *ngIf="authService.isLoggedIn()">
 <a class="logout" href="javascript:void(0)"
(click)="logout()">Logout

 <li *ngIf="authService.isLoggedIn()"
[class.active]="isActive(['item/edit', 0])">
 Add
New

</div>

www.EBooksWorld.ir

Testing it out
This is what our new user Login view will look like:

And here's the User Registration view, which is accessible by clicking on the Click
here to register! link:

www.EBooksWorld.ir

We can play a bit with the form to see how our module-driven approach actually
works. As soon as we start typing something, we will get an instant feedback that
will guide us to compile each field properly:

www.EBooksWorld.ir

When we are ready to create our new account, we can click on the Register button
and submit the form. A new user will be created and authenticated, then we will be
redirected to the Welcome View.

www.EBooksWorld.ir

Edit Account
Out of the three RESTful methods, we implemented in our Web API and
AuthService interfaces, the whole User Registration view only took one. The Get
and the Update methods are still there, waiting for us to make use of them.

The best thing we can do to test them both is to implement an Edit Account view to
give our users the chance to change a limited set of their account info, such as e-mail
address, password, and display name.

Luckily enough, we already did most of the job: the UserEditComponent already
does most of what we need; we just have to tweak it a bit more so it can be used to
update an existing account as well as register a new one.

www.EBooksWorld.ir

Two routes, one component
In contrast with what we did for the ItemDetailEditComponent, we don't need to
handle a get parameter because the account we want to update cannot be chosen:
users will only be able to edit their own one. However, we still need to add an
additional route, so we'll be able to distinguish between User Registration and an
account update requests.

Open the /Scripts/app/app.routing.ts file and add the following route, right
after the register one:

{
 path: "account",
 component: UserEditComponent
},

www.EBooksWorld.ir

Adapting the UserEditComponent
The next thing we need to do is to fetch the currently active route within the
UserEditController and act accordingly. Go back to the /Scripts/app/user-
edit.component.ts file and add the ActivatedRoute class reference to the
@angular/routerimport line:

import {Router, ActivatedRoute} from "@angular/router";

This will allow us to define isRegister Boolean variable and set it accordingly to
the active route (new/updated lines are highlighted):

export class UserEditComponent {
 title = "New User Registration";
 userForm: FormGroup = null;
 errorMessage = null;
 isRegister: boolean;

 constructor(
 private fb: FormBuilder,
 private router: Router,
 private activatedRoute: ActivatedRoute,
 private authService: AuthService) {
 // determine behavior by fetching the active route

 this.isRegister = (activatedRoute.snapshot.url.toString()
=== "register");

 if ((this.isRegister && this.authService.isLoggedIn())

 || (!this.isRegister &&
!this.authService.isLoggedIn())) {

 this.router.navigate([""]);

 }

 if (!this.isRegister) {

 this.title = "Edit Account";

 }
 }

Once assigned, we immediately used the isRegister variable to improve our
redirect strategy: as we don't want registered users to play with our registration form,
we also can't allow unregistered users to edit their (non-existing) account. Right after
that, we use it again to conditionally change the title to a most suited one.

www.EBooksWorld.ir

The next change we need to do is at the end of the ngOnInit method (new lines are
highlighted):

ngOnInit() {
 this.userForm = this.fb.group(
 {
 username: ["", [
 Validators.required,
 Validators.pattern("[a-zA-Z0-9]+")
]],
 email: ["", [
 Validators.required,
 Validators.pattern("[a-z0-9!#$%&'*+/=?^_`{|}~-]+
(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-
9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?")
]],
 password: ["", [
 Validators.required,
 Validators.minLength(6)]],
 passwordConfirm: ["", [
 Validators.required,
 Validators.minLength(6)]],
 displayName: ["", null]
 },
 {
 validator: this.compareValidator('password',
'passwordConfirm')
 }
);

 if (!this.isRegister) {

 this.userForm.addControl("passwordCurrent",

 new FormControl("", Validators.required));

 var password = this.userForm.find("password");

 password.clearValidators();

 password.setValidators(Validators.minLength(6));

 var passwordConfirm =

 this.userForm.find("passwordConfirm");

 passwordConfirm.clearValidators();

 passwordConfirm.setValidators(Validators.minLength(6));

 this.authService.get().subscribe(

www.EBooksWorld.ir

 user => {

 this.userForm.find("username")

 .setValue(user.UserName);

 this.userForm.find("email")

 .setValue(user.Email);

 this.userForm.find("displayName")

 .setValue(user.DisplayName);

 }

);

 }
}

These few lines of code depict a number of tasks we need to perform whenever
this.isRegister is false:

Adding a new passwordCurrent control with a required validator as we'll
use it to request the user's current password, which will be required to perform
any change to their account.
Removing the required validator from the password and passwordConfirm
controls: the reason for this is pretty simple; when we're in Edit Account mode,
these controls will be used to change the current password, which should never
be a required operation. The only validator we're keeping for these controls is
the minLength(6). The user won't be forced to change it; however, if he
chooses to do that, we won't accept anything less than the six-character length.
Retrieving the current UserName, Email, and DisplayName values, so the user
will be able to review them before performing any change. It's worth noting that
they will be set asynchronously, as soon as the authService method get will
fetch the data from the AccountsController.

Right after that, we need to perform the following changes to the onSubmit method
(new/updated lines are highlighted):

onSubmit() {
 if (this.isRegister) {
 this.authService.add(this.userForm.value)
 .subscribe((data) => {
 if (data.error == null) {
 // registration successful
 this.errorMessage = null;

www.EBooksWorld.ir

 this.authService.login(
 this.userForm.value.username,
 this.userForm.value.password)
 .subscribe((data) => {
 // login successful
 this.errorMessage = null;
 this.router.navigate([""]);
 },
 (err) => {
 console.log(err);
 // login failure
 this.errorMessage =
 "Warning: Username or Password
mismatch";
 });
 }
 else {
 // registration failure
 this.errorMessage = data.error;
 }
 },
 (err) => {
 // server/connection error
 this.errorMessage = err;
 });
 }

 else {

 let user = new User(

 this.userForm.value.username,

 this.userForm.value.password,

 this.userForm.value.passwordNew,

 this.userForm.value.email,

 this.userForm.value.displayName);

 this.authService.update(user)

 .subscribe((data) => {

 if (data.error == null) {

 // update successful

 this.errorMessage = null;

 this.router.navigate([""]);

www.EBooksWorld.ir

 }

 else {

 // update failure

 this.errorMessage = data.error;

 }

 },

 (err) => {

 // server/connection error

 this.errorMessage = err;

 });

 }
}

There's nothing special here. We wrapped the authService.add method into an if
condition to ensure that it will be executed only when the form is being used in User
Registration mode; we then added a call to the authService.update method for
the new Edit Account scenario.

We're not done yet. Before being able to test it, we need to make some changes to the
template section too. Scroll up to it, look for the <input> HTML element that
handles the username, and conditionally disable it in the following way (updated
code is highlighted):

<input [disabled]="!this.isRegister" formControlName="username"
type="text" class="form-control" placeholder="Choose an Username"
autofocus />

This is required to make the user aware of the fact that won't be able to change its
username.

Once done, scroll down to the <div class="form-group"> containing the
password input control and place the following code right before it:

<div *ngIf="!this.isRegister" class="form-group">
 <input formControlName="passwordCurrent" type="password"
class="form-control" placeholder="Current Password" />
 <span class="validator-label invalid"
*ngIf="!this.userForm.controls.passwordCurrent.valid">

www.EBooksWorld.ir

 <span class="glyphicon glyphicon-remove" aria-
hidden="true">
 required

</div>

This is the HTML code for the passwordCurrent control we added
programmatically in the ngOnInit method a short while ago. We already explained
why we need this, so we can go ahead.

The last thing we need to do here is to apply a minor update to the submit button text
value. We certainly don't want our users to click on Register when they are editing
their account!

Scroll down to that HTML code and change it as follows (updated code is
highlighted):

<div class="form-group">
 <input type="submit" class="btn btn-primary btn-block"
[disabled]="!userForm.valid" value="{{this.isRegister ? 'Register'
: 'Save'}}" />
</div>

That's much better. On top of that, we're now aware of the fact that Angular 2
Template Syntax allows the usage of ternary operators. That's great to know!

www.EBooksWorld.ir

Updating the navigation menu
We're almost done. We just need to connect the account route with our navigation
menu so that our users will be able to access it.

Open the /Scripts/app/app.component.ts file and add the following
element to the container in the template section, right under the Add New one:

<li *ngIf="authService.isLoggedIn()" class="right"
[class.active]="isActive(['account'])">
 <a [routerLink]="['account']">Edit Account

Adding styles

We added the right CSS class to our new element for a reason: we want our
Edit Account menu item to appear near the upper-right corner of the browser screen,
just like the majority of websites actually do. Needless to say, in order to make it
happen, we also need to define a .class selector and configure it with the
appropriate style sheet rules.

Open the /Scripts/less/style.less file and append the following code:

@media (min-width: 768px) {
 .nav.navbar-nav {
 float: none;
 li.right {
 float: right;
 }
 }
}

That's it. As we can see, we added some floating rules to put the menu item to the
rightmost part of the screen. These rules are conveniently wrapped into a Media
Query that will ensure they will be applied only when we have enough width (768px
or more). This means that our desired right-most effect will work on a desktop
environment only, leaving the mobile browsers layout unaffected.

Note

Media Queries are a powerful CSS3 feature. UI designers can use them to tailor their
presentations to a specific range of output devices without changing the content of the
page itself. To know more about them, we strongly suggest reading the following
URL:

https://www.w3.org/TR/css3-mediaqueries/

www.EBooksWorld.ir

https://www.w3.org/TR/css3-mediaqueries/

Before going further, we should check that the Task Runner is actually running, so
the compiled client code will be updated with our latest changes.

Final test

Now we can hit F5 and see what our new Edit Account view looks like:

As we can see, the Edit Account menu item is shown on the upper-right corner of
the screen. This is definitely a better place for all the options that controls the user
account status, as they won't be confused with the navigation part of the main menu.

Wouldn't it be great if the Login/Register and Logout commands could be there too?

www.EBooksWorld.ir

Let's take this chance to do that.

Open the /Scripts/app/app.component.ts file and rearrange the navigation menu
 elements in the following way:

<ul class="nav navbar-nav">

 <!-- Navigation commands for everyone -->
 <li [class.active]="isActive([''])">
 Home

 <li [class.active]="isActive(['about'])">
 About

 <!-- Navigation commands for authenticated users -->
 <li *ngIf="authService.isLoggedIn()"
[class.active]="isActive(['item/edit', 0])">
 Add New

 <!-- Account-related commands -->
 <li *ngIf="!authService.isLoggedIn()" class="right"
[class.active]="isActive(['login']) || isActive(['register'])">
 Login /
Register

 <li *ngIf="authService.isLoggedIn()" class="right">
 <a class="logout" href="javascript:void(0)"
(click)="logout()">Logout

 <li *ngIf="authService.isLoggedIn()" class="right"
[class.active]="isActive(['account'])">
 <a [routerLink]="['account']">Edit Account

All we did here was reposition the content we already had add a couple HTML
comments to split these elements into three groups: the navigation commands
accessible to everyone, those restricted to authenticated users only, and the
account/related ones. We also added the right CSS class to the Login/Register and
Logout elements as we moved them into the latter group.

Before moving out, let's hit F5 one last time to see what our improved menu looks
like:

www.EBooksWorld.ir

www.EBooksWorld.ir

Conclusions
Our sample SPA application is mostly done. We are perfectly aware of the fact that a
number of relevant features are still missing, such as the inability to refresh JWT
Tokens, the lack of View Comments/Insert Comment components, the missing support
for user-uploaded item image files, and so on. However, it is undoubtedly a
potentially shippable product that will most likely meet our product owner's
expectations.

All we have to do now is add some finishing touches and then publish it in a
production environment, which is precisely what we're going to do in the next
chapter.

www.EBooksWorld.ir

Suggested topics
Template-driven forms, model-driven forms, FormBuilder, regex, Angular 2
Template Syntax, ternary operators, Media Queries.

www.EBooksWorld.ir

Summary
Our native web application is slowly coming to an end, with most of its expected
features ready and working. In this chapter, we implemented two of them that were
still missing: a User Registration view, where new users can register themselves,
and an Edit Account view they can use to change their e-mail address, password,
and/or display name.

For each one of them, we added a Web API interface using standard RESTful
methods, a set of Angular 2 AuthService methods, and a client-side routing strategy.
While we were there, we also made some cosmetic changes to the navigation menu
items and their corresponding style sheets to grant our visitors a better user
experience.

www.EBooksWorld.ir

Chapter 10. Finalization and
Deployment
Our valuable journey through ASP.NET Core Web API and Angular 2 development is
coming to an end. The native web application we've been working on since Chapter
2, ASP.NET Controllers and Server-Side Routes, is now a potentially shippable
product, ready to be published in a suitable environment for evaluation purposes.

However, in order to do that, we need to give our project some finishing touches.

www.EBooksWorld.ir

Switching to SQL Server
Although localDB proved itself to be a great development choice, it's not a good
idea to use it in production as well. That's why we'll replace it with SQL Server. As
for the chosen edition, we can either go for Express, Web, Standard, or Enterprise
depending on what we need and/or can afford.

For the sake of simplicity, we'll be using SQL Server 2016 Express Edition, which
can be downloaded for free from the following Microsoft official URL:
https://www.microsoft.com/en-US/server-cloud/products/sql-server-editions/sql-
server-express.aspx

Needless to say, we need to install it on a machine that is reachable from our web
server via a Local Area Network (LAN).

www.EBooksWorld.ir

https://www.microsoft.com/en-US/server-cloud/products/sql-server-editions/sql-server-express.aspx

Installing SQL Server 2016 Express
The installation process is pretty straightforward. Unless we don't need anything
specific, we can just go for the basic type:

Eventually, we'll be prompted with an Installation Complete window, which will
also give us some useful info, including the database instance name and a default
connection string ready for a connection test:

www.EBooksWorld.ir

www.EBooksWorld.ir

Installing SQL Server Management
Studio
From here, we can click the Install tools button and download SQL Server
Management Studio, a tool that we can use to create the OpenGameList database and
also a dedicated user that can access it.

Note

SQL Server Management Studio is a separate product available for free download at
the following URL:

https://msdn.microsoft.com/en-us/library/mt238290.aspx

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/mt238290.aspx

Configuring the database
Once we've downloaded and installed it, launch the SQL Server Management Studio.
We will be prompted by a Connect to Server modal window that will allow us to
connect to our local SQL Server instance.

To do this, select the Database Engine server type and then, from the Server name
combo box, choose <Browse for more...>. Another pop-up window will appear,
from which we'll be able to select the database engine we just installed on our
server:

As for the Authentication part, we can leave Windows Authentication, the default
SQL Server authentication mode.

When we're done, click on the Connect button and a Server Explorer window will
appear, containing a tree view representing the structure of your SQL Server instance.
This is the interface we'll use to create our database and also the user/password that
our application will use to access it.

Tip

If you have a strong knowledge of SQL Server, you might want to skip the following
steps and configure your instance as you prefer; otherwise, keep reading.

www.EBooksWorld.ir

Changing the authentication mode

The first thing we need to do is to change the default SQL Server authentication
mode, so we won't be forced to use an existing Windows account. To do so, right-
click on the root tree view node, which represents our SQL Server instance, and
select Properties from the contextual menu. From the modal window that appears,
select the Security page, then switch from Windows Authentication mode to SQL
Server and Windows Authentication mode:

Adding the OpenGameList database

Now we can create the database that will host our application's tables. Right-click on
the Databases folder and choose Add Database from the contextual menu. Give it
the OpenGameList name and click on OK.

Adding the OpenGameList login

Go back to the root Databases folders, then expand the Security folder, which
should be just below it. From there, right-click on the Logins subfolder and choose
New Login. Again, give it the OpenGameList name. From the radio button list
below, select SQL Server Authentication and set a suitable password (for example,
SamplePassword123), then click on OK.

Tip

If you want a simpler password, such as OpenGameList, you might have to also
disable the enforce password policy option.

www.EBooksWorld.ir

Mapping the login to the database

The next thing we need to do is to properly map this login to the OpenGameList
database we added earlier. From the navigation menu to the left, switch to the User
Mapping tab. Click on the checkbox right to the OpenGameList database, then write
OpenGameList in the User cell and assign the db_owner membership role:

As soon as we click on the OK button, a new OpenGameList user will be added to
the OpenGameList database with full administrative rights.

We can easily confirm that by going back to the root Databases folder and expanding
it to OpenGameList | Security | Users:

www.EBooksWorld.ir

That's it! Now we'll be able to access our brand new OpenGameList database with a
standard connection string using the credentials we just created.

Adding a SQL Server connection string

Now that the SQL Server database has been set up, we need to tell our application to
use it instead of localDb while in production. We can easily do that by adopting the
ASP.NET Core default pattern for configuring application behavior across multiple
environments.

To implement it within our project, we need to perform the following steps:

1. Create an appsettings.production.json file to override the localDb
connection string with the SQL Server one when the application runs in a
production environment.

2. Configure the publishOptions within the project.json file to publish these
kinds of file.

3. Check that our Startup class is properly configured to load the application
settings files using a cascading logic that privileges the current running
environment.

4. Update the launchSettings.json file to ensure that the production

www.EBooksWorld.ir

environment will be set whenever we publish our project.

Creating an application settings file for production

Right-click to the project's root and select Add | New Item. Choose ASP.NET
Configuration File, name it appsettings.production.json, and click on OK.

An environment-specific version of the appsettings.json file will be created
accordingly.

Visual Studio should also nest it below the main configuration file, as can be seen in
the following screenshot:

From now on, any key/value pair we'll include within the
appsettings.production.json file will override the corresponding key/value in
the main configuration file whenever the application will run within a production
environment. It means that we can use it to redefine a number of production-specific
values there, including (yet not limited to) the default connection string.

As a matter of fact, that's precisely what we need to do. Open the new
appsettings.production.json file and replace the sample contents with the
following code:

{
 "Data": {
 "DefaultConnection": {
 "ConnectionString":
"Server=localhost\\SQLEXPRESS;Database=OpenGameList;User
Id=OpenGameList;Password=SamplePassword123;Integrated
Security=False;MultipleActiveResultSets=True"

www.EBooksWorld.ir

 }
 }
}

Updating AppSettings

Another important thing we definitely need to override within the
appsettings.production.json file is the Authority that will be used to issue
(and check) our JWT Tokens. To do that, add the following lines right before the
data key we just added:

"Authentication": {
 "OpenIddict": {
 "Authority": "http://www.your-website-url.com/"
 }
},

Be sure to check the other settings before closing the file, changing them accordingly
to a production environment. For example, we might want to switch to a less
resource-intensive debugging behavior:

"Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning",
 "System": "Error",
 "Microsoft": "Error"
 }
},

We might also want to increase our caching policy for local files:

"StaticFiles": {
 "Headers": {
 "Cache-Control": "max-age=3600",
 "Pragma": "cache",
 "Expires": null
 }
}

This will tell the browser client (and/or a proxy) to keep all the static files for one
hour.

Updating external providers

If we implemented one or more external providers (see Chapter 8, Third-Party
Authentication and External Providers), we'll probably need to replace the redirect
URIs we configured earlier and also add our public facing URL (www.our-website-
url.com) to the allowed JavaScript origins URL list. For a detailed guide about how

www.EBooksWorld.ir

to do that, we can refer to Chapter 8, Third-Party Authentication and External
Providers.

Tip

Although most providers will allow to set multiple values for the allowed origin
URIs, it's strongly advisable to add a whole new app, such as
OpenGameList_Production, to use for production purposes. If you do that you will
also have to override the public and private keys, but you won't compromise your
development environment.

Configuring the publishOptions

We now need to update the root project.json file to include these files whenever
we publish our application. Within that file, look for the publishOptions key and
change the include array values to the following (updated lines are highlighted):

"publishOptions": {
 "include": [
 "wwwroot",
 "Views",
 "Areas/**/Views",
 "appsettings*.json",
 "web.config"
]
},

This small change ensures that, whenever we publish our application, each and every
appsettings file will be included as well.

Checking the Startup class

The application settings file(s) loading logic can be customized within the Startup
method of the Startup class.

The Startup.cs file bundled with the default ASP.NET Core project template that
we chose back in Chapter 1, Getting Ready, already features a cascading logic in
place that perfectly suits our needs. All we need to do is to ensure that it's still there.
We can easily check that by opening the Startup.cs file and having a look at the two
AddJsonFile method calls within the constructor:

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile(
"appsettings.json",

www.EBooksWorld.ir

 optional: true,
 reloadOnChange: true)
 .AddJsonFile(
$"appsettings.{env.EnvironmentName}.json",
 optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
}

We can see how the first highlighted line will load the default appsettings.json
file, while the second will look for an (optional) environment-specific version
containing the relevant value overrides. If everything is still in place, we don't need
to change anything, since the existing behavior perfectly fits what we want.

Updating the launchSettings.json

Last but not least, we need to set up our app so that it will run in a production
environment whenever we publish it.

To do that, open the /properties/launchSettings.json file and change the
ASPNETCORE_ENVIRONMENT variable within our application's profile from
Development to Production in the following way:

"OpenGameListWebApp": {
 "commandName": "Project",
 "launchBrowser": true,
 "launchUrl": "http://localhost:5000/api/values",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Production"
 }
}

This will ensure the proper loading of the appsettings.production.json file.

www.EBooksWorld.ir

Publishing our native web application
Installing and/or configuring a production-ready web server, such as Internet
Information Services (IIS) or Apache, can be a very complex task depending on a
number of things that we can't address now, as they would easily bring us far beyond
the scope of this book.

To keep things simple, we'll just assume that we already have access to an up and
running, physical or virtualized Windows Server machine featuring a running IIS
instance (we'll call it web server from now on) that we can configure to suit our
needs. Ideally, we'll be able to do that via a dedicated management interface such as
Remote Desktop, IIS Remote Configuration, Plesk, or any other remote
administration mechanism made available by our web farm and/or service provider.

Note

Windows 2008 R2 (or newer) and IIS 7.5 (or above) will be required to host a .NET
Core web application, as stated by the official Microsoft publishing and deployment
documentation available at the following URL:

https://docs.asp.net/en/latest/publishing/iis.html

Last but not least, we'll also assume that our web server provides FTP-based access
to the /inetpub/ folder that we can use to publish our web projects.

Tip

If we're facing a different scenario, it could be advisable to skip this chapter entirely
and follow the instructions given by our chosen web hosting provider instead.

www.EBooksWorld.ir

https://docs.asp.net/en/latest/publishing/iis.html

Creating a Publish profile
The most convenient way to deploy a web-based project in Visual Studio is creating
one or more Publish profiles. Each one of them is basically an XML configuration
file with a .pubxml extension that contains a set of deployment-related information,
most of which depends on the server/target we're deploying our application into,
Azure, FTP, filesystem and more.

We can easily set up one or more Publish profile files using the Publish profile
wizard. As soon as we have at least one ready, we'll be able to execute it with a
single mouse click and have our application published.

To open the Publish profile wizard, right-click on the project's root node
(OpenGameListWebApp in our case) and select the Publish... option from the
contextual menu. A pop-up window should open showing the following welcome
screen:

www.EBooksWorld.ir

File System Publish profile

Among the various available profiles, the easiest to configure is the one that builds
everything into a dedicated folder within our local File System. To create it, follow
these steps:

1. Select the Custom publish target.
2. Give a suitable name to the profile, such as Production-FileSystem.
3. Select the File System publish method.
4. When prompted for a Target Location, specify the path of the folder that will

contain the published application. Visual Studio will suggest a path located
within the application's /bin/Release/ subfolder. However, it's strongly
advisable to change it and to choose an external directory instead.

5. Set Configuration to Release.
6. Set the Target Framework accordingly to what we used for our project (.NET

Framework 4.6.1 in our example).

We can then click on the Publish button to start the publishing process. Once done,
we'll have to manually upload the generated contents to the web server.

FTP Publish profile

As a viable alternative we can also create a Publish profile that will automatically
upload our web project to our web server using a properly configured FTP
connection endpoint: we will then link the remote destination folder to a new website
project using IIS.

Note

As we said earlier, we're doing all that assuming that we have a web server
accessible through FTP, since it's one of the most common deployment scenarios. If
that's not the case, we might as well skip this paragraph and configure a different
Publish profile.

We already know how to launch the wizard. Right-click on the project's root node
and select Publish. Wait for it to start, then do the following:

1. Select the Custom publish target.
2. Give a suitable name to the profile, such as Production-FTP.
3. Select the FTP publish method.
4. When prompted for a Server, specify the FTP server URL, such as ftp.your-

ftp-server.com. In the Site Path option, insert the target folder from the FTP

www.EBooksWorld.ir

server root, such as /OpenGameList/.
5. Set the Passive Mode, Username, and Password according to our FTP server

settings.
6. Set Configuration to Release.
7. Set the Target Framework accordingly to what we used for our project (.NET

Framework 4.6.1 in our example).

Right after that, the wizard's Connection tab should eventually look not too different
from the following screenshot:

www.EBooksWorld.ir

Configuring IIS
We should now connect to our web server and set up our web application within IIS.

Note

As we said earlier, configuring a web application can be either a very easy or an
insanely complex task depending on a number of things, such as caching, load
balancing, CPU optimization, database load, and security issues.

Although the most common issues will be briefly handled within this chapter, it's
advisable to follow a dedicated guide to properly handle each one of them.

www.EBooksWorld.ir

Installing the ASP.NET Core module for IIS
We might think that IIS is the ideal platform to host ASP.NET Core applications, as it
always has been since the first release of ASP.NET. As a matter of fact, it's not.
ASP.NET Core web applications run via the highly optimized Kestrel server.
Whenever we choose to host one of them with IIS, we basically need it to act as a
reverse proxy for the underlying Kestrel server.

The good news is that we don't need to configure anything by ourselves, because the
ASP.NET Core template we used back in Chapter 1, Getting Ready, provided us
with a root web.config file containing all the settings, to do just that.

The relevant configuration lines should be contained within the
<system.webServer> element, which should resemble the following XML code:

<system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*"
modules="AspNetCoreModule" resourceType="Unspecified"/>
 </handlers>
 <aspNetCore processPath="%LAUNCHER_PATH%"
arguments="%LAUNCHER_ARGS%" stdoutLogEnabled="false"
stdoutLogFile=".\logs\stdout" forwardWindowsAuthToken="false"/>
</system.webServer>

We can see that we have a dedicated aspNetCore handler and some related
configuration placeholders that will be transformed into actual values upon
publication.

As we said earlier, we don't need to change anything, as the handler will do
everything by itself, assuming that it is installed on the Web Server. Since ASP.NET
Core is a rather new technology, this might as well not be the case, so we could need
to download and install it.

At the time of writing, we need to obtain the .NET Core Windows Server Hosting
bundle, which conveniently includes all the required packages to host a .NET Core
application on a IIS powered server machine: the .NET Core Runtime, the .NET
Core Library, the ASP.NET Core module, and also the required reverse proxy
between IIS and the Kestrel server.

The bundle can be downloaded from the following URL:

https://go.microsoft.com/fwlink/?LinkId=817246

www.EBooksWorld.ir

https://go.microsoft.com/fwlink/?LinkId=817246

Note

For further references regarding ASP.NET Core IIS publishing settings, it's strongly
advised to check out this official guide:

https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration

A (mostly) complete list of all the available .NET Core related packages (SDK, IIS
module, and more) is also available at the following URL:

https://www.microsoft.com/net/download

www.EBooksWorld.ir

https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://www.microsoft.com/net/download

Adding the website
As soon as we install the .NET Core Windows Server Hosting bundle, we'll be able
to configure our IIS instance to host our application.

Note

As we said earlier in this chapter, to host ASP.NET Core web applications, we're
going to need IIS 7.5 or above.

From the IIS Manager interface, right-click on Sites and choose the Add New
Website option. Name it OpenGameList. By looking at the read-only textbox to the
immediate right, we can see that a new Application Pool will also be created with
that same name. Take a mental note of it, as we'll need to configure it soon enough.

Set the physical path of the Content Directory to the folder we targeted for FTP
publishing.

In our previous example, it should be something like C:\inetpub\OpenGameList\,
assuming that the FTP root for the web admin user points to C:\inetpub\.

Be sure to target the application's root folder, not the \wwwroot\ one.

Tip

Needless to say, we need to grant read/write permissions for that folder to the IUSR
and/or IIS_IUSRS accounts, or any other identity our Application Pool is using.

As for the bindings, either choose a specific IP address or leave the All Unassigned
option and choose a Host name that is already configured to redirect to our web
server via DNS:

www.EBooksWorld.ir

In our example, we already set up http://www.opengamelist.com , so we'll just use
that.

Before clicking on the OK button, ensure that the Start Website immediately option
is checked, so the website will be immediately available.

Note

We're assuming that the server comes with the .NET Framework installed, as it's a
default package with all the latest Windows Server versions. In case it doesn't, we
can manually install it either via Server Manager, Web Platform Installer, or
Windows Update.

www.EBooksWorld.ir

http://www.opengamelist.com

Configuring the Application Pool
We can now switch to the Application Pools node. Select the OpenGameList one,
the same that we created a short while ago, and set the .NET CLR version to No
Managed Code:

This might seem rather counterintuitive, as it looks like we're ruling out ASP.NET. As
a matter of fact, that's the exact opposite: since we're publishing an ASP.NET Core
application, we need to ensure that the soon-to-be-outdated .NET 4 CLR won't get in
the way. Since the former is still (at the time of writing) in a pre-release state, it isn't
available yet within the GUI, leaving us with the only option to remove any reference
here. We already configured the .NET Core module for IIS to do the required job
anyway.

Note

This is one of the many things that will surely change in the future. There is a good
chance that, by the time you're reading this book, the new CLR will be integrated

www.EBooksWorld.ir

within the Application Pool GUI settings.

www.EBooksWorld.ir

Firing up the engine
It's time to publish our native web application. Before doing that, ensure that the
Task Runner default task is running, as we want to upload the latest version of our
client files.

Right-click on the project's root node, then left-click on Publish. Select the
Production-FTP profile and hit the Publish button to start the build and upload
process.

The whole publishing process flow can be checked in real time within the Visual
Studio Output window. As soon as the FTP connection will be attempted, we'll be
asked for username and password, unless we gave our consent to store our login
credentials within the Production-FTP.pubxml file.

The publishing task will require a lot more time than it used to be for ASP.NET 4
applications, because the whole set of ASP.NET Core libraries will be published in
the destination folder, together with all the required Angular 2 modules and
dependencies.

Tip

www.EBooksWorld.ir

There's nothing to worry about, as this is another thing that will surely change once
the ASP.NET Core framework reaches its final stage.

Once done, our default web browser will be automatically launched against the URL
we specified within the Publish profile settings.

If everything has been set up properly, our native web application will show itself in
all its splendor:

www.EBooksWorld.ir

Troubleshooting
...Or maybe not. The deployment task isn't always easy, as there could be a number of
issues (mostly depending on the server machine state) that can prevent it from going
well. This statement is particularly true for ASP.NET Core application IIS-based
deployments, as the reverse proxy mechanism undeniably adds an additional level of
complexity.

These are the three best things we can do to diagnose the most common problems:

1. Read the browser's output messages.
2. Examine the Event Viewer's application log.
3. Enable the ASP.NET Core module stdout logging feature.

The first one is rather obvious: who doesn't look at the browser output? However, for
ASP.NET Core applications, it's far less effective than it used to be since most errors
are still unhandled and won't appear there.

The Event Viewer is often underestimated, yet it's very important for debugging
ASP.NET Core application for the same reason as before: we will find most of the
relevant stuff there.

The ASP.NET Core Module Log is a new feature brought by the new CLR. However,
when it comes to troubleshooting issues, it happens to be the real deal. Activating it
is just as easy as opening the root web.config file and change the
stdoutLogEnabled attribute from false to true.

We also need to manually create a /logs/ folder inside the root application folder
on the web server, otherwise the logs won't be generated.

Tip

The log folder, location, and filename prefix can be configured by changing the
stdoutLogFile attribute value. Remember to manually create the chosen folder
whenever you change it and also to grant read/write permissions to the identity used
by the Application Pool.

The Kestrel test

A quick and effective way to check if the application is working properly is to
entirely skip IIS and run it directly on Kestrel. Doing this is just as easy as opening
the application folder on the Web Server, locating the OpenGameList.exe file, and
executing it with (or without) administrative rights.

www.EBooksWorld.ir

Doing this will open a command prompt where we'll be able to see the whole
application bootstrap process. Once it completes, we should be able to test the
application by opening a web browser and pointing it to http://localhost:5000/,
5000 being the default TCP listening port for Kestrel as defined in the
/settings/launchSettings.json file:

If the application completes its boot phase and starts running, the issue is most likely
related to the IIS configuration and/or the ASP.NET Core module; otherwise, there's
a good chance that our problem lies within the application code itself.

If that's the case, checking the Event Viewer and the aforementioned stdout logs will
be our best weapons to identify and overcome the issue.

www.EBooksWorld.ir

Suggested topics
LAN, SQL Server 2016, SQL Server Management Studio, Windows Server, IIS,
Apache, FTP server, Publish profile, ASP.NET Core module for IIS, ASP.NET 5,
.NET CLR v4, Kestrel, stdout log.

www.EBooksWorld.ir

Summary
Eventually, our journey through ASP.NET Core MVC/Web API and Angular 2 has
come to an end. Our last effort was getting our native web application ready for
being published into a production environment, where it can be checked by the
product owner as the potentially shippable product it now definitely is.

The first thing we did was changing the underlying database from localDb to a real
SQL Server instance. For the sake of simplicity, we chose to install SQL Server 2016
Express, which is freely available for download from the Microsoft Download
Center. We briefly installed it, together with the SQL Server Management Studio
tools, then we used the latter to properly configure the former: creating the database,
adding the login credentials, and doing what it takes to make our application able to
connect using a standard connection string. We also took advantage of the ASP.NET
Core default pattern to handle multiple environments by defining an application
settings file for production, which we used to override the localDb connection string
with the SQL Server one.

The next step was creating a Publish profile for our Visual Studio project. We
evaluated two alternatives, File System and FTP, each one of them being viable or
not depending on our own deployment scenario.

Eventually, we switched to the Web Server, where we found out that configuring IIS
was not as easy as it used to be for ASP.NET 4 and below because the new CLR isn't
fully integrated within the GUI yet. We had to install the ASP.NET Core module for
IIS which does all the required jobs, making IIS act like a reverse proxy for the
underlying Kestrel server. Right after that, we were able to create our website entry
together with its related Application Pool.

Once we did all that, we were able to actually publish our native web application
and watch the result on the web browser. In the event that something didn't go as
expected, we took some time to analyze the most common troubleshooting issues and
give some useful advice to overcome them.

www.EBooksWorld.ir

Part 3. Module 3
ASP.NET Core 1.0 High Performance

Create fast, scalable, and high performance applications

www.EBooksWorld.ir

Chapter 1. Why Performance Is a
Feature
This is an exciting time to be a C# developer. Microsoft is in the middle of one of the
biggest changes in its history, and it is embracing open source software. The
ASP.NET and .NET frameworks are being rebuilt from the ground up to be
componentized, cross-platform, and open source.

ASP.NET Core 1.0 and .NET Core 1.0 (previously called ASP.NET 5 and .NET
Core 5) embrace many ideas from popular open source projects, such as Go's ability
to produce a statically-linked, standalone binary. You can now compile a single
native executable that is free of any external dependencies and run it on a system
without .NET installed.

The ASP.NET Model View Controller (MVC) web application framework, which
is now part of ASP.NET Core 1.0, borrows heavily from Ruby on Rails and
Microsoft is keen in promoting tools, such as Node.js, Grunt, gulp, and Yeoman.
There is also TypeScript, which is a statically-typed version of JavaScript that was
developed at Microsoft.

By reading this book, you will learn how to write high-performance software using
these new .NET Core technologies. You'll be able to make your web applications
responsive to input and scalable to demand.

We'll focus on the latest Core versions of .NET. Yet, many of these techniques also
apply to previous versions, and they will be useful for web application development
in general (in any language or framework).

Understanding how all of these new frameworks and libraries fit together can be a bit
confusing. We'll present the various available options while still using the newest
technology, guiding you down the path to high-speed success, and avoiding
performance pitfalls.

After finishing this book, you will understand what problems can occur when web
applications are deployed at scale (to distributed infrastructure) and know how to
avoid or mitigate these issues. You will gain the experience of how to write high-
performance applications without learning about issues the hard way.

In this chapter, we will cover the following topics.

Performance as a feature

www.EBooksWorld.ir

The common classes of performance issues
Basic hardware knowledge
Microsoft tools and alternatives
New .NET naming and compatibility

www.EBooksWorld.ir

Performance as a feature
You may have previously heard about the practice of treating performance as a first-
class feature. Traditionally, performance (along with things such as security,
availability and uptime) was only considered a Non-Functional Requirement
(NFR) and usually had some arbitrary made-up metrics that needed to be fulfilled.
You may have heard the term "performant" before. This is the quality of performing
well and, often, is captured in requirements without quantification, providing very
little value. It is better to avoid this sort of corporate jargon when corresponding
with clients or users.

Using the outdated waterfall method of development, these NFRs were inevitably left
until the end, and dropped from an over-budget and late project in order to get the
functional requirements completed. This resulted in a substandard product that was
unreliable, slow, and often insecure (as reliability and security are also often
neglected NFRs). Think about how many times you're frustrated at software that lags
behind in responding to your input. Perhaps, you used a ticket-vending machine or a
self-service checkout that is unresponsive to the point of being unusable.

There is a better way. By treating performance as a feature and considering it at
every stage of your agile development process, you can get users and customers to
love your product. When software responds quicker than a user can perceive, it is a
delight to use, and this doesn't slow them down. When there is noticeable lag, then
users need to adjust their behavior to wait for the machine instead of working at their
own pace.

Computers have incredible amounts of processing power today, and they now
possess many more resources than they did even just a few years ago. So, why do we
still have software that is noticeably slow at responding, when computers are so fast
and can calculate much quicker than people can? The answer to this is poorly written
software that does not consider performance. Why does this happen? The reason is
that often the signs of poor performance are not visible in development, and they only
appear when deployed. However, if you know what to look for, then you can avoid
these problems before releasing your software to the production environment.

This book will show you how to write software that is a joy to use and never keeps
the user waiting or uninformed. You will learn how to make products that users will
love instead of products that frustrate them all the time.

www.EBooksWorld.ir

Common classes of performance
problems
Let's take a look at some common areas of performance problems and see whether
they matter or not. We will also learn why we often miss these issues during
development.

www.EBooksWorld.ir

Language considerations
People often focus on the speed of the programming language that is used. However,
this often misses the point. This is a very simplistic view that glosses over the
nuances of technology choices. It is easy to write slow software in any language.

With the huge amounts of processing speed that is available today, relatively "slow"
interpreted languages can often be fast enough, and the increase in development
speed is worth it. It is important to understand the arguments and the trade-offs
involved even if by reading this book you have already decided to use C# and .NET.

The way to write the fastest software is to get down to the metal and write in
assembler (or even machine code). This is extremely time consuming, requires expert
knowledge, and ties you to a particular processor architecture and instruction set;
therefore, we rarely do this these days. If this happens, then it's only done for very
niche applications (such as virtual reality games, scientific data crunching, and
sometimes embedded devices) and usually only for a tiny part of the software.

The next level of abstraction up is writing in a language, such as Go, C, or C++, and
compiling the code to run on the machine. This is still popular for games and other
performance-sensitive applications, but you often have to manage your own memory
(which can cause memory leaks or security issues, such as buffer overflows).

A level above is software that compiles to an intermediate language or byte code and
runs on a virtual machine. Examples of this are Java, Scala, Clojure, and, of course,
C#. Memory management is normally taken care of, and there is usually a Garbage
Collector (GC) to tidy up unused references (Go also has a GC). These applications
can run on multiple platforms, and they are safer. However, you can still get near to
native performance in terms of execution speed.

Above these are interpreted languages, such as Ruby, Python, and JavaScript. These
languages are not usually compiled, and they are run line-by-line by an interpreter.
They usually run slower than a compiled language, but this is often not a problem. A
more serious concern is catching bugs when using dynamic typing. You won't be able
to see an error until you encounter it, whereas many errors can be caught at compile
time when using statically-typed languages.

It is best to avoid generic advice. You may hear an argument against using Ruby on
Rails, citing the example of Twitter having to migrate to Java for performance
reasons. This may well not be a problem for your application, and indeed having the
popularity of Twitter would be a nice problem to have. A bigger concern when
running Rails may be the large memory footprint, making it expensive to run on cloud

www.EBooksWorld.ir

instances.

This section is only to give you a taste, and the main lesson is that normally, language
doesn't matter. It is not usually the language that makes a program slow, it's poor
design choices. C# offers a nice balance between speed and flexibility that makes it
suitable for a wide range of applications, especially server-side web applications.

www.EBooksWorld.ir

Types of performance problems
There are many types of performance problems, and most of them are independent of
the programming language that is used. A lot of these result from how the code runs
on the computer, and we will cover the impact of this later on in the chapter.

We will briefly introduce common performance problems here and will cover them
in more detail in later chapters of this book. Issues that you may encounter will
usually fall into a few simple categories, including the following:

Latency:
Memory latency
Network latency
Disk and I/O latency
Chattiness / handshakes

Bandwidth:
Excessive payloads
Unoptimized data
Compression

Computation:
Working on too much data
Calculating unnecessary results
Brute forcing algorithms

Doing work in the wrong place:
Synchronous operations that could be done offline
Caching and coping with stale data

When writing software for a platform, you are usually constrained by two resources.
These are the computation processing speed and accessing remote (to the processor)
resources.

Processing speed is rarely a limiting factor these days, and this could be traded for
other resources, for example, compressing some data to reduce the network transfer
time.

Accessing remote resources, such as main memory, disk, and the network will have
various time costs. It is important to understand that speed is not a single value, and it
has multiple parameters. The most important of these are bandwidth and, crucially,
latency.

Latency is the lag in time before the operation starts, whereas bandwidth is the rate at
which data is transferred once the operation starts. Posting a hard drive has a very

www.EBooksWorld.ir

high bandwidth, but it also has very high latency. This would make it very slow to
send lots of text files back and forth, but perhaps, this is a good choice to send a large
batch of 3D videos (depending on the Weissman score). A mobile phone data
connection may be better for the text files.

Although this is a contrived example, the same concerns are applicable to every layer
of the computing stack often with similar orders of magnitude in time difference. The
problem is that the differences are too quick to perceive, and we need to use tools
and science to see them.

The secret to solving performance problems is in gaining a deeper understanding of
the technology and knowing what happens at the lower levels. You should appreciate
what the framework is doing with your instructions at the network level. It's also
important to have a basic grasp of how these commands run on the underlying
hardware, and how they are affected by the infrastructure that they are deployed to.

When performance matters

Performance is not always important in every situation. Learning when performance
does and doesn't matter is an important skill to acquire. A general rule of thumb is
that if the user has to wait for something to happen, then it should perform well. If this
is something that can be performed asynchronously, then the constraints are not as
strict, unless an operation is so slow that it takes longer than the time window for it;
for example, an overnight batch job on an old financial services mainframe.

A good example from a web application standpoint is rendering user view versus
sending e-mail. It is a common, yet naïve, practice to accept a form submission and
send an e-mail (or worse, many e-mails) before returning the result. Yet, unlike a
database update, an e-mail is not something that happens almost instantly. There are
many stages over which we have no control that will delay an e-mail in reaching a
user. Therefore, there is no need to send an e-mail before returning the result of the
form. You can do this offline and asynchronously after the result of the form
submission is returned.

The important thing to remember here is that it is the perception of performance that
matters and not absolute performance. It can be better to not do some work (or at
least defer it) rather than speed it up.

This may be counterintuitive, especially considering how individual computer
operations can be too quick to perceive. However, the multiplying factor is scale.
One operation may be relatively quick, but millions of them may accumulate to a
visible delay. Optimizing these will have a corresponding effect due to the
magnification. Improving code that runs in a tight loop or for every user is better than

www.EBooksWorld.ir

fixing a routine that runs only once a day.

Slower is sometimes better

In some situations, processes are designed to be slow, and this is essential to their
operation and security. A good example of this, which may be hit in profiling, is
password hashing or key stretching. A secure password hashing function should be
slow so that the password, which (despite being bad practice) may have been reused
on other services, is not easily recovered.

We should not use generic hashing functions, such as MD5, SHA1, and SHA256, to
hash passwords because they are too quick. Some better algorithms that are designed
for this task are PBKDF2 and bcrypt, or even Argon2 for new projects. Always
remember to use a unique salt per password too. We won't go into any more details
here, but you can clearly see that speeding up password hashing would be bad, and
it's important to identify where to apply optimizations.

Why issues are missed

One of the main reasons that performance issues are not noticed in development is
that some problems are not perceivable on a development system. Issues may not
occur until latency increases. This may be because a large amount of data was loaded
into the system and retrieving a specific record takes longer. This may also be
because each piece of the system is deployed to a separate server, increasing the
network latency. When the number of users accessing a resource increases, then the
latency will also increase.

For example, we can quickly insert a row into an empty database or retrieve a record
from a small table, especially when the database is running on the same physical
machine as the web server. When a web server is on one virtual machine and the big
database server is on another, then the time taken for this operation can increase
dramatically.

This will not be a problem for one single database operation, which appears just as
quick to a user in both cases. However, if the software is poorly written and
performs hundreds or even thousands of database operations per request, then this
quickly becomes slow.

Scale this up to all the users that a web server deals with (and all of the web servers)
and this can be a real problem. A developer may not notice that this problem exists if
they're not looking for it, as the software performs well on their workstation. Tools
can help in identifying these problems before the software is released.

Measuring

www.EBooksWorld.ir

The most important takeaway from this book is the importance of measuring. You
need to measure problems or you can't fix them. You won't even know when you have
fixed them. Measurement is the key to fixing performance issues before they become
noticeable. Slow operations can be identified early on, and then they can be fixed.

However, not all operations need optimizing. It's important to keep a sense of
perspective, but you should understand where the chokepoints are and how they will
behave when magnified by scale. We'll cover measuring and profiling in the next
chapter.

www.EBooksWorld.ir

The benefits of planning ahead
By considering performance from the very beginning, it is cheaper and quicker to fix
issues. This is true for most problems in software development. The earlier you catch
a bug, the better. The worst time to find a bug is once it is deployed and then being
reported by your users.

Performance bugs are a little different when compared to functional bugs because
often, they only reveal themselves at scale, and you won't notice them before a live
deployment unless you go looking for them. You can write integration and load tests
to check performance, which we will cover later in this book.

www.EBooksWorld.ir

Understanding hardware
Remember that there is a computer in computer science. It is important to understand
what your code runs on and the effects that this has, this isn't magic.

www.EBooksWorld.ir

Storage access speeds
Computers are so fast that it can be difficult to understand which operation is a quick
operation and which is a slow one. Everything appears instant. In fact, anything that
happens in less than a few hundred milliseconds is imperceptible to humans.
However, certain things are much faster than others are, and you only get
performance issues at scale when millions of operations are performed in parallel.

There are various different resources that can be accessed by an application, and a
selection of these are listed, as follows:

CPU caches and registers:
L1 cache
L2 cache
L3 cache

RAM
Permanent storage:

Local Solid State Drive (SSD)
Local Hard Disk Drive (HDD)

Network resources:
Local Area Network (LAN)
Regional networking
Global internetworking

Virtual Machines (VMs) and cloud infrastructure services could add more
complications. The local disk that is mounted on a machine may in fact be a shared
network disk and respond much slower than a real physical disk that is attached to
the same machine. You may also have to contend with other users for resources.

In order to appreciate the differences in speed between the various forms of storage,
consider the following graph. This shows the time taken to retrieve a small amount of
data from a selection of storage mediums:

www.EBooksWorld.ir

This graph has a logarithmic scale, which means that the differences are very large.
The top of the graph represents one second or one billion nanoseconds. Sending a
packet across the Atlantic Ocean and back takes roughly 150 milliseconds (ms) or
150 million nanoseconds (ns), and this is mainly limited by the speed of light. This is
still far quicker than you can think about, and it will appear instantaneous. Indeed, it
can often take longer to push a pixel to a screen than to get a packet to another
continent.

The next largest bar is the time that it takes a physical HDD to move the read head
into position to start reading data (10 ms). Mechanical devices are slow.

www.EBooksWorld.ir

The next bar down is how long it takes to randomly read a small block of data from a
local SSD, which is about 150 microseconds. These are based on Flash memory
technology, and they are usually connected in the same way as a HDD.

The next value is the time taken to send a small datagram of 1 KB (1 kilobyte or 8
kilobits) over a gigabit LAN, which is just under 10 microseconds. This is typically
how servers are connected in a data center. Note how the network itself is pretty
quick. The thing that really matters is what you are connecting to at the other end. A
network lookup to a value in memory on another machine can be much quicker than
accessing a local drive (as this is a log graph, you can't just stack the bars).

This brings us on to main memory or RAM. This is fast (about 100 ns for a lookup),
and this is where most of your program will run. However, this is not directly
connected to the CPU, and it is slower than the on die caches. RAM can be large,
often large enough to hold all of your working dataset. However, it is not as big as
disks can be, and it is not permanent. It disappears when the power is lost.

The CPU itself will contain small caches for data that is currently being worked on,
which can respond in less than 10 ns. Modern CPUs may have up to three or even
four caches of increasing size and latency. The fastest (less than 1 ns to respond) is
the Level 1 (L1) cache, but this is also usually the smallest. If you can fit your
working data into these few MB or KB in caches, then you can process it very
quickly.

www.EBooksWorld.ir

Scaling approach changes
For many years, the speed and processing capacity of computers increased at an
exponential rate. This was known as Moore's Law, named after Gordon Moore of
Intel. Sadly, this era is no Moore (sorry). Single-core processor speeds have
flattened out, and these days increases in processing ability come from scaling out to
multiple cores, multiple CPUs, and multiple machines (both virtual and physical).
Multithreaded programming is no longer exotic, it is essential. Otherwise, you cannot
hope to go beyond the capacity of a single core. Modern CPUs typically have at least
four cores (even for mobiles). Add in a technology such as hyper-threading, and you
have at least eight logical CPUs to play with. Naïve programming will not be able to
fully utilize these.

Traditionally, performance (and redundancy) was provided by improving the
hardware. Everything ran on a single server or mainframe, and the solution was to
use faster hardware and duplicate all components for reliability. This is known as
vertical scaling, and it has reached the end of its life. It is very expensive to scale
this way and impossible beyond a certain size. The future is in distributed-horizontal
scaling using commodity hardware and cloud computing resources. This requires that
we write software in a different manner than we did previously. Traditional software
can't take advantage of this scaling like it can easily use the extra capabilities and
speed of an upgraded computer processor.

There are many trade-offs that have to be made when considering performance, and it
can sometimes feel like more of a black art than a science. However, taking a
scientific approach and measuring results is essential. You will often have to balance
memory usage against processing power, bandwidth against storage, and latency
against throughput.

An example is deciding whether you should compress data on the server (including
what algorithms and settings to use) or send it raw over the wire. This will depend
on many factors, including the capacity of the network and the devices at both ends.

www.EBooksWorld.ir

Tools and costs
Licensing of Microsoft products has historically been a minefield of complexity. You
can even sit for an official exam on it and get a qualification. Microsoft's recent move
toward open source practices is very encouraging, as the biggest benefit of open
source is not the free monetary cost but that you don't have to think about the licensing
costs. You can also fix issues, and with a permissive license (such as MIT), you
don't have to worry about much. The time costs and cognitive load of working out
licensing implications now and in the future can dwarf the financial sums involved
(especially for a small company or startup).

www.EBooksWorld.ir

Tools
Despite the new .NET framework being open source, many of the tools are not. Some
editions of Visual Studio and SQL Server can be very expensive. With the new
licensing practice of subscriptions, you will lose access if you stop paying, and you
are required to sign in to develop. Previously, you could keep using existing versions
licensed from a Microsoft Developer Network (MSDN) or BizSpark subscription
after it expired and you didn't need to sign in.

With this in mind, we will try to stick to the free (community) editions of Visual
Studio and the Express version of SQL Server unless there is a feature that is
essential to the lesson, which we will highlight when it occurs. We will also use as
many free and open source libraries, frameworks, and tools as possible.

There are many alternative options for lots of the tools and software that augments the
ASP.NET ecosystem, and you don't just need to use the default Microsoft products.
This is known as the ALT.NET (alternative .NET) movement, which embraces
practices from the rest of the open source world.

www.EBooksWorld.ir

Looking at some alternative tools
For version control, git is a very popular alternative to Team Foundation Server
(TFS). This is integrated into many tools (including Visual Studio) and services, such
as GitHub or GitLab. Mercurial (hg) is also an option. However, git has gained the
most developer mindshare. Visual Studio Online offers both git and TFS integration.

PostgreSQL is a fantastic open source relational database, and it works with many
Object Relational Mappers (O/RMs), including Entity Framework (EF) and
NHibernate. Dapper is a great, and high-performance, alternative to EF and other
bloated O/RMs. There are plenty of NoSQL options that are available too; for
example, Redis and MongoDB.

Other code editors and Integrated Development Environments (IDEs) are
available, such as Visual Studio Code by Microsoft, which also works on Apple Mac
OS X. ASP.NET Core 1.0 (previously ASP.NET 5) runs on Linux (on Mono and
CoreCLR). Therefore, you don't need Windows (although Nano Server may be worth
investigating).

RabbitMQ is a brilliant open source message queuing server that is written in Erlang
(which WhatsApp also uses). This is far better than Microsoft Message Queuing
(MSMQ), which comes with Windows. Hosted services are readily available, for
example, CloudAMQP.

The author has been a long time Mac user (since the PowerPC days), and he has run
Linux servers since well before this. It's positive to see OS X become popular and to
observe the rise of Linux on Android smartphones and cheap computers, such as the
Raspberry Pi. You can run Windows 10 on a Raspberry Pi 2 and 3, but this is not a
full operating system and only meant to run Internet of Things (IoT) devices.
Having used Windows professionally for a long time, developing and deploying with
Mac and Linux, and seeing what performance effects this brings is an interesting
opportunity.

Although not open source (or always free), it is worth mentioning JetBrains products.
TeamCity is a very good build and Continuous Integration (CI) server that has a
free tier. ReSharper is an awesome plugin for Visual Studio, which will make you a
better coder. They're also working on a C# IDE called Project Rider that promises to
be good.

There is a product called Octopus Deploy, which is extremely useful for the
deployment of .NET applications, and it has a free tier. Regarding cloud services,
Amazon Web Services (AWS) is an obvious alternative to Azure, even if the AWS

www.EBooksWorld.ir

Windows support leaves something to be desired. There are many other hosts
available, and dedicated servers can often be cheaper for a steady load if you don't
need the dynamic scaling of the cloud.

Much of this is beyond the scope of this book, but you would be wise to investigate
some of these tools. The point is that there is always a choice about how to build a
system from the huge range of components available, especially with the new version
of ASP.NET.

www.EBooksWorld.ir

The new .NET
The new ASP.NET and the .NET Framework that it relies upon were rewritten to be
open source and cross-platform. This work was called ASP.NET 5 while in
development, but this has since been renamed to ASP.NET Core 1.0 to reflect that it's
a new product with a stripped down set of features. Similarly, .NET Core 5 is now
.NET Core 1.0, and Entity Framework 7 is now Entity Framework Core 1.0.

The web application framework that was called ASP.NET MVC has been merged
into ASP.NET Core, although it's a package that can be added like any other
dependency. The latest version of MVC is 6 and, along with Web API 2, this has
been combined into a single product, called ASP.NET Core. MVC and Web API
aren't normally referred to directly any more as they are simply NuGet packages that
are used by ASP.NET Core. Not all features are available in the new Core
frameworks yet, and the focus is on server-side web applications to start with.

All these different names can be perplexing, but naming things is hard. A variation of
Phil Karlton's famous quote goes like this:

"There are only two hard things in Computer Science: cache invalidation,
naming things, and off-by-one errors."

We've looked at naming here, and we'll get to caching later on in this book.

It can be a little confusing understanding how all of these versions fit together. This is
best explained with a diagram like the following, which shows how the layers
interact:

www.EBooksWorld.ir

ASP.NET Core 1.0 can run against the existing .NET Framework 4.6 or the new
.NET Core 1.0 framework. Similarly, .NET Core can run on Windows, Mac OS X,
and Linux, but the old .NET only runs on Windows.

There is also the Mono framework, which has been omitted for clarity. This was a
previous project that allowed .NET to run on multiple platforms. Mono was recently
acquired by Microsoft, and it was open sourced (along with other Xamarin
products). Therefore, you should be able to run ASP.NET Core using Mono on any
supported operating system.

.NET Core focuses on web-application development and server-side frameworks. It
is not as feature filled as the existing .NET Framework. If you write native-graphical
desktop applications, perhaps using Windows Presentation Foundation (WPF),
then you should stick with .NET 4.6.

As this book is mainly about web-application development, we will use the latest
Core versions of all software. We will investigate the performance implications of
various operating systems and architectures. This is particularly important if your
deployment target is a computer, such as the Raspberry Pi, which uses a processor
with an ARM architecture. It also has limited memory, which is important to consider
when using a managed runtime that includes garbage collection, such as .NET.

www.EBooksWorld.ir

Summary
Let's sum up what we covered in this introductory chapter and what we will cover in
the next chapter. We introduced the concept of treating performance as a feature, and
we covered why this is important. We also briefly touched on some common
performance problems and why we often miss them in the software development
process. We'll cover these in more detail later on in this book.

We showed the performance differences between various types of storage hardware.
We highlighted the importance of knowing what your code runs on and, crucially,
what it will run on when your users see it. We talked about how the process of
scaling systems has changed from what it used to be, how scaling is now performed
horizontally instead of vertically, and how you can take advantage of this in the
architecting of your code and systems.

We showed you the tools that you can use and the licensing implications of some of
them. We also explained the new world of .NET and how these latest frameworks fit
in with the stable ones. We touched upon why measurement is vitally important. In the
next chapter, we'll expand on this and show you how to measure your software to see
whether it's slow.

www.EBooksWorld.ir

Chapter 2. Measuring Performance
Bottlenecks
Measurement is the most crucial aspect of building high performance systems. You
can't change what you can't measure, because you won't know what effect your
change has had, if any. Without measuring your application you won't know if it's
performing well.

If you only go by when your software feels slow then you have left it too late. You are
reactively fixing a problem rather than proactively avoiding one. You must measure
to achieve good performance even though it's the feel that matters to a user.

Some books leave measurement, analysis, and profiling until the end. Yet this is the
first thing that should be considered. It's easy to fix the wrong problem and optimize
areas that are not having performance difficulties.

In this chapter we will cover the following topics.

Structured Query Language (SQL) database profiling
SQL Server Profiler
MiniProfiler

Web application profiling
Glimpse
Integrated Development Environment (IDE) profilers

HTTP monitoring
Browser developer tools
Fiddler proxy

Network monitoring
Microsoft message analyzer
Wireshark

Scientific method and repeatability

This chapter will show you how to measure if there are performance issues and
where they are occurring. We will describe the tools that can give you this
information and demonstrate how to use them effectively and correctly. We'll also
show you how to repeat your experiments consistently so that you can tell if you have
fixed a problem once you've identified it.

We will cover measurement again towards the end of the book, but there we'll focus
on continuous automated monitoring to avoid regressions. This chapter will focus
more on manual testing to identify potential performance problems during

www.EBooksWorld.ir

development and debugging.

www.EBooksWorld.ir

Tools
Good debugging tools are essential in discovering where problems lie. You can write
your own crude timing code and we will show you how. However, purpose built
tools are much nicer to work with.

Many of the tools in this chapter help examine areas external to your code. We will
cover profiling of code too, but it's hard to identify problems this way unless the
work is purely computational. Slowdowns often happen because of actions your app
initiates outside of its immediate stack, and these can be hard to debug by simply
stepping through the code.

Moving through your program line-by-line slows down execution so much that it can
be difficult to identify which lines are fast and which are slow. The same approach
taken for fixing functional bugs cannot always be applied to fix performance issues.

One of the problems with adopting a new framework (such as ASP.NET Core) early
is that it can take a while for the existing tools to be updated to work with it. We will
point out when this is the case but these compatibility problems should improve over
time. As many of the tools are open source, you could help out and contribute to the
community.

www.EBooksWorld.ir

SQL
First off we will cover SQL related issues, so if you're not using a relational
database then you can skip this bit, perhaps if you're using a NoSQL store or a
document database instead. Relational databases are a very mature technology and
are flexible in their uses. However, it is essential to have a basic knowledge of the
SQL syntax and how databases work in order to use them effectively.

It can be tempting when using an O/RM such as Entity Framework (EF) to ignore
SQL and stay in a C# world, but a competent developer should be able to write a
high performance SQL query. Ignoring the realities of how a database engine works
will often lead to performance issues. It's easy to write code with an O/RM that's too
chatty with the database and issues far too many queries for an operation. Not having
the correct indexes on a table will also result in poor performance.

During development you may not notice these mistakes, unless you use tools to
identify the inefficient events occurring. Here we will show you a couple of ways of
doing this.

SQL Server Profiler

SQL Server Profiler is a tool that allows you to inspect what commands are being
executed on your SQL Server database. If you have the management tools installed
then you should already have it on your machine.

1. If you are using Microsoft SQL Server, then SQL Server Profiler can be
accessed from the Tools menu of SQL Server Management Studio (SSMS).

2. Load SQL Server Profiler and connect to the database that you are using. Name
your trace and select the Tuning profile template.

www.EBooksWorld.ir

3. Click Run and you should see that the trace has begun. You are now ready to run
your code against the database to see what queries it's actually executing.

Executing a simple query

As a test you can execute a simple select query with Management Studio and the
profile window should be flooded with entries. Locate the query that you just
executed among the noise. This is easier if it starts with a comment, as shown in the

www.EBooksWorld.ir

following screenshot.

The Duration column shows the time taken for the query in milliseconds (ms). In this
example, selecting the top 1000 rows from a table containing over a million entries
took 246 ms. This would appear very quick, almost instantaneous, to the user.
Modifying the query to return all rows makes it much slower, as shown in the
following screenshot:

www.EBooksWorld.ir

The query has now taken over 13 seconds (13455 ms) to complete, which is
noticeably slow. This is an extreme example, but it is quite a common mistake to
request more data than needed and to filter or sort it in application code. The
database is often much better suited to this task and is usually the correct location to
select the data you want.

We will cover specific SQL mistakes and remedies in the following chapters.
However, the first step is knowing how to detect what is going on with the
communication between your application and the database. If you can't detect that
your app is making inefficient queries then it will be difficult to improve
performance.

MiniProfiler

MiniProfiler is an excellent open source tool for debugging data queries. It supports
SQL databases and some NoSQL databases, such as Mongo and Raven. It came out of
Stack Exchange, the people who run the Stack Overflow Q&A site. It embeds a

www.EBooksWorld.ir

widget into your web pages that shows you how long they take to get their data. It
also shows you the SQL queries and warns you about common mistakes. Although
MiniProfiler started with .NET, it is also available for Ruby, Go, and Node.js.

The biggest benefit of MiniProfiler over SQL Server Profiler is that it's always there.
You don't need to explicitly go looking for SQL problems and so it can highlight
issues much earlier. It's even a good idea to run it in production, only visible to
logged in admins. This way, every time you work on the website you will see how
the data access is performing. Make sure you test for the performance impacts of this
before deploying it though.

Unfortunately MiniProfiler doesn't yet support ASP.NET Core 1.0. It relies on the
System.Web library and doesn't tie into the Open Web Interface for .NET (OWIN)
style lifecycle used by the new framework. Hopefully it will soon support ASP.NET
Core (and may do by the time you read this) as it's a very useful tool.

Tip

If you're using a supported version of ASP.NET then MiniProfiler is highly
recommended. ASP.NET Core support is planned, so keep an eye on ANCLAFS.com
for the latest support details.

Due to these limitations, we won't cover MiniProfiler in too much detail but you can
get more information at miniprofiler.com . If you are using a previous version of
ASP.NET then you can install it into your project with the NuGet package manager.
Type Install-Package MiniProfiler into the package manager PowerShell
console window in Visual Studio. Then follow the rest of the setup instructions from
the website.

www.EBooksWorld.ir

https://anclafs.com/
http://miniprofiler.com/

Application profiling
Often you will want a breakdown of where all the time is being taken up within your
application. There are various tools available for this and we will cover a couple of
them here.

Glimpse

Glimpse is a fantastic open source add-on for your web application. Like
MiniProfiler, it adds a widget to your web pages so that you can see problems as you
navigate around and work on your site. It provides information similar to your
browser developer tools but also delves inside your server side application to show
you a trace of what actions are taking the most time.

Glimpse is available from getglimpse.com and you can install it with NuGet for the
web framework and O/RM you're using. For ASP.NET Core we will need to use
Glimpse version 2. This is currently a beta prerelease, but by the time you read this it
may be stable.

Using Glimpse

Installing Glimpse is really simple, there are only three steps.

1. Install with NuGet.
2. Add lines to Startup.cs.
3. Build and run the app.

Let's have a look at these steps.

Installing the package

Right-click on your web application project in the Solution Explorer and select
Manage NuGet Packages... to open the graphical package manager window. Search
for Glimpse, select it, and then click on the Install button. If you want to install the
beta version of Glimpse 2, then make sure the Include prerelease checkbox is
selected:

www.EBooksWorld.ir

http://getglimpse.com/

Add code

You need to add three snippets of code to your Startup.cs file. In the using
directives at the top of the file, add the following:

using Glimpse;

In the ConfigureServices function, add the following:

services.AddGlimpse();

In the Configure function, add the following:

app.UseGlimpse();

Running your web application

Build and run your web application by pressing F5. If you encounter a duplicate type
error when running then simply clean the solution and do a full rebuild. You may need
to apply migrations to the database, but this is just a button click in the browser.
However, if you add this to an existing project with data, then you should take more
care.

You should then look at your web application with the Glimpse bar at the bottom of
the browser window, which looks like the following screenshot. The bar is one long
strip, but it has been broken up in this screenshot to display it more clearly:

www.EBooksWorld.ir

Note

The first page load may take much longer than subsequent ones, so you should refresh
for more representative data. However, we won't worry about this for the purposes
of this demo.

Mouse over each section in the Glimpse toolbar to expand it for more information.
You can minimize and restore each section (HTTP, HOST, or AJAX) by clicking on
its title.

If you used the default web application template (and left the authentication as the
default individual user accounts), then you can register a new user to cause the
application to perform some database operations. You will then see some values in
the DB queries field, as shown in the following screenshot:

Click on the Glimpse logo to see a history of all the page requests. Select one to
view the details and expand the SQL queries by clicking on them, which is
displayed in the following screenshot:

www.EBooksWorld.ir

Glimpse shows you how much time is spent in each layer of your application and
exactly which SQL queries are being run. In this case, EF Core 1.0 generates the
SQL.

Glimpse is very useful to track down where performance problems lie. You can
easily see how long each part of the page pipeline takes and identify slow parts.

IDE

Using the profiling tools that are built into Visual Studio (VS) can be very
informative to understand the CPU and memory usage of your code. You can also see
the time taken for certain operations.

When running your application, open the diagnostic tools window in VS, as shown in
the following screenshot:

www.EBooksWorld.ir

You can see the CPU and memory profiles, including the automatic Garbage
Collection events that are used to free up memory (the marker just prior to memory
use decreasing). You will be able to see breakpoint events and, if you have the
enterprise version of VS, IntelliTrace events as well.

Note

IntelliTrace is only available in the enterprise edition of Visual Studio. However, you
can still use the performance and diagnostic tools in the free community edition.

If you have IntelliTrace, then you can find it in the VS options, as shown in the
following screenshot. However, the diagnostic tools are still useful without this
premium feature:

www.EBooksWorld.ir

When you put in a breakpoint and your code hits it, then VS will tell you how long it
was since the previous event. This is shown in the events list and also overlaid near
the breakpoint.

Tip

You can't install the community edition and enterprise edition of Visual Studio on the
same machine. Use a Virtual Machine (VM), for example, with Hyper-V or
VirtualBox, if you wish to run both.

Alternatives to VS tools are Redgate ANTS and Telerik JustTrace. JetBrains also
have dotTrace and dotMemory. However, all of these tools can be quite expensive
and we won't cover them here.

www.EBooksWorld.ir

Monitoring HTTP
When dealing with a web application, you will normally use HTTP as the application
protocol. It's very useful to know what requests occur between the browsers and your
servers.

Browsers

Most modern browsers have excellent developer tools, which include a network tab
to monitor requests to and responses from the web server. You can normally access
the dev tools by pressing F12. These are handy to view the web traffic and you can
still see encrypted communications without messing about with certificates.

The dev tools in both Chrome and Firefox are superb. We'll focus on the network and
timing component, but we highly recommend that you learn all of the features. If you
know how to get the best out of them, then web development is much easier.

Chrome

The network dev tools in Chrome are very useful. They provide a good visualization
of the request timings, and you can throttle the connection to see how it behaves over
various different internet connections. This is particularly important for mobile
devices.

A selection of network requests from the Chrome dev tools are shown in the
following screenshot. Additional columns are available if you right-click on the
Headers bar:

You can disable the cache with a simple checkbox so that the browser will always
load assets fresh from your web server. You can also click on a resource for more
information and the timing tab is very useful to provide a breakdown of the

www.EBooksWorld.ir

connection components, for example, Time To First Byte (TTFB). Some basic
timing details from a local web server are shown in the following screenshot:

On a local web server, this breakdown won't contain much extra information, but on a
remote server it will display other things, such as the Domain Name System (DNS)
hostname lookup, and SSL/TLS handshake. These additional components are shown
in the next screenshot:

www.EBooksWorld.ir

Firefox

Firefox has similar dev tools to Chrome but with some added features. For example,
you can edit a request and resend it to the web server. The Network tab presents the
same sort of information as Chrome does, as shown in the following screenshot:

www.EBooksWorld.ir

The detail view is also very similar, including the Timings tab. This tab is shown in
the following screenshot:

Fiddler

Sometimes, browser tools aren't enough. Perhaps, you are debugging a native
application, backend web client, or mobile browser. Fiddler is a free debugging
proxy that can capture all HTTP traffic between the client and server. With a little bit
of work, it can also intercept HTTPS traffic. Fiddler is available at
www.telerik.com/fiddler .

www.EBooksWorld.ir

http://www.telerik.com/fiddler

As this book focuses on web development we won't go into more detail. The browser
dev tools are suitable for most work these days. They now fulfil a large part of the
role that Fiddler used to play before they acquired the same features. Fiddler is still
there if you need it and it can be handy if your web server calls an external HTTP
API. Although this can also often be debugged directly inside VS.

www.EBooksWorld.ir

Network
Occasionally, you will need to debug at a lower level than HTTP or SQL. This is
where network monitors or packet sniffers come in. Perhaps, you want to debug a
Tabular Data Stream (TDS) message to a SQL Server DB or a TLS handshake to an
SSL terminating load balancer. Or maybe you want to analyze a SOAP web service
envelope or Simple Mail Transfer Protocol (SMTP) e-mail connection to see why
it's not working correctly.

Microsoft Message Analyzer

Microsoft Message Analyzer supersedes Microsoft Network Monitor (Netmon) and
is a tool to capture network traffic on Windows systems. Netmon requires you to log
out and back in again after installation, whereas Wireshark doesn't. You can read
more about these two Microsoft tools online, but, for clarity and brevity, we will
focus on Wireshark for low-level network monitoring.

Wireshark

Wireshark (previously called Ethereal) is an open source and cross-platform packet
capture and network analysis application. It is probably the most popular tool of its
kind and has many uses. You can install Wireshark without needing to restart or log
out which makes it great to debug a live problem that's hard to recreate. You can
download Wireshark from www.wireshark.org and it runs on Windows, Mac OS X,
and Linux.

Wireshark isn't particularly useful for local development as it only captures traffic
going over the network, not to localhost. The only thing you are likely to see if you
run it against a local web application is VS reporting what you do back to Microsoft.

Tip

You can turn off the Customer Experience Improvement Program (CEIP) by
clicking on the button next to the quick launch box and selecting Settings.... By
default, it is on (it's now opt-out rather than the opt-in of previous products).

Click on the fin icon button at the top-left of Wireshark to start a trace. Then perform
some network actions, such as loading a webpage from a test server. Once you
capture some packets, click on the stop button and you can then examine the collected
data at your leisure.

Note

www.EBooksWorld.ir

http://www.wireshark.org

Ask your IT administrator before running Wireshark. It can often pick up sensitive
information off of the LAN, which may be against your IT acceptable use policy.

The following screenshot shows part of the results from a Wireshark capture.

There can be a lot of noise when using Wireshark. You will see low-level network
packets, such as Address Resolution Protocol (ARP) traffic, which you can filter
out or ignore. You may also see data from VoIP phones and other networked devices
or data that is intended for other computers on the network.

Select the packet that you are interested in from the top pane. The middle pane will
display the contents of the packet. You can normally ignore the lower layers of the
network stack, such as Ethernet and TCP/IP (presented at the top of the list).

www.EBooksWorld.ir

Dive straight into the application layer that is listed last. If this is a protocol that
Wireshark recognizes, then it will break it down into the fields that it's made up of.

The bottom pane displays a hex dump of the raw packet. This is not normally as
useful as the parsed data in the middle pane.

If you use TLS/SSL (hint: you should), then you won't see the contents of HTTP
traffic. You would need a copy of the server's private key to see inside the TLS
connection, which wraps and encrypts the HTTP application data. You will only be
able to see the domain that was connected to via the DNS lookup and TLS certificate,
not the full URL or any payload data.

Using Wireshark is a huge topic, and there are many great resources available to
learn about it, both online and offline. We won't go into much more detail here
because it's usually not necessary to go down to this low level of network scrutiny.
However, this is a good tool to have in your back pocket.

www.EBooksWorld.ir

Roll your own
Sometimes, you may want to write your own performance measurement code. Make
sure that you have exhausted all other options and investigated the available tools
first.

Note

Perhaps, you want to record the execution time of some process to write to your logs.
Maybe you want to send this to a system such as Logstash then visualize the changes
over time with Kibana. Both are great open source products from Elastic, and they
store data in the Elasticsearch search server. You can read more about both of these
tools at elastic.co

You can easily record the length of time for a task by storing the current time before it
starts and comparing this to the current time after it finishes, but this approach has
many limitations. The act of measuring will affect the result to some extent, and the
clock is not accurate for short durations. It can be useful for really slow events if you
need to share states between processes or multiple runs, but, to benchmark, you
should normally use the Stopwatch class.

Tip

It is usually best to store timestamps in Coordinated Universal Time (UTC), which
is otherwise known as Greenwich Mean Time (GMT), and name timestamps in
UTC. You will avoid many issues with time zones and daylight saving if you use
DateTimeOffset.UtcNow (or at least DateTime.UtcNow). Name variables and
columns to indicate this, for example, TimestampUtc.

Use TimeSpan for lengths of time, but, if you must use primitives (such as integers),
then include the units in the variable or column name. For example,
DurationInMilliseconds or TimeoutInSeconds. This will help to avoid
confusion when another developer (or your future self) comes to use them.

However, to benchmark quick operations, you should use a Stopwatch. This class is
in the System.Diagnostics namespace.

If you try to measure a single quick event, then you will not get accurate results. A
way around this is to repeat the task many times and then take an average. This is
useful to benchmark, but it is not usually applicable to real applications. However,
once you identify what works quickest with a test, then you can apply it to your own
programs.

www.EBooksWorld.ir

http://elastic.co

Let's illustrate this with a small experiment to time how long it takes to hash a
password with the PBKDF2 algorithm (in the System.Security.Cryptography
namespace). In this case, the operation under test is not important, as we are simply
interested in the timing code. A Naïve approach may look like the following code:

var s = Stopwatch.StartNew();
pbkdf2.GetBytes(2048);
s.Stop();
Console.WriteLine($"Test duration = {s.ElapsedMilliseconds} ms");

This code will output a different value every time it is run, due to the flaws in the
measurement process. A better way would be to repeat the test many times and
average the output, like the following code:

var s = Stopwatch.StartNew();
for (var ii = 0; ii < tests; ii++)
{
 pbkdf2.GetBytes(2048);
}
s.Stop();
var mean = s.ElapsedMilliseconds / tests;
Console.WriteLine($"{tests} runs mean duration = {mean} ms");

This code will output very similar results every time. The higher the value of tests,
the more accurate it will be, but the longer the test will take.

Note

We use the new concise string-formatting method here, but you can use the traditional
overloads to Console.WriteLine if you prefer.

Let's write a quick example application that demonstrates the differences by running
these two different versions multiple times. We'll extract the two tests into methods
and call them each a few times:

var pbkdf2 = new Rfc2898DeriveBytes("password", 64, 256);
SingleTest(pbkdf2);
SingleTest(pbkdf2);
SingleTest(pbkdf2);

Console.WriteLine();
var tests = 1000;
AvgTest(pbkdf2, tests);
AvgTest(pbkdf2, tests);
AvgTest(pbkdf2, tests);

Console.WriteLine();
Console.WriteLine("Press any key...");
Console.ReadKey(true);

www.EBooksWorld.ir

The output will look something like the following screenshot. You can find the full
application listing in the code that accompanies this book if you want to run it for
yourself:

You can see that the three individual tests can give wildly different results and yet the
averaged tests are identical.

Tip

Detailed steps to download the code bundle are mentioned in the Preface of this
book. Please have a look. The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/ASP.NET-Core-1.0-High-Performance. We also
have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Your results will vary. This is due to the inherent variability in computer systems.
Embedded systems that are time sensitive usually use a real time OS. Normal
software systems typically run on a time-sharing OS, where your instructions can
easily get interrupted, and VMs make the problem even worse.

You will get different results, depending on whether you build in debug or release
mode and if you run with or without debugging. Release mode without debugging
(Ctrl + F5) is the fastest.

The following screenshot shows the same benchmarking demo application running
with debugging. You can tell because the dotnet executable is shown in the title bar
of the command prompt. If it ran without debugging, then this would display cmd.exe
(on Windows), as in the previous screenshot.

www.EBooksWorld.ir

https://github.com/PacktPublishing/ASP.NET-Core-1.0-High-Performance
https://github.com/PacktPublishing/

Note

Unit testing is very valuable and you may even practice Test-Driven Development
(TDD), but you should be careful about including performance tests as unit tests. Unit
tests must be quick to be valuable, and tests that accurately measure the time taken for
operations are often slow. You should set a timeout on your unit tests to make sure
that you don't write slow ones with external dependencies. You can still test
performance, but you should do it in the integration testing stage along with tests that
hit an API, DB, or disk.

www.EBooksWorld.ir

Science
We dealt with the computer in computer science by showcasing some hardware in the
previous chapter. Now, it's time for the science bit.

It's important to take a scientific approach if you wish to achieve consistently reliable
results. Have a methodology or test plan and follow it the same way every time, only
changing the thing that you want to measure. Automation can help a lot with this.

It's also important to always measure for your use case on your systems with your
data. What worked well for someone else may not work out great for you.

We will talk more about science and statistics later in the book. Taking a simple
average can be misleading but it's fine to use it as a gentle introduction. Read Chapter
8, The Downsides of Performance Enhancing Tools, for more on concepts such
as medians and percentiles.

www.EBooksWorld.ir

Repeatability
Results need to be repeatable. If you get wildly different results every time you test,
then they can't be relied upon. You should repeat tests and take the average result to
normalize out any variability in the application or hardware under test.

It is also important to clearly record the units of measurement. When you compare a
new value to a historic one, you need to know this. NASA famously lost a Mars
probe because of unit confusion.

Only change one thing

When testing, you aim to measure the impact of a single change. If you change more
than one thing at a time, then you cannot be sure which one has made the difference.

The aim is to minimize the effects of any other changes apart from the one you are
interested in. This means keeping external factors as static as possible and
performing multiple tests, taking the average result.

www.EBooksWorld.ir

Summary
Let's sum up what we covered about measurement in this chapter and what we'll
cover in the next chapter. We covered the importance of measurement in solving
performance problems. Without measuring, you cannot hope to write high-
performance software; you will be coding in the dark.

We highlighted some of the tools that you can use to measure performance. We
showed you how to use a selection of these and how to write your own.

We also covered the value of taking a scientific approach to measurement. Making
sure that your results are repeatable and that you record the correct units of
measurement are important concerns.

In the next chapter, we will learn how to fix common performance problems. You
will gain the skills to speed up the low-hanging fruit and make yourself look like a
performance wizard to your colleagues. No longer will it be a case of it worked in
test, it's an operations problem now.

www.EBooksWorld.ir

Chapter 3. Fixing Common
Performance Problems
This chapter gets into the meat of optimization, once you identify and locate
performance problems. It covers a selection of the most common performance issues
across a variety of areas and explains simple solutions to some of the mistakes
people often make. When using these techniques, you'll look like a wizard to your
clients and colleagues by quickly speeding up their software.

Topics covered in this chapter include the following:

Network latency
Select N+1 problems
Disk I/O issues on virtual machines
Asynchronous operations in a web application
Performing too many operations in one web request
Static site generators
Pragmatic solutions with hardware
Shrinking overly-large images

Most of the problems in this chapter center on what happens when you add latency to
common operations or when throughput is reduced from what it was in development.
Things that worked fine in test when everything was on one physical machine with
minimal data are now no longer quite as speedy when you have an API on a different
continent, a full database on a different machine to your web server, and its virtual
disk somewhere else on the network entirely.

You will learn how to identify and fix issues that are not always apparent when
everything is running on a single machine. You'll see how to identify when your
O/RM or framework behaves badly and is too chatty with the database, which can
easily happen if it's not used correctly.

We will see how to ensure that work is performed in the most appropriate place, and
we'll look at some ways of keeping your images small using the correct resolution
and format. These techniques will ensure that your application is efficient and that
data is not sent over the wire unnecessarily.

We'll also discuss how to mitigate performance issues with an alternative approach
by improving the underlying hardware to reduce the factors that amplify issues in bad
software. This can be a good temporary measure if the software is already deployed
to production and in use. If you already have live performance problems then this can

www.EBooksWorld.ir

buy you some time to engineer a proper fix.

www.EBooksWorld.ir

Latency
As covered in previous chapters, latency is the delay that occurs before an operation
can complete, sometimes also known as lag. You may not be able to control the
latency of the infrastructure that your software runs on, but you can write your
application in such a way that it can cope with this latency in a graceful manner.

The two main types of latency that we will discuss here are network latency and
disk latency. As the names suggest these are, respectively, the delay in performing an
operation over the network and the delay to read from or write to a persistent storage
medium. You will often deal with both at the same time, for example, a database
(DB) query to a server on a remote virtual machine will require the following
operations:

A network operation from web server to DB server
A network operation from DB server to remote disk on a Storage Area
Network (SAN)
A disk operation to look up data on the physical drive

Note

Although Solid State Drives (SSDs) have much lower latency than spinning platter
disks, they are still relatively slow. When we talk about disk I/O here, we refer to
both types of drive.

You can clearly see that, if you issue too many DB operations, the latency present in
typical production infrastructure will compound the problem. You can fix this by
minimizing the number of DB operations so that they can't be amplified as much.

Let's illustrate this with an example. Let's suppose you wish to return 200 records
from your DB and the round trip latency is 50 milliseconds (ms). If you retrieve all of
the records at once, then the total time will be 50 ms plus the time to transfer the
records. However, if you first retrieve a list of the record identifiers and then
retrieve all of them individually, the total time will be at least 201 * 50 ms = 10.05
seconds!

Unfortunately, this is a very common mistake. In a system where latency dominates
throughput, it is important to keep requests to a minimum.

www.EBooksWorld.ir

Asynchronous operations
Most new .NET framework APIs that have significant latency will have
asynchronous (async) methods. For example, the .NET HTTP client (superseding
the web client), SMTP client, and Entity Framework (EF) all have async versions
of common methods. In fact, the async version is usually the native implementation
and the non-async method is simply a blocking wrapper to it. These methods are very
beneficial and you should use them. However, they may not have the effect that you
imagine when applied to web application programming.

Note

We will cover async operations and asynchronous architecture later in this book.
We'll also go into Message Queuing (MQ) and worker services. This chapter is just
a quick introduction and we will simply show you some tools to go after the low-
hanging fruit on web applications.

An async API returns control to the calling method before it completes. This can also
be awaited so that on completion, execution resumes from where the asynchronous
call was made. With a native desktop or mobile application, awaiting an async
method returns control to the user interface (UI) thread, which means that the
software remains responsive to user input. The app can process user interactions
rather than blocking on your method. Traditionally, you may have used a background
worker for these tasks.

You should never perform expensive work on the UI thread. Therefore, this technique
does increase performance for native applications. However, for a web application
this UI blocking problem does not exist because the browser is the UI. Therefore, this
technique will not increase performance for a single user in isolation.

Awaiting asynchronous API methods in a web application is still good practice, but it
only allows the software to scale better and handle more concurrent users. A web
request typically cannot complete until the async operation also completes.
Therefore, although the thread is surrendered back into the thread pool and you can
use it for other requests, the individual web request will not complete quicker.

www.EBooksWorld.ir

Simple asynchronous tools
As this book deals with web application programming, we won't go into much more
detail on native application UIs in this chapter. Instead, we will showcase some
simple tools and techniques that can help with async tasks in web applications.

The tools we are about to cover offer some simple solutions that are only suitable for
very small applications. They may not always be reliable, but sometimes they can be
good enough. If you are after a more robust solution, then you should read the later
chapters about distributed architecture.

www.EBooksWorld.ir

Background queuing
Background queuing is a useful technique when you have an operation that does not
need to occur straight away. For example, logging stats to a database, sending an e-
mail, or processing a payment transaction. If you perform too much work in a single
web request, then background queuing may offer a convenient solution, especially if
you don't require the operation to always succeed.

If you use ASP.NET 4.6 (or any version from 4.5.2 onwards), then you can use
HostingEnvironment.QueueBackgroundWorkItem to run a method in the
background. This is preferable to simply setting a task running, as if ASP.NET shuts
down then it will issue a cancellation request and wait for a grace period before
killing the item. However, this still does not guarantee completion because the
application can die at any point due to an unexpected reboot or hardware failure. If
the task needs to complete, then it should be transactional and make a record of
success upon completion. It can then be retried if it failed. Queuing a background
work item is okay for fire-and-forget events, if you genuinely don't care whether they
succeed or not.

Unfortunately, HostingEnvironment.QueueBackgroundWorkItem is not part of
ASP.NET Core. Therefore, if you want to use this, then you will have to simply
queue a job. We will show you how to do this later, but if you use the full version of
ASP.NET, then you can do the following to send an e-mail in the background:

var client = new SmtpClient();
HostingEnvironment.QueueBackgroundWorkItem(ct =>
 client.SendMailAsync(message));

Assuming that you already have your message, this will create an SMTP client and
send the e-mail message in the background without blocking further execution. This
does not use the ct (cancellation token) variable. Keep in mind that the e-mail is not
guaranteed to be sent. Therefore, if you need to definitely dispatch it, then consider
using another method.

If you use ASP.NET Core, then this functionality is not available. However, you can
manually create something similar with Task.Run as in the following example.
However, this is probably not the best approach for anything nontrivial:

Task.Run(() => asyncMethod(cancellationToken));

If you can cancel your task, then you can get the ApplicationStopping token from
an injected instance of the IApplicationLifetime interface to pass in as your
cancellation token. This will let your task know when the application is about to stop,

www.EBooksWorld.ir

and you can also block shutdown with it while you gracefully clean up.

You should use this technique with caution, so we won't give you a full example here.
Although, you should now have enough pointers to dig deeper and understand the
ASP.NET Core application lifecycle if you wish.

www.EBooksWorld.ir

Hangfire
Hangfire is an excellent library to run simple background jobs. It does not support
ASP.NET Core yet, but this is planned (refer to ANCLAFS.com for the latest
information). If you use the full .NET, then you should consider it and you can read
more at hangfire.io .

You need persistent storage, such as SQL Server, to use Hangfire. This is required so
that it can ensure that tasks are completed. If your tasks are very quick, then this
overhead can outweigh the benefits. You can reduce the latency using message
queues or the in-memory store Redis, but these are advanced topics.

As this book focuses on ASP.NET Core and Hangfire does not support it yet, we
won't cover its use in more detail. It is also beyond the scope of this chapter in terms
of quick and easy solutions.

www.EBooksWorld.ir

http://ANCLAFS.com
http://hangfire.io

Select N+1 problems
You may have heard of Select N+1 problems before. It's a name for a class of
performance problems that relate to inefficient querying of a DB. The pathological
case is where you query one table for a list of items and then query another table to
get the details for each item, one at a time. This is where the name comes from.
Instead of the single query required, you perform N queries (one for the details of
each item) and the one query to get the list to begin with. Perhaps a better name
would be Select 1+N.

You will hopefully not write such bad-performing queries by hand, but an O/RM can
easily output very inefficient SQL if used incorrectly. You might also use some sort of
business objects abstraction framework, where each object lazily loads itself from
the DB. This can become a performance nightmare if you want to put a lot of these
objects in a list or calculate some dashboard metrics from a large set.

Note

We will go into detail about SQL and O/RM optimization in Chapter 5, Optimizing
I/O Performance. This chapter will simply offer some quick fixes to common
problems.

If you have a slow application that has performance issues when retrieving data, then
Select N+1 may be the problem. Run a SQL profiler tool, as described in the
previous chapter, to discover if this is the case. If you see lots of SQL queries for
your data instead of just one, then you can move on to the solution stage. For
example, if your screen fills with queries on a page load, then you know you have a
problem.

In the following example, we will use the micro-O/RM Dapper (made by the team at
Stack Overflow) to better illustrate what occurs. However, you are more likely to
encounter these problems when using a large lazy loading library or O/RM (such as
EF or NHibernate).

Note

Entity Framework Core 1.0 (previously EF 7) does not support lazy loading, so you
are unlikely to encounter Select N+1 problems when using it. Previous versions of
EF do support this and it may be added to EF Core in the future.

You currently need to use a beta pre-release version of Dapper to work with
ASP.NET Core. As with Glimpse, this may be stable by the time you read this (check

www.EBooksWorld.ir

ANCLAFS.com). To use Glimpse with Dapper, you need to use the Glimpse.ADO
package, which unfortunately does not yet support .NET Core.

Consider a simple blog website. On the home page, we would like a list of the posts
along with the number of comments each post has. Our blog post model may look
something like the following:

namespace SelectNPlusOne.Models
{
 public class BlogPost
 {
 public int BlogPostId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public int CommentCount { get; set; }
 }
}

We also have a model for a comment, which may look like this.

namespace SelectNPlusOne.Models
{
 public class BlogPostComment
 {
 public int BlogPostCommentId { get; set; }
 public string CommenterName { get; set; }
 public string Content { get; set; }
 }
}

Note

As this is an example, we kept things simple and only used a single set of models. In
a real application, you will typically have separate view models and data access
layer models. The controller will map between these, perhaps assisted by a library,
such as AutoMapper (automapper.org).

Our view to render this into HTML may look something like the following:

@model IEnumerable<SelectNPlusOne.Models.BlogPost>
<table class="table">
 <tr>
 <th>Title</th>
 <th># Comments</th>
 </tr>
 @foreach (var post in Model)
 {
 <tr>
 <td>@post.Title</td>

www.EBooksWorld.ir

http://ANCLAFS.com
http://automapper.org

 <td>@post.CommentCount</td>
 </tr>
 }
</table>

We want to populate these models and view from our database. We have two tables,
which look like this:

The relationship between the two tables in question looks like the following:

In our controller, we can write code, such as the following to query the database,

www.EBooksWorld.ir

populate the model from the database results, and return the view to render it:

using (var connection = new SqlConnection(connectionString))
{
 await connection.OpenAsync();
 var blogPosts = await connection.QueryAsync<BlogPost>(@"
 SELECT * FROM BlogPost");
 foreach (var post in blogPosts)
 {
 var comments = await
 connection.QueryAsync<BlogPostComment>(@"
 SELECT * FROM BlogPostComment
 WHERE BlogPostId = @BlogPostId",
 new { BlogPostId = post.BlogPostId });
 post.CommentCount = comments.Count();
 }
 return View(blogPosts);
}

We test this and it works! We feel pretty happy with ourselves. It completes quickly
on our local test database that contains a handful of rows. We used the async methods
everywhere, which must be what makes this so quick. We even only get the comments
for each blog in question, not all comments everytime. We also used a parameterized
query to avoid SQL injection, and everything looks good. Ship it!

Note

As this is an example, we kept it simple for clarity. In a real application, you will
want to use techniques such as dependency injection (such as the DI built into
ASP.NET Core) to make it more flexible.

Unfortunately, when the data starts to increase (as posts and comments are added),
the blog starts to get much slower with pages taking a longer time to load. Our
readers get bored waiting and give up. Audience figures drop along with revenue.

Let's profile the database to see what the problem might be. We run SQL Server
Profiler filtering on the database in question, and look at the SQL being executed.

The following screenshot shows the filter dialog in SQL Server Profiler:

www.EBooksWorld.ir

The trace that we capture reveals that lots of queries are being executed; far too many
for the data that we need. The problem is that our code is not very efficient because it
uses multiple simple queries rather than one slightly more complicated one.

Our code first gets a list of blog posts and then gets the comments for each post, one
post at a time. We also bring back way more data than we need. Async does not
speed up an individual request because we still need all of the data before we can
render the page.

Note

The bad coding is obvious in this example because Dapper has the SQL right in your
code. However, if you use another O/RM, then you wouldn't typically see the SQL in
Visual Studio (or your editor of choice). This is an additional benefit of using Dapper
because you see the SQL where it's used, so there are no surprises.

However, the main benefit of Dapper is that it's fast, very fast, and much faster than
EF. It's a great choice for performance and you can read more about it at
github.com/StackExchange/dapper-dot-net.

We only want a count of the comments for each post and we can get everything that
we need (and only what we need) in one query. Let's alter our previous code to use a
slightly more complicated SQL query rather than two simpler queries, one of which
was inside a foreach loop:

Tip

A SQL query inside a loop is an obvious code smell that indicates things may not be

www.EBooksWorld.ir

http://github.com/StackExchange/dapper-dot-net

as well thought-out as they can be.

using (var connection = new SqlConnection(connectionString))
{
 await connection.OpenAsync();
 var blogPosts = await connection.QueryAsync<BlogPost>(@"
 SELECT
 bp.BlogPostId,
 bp.Title,
 COUNT(bpc.BlogPostCommentId) 'CommentCount'
 FROM BlogPost bp
 LEFT JOIN BlogPostComment bpc
 ON bpc.BlogPostId = bp.BlogPostId
 GROUP BY bp.BlogPostId, bp.Title");
 return View(blogPosts);
}

This more efficient code only performs a single query against the database and gets
all of the information that we need. We join the comments table to the posts in the
database and then aggregate by grouping. We only request the columns that we need
and add the count of the comments to our selection.

Let's profile the new code to see whether we fixed the problem. The following image
shows that we now only have a single query being executed rather than the thousands
being executed before:

The number of queries has been dramatically reduced. Therefore, the page loads
much faster. However, the page is still very big because all the blog posts are listed

www.EBooksWorld.ir

on it and there are a lot. This slows down rendering and increases the time to deliver
the page to a browser.

www.EBooksWorld.ir

Efficient paging
In a real application, you want to implement paging so that your list is not too long
when a lot of data is in the table. It's a bad idea to list thousands of items on a single
page.

You may want to do this with LINQ commands because they are very convenient.
However, you need to be careful. If your O/RM is not LINQ aware or you
accidentally cast to the wrong type a little too early, then the filtering may occur
inside the application when the best place to perform this filtering is actually in the
database. Your code may be retrieving all of the data and throwing most of it away
without you realizing it.

Perhaps you are tempted to modify the action method return statement to look
something like the following:

return View(blogPosts.OrderByDescending(bp => bp.CommentCount)
 .Skip(pageSize * (pageNumber - 1))
 .Take(pageSize));

This works and will speed up your application considerably. However, it may not
have the effect that you think it has. The application is quicker because the view
rendering is speedier due to generating a smaller page. This also reduces the time to
send the page to the browser and for the browser to render the HTML.

Yet, the application still gets all of the blog posts from the database and loads them
into memory. This can become a problem as the amount of data grows. If you want to
use LINQ methods such as this, then you need to check that they are handled all the
way to the database. It's a very good idea to read the documentation for your O/RM
or framework and double-check the SQL that is generated using a profiler.

Let's have a look at what the SQL should look like. For example, if you use SQL
Server, starting with the preceding query, you can take only the top ten most-
commented posts by altering it like the following:

SELECT TOP 10
 bp.BlogPostId,
 bp.Title,
 COUNT(bpc.BlogPostCommentId) 'CommentCount'
FROM BlogPost bp
LEFT JOIN BlogPostComment bpc
 ON bpc.BlogPostId = bp.BlogPostId
GROUP BY bp.BlogPostId, bp.Title
ORDER BY COUNT(bpc.BlogPostCommentId) DESC

www.EBooksWorld.ir

We order by comment count in descending order. However, you can sort by
descending ID to get a rough reverse chronological order if you like. From this
ordered set, we select (or take) only the top ten records.

If you want to skip records for paging, the SELECT TOP clause is not good enough. In
SQL Server 2012 and onward, you can use the following instead:

SELECT
 bp.BlogPostId,
 bp.Title,
 COUNT(bpc.BlogPostCommentId) 'CommentCount'
FROM BlogPost bp
LEFT JOIN BlogPostComment bpc
 ON bpc.BlogPostId = bp.BlogPostId
GROUP BY bp.BlogPostId, bp.Title
ORDER BY COUNT(bpc.BlogPostCommentId) DESC
OFFSET 0 ROWS
FETCH NEXT 10 ROWS ONLY

You can adjust the value for OFFSET to get the correct entries for your page number.
The FETCH NEXT value will change the page size (the number of entries on a page).
You can pass these values in with a parameterized query, as follows:

using (var connection = new SqlConnection(connectionString))
{
 await connection.OpenAsync();
 var blogPosts = await connection.QueryAsync<BlogPost>(@"
 SELECT
 bp.BlogPostId,
 bp.Title,
 COUNT(bpc.BlogPostCommentId) 'CommentCount'
 FROM BlogPost bp
 LEFT JOIN BlogPostComment bpc
 ON bpc.BlogPostId = bp.BlogPostId
 GROUP BY bp.BlogPostId, bp.Title
 ORDER BY COUNT(bpc.BlogPostCommentId) DESC
 OFFSET @OffsetRows ROWS
 FETCH NEXT @LimitRows ROWS ONLY", new
 {
 OffsetRows = pageSize * (pageNumber - 1),
 LimitRows = pageSize
 }
);
 return View(blogPosts);
}

You can pass in the page size and number as URL parameters if you update your
action method signature to the following:

public async Task<IActionResult> Index(int pageNumber = 1,

www.EBooksWorld.ir

 int pageSize = 10)

Here, we provided default values for both parameters, so they are optional. When no
parameters are provided, then the first page of ten results is shown. We need to
multiply the page size by the zero-indexed page number to calculate the correct
offset. It should be zero for the first page so that no records are skipped.

Tip

It would be a very good idea to apply some validation to the paging parameters.
Don't allow users to set them to anything outside of a reasonable range. This is left as
an exercise to the reader.

If we look in the profiler at the queries being executed on the database server, then
we can see what SQL is now being run. We can also see the time taken and compare
this to our results from previously:

www.EBooksWorld.ir

The query in the screenshot gets the data for the third page with the page size set to
50 entries. Therefore, it used an offset of 100 (to skip the first two pages of 50) and
fetched the next 50 rows. The URL query string for this can look something like the
following:

/?pagenumber=3&pagesize=50

We can see that the duration of the query has decreased from 24 ms previously to 14
ms now.

Tip

Note how the SQL executes differently when parameters are passed into the query.
This is much safer than concatenating user-supplied values directly into a SQL
command.

If you do not use any parameters, then the default values are used and the home page
shows only ten entries, which looks something like the following screenshot,
depending on the data in the database:

www.EBooksWorld.ir

By default, the home page only displays the top 10 most commented posts, but you
can easily add page navigation with hyperlinks. Simply add the pagenumber and
pagesize query string parameters to the URL.

You can use the example URL query string shown previously on either the home page
or the bad paging path, for example, /Home/BadPaging/?
pagenumber=3&pagesize=50.

The links in the navigation bar load the examples that we just walked through. The
best is the same as the home page and is the default. Top 10 and bad paging should be
fairly self-explanatory. Bad will take a long time to load, especially if you use the
DB creation script included with the project. You can time it with your browser
developer tools.

For previous versions of SQL Server (prior to 2012), there are paging workarounds
using ROW_NUMBER() or nested SELECT statements, which invert the sort order. If you
use another database, such as PostgreSQL, MySQL, or SQLite, then you can easily
implement paging with the LIMIT clause. These free databases often have more
features than SQL Server, such as the Limit clause mentioned here and a
concatenation aggregator to name just one other.

Note

One of the touted benefits of big O/RMs is the layer of abstraction that they offer.
This allows you to change the database that you use. However, in practice, it is rare
to change something as core as a database. As you can see from the simple paging
example, syntax varies between databases for anything other than simple standard
SQL. To get the best performance, you really need to understand the features and
custom syntax of the database that you use.

www.EBooksWorld.ir

Static site generators
The database is the logical place to perform any work to filter and sort data. Doing
this in the application is a waste. However, for a simple blog that is updated
infrequently, a database may be unnecessary in the first place. It may even become the
bottleneck and slow the whole blog down. This is a typical problem of blog engines,
such as WordPress. A better approach may be to use a static site generator.

A static site generator prerenders all of the pages and saves the resulting HTML. This
can easily be served by a simple web server and scales well. When a change is made
and pages need updating, then this site is regenerated and a new version is deployed.
This approach doesn't include dynamic features, such as comments, but third-party
services are available to provide these added extras.

A popular static site generator is Jekyll, which is written in Ruby. GitHub provides
a free static site-hosting service called GitHub Pages, which supports Jekyll, and
you can read more about it at pages.github.com . Another static site generator (written
in Go) is Hugo, which you can read about at gohugo. io . These tools are basically a
form of extreme caching. We'll cover caching in the next section and later on in this
book.

It's often worth taking a step back to see whether the problem that you're trying to
solve is even a problem. You may well improve database performance by removing
the database.

www.EBooksWorld.ir

http://pages.github.com
http://gohugo.io

Pragmatic solutions with hardware
The best approach to take with a poorly performing application is usually to fix the
software. However, it is good to be pragmatic and try to look at the bigger picture.
Depending on the size and scale of an application, it can be cheaper to throw better
hardware at it, at least as a short term measure.

Hardware is much cheaper than developer time and is always getting better.
Installing some new hardware can work as a quick fix and buy you some time. You
can then address the root causes of any performance issues in software as part of the
ongoing development. You can add a little time to the schedule to refactor and
improve an area of the code base as you work on it.

Once you discover that the cause of your performance problem is latency, you have
two possible approaches:

Reduce the number of latency-sensitive operations
Reduce the latency itself using faster computers or by moving the computers
closer together

With the rise of cloud computing, you may not need to buy or install new hardware.
You can just pay more for a higher-performing instance class or you can move things
around inside your cloud provider's infrastructure to reduce latency.

www.EBooksWorld.ir

A desktop example
To borrow an example from native desktop applications, it is quite common to have
poorly-performing Line of Business (LoB) applications on corporate desktops. The
desktop will probably be old and underpowered. The networking back to the central
database may be slow because the connection might be over a remote link to a
regional office.

With a badly-written application that is too chatty with the DB, it can be better,
performance-wise, to run the application on a server close to (or on the same server
as) the DB. Perhaps the application workspace and DB servers can be in the same
server rack at the data center and connected by Gigabit (or ten Gigabit) Ethernet.

The user can then use a remote desktop connection or Citrix session to interact with
the application. This will reduce the latency to the DB and can speed things up, even
taking into consideration the lag of the remote UI. This effectively turns the desktop
PC into a thin client, similar to how old mainframes are used.

For example, you can build a high-performance server with RAID SSDs and lots of
RAM for much less than the cost of the developer time to fix a large application.
Even badly-written software can perform well if you run the application and DB
together on the same machine, especially if you run it on bare metal with no virtual
machines in the way. This tactic would buy you time to fix things properly.

These remote application and virtualization technologies are usually sold as tools to
aid deployment and maintenance. However, the potential performance benefits are
also worth considering.

Due to the rise of web applications, thick client desktop applications are now less
common. Architecture seems to oscillate between computation on the server and
doing work on the client, as the relative progress of networking speed and processing
power race each other.

www.EBooksWorld.ir

Web applications
The same relocation approach does not typically work as well for web applications,
but it depends on the architecture used. The good news is that, for web applications,
you usually control the infrastructure. This is not normally the case for native
application hardware.

If you use a three-tier architecture, then you can move the application servers
closer to the DB server. Whether this is effective or not depends on how chatty the
web servers are with the application servers. If they issue too many web API
requests, then this won't work well.

A two-tier architecture (where the web servers talk directly to the database) is
more common for typical web applications. There are solutions using clustered
databases or read-only mirrors to place the data close to the web servers, but these
add complexity and cost.

What can make a significant difference are proxy servers. A popular open source
proxy server is Varnish and you can also use the NGINX web server as a proxy.
Proxy servers cache the output of web servers so that a page doesn't have to be
regenerated for each user. This is useful for shared pages but caching is hard;
typically, you should not cache personalized pages. You don't want to accidentally
serve someone's authenticated private information to another user.

Proxies such as Varnish can also route different parts of your website to different
servers. If you have a small area of your site that performs badly due to DB chatter,
then you could host that part from web servers on (or very close to, such as on the
same VM host) the DB machines and route requests for it to there. The rest of the site
could remain on the existing web server farm.

This isn't a long term solution, but it allows you to split off a poorly performing part
of your program so that it doesn't impact the rest of your system. You're then free to
fix it once it's been decoupled or isolated. You can even split off the data required to
a separate DB and synchronize it with a background process.

There are also Content Delivery Networks (CDNs), such as CloudFlare, Amazon
CloudFront, and Azure CDN, which are good to cache static assets. CDNs cache
parts of your site in data centers close to your users, reducing the latency. CloudFlare
can even add HTTPS to your site for free, including automatically issuing
certificates.

Note

www.EBooksWorld.ir

You can read more about the CDN offerings of CloudFlare (including HTTP/2 server
push and WebSockets on the free plan) at www.cloudflare.com .

We will cover caching in more detail in Chapter 7, Learning Caching and Message
Queuing, so we won't go into more detail here. Caching is a challenging subject and
needs to be understood well so that you can use it effectively.

www.EBooksWorld.ir

http://www.cloudflare.com

Oversized images
While we're on the subject of static assets, we should briefly mention image
optimization. We'll cover this in much more detail in the next chapter, but it's worth
highlighting some common problems here. As you have very little control over
network conditions between your infrastructure and the user, low throughput may be a
problem in addition to high latency.

Web applications heavily use images, especially on landing pages or home pages,
where they might form a fullscreen background. It is regrettably common to see a raw
photo from a camera simply dropped straight in. Images from cameras are typically
many megabytes in size, far too big for a web page.

You can test whether there are problems on a web page using a tool, such as Google's
PageSpeed Insights. Visit developers.goog le.com/speed/pagespeed/insights , enter a
URL, and click on ANALYZE to view the results. Google use this information as part
of their search engine ranking, so you would do well to take its advice up to a point.
Slow sites rank lower in search results.

You can also use the browser developer tools to view the size of images. Press F12
and look at the network tab after a page load to view how much data was transferred
and how long it took. You can often miss these performance issues on a local machine
or test server because the image will load quickly. After the first load, it will also be
stored in the browser's cache, so make sure you do a full hard reload and empty or
disable the cache. In Chrome (when the dev tools are open), you can right-click or
long click on the reload button for these extra options. It's also a good idea to use the
built-in throttling tools to see how a user will experience the page loading.

The most basic image optimization problems typically fall into two categories:

Images that are overly large for the display area they are displayed in
Images that use the wrong compression format for the subject matter

www.EBooksWorld.ir

http://developers.google.com/speed/pagespeed/insights

Image resolution
The most common issue is that an image has too high a resolution for the area that
displays it. This forces the browser to resize the image to fit the screen or area. If the
size of the file is unnecessarily large, then it will take longer to be transferred over
an internet connection. The browser will then throw away most of the information.
You should resize the image ahead of time before adding it to the site.

There are many image manipulation tools available to resize pictures. If you run
Windows, then Paint.NET (www.getpaint.net) is an excellent free piece of software.
This is much better than the Paint program that comes with Windows (although this
will work if you have no other option).

For other platforms, GIMP (www.gimp.org) is very good. If you prefer using the
command line, then you may like ImageMagick (imagemagick.org), which can
perform lots of image manipulation tasks programmatically or in batches. There are
also cloud-hosted image management services, such as Cloudinary (cloudinary.com).

You should shrink images to the actual size that they will be displayed on the user's
screen. There can be complications when dealing with responsive images, which
scale with the size of the user's screen or browser window. Also keep in mind high
DPI or Retina displays, which may have more than one physical pixel to every
logical pixel. Your images may have to be bigger to not look blurry, but the upper
bound is still likely to be lower than the raw size. It is rare to need an image at more
than twice the size of the displayed resolution. We will discuss responsive images in
more detail later in this book, but it is worth keeping them in mind.

The following image displays the resizing dialog from Paint.NET:

www.EBooksWorld.ir

http://www.getpaint.net
http://www.gimp.org
http://imagemagick.org
http://cloudinary.com

When resizing an image, it is usually important to keep the aspect ratio of the image
the same. This means changing the horizontal and vertical sizes in proportion to each
other.

For example, reducing the Height from 600 px to 300 px and reducing the Width
from 800 px to 400 px (meaning both dimensions are reduced by 50%) keeps the
image looking the same, only smaller. Most image-manipulation software will assist
with this process. Keeping the aspect ratio the same will avoid images looking
stretched. If images need to fit a different shape, then they should be cropped instead.

www.EBooksWorld.ir

Image format
The next most common problem is using images in the wrong file format for the
content. You should never use raw uncompressed images, such as bitmap (BMP), on
the web.

For natural images such as photos, use the JPEG file format. JPEG is a lossy codec,
which means that information is lost when using it. It is very good for pictures with a
lot of gradients in them, such as images of natural scenes or people. JPEG looks poor
if there is any text in the image because there will be compression artifacts around
the edges of the letters. Most mid- and low-end cameras natively save images as
JPEG, so you do not lose anything by staying with it. However, you should resize the
images to make them smaller, as mentioned previously.

For artificial images such as diagrams or icons, use PNG. PNG is a lossless codec,
which means that no information is discarded. This works best for images with large
blocks of solid color, such as diagrams drawn in painting software or screenshots.
This also supports transparency, so you can have images that don't appear rectangular
or are translucent. You can also have animated PNGs, which are of superior quality
to GIFs, but we won't go into the details of them in this chapter.

You can alter the format of images using the same tools that you use to resize them, as
mentioned previously, by simply changing the file format when saving the image. As
always, you should test for what works best in your specific use case. You can
perform experiments by saving the same image in different formats (and different
resolutions) then observing the sizes of the files on disk.

The following image displays the available image options in Paint.NET. Additional
formats are available and we will go into more detail in Chapter 4, Addressing
Network Performance:

www.EBooksWorld.ir

Even when you only choose between JPEG and PNG, you can still make a
significant difference. The following screenshot displays the difference in the size of
the file of the same image in two resolutions and two formats.

The following test image is the one used in the experiment. Due to the hard edges it
looks best as a PNG, but the gradient background makes it more difficult to
compress:

Note

The test images used here are available for download with this book, so you can try
the experiment for yourself.

In a web context, this particular image may be best served with a transparent
background using CSS for the gradient. However, simple shapes, such as these can
better be represented as Scalable Vector Graphics (SVG) or with a HTML5 canvas.

www.EBooksWorld.ir

Summary
In this chapter, you learned about some common performance problems and how to
fix them. We covered asynchronous operations, Select N+1 problems, pragmatic
hardware choices, and overly-large images.

In the next chapter, we will expand on image optimization and extend this to other
forms of compression for different types of resources. We'll look at the new process
for the bundling and minification of static assets in ASP.NET Core using open source
tools.

Additionally, we will introduce networking topics, such as TCP/IP, HTTP,
WebSockets, and encryption. We'll also cover caching, including another look at
CDNs.

www.EBooksWorld.ir

Chapter 4. Addressing Network
Performance
This chapter builds on a subset of the problems that were discussed in the previous
chapter but in more detail. It deals with latency, or lag, which originates at the
networking level between the user and the application. This is mostly applicable to
web applications where the user interacts with the application via a web browser.
You will learn how to optimize your application to cater for bandwidth and latency
that is unknown and outside of your control. You'll compress your payloads to be as
small as possible, and then you will deliver them to the user as quickly as possible.
You will learn about the tools and techniques that can be used to achieve a fast and
responsive application. You'll also see the trade-offs involved and be able to
calculate whether these methods should be applied to your software.

The topics that we will cover in this chapter include the following:

TCP/IP
HTTP and HTTP/2
HTTPS (TLS/SSL)
WebSockets and push notifications
Compression
Bundling and minification
Caching and CDNs

This chapter deals with how to speed up the experience for a user using your
application. The skills in this chapter are just as applicable to a static site or client-
side web app as they are to a dynamic web application.

These topics apply to any web application framework. However, we will focus on
how they are implemented with ASP.NET—in particular with the new ASP.NET
Core implementation, and how this differs from the existing full ASP.NET.

www.EBooksWorld.ir

Internet protocols
It's important to know about how your HTML and other assets are delivered from the
web server to your user's browser. Much of this is abstracted away and transparent to
web development, but it's a good idea to have at least a basic understanding in order
to achieve high performance.

www.EBooksWorld.ir

TCP/IP
Transmission Control Protocol / Internet Protocol (TCP/IP) is the name for a pair
of communication protocols that underpin the internet. IP is the lower-level protocol
of the two, and this deals with routing packets to their correct destinations. IP can run
on top of many different lower-level protocols (such as Ethernet), and this is where
IP addresses come from.

TCP is a layer above IP, and it is concerned with the reliable delivery of packets and
flow control. TCP is where ports come from, such as port 80 for HTTP, and port 443
for HTTPS. There is also the User Datagram Protocol (UDP), which can be used
instead of TCP, but it provides fewer features.

HTTP runs on top of TCP, and it is usually what you will deal with in a web
application. You may occasionally need to directly use Simple Mail Transfer
Protocol (SMTP) to send e-mails, the Domain Name System (DNS) to resolve
hostnames to IP addresses, or File Transfer Protocol (FTP) to upload and download
files.

The basic unencrypted versions of these protocols run directly on TCP, but the secure
encrypted versions (HTTPS, SMTPS, and FTPS) have a layer in between them. This
layer is called Transport Layer Security (TLS), and this is the modern successor to
the Secure Sockets Layer (SSL). SSL is insecure and deprecated, and it should no
longer be used. However, the term SSL is still commonly and confusingly used to
describe TLS. All browsers require the use of TLS encryption to support HTTP/2.

You may not often think about the lower-level protocols when you build web
applications. Indeed, you may not need to consider even HTTP/HTTPS that much.
However, the protocol stack below your application can have significant
performance implications.

The following diagram shows how the protocols are typically stacked:

www.EBooksWorld.ir

Slow-start

TCP implements an algorithm called slow-start for congestion-control purposes.
This means that the connection from a browser to a web server is initially slow and
ramps up over time to discover the available bandwidth. You can alter the settings
for this so that the ramp up is more aggressive, and connections get quicker faster. If
you increase the initial congestion window, then performance can improve,
especially on connections with good bandwidth but high latency, such as mobile 4G
or servers on other continents.

www.EBooksWorld.ir

As usual, you should test for your use case perhaps using Wireshark, as described
previously in Chapter 2, Measuring Performance Bottlenecks . There are downsides
to altering this window, and it should be considered carefully. Although this may
speed up websites, it can cause buffers in networking equipment to fill, which can
generate latency problems for VoIP applications and games if no Quality of Service
(QoS) is in use end to end.

You can change this value on Windows Server 2008 R2 with a hotfix (KB2472264)
and higher. You can also easily adjust this on Linux, and ASP.NET Core enables you
to run your .NET web app on Linux (and Mac OS X) in addition to Windows.

We won't provide detailed instructions here because this should be a cautiously
considered decision, and you shouldn't apply advice blindly. You can easily find
instructions online for the operating system that you use on your web server.

TCP slow-start is just one example of why you can't ignore the lower levels of
Internet technology on the shoulders of which web applications stand. Let's move up
the stack a little to the application layer.

www.EBooksWorld.ir

HTTP
As a web application developer who wants to deliver high performance, it's
important to understand Hypertext Transfer Protocol. You should know what version
of HTTP you use, how it works, and how this affects things, such as request
pipelining and encryption.

HTTP/1.1 is the version that you will probably be most familiar with today because
it has been in use for some time. HTTP/2 is becoming more popular, and it changes
the best way to do many things.

Headers

HTTP uses headers to provide metadata about a request along with the main payload
in the body of the message, much like e-mails do. You won't see these headers when
you view the source, but you can observe them using the browser developer tools.
You can use headers for many things, such as cache control and authentication.
Cookies are also sent and received as headers.

Browsers will only open a limited number of HTTP/1.1 connections at one time to a
single host. If you require a lot of requests to retrieve all the assets for a page, then
they are queued, which increases the total time taken to fully load it. When combined
with the TCP slow-start mentioned previously, this effect can be amplified, degrading
the performance. This is less of a problem with HTTP/2, which we will cover
shortly. You can reduce the impact of this problem by allowing the browser to reuse
connections. You can do this by ensuring that your web server doesn't send a
Connection: close header with HTTP responses.

HTTP methods

There are multiple methods (or verbs) that HTTP uses. The most common are GET
and POST, but there are many more. Typically, we use GET requests to retrieve data
from a server, and we use POST to submit data and make changes. GET should not be
used to alter data.

Other useful verbs are HEAD and OPTIONS. HEAD can check the headers for a GET
request without the overhead of downloading the body. This is useful to check
caching headers to see whether the resource has changed. OPTIONS is commonly used
for Cross Origin Resource Sharing (CORS) to perform a preflight check to
validate a domain.

Other often used verbs are PUT, DELETE, and PATCH. We mainly use these for
Representational State Transfer (REST) APIs because they can mimic operations

www.EBooksWorld.ir

on resources or files. However, not all software (such as some proxy servers)
understands them, so sometimes, we emulate them using POST. You may even have
problems with OPTIONS being blocked by proxies and web servers.

Status codes

HTTP uses numeric response codes to indicate a status. You are probably familiar
with 200 (OK) and 404 (Not Found), but there are many others. For example, 451
indicates that the content has been blocked by a government-mandated censorship
filter.

Note

The 451 status code is in reference to the book Fahrenheit 451 (whose title is the
purported temperature at which paper burns). You can read the official document
(RFC 7725) at tools.ietf.org/html/rfc7725. If this code is not used, then it can be
tricky to discover if and why a site is unavailable. For example, you can find out
whether the UK government is blocking your site at blocked.org.uk, but this is just a
volunteer effort run by the Open Rights Group the British version of the Electronic
Frontier Foundation (EFF).

We commonly use 3xx codes for redirection (perhaps to HTTPS). There are various
forms of redirection with different performance characteristics (and other effects).
You can use a 302 to temporarily redirect a page, but then the browser has to request
the original page every time to see whether the redirect has ended. It also has bad
implications for Search Engine Optimization (SEO), but we won't discuss these
here.

A better approach is to use a 301 to indicate a permanent redirect. However, you
need to be careful, as this can't be undone and clients won't look at the original URL
again. If you use redirects to upgrade users from HTTP to HTTPS, then you should
also consider using HTTP Strict Transport Security (HSTS) headers. Again, do
this carefully.

Encryption

HTTP encryption is very important. It not only secures data in transit to prevent
eavesdropping, but it also provides authentication. This ensures that users actually
connect to the site that they think they are and that the page wasn't tampered with.
Otherwise, unscrupulous internet connection providers can inject or replace adverts
on your site, or they can block internet access until you have opted out of a parental
filter. Or, these can be worse things, such as stealing your user's data, which you are
usually required by law to protect.

www.EBooksWorld.ir

http://tools.ietf.org/html/rfc7725
http://blocked.org.uk

There is really no good reason today to not use encryption everywhere. The
overheads are tiny, although we will still consider them and show you how to avoid
potential issues. Arguments against using HTTPS are usually hangovers from a time
long ago when computation was expensive.

Modern computing hardware is very capable and often has special acceleration for
common encryption tasks. There are many studies that show that the processing
overheads of encryption are negligible. However, there can be a small delay in
initially setting up a secure connection for the first time. In order to understand this, it
is useful to illustrate a simple model of how TLS works.

There are two parts to secure communication: the initial key exchange and the
ongoing encryption of the channel. Session ciphers, such as the Advanced
Encryption Standard (AES), can be very quick, and they can operate at close to line
speed. However, these ciphers are symmetrical and both parties need to know the
key. This key needs to be distributed securely so that only the two communicating
parties possess it. This is called key exchange, and it uses asymmetric encryption.
This usually also requires a third party to vouch for the server, so we have a system
of certificates. This initial setup is the slow part, although we will show you an
alternative for devices that lack the AES acceleration later.

Key exchange

As mentioned previously, key exchange is the process of securely sharing an
encryption key between two parties without being intercepted. There are various
methods of doing this, which mostly rely on asymmetric encryption. Unlike symmetric
encryption (that we exchange this key for), this can only be performed in one
direction with a single key. In other words, the key that is used to encrypt cannot be
used to decrypt, and a different key is required. This is not the case for the majority
of the data once we have shared a key. The reason that we do this is that symmetric
encryption is faster than asymmetric encryption. Therefore, it is not used for
everything and is only needed to encrypt another key.

In addition to exchanging a key, the browser (or other HTTPS client) should check
the certificate to ensure that the server belongs to the domain that it claims to. Some
programmatic clients fail to do this by default, so this is worth checking out. You can
also implement certificate pinning (even in the browser with HTTP Public Key
Pinning) to improve security, but this is beyond the scope of this book.

We will illustrate two variations of key exchange by analogy in simplified forms to
show you how the process works. You can look up the technical details if you wish.

RSA

www.EBooksWorld.ir

RSA is traditionally the most common key-exchange mechanism that is used for TLS.
Until recently, we used it on most HTTPS connections.

RSA stands for Rivest-Shamir-Adleman after the names of its creators, and it is
probably the most popular form of public key cryptography. The British snooping
agency, Government Communications Headquarters (GCHQ), supposedly
conceived public key cryptography at around the same time, but as it was only made
public in 1997, it's impossible to prove this. The invention credit goes to Whitfield
Diffie and Martin Hellman, who recently picked up a Turing Award for it. We'll talk
more about their work shortly.

Note

The Turing Award is the Nobel Prize of computing. It's named after Alan Turing, the
legendary computing pioneer who helped the allies win WWII while working for the
nascent GCHQ, but who was later betrayed by the British government.

RSA uses large prime numbers to generate a public and private key pair. The public
key can be used to encrypt information that can only be decrypted with the private
key. In addition to this, the private key can be used to sign information (usually a
hash of it), which can be verified with the public key. RSA is often used to sign TLS
certificates even if another algorithm is used as the key exchange mechanism (this is
negotiated during the initial TLS handshake).

Tip

This hashing and signing of certificates is where you may have heard of SHA-1
certificates being deprecated by browsers. SHA-1 is no longer considered secure for
hashing and, like MD5 before it, should not be used. Certificate chains must now use
at least an SHA-2 hashing algorithm (such as SHA-256) to sign.

An analogy to help explain how RSA works is to think of sending a lock instead of
sending a key. You can post an open padlock to someone, retaining the key to it. They
can then use your lock to secure a case with a key of theirs inside and send it back to
you. Now, only you can open the case to get the new key.

In reality, this is more complicated. You can't be sure that someone didn't intercept
your lock and then use their own lock to get the key and copy it before sending it on
to you. Typically, we solve this with Public Key Infrastructure (PKI). A trusted
third party will sign your certificate and verify that it is indeed your public key and
that you own the lock. Browsers typically display a warning if a Certificate
Authority (CA) does not countersign the certificate in this way.

www.EBooksWorld.ir

Diffie-Hellman (D-H) key exchange is another method of gaining a shared key.
Invented shortly before RSA, it has only recently become popular on the web. This is
partly due to the reduced computational cost of the elliptic curve variant. However,
another reason is that the ephemeral versions provide a quality called Perfect
Forward Secrecy (PFS). Unlike RSA, the session key for the symmetric encryption
never needs to be transmitted. Both parties can calculate the shared key without it
needing to be sent on the wire (even in an encrypted state) or permanently stored.
This means that an eavesdropped encrypted exchange cannot be decrypted in the
future if the keys were recovered. With RSA key exchange, you can recover a
recorded communication in plain text if you obtain the private keys later. PFS a is
useful countermeasure against mass surveillance, where all communication is caught
in a dragnet and permanently stored.

D-H is better explained with a color mixing analogy, where paints represent
numbers. The two parties choose a shared color, and each party chooses a secret
color of their own. Both mix the shared color with their secret color and send the
result to the other. Each party then mixes the color that they received with their secret
color again. Both parties now have the same color without ever having to send this
color anywhere where it could be observed.

As this is not a book about security, we won't go into any more detail on encryption
algorithms. If you are interested, there is a huge amount of information available that
we can't cover here. Encryption is a large subject, but security is an even broader
concern.

TLS handshake

The point of briefly explaining how TLS key exchange works for various methods is
to show that it is complex. Many messages need to be sent back and forth to establish
a secure connection, and no matter how fast the connection, latency slows down
every message. This all occurs in the TLS handshake, where the client (usually a web
browser) and server negotiate common capabilities and agree on what ciphers they
should use. There is also Server Name Indication (SNI) to consider, which is
similar to the HTTP host header in that it allows multiple sites to use the same IP
address. Some older clients don't support SNI.

We can observe the TLS handshake using Wireshark. We won't go into a huge amount
of detail, but you can see that at least four messages are exchanged between the client
and server. These are client hello, server hello (including the certificate and server
key exchange), client key exchange, and cipher agreement. The browser may send
more messages if we do not optimally configured things, such as requesting an
intermediate certificate. This may also check a revocation list to see whether the

www.EBooksWorld.ir

certificate was revoked.

The following screenshot shows a TLS handshake captured with Wireshark:

All these network operations happen quickly. However, if the connection has a high
latency, then these extra messages can have an amplified effect on performance. The
computational delays are typically much smaller than the network delays, so we can
discount these, unless you use very old hardware. Fortunately, there are some simple
things you can do that will help speed things up and let you enjoy high performance
while still being secure.

Delay diagnostics

There are various mechanisms that are built into TLS that can you can use to speed it
up. However, there are also things that will slow it down if you don't do them
correctly. Some great free online tools to assess your TLS configuration are available
from Qualys SSL Labs at ssllabs.com . The server test at ssllabs.com/ssltest is very
useful. You enter a URL, and they give you a grade along with lots of other
information.

For example, if we analyze the packtpub.com site, we can see that on the date of the
test it got a B grade. This is due to supporting weak Diffie-Hellman parameters and
the obsolete and insecure RC4 cipher. However, it is not always as simple as
removing old ciphers. You can have a very secure site, but you might exclude some of
your customers, who use older clients that don't support the latest standards. This
will, of course, vary depending on the nature of your client base, and you should
measure your traffic and consider your options carefully.

The following screenshot shows some of the report from SSL Labs for packtpub.com
.

www.EBooksWorld.ir

http://ssllabs.com
http://ssllabs.com/ssltest
http://packtpub.com
http://packtpub.com

If we have a look at a site with a better configuration (emoncms.org), we can see that
it gets an A grade. You can get an A+ grade using HSTS headers. Additionally, these
headers avoid the overhead of a redirect. You may also be able to get your site
embedded in a preloaded list shipped with browsers if you submit the domains to the
vendors.

The following screenshot shows some of the report from SSL Labs for emoncms.org :

www.EBooksWorld.ir

http://emoncms.org
http://emoncms.org

The options chosen by modern browsers would typically be an Elliptic Curve
Diffie-Hellman Ephemeral key exchange (ECDHE) with an RSA SHA-256
signature and AES session cipher. The ephemeral keys provide PFS because they are
only held in memory for the session. You can see what connection has been
negotiated by looking in your browser.

In Firefox, you can do this by clicking on the lock icon in the URL bar and then
clicking on the More Information button, as shown in the following image:

www.EBooksWorld.ir

In the Technical Details section, you will see the cipher suite used. The following
image from Firefox shows ECDHE key exchange and RSA certificate signing:

You can also view the certificate details by clicking on the View Certificate button.
The domain is usually included as the Common Name (CN) in the Subject field.
Alternative domains can also be included under the Certificate Subject Alt Name
extension:

www.EBooksWorld.ir

In Chrome, you can look at the TLS connection information in the Security tab of the
developer tools. For example, the following image displays the security details for
huxley.unop.uk :

The following screenshot displays the same window for emoncms.org :

www.EBooksWorld.ir

http://huxley.unop.uk
http://emoncms.org

Tip

You may need to refresh the page to see TLS information if the site was already
loaded when you opened the developer tools. You can access the same tab by
clicking on the padlock in the Chrome URL bar and then clicking on the Details link.

You can view the certificate (in the native operating system certificate store) by
clicking on the Open full certificate details button. A link with the same function
exists on the equivalent screen of Chrome for Android, although the certificate
information is reduced.

Performance tweaks

We already discussed the most important performance tweak for TLS because it is
not about TLS. You should ensure that your HTTP connections are reusable, because
if this is not the case, then you will incur the added penalty of the TLS negotiation
along with the TCP overhead. Caching is also very important, and we will talk more
about this later.

Note

www.EBooksWorld.ir

TLS and HTTP both support compression, but these have security implications.
Therefore, consider them carefully. They can leak information, and a determined
adversary can use an analysis of them to recover encrypted data. TLS compression is
deprecated, and it will be removed in TLS 1.3. Therefore, do not use it. We will
discuss HTTP compression later on in this chapter.

In regard to specific advice for TLS, there are a few things, which you can do to
improve performance. The main technique is to ensure that you use session
resumption. This is different to reusing HTTP connections, and this means that
clients can reuse an existing TLS connection without having to go through the whole
key exchange.

Tip

You can implement sessions with IDs on the server or with encrypted tickets (in a
similar manner to ASP.NET cookies that are encrypted with the machine key). There
was a bug in the Microsoft client implementation around ticket encryption key
rotation, but the KB3109853 patch fixed it. Make sure that you install this update,
especially if you see exceptions thrown when connecting to secure endpoints from
your .NET code.

It is important to not overdo things and bigger is not always better, especially when it
comes to key size. It is a trade-off between performance and security, and this will
depend on your specific situation. In general, a good balance is not using 256 bit
AES keys when 128 bit will do.

A 2048 bit RSA key is big enough, lower is insecure and larger is too slow. You can
use the Elliptic Curve Digital Signature Algorithm (ECDSA) to sign instead of
RSA, as it is much quicker. However, support is limited, so you would need to
deploy RSA in parallel.

If you use ECDSA, then a 256 bit key is sufficient. For ECDHE, 256 bit is also fine,
and for the slower version without elliptic curves (DHE), 2048 bit is sufficient. If
you use ECDSA, then you will see this listed instead of the RSA signing in the
connection details. For example, when visiting huxley.unop.uk , the details in the
following screenshots are displayed in Firefox. This difference is also displayed in
the previous Chrome screenshots:

www.EBooksWorld.ir

http://huxley.unop.uk

Additionally, it is important to include the full certificate chain with your certificate.
If you fail to include all intermediate certificates, then the browser will need to
download them until it finds one in its trusted root store. You can also use a technique
called Online Certificate Status Protocol (OCSP) stapling, by embedding
revocation data so browsers don't need to check a certificate revocation list.

Both of these certificate techniques may increase the size of payloads, which can be
an issue if bandwidth is a concern. However, they will reduce the number of
messages, which will increase performance if latency is the main problem, which is
usually the case. Keeping key sizes small also helps a little with bandwidth. It is hard
to recommend one generic approach. Therefore, as always, test for your unique
situation.

There is also an alternative stream cipher called ChaCha/Poly, which is especially
useful for mobile devices. This uses the ChaCha20 stream cipher and the Poly1305
Message Authentication Code (MAC) algorithm to create a secure alternative to
RC4. AES is a block cipher and is fast with hardware support, but many mobile
devices and some older computers don't have this acceleration. ChaCha/Poly is
faster when using just software. Therefore, this is better for battery life. This is
supported in Chrome, including Chrome for Android, and in Firefox (from version
47).

Note

As all algorithms are different, you can't directly compare key sizes as a measure of
how secure they are. For example, a 256 bit ECDHE key is equivalent to a 3072 bit
RSA key. AES is very secure with relatively small keys, but you cannot use it for key
exchange. ChaCha/Poly is more comparable to the security of AES 256 than AES
128.

In the following screenshot of Chrome on Android, you can see that when connecting
to huxley.unop.uk , Chrome uses CHACHA20_POLY1305 as the stream cipher,
ECDHE for the key exchange, and ECDSA for the signature:

www.EBooksWorld.ir

http://huxley.unop.uk

www.EBooksWorld.ir

Note

The new version of TLS (1.3) is still a draft, but it may be finalized soon. It looks
like it will only allow Authenticated Encryption with Additional Data (AEAD)
ciphers. AES-GCM and ChaCha/Poly are the only two ciphers that currently meet
these criteria. It will also remove some other obsolete features, such as TLS
compression.

It may sometimes sound like using TLS is not always worth it, but it is an excellent
idea to use HTTPS on your entire site, including any third-party resources that you
load in. By doing this, you will be able to take advantage of the performance
enhancing features of HTTP/2, which include techniques that mean that it is no longer
crucial to serve resources (such as JavaScript libraries) from multiple domains. You
can securely host everything yourself and avoid the DNS, TCP, and TLS overhead of
additional requests. All of this can also be free because Let's Encrypt and
CloudFlare provide certificates at zero cost. Let's look at HTTP/2 in detail now.

HTTP/2

As the name suggests, HTTP/2 is the new version of HTTP. It contains some
significant performance improvements for the modern web. It was predated by
SPDY, which has since been deprecated in favor of HTTP/2.

As mentioned previously, the first step toward using HTTP/2 is to use HTTPS on
your entire site. Although not technically required, most clients (all the major
browsers) mandate the use of TLS to enable HTTP/2. This is mainly due to the
Application-Layer Protocol Negotiation (ALPN) that TLS provides, which allows
easy support for HTTP/2. It also stops proxy servers from messing up the data, which
many ISPs use to reduce their costs and record what their customers do online.

HTTP/2 improves performance in a number of ways. It uses compression even for
the headers, and multiplexing, which allows multiple requests to share the same
connection. It also allows the server to push resources that it knows the client will
need before the client has realized it needs them. Although, this requires some
configuration to set the correct headers and it can waste bandwidth if it is overused.

Multiplexing has implications for bundling and image concatenation (sprites), which
we will talk about in the compression section later on in this chapter. This also
means that you don't need to split assets over multiple domains (shards), where the
extra overheads may even slow things down. However, you may still wish to use a

www.EBooksWorld.ir

cookie-free subdomain to serve static assets without cookies, even though the new
header compression means that the bandwidth savings will be smaller. If you use a
naked domain (without a www), then you may need a new domain name for cookie-
less use.

You can identify what version of HTTP is used to deliver your assets using the
browser developer tools. In Firefox, you can see this on the details panel of the
network tab. You will see the version listed as HTTP/1.1 when the old protocol is in
use.

The following screenshot shows that packtpub.com uses HTTP/1.1:

Tip

In Chrome, you can right-click on the column headers in the network inspector and
add a Protocol column. You can also see more detailed network information by
entering chrome://net-internals into the address bar. This displays things, such
as sessions for HTTP/2 and Quick UDP Internet Connections (QUIC)—an
experimental multiplexed stream transport.

The following screenshot shows that emoncms.org also uses HTTP/1.1, even though
TLS is configured differently. The encrypted transport layer is transparent to HTTP:

When HTTP/2 is used, you will see the version listed as HTTP/2.0. The following
screenshot displays this for huxley.unop.uk , and it also displays CORS, caching, and

www.EBooksWorld.ir

http://packtpub.com
http://emoncms.org
http://huxley.unop.uk

content compression headers:

WebSockets

WebSockets is a different protocol to HTTP. However, HTTP initiates it and it uses
the same ports, so we'll discuss it briefly here. This HTML5 feature is useful for
push notifications and Real Time Communication (RTC) applications. WebSockets
use the ws:// and wss:// protocol prefixes instead of http:// and https://. Once
established by an existing HTTP connection, the protocol is full-duplex and binary in
contrast to HTTP/1.

Before WebSockets, if your web server wanted to notify a client of a change, then
you would have to use a technique, such as long polling. This is where a web request
is held open by the server in case it wants to send something. When the request gets a
response or it times-out, it is re-established. Needless to say, polling is never very
efficient.

Push notifications can improve performance from a user's point of view because they
receive updates as soon as they occur. They don't need to refresh anything or keep
checking. You can immediately respond to the user when a long running process
starts, run it asynchronously, and notify them immediately upon its completion.

Socket.IO is a popular WebSocket library for Node.js. To see it in action, you can
look in the browser developer tools on a site that uses it. For example, if you open
the dev tools and go to https://www.opentraintimes.com/maps/signalling/staines, you
will see the connection being upgraded from HTTPS to WSS (or from HTTP to WS
if you use the insecure version).

www.EBooksWorld.ir

https://www.opentraintimes.com/maps/signalling/staines

WebSockets predate HTTP/2, but they are still relevant despite the new server push
technology. These two features appear similar, but they serve different purposes.
WebSockets are for real-time and two-way data transfers, and server push is
currently just to preload.

Note

In addition to HTTP/2 server push preloading, there is a new browser feature that is
currently supported in Android, Chrome, and Opera, which allows you to declare
resource preloading in markup using rel="preload" on a link tag. You can read the
spec at w3c.github.io/preload and check the current state of browser support at
caniuse.com/#feat=link-rel-preload .

In Chrome, the protocol switch will look something like the following screenshot.
You can't see the contents of a WebSocket connection, so you won't be able to view
the data being transferred from within the dev tools:

There is a Microsoft library for ASP.NET, which is called SignalR. This library
allows you to perform push notifications with WebSockets. It also falls back to long
polling if the client or server does not support them. You will need a fairly recent
version of Windows Server (2012 or later) and IIS (8.0 and above) to use
WebSockets.

Unfortunately, the latest stable version (SignalR 2) does not support .NET Core.
The new version (SignalR 3) is not planned for release until after the Release to
manufacturing (RTM) of ASP.NET Core, but this is a top priority. You can try a

www.EBooksWorld.ir

http://w3c.github.io/preload
http://caniuse.com/#feat=link-rel-preload

beta version, but it may be stable by the time you read this.

Tip

You may also wish to look at StackExchange.NetGain as a WebSocket server.

www.EBooksWorld.ir

Compression
Data compression is a broad topic, and we can't hope to cover it all. Here, we will
learn about lossless compression and how to use it in HTTP. We will also cover
lossy image compression of pictures later in the chapter. Compression is important
because if we can make files smaller, we can shorten the time that it takes to transfer
them over a network.

www.EBooksWorld.ir

Lossless compression algorithms
You may have noticed HTTP headers from some of the previous screenshots were
related to encoding. The most common compression algorithms for HTTP are gzip
and DEFLATE, which are very similar. These are both related to the algorithm used
in ZIP files. If you do not already use HTTP compression, then this is a quick win,
and it will improve the performance of your site if you enable it.

There are many other more advanced compression algorithms, such as xz, which is
similar to the 7-Zip (7z) format and uses the Lempel-Ziv-Markov chain Algorithm
(LZMA/LZMA2). However, there are currently only two additional algorithms in
common use in major browsers. These are Brotli and Shared Dictionary
Compression for HTTP (SDCH). Both are from Google, but only Chrome supports
SDCH, and it requires a large dictionary.

Brotli is more interesting, and Opera and Chrome (currently behind a
chrome://flags/#enable-brotli flag), and Firefox by default (version 44 or
higher) support it. Both browsers require the use of HTTPS to support Brotli (yet
another good reason to use TLS), and the encoding token used in the headers is br.
Brotli promises significant performance improvements, especially for mobile
devices on slow connections.

If you access a site over HTTP, you will see the following for the request headers in
the Chrome dev tools network inspector in the details of a request:

Accept-Encoding: gzip, deflate, sdch

However, if you use HTTPS then you will see this instead (after enabling the flag):

Accept-Encoding: gzip, deflate, sdch, br

The server can then respond with Brotli-encoded content using this response header:

Content-Encoding: br

For example, if you visit https://www.bayden.com/test/brotliimg.aspx in a supported
browser, then Brotli will deliver the content (an image of a star). Here is a subset
(for clarity and brevity) of the request headers from Chrome:

GET /test/brotliimg.aspx HTTP/1.1
Host: www.bayden.com
Connection: keep-alive
Accept-Encoding: gzip, deflate, sdch, br

This is a subset of the corresponding response headers:

www.EBooksWorld.ir

https://www.bayden.com/test/brotliimg.aspx

HTTP/1.1 200 OK
Content-Type: image/png
Content-Encoding: br
Server: Microsoft-IIS/7.5
X-AspNet-Version: 4.0.30319
YourAcceptEncoding: gzip, deflate, sdch, br

Fiddler (the awesome HTTP debugging proxy by Eric Lawrence that we mentioned
previously) also supports Brotli with a simple add-on (drop
https://bayden.com/dl/Brotli.exe into fiddler2\tools and restart it). You can use
this to easily test the impact on your site without deploying anything to your web
servers.

www.EBooksWorld.ir

https://bayden.com/dl/Brotli.exe

Bundling and minification
Bundling and minification are techniques that you may already be familiar with. They
speed up the delivery of static assets. They are usually used for text files, such as
JavaScript and CSS content.

Bundling

Bundling is the technique of combining or concatenating multiple files together so that
they can be delivered as one. This is a good idea when using HTTP/1.1 because the
number of concurrent connections is limited. However, bundling is less necessary
with HTTP/2, and in fact, it can reduce performance. The new multiplexing in
HTTP/2 means that there is no longer a large penalty when you request many files
instead of one that contain all of the same content. You can take advantage of this by
only delivering what is needed for a page rather than the entire client side codebase
for every page. Even if you selectively bundle per page, this could be inefficient.

For example, you may include a validation library for use with forms. However,
because this is bundled, it will be sent to all pages, including the ones with no forms
to validate. If you have a separate bundle for validated pages, then there may be
duplication in the common core code that is also sent. By keeping things separated,
the client can cache them individually and reuse components. This also means that if
you change something, you only need to invalidate the cache of this one part. The
client can keep using the other unmodified parts and not have to redownload them.

As always, you should measure for your particular use case. You may find that
bundling still reduces the total file size. The overheads for HTTP/2 are much lower
but still not zero, and compression can work better on larger files. However, keep in
mind the implications for caching and reusability.

Minification

Minification is the process of reducing the file size of a textual static asset. We do
this by various means, including stripping out comments, removing whitespace, and
shortening variable names. It can also be useful to obfuscate code to make it harder
to reverse engineer. Minification is still useful when you use HTTP/2, but you should
be careful when testing to compare preminified and postminified files size after the
lossless compression has also been applied.

As discussed previously, you should use HTTP content compression with at least the
gzip or DEFLATE algorithms. These are pretty efficient; so, you may find that when
compressed, your minified file is not much smaller than the compressed raw source

www.EBooksWorld.ir

file.

Changes in ASP.NET Core

In the full .NET Framework and previous versions of MVC, there was an integrated
bundling and minification system. This has changed for ASP.NET Core, and there are
new tools to perform this work.

The new tools that were adopted include the task runner gulp, although you can use
Grunt if you prefer to. Also, a generator tool called Yeoman is used for scaffolding.
There are now package managers, such as Bower and npm, which are similar to
NuGet, but for frontend libraries. For example, NuGet no longer delivers jQuery and
Twitter Bootstrap, and they use Bower instead by default.

Most of these tools are written in JavaScript, and they run on Node.js. The package
manager for Node.js is npm. These tools are popular in other open source web
frameworks, and they are well established. They're not new to the scene, only new to
.NET.

Gulp packages come from npm and are responsible for the minification of your static
assets. This is now done at build time, as opposed to request time, as was previously
the case. It works much more like a static site generator than a dynamic web
application. A gulp file (gulpfile.js) in the root of your project configures these
tasks using JavaScript.

The new tooling is not only restricted to ASP.NET Core, and you can use these
features with traditional ASP.NET applications in Visual Studio. This is a good
example of the cross-pollination and benefits that the new frameworks can provide to
the existing ones.

www.EBooksWorld.ir

Image optimization
Digital media compression is much more complicated than the lossless file
compression that we talked about previously even if we just stick to images. We
briefly mentioned when to use PNG and when to use JPEG in the previous chapter.
Here, we'll go into much more detail and explore some other exotic options.

We covered the rule of thumb, which says that PNG is the best image format for icons
and JPEG is better for photos. These two formats are the most common for lossless
and lossy image compression, respectively.

We will talk more about other image formats later, but you are usually constrained to
the popular formats by what browsers support. So, how can you get more out of the
common choices?

PNG

Portable Network Graphics (PNG) is a lossless image compression format that
internally works similarly to a ZIP file (using the DEFLATE algorithm). It's a good
choice for images that contain solid blocks of color, and it has a better quality (with
more colors) than the old Graphics Interchange Format (GIF).

PNG supports transparency in all modern browsers, so you should use it instead of
GIF for static images. This is not a problem unless you need to support Internet
Explorer 6, in which case this is probably the least of your troubles. PNG also
supports animation with Animated PNG (APNG) files. These are like animated
GIFs but of a much higher quality. Unfortunately, only Firefox and Safari support
APNGs.

Tip

A great site to look up which browsers support a particular feature is caniuse.com .
You can search for feature support, then check this against the user agent analytics of
your site. For example, you could search for PNG-alpha, Brotli, or APNG.

Some ZIP algorithm implementations are better than others, and they produce smaller
files that can still be decoded by everyone. For example, 7-Zip is much more
efficient than most other zip compression software on Windows, even when using the
ZIP format, not its native 7z format. Likewise, you can compress a PNG more
compactly without losing any data and still have it work in all browsers. This usually
comes with a higher upfront computational cost. However, if you compress static
assets, which rarely change, then it can be well worth the effort.

www.EBooksWorld.ir

http://caniuse.com

You may already use the PNGOUT tool to losslessly reduce the size of your PNG
images. If you're not, then you probably should. You can read more about it and
download it at advsys.net/ken/utils.htm .

However, there is a new algorithm called Zopfli that offers better compression, but it
is very slow to compress. Decompression is just as quick, so it's only a single
optimization cost for precompiled resources. Zopfli is a precursor to Brotli, but it's
compatible with DEFLATE and gzip, as it's not a new format.

You can get Zopfli from github.com/google/zopfli , but you should always test with
your images and verify that there is indeed a file size reduction. You will find that
these tools can help you deliver your assets quicker and achieve higher performance.

You may also use the practice of combining many sprites into one image. As with
bundling, this is less necessary when using HTTP/2. However, the same caveats
apply as with compression, and you should always test for your set of images.

JPEG

JPEG is a lossy image compression format, which means that it usually discards data
from the picture to make it smaller. It is best suited to natural gradients and
continuous tones, such as those found in photographs. JPEG does not support
transparency like PNG does, so if you want to use one on different backgrounds, then
you will need to prerender them.

Tip

It's a good space saving idea to remove the Exchangeable image file format (Exif)
metadata from your JPEG files for the web. This contains information about the
camera used and geographic data of where the photo was taken.

JPEG has a quality setting, which affects the image file size and the level of detail.
The lower the quality, the smaller the file, but the worse it will look. You can
perform tests on your images to see what settings provide an acceptable trade-off.
Crucially, the best value for this quality setting will vary per image, depending on the
content. There are tools that allow you to automatically detect the optimal quality
level, such as Google's butteraugli.

There is an interesting project from Mozilla (the makers of the Firefox browser)
called mozjpeg. This aims to better compress JPEG images and is similar to what
PNGOUT and Zopfli do for PNG images. You can use mozjpeg to compress your
JPEG images to a smaller size than normal, without affecting decompression or
quality. It is available at github.com/mozilla/mozjpeg , but you will need to compile

www.EBooksWorld.ir

http://advsys.net/ken/utils.htm
http://github.com/google/zopfli
http://github.com/mozilla/mozjpeg

it yourself. As always, results may vary, so test it for the photos on your site.

JPEG Archive (github.com/danielgtaylor/jpeg-archive) is a handy tool that uses
mozjpeg to compress JPEG images, using various comparison metrics. Another
similar tool is imgmin (github.com/rflynn/imgmin), which is slightly older.

Other image formats

Many other image formats are available, but you are usually limited on the web by
what browsers support. As discussed in the previous chapter, you shouldn't scale
images in the browser, or you will get poor performance. This usually means having
to save multiple separate copies of smaller images, for example, when displaying
thumbnails. Clearly this results in duplication, which is inefficient. Some of these
new image formats have clever solutions to the problem of responsive and scalable
images.

BPG is an image format by the talented Fabrice Bellard, and you can read more about
it at bellard.org/bpg . It has a JavaScript polyfill to support browsers before native
support is added to any of them.

WebP is an image format from Google, and only Chrome, Android, and Opera
support it. It has impressive space savings over JPEG, and it will be a good choice if
it becomes more widely supported, so check caniuse.com for the latest adoption
stats.

JPEG2000 is an improved version of JPEG, although it may be encumbered by
software patents, so it hasn't seen widespread adoption outside of medical imaging.
Only Safari supports JPEG2000, and there is also JPEG XR, which is only supported
in IE.

Whereas JPEG uses a Discrete Cosine Transform (DCT), JPEG2000 is based on a
Wavelet Transform. One of the properties this provides is a progressive download.
This means that the image is stored in such a way that if you download a small part
from the beginning of the file, then you have a smaller and lower quality version of
the full image. This has obvious applications for responsive and scalable images.
The browser would only need to download enough of the image to fill the area it is
rendering to, and the file need only be stored once. No resizing and no duplication for
thumbnails would be required. This technique is also used in the Free Lossless
Image Format (FLIF).

FLIF is one of the more exciting upcoming image formats, as it is progressive and
responsive, but free and not patented. FLIF is still in development, but it promises to
be very useful if browsers support it, and you can read more about it at flif.info.

www.EBooksWorld.ir

http://github.com/danielgtaylor/jpeg-archive
http://github.com/rflynn/imgmin
http://bellard.org/bpg
http://caniuse.com
http://flif.info

Note

JPEG and PNG can support progressive download, but this isn't normally useful for
responsive images. Progressive JPEG subjectively loads more gracefully and can
even make files smaller, but interlaced PNG usually makes files bigger.

The problem is that most of these progressive image formats are not yet ready for the
mainstream because all of the major browsers do not support them. It's a good idea to
keep an eye on the future, but for now, we need to resize images for high
performance.

Resizing images

Until new image formats gain widespread adoption, resizing is still required, and you
may need to do this dynamically for different devices. Perhaps, you also have user-
submitted image content, although you need to be very careful with this from a
security point of view. Some image libraries are not safe, and a specially-crafted
image can exploit your system. In fact, many image-processing libraries have issues
when they are used in a web context.

If you are not extremely diligent and careful, then you can easily end up with memory
leaks, which can take down your web server. It is always a good idea to separate and
sandbox a process that deals with large media files.

Coming from a .NET standpoint, it can be tempting to use WinForms
System.Drawing or its WPF successor (System.Windows.Media). However, these
were designed for desktop software, and Microsoft strongly recommends against
using them in a service or web application. Microsoft recommeds the Windows
Imaging Component (WIC), but this is a Component Object Model (COM) API
that is meant for use from C or C++ apps. In addition to this, none of these imaging
libraries are cross-platform, so they are not suitable for use in .NET Core.

If you use Windows, then you could try using ImageResizer by Imazen (imazen.io),
from imageresizing.net. While it still uses the GDI+ System.Drawing, it is pretty
battle hardened, so most of the bugs should have been worked out. There's also
DynamicImage, which wraps the newer WPF image functions and uses shaders. You
can read more about it at dynamicimage.apphb.com , although it hasn't been updated
in a while, and it doesn't support .NET Core.

A popular option in open source circles is ImageMagick, which we've mentioned
previously, and a fork called GraphicsMagick, which claims to be more efficient.
Another popular image library is LibGD, and it's suitable for server use. You can
read more at libgd.github.io . Although it's written in C, there are wrappers for other

www.EBooksWorld.ir

http://imazen.io
http://imageresizing.net
http://dynamicimage.apphb.com
http://libgd.github.io

programming languages, for example, DotnetGD targeting .NET Core.

One of the features that .NET Core lacks is that there is not yet a compelling option
for image processing. ImageResizer 5 may help with this when released, so it is
worth keeping an eye on it. Native code support is now much better in .NET Core, as
it was a pain to do in classic .NET, which may help with integrating native cross-
platform imaging libraries.

There is also a new cross-platform version of the open source ImageProcessor
libraries (imageprocessor.org), called ImageProcessorCore, which shows promise.
However, this is still a work in progress, and it is not yet stable. If you want to try it
out, then you can get the nightly packages from MyGet or build it from source.

Note

Platform support and compatibility changes rapidly, so check ANCLAFS.com for the
latest information. Feel free to contribute to this list or to the projects.

For now, it may be easier to install an open source service, such as Thumbor, or use
a cloud-based imaging service, such as ImageEngine (WURFL.io) or Cloudinary,
which we've already mentioned. Image manipulation is a common task, and it is
effectively a solved problem. It may be better to use an existing solution and not
reinvent the wheel, unless it's part of your core business or you have very unusual
requirements.

Tip

Once you have your resized images, you can load them responsively with the
picture and source tags using the srcset and sizes attributes. You can also use
this technique to provide newer image formats (such as WebP), with a fallback for
browsers that don't yet support them. Or you can use Client Hints (refer to
httpwg.org/http-extensions/client-hints.html and caniuse.com/#feat=client-hints-dpr-
width-viewport).

www.EBooksWorld.ir

http://imageprocessor.org
http://ANCLAFS.com
http://WURFL.io
http://httpwg.org/http-extensions/client-hints.html
http://caniuse.com/#feat=client-hints-dpr-width-viewport

Caching
It is often said (originally by Phil Karlton) that caching is one of the hardest problems
in computer science, along with naming things. This may well be an exaggeration, but
caching is certainly difficult. It can also be very frustrating to debug if you are not
methodical and precise in your approach.

Caching can apply at various different levels from the browser to the server using
many diverse technologies. You rarely use just a single cache even if you don't
realize it. Multiple caches don't always work well together, and it's vexing if you
can't clear one.

We briefly touched upon caching in the previous chapter, and we'll go into much more
detail in Chapter 7, Learning Caching and Message Queuing . However, as caching
has an impact on network performance, we'll cover it here as well.

www.EBooksWorld.ir

Browser
A lot of caching happens in the web browser, which is inconvenient because as you
don't have direct control over it (unless it's your browser). Asking users to clear their
cache is unsatisfactory and confusing to many. Yet, you can exert influence on how
browsers cache resources by carefully controlling the HTTP headers that you set and
the URLs that you use.

If you fail to declare what resources are cacheable and for how long, then many
browsers will just guess this. The heuristics for this can be wildly different between
implementations. Therefore, this will result in suboptimal performance. You should
be explicit and always declare cache information even (and especially) for assets
that shouldn't be cached by marking them as noncacheable.

Tip

You need to be vigilant with what you advertise as cacheable because if you are
careless, then you can get yourself into a situation where you're unable to update a
resource. You should have a cache-busting strategy in place, and tested, before using
caching.

There are various technologies that are used are to cache in browsers. Many different
HTTP headers can be set, such as Age, Cache-Control, ETag (Entity Tag), Expires,
and Last-Modified. These come from a few different standards, and the interactions
can be complex, or they vary between browsers. We will explain these in more detail
in Chapter 7, Learning Caching and Message Queuing .

Another technique is to use a unique URL for content. If a URL changes, then a
browser will treat it as a different resource, but if it is the same, then it may load it
from its local cache. Some frameworks calculate a hash of the file contents, and then
they use this as a query string parameter. This way, when the contents of the file
changes, so does the URL.

There are other and more modern features that you can use to cache, such as the
HTML5 Application Cache (or AppCache). This was designed for offline web
applications and wasn't very flexible. Busting the cache was complicated to put it
mildly. AppCache is already deprecated, and you should use Service Workers
instead. These provide much more flexibility, although support is pretty recent.

There are many improvements coming, in the latest browsers that give you more
control, and we'll also show you how to use them in Chapter 7, Learning Caching
and Message Queuing .

www.EBooksWorld.ir

Server
The web server is a great place to cache because it is usually under your complete
control. However, it's not really part of network performance, apart from generating
the correct headers. There can be other great performance benefits with server-side
caching in terms of improving the speed to generate pages, but we will cover these in
later chapters.

If you use the traditional .NET Framework on Microsoft's Internet Information
Services (IIS) web server, then you can use output caching from within your
application. This will take care of setting the correct headers and sending 304 (Not
Modified) responses to browser requests. It will also cache the output on the server
in memory, on disk or using Memcached/Redis. You can add attributes to your
controller action methods to control the caching options, but other ways of doing this
are available, for example, in the configuration files.

OutputCache is not available in ASP.NET Core, but you can use ResponseCache to
set the correct headers. The output is not cached on the server, but you can install a
caching proxy in front of it. Again, we will cover this more and demonstrate server-
side caching in Chapter 7, Learning Caching and Message Queuing .

If you want to disable caching on an ASP.NET Core page, then add this annotation to
your controller action:

[ResponseCache(NoStore = true, Duration = 0)]

This will set the following header on the HTTP response and ensure that it is not
cached:

Cache-Control: no-store

To cache a page for an hour, add the following instead, Duration is in seconds:

[ResponseCache(Duration = 3600, VaryByHeader = "Accept")]

The cache control header will then look like the following:

Cache-Control: public,max-age=3600

There's plenty more to say about other caching configuration options and profiles.
Therefore, if you're interested, then read the later chapters. It's a complex topic, and
we've only scratched the surface here.

Note

www.EBooksWorld.ir

You can read documentation about response caching in ASP.NET Core at
docs.asp.net/en/latest/performance/caching/response.html .

These caching directives not only instruct the browser, but they also instruct any
proxies on the way. Some of these may be in your infrastructure if you have a caching
proxy, such as Squid, Varnish, or HAProxy. Or perhaps, you have a TLS-terminating
load balancer (such as Azure Application Gateway) to reduce the load on your web
servers that also caches. You can forcibly flush the caches of servers that you control,
but there may be other caches in between you and your users where you can't do this.

www.EBooksWorld.ir

http://docs.asp.net/en/latest/performance/caching/response.html

Proxy servers between you and your users
There can be many proxy servers between you and your users over which you have
no direct control. They may ignore your caching requests, block parts of your site, or
even modify your content. The way to solve these problems is to use TLS, as we
have already discussed. TLS creates a secure tunnel so that the connection between
your infrastructure and the browser can't easily be tampered with.

Corporate proxies commonly Man in the Middle attack (MitM) your connection to
the user so that they can spy on what employees are doing online. This involves
installing a custom-trusted root certificate on users' workstations so that your
certificate can be faked. Unfortunately, there isn't much you can do about this, apart
from educating users. Certificate pinning is effective in native apps, but it's not so
useful for web applications. HTTP Public Key Pinning (HPKP) is available but, as
it is a Trust on First Use (TOFU) technique, the initial connection could be
intercepted. Client certificates are another option, but they can be difficult to
distribute, and they aren't commonly used.

MitM can be useful if you trust the third party and remain in control. This is used by
some Content Delivery Networks (CDNs) to speed up your site.

CDNs

CDNs can improve the performance of your site by storing copies of your content at
locations closer to your users. Services, such as the ones provided by CloudFlare,
perform a MitM on your connection and save copies at data centers around the
world. The difference from an unauthorized proxy is that you control the
configuration, and you can purge the cache whenever you like.

You should be careful because if you don't use the caching features, then this can
reduce the responsiveness of your site due to the extra hops involved. Make sure that
you monitor the response times with and without a CDN, and you need a fallback
plan in case they go down.

Another common use case for CDNs is to distribute popular libraries, for example,
the jQuery JavaScript library. There are free CDNs from jQuery (MaxCDN), Google,
Microsoft, and cdnjs (CloudFlare) that do this. The hypothesis is that a user may
already have the library from one of these in their cache. However, you should be
extremely careful that you trust the provider and connection. When you load a third-
party script into your site, you are effectively giving them full control over it or at
least relying on them to always be available.

www.EBooksWorld.ir

If you choose to use a CDN, then ensure that it uses HTTPS to avoid tampering with
scripts. You should use explicit https:// URLs on your secure pages or at least
protocol agnostic URLS (//), and never http://. Otherwise, you will get mixed
content warnings, which some browsers display as totally unencrypted or even block.

You will need a fallback that is hosted on your own servers anyway in case the CDN
goes down. If you use HTTP/2, then you may find that there is no advantage to using a
CDN. Obviously, always test for your situation.

There are some useful new features in ASP.NET Core views to easily enable local
fallback for CDN resources. We'll show you how to use them and other features in
later chapters.

www.EBooksWorld.ir

Summary
In this chapter, you learned how to improve performance at the network level
between the edge of your infrastructure and your users. You now know more about
the internet protocols under your application and how to optimize your use of them
for best effect.

You learned how to take advantage of compression to shrink text and image files.
This will reduce bandwidth and speed up delivery of assets. We also highlighted
caching, and you should now see how important it is. We'll cover caching more in
Chapter 7, Learning Caching and Message Queuing .

In the next chapter, you will learn how to optimize the performance inside your
infrastructure. You will see how to deal with I/O latency, and how to write well-
performing SQL.

www.EBooksWorld.ir

Chapter 5. Optimizing I/O
Performance
This chapter addresses issues that often occur when you take your functionally tested
application and split it up into parts for deployment. Your web servers host the
frontend code, your database is somewhere else in the data center, you may have a
Storage Area Network (SAN) for centralized files, an app server for APIs, and the
virtual disks are all on different machines as well.

These changes add significant latency to many common operations and your
application now becomes super slow, probably because it's too chatty over the
network. In this chapter, you will learn how to fix these issues by batching queries
together, and performing work on the best server for the job. Even if everything runs
on one machine, the skills that you'll learn here will help to improve performance by
increasing efficiency.

The topics covered in this chapter include the following:

The operations that can be slow
Select N+1 problems in detail
Returning only what you need
Writing high-performance SQL

You will learn about the operations that you shouldn't use synchronously, and how to
query for getting only the data that you need in an efficient manner. You'll also see
how to tame your O/RM, and learn to write high-performance SQL with Dapper.

We briefly covered some of these topics in Chapter 3 , Fixing Common Performance
Problems, but here we'll dive into greater detail. The first half of this chapter will
focus on background knowledge and using diagnostic tools, while the second half
will show you solutions to issues you may come across. You'll also learn about some
more unusual problems, and how to fix or alleviate them.

We'll initially focus on understanding the issues, because if you don't appreciate the
root cause of a problem, then it can be difficult to fix. You shouldn't blindly apply
advice that you read, and expect it to work successfully. Diagnosing a problem is
normally the hard part, and once this is achieved, it is usually easy to fix it.

www.EBooksWorld.ir

Input/output
I/O is a general name for any operation in which your code interacts with the outside
world. There are many things that count as I/O, and there can be plenty of I/O that is
internal to your software, especially if your application has a distributed architecture.

Note

The recent rise in popularity of the .io Top Level Domain (TLD) can be partly
attributed to standing for I/O, but that is not its real meaning. As is the case for some
other TLDs, it is actually a country code. Other examples include .ly for Libya and
.tv for Tuvalu (which, like the neighboring Kiribati, may soon be submerged beneath
the Pacific Ocean due to climate change).

The TLD .io is intended for the British Indian Ocean Territory (BIOT), a
collection of tiny but strategic islands with a shameful history. The .io TLD is
therefore controlled by a UK-based registry. BIOT is nothing more than a military
base, and also happens to be a hop on the proposed AWE fiber optic cable between
Australia and Djibouti.

In this chapter, we will focus on improving the speed of I/O, not on avoiding it.
Therefore, we won't cover caching here. Both I/O optimizing and caching are
powerful techniques on their own, and when they're combined, you can achieve
impressive performance. See Chapter 7, Learning Caching and Message Queuing
for more on caching.

www.EBooksWorld.ir

Categories of I/O
The first challenge is to identify the operations that trigger I/O. A general rule of
thumb in .NET is that if a method has an asynchronous API (MethodAsync()
variants), then it is declaring that it can be slow, and may be doing I/O work. Let's
take a closer look at some of the different kinds of I/O.

Disks

The first type of I/O we will cover is reading from, and writing to, persistent storage.
This will usually be some sort of a disk drive such as a spinning platter Hard Disk
Drive (HDD), or as is more common these days, a flash memory-based Solid State
Drive (SSD).

HDDs are slower than SSDs for random reads and writes, but are competitive for
large block transfers. The reason for this is that the arm on the HDD has to physically
move the head to the correct location on the magnetic platter before it can begin the
read or write operations. If the disk is powered down, then it can take even longer, as
the platters will have to Spin-up from a stationary position to the correct revolutions
per minute (rpm) beforehand.

Note

You may have heard the term "Spin-up" in reference to provisioning a generic
resource. This historically comes from the time taken to spin the platters on a rotating
disk up to the operational speed. The term is still commonly used, even though these
days there may not be any mechanical components present.

Terminology like this often has a historical explanation. As another example, a floppy
disk icon is normally used to represent the save function. Yet floppy disks are no
longer in use, and many younger users may never have encountered one.

Knowing what type of drive your code is running on is important. HDDs perform
badly if you make lots of small reads and writes. They prefer to have batched
operations, so writing one large file is better than many smaller ones.

The performance of disks is similar to that of a network, in that there is both latency
and throughput, often called bandwidth in networking parlance. The latency of an
HDD is high, as it takes a relatively long time to get started, but once started, the
throughput can be respectable. You can read data rapidly if it's all in one place on the
disk, but it will be slower if it is spread all over, even if the total data is less. For
example, copying a single large file disk-to-disk is quick, but trying to launch many
programs simultaneously is slow.

www.EBooksWorld.ir

SSDs experience fewer of these problems as they have lower latency, but it is still
beneficial to keep random writes to a minimum. SSDs are based on flash memory
(similar to the chips used in memory cards for phones and cameras), and they can
only be written to a fixed number of times. The controller on the SSD manages this
for you, but the SSD's performance degrades over time. Aggressive writing will
accelerate this degradation.

Multiple disks can be combined to improve their performance and reliability
characteristics. This is commonly done using a technology called Redundant Array
of Independent Disks (RAID). Data is split across multiple disks to make it quicker
to access, and more tolerant to hardware failures. RAID is common in server
hardware, but can increase the startup time, as Spin-up is sometimes staggered to
reduce the peak power draw.

HDDs offer much larger capacity than SSDs, and so are a good choice for storage of
infrequently used files. You can get hybrid drives, which combine an HDD with an
SSD. These claim to offer the best of both worlds, and are cheaper than SSDs of an
equivalent size. However, if you can afford it, and if you can fit all of your data on an
SSD, then you should use one. You will also decrease your power and cooling
requirements, and you can always add an additional HDD for mass storage or
backups.

Virtual file systems

File access can be slow at the best of times due to the physical nature of the disks
storing the data, as mentioned previously. This problem can be compounded in a
virtualized environment such as a cloud-hosted infrastructure. The storage disks are
usually not on the same host server as the virtual machine, and will generally be
implemented as network shares even if they appear to be mounted locally. In any
case, there is always an additional problem, which is present whether the disk is on
the VM host or somewhere else on the network, and that is contention.

On a virtualized infrastructure, such as those provided by AWS and Azure, you share
the hardware with other users, but a physical disk can only service a single request at
once. If multiple tenants want to access the same disk simultaneously, then their
operations will need to be queued and timeshared. Unfortunately, this abstraction has
much the same detrimental effect on performance as reading lots of random files.
Users are likely to have their data on disk stored in locations different from other
customers. This will cause the arm on the drive to frequently move to different
sectors, reducing throughput and increasing latency for everyone on the system.

All this means that on shared virtual hosting, using an SSD can have a bigger positive

www.EBooksWorld.ir

performance impact than normal. Even better is to have a local SSD, which is
directly attached to the VM host, and not to another machine on the network. If disks
must be networked, then the storage machine should be as close as possible to the
VM using it.

You can pay extra for a dedicated VM host where you are the only tenant. However,
you may as well then be running on bare metal, and reaping the benefits of reduced
costs and higher performance. If you don't require the easy provisioning and
maintenance of VMs, then a bare metal dedicated server may be a good option.

Many cloud hosting providers now offer SSDs, but most only offer ephemeral local
disks. This means that the local disk only exists while your VM is running, and
vanishes when it is shutdown, making it unsuitable for storing the OS if you want to
bring a VM back up in the same state.

You have to write your application in a different way to take advantage of an
ephemeral local drive, as it could disappear at any time, and so can only be used for
temporary working storage. This is known as an immutable server, which means it
doesn't change and is disposable. This normally works better when the OS is Linux,
as it can be tricky to bootstrap new instances when running Windows.

Databases

Databases can be slow, because they rely on disks for the storage of their data, but
there are other overheads as well. However, DBs are usually a better way of storing
significant data than flat files on disk. Arbitrary data can be retrieved quickly if it is
indexed, much quicker than scanning a file by brute force.

Relational databases are a mature and very impressive technology. However, they
only shine when used correctly, and how you go about querying them makes a
massive difference to performance. DBs are so convenient that they're often
overused, and are typically the bottleneck for a web application.

An unfortunately common anti-pattern is requiring a database call in order to render
the homepage of a website. An example is when you try to visit a website mentioned
on live TV, only to discover that it has crashed due to the MySQL DB being
overloaded. This sort of a website would be better architected as a static site with
the client-side code hitting cached and queued web APIs.

The pathological case for a slow DB is where the web server is in one data center,
the database server is in another, and the disks for the DB are in a third. Also, all the
servers may be shared with other users. Obviously, it's best not to end up in this
situation, and to architect your infrastructure in a sane way, but you will always have

www.EBooksWorld.ir

some latency.

There are application programming techniques that allow you to keep your network
and DB chatter to a minimum. These help you to improve the performance and
responsiveness of your software, especially if it is hosted in a high-latency
virtualized environment. We will demonstrate some of these skills later on in this
chapter.

APIs

Modern web application programming generally involves using third-party services
and their associated APIs. It's beneficial to know where these APIs are located, and
what the latency is. Are they in the same data center, or are they on the other side of
the planet? Unless you've discovered some exciting new physics, then light only
travels so fast.

Note

Today, almost all intercontinental data travels by fiber optics cables. Satellites are
rarely used anymore, as the latency is high, especially for geostationary orbits. Many
of these cables are under the oceans, and are hard to fix. If you rely on an API on a
different continent, not only can it slow you down, but it also exposes you to
additional risk.

You probably shouldn't build an important workflow that can be disrupted by a
fisherman trawling in the wrong place. You also need to further secure your data, as
some countries (such as the UK) are known to tap cables and store the
communications, if they cross their borders.

One of the issues with APIs is that latency can compound. You may need to call many
APIs, or maybe an API calls another API internally. These situations are not normally
designed this way, but can grow organically as new features are added, especially if
no refactoring is performed periodically to tidy up any mess.

One common form of latency is startup time. Websites can go to sleep if not used,
especially if using the default Internet Information Services (IIS) settings. If a
website takes a non-negligible amount of time to wake up, and all the required APIs
also need to wake up, then the delays can quickly add up to a significant lag for the
first request. It may even time-out.

There are a couple of solutions to this initial lag problem. If you use IIS, then you can
configure the application pool to not go to sleep. The defaults in IIS are optimized for
shared hosting, so they will need tweaking for a dedicated server. The second option

www.EBooksWorld.ir

is to keep the site alive by regularly polling it with a health check or uptime
monitoring tool. You should be doing this anyway so that you know when your site
goes down, but you should also ensure that you are exercising all the required
dependencies (such as APIs and DBs). If you are simply retrieving a static page or
just checking for a 200 status code, then services may go down without you realizing.

Similarly, scaling can have a lag. If you need to scale up, then you should preheat
your load balancers and web servers. This is especially important if using an AWS
Elastic Load Balancer (ELB). If you're expecting a big peak in traffic, then you can
ask AWS to have your ELBs prewarmed. An alternative would be using Azure Load
Balancer, Azure Application Gateway, or running HAProxy yourself so that you
have more control. You should also be running load tests, which we'll cover in
Chapter 9 , Monitoring Performance Regressions .

www.EBooksWorld.ir

Network diagnostics tools
As we discovered earlier, practically all I/O operations in a virtualized or cloud-
hosting infrastructure are now network operations. Disks and databases are rarely
local, as this would prevent scaling out horizontally. There are various command-line
tools that can help you discover where the API, DB, or any other server you're using
is located, and how much latency is present on the connection.

While all of these commands can be run from your workstation, they are most useful
when run from a server via a Secure Shell (SSH) or Remote Desktop Protocol
(RDP) connection. This way, you can check where your databases, APIs, and storage
servers are, in relation to your web servers. Unfortunately, it is common for hosting
providers to geographically separate your servers, and put them in different data
centers.

For example, if using AWS, then you would want to configure your servers to be in at
least the same region, and preferably in the same Availability Zone (AZ), which
usually means the same data center. You can replicate (cluster) your DB or file server
across AZs (or even across regions) so that your web servers are always talking to a
server on their local network. This also adds redundancy, so in addition to increasing
performance, it will make your application more resilient to hardware faults or
power supply failures.

Ping

Ping is a simple networking diagnostics tool, available on almost all operating
systems. It operates at the IP level and sends an Internet Control Message Protocol
(ICMP) echo message to the host specified.

Not all machines will respond to pings, or requests may be blocked by firewalls.
However, it's good netiquette to allow servers to respond for debugging purposes,
and most will oblige. For example, open a command prompt or terminal, and type the
following:

 ping ec2.eu-central-1.amazonaws.com

This will ping an Amazon Web Services (AWS) data center in Germany. In the
response, you will see the time in milliseconds. From the UK, this round-trip time
(RTT) may be something like 33ms, but your results will vary.

Tip

www.EBooksWorld.ir

On Windows, by default, ping performs four attempts, then exits. On a Unix-like OS
(such as Mac OS X, BSD, or Linux), by default, it continues indefinitely. Press
Ctrl+C to stop and quit.

Try this command next, which will do the same, but for an AWS data center in
Australia:

 ping ec2.ap-southeast-2.amazonaws.com

From the UK, the latency now goes up, by almost an order of magnitude, to around
300 ms. AWS doesn't have any data centers in the UK, and neither do Microsoft and
Google (read into that what you will). So to ping a UK hosting provider, enter the
following:

ping bytemark.co.uk

The latency now decreases to an average of 23ms, as our connection has (probably)
not left the country. Obviously, your results will vary depending on where you are.
Next we'll see how to discover what route our data is taking, as it's not always only
distance that's important. The number of hops can likewise be significant.

The following image shows the output of the three ping operations that we have just
performed to Germany, the UK, and Australia. Note the difference in the timings;
however, your results will be different, so try this for yourself.

www.EBooksWorld.ir

Tip

IPv4 addresses starting with 54 (the ones in the form 54.x.x.x) are a clue that the
server may be running on an AWS Elastic Compute Cloud (EC2) virtual server.
Perform a reverse DNS lookup with nslookup or ping (covered later in this
chapter) to confirm if this is the case. AWS provides IP address ranges at the
following link: docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

Tracert

Tracert (or traceroute on a Unix-like OS) is a tool which, as the name suggests,
traces the route to a destination host. Enter the following command:

tracert www.google.com

You should be able to see the connection leaving the network of your Internet
Service Provider (ISP), and entering the domain 1e100.net, which is Google's
domain. 1.0 x 10100 is a googol, which is their namesake. The following image
shows the output that you might see for this trace:

www.EBooksWorld.ir

http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

Next, let's trace a route to Australia by running the following command with the same
AWS host name as our earlier example, as follows:

tracert ec2.ap-southeast-2.amazonaws.com

This may take some time to run, especially if some hosts don't respond to pings and
traceroute has to timeout. If you get asterisks (* * *), then this could indicate the
presence of a firewall. Your results may look something like the following image:

www.EBooksWorld.ir

In the preceding example, we can see the connection leaving the British Telecom
(BT) network, and entering the Nippon Telegraph and Telecom (NTT) Global IP
Network. We can even see the route taken from London to Sydney, via Amsterdam,
Ashburn (east US, in Virginia), and Los Angeles. The hostnames suggest that the
connection has gone via the Faraday telephone exchange building, near St. Paul's
Cathedral in London (named after electrical pioneer Michael Faraday), and entered
Amazon's network in LA.

Note

This isn't the whole story as it only shows the IP level. At the physical level, the fiber
likely comes back to the UK from the Netherlands (possibly via Porthcurno,
Goonhilly Satellite Earth Station, or more likely, Bude where GCHQ conveniently
have a base). Between LA and Australia, there will also probably be a stopover in
Hawaii (where the NSA base that Edward Snowden worked at is located).

There are maps of the connections available at submarinecablemap.com and
www.us.ntt.net/about/network-map.cfm. It's good idea to have at least a basic
understanding of how the internet is physically structured, in order to achieve high
performance.

If we now trace the routes to the AWS data centers in Korea and Japan, we can see
that, initially, they both take the same route as each other. They go from London to
New York and then to Seattle, before reaching Osaka in Japan. The Korean trace then
carries on for another eleven hops, but the Japanese trace is done in six, which makes
logical sense.

The following image shows the typical results of a trace to Korea first, then the
results of a second trace to Japan.

www.EBooksWorld.ir

http://submarinecablemap.com
http://www.us.ntt.net/about/network-map.cfm

You can use the difference in time between hops to work out the approximate
geographic distance. However, there are occasionally anomalies if some systems
respond quicker than others.

Tip

If you're on a flight with free Wi-Fi, then a traceroute is an interesting exercise to
perform. The internet connection is likely going via satellite, and you'll be able to tell

www.EBooksWorld.ir

the orbit altitude from the latency. For example, a geostationary orbit will have a
large latency of around 1,000 ms, but a Low Earth Orbit (LEO) will be much
smaller. You should also be able to work out where the ground station is located.

Nslookup

Nslookup is a tool for directly querying a DNS server. Dig is another similar tool,
but we won't cover it here. Both ping and traceroute have performed DNS lookups,
but you can do this directly with nslookup, which can be very useful. You can call
nslookup with command-line parameters, but you can also use it interactively. To do
this, simply type the name of the tool into a console or a command prompt, as
follows:

nslookup

You will now get a slightly different command prompt from within the program. By
default, the DNS name servers of the computer you're on are used, and it bypasses
any entries in your local hosts file.

Tip

A hosts file can be very useful for testing changes prior to adding them to DNS. It can
also be used as a crude blocker for adverts and trackers by setting their addresses to
0.0.0.0. There are local DNS servers you can run to do this for your whole
network. One such project is pi-hole.net , which is based on dnsmasq, but which
simplifies setting it up and updating the hosts on Raspberry Pi.

Enter the hostname of a server to resolve its IP address; for example, type the
following:

polling.bbc.co.uk

The results show that this hostname is a CNAME (an alias for the real Canonical
Name) of polling.bbc.co.uk.edgekey.net, which resolves to
e3891.g.akamaiedge.net, and this currently has an IP address of 23.67.87.132.
We can perform a reverse DNS lookup on the IP address by entering it:

23.67.87.132

We then get the hostname of that machine, conveniently containing the IP address,
which is a23-67-87-132.deploy.static.akamaitechnologies.com. The
domain name is owned by Akamai, which is a Content Delivery Network (CDN)
used to distribute load.

If you are using a DNS server on your local network, possibly with your router

www.EBooksWorld.ir

http://pi-hole.net

running dnsmasq, then it may cache results, and give you stale data. You can see more
up-to-date information by changing the server to a core one that propagates changes
quicker. For example, to use one of Google's public DNS servers, enter the following
(but be aware that Google will log all the internet sites you visit if you use this
normally):

server 8.8.8.8

Then run the same query again. Notice how the hostname now resolves to a different
IP address. This is a common behavior for CDNs, and the record will change over
time, even on the same DNS server. It is often used as a technique to balance network
load. Changing DNS servers can also sometimes be used to get around Naïve content
filters or location restrictions.

To exit the nslookup interactive mode, type exit and press return. The following
image shows the output for the previous commands:

Note

IPv4 is the version of IP that you will probably be most familiar with. It uses 32-bit
addresses that are usually represented as four dotted decimal octets, such as

www.EBooksWorld.ir

192.168.0.1. However, we have run out of IPv4 addresses, and the world is
(slowly) moving to the new version of IP, called IPv6. The address length has
increased fourfold, to 128-bit, and is usually represented in hexadecimal such as
2001:0db8:0000:0000:0000:ee00:0032:154d. Leading zeros can be omitted, like
2001:db8::ee00:32:154d, to make them easier to write. Localhost loopback
(127.0.0.1) is now simply ::1 in IPv6.

On Windows, you can use ping -a x.x.x.x to do a reverse DNS lookup, and
resolve IP addresses to hostnames. On Linux (and on other Unix-like systems such as
OS X), this feature is not available, and the -a flag serves a different purpose. You
will have to use nslookup, or dig for reverse DNS on these OSs.

Build your own

You can build your own tools using C#, and the functions you need are provided by
.NET. These are built into the full .NET Framework, but for .NET Core, you will
need to add the NuGet package System.Net.Ping for ping, although the DNS name
resolution is built-in. The underlying implementations are platform-specific, but the
framework will take care of calling the native code on the OS you're using.

You won't normally need to programmatically resolve a hostname, as most
networking commands will do this automatically. However, it can occasionally be
useful, especially if you want to perform a reverse DNS lookup, and find the
hostname for an IP address.

Tip

The .NET Dns class differs from nslookup, as it includes entries from the local hosts
file rather than just querying a DNS server. It is, therefore, more representative of the
IP addresses that other processes are resolving.

To programmatically perform a DNS lookup, follow these steps:

1. Add the System.Net namespace.

 using System.Net;

2. To resolve a hostname to an IP address, use the following static method. This
will return an array of IP addresses, although there will usually only be one.

 var results = await Dns.GetHostAddressesAsync(host);

3. To resolve an IP address to a hostname, use the following method instead:

 var revDns = await Dns.GetHostEntryAsync(result);

4. If successful, then the hostname will be available as revDns.HostName.

www.EBooksWorld.ir

To programmatically ping a host, follow these steps:

1. Add the System.Net.NetworkInformation namespace.

 using System.Net.NetworkInformation;

2. You can then instantiate a new Ping object.

 var ping = new Ping();

3. With this object, you can now ping an IP address or hostname (that will perform
a DNS lookup internally) by using the following method:

 var result = await ping.SendPingAsync(host);

4. You can get the status of the ping with result.Status, and if successful, then
you can get the RTT in milliseconds with result.RoundtripTime.

Note

The source code for our console application, illustrating how to use the .NET
Core Dns and Ping classes, is available for download along with this book.

A reverse DNS lookup can usually reveal the hosting company being used by a
website. Usually, there is only one IP address per hostname, as shown in the
following image of our .NET Core console app output:

In the preceding screenshot, we can see that emoncms.org is using redstation.com as
a host. The low latency suggests that the server is located in the same country as our

www.EBooksWorld.ir

http://emoncms.org
http://redstation.com

computer.

DNS is often used for load balancing. In this case, you will see many IP addresses
returned for a single domain name, as shown in the following screenshot:

We can see in the preceding screenshot that the privacy-focused search engine
DuckDuckGo (which doesn't track its users like Google does) is using AWS. DNS is
being used to balance the load across various instances—in this case, they're all in
the Dublin data center, because that's the closest one. Notice how the ping times are
now slightly higher than the UK-based host in the previous example.

It's likely that they're using the AWS DNS service Route 53 (so named because DNS
uses port 53). This can balance load across regions, whereas an ELB (which
DuckDuckGo doesn't appear to be using) can only balance inside a region (but both
inside and across AZs). Azure offers a similar service called Traffic Manager for
DNS load balancing.

www.EBooksWorld.ir

www.EBooksWorld.ir

Solutions
Now that you understand a bit more about the causes of latency-based problems, and
how to analyze them, we can demonstrate some potential solutions. The
measurements that you have taken using the previously illustrated tools will help you
quantify the scale of the problems, and choose the appropriate fixes to be applied.

www.EBooksWorld.ir

Batching API requests
Rendering a typical web page may require calls to many different APIs (or DB
tables) to gather the data required for it. Due to the style of object-oriented
programming encouraged by C# (and many other languages), these API calls are often
performed in series. However, if the result of one call does not affect another, then
this is suboptimal, and the calls could be performed in parallel. We'll cover DB
tables later in this chapter, as there are better approaches for them.

Concurrent calls can be more pertinent if you implement a microservices architecture
(as opposed to the traditional monolith, or big ball of mud), and have lots of different
distributed endpoints. Message queues are sometimes a better choice than HTTP
APIs in many cases, perhaps using a publish and subscribe pattern. However, maybe
you're not responsible for the API, and are instead integrating with a third party.
Indeed, if the API is yours, then you could alter it to provide all the data that you need
in one shot anyway.

Consider the example of calling two isolated APIs that have no dependencies on each
other. The sequence diagram for this may look something like the following:

www.EBooksWorld.ir

This linear process of calling A, and then calling B when A is done, is simple, as it
requires no complex orchestration to wrangle the results of the API calls, but it is
slower than necessary. By calling both APIs synchronously and in sequence, we
waste time waiting for them to return. A better way of doing this, if we don't require
the result of the first API for the request to the second, may be to call them together
asynchronously. The sequence diagram for this new flow may look something like the
following:

www.EBooksWorld.ir

There are two changes in this new sequence, one obvious and the other subtle. We
call both APIs asynchronously and in parallel so that they are simultaneously in
flight. This first change will have the greatest impact, but there is a smaller tweak that
can also help, which is calling the slowest API first.

In the original sequence diagram, we call API A and then API B, but B is slower.
Calling A and B at the same time will have a big impact, but calling B and then A is
slightly better. B dominates the timeline, and we will be killing a (relatively) large
amount of time waiting for it.

www.EBooksWorld.ir

We can use this downtime to call A, as there will be some small fixed overhead in
any API method call. Both of these changes combined mean that we are now only
waiting for B, and effectively get the call to A for free, in terms of time.

We can illustrate this principle with a simple console application. There are two
methods that simulate the APIs, and both are similar. API A has the following code:

private static async Task CallApiA()
{
 Thread.Sleep(10);
 await Task.Delay(100);
}

Thread.Sleep simulates the fixed overhead, and Task.Delay simulates waiting for
the API call to return. API B takes twice as long to return as API A, but the fixed
overhead is the same, and it has the following code:

private static async Task CallApiB()
{
 Thread.Sleep(10);
 await Task.Delay(200);
}

Now, if we synchronously call the methods in sequence, we discover that all of the
delays add up, as expected.

CallApiA().Wait();
CallApiB().Wait();

These operations take a total of around 332 ms on average, as there is about 10 ms of
additional intrinsic overhead in the method invocation. If we call both methods
simultaneously, the time reduces significantly.

Task.WaitAll(CallApiA(), CallApiB());

The operations now take an average total of 233 ms. This is good, but we can do
better if we swap the order of the methods.

Task.WaitAll(CallApiB(), CallApiA());

This now takes, on an average, a total of 218 ms, because we have swallowed the
fixed overheads of API A into the time we are waiting for API B.

Note

The full console application which benchmarks these three variants is available for
download with this book. It uses the Stopwatch class to time the operations, and

www.EBooksWorld.ir

averages the results over many runs.

The results of these three different approaches are shown in the following image:

As is always the case, measure your results to make sure there really is an
improvement. You may find that if you are making many calls to one API, or reusing
the same API client, then your requests are processed sequentially, regardless.

This parallelizing of tasks not only works for I/O, but can also be used for
computation, as we will discover in the next chapter. For now, we will move on, and
take a deeper look at database query optimization.

www.EBooksWorld.ir

Efficient DB operations
Although this isn't a book aimed at Database Administrators (DBAs), it's
advantageous for you to appreciate the underlying technology that you're using. As is
the case with networking, if you understand the strengths and weaknesses, then you
can achieve high performance more easily.

This is additionally relevant for the recent trend of developers doing more work
outside of their specialization, particularly in small organizations or startups. You
may have heard the buzzwords full-stack developer or DevOps. These refer to roles
that blur the traditional boundaries, and merge development (both frontend and
backend), quality assurance, networking, infrastructure, operations, and database
administration into one job. Being a developer today is no longer a case of just
programming or shipping code. It helps to know something about the other areas too.

Previously, in Chapter 3, Fixing Common Performance Problems , we covered
using the micro O/RM Dapper, and how to fix Select N+1 problems. Now, we'll
build on that knowledge, and highlight a few more ways that you can consolidate
queries and improve the performance of your DB operations.

As detailed in Chapter 2, Measuring Performance Bottlenecks , the first step is to
profile your application and discover where the issues lie. Only then should you
move on to applying solutions to the problem areas.

Database tuning

We're going to focus more on improving poorly performing queries, so we won't go
into DB tuning too much. This is a complex topic, and there is a lot you can learn
about indexes and how data is stored.

However, if you haven't run the Database Engine Tuning Advisor (DETA), then this
is an easy step to identify if you have any missing indexes. Yet, you should be careful
when applying the recommended changes, as there are always downsides and
tradeoffs to consider. For example, indexes make retrieving data quicker, but also
make it slower to add and update records. They also take up additional space, so it is
best not to overdo it. It will depend on your particular business use case: if you wish
to optimize upfront, or take the hit later on retrieval.

The first step is to capture a trace with SQL Server Profiler. See Chapter 2,
Measuring Performance Bottlenecks for how to do this, and save the resulting file.
This is one of the reasons that the tuning profile is a good choice. You should make
sure that the trace is representative of a genuine DB use to get good results. You can

www.EBooksWorld.ir

launch the DETA from the same menu as the profiler in SSMS.

You can then load in your trace as a workload, and after processing, it will give you
some recommendations. We won't cover the details of how to do this here for space
reasons, and it is pretty self-explanatory. There are many good guides available
online, if required.

Reporting

A common use case, which can often bring a database to its knees, is reporting.
Reports usually run on large amounts of data, and can take considerable time if
poorly written.

If you already have a method for retrieving a single item from a DB, then it can be
tempting to reuse this for reporting purposes and for calculating metrics inside of the
application. However, this is best avoided; reports should generally have their own
dedicated queries.

Even better is to have another database dedicated to reporting, which is populated
from the main DB or from backups. This way, intensive reports won't affect the
performance of the main application at the expense of not including real-time data.
This is sometimes known as a data warehouse or data mart, and the data is
occasionally denormalized for simplicity or performance reasons. Populating another
DB can also be a convenient way to test your backups, as database backups should
always be tested to ensure that they can be restored correctly and contain all of the
required data.

Note

In the ensuing examples, we will focus on Microsoft SQL Server (MS SQL) and
the Transact-SQL (T-SQL) dialect of SQL. Other databases, such as PostgreSQL,

www.EBooksWorld.ir

are available as well. PostgreSQL has its own dialect called Procedural Language /
PostgreSQL (PL/pgSQL), which is similar to Oracle PL/SQL. These dialects all
support basic SQL commands, but use different syntax for some operations, and
contain different or additional features.

The latest version of MS SQL Server is SQL Server 2016, and it's the first edition to
support running on Linux in addition to Windows. It is based on the SQL Azure
service code, so there should now be fewer differences between a self-hosted, on-
premise DB and Microsoft's cloud offering.

Aggregates

Aggregate functions are an incredibly useful feature of a RDBMS. You can compute
values that summarize many records in the database, and only return the result
keeping the source data rows in the DB.

You will be familiar with the COUNT aggregate function from earlier in the book, if
not before. This gives you the total number of records returned by your query, but
without returning them. You may have read advice that COUNT(1) performs better
than COUNT(*), but this is no longer the case, as SQL Server now optimizes the latter
to perform the same as the former.

Tip

By default, SQL Server will return a message detailing the count of the records
returned, along with the result of every query. You can turn this off by prefixing your
query with the SET NOCOUNT ON command, which will save a few bytes in the
Tabular Data Stream (TDS) connection, and increase performance slightly. This is
significant only if a cursor is being used, which is bad practice anyway for locking
reasons. It's good practice to re-enable row count after the query, even though it will
be reset outside of the local scope anyway.

In Chapter 3, Fixing Common Performance Problems, we solved our Select N+1
problem by joining tables in the DB, and using COUNT instead of performing these
calculations in our application code. There are many other aggregate functions
available, that can be useful in improving performance, especially for reporting
purposes.

Going back to our earlier example, suppose we now want to find out the total number
of blog posts. We also want to find the total number of comments, the average
comment count, the lowest number of comments for a single post, and the highest
number of comments for a single post.

www.EBooksWorld.ir

The first part is easy—just apply COUNT to the posts instead of the comments—€”but
the second part is harder. As we already have our list of posts with a comment count
for each, it may be tempting to reuse that, and simply work everything out in our C#
code.

This would be a bad idea, and the query would perform poorly, especially if the
number of posts is high. A better solution would be to use a query such as the
following:

;WITH PostCommentCount AS(
SELECT
 bp.BlogPostId,
 COUNT(bpc.BlogPostCommentId) 'CommentCount'
FROM BlogPost bp
LEFT JOIN BlogPostComment bpc
 ON bpc.BlogPostId = bp.BlogPostId
GROUP BY bp.BlogPostId
) SELECT
 COUNT(BlogPostId) 'TotalPosts',
 SUM(CommentCount) 'TotalComments',
 AVG(CommentCount) 'AverageComments',
 MIN(CommentCount) 'MinimumComments',
 MAX(CommentCount) 'MaximumComments'
FROM PostCommentCount

This query uses a Common Table Expression (CTE), but you could also use a
nested SELECT to embed the first query into the FROM clause of the second. It
illustrates a selection of the aggregate functions available, and the results on the test
database from before look like the following:

Note

The semicolon at the start is simply a good practice to avoid errors and remove
ambiguity. It ensures that any previous command has been terminated, as WITH can be
used in other contexts. It isn't required for the preceding example, but might be if it
were part of a larger query. CTEs can be very useful tools, especially if you require
recursion. However, they are evaluated every time, so you may find that temporary
tables perform much better for you, especially if querying one repeatedly in a nested
SELECT.

www.EBooksWorld.ir

Now suppose that we wish to perform the same query, but only include posts that
have at least one comment. In this case, we could use a query like the following:

;WITH PostCommentCount AS(
SELECT
 bp.BlogPostId,
 COUNT(bpc.BlogPostCommentId) 'CommentCount'
FROM BlogPost bp
LEFT JOIN BlogPostComment bpc
 ON bpc.BlogPostId = bp.BlogPostId
GROUP BY bp.BlogPostId
HAVING COUNT(bpc.BlogPostCommentId) > 0
) SELECT
 COUNT(BlogPostId) 'TotalPosts',
 SUM(CommentCount) 'TotalComments',
 AVG(CommentCount) 'AverageComments',
 MIN(CommentCount) 'MinimumComments',
 MAX(CommentCount) 'MaximumComments'
FROM PostCommentCount

We have added a HAVING clause to ensure that we only count posts with more than
zero comments. This is similar to a WHERE clause, but for use with a GROUP BY. The
query results now look something like the following:

Sampling

Sometimes, you don't need to use all of the data, and can sample it. This technique is
particularly applicable to any time-series information that you may wish to graph. In
SQL Server, the traditional way to perform random sampling was using the NEWID()
method, but this can be slow. For example, consider the following query:

SELECT TOP 1 PERCENT *
FROM [dbo].[TrainStatus]
ORDER BY NEWID()

This query returns exactly 1% of the rows with a random distribution. When run
against a table with 1,205,855 entries, it returned 12,059 results in about four
seconds, which is slow. A better way may be to use TABLESAMPLE, which is
available in any reasonably recent version of SQL Server (2005 onwards), as
follows:

www.EBooksWorld.ir

SELECT *
FROM [dbo].[TrainStatus]
TABLESAMPLE (1 PERCENT)

This preceding query is much quicker, and when run against the same data as the
previous example, it completes almost instantly. The downside is that it's cruder than
the earlier method, and it won't return exactly 1% of the results. It will return roughly
1%, but the value will change every time it is run. For example, running against the
same test database, it returned 11,504, 13,441 and 11,427 rows when executing the
query three times in a row.

Inserting data

Querying databases may be the most common use case, but you will usually need to
put some data in there in the first place. One of the most commonly used features
when inserting records into a relational DB is the identity column. This is an auto-
incrementing ID that is generated by the database, and doesn't need to be supplied
when adding data.

For example, in our BlogPost table from earlier, the BlogPostId column is created
as INTIDENTITY(1,1). This means that it's an integer value starting at one and
increasing by one for every new row. You INSERT into this table, without specifying
BlogPostId, like so:

INSERT INTO BlogPost (Title, Content)
VALUES ('My Awesome Post', 'Write something witty here...')

Identities can be very useful, but you will usually want to know the ID of your newly
created record. It is typical to want to store a row, then immediately retrieve it so that
the ID can be used for future editing operations. You can do this in one shot with the
OUTPUT clause, like so;

INSERT INTO BlogPost (Title, Content)
OUTPUT INSERTED.BlogPostId
VALUES ('My Awesome Post', 'Write something witty here...')

In addition to inserting the row, the ID will be returned.

Note

You may see SCOPE_IDENTITY() (or even @@IDENTITY) advocated as ways of
retrieving the identity, but these are outdated. The recommended way of doing this, on
modern versions of SQL Server, is to use OUTPUT.

OUTPUT works on the INSERT, UPDATE, DELETE, and MERGE commands. It even works

www.EBooksWorld.ir

when operating on multiple rows at a time, as in this example of bulk inserting two
blog posts:

INSERT INTO BlogPost (Title, Content)
OUTPUT INSERTED.BlogPostId
VALUES ('My Awesome Post', 'Write something witty here...'),
 ('My Second Awesome Post', 'Try harder this time...')

The preceding query will return a result set of two identities, for example, 3003 and
3004. In order to execute these inserts with Dapper, you can use the following
method for a single record. First, let us create a blog post object, which we'll hard
code here, but which would normally come from user input:

var post = new BlogPost
{
 Title = "My Awesome Post",
 Content = "Write something witty here..."
};

To insert this one post, and set the ID, you can use the following code. This will
execute the insert statement, and return a single integer value.

post.BlogPostId = await connection.ExecuteScalarAsync<int>(@"
 INSERT INTO BlogPost (Title, Content)
 OUTPUT INSERTED.BlogPostId
 VALUES (@Title, @Content)",
 post);

You can then assign the returned ID to the post, and return that object to the user for
editing. There is no need to select the record again, assuming the insert succeeds and
no exceptions are thrown.

You can insert multiple records at once with the same SQL by using the execute
method. However, the SQL will be executed multiple times, which may be
inefficient, and you only get back the number of inserted rows, not their IDs. The
following code supplies an array of posts to the same SQL used in the previous
example:

var numberOfRows = await connection.ExecuteAsync(@"
 INSERT INTO BlogPost (Title, Content)
 OUTPUT INSERTED.BlogPostId
 VALUES (@Title, @Content)",
 new[] { post, post, post });

If you want multiple IDs returned, then you will need to use the query method to
return a collection of values, as we have done previously. However, it is difficult to
make this work for a variable number of records, without dynamically building SQL.

www.EBooksWorld.ir

The following code performs a bulk insert, using multiple separate parameters for the
query:

var ids = await connection.QueryAsync<int>(@"
 INSERT INTO BlogPost (Title, Content)
 OUTPUT INSERTED.BlogPostId
 VALUES (@Title1, @Content1),
 (@Title2, @Content2)", new
 {
 Title1 = post.Title,
 Content1 = post.Content,
 Title2 = post.Title,
 Content2 = post.Content
 });

This will perform all the work in a single command, and return an enumerable
collection of the identities. However, this code is not very scalable (or even elegant).

Tip

There are many helper methods in the Dapper.Contrib package which can assist
you with inserting records and other operations. However, they suffer from the same
limitations as the examples here, and you can only return a single identity or the
number of rows inserted.

GUIDs

Integer identities can be useful to a database internally, but perhaps you shouldn't be
using an identifying key externally, especially if you have multiple web servers or
expose the IDs to users. An alternative is to use a Globally Unique Identifier
(GUID), referred to as UNIQUEIDENTIFIER in SQL Server. We have already touched
on these, as they are generated by the NEWID() function used in the suboptimal
sampling example.

GUIDs are used ubiquitously, and are 16 bytes long—four times bigger than an
integer. The size of GUIDs means that you are unlikely to get a unique constraint
conflict when inserting a random GUID into an already populated table.

Note

People sometimes worry about GUID collisions, but the numbers involved are so
staggeringly huge that collisions are incredibly unlikely. The GUIDs generated by
.NET (using a COM function on Windows) are, specifically, Universally Unique
Identifiers (UUIDs) version 4. These have 122 bits of randomness, so you would
need to generate nearly three billion GUIDs before having even half a chance of a
collision.

www.EBooksWorld.ir

At one new record per second, that would take over 90 billion years. Even at two
million GUIDs per second (what an average computer today could produce), it
would still take over 45 thousand years (more time than human civilization has been
around). If you think that this will be an issue for your software, then you should
probably be future-proofing it by using five-digit years, such as 02016, to avoid the
Y10K (or YAK in hexadecimal) problem.

This uniqueness property allows you to generate a GUID in your application code
and store it in a distributed database, without worrying about merging data later. It
also allows you to expose IDs to users, without caring if someone will enumerate
them or try and guess a value. Integer IDs often expose how many records there are in
a table, which could be sensitive information depending on your use case.

One thing you have to watch out for with random GUIDs is using them as keys, as
opposed to IDs. The difference between these two terms is subtle, and they are often
one and the same. The key (primary or clustered) is what the DB uses to address a
record, whereas the ID is what you would use to retrieve one. These can be the same
value but they don't have to be. Using a random GUID as a key can cause
performance issues with indexing. The randomness may cause fragmentation, which
will slow down queries.

You can use sequential GUIDs, for example NEWSEQUENTIALID() can be the
DEFAULT value for a column, but then you lose most of the beneficial qualities of
GUIDs that mainly come from the randomness. You now effectively just have a really
big integer, and if you're only concerned with the maximum number of rows in a
table, and require more than two billion, then a big int (twice an int, but half a
GUID) should suffice.

A good compromise is to have an int identity as the primary key, but to use a GUID
as the ID (and enforce this with a unique constraint on the column). It's best if you
generate the GUID in application code with Guid.NewGuid(), as using a default
column value in the DB means you have to retrieve the ID after an insert, as shown
previously.

A table using this strategy may partially look something like the following image.
This is a screen capture of part of a table from the MembershipReboot user
management and authentication library:

www.EBooksWorld.ir

Advanced DB topics

There are many other database performance enhancing techniques that we could
cover here, but don't have space for. We'll briefly mention some additional topics in
case you want to look into them further.

A common requirement when saving data is to insert a record if it doesn't yet exist, or
to update an existing record if there is already a row containing that ID. This is
sometimes referred to as an upsert, which is a portmanteau word combining update
and insert.

You can use the MERGE command, to do this in one operation and not worry about
choosing between UPDATE or INSERT (wrapped in a transaction inside a stored
procedure). However, MERGE does not perform as well as UPDATE or INSERT, so
always test the effects for your use case, and use it sparingly.

Stored procedures, transactions, and locking are all big subjects on their own. They
are important to understand, and not only from a performance perspective. We can't
fit all of these in here, but we will touch upon maintaining stored procedures later in
the book.

Some other techniques you could look into are cross-database joins, which can save
you from querying multiple DBs. There is also the practice of denormalizing your
data, which involves flattening your relational records ahead of time to provide a
single row rather than needing to join across many tables for a query. We briefly
mentioned this in relation to data warehouses earlier.

Note

You can find lots of useful SQL documentation and information on MSDN
(msdn.microsoft.com) and TechNet (technet.microsoft.com). Additionally, there are
many good books on advanced SQL techniques.

Finally, a note on housekeeping. It's important to have a plan for managing the size of

www.EBooksWorld.ir

http://msdn.microsoft.com
http://technet.microsoft.com

a database. You can't simply keep inserting data into a table, and hope it will
continue to perform well forever. At some point, it will get so large that even
deleting records from it will cause your DB to grind to a crawl. You should know
ahead of time how you will remove or archive rows, and it is better to do this
regularly in small batches.

www.EBooksWorld.ir

Simulation and testing
To wrap up this chapter, let's reiterate the importance of being able to test your
application on realistic infrastructure. Your test environments should be as live-like
as possible. If you don't test on equivalent DBs and networks, then you may get a
nasty surprise come deployment time.

When using a cloud hosting provider (and if you automate your server builds), then
this is easy: you can simply Spin-up a staging system that matches production. You
don't have to provision it to the exact same scale as long as all the parts are there and
in the same place. To reduce costs further, you only need to keep it around for as long
as your test.

Alternatively, you could create a new live environment, deploy and test it, then
switch over, and destroy or reuse the old live environment. This swapping technique
is known as blue-green deployment. Another option is to deploy new code behind a
feature switch, which allows you to toggle the feature at runtime, and only for some
users. Not only does this allow you to functionally verify features with test users, you
can also gradually roll out a new feature, and monitor the performance impact as you
do so. We will cover both of these techniques in Chapter 9, Monitoring Performance
Regressions .

www.EBooksWorld.ir

Summary
We've covered a lot in this chapter, and it should hopefully be clear that being a high
performance developer requires more than simply being a capable programmer.
There are many externalities to consider around your code.

You now understand the basics of I/O, and the physical causes of the intrinsic
limitations present. You can analyze and diagnose how a network logically fits
together. We have covered how to make better use of the network to reduce overall
latency, which is important as more I/O operations now happen over a network. You
have also seen how to make better use of a database, and how to do more with fewer
operations.

In the next chapter, we will dig into code execution in detail, and show you how to
speed up your C#. We'll see how .NET Core and ASP.NET Core perform so much
better than the previous versions, and how you can take advantage of these
improvements.

www.EBooksWorld.ir

Chapter 6. Understanding Code
Execution and Asynchronous
Operations
This chapter covers solving performance problems in the execution of your code,
which is not normally the first location that speed issues occur, but can be a good
additional optimization. We'll discuss the areas where performance is needed, and
where it is okay (or even required) to be slow. The merits of various data structures
will be compared from the standard built-in generic collections to the more exotic.
We will demonstrate how to compute operations in parallel, and how to take
advantage of extra instruction sets that your CPU may provide. We'll dive into the
internals of ASP.NET Core and .NET Core to highlight the improvements that you
should be aware of.

The topics covered in this chapter include the following:

.NET Core and the native tool chain
Common Language Runtime (CLR) services such as GC, JIT, and NGen
ASP.NET Core and the Kestrel web server
Generic collections and Bloom filters
Serialization and data representation formats
Relative performance of hashing functions
Parallelization (SIMD, TPL, and PLINQ)
Poorly performing practices to avoid

You will learn how to compute results in parallel and combine the outputs at the end.
This includes how to avoid incorrect ways of doing this, which can make things
worse. You'll also learn how to reduce server utilization, and to choose the most
appropriate data structures in order to process information efficiently for your
specific situation.

www.EBooksWorld.ir

Getting started with the core projects
There are many benefits of using .NET Core and ASP.NET Core over the old full
versions of the frameworks. The main enhancements are the open source
development and cross platform support, but there are also significant performance
improvements. Open development is important and the source code is not only
available, the development work happens in the open on GitHub. The community is
encouraged to make contributions and these may be merged in upstream if they pass a
code review; the flow isn't just one way. This has led to increased performance and
additional platform support coming from outside of Microsoft. If you find a bug in a
framework, you can now fix it rather than work around the problem and hope for a
patch.

The multiple projects that make up the frameworks are split across two organizations
on GitHub. One of the driving principles has been to split the frameworks up into
modules, so you can just take what you need rather than the whole monolithic
installation. The lower level framework, .NET Core, can be found, along with other
projects, under github.com/dotnet. The higher level web application framework,
ASP.NET Core, can be found under github.com/aspnet. The reason for this split is
that .NET Core is managed by the .NET Foundation which is an independent
organization, although most of the members are Microsoft staff. ASP.NET Core is
managed directly by Microsoft.

Let's have a quick look at some of the various .NET Core repositories and how they
fit together.

www.EBooksWorld.ir

http://github.com/dotnet
http://github.com/aspnet

.NET Core
There are a couple of projects that form the main parts of .NET Core and these are
CoreCLR and CoreFX. CoreCLR contains the .NET Core CLR and the base core
library, mscorlib. The CLR is the virtual machine that runs the .NET code.
CoreCLR contains a just-in-time (JIT) compiler, Garbage Collector (GC), and
also base types and classes in mscorlib. CoreFX includes the foundational libraries
and sits on top of CoreCLR. This includes most built-in components that aren't simple
types.

Note

You may be familiar with the <gcServer> element used to set a GC mode, more
suitable for server use, with shorter pauses. You can read more about the original
version at msdn.microsoft.com/en-us/library/ms229357 . In .NET Core you can set
the COMplus_gcServer environment variable to 1 or set System.GC.Server to
true as a runtime option in a JSON runtime configuration file.

It's worth highlighting another project called CoreRT, which is a runtime that allows
ahead-of-time (AOT) compilation, instead of the JIT of CoreCLR. This means that
you can compile your C# code to native machine code, and run it without any
dependencies. You end up with a single (statically linked) binary and don't need
.NET installed, which is very similar to how Go operates. With the Roslyn compiler,
you no longer always need to compile to Common Intermediate Language (CIL)
bytecode then have the CLR JIT compile to native instructions at runtime with
RyuJIT.

This native tool chain allows for performance improvements, as the compilation does
not have to happen quickly, in real time, and can be further optimized. For example, a
build can be tuned for execution speed at the expense of compilation speed. It's
conceptually similar to the Native Image Generator (NGen) tool, which has been
in the full .NET Framework since its inception.

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/ms229357

ASP.NET Core
ASP.NET Core runs on top of .NET Core, although it can also run on the full .NET
Framework. We will only cover running on .NET Core, as this performs better and
ensures enhanced platform support. There are many projects that make up ASP.NET
Core and it's worth briefly mentioning some of them.

Tip

It's useful to not include any framework references to .NET 4.5/4.6 in your project,
so that you can be sure you're only using .NET Core and don't accidentally reference
any dependencies that are not yet supported.

ASP.NET Core includes Model View Controller (MVC), Web API, and Web
Pages (a way to make simple pages with Razor, similar to PHP, and the spiritual
successor to classic ASP). These features are all merged together, so you don't need
to think of MVC and Web API as separate frameworks anymore. There are many
other projects and repositories, including EF Core, but the one we will highlight here
is the Kestrel HTTP server.

Kestrel

Kestrel is a new web server for ASP.NET Core and it performs brilliantly. It's based
on libuv, which is an asynchronous I/O abstraction and support library that also runs
below Node.js. Kestrel is blazingly fast, and the benchmarks are very impressive.
However, it is pretty basic, and for production hosting, you should put it behind a
reverse proxy, so that you can use caching and other features to service a greater
number of users. You can use many HTTP or proxy servers for this purpose such as
IIS, NGINX, Apache, or HAProxy.

Tip

You should be careful with your configuration if using NGINX as a reverse proxy, as
by default, it will retry POST requests if the response from your web server times out.
This could result in duplicate operations being performed, especially if used as a
load balancer across multiple backend HTTP servers.

www.EBooksWorld.ir

Data structures
Data structures are objects that you can use to store the information you're working
on. Choosing the best implementation for how your data is used can have dramatic
effects on the speed of execution. Here, we'll discuss some common and some more
interesting data structures that you might like to make use of.

As this is a book about web application programming and not one on complex
algorithm implementation or micro-optimization, we won't be going into a huge
amount of detail on data structures and algorithms. As briefly mentioned in the
introduction, other factors can dwarf the execution speed in a web context, and we
assume you're not writing a game engine. However, good algorithms can help speed
up applications, so, if you are working in an area where execution performance is
important, you should read more about them.

We're more interested in the performance of the system as a whole, not necessarily
the speed the code runs at. It is often more important to consider what your code
expresses (and how this affects other systems) than how it executes. Nevertheless, it
is still important to choose the right tool for the job, and you don't want to have
unnecessarily slow code. Just be careful of over-optimizing when it already executes
fast enough, and above all, try to keep it readable.

www.EBooksWorld.ir

Lists
A .NET List<T> is a staple of programming in C#. It's type safe, so you don't have to
bother with casting or boxing. You specify your generic type and can be sure that only
objects of that class (or primitive) can be in your list. Lists implement the standard
list and enumerable interfaces (IList and IEnumerable), although you get more
methods on the concrete list implementation, for example, adding a range. You can
also use Language-Integrated Query (LINQ) expressions to easily query them,
which is trivial when using fluent lambda functions. However, although LINQ is
often an elegant solution to a problem, it can lead to performance issues, as it is not
always optimized.

A list is really just an enhanced, one-dimensional, array. In fact, it uses an array
internally to store the data. In some cases, it may be better to directly use an array for
performance. Arrays can occasionally be a better choice, if you know exactly how
much data there will be, and you need to iterate through it inside a tight loop. They
can also be useful if you need more dimensions, or plan to consume all of the data in
the array.

You should be careful with arrays; use them sparingly and only if benchmarking
shows a performance problem when iterating over a list. Although they can be faster,
they also make parallel programming and distributed architecture more difficult,
which is where significant performance improvements can be made.

Modern high performance means scaling out to many cores and multiple machines.
This is easier with an immutable state that doesn't change, which is easier to enforce
with higher level abstractions than with arrays. For example, you can help enforce a
read-only list with an interface.

If you are inserting or removing a lot of items in the middle of a large list, then it may
be better to use the LinkedList<T> class. This has different performance
characteristics to a list, as it isn't really a list–it's more of a chain. It may perform
better than a list for some specialized cases, but, in most common cases, it will be
slower. For example, access by index is quick with a list (as it is array backed), but
slow with a linked list (as you will have to walk the chain).

It is normally best to initially focus on the what and why of your code rather than the
how. LINQ is very good for this, as you simply declare your intentions, and don't
need to worry about the implementation details and loops. It is a bad idea to optimize
prematurely, so do this only if testing shows a performance problem. In most common
cases, a list is the correct choice unless you need to select only a few values from a

www.EBooksWorld.ir

large set, in which case, dictionaries can perform better.

www.EBooksWorld.ir

Dictionaries
Dictionaries are similar to lists, but excel at quickly retrieving a specific value with
a key. Internally, they are implemented with a hash table. There's the legacy
Hashtable class (in the System.Collections.NonGeneric package) but this is not
type safe, whereas Dictionary<T> is a generic type, so you probably shouldn't use
Hashtable unless you're porting old code to .NET Core. The same applies to
ArrayList, which is the legacy, non-generic version of List.

A dictionary can look up a value with a key very quickly, whereas a list would need
to go through all the values until the key was found. You can, however, still
enumerate a dictionary as it is ordered, although this isn't really how it is intended to
be used. If you don't need ordering, then you can use a HashSet. There are sorted
versions of all of these data structures, and you can again use read-only interfaces to
make them difficult to mutate.

www.EBooksWorld.ir

Collection benchmarks
Accurate benchmarking is hard and there are lots of things which can skew your
results. Compilers are very clever and will optimize, which can make trivial
benchmarks less valuable. The compiler may output very similar code for different
implementations.

What you put in your data structures will also have a large effect on their
performance. It's usually best to test or profile your actual application and not
optimize prematurely. Readability of code is very valuable and shouldn't be
sacrificed for runtime efficiency unless there is a significant performance problem
(or if it's already unreadable).

There are benchmarking frameworks that you can use to help with your testing, such
as BenchmarkDotNet which is available at
github.com/PerfDotNet/BenchmarkDotNet . However, these can be an overkill, and
are sometimes tricky to set up, especially on .NET Core. Other options include
Simple Speed Tester (which you can read more about at
theburningmonk.github.io/SimpleSpeedTester) and MiniBench (available from
github.com/minibench).

We'll perform some simple benchmarks to show how you might go about this.
However, don't assume that the conclusions drawn here will always hold true, so test
for your situation. First, we will define a simple function to run our tests:

private static long RunTest(Func<double> func, int runs = 1000)
{
 var s = Stopwatch.StartNew();
 for (int j = 0; j < runs; j++)
 {
 func();
 }
 s.Stop();
 return s.ElapsedMilliseconds;
}

We use Stopwatch here as using DateTime can cause problems, even when using
UTC, as the time could change during the test and the resolution isn't high enough. We
also need to perform many runs to get an accurate result. We then define our data
structures to test and prepopulate them with random data.

var rng = new Random();
var elements = 100000;
var randomDic = new Dictionary<int, double>();
for (int i = 0; i < elements; i++)

www.EBooksWorld.ir

http://github.com/PerfDotNet/BenchmarkDotNet
http://theburningmonk.github.io/SimpleSpeedTester
http://github.com/minibench

{
 randomDic.Add(i, rng.NextDouble());
}
var randomList = randomDic.ToList();
var randomArray = randomList.ToArray();

We now have an array, list, and dictionary containing the same set of 100,000
key/value pairs. Next, we can perform some tests on them to see what structure
performs best in various situations.

var afems = RunTest(() =>
{
 var sum = 0d;
 foreach (var element in randomArray)
 {
 sum += element.Value;
 }
 return sum;
}, runs);

The preceding code times how long it takes to iterate over an array in a foreach
loop and sums up the double precision floating point values. We can then compare
this to other structures and the different ways of accessing them. For example,
iterating a dictionary in a for loop is done as follows:

var dfms = RunTest(() =>
{
 var sum = 0d;
 for (int i = 0; i < randomDic.Count; i++)
 {
 sum += randomDic[i];
 }
 return sum;
}, runs);

This performs very badly, as it is not how dictionaries are supposed to be used.
Dictionaries excel at extracting a record by its key very quickly. So quickly in fact
that you will need to run the test many more times to get a realistic value.

var lastKey = randomList.Last().Key;
var dsms = RunTest(() =>
{
 double result;
 if (randomDic.TryGetValue(lastKey, out result))
 {
 return result;
 }
 return 0d;
}, runs * 10000);
Console.WriteLine($"Dict select {(double)dsms / 10000} ms");

www.EBooksWorld.ir

Getting a value from a dictionary with TryGetValue is extremely quick. You need to
pass the variable to be set into the method as an out parameter. You can see if this
was successful and if the item was in the dictionary by testing the Boolean value
returned by the method.

Conversely, adding items to a dictionary one by one can be slow, so it all depends on
what you're optimizing for. The following image shows the output of a very simple
console application that tests various combinatorial permutations of data structures
and their uses:

These results, shown in the preceding image, are informative, but you should be
skeptical, as many things can skew the output, for example, the ordering of the tests. If
the gap is small, then there is probably not much to choose between two variants, but
you can clearly see the big differences.

Tip

To get more realistic results, be sure to compile in release mode and run without
debugging. The absolute results will depend on your machine and architecture, but
the relative measures should be useful for comparisons. You may get higher
performance if compiling to a single executable binary with the .NET native tool
chain or with a different release of the .NET Core framework.

The main lesson here is to measure for your specific application and choose the most
appropriate data structure for the work that you are performing. The collections in the

www.EBooksWorld.ir

standard library should serve you well for most purposes, and there are others that
are not covered here, which can sometimes be useful, such as a Queue or Stack.

You can find more information about the built-in collections and data structures on
MSDN (msdn.microsoft.com/en-us/library/system.collections.generic). You can also
read about them on the .NET Core documentation site on the GitHub pages
(dotnet.github.io/docs/essentials/collections/Collections-and-Data-Structures.html).

However, there are some rarer data structures, not in the standard collection, that you
may occasionally wish to use. We'll show an example of one of these now.

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/system.collections.generic
http://dotnet.github.io/docs/essentials/collections/Collections-and-Data-Structures.html

Bloom filters
Bloom filters are an interesting data structure that can increase performance for
certain use cases. They use multiple overlaid hashing functions and can quickly tell
you if an item definitely does not exist in a set. However, they can't say with certainty
if an item exists, only that it is likely to. They are useful as a pre-filter, so that you
can avoid performing a lookup, because you know for sure that the item won't be
there.

The following image shows how a Bloom filter works. A, B, and C have been
hashed and inserted into the filter. D is hashed to check if it is in the filter but, as it
maps to a zero bit, we know that it is not in there.

www.EBooksWorld.ir

Bloom filters are much smaller than holding all the data or even a list of hashes for
each item in the set. They can also be much quicker, as the lookup time is constant for
any size of set. This constant time can be lower than the time to look up an item in a
large list or dictionary, especially if it is on the file system or in a remote database.

An example application for a Bloom filter could be a local DNS server, which has a
list of domains to override, but forwards most requests to an upstream server. If the
list of custom domains is large, then it may be advantageous to create a Bloom filter
from the entries and hold this in memory.

When a request comes in, it is checked against the filter, and if it doesn't exist, then
the request is forwarded to the upstream server. If the entry does exist in the filter,
then the local hosts file is consulted; if the entry is there, its value is used. There is a
small chance that the entry will not be in the list, even if the filter thinks it is. In this
case, when it isn't found, the request is forwarded, but this approach still avoids the
need to consult the list for every request.

www.EBooksWorld.ir

Another example of using a Bloom filter is in a caching node, perhaps as part of a
proxy or CDN. You wouldn't want to cache resources that are only requested once,
but how can you tell when the second request occurs if you haven't cached it? If you
add the request to a Bloom filter, you can easily tell when the second request occurs
and then cache the resource.

They are also used in some databases to avoid expensive disk operations and in
Cache Digests, which allow an agent to declare the contents of its cache. HTTP/2
may support Cache Digests in the future, but this will probably use Golomb-coded
sets (GCS), which are similar to Bloom filters, but smaller, at the expense of slower
queries.

There is an open source implementation of a Bloom filter in .NET available at
bloomfilter.codeplex.com among others. You should test the performance for yourself
to make sure they offer an improvement.

www.EBooksWorld.ir

http://bloomfilter.codeplex.com

Hashing and checksums
Hashing is an important concept, which is often used to ensure data integrity or
lookup values quickly and so it is optimized to be fast. This is why general hashing
functions should not be used on their own to securely store passwords. If the
algorithm is quick, then the password can be guessed in a reasonably short amount of
time. Hashing algorithms vary in their complexity, speed of execution, output length,
and collision rate.

A very basic error detection algorithm is called a parity check. This adds a single
bit to a block of data and is rarely used directly in programming. It is, however,
extensively used at the hardware level, as it is very quick. Yet, it may miss many
errors where there are an even number of corruptions.

A Cyclic Redundancy Check (CRC) is a slightly more complex error detecting
algorithm. The CRC-32 (also written CRC32) version is commonly used in
software, particularly in compression formats, as a checksum.

Tip

You may be familiar with the built-in support for hash codes in .NET (with the
GetHashCode method on all objects), but you should be very careful with this. The
only function of this method is to assist with picking buckets in data structures that
use hash tables internally, such as a dictionary, and also in some LINQ operations. It
is not suitable as a checksum or key, because it is not cryptographically secure and it
varies across frameworks, processes, and time.

You may have used the Message Digest 5 (MD5) algorithm in the past, but today its
use is strongly discouraged. The security of MD5 is heavily compromised and
collisions can be produced easily. Since it is very quick, it may have some non-
secure uses, such as non-malicious error checking but there are better algorithms that
are fast enough.

If you need a strong but quick hashing function, then the Secure Hash Algorithm
(SHA) family is a good choice. However, SHA-1 is not considered future proof, so
for a new code, SHA-256 is generally a better choice.

When signing messages, you should use a dedicated Message Authentication Code
(MAC), such as a Hash-based MAC (HMAC), which avoids vulnerabilities in a
single pass of the hashing function. A good option is the HMACSHA256 class built into
.NET. Various APIs, such as some of the AWS REST APIs, use HMAC-SHA256 to
authenticate requests. This ensures that, even if the request is performed over an

www.EBooksWorld.ir

unencrypted HTTP channel, the API key can't be intercepted and recovered.

As briefly mentioned in Chapter 1 , Why Performance Is a Feature , password
hashing is a special case and general purpose hashing algorithms are not suitable for
it–they are too fast. A good choice is Password-Based Key Derivation Function 2
(PBKDF2), which we used as an example in Chapter 2 , Measuring Performance
Bottlenecks . PBKDF2 is a particularly popular choice for .NET, as it is built into
the framework, and so, the implementation is more likely to be correct. It has been
built against an RFC and reviewed by Microsoft, which you can't say for any random
piece of code found online. For example, you could download an implementation of
bcrypt for .NET, but you have to trust that it was coded correctly or verify it
yourself.

www.EBooksWorld.ir

Hashing benchmarks
Let's do some simple benchmarking of various hash functions to see how they
compare performance wise. In the following code snippet, we define a method for
running our tests, similar to the one for the previous collection benchmarks, but taking
an Action parameter, rather than a Func<double>, as we don't want to return a
value:

private static long RunTest(Action func, int runs = 1000)
{
 var s = Stopwatch.StartNew();
 for (int j = 0; j < runs; j++)
 {
 func();
 }
 s.Stop();
 return s.ElapsedMilliseconds;
}

We include the following using statement:

using System.Security.Cryptography;

Next, we define a short private constant string (hashingData) to hash in the class
and get the bytes for it in an 8-bit Unicode (UTF8) format.

var smallBytes = Encoding.UTF8.GetBytes(hashingData);

We also want to get a larger block of bytes to hash to see how it compares
performance wise. For this, we use a cryptographically secure random number
generator.

var largeBytes = new byte[smallBytes.Length * 100];
var rng = RandomNumberGenerator.Create();
rng.GetBytes(largeBytes);

We need a key for some of our functions, so we use the same technique to generate
this.

var key = new byte[256];
var rng = RandomNumberGenerator.Create();
rng.GetBytes(key);

Next, we create a sorted list of the algorithms to test and execute the tests for each
one:

var algos = new SortedList<string, HashAlgorithm>
{

www.EBooksWorld.ir

 {"1. MD5", MD5.Create()},
 {"2. SHA-1", SHA1.Create()},
 {"3. SHA-256", SHA256.Create()},
 {"4. HMAC SHA-1", new HMACSHA1(key)},
 {"5. HMAC SHA-256", new HMACSHA256(key)},
};
foreach (var algo in algos)
{
 HashAlgorithmTest(algo);
}

Our test method runs the following tests on each algorithm. They all inherit from
HashAlgorithm, so we can run the ComputeHash method on each of them for the
small and large byte arrays.

var smallTimeMs = RunTest(() =>
{
 algo.Value.ComputeHash(smallBytes);
}, runs);
var largeTimeMs = RunTest(() =>
{
 algo.Value.ComputeHash(largeBytes);
}, runs);

We then calculate the average (mean) time for both sizes. We cast the long integer to a
double precision floating point number so that we can represent small values
between one and zero.

var avgSmallTimeMs = (double)smallTimeMs / runs;
var avgLargeTimeMS = (double)largeTimeMs / runs;

The preceding method then outputs these mean times to the console. We need to test
PBKDF2 separately, as it doesn't inherit from HashAlgorithm.

var slowRuns = 10;
var pbkdf2 = new Rfc2898DeriveBytes(hashingData, key, 10000);
var pbkdf2Ms = RunTest(() =>
{
 pbkdf2.GetBytes(256);
}, slowRuns);

PBKDF2 is so slow that it would take a considerable amount of time to perform
100,000 runs (this is the point of using it). Internally, this RFC2898 implementation
of the key-stretching algorithm runs HMAC SHA-1 10,000 times. The default is
1,000, but due to the computing power available today, it is recommended to set this
to at least an order of magnitude higher. For example, Wi-Fi Protected Access II
(WPA2) uses 4,096 rounds of iterations to produce a 256-bit key with the Service
Set Identifier (SSID) as the salt.

www.EBooksWorld.ir

The output will look something like the following:

From the preceding output, you can see that the time taken for one hash varies from
about 720 nanoseconds for a small MD5 to 32 microseconds for a large HMAC
SHA-256 and 125 milliseconds for a small PBKDF2 with typical parameters.

Benchmarking results can vary dramatically, so you shouldn't read too much into
absolute values. For example, the output from the BenchmarkDotNet tool comparing
MD5 and SHA-256 on the same machine looks like this:

www.EBooksWorld.ir

You can see in the last image that the results are different to our homemade
benchmark. However, this uses the full .NET Framework, calculates median rather
than mean for the average time, and runs in debug mode (which it helpfully warns us
of) among other things.

A faster machine will have a higher throughput (as can be seen in the
BenchmarkDotNet README.md on GitHub). Dedicated hardware such as Graphics
Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs), and
Application-Specific Integrated Circuits (ASICs) can be much faster. These tend to
be used in the mining of bitcoin (and other crypto currencies), as these are based on
hashing as a proof-of-work. Bitcoin uses SHA-256, but other currencies use different
hashing algorithms.

The same algorithms form the basis of TLS, so faster hardware can handle a greater
number of secure connections. As another example, Google built a custom ASIC
called a Tensor Processing Unit (TPU) to accelerate their machine learning cloud

www.EBooksWorld.ir

services.

Other benchmarking samples are available in BenchmarkDotNet, and when you first
run it, you will be presented with the following menu:

The previous benchmark was the second option, (number #1 Algo_Md5VsSha256).

Benchmarking is hard, so it's a good idea to use a library such as BenchmarkDotNet
if you can. The only conclusion we can draw from our benchmarks is that SHA-256
is slower than MD5. However, SHA-256 should be fast enough for most applications
and it's more secure for integrity checking. However, it is still not suitable for
password storage.

SHA-256 can be used to provide signatures for verifying downloaded files, which

www.EBooksWorld.ir

must be retrieved over HTTPS to be safe, and for signing certificates. When used as
part of an HMAC, it can also be used to securely authenticate messages–API
requests, for example. You will only connect successfully if you know the correct
API key to hash with.

www.EBooksWorld.ir

Serialization
Serialization is the process of turning objects into data suitable for transmission over
a network or for storage. We also include deserialization, which is the reverse, under
this umbrella. Serialization can have significant performance implications, not only
on the network transmission speed but also on computation, as it can make up most of
the expensive processing on a web server. You can read more about serialization on
MSDN (msdn.microsoft.com/en-us/library/mt656716).

Serialization formats can be text-based or binary. Some popular text-based formats
are Extensible Markup Language (XML) and JavaScript Object Notation (JSON).
A popular binary format is Protocol Buffers, which was developed at Google.
There's another binary serialization format (BinaryFormatter) built into the full
.NET, but this is not in .NET Core.

XML has fallen out of fashion with developers, and JSON is now generally
preferred. This is partly due to the smaller size of equivalent JSON payloads, but it
may also be due to the use of XML in the originally named Simple Object Access
Protocol (SOAP). This is used in Windows Communication Foundation (WCF),
but SOAP is no longer an acronym, as developers discovered it is far from simple.

JSON is popular due to being compact, human-readable, and because it can easily be
consumed by JavaScript, particularly in web browsers. There are many different
JSON serializers for .NET, with different performance characteristics. However,
because JSON is not as rigidly defined as XML, there can be differences in
implementations, which make them incompatible, especially when dealing with
complex types such as dates. For example, the very popular Json.NET represents
dates in the International Organization for Standardization (ISO) format, whereas
the JSON serializer used in old versions of ASP.NET MVC represented dates as the
number of milliseconds since the Unix epoch, wrapped in a JavaScript date
constructor.

The .NET developer community has converged on Json.NET, and compatibility is
always preferable to performance. ASP.NET Web API has used Json.NET as the
default for a while now, and ASP.NET Core also uses Json.NET. There is a
serializer that's part of the ServiceStack framework called ServiceStack.Text,
which claims to be faster, but you should probably value compatibility and
documentation over speed. The same applies to other JSON libraries such as Jil
(github.com/kevin-montrose/Jil) and NetJSON (github.com/rpgmaker/NetJSON),
which can be even faster than ServiceStack in benchmarks.

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/mt656716
http://github.com/kevin-montrose/Jil
http://github.com/rpgmaker/NetJSON

If you are after pure performance, and you control all of the endpoints, then you
probably would want to use a binary protocol. However, this may limit future
interoperability with third-party endpoints which you don't control. Therefore, it's
best to only use these internally.

It would be a bad idea to build your own custom message protocol on top of UDP.
So, if you want to use binary serialization, you should look at something like
protobuf-net, which is a Protocol Buffers implementation for .NET. You may also
wish to consider Microsoft's Bond framework (github.com/Microsoft/bond) or
Amazon's Ion (amznlabs.github.io/ion-docs). You may need to tune these tools for
best performance, for example, by changing the default buffer size.

www.EBooksWorld.ir

http://github.com/Microsoft/bond
http://amznlabs.github.io/ion-docs

SIMD CPU instructions
Single Instruction Multiple Data (SIMD) is a technique that is available on many
modern processors and can speed up execution by parallelizing calculations even in
a single thread on one core. SIMD takes advantage of additional instructions
available on CPUs to operate on sets of values (vectors) rather than just single values
(scalars).

The most common instruction set for this is called Streaming SIMD Extensions 2
(SSE2) and it has been around for over 15 years since its debut with the Pentium 4. A
newer instruction set called Advanced Vector Extensions (AVX) offers superior
performance over SSE2 and has been around for over five years. So, if you're using a
reasonably recent x86-64 CPU, then you should have access to these extra
instructions.

Note

Some ARM CPUs (such as those in the Raspberry Pi 2 and 3) contain a similar
technology called NEON, officially known as Advanced SIMD. This is not currently
supported in .NET, but may be in the future. An official open source library project in
C is hosted at projectne10.org .

You can use the following Boolean property to test if SIMD is supported:

Vector.IsHardwareAccelerated

This property is JIT intrinsic, and the value is set by RyuJIT at runtime.

You can instantiate a generic typed Vector or use one of the two/three/four
dimensional convenience classes. For example, to create a single precision floating
point vector, you could use the following generic code:

var vectorf = new Vector<float>(11f);

To create a single precision floating point 3D vector instead, you could use this code:

var vector3d = new Vector3(0f, 1f, 2f);

Tip

A two dimensional double precision floating point vector can be a good substitute for
a Complex structure. It will give higher performance on hardware accelerated
systems. Vector2 only supports single precision floating point numbers, but you can
use the generic type to specify the real and imaginary components of the complex

www.EBooksWorld.ir

http://projectne10.org

number as a double. Complex only supports double precision floating point numbers,
but, if you don't need high precision, you could still use the Vector2 convenience
class. Unfortunately, this means that it's not simply a drop in replacement, but the
math is different anyway.

You can now use standard vector mathematics, but modifying your algorithms to take
advantage of vectors can be complex and isn't something you should typically be
doing in a web application. It can be useful for desktop applications, but, if a process
takes a long time in a web request, it's often best to run it in the background and then
it doesn't need to be as quick.

We will cover this distributed architecture approach in the next chapter. For this
reason, we won't be going into any more detail on SIMD, but you can read more on it
if you wish, now that you have a taste of it. You can read some background
information at wikipedia.org/wiki/SIMD and you can find the documentation for the
.NET implementation on MSDN at msdn.microsoft.com/en-us/library/dn858218 .
You could also take a look at the example console application, which is available for
download along with this book, as a simple starter for ten.

www.EBooksWorld.ir

http://wikipedia.org/wiki/SIMD
http://msdn.microsoft.com/en-us/library/dn858218

Parallel programming
While SIMD is good at increasing the performance of a single thread running on one
core, it doesn't work across multiple cores or processors and its applications are
limited. Modern scaling means adding more CPUs, not simply making a single thread
faster. We don't just want to parallelize our data as SIMD does; we should actually
focus more on parallelizing our processing, as this can scale better.

There are various .NET technologies available to help with parallel processing so
that you don't have to write your own threading code. Two such parallel extensions
are Parallel LINQ (PLINQ), which extends the LINQ operations you're familiar
with, and the Task Parallel Library (TPL).

www.EBooksWorld.ir

Task Parallel Library
One of the main features of the TPL is to extend loops to run in parallel. However,
you need to be careful with parallel processing, as it can actually make your software
slower while doing simple tasks. The overheads involved with marshalling the
multiple tasks can dwarf the execution of the workload for trivial operations.

For example, take the following simple for loop:

for (int i = 0; i < array.Length; i++)
{
 sum += array[i];
}

The array in the preceding for loop contains 100,000 integers, but adding integers is
one of the easiest things a CPU can do and using a for loop on an array is a very
quick way of enumerating. This accumulation will complete in under a tenth of a
millisecond on a reasonably modern machine.

You may think that you would be able to speed this up by parallelizing the operation.
Perhaps you could split the array, run the summation on two cores in parallel and add
the results.

You might use the following code to attempt this:

Parallel.For(0, array.Length, i =>
{
 Interlocked.Add(ref sum, array[i]);
});

Tip

You must use an interlocked add or you will get an incorrect summation result. If you
don't, the threads will interfere with each other, corrupting the data when writing to
the same location in memory.

However, this code actually runs over 42 times slower than the first example. The
extra overhead, complexity of running many threads, and locking the variable so that
only one thread can write to it at a time is just not worth it in this case.

Parallelization can be useful for more complex processes, especially if the body of
the loop performs some slow operation such as accessing the file system. However,
blocking I/O operations may be better dealt with by using asynchronous access.
Parallel access can cause contention, because access may eventually have to be
performed in series at some point, for example, at the hardware level.

www.EBooksWorld.ir

If we want to perform a more processor-intensive operation, such as hashing multiple
passwords, then running the tasks in parallel can be beneficial. The following code
performs a PBKDF2 hash on each password in a list and then calculates the Base64
representation of the result:

foreach (var password in passwords)
{
 var pbkdf2 = new Rfc2898DeriveBytes(password, 256, 10000);
 Convert.ToBase64String(pbkdf2.GetBytes(256));
}

We're not using the output in this example, but you may be doing this to upgrade the
security of the passwords in your database by migrating them to a more resilient key-
stretching algorithm. The input may be plaintext passwords or the output of a legacy
one-way hash function, for example MD5 or an unsalted SHA.

We can improve the speed of this on a multicore system by using the
Parallel.ForEach loop, using code such as the following:

Parallel.ForEach(passwords, password =>
{
 var pbkdf2 = new Rfc2898DeriveBytes(password, 256, 10000);
 Convert.ToBase64String(pbkdf2.GetBytes(256));
});

This will speed up the process, but by how much will depend on many factors, such
as the number of passwords in the list, the number of logical processors and the
number of CPU cores. For example, on a Core i5 CPU with two cores, but four
logical processors, having only two passwords in the list does not result in a massive
improvement (only 1.5 times quicker). With four passwords (or more) in the list, the
improvement is better (about 1.9 times quicker). There is still some overhead, so you
can't get double the speed with twice the CPU cores.

We can see the reason for this difference by looking at the CPU utilization in the task
manager during benchmarking. With only two passwords to hash, the CPU graph
looks like the following:

www.EBooksWorld.ir

In the preceding graph, we can see that initially, when hashing in series, the CPU is
running at about 25%, fully using one logical CPU. When hashing two passwords in
parallel, it uses 50%, running on two logical processors. This doesn't translate into a
twofold increase in speed due to the intrinsic overheads and the nature of hyper-
threading.

Note

Hyper-threading is a technology that typically exposes two logical processors to the
OS for each physical core. However, the two logical CPUs still share the execution
resources of their single core.

www.EBooksWorld.ir

Although there are two cores on the CPU die, hyper-threading exposes four logical
CPUs to the OS. As we only have two threads, because we are hashing two
passwords, we can only use two processors. If the threads are executed on different
cores, then the speed increase can be good. But if they are executed on processors
sharing the same core, then performance won't be as impressive. It is still better than
single-threaded hashing due to scheduling improvements, which is what hyper-
threading is designed for.

When we hash four passwords at the same time, the CPU graph looks like the
following:

www.EBooksWorld.ir

We can see that now the initial 25% usage jumps to almost full utilization and we are
making use of most of the processor. This translates to just under a doubling of the
performance as compared to hashing in sequence. There are still significant
overheads involved, but, as the main operation is now so much quicker, the tradeoff
is worth it.

www.EBooksWorld.ir

Parallel LINQ
There are other ways to take advantage of parallel programming, such as LINQ
expressions. We could rewrite the previous example as a LINQ expression and it
may look something like the following:

passwords.AsParallel().ForAll(p =>
{
 var pbkdf2 = new Rfc2898DeriveBytes(p, 256, 10000);
 Convert.ToBase64String(pbkdf2.GetBytes(256));
});

You can enable these features with the AsParallel() method. The ForAll() method
has the same purpose as the loops in previous examples and is useful if the order is
unimportant. If ordering is important, then there is an AsOrdered() method, which
can help solve this. However, this can reduce the performance gains due to the extra
processing involved.

This example performs similarly to the previous one that used a parallel loop, which
is unsurprising. We can also limit the number of operations that can occur in parallel,
using the WithDegreeOfParallelism() method as follows:

passwords.AsParallel().WithDegreeOfParallelism(2).ForAll(p =>
{
 var pbkdf2 = new Rfc2898DeriveBytes(p, 256, 10000);
 Convert.ToBase64String(pbkdf2.GetBytes(256));
});

This preceding example limits the hashes to two at a time and performs similarly to
when we only had two passwords in the list, which is to be expected. This can be
useful if you don't want to max out the CPU, because there are other important
processes running on it.

You can achieve the same effect with the TPL by setting the
MaxDegreeOfParallelism property on an instance of the ParallelOptions class.
This object can then be passed into overloaded versions of the loop methods as a
parameter, along with the main body.

Tip

It's important, when you're using parallel LINQ to query datasets, that you don't lose
sight of the best place for the query to be performed. You may speed up a query in the
application with parallelization, but the best place for the query to occur may still be
in the database, which can be even faster. To read more on this topic, refer back to
Chapter 5, Optimizing I/O Performance , and Chapter 3, Fixing Common

www.EBooksWorld.ir

Performance Problems .

www.EBooksWorld.ir

Parallel benchmarking
Let's have a look at the output of a simple .NET Core console application, which
benchmarks the techniques that we have just discussed. It shows one situation where
parallelization doesn't help and actually makes things worse. It then shows another
situation where it does help.

When calculating a sum, by accumulating 100,000 random integers between zero and
ten, the quickest way is to use an array in a simple foreach loop. Using
parallelization here makes the process much slower, and if used Naïvely, without

www.EBooksWorld.ir

locking, will give an incorrect result, which is much worse.

When performing a more computationally intensive workload, such as a PBKDF2
hashing function on multiple passwords, parallelization can help significantly. The
time is almost halved, as it is running across two cores. The final operation, which
limits the number of threads, can take a varying amount of time on different runs. This
is likely due to the threads sometimes sharing a core and sometimes running on
different cores. It can be almost as quick as using all logical cores, depending on the
work.

The CPU graph for the benchmark looks like the following:

www.EBooksWorld.ir

The initial parallel summations max out the CPU and are very inefficient. Next, the
single-threaded hashing uses only one logical processor (25%), but the other, later
hashes make almost full use of both the cores. The final hashing, limited to two
passwords at a time, only makes use of half the CPU power.

www.EBooksWorld.ir

Parallel programming limitations
Performance problems with web applications don't typically mean increasing speed
for a single user on the system in isolation. It's easy to make a web app perform when
there's only one user, but the challenge lies in maintaining that single user
performance as the number of users scales up and you have wall-to-wall requests.

The parallel programming techniques discussed in this section have limited use in
scaling web applications. You already have a parallelized system, as each user
request will be allocated its own resources. You can simply add more instances,
agents, or machines to meet demand. The problem then is in distributing work
efficiently between them and avoiding bottlenecks for shared resources. We'll cover
this more in the next chapter, but first let's look at some things that you should be
avoiding.

www.EBooksWorld.ir

Practices to avoid
We've shown some ways of speeding up software, but it's often better to illustrate
what not to do and how things can go wrong. Web applications generally perform
well if no bad practices have been followed and here we'll highlight a few things you
should watch out for.

www.EBooksWorld.ir

Reflection
Reflection is the process of programmatically inspecting your code with other code,
and digging into its internals at runtime. For example, you could inspect an assembly
when it is loaded to see what classes and interfaces it implements so that you can call
them. It is generally discouraged and should be avoided if possible. There are
usually other ways to achieve the same result that don't require reflection, although it
is occasionally useful.

Reflection is often bad for performance, and this is well-documented, but, as usual, it
depends on what you're using it for. What is new is that there are significant changes
to reflection for .NET Core. The API has changed and it is now optional. So, if you
don't use reflection, you don't have to pay the performance penalty. This allows the
native tool chain to optimize compilation better, as reflection adds restrictions to
what can be done with static linking.

There is an extra method on the reflection API now, so, whereas previously you
would have called something like myObject.GetType().GetMembers(), you now
need to call it as myObject.GetType().GetTypeInfo().GetMembers() by
inserting the new GetTypeInfo() method, which is in the System.Reflection
namespace.

If you must use reflection, then it is best not to perform it repeatedly or in a tight loop.
However, it would be fine to use it once during the startup of your application. Yet, if
you can avoid using it entirely, you can benefit from some of the new improvements
in .NET Core, for example, native compilation and the performance boost that it
brings.

www.EBooksWorld.ir

Regular expressions
A regular expression (regex) can be very useful, but can perform badly and is
typically misused in situations where another solution would be better. For example,
a regex is often used for e-mail validation when there are much more reliable ways
to do this.

If reusing a regex repeatedly, you may be better off compiling it for performance by
specifying the RegexOptions.Compiled option in the constructor. This only helps if
you're using the regex a lot and involves an initial performance penalty. So, ensure
that you check if there is actually an improvement and it isn't now slower.

The RegexOptions.IgnoreCase option can also affect performance, but it may in
fact slow things down, so always test for your inputs. Compiling has an effect on this
too and you may want to use RegexOptions.CultureInvariant in addition, to
avoid comparison issues.

Be wary of trusting user input to a regex. It is possible to get them to perform a large
amount of backtracking and use excessive resources. You shouldn't allow
unconstrained input to a regex, as they can be made to run for hours.

Regexes are often used for e-mail address validation, but this is usually a bad idea.
The only way to fully validate an e-mail address is to send an e-mail to it. You can
then have the user click a link in the e-mail to indicate that they have access to that
mailbox and have received it. E-mail addresses can vary a lot from the common ones
that people are regularly exposed to, and this is even truer with the new top-level
domains being added.

Many of the regexes for e-mail address validation found online will reject perfectly
valid e-mail addresses. If you want to assist the user, and perform some basic e-mail
address validation on a form, then all you can sensibly do is check that there is an @
symbol in it (and a . after that) so that the e-mail is in the form x@y.z. You can do
this with a simple string test and avoid the performance penalty and security risk of a
regular expression.

www.EBooksWorld.ir

String concatenation in tight loops
As strings are immutable and can't change, when you concatenate a string, a new
object is created. This can cause performance problems and issues with memory use
if you do it a lot inside a tight loop.

You may find it better to use a string builder or another approach. However, don't fret
too much about this, as it only applies at a large scale. Always test to see if it is
genuinely a problem and don't micro-optimize where you don't need to.

It's good general advice to work out where your code is spending most of its time,
and focus your optimization there. It's obviously much better to optimize code
executed millions of times inside a loop than code that only runs occasionally.

www.EBooksWorld.ir

Dynamic typing
C# is a statically typed language and variable types are checked at compile time, but
it does have some dynamic features. You can use the dynamic type and objects such
as ExpandoObject to get some of the features of a dynamically typed language. The
var type is not in fact dynamic, and is simply inferred at compile time.

Dynamic typing has a performance and safety penalty, so it is best avoided if you can
find another way to solve your problem. For example, the ViewBag in ASP.NET
MVC is dynamic, so it is best not to use ViewBag, and use a well-defined view
model instead. This has many other benefits apart from performance, such as safety
and convenience.

www.EBooksWorld.ir

Synchronous operations
Synchronous methods block execution, and should be avoided if possible, especially
if they are slow or access I/O. We've covered asynchronous (async for short)
operations in previous chapters. Understanding how to use async is important for
modern high performance programming, and new language features make it more
accessible than ever. If an async method is available, then it should generally be used
in preference to the synchronous blocking version.

The async and await keywords make asynchronous programming much easier than it
used to be, but, as covered in Chapter 3 , Fixing Common Performance Problems ,
the effects on web applications are not always visible for a lone user. These
convenient features allow you to serve more users simultaneously by returning
threads to the pool during downtime, while waiting for operations to complete. The
threads can then be used to service other users' requests, which allows you to handle
more users with less servers than otherwise.

Async methods can be useful, but the big gains come not from writing asynchronous
code, but from having an asynchronous architecture. We will cover distributed
architecture in the next chapter, when we discuss message queuing.

www.EBooksWorld.ir

Exceptions
Exceptions should, as the name suggests, be reserved for exceptional circumstances.
Exceptions are slow and expensive and shouldn't be used as flow control in business
logic if you know that an event is likely to occur.

This isn't to say that you shouldn't use exception handling–you should. However, it
should be reserved for events that are genuinely unexpected and rare. If you can
predict ahead of time that a condition may occur then you should handle it explicitly.

For example, the disk becoming full and your code not being able to write a file
because there is no space is an exceptional situation. You would not expect this to
normally happen, and you can just try the file operation and catch any exceptions.
However, if you are trying to parse a date string or access a dictionary, then you
should probably use the special TryParse() and TryGetValue() methods and
check for null values rather than just relying on exception handling.

www.EBooksWorld.ir

Summary
In this chapter, we discussed some techniques that can improve the performance of
code execution and dug into the projects that make up .NET Core and ASP.NET
Core. We explored data structures, serialization, hashing, and parallel programming
and how to benchmark for measuring relative performance.

Linear performance characteristics are easier to scale and code that does not exhibit
this behavior can be slow when the load increases. Code that has an exponential
performance characteristic or has erratic outliers (which are rare but very slow when
they occur) can cause performance headaches. It is often better to aim for code, that
while being slightly slower in normal cases is more predictable and performs
consistently over a large range of loads.

The main lesson here is to not blindly apply parallel programming and other
potentially performance-enhancing techniques. Always test to make sure that they
make a positive impact, as they can easily make things worse. We aim for the
situation where everything is awesome, but, if we're not careful, we can make
everything awful by mistake.

In the next chapter, you'll learn about caching and message queuing–two advanced
techniques that can significantly improve the performance of a system.

www.EBooksWorld.ir

Chapter 7. Learning Caching and
Message Queuing
Caching is incredibly useful and can be applied to almost all layers of an application
stack. However, it's hard to always get caching working correctly, so, in this chapter,
we will cover caching at the web, application, and database levels. We will show
you how to use a reverse proxy server to store the results of your rendered web
pages and other assets. We'll also cover caching at lower levels, using an in-memory
data store to speed up access. You will learn how to ensure that you can always flush
(or bust) your cache if you need to force the propagation of updates.

This chapter also covers asynchronous architecture design using message queuing
and abstractions that encapsulate various messaging patterns. You will learn how to
perform a long running operation (such as video encoding) in the background, while
keeping the user informed of its progress.

You will learn how to apply caching and message queuing software design patterns to
slow operations so that they don't have to be performed in real time. You'll also learn
about the complexity that these patterns can add, and understand the tradeoffs
involved. We'll see how to combat these complexities and mitigate the downsides, in
Chapter 8, The Downsides of Performance-Enhancing Tools .

The topics covered in this chapter include the following:

Web caching background
JavaScript service workers
Varnish proxy and IIS web servers
Redis and Memcached in-memory application caching
Message Queuing and messaging patterns
RabbitMQ and its various client libraries

www.EBooksWorld.ir

Why caching is hard
Caching is hard, but it's not hard because it's difficult to cache something. Caching
indefinitely is easy, the hard part is invalidating the cache when you want to make an
update. There's a well-used quote from the late Phil Karlton of Netscape that goes:

"There are only two hard things in Computer Science: cache invalidation and
naming things."

There are also many humorous variants on it, as used previously throughout this
book. This sentiment may be a slight exaggeration, but it highlights how complex
removing your "done-computer-stuff TM " from your "quick-things-box 2.0 TM " is
perceived to be. Naming things is genuinely very hard though.

Caching is the process of storing a temporary snapshot of some data. This temporary
cache can then be used instead of regenerating the original data (or retrieving it from
the canonical source) every time it is required. Doing this has obvious performance
benefits, but it makes your system more complicated and harder to conceptualize.
When you have many caches interacting, the results can appear almost random unless
you are disciplined in your approach.

When you are reasoning about caching (and message queuing), it is helpful to dispel
the idea that data only exists in a single consistent state. It is easier if you embrace
the concept that data has a freshness, and is always stale by some amount. This is in
fact always the case, but the short timeframes involved in a small system mean that
you can typically ignore it in order to simplify your thinking. However, when it
comes to caching, the timescales are longer and so, freshness is more important. A
system at scale can only be eventually consistent, and various parts of it will have a
different temporal view of the data. You need to accept that data can be in motion,
otherwise you're just not thinking four-dimensionally!

As a trivial example, consider a traditional static website. A visitor loads a page in
their browser, but this page is now instantly out-of-date. The page on the server could
have been updated just after the visitor retrieved it, but they will not know, as the old
version will remain in their browser until they refresh the page.

If we extend this example to a database-backed web application, such as an
ASP.NET or WordPress website, then the same principle applies. A user retrieves a
web page generated from data in the database, but it could be out-of-date as soon as
it is loaded. The underlying data could have changed, but the page containing the old
data remains in the browser.

www.EBooksWorld.ir

By default, web apps typically regenerate HTML from the DB for every page load,
but this is incredibly inefficient if the data has not changed. It is only done like this so
that when a change is made, it shows up immediately as soon as the page is
refreshed.

However, a user may have an old page in their browser, and you have limited control
over this. So you may as well cache this page on the server as well and only remove
it when the underlying data in the database changes. Caching the rendered HTML like
this is often essential for maintaining performance at a scale beyond simply a small
number of users.

www.EBooksWorld.ir

Web caching
The first category of caching that we'll discuss is at the web level. This involves
storing the final output of your web stack as it would be sent to users so that, when
requested again, it's ready to go and doesn't need to be regenerated. Caching at this
stage removes the need for expensive database lookups and CPU-intensive rendering
at the application layer. This reduces latency and decreases the workload on your
servers, allowing you to handle more users and serve each user rapidly.

Web caching typically occurs on your web servers or on reverse proxy servers,
which you have put in front of your web servers to shield them from excessive load.
You might also choose to hand this task over to a third party, such as a CDN. Here we
will cover two pieces of web server and proxy server software, IIS and Varnish.
However, many more web caching and load balancing technologies are available, for
example, NGINX or HAProxy.

Caching at the web layer works best for static assets and resources such as
JavaScript, CSS, and images. Yet it can also work for anonymous HTML that is
rarely updated but regularly accessed, such as a homepage or landing page, which is
unauthenticated and not customized for a user.

We touched upon proxy servers in Chapter 3, Fixing Common Performance
Problems, and covered web layer caching a little in Chapter 4, Addressing Network
Performance . However, in this chapter, we'll go into more detail on web caching.

Caching background

Before we delve into the implementation details, it helps to understand a little about
how caching works on the web. If you take the time to study the mechanisms at work,
then caching will be less confusing and less frustrating than if you just dived straight
in.

It is helpful to read and understand the relevant HTTP specifications. However, don't
assume that software always strictly adheres to these web standards even if it claims
to.

First, let's look at a typical network setup which you may be traversing with your
HTTP traffic. The following diagram illustrates an example of a common
configuration for a web application:

www.EBooksWorld.ir

As seen in the preceding diagram, the laptop and tablet users are connecting through a
caching forward proxy server (which may be on a corporate network or at an ISP).
The mobile user is connecting directly over the internet. However, all users are going
through a CDN before reaching your infrastructure.

After your firewall (not shown), there is an appliance which terminates the TLS
connections, balances the load between web servers, and acts as a caching reverse
proxy. These functions are often performed by separate devices, but we've kept things
simple here.

Copies of your resources will be kept on your web servers, your reverse proxy, your
CDN, any forward proxies, and in the browsers on all user devices. The simplest
way to control the caching behavior of these resources is to use in-band signaling and
add HTTP headers to your content, declaring cache control metadata only in a single
place.

It's good practice to apply the same standard HTTP caching techniques to your own
web servers and proxies even though you could customize them and flush their caches
at will. This not only cuts down on the amount of configuration that you have to do,
and avoids duplicated work, but it also ensures that any caches that you don't control
should behave correctly too. Even when using HTTPS, the browser will still perform
caching and there may also be transparent corporate proxies or meddling ISP captive

www.EBooksWorld.ir

portals in the way.

HTTP headers

HTTP caching involves setting cache control headers in your responses. There are
many of these headers, which have been added over the years from different
standards and various versions of the protocol. You should know how these are used,
but you should also understand how the uniqueness of a cacheable resource is
determined–for example, by varying the URL or by altering only a part of it, such as
query string parameters.

Many of these headers can be categorized by function and the version of HTTP that
they were introduced with. Some headers have multiple functions and some are non-
standard, yet are almost universally used. We won't cover all of these headers, but
we will pick out some of the most important ones.

There are broadly two types of caching header categories. The first defines an
absolute time during which the cache can be reused, without checking with the server.
The second defines rules which the client can use to test with the server if the cache
is still valid.

Most instructional headers (those that issue caching commands) fit into one of these
two header categories. In addition to these, there are many purely informational
headers, which provide details about the original connection and client, which may
otherwise be obscured by a cache (for example, the original client IP address).

Some headers, such as Cache-Control, are part of the latest standard, but others,
such as Expires, are typically used only for backwards compatibility, in case there
is an ancient browser or an old proxy server in the way. However, this practice is
becoming increasingly unnecessary as infrastructure and software is upgraded.

Note

The latest caching standard in this case is HTTP/1.1 as HTTP/2 uses the same
caching directives (RFC 7234). Some headers date from HTTP/1.0, which is
considered a legacy protocol. Very old software may only support HTTP/1.0.

Standards may not be implemented correctly in all applications. It is a sensible idea
to test that any observed behavior is as expected.

The Age header is used to indicate how long (in seconds) a resource has been in a
cache. On the other hand, the ETag header is used to specify an identifier for an
individual object or a particular unique version of that object.

www.EBooksWorld.ir

The Cache-Control header tells caches if the resource may be cached. It can have
many values including a max-age (in seconds) or no-cache and no-store
directives. The confusing, yet subtle, difference between no-cache and no-store is
that no-cache indicates that the client should check with the server before using the
resource, whereas no-store indicates that the resource shouldn't be cached at all. To
prevent caching, you should generally use no-store.

The ASP.NET Core ResponseCache action attribute sets the Cache-Control header
and is covered in Chapter 4, Addressing Network Performance. However, this
header may be ignored by some older caches. Pragma and Expires are older
headers used for backward compatibility and they perform some of the same
functions that the Cache-Control header now handles.

The X-Forwarded-* headers are used to provide more information about the original
connection to the proxy or load balancer. These are non-standard, but widely-used,
and are standardized as the combined Forwarded header (RFC 7239). The Via
header also provides some proxy information, and Front-End-Https is a non-
standard Microsoft header, which is similar to X-Forwarded-Proto. These protocol
headers are useful for telling you if the original connection used HTTPS when this is
stripped at the load balancer.

Tip

If you are terminating the TLS connections at a load balancer or proxy server, and are
also redirecting users to HTTPS at the application level, then it is important to check
the Forwarded headers. You can get stuck in an infinite redirection loop if your web
servers desire HTTPS but only receive HTTP from the load balancer. Ideally, you
should check all varieties of the headers, but, if you control the proxy, you can decide
what headers to use.

There are lots of different HTTP headers that are involved in caching. The following
list includes some of the ones that we haven't covered here. The large quantity of
headers should give you an idea of just how complicated caching can be.

If-Match

If-Modified-Since

If-None-Match

If-Range

If-Unmodified-Since

Last-Modified

Max-Forwards

Proxy-Authorization

Vary

www.EBooksWorld.ir

Cache busting

Cache busting (also known as cache bursting, cache flushing, or cache invalidation)
is the hard part of caching. It is easy to put an item in a cache, but, if you don't have a
strategy ahead of time to manage the inevitable change, then you may come unstuck.

Getting cache busting correct is usually more important with web-level caching. This
is because, with server side caching (which we'll discuss later in this chapter), you
are in full control and can reset if you get it wrong. A mistake on the web can persist
and be difficult to remedy.

In addition to setting the correct headers, it is helpful to vary the URL of resources
when their content changes. This can be done by adding a timestamp, but often a
convenient solution is to use a hash of the resource content and append this as a
parameter. Many frameworks, including ASP.NET Core, use this approach. For
example, consider the following JavaScript tag in a web page:

<script src="js/site.js"></script>

If you make a change to site.js, then the browser (or proxy) won't know that it has
altered and may use a previous version. However, it will re-request it if the output is
changed to something like the following:

<script src="js/site.js?v=EWaMeWsJBYWmL2g_KkgXZQ5nPe-
a3Ichp0LEgzXczKo">
</script>

Here the v (version) parameter is the Base64 URL encoded, SHA-256 hashed
content of the site.js file. Making a small change to the file will radically alter the
hash due to the avalanche effect.

Note

Base64 URL encoding is a variant on standard Base64 encoding. It uses different
non-alphanumeric characters (+ becomes - while / changes to _) and percent
encodes the = character (which is also made optional). Using this safe alphabet (from
RFC 4648) makes the output suitable for use in URLs and filenames.

In ASP.NET Core, you can easily use this feature by adding the asp-append-
version attribute with a value of true in your Razor views like so:

<script src="~/js/site.js" asp-append-version="true"></script>

Service workers

www.EBooksWorld.ir

If you are writing a client-side web app, rather than a simple dynamic website, then
you may wish to exert more control over caching using new browser features. You
can do this by writing your cache control instructions in JavaScript (technically
ECMAScript 6 (ES6)). This gives you many more options when it comes to a visitor
using your web app offline.

A service worker gives you greater control than the previous AppCache API. It also
opens the door to features such as mobile web app install banners (which prompt a
user to add your web app to their home screen). However, it is still a relatively new
technology.

Tip

Service workers are a new experimental technology, and as such, are currently only
supported in some recent browsers (partially in Chrome, Firefox, and Opera). You
may prefer to use the previous deprecated AppCache method (which is almost
universally supported) until adoption is more widespread.

Information on current browser support is available at
caniuse.com/#feat=serviceworkers and caniuse.com/#feat=offline-apps (for
AppCache). A more detailed service worker breakdown is available at
jakearchibald.github.io/isserviceworkerready.

A service worker can do many useful things (such as background synchronization and
push notifications), but the interesting parts, from our point of view, are the scriptable
caches, which enable offline use. It effectively acts as an in-browser proxy server
and can be used to improve the performance of a web application in addition to
allowing interaction without an internet connection (after initial installation, of
course).

Note

There are other types of web workers apart from service workers (for example,
audio workers, dedicated workers, and shared workers), but we won't go into these
here. All web workers allow you to offload work to a background task so that you
don't make the browser unresponsive (by blocking the main UI thread with your
work).

Service workers are asynchronous and rely heavily on JavaScript promises, which
we'll assume you are familiar with. If you're not, then you should read up on them, as
they're useful in many other contexts involving asynchronous and parallel scripting.

Service workers require the use of HTTPS (yet another good reason to use TLS on

www.EBooksWorld.ir

http://caniuse.com/#feat=serviceworkers
http://caniuse.com/#feat=offline-apps
http://jakearchibald.github.io/isserviceworkerready

your entire site). However, there is an exception for localhost, so you can still
develop locally.

Service worker example

To install a service worker, first create a file for it (which is served over HTTPS). In
the following example, this file is called service-worker.js. Then inside a
<script> tag on your HTML page (also served over HTTPS), add the following
JavaScript code:

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('service-worker.js', {
 scope: '/'
 });
}

The preceding code snippet first checks to see if service workers are supported, and
if they are, registers your worker. You can now fetch resources and add them to the
cache. An interesting performance enhancing use case for this is prefetching
resources (that the user may need) ahead of time and putting them in the cache. Scope
is an optional parameter and isn't strictly necessary in this case, as the file is in the
root of the domain. We've shown it only to demonstrate usage, but it may be useful to
specify this if the file was in a subfolder.

Before going any further, you should check that your worker has been installed
correctly. In Chrome, you can open the special URL chrome://inspect/#service-
workers to see any active service workers. For example, after opening instabail.uk
in one tab, you can open the service worker inspector in another; you should see
something like the following screenshot:

www.EBooksWorld.ir

http://instabail.uk

You can also visit c hrome://serviceworker-internals in Chrome to see the
status of all service workers that have been registered, even if the sites aren't still
open. For example, even after closing instabail.uk you should continue to see
something like the following screenshot:

www.EBooksWorld.ir

http://instabail.uk

You can remove service workers by clicking the Unregister button. If the service is
running, you will have Stop and Inspect buttons in place of Start. This page may be
removed or merged into the inspector in a future version of Chrome.

Tip

If you are using an older version of Chrome (earlier than 50), you may see an error
(net::ERR_FILE_EXISTS) against your service worker file in the console; but this is
fine, so don't worry. It's simply a bug in Chrome as it tries to update your service
worker, but finds that there aren't any changes.

Now you can start adding content to your service worker JavaScript file. We first
need to install the worker and cache some files, which is done with an event listener,
as shown in the following code:

self.addEventListener('install', function (event) {
 event.waitUntil(
 caches.open('cache-v01').then(function (cache) {
 return cache.addAll([
 '/',

www.EBooksWorld.ir

 '/Content/bootstrap.min.css'
]);
 })
);
});

We have named our cache cache-v01, and provided an array of resources to cache.
You would probably have more entries here and define the array outside of the
function, but we have kept things simple here for clarity.

Tip

Don't cache your homepage if it dynamically renders live content. You may also want
to use cache busting parameters for resources, as mentioned previously.

We can then add a fetch event listener to perform the magic of caching and fetching
resources.

self.addEventListener('fetch', function (event) {
 event.respondWith(
 caches.match(event.request)
 .then(function (response) {
 if (response) return response;
 var myReq = event.request.clone();
 return fetch(myReq).then(
 function (response) {
 var myResp = response.clone();
 caches.open('cache-v01')
 .then(function (cache) {
 cache.put(event.request, myResp);
 });
 return response;
 }
);
 }
)
);
});

First we check if the requested resource is in the cache and if it is, we return this.
With promises, you can chain the then functions together and fall through them. If
there is a cache miss due to the resource not being in the cache, we perform
a fetch to our server to get the resource and return this. We then add the resource to
the others by putting it in the same cache. We clone the request and response, because
they are streams and can only be consumed once.

Note

www.EBooksWorld.ir

The fetch function is the modern version of an XMLHttpRequest (XHR) and is used
to retrieve data over the network. You can't use a synchronous XHR inside of a
service worker, as they're designed to be asynchronous.

You can inspect your service worker and the caches in more detail by using the
browser developer tools (F12). On the Resources tab, select Service Workers and
you will see something like the following screenshot:

If you select Cache Storage, you will see the contents of the cache, which will look
something like the following:

www.EBooksWorld.ir

You can refresh the cache and delete items by right clicking. The Application Cache,
above Cache Storage, would show the deprecated AppCache resources. As you
navigate around, your site pages will be added to the cache (these pages should be
suitable for caching, as they won't be requested from the server after this if using our
demo code). After this, once you refresh the cache view, you should see more entries
listed, which may look something like the following screenshot:

www.EBooksWorld.ir

You can see that the cache entries are listed alphabetically and not in the order in
which they were added to the cache. These pages will now be a snapshot, fixed at the
point in time that they were retrieved. This may not be the functionality that you want!

For simplicity, the service worker that we've built here is a trivial example and you
would likely want to expand it to at least handle the case where the network fetch
fails by adding a catch statement. For example, you could serve a previously cached
offline fallback page in its place. You should also check that you're not caching error
pages from the server, so test the response status code.

You also need to carefully consider your cache invalidation strategy. Service
workers give you the tools to build this, as they don't make as many assumptions as
the HTML5 AppCache did. For example, you can now programmatically delete
entries from the cache.

We'll leave it here for client-side script controlled caching, but you may want to look
into this in more detail, especially once the specification has stabilized and browser
support is more widespread. There are many other new features now available in
JavaScript, which make async programing like this easier than it used to be. For
example, arrow functions, which are similar to LINQ lambda expressions in C#.

Web and proxy servers

www.EBooksWorld.ir

Caching from a server's point of view is intimately linked to client-side caching in
the browser. In addition to storing resources on the server, the headers that you set
will be used to control caches everywhere.

The HTTP headers that you set are used by both proxy servers and browsers,
including not only standard browsing, but also fetching from a service worker. For
example, if the Cache-Control header specifies no-store, then you won't be able
to add the resource to a cache from your worker.

IIS

Internet Information Services (IIS) is Microsoft's web server. It can be used to
serve content from your ASP.NET application or as a proxy server along with many
other things such as FTP. Although IIS does support output caching, the OutputCache
action attribute is not available in ASP.NET Core. Yet, you can use ResponseCache
to set the correct headers instead, as covered in Chapter 4, Addressing Network
Performance .

IIS can also be used as a proxy, for example, in front of the Kestrel web server on a
single machine. However, when caching for multiple web servers, you may be better
off using dedicated proxy server software such as Varnish.

Varnish

Varnish is a free reverse proxy server that runs on Unix-like operating systems such
as Linux and FreeBSD. You can install it with your package manager (for example,
apt or yum) or provision a proxy server with DevOps software such as Chef or
Puppet. To configure Varnish, you use a domain-specific language (DSL) called
Varnish Configuration Language (VCL).

Note

You can read more about Varnish at varnish-cache.org .

You shouldn't need to configure Varnish too much if you are using HTTP caching
headers correctly. You can also use the custom HTTP PURGE method to remove
entries from the cache, which works with the Squid proxy software too. You may
occasionally see a cryptic guru meditation error if Varnish is not properly
configured, but you should be able to track down the issue in the Varnish logs. It
could indicate that no healthy web servers are available.

Varnish configuration is beyond the scope of this book, but it's very well documented
on the Varnish website. If you don't want to run your own proxy server, then you
could use a CDN. You may still want your own proxy in addition to using a CDN, as

www.EBooksWorld.ir

http://varnish-cache.org

large CDNs, with many points of presence (PoP), might request the same resource
via each PoP, and not share assets across them. This can be an issue if you pay a lot
for bandwidth, although some CDNs have a feature (often called origin shielding)
that can help with this.

Working with a content delivery network

A content delivery network is commonly used in two ways–as a proxy for offloading
your content or as a hosting provider for common third party libraries and
frameworks. You can use a dynamic CDN service, such as CloudFlare or Akamai,
for the first use case, but the second situation (using a static CDN from Google or
Microsoft) is more common and that's what we'll cover here.

Although using a CDN for your libraries, such as jQuery and Twitter bootstrap, is
becoming less useful with the adoption of HTTP/2, it can still be helpful for reducing
your hosting costs. If you use a popular CDN and library, then the user may also
already have a copy. For example, if the user has been to another site that uses jQuery
from Google's CDN, then it will already be in their browser cache.

It is essential to have a fallback copy of whatever files you require from a CDN. This
is easier than ever with the Razor view engine support built into ASP.NET Core.

The following code shows how jQuery is included in the default MVC Razor layout,
for non-development environments. Both the CDN and local versions are specified
along with a test.

<script
 src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.1.4.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery">
</script>

The preceding code snippet not only renders the standard <script> tag for the
Microsoft CDN, but also adds the following inline JavaScript afterwards, which
includes the local version if the CDN load fails:

(window.jQuery || document.write(
"<script src="\/lib\/jquery\/dist\/jquery.min.js"><\/script>"));

Previously, you would have to do this manually, usually in a hurry when your CDN
went down. This new helper also works for other scripts and CSS files. For more
examples, take a look at _Layout.cshtml in the default template.

Tip

www.EBooksWorld.ir

It's important to use a secure HTTPS connection to CDN resources in order to avoid
mixed content warnings or script loading errors in browsers; most popular CDNs
now support HTTPS. For additional information on CDNs, see Chapter 4,
Addressing Network Performance .

When not to cache

There are certain situations when you shouldn't cache pages or at least you need to be
very careful in how you go about it. As a general rule of thumb, caching the rendered
output of an authorized page is a bad idea. In other words, if a user has logged into
your site, and you are serving them customized content (which could easily be
sensitive), then you need to consider caching very carefully.

If you accidentally serve one user's cached content to another, then at best, it will be
annoying, as the personalization will be incorrect. At worst, you could expose
private information to the wrong person and potentially get into legal trouble.

Note

This is similar to the general rule of not universally enabling CORS if you serve
authenticated content. It can be done successfully, but you need to understand the
mechanisms in order to configure it to work safely.

For caching, you would need a unique identifier in the URL that can't be guessed.
Some dynamic cache control systems, used by network appliances and CDNs, can
make use of cookies for this, but it's beyond normal HTTP-based cache control. It is
similar to how you might need sticky sessions on a load balancer, because your
application was not designed to be stateless.

For authenticated caching, it may be better to not cache at the web level and instead
cache at the application level and below. This allows you to cache smaller discrete
chunks rather than a whole page, which can enhance reusability.

www.EBooksWorld.ir

Application layer caching
Application level (or layer) caching means storing reusable data temporarily inside
your infrastructure, but not in the main database. This can be in the memory of your
application or web servers, but with multiple servers, this tends to be in a distributed
in-memory store such as Memcached or Redis.

You can, of course, use both in-memory stores on your web servers and a centralized
cache. However, if you have multiple web servers, then you will need a way to
synchronize the caches. You can use publish-subscribe (pub/sub) messaging for this,
which we will cover later in this chapter.

The following diagram shows a simple centralized caching setup. In a real situation,
you would probably have multiple clustered cache servers.

www.EBooksWorld.ir

The web servers can now ask the cache if the data they need is in there, before going
to the database. This reduces load on the DB and is often quicker, as the data will be
in memory if present. If there is a cache miss and the database does need to be
queried, then the result can be written to the cache for other servers to use.

Redis

Redis is a popular in-memory store that can also persist data to disk for permanent
storage. It runs best on Linux, but a version is available on Windows for development
purposes. Redis additionally supports pub/sub messaging, which can be useful for
cache invalidation. You can read more about Redis at redis.io .

You may wish to use the Windows version of Redis for local development work, but
still deploy to the supported version on Linux. You can get the Windows version at
github.com/MSOpenTech/redis or you could run the Linux version in a virtual
machine, perhaps using Docker or Vagrant.

Redis cache is provided as a service on both Azure and AWS (ElastiCache offers
both Memcached and Redis). You don't need to manage your own server, but because
the technology is not cloud-specific, you won't get locked in if you want to migrate in

www.EBooksWorld.ir

http://redis.io
http://github.com/MSOpenTech/redis

the future.

As Redis keeps the entire dataset in memory, but, is also able to persist to disk, it can
be suitable as a primary data store unlike Memcached. However, it is more
commonly used only as a cache, especially if a cloud service is used and it's paired
with a cloud database such as Azure SQL Database or AWS Relational Database
Service (RDS).

There are two recommended .NET C# clients for Redisa–ServiceStack.Redis and
StackExchange.Redis. The Stack Exchange client is used heavily on sites such as
Stack Overflow and is easier to use correctly than the the ServiceStack one. You can
read more about it at github.com/StackExchange/StackExchange.Redis and install it
via NuGet.

If using caching at the application layer, then you will probably need to write a
significant amount of custom code. You will also need to work out what format to
serialize your data into for storage in the cache. If serving directly to browsers, then
JSON could be useful. But if is to be used internally, then you may prefer a binary
format such as MS Bond or Protocol Buffers.

Tip

See Chapter 6, Understanding Code Execution and Asynchronous Operations, for
more on serialization formats and libraries.

Database result set caching

Caching at the database level is similar to application level caching, and it uses
similar infrastructure, but requires less custom code. You can use the caching features
built into an O/RM, which may make it easier to retrofit.

Note

When we talk about database caching here, we are not referring to caching within the
database engine itself. DBs use extensive performance enhancing techniques, such as
query caching, and hold lots of their data in memory. However, this is abstracted
away from the developer, and the caching we mention here refers to storing the output
of a query in an application cache. This is similar to, but subtly different from, the
previous section, where you would be storing custom objects.

In the context of O/RMs (such as NHibernate and Entity Framework), this is known
as second-level caching. First level caching generally already happens per session,
by default, and is used to help avoid things like Select N+1 problems. Second-level
caching operates at a level higher than individual transactions and allows you to

www.EBooksWorld.ir

http://github.com/StackExchange/StackExchange.Redis

share cached data across multiple database sessions over your entire application.

www.EBooksWorld.ir

Message queuing
A message queue (MQ) is an asynchronous and reliable way of moving data around
your system. It is useful for offloading work from your web application to a
background service, but can also be used to update multiple parts of your system
concurrently. For example, distributing cache invalidation data to all of your web
servers.

MQs add complexity and we will cover managing this in Chapter 8, The Downsides
of Performance-Enhancing Tools . However, they can also assist in implementing a
microservices architecture where you break up your monolith into smaller parts,
interfaced against contracts. This can make things easier to reason about within large
organizations, where different teams manage the various parts of the application. We
will discuss this in more detail in the next chapter, as queues aren't the only way of
implementing this style of architecture. For example, HTTP APIs can also be used to
do this.

www.EBooksWorld.ir

Coffee shop analogy
If using MQs, then you may need to implement extra reconciliation logic for errors
occurring in the background. This is best explained with a coffee shop analogy.

If you purchase a takeaway coffee, perhaps in a branch of a popular multinational
chain of franchised caffeinated beverage outlets (that dislikes paying tax), then your
drink is prepared asynchronously to the payment processing. Typically, you place
your order and a barista will start to prepare your coffee, before you have paid for it.
Additionally, you will normally pay before receiving your drink. There are many
things that could go wrong here, but they are rare enough for the extra cost to be
worth it, as it speeds up the ordinary workflow.

For example, you may find that you are unable to pay after placing your order, but the
coffee creation process has already begun. This would result in wasted stock, unless
there is another customer waiting whom it could be used for. Or perhaps, after you
have paid, the barista discovers that a key ingredient for your order is missing. They
could either offer you a refund, or negotiate a different drink.

Although more complex, this process is clearly superior to performing the actions in
series. If you had to demonstrate that you had the means to pay, your drink was made,
and then you completed paying, only one customer could be served at a time.
Assuming there are enough staff, payment processing and drink preparation can be
performed in parallel, which avoids a long queue of customers.

Running a coffee shop in this way makes intuitive sense and yet, in a web
application, it is common to have a relatively long running transaction complete
before informing the user of the result. In some situations, it may be better to assume
the action will succeed, inform the user of this immediately and have a process in
place in case it goes wrong.

For example, payment processing gateways can be slow and unreliable, so it may be
better to charge a user's credit card after accepting an order. However, this means
that you can no longer handle a failure by showing the user an error message. You
will have to use other methods of communication.

When you order items on Amazon, they take payment details immediately, but they
process the payment in the background and send you e-mails with the results. If the
payment failed, they would need to cancel the order fulfilment and notify you. This
requires extra logic, but is quicker than processing the payment transaction and
checking stock before confirming the order.

www.EBooksWorld.ir

Message queuing styles
There are, broadly, two styles of message queuing–with and without a central broker.
With a broker, all messages go through a hub, which manages the communication.
Examples of this style include RabbitMQ, ActiveMQ, and MS BizTalk.

There are also brokerless styles (that don't use a broker), where communication
between nodes is direct. An example of this style includes ZeroMQ (Ã˜MQ), which
has a native C# port called NetMQ.

Cloud queuing services, including Azure Service Bus, Azure Queue storage, and
AWS Simple Queue Service (SQS), are also available. However, as with all non-
generic cloud services, you should be wary of getting locked in. There are cloud
providers of standard RabbitMQ hosting, which makes migration to your own
infrastructure easier down the line if you don't initially want to run your own server.
For example, CloudAMQP offers RabbitMQ hosting on multiple cloud platforms.

RabbitMQ implements the Advanced Message Queuing Protocol (AMQP), which
helps to ensure interoperability between different MQ brokers, for example, to allow
communication with the Java Message Service (JMS). Azure Service Bus also
supports AMQP, but a big benefit of RabbitMQ is that you can install it on your
development machine for local use, without an internet connection.

There is also Microsoft Message Queuing (MSMQ), which is built into Windows.
While this is useful for communication between processes on a single machine, it can
be tricky to get it working reliably between multiple servers.

www.EBooksWorld.ir

Common messaging patterns
There are two types of common messaging patterns: point-to-point unicast and
publish-subscribe. These send messages to a single recipient and many recipients
respectively.

Unicast

Unicast is the standard message queuing approach. A message is sent from one
service process or software agent to another. The queuing framework will ensure that
this happens reliably and will provide certain guarantees about delivery.

This approach is dependable, but doesn't scale well as a system grows, because each
node would need to know about all its recipients. It would be better to loosely
couple system components together so that they don't need to have knowledge about
any of the others.

This is often achieved by using a broker, which has three main advantages:

By using a broker, you can decouple processes from each other so that they
aren't required to know about the system architecture or be alive at the same
time. They only care about the message types and the broker takes care of
routing the message to the correct destination.
Broker queues enable an easy distribution of work pattern, especially when
combining multiple producers. You can have multiple processes consuming the
same queue and the broker will allocate messages to them in a round-robin
fashion. This is a simple way of building a parallel system, without having to do
any asynchronous programming or worrying about threads. You can just run
multiple copies of your code, perhaps on separate machines if constrained by
hardware and they will run simultaneously.
You can easily broadcast or multicast a particular type of message, perhaps to
indicate that an event has occurred. Other processes that care about this event
can listen to the messages without the publisher knowing about them. This is
known as the pub/sub pattern.

Pub/sub

Pub/sub, as the name suggests, is where a software agent publishes a message onto a
queue, and other agents can subscribe to that type of message to receive it. When a
message is published, all subscribers receive it, but crucially the publisher does not
require any knowledge of the subscribers or even need to know how many there are
(or even if there are any at all).

www.EBooksWorld.ir

Pub/sub is best done with the broker style of message queuing architecture. It can be
done without a broker, but it is not particularly reliable. If your use case can tolerate
message loss, then you may be able to get away without a broker. But, if you require
guaranteed delivery, then you should use one. Using the RabbitMQ broker also
allows you to take advantage of exchanges which can perform complex routing of
messages.

If you don't want to lose messages, then you need to carefully design your pub/sub
system (even if using a broker). A published message that has no subscribers may
simply disappear into the ether without a trace and this might not be what you want.

The following diagram shows the differences between simple message forwarding,
work distribution, and pub/sub:

www.EBooksWorld.ir

Clearly, if you require a reliable broker, then it needs to be highly available.
Typically, you would cluster multiple brokers together to provide redundancy. Using
a broker also allows you to write custom rules to define which subscribers receive
what messages. For example, your payment system may only care about orders, but
your logging server may want to get all messages from all systems.

You will want to monitor not only your broker servers but also the length of the
queues. In other words, the number of messages in each queue should always be
steady and close to zero. If the number of messages in a queue is steadily growing,
this might indicate a problem which your operations team will need to resolve. It may
be that your consumers can't process messages faster than your producers are sending
them and you need to add more consumers. This could be automated and your

www.EBooksWorld.ir

monitoring software could Spin-up an extra instance to scale your system, meeting a
temporary spike in demand.

www.EBooksWorld.ir

RabbitMQ
RabbitMQ is a free and open source message queuing server. It's written in Erlang,
which is the same robust language that WhatsApp uses for its messaging backend.

RabbitMQ is currently maintained by Pivotal (whose labs also make the Pivotal
Tracker agile project management tool), but it was originally made by LShift. It was
then acquired by VMware before being spun out as a joint venture. It's distributed
under the Mozilla Public License (MPL) v1.1, an older version of the license that
the Firefox web browser uses.

The messaging server can be used from many different languages and frameworks
such as Java, Ruby, and .NET. This can make it helpful for linking diverse
applications together, for example, a Rails app that you want to interface with an
ASP.NET Core app or C# service.

Note

You can read more about RabbitMQ and download builds from rabbitmq.com .

RabbitMQ is more modern than systems such as MSMQ and includes features such as
an HTTP API and a web admin management interface. Along with HTTP and AMQP,
it also supports Simple Text Orientated Messaging Protocol (STOMP) and
MQTT, which is useful for lightweight Internet of Things (IoT) hardware
applications. All of these protocols improve interoperability with other messaging
systems and they can normally be secured using standard TLS.

The web management interface shows you how many messages are flowing through
your queues, and how they are configured. It also allows you to administer your
queues (tasks such as purging or deleting messages) and looks something like the
following screenshot:

www.EBooksWorld.ir

http://rabbitmq.com

www.EBooksWorld.ir

Queuing frameworks and libraries
You will typically want to use a prebuilt client library or framework to interact with
your message queues. There are official libraries in many different languages for the
various queuing systems, which offer low-level access. For example, RabbitMQ has
an official .NET/C# client library.

However, there are also other opinionated clients and frameworks, which offer a
higher level of abstraction for common messaging tasks. For example, NServiceBus
(NSB), which supports RabbitMQ, MSMQ, SQL Server, and Azure, is a commercial
offering.

A free alternative to NSB is MassTransit (masstransit-project.com), which is a
lightweight service bus and distributed application framework. It has also spun out
the super convenient Topshelf framework (topshelf-project.com), which makes
creating Windows services really easy. Neither yet runs on .NET Core, but support
for both of these projects is in progress.

One interesting feature of MassTransit (and NSB) is support for sagas. A saga is a
complex state machine that allows you to model the story of an entire workflow.
Rather than defining individual messages and documenting how they all fit together,
you can implicitly capture the golden path and error flows within a saga.

There is also the excellent open source library EasyNetQ, which makes
implementing pub/sub on RabbitMQ trivial. You can read about it at EasyNetQ.com .
Unfortunately, neither the official RabbitMQ client nor EasyNetQ support .NET Core
at the time of writing. However, work is in progress for the official client and
EasyNetQ has the issue logged.

The RabbitMQ team is working on a new, asynchronous official .NET client, which
will only target .NET Core and the Task Parallel Library (TPL). We covered the
TPL, which is part of the parallel extensions that also include PLINQ, in Chapter 6,
Understanding Code Execution and Asynchronous Operations .

Hopefully, by the time you read this, things will have stabilized and you will be able
to use RabbitMQ with .NET Core. Otherwise, you can use the traditional .NET
Framework, which may currently be more suitable for the enterprise style
applications that normally require message queuing.

However, you could look into using RestBus, which is a RabbitMQ library that
supports ASP.NET Core. You can read more about it at restbus.org ; it also supports
both Web API and ServiceStack.

www.EBooksWorld.ir

http://masstransit-project.com
http://topshelf-project.com
http://EasyNetQ.com
http://restbus.org

Note

Library and framework support for .NET Core and ASP.NET Core can change
rapidly, so check ANCLAFS.com for the latest information. Feel free to help out and
contribute to this list or to any of the open source projects that need porting.

www.EBooksWorld.ir

http://ANCLAFS.com

Summary
In this chapter, we have investigated the various tools and methods used for caching
and message queuing. These two techniques offer different ways of improving the
performance of your system by moving data to other locations and not having one
massive monolith do everything.

These are both advanced topics and difficult to cover in such a small space.
Hopefully, you have been introduced to some fresh ideas that can help you with
solving problems in original ways. If you have discovered a new technology that you
think will assist, you're encouraged to read the documentation and specifications for
all of the implementation details.

However, before you dive in, you should understand that advanced techniques are
complex and have downsides, which can reduce your development speed. In the next
chapter, we'll learn about these downsides and discover approaches for managing
complexity such as microservices.

www.EBooksWorld.ir

Chapter 8. The Downsides of
Performance-Enhancing Tools
A lot of the topics that we covered in this book improve performance at a cost. Your
application will become more complicated and harder to understand or reason about.
This chapter discusses these trade-offs and how to mitigate their impact.

You should implement many of the approaches that you learned so far in this book
only if you require them and not just because they are interesting or challenging. It's
often preferable to keep things simple if the existing performance is good enough.

You will learn how to make pragmatic choices about what technologies and
techniques you should use. You'll also see how to manage the complexities if you
choose to use advanced methods.

Topics covered in this chapter include the following:

Managing complexity with frameworks and architecture
Building a healthy culture to deliver high performance
Distributed debugging and performance logging
Understanding statistics and stale data

Many books and guides only focus on the positives of new tools and frameworks.
However, nothing comes for free, and there is always a penalty, which may not be
immediately obvious.

You may not feel the effects of the choices that you make, particularly in technical
architecture, for a long time. You might not discover that a decision was bad until you
try to build on it, perhaps years later.

www.EBooksWorld.ir

Managing complexity
One of the main problems with performance-enhancing techniques is that they
typically make a system more complicated. This can make a system harder to modify
and it may also reduce your productivity. Therefore, although your system runs faster,
your development is now slower.

We commonly find this complexity problem in enterprise software, although usually
for different reasons. Typically, many unnecessary layers of abstraction are used,
supposedly to keep the software flexible. Ironically, this actually makes it slower to
add new features. This may seem counterintuitive, until you realize that simplicity
makes change easier.

Note

There's a satirical enterprise edition of the popular programmer interview coding test
FizzBuzz, which is available at fizzbuzz.enterprises . It's good inspiration for how
not to do things.

If you don't need a feature yet, then it's often best to leave it out rather than building it
just in case you might need it in the future. The more code you write, the more bugs it
will have, and the harder it will be to understand. Over-engineering is a common
negative psychological trait that is easy to fall victim to if you aren't aware of it, and
marketers often exploit this.

For a non-software example, four-wheel drive SUVs are sold to people who will
never need their off-road capabilities on the false premise that it may potentially
come in useful someday. Yet the financial, safety, environmental, and parking
convenience costs outweigh this supposed benefit because it's never used.

We often term this development advice from the extreme programming (XP)
philosophy, You Aren't Going to Need It (YAGNI). Although we sometimes use
slightly different words, the meaning is the same. YAGNI advocates keeping things
simple and only building what you immediately need.

This doesn't mean that you should make your software hard to modify. It's still
important to stay flexible, just don't add features before you need them. For example,
adding an abstraction interface when there is only a single implementation may be
overkill. You could easily add it along with the second implementation if and when
you build it.

It's difficult to move fast yet not break things when doing so. How you achieve high

www.EBooksWorld.ir

http://fizzbuzz.enterprises

reliability in addition to a consistently good development speed will depend on many
things that are specific to your situation, such as your team size, organizational
structure, and company culture.

One method is to embrace change and develop a system where you can refactor your
code in confidence. Using a statically-compiled language, such as C#, is a good start,
but you should also have a comprehensive test suite to avoid regressions.

You should design a system so that it is loosely coupled, which means that you can
change parts in isolation without a lot of knock-on effects. This also makes it easier
to unit test and unit tests are invaluable to refactor in confidence and prevent
functional regressions.

We will cover testing and automation with a Continuous Integration (CI) workflow
in the next chapter. In this chapter, we will talk more about various architectural
styles that can help you maintain your application.

www.EBooksWorld.ir

Understanding complexity
When learning about new ways of doing things, you should avoid doing them without
understanding the reasons. You should know the benefits and downsides and then
measure the changes to prove that they are what you expect. Don't just blindly
implement something and assume it improves the situation. Try to avoid cargo cult
programming and always objectively evaluate a new approach.

Note

Cargo cult programming is the practice of emulating something successful but failing
to understand the reasons why it works. Its name comes from the cargo cults of the
Pacific who built false airstrips after the Second World War to encourage cargo
delivery. We use it to describe many things where correlation has been confused with
causation.

One example is a company encouraging long hours to deliver a project because they
have heard of successful projects where employees worked long hours. However,
they fail to understand that the successful project and long hours are both independent
byproducts of a highly motivated and competent workforce, and they are not directly
related.

It's important to keep code readable, not just for others on your team or new members
but also for yourself in the future (when you will forget how something works and
why you wrote it in this way). This doesn't simply mean writing helpful explanatory
comments in the code, although this is a very good practice. It also applies to source
control comments and keeping documentation up to date.

Readability also involves keeping things simple by only making them as complex as
they need to be and not hiding functionality in unnecessary layers of abstraction. For
example, not using clever programming techniques to reduce the file line-count when
a standard structure (for example, a loop or if statement) would be more readable
and only slightly longer.

It helps to have a standard way of doing things in your team to avoid surprises. Using
the same method everywhere can be more valuable than finding a better way of doing
it, and then having lots of different ways. If there is consensus, then you can go back
and retrofit the better method everywhere where you need it.

www.EBooksWorld.ir

Complexity reduction
There are various solutions to manage the complexity that performance-enhancing
techniques can add. These usually work by reducing the amount of logic that you need
to think about at any one time by hiding the complications.

One option is to use frameworks that standardize how you write your application,
which can make it easier to reason about. Another approach is to use an architecture
that allows you to only think about small parts of your code base in isolation. By
breaking up a complex app into manageable chunks, it becomes easier to work with.

Note

This idea of modularity is related to the Single Responsibility Principle (SRP),
which is the first of the SOLID principles (the others are Open/Closed, Liskov
substitution, Interface segregation, and Dependency inversion). It is also similar to
the higher level Separation of Concerns (SoC) and to the simplicity of the Unix
philosophy. It is better to have many tools that each do one thing well, rather than one
tool that does many things badly.

Frameworks

Frontend frameworks, such as React (created at Facebook), are designed to reliably
build web application views in JavaScript. These help large teams work on a project
by simplifying the data flow and standardizing the approach.

Tip

React can be integrated with ASP.NET Core using the ReactJS.NET project
(reactjs.net). We can use React Native to build cross-platform apps that share code
across iOS, Android, and the Universal Windows Platform (UWP), targeting phone,
desktop, and Xbox (github.com/ReactWindows). There's also CodePush to let you
live update your JavaScript apps (including Cordova), without going through an app
store (microsoft.github.io/code-push). If you prefer coding in C#, then you can build
your cross-platform mobile apps with Xamarin (which is now free after Microsoft
acquired it). However, we won't go further into any of these technologies in this
book.

On the backend, we have the server-side frameworks of .NET Core and ASP.NET
Core. Along with C# features, these provide convenient ways of simplifying
historically-complicated features. For example, the async and await keywords hide
a lot of the complicated logic associated with asynchronous programming, and
lambda functions concisely express intent.

www.EBooksWorld.ir

http://reactjs.net
http://github.com/ReactWindows
http://microsoft.github.io/code-push

We covered many of these features earlier in this book, so we won't go over them
again here. We also highlighted libraries that can make your life easier by hiding
boilerplate code for complex operations, for example, EasyNetQ and RestBus.

Note

Hiding a complex process is never perfect, and you will occasionally come across
abstractions that leak some of their implementation detail. For example, when
handling exceptions, you may find that the issue you're interested in is now wrapped
in an aggregate exception. If you're not careful, then your error logs may no longer
contain the detail that you desire.

What we have yet to talk about in detail is the architecture of a web application.
Splitting a monolithic system up into discrete parts can not only improve
performance, but if done right, it can also make it easier to maintain.

Architecture

In the previous chapter, when discussing message queuing, we briefly covered the
microservices architecture. This style is a more modern reimagining of the traditional
Service Oriented Architecture (SOA), and although using reliable MQ
communication is preferred, we can also perform this with representational state
transfer (RESTful) HTTP APIs.

Typically, we build a traditional web app as a single application or monolith. This is
common if the app has grown organically over an extended period of time, and this is
a perfectly acceptable practice. It's a poor decision to over-engineer too early before
there is any need, which may never materialize.

Excessive popularity is a nice problem to have, but don't optimize for this
prematurely. This isn't an excuse to make things unnecessarily slow, so be sure to
understand the tradeoffs involved.

Tip

Using a monolithic architecture is not an excuse to build something badly, and you
should plan for expansion, even if you do not implement it immediately. You can keep
things simple while still allowing for future growth.

Although the application is a single unit, you should split the code base into well-
organized modules, which are linked together in a simple, logical, and easy-to-
understand way. Refer to the SOLID principles, mentioned previously.

If a monolithic application can't easily scale to meet user demand and is performing

www.EBooksWorld.ir

poorly as a result, then you can split it up into smaller separate services. You may
also wish to split an app up if it has become too cumbersome to iterate on quickly
and development speed has slowed.

Monolith versus microservices

The following diagram shows some differences between a typical monolith and a
microservices architecture:

www.EBooksWorld.ir

Here, the user makes a request to an application running on a web farm. We have
omitted firewalls, load balancers, and databases for clarity, but multiple web servers
are shown to illustrate that the same codebase runs on multiple machines.

In the initial monolith architecture, the user communicates directly with a single web
server. This is ideally per request/response pair. However, if the application was
poorly designed and holds state in memory, then sticky sessions may cause the load
to pool on certain servers.

The second example in the diagram of a microservices architecture is obviously

www.EBooksWorld.ir

more complicated but also more flexible. The user again sends a request to a web
server, but instead of doing all of the work, the server puts a message into a queue.

The work in this queue is distributed between multiple backend services of which the
first one is busy, so a second service picks up the message. When the service
completes, it sends a message to an exchange on the message broker, which uses a
pub/sub broadcast to inform all of the web servers.

One added piece of complexity is that the architecture should have already sent the
response to the user's original web request, so you need to consider the user
experience (UX) more carefully. For example, you can display a progress indicator
and update the status of this with an asynchronous WebSocket connection.

Architecture comparison

The monolith approach is simple, and you can just add more web servers to handle
additional users. However, this approach can become cumbersome as an application
(and development team) grows larger because the slightest change requires a full
redeployment to each web server.

In addition, a monolith is easy to scale vertically (up) but hard to scale horizontally
(out), which we covered previously. However, a monolith is easier to debug, so you
need to be careful and have good monitoring and logging. You don't want any random
outage investigation to turn into a murder mystery hunt because of unnecessarily
implemented microservices.

Note

Historically, Facebook had a deployment process that consisted of slowly compiling
their PHP code base to a gigantic gigabyte-scale binary (for runtime performance
reasons). They then needed to develop a modified version of BitTorrent to efficiently
distribute this huge executable to all of their web servers. Although this was
impressive infrastructure engineering, it didn't address the root cause of their
technical debt problem, and they have since moved on to better solutions, such as the
HipHop Virtual Machine (HHVM), which is similar to the .NET CLR.

If you wish to practice continuous delivery and deploy multiple times a week (or
even many times a day), then it's advantageous to break your web application up. You
can then maintain and deploy each part separately, communicating with each other
using messages against an agreed API.

This separation can also help you use agile development methodologies–for example,
using many smaller teams—€”rather than big teams because smaller teams perform

www.EBooksWorld.ir

better.

Your instrument of control to scale a monolith is very crude, as all work is done in
one place. You can't scale parts of your app independently to the other components.
You can only scale the whole thing even if the high load is concentrated in a small
part. This is analogous to a central bank only having control of a single interest rate
as a lever, which affects many things at once. If your app is distributed, then you only
need to scale the part that requires it, avoiding over provisioning and reducing costs.

A well-used (and often rephrased) quote from Abraham Maslow goes:

"I suppose it is tempting, if the only tool you have is a hammer, to treat
everything as if it were a nail."

This is known as the law of the instrument and is related to the confirmation bias. If
you only have one tool, then you are likely to use this tool for everything and only see
things that support your existing ideas. This commonly applies to tools and
frameworks, but it can also apply to scaling techniques.

The first step towards modularity may be to split a big web application into many
smaller web apps so that you can deploy them separately. This strategy can have
some benefits, but it also has many limitations. Some logic may be unsuitable to host
in a web app, for example, long-running processes, such as those monitoring a
filesystem or used to manipulate media.

You may also find that you need to duplicate code that was shared in the original
monolith. If you adhere to the Don't Repeat Yourself (DRY) doctrine, then you might
extract this functionality to a library. Yet, now you have dependencies and versioning
to manage. You'll also need processes to build, package and host your library in a
private repository, all of which can slow down development and reduce your agility.

Note

Sometimes, we also refer to DRY as Duplication Is Evil (DIE), and this is the
sensible idea that an implementation should only occur in a unique location. If other
code requires this functionality, then it should call the original function and not have
copied code pasted in. This means that you only need to make a change in a single
place to apply it everywhere.

A more advanced approach is to extract functionality into a separate service, which
can handle many different web applications. If designed correctly, then this service
won't need to have any knowledge of these apps and will simply respond to
messages. This allows you to add a new web app without making changes to the code

www.EBooksWorld.ir

of other applications or services.

Refactoring

Refactoring a monolith into services can be tricky if the application has become a
tightly-coupled big-ball-of-mud, but if it's been well-built (with plenty of test
coverage and loosely-coupled code), then it shouldn't be too taxing. There's a big
difference between a well-built monolith and a big-ball-of-mud made with little
thought.

It's worth expanding on test coverage, as unit tests are essential for successful
refactoring without introducing regressions or new bugs. Unit tests allow you to
refactor and tidy up in confidence, and they prevent the creation of code that is
fragile, which developers are afraid to touch. We will cover testing in greater detail,
including automation, in Chapter 9, Monitoring Performance Regressions .

Both of these design patterns may appear superficially similar, but internally, it's a
different story. The following diagram illustrates the differences between a well-
architected monolith and a messy big-ball-of-mud:

www.EBooksWorld.ir

The large boxes represent the code running on each web server (the Web Server
N boxes from the monolith example in the earlier diagram). From the outside, they
look the same, but the difference is in the internal coupling of the code.

The big-ball-of-mud is a tangled mess with code referencing other functions
throughout the application. The monolith is well-structured with a clear separation of
concerns between different modules.

Changes to code in the big-ball-of-mud can have unexpected side effects because
other parts of it may rely on the implementation details of what you are modifying.
This makes it brittle, difficult to alter, and developers may be afraid of touching it.

www.EBooksWorld.ir

The well-built monolith is easy to refactor and split out into separate services
because the code is neatly-organized. It uses abstract interfaces to communicate
between modules, and code doesn't reach into another class's concrete
implementation details. It also has excellent unit test coverage, which runs
automatically.

Although both are a single code base, the quality of the monolith is much higher
because it is well-distributed internally. Good design is important for future-
proofing, as we build in and allow for expansion. The monolith hasn't been split up
too early (before scaling was required), but the design makes this easy to do later. In
contrast, the big-ball-of-mud has accumulated a large amount of technical debt, which
it needs to pay off before we can make any further progress.

Tip

Technical debt (or tech debt for short) is the concept of not finishing a job or cutting
corners, which could lead to more difficulties until it is paid back. For example,
failing to properly document a system will make altering it later more difficult.

Tech debt is not necessarily a bad thing if it is deliberately taken on in full
knowledge, logged, and paid back later. For example, waiting to write documentation
until after a release can speed up delivery. However, tech debt that is not paid back
or is accumulated without knowledge (simply due to sloppy coding), will get worse
over time and cause bigger issues later.

The best way to deliver a high-quality and flexible application (that's easy to
refactor) is to have a competent and conscientious development team. However,
these attributes can often be more about culture, communication, and motivation than
simply skill or raw talent. Although this isn't a book about team management, having
a healthy culture is very important, so we'll cover a little of this here. Everyone in an
operations and software development department can help create a positive and
friendly culture, even if you usually need buy-in from higher up as well.

Tip

Tools are also very useful in refactoring and testing. We covered the Visual Studio
IDE and ReSharper plugin previously, but there are many more tools for testing. We
will cover more testing tools, including automation, in Chapter 9, Monitoring
Performance Regressions .

www.EBooksWorld.ir

A culture of high performance
If you want to achieve high performance, then it's important to foster a company
culture that encourages this and recognizes performance as vital. Culture can't just
come from the bottom up only involving engineers, it also needs to come from the
top-down and management must buy in to the performance prerogative.

Note

This section is not very technical, so feel free to skip it if you don't care about
management or the human side of software development.

www.EBooksWorld.ir

A blameless culture
The most important attributes of a high-performance culture are that it should be open
and blameless. Everyone needs to be focused on achieving the best possible
outcomes through measuring and learning. Attributing fault to individuals is toxic to
delivering great software, and this is not only the case when it comes to performance.

If something goes wrong, then it is a process problem and the focus should be on
improving it and preventing repeat mistakes in the future, for example, by automating
it. This is similar to how safety-critical industries, such as air travel, behave because
they recognize that blaming people discourages them from raising issues early before
a disaster occurs.

A related philosophy is the Japanese process of Kaizen, which encourages
continuous improvement by everyone. The car manufacturer Toyota pioneered Kaizen
practices to improve the efficiency of their production line, and most automotive
companies and many other different industries have since adopted them.

Some industries also have processes to encourage whistle-blowing that protect the
individuals raising concerns. However, if this is required in web application
development, then it's a sure sign that the culture needs work. Developers should feel
that they are able to directly raise concerns bypassing their line manager without
consequence. If everyone's opinion is respected, then this shouldn't even be
necessary.

www.EBooksWorld.ir

Intellectual dishonesty
If team members get defensive when ideas are challenged, then this is a sign that
things may not be working well. Everybody makes mistakes and has gaps in their
knowledge, a truth the best engineers embrace. You should strive for a culture where
everyone is open to new ideas and is always asking questions.

If people are unable to accept constructive criticism and have their ideas challenged,
then they may lack confidence and be covering up a lack of competence. Experienced
developers know that you never stop learning, they admit their ignorance and are
always open to offers of improvements.

Being closed to suggestions alters the behavior of others, and they will stop raising
small issues early. This results in open secrets about poor quality, and the first that is
known about a problem is at release time, at which point everything is much worse
(or on fire).

This is not an excuse to be nasty to people, so always try to be nice and gently
explain the reasons behind your criticism. It's easy to find fault in anything, so always
propose an alternative approach. If you are patient, then a reasonable person will be
grateful for the learning opportunity and appreciate gaining experience.

A good rule to follow is "don't be a jerk" and treat others as you would like to be
treated, so be kind and think about how you would feel if the situation was reversed.
Just remember that being nice is not always compatible with doing the right thing.

A little self-deprecation can go a long way to making you more approachable, rather
than simply dictating the one-true-way. However, you should make it clear when
something is a joke or tongue in cheek, especially when dealing with cultures that are
more direct or when communicating textually.

For example, North Americans are often less subtle than and not as sarcastic as the
British (who also spell some word differently, and some would say more correctly).
Obviously, use your own judgment because this may be terrible advice and could
cause offense or, even worse, a full-on diplomatic incident. Hopefully, it is self-
evident that this whole paragraph is tongue in cheek.

People who have integrity and confidence in their ideas can afford to be modest and
self-deprecating, but internal company culture can influence this too. A particularly
bad practice is to conduct performance reviews by laddering (also known as stack
ranking), which involves putting everyone in order, relative to everybody else. This
is toxic because it rewards people who focus more on marketing themselves than

www.EBooksWorld.ir

those who recognize the deficiencies in their technical skills and try to improve them.
In the pathological case, all of the best people are forced out, and you end up with a
company full of sociopathic sharp suits, who are technically illiterate or even
morally bankrupt.

www.EBooksWorld.ir

Slow down to go faster
Sometimes, the company must allow the development team to slow down on feature
delivery in order to focus on performance and resolving technical debt. They should
be given time to be thoughtful about design decisions so that they can cogitate
avoiding premature generalization or careless optimization.

Performance is a significant selling point of software, and it is much easier to build
quality throughout the development process than in a polishing phase at the end.
There is a significant body of evidence that suggests that good performance improves
Return on Investment (RoI) and creates customers. This is especially true on the
web, where poor performance decreases conversion rate and search engine ranking.

Having a healthy culture is not only important for the runtime performance of your
software but also for the speed at which you can develop it. The team should be
encouraged to behave rigorously and write precise, but also concise, code.

You get what you measure, and if you only measure the rate of feature delivery, or
even worse simply Lines of Code (LoC) written, then quality will suffer. This will
hurt you in the long run and is a false economy.

False economies are when you make short term cost saving measures that actually
lose you more money in the long term. Examples of this are skimping on hardware for
developers or interrupting someone in the middle of coding with something trivial,
which could easily wait until later, and forcing them to switch contexts.

Another nonsoftware example is a shortsighted government making cuts to investment
in research by sacrificing long-term growth for short-term gain, possibly due to the
lack of any long-term economic plan.

Note

Hardware is significantly cheaper than developer time. Therefore, if everyone on
your team doesn't have a beefy box and multiple massive monitors, then productivity
is being needlessly diminished. Even over a decade ago, Facebook's software
developer job adverts listed dual 24-inch widescreen monitors as a perk.

www.EBooksWorld.ir

From the ground up
In a healthy and progressive culture, it can be tempting to rewrite poor quality
software from scratch, perhaps in the latest trendy framework, but this is usually a
mistake. Released software is battle-hardened (no matter how badly it was built),
and if you rewrite it, then you will probably make the same mistakes again, for
example, re-implementing bugs that you already patched. This is especially true if the
software was not built with good unit test coverage, which can help prevent
regressions.

The only case where you could reasonably rewrite an application from the ground up
is if you had deliberately made a prototype to explore the problem space with the
sole intention of throwing it away. However, you should be very careful because if
you've actually built a Minimum Viable Product (MVP) instead, then these have a
habit of sticking around for a long time and forming the foundations of larger
applications.

A better approach to a full rewrite is to add tests to the application (if it doesn't
already have them) and gradually refactor it to improve the quality and performance.
If you built an application in such a way as to make it difficult to unit test, then you
can start with User Interface (UI) tests, perhaps using a headless web browser. We
will cover testing more, including performance testing, in the next chapter.

www.EBooksWorld.ir

Shared values
Culture is really just a set of shared values–things such as openness, sustainability,
inclusivity, diversity, and ethical behavior. It can help having these values formally
documented so that everyone knows what you stand for.

You may have a progressive open salary policy so that others can't use secret earning
information as a tool to pay people less. However, this would need to apply
universally, as it's unhealthy to have multiple conflicting cultures because this can
precipitate an us-versus-them attitude.

There's plenty more to say about culture, but, as you can see, there are many
competing concerns to balance. The most important idea is to make intentional and
thoughtful tradeoffs. There isn't one correct choice, but you should always be
conscious of the consequences and appreciate how tiny actions can alter team
performance.

www.EBooksWorld.ir

The price of performance
Developers should have an idea of the available budget for performance and
understand the cost of the code that they write, not just in execution throughput but in
readability, maintainability, and power efficiency. Throwing more cores at a unit of
work is not nearly as good as refactoring it to be simpler.

Efficiency has become increasingly important, especially with the rise of mobile
devices and cloud computing time-based usage billing. Parallelizing an inefficient
algorithm may solve a performance problem in the time domain, but it's a crude
brute-force approach and altering the underlying implementation may be better.

Less is often more and sometimes doing nothing is the best approach. Software
engineering is not only about knowing what to build but what not to build. Keeping
things simple helps others on your team use your work. You should aim to avoid
surprising anyone with nonobvious behavior. For example, consider that you build an
API and then give it conventional defaults; if this could potentially take a long time,
then make the methods asynchronous to indicate this fact.

You should aim to make it easy to succeed and hard to fail when building on your
code. Make it difficult to do the wrong thing, for example, if a method is unsafe, name
it to document this fact. Being a competent programmer is only a small part of being a
good developer, you also need to be helpful and proficient at communicating clearly.

In fact, being an expert programmer can be a downside if you don't deliberately keep
things simple to aid the understanding of others on your team. You should always
balance performance improvements against the side effects, and you shouldn't make
them at the expense of future development efficiency without good reason.

www.EBooksWorld.ir

Distributed debugging
Distributed systems can make it difficult to debug problems, and you need to plan for
this in advance by integrating technology that can help with visibility. You should
know what metrics you want to measure and what parameters are important to
record.

As you run a web application, it isn't a case of deploy and forget as it might be with
mobile apps or desktop software. You will need to keep a constant automated eye on
your application to ensure that it is always available. If you monitor the correct
performance metrics, then you can get early warning signs of problems and can take
preventative action. If you only measure uptime or responsiveness, then the first that
you may know of a problem is an outage notification, probably at an unsociable hour.

You may outsource your infrastructure to a cloud-hosting company so that you don't
have to worry about hardware or platform failures. However, this doesn't completely
absolve you of responsibility and your software will still need continuous
monitoring. You may need to architect your application differently to work in
harmony with your hosting platform and scale or self-heal when issues arise.

If you design your system correctly, then your web application will run itself, and
you'll rarely get notified of actions that require your attention. If you can successfully
automate all of the things, rather than babysitting a live deployment, then that's more
time you can use to build the future.

In a distributed architecture, you can't simply attach a debugger to the live web
server, not that this is a good idea even when possible. There is no live server
anymore, there are now many live servers and even more processes. To get a holistic
picture of the system, you will need to simultaneously examine the state of multiple
modules.

There are many tools that you can use to help with centralizing your debug
information. You can retrofit some of them. However, to get the most out of them, you
should decide what to measure upfront and build telemetry capabilities into your
software from the start.

www.EBooksWorld.ir

Logging
Logging is vital to a high-performance application, so while it is true that logging
adds some overhead and can slow down execution, omitting it would be short-
sighted and a false economy. Without logging, you won't know what is slow and
requires improvement. You will also have other concerns, such as reliability, for
which logging is essential.

Error logging

You may have used (or at least be familiar with) the excellent ASP.NET package
called Error Logging Modules and Handlers (ELMAH) to catch unhandled
exceptions (elmah.github.io). ELMAH is great for already existing applications, as
you can drop it into a live running web app. However, it's preferable to have error
logging built into your software from the start.

Unfortunately, ASP.NET Core does not support ELMAH, but there is a similar
package called Error Logging Middleware (ELM). Adding this to your web
application is just as simple as installing Glimpse, but it is really just a prototype and
doesn't have all the features of ELMAH. First, add the
Microsoft.AspNetCore.Diagnostics.Elm NuGet package to your project, as
shown in the following image:

www.EBooksWorld.ir

http://elmah.github.io

Then, in the ConfigureServices method of the Startup class, add the following
line of code:

services.AddElm();

You also need to add the following lines to the Configure method of the same class:

app.UseElmPage();
app.UseElmCapture();

Tip

To start with, you may want to put these in the env.IsDevelopment() if statement
so that they are only active on your workstation. If you use ELM on production, then
these logs will definitely need securing.

You can now visit the /Elm path of your web application in your browser to see the
logs, as shown in the following image. Use the search box to filter results, click on v
at the end of each line (not shown) to expand the entry's details, and click on ^ to
collapse it again:

www.EBooksWorld.ir

Note

When using ELM, ELMAH, or even the default error pages, you should be careful to
not show detailed exceptions or stack traces to real users. This isn't simply because
they're unfriendly and unhelpful, they are a genuine security concern. Error logs and
stack traces can reveal the internal workings of your application, which malicious
actors can exploit.

ELM is fairly basic, but it can still be useful. However, there are better solutions
already built into the default templates–things, such as the integrated support for

www.EBooksWorld.ir

logging and Application Insights.

Application Insights

Application Insights allows you to monitor the performance of your application and
view requests or exceptions. You can use it with Azure, but it will also work locally
without needing an Azure account. You can easily enable Application Insights by
keeping the relevant checkbox ticked, as shown in the following image, when you
create a new ASP.NET Core web application project in Visual Studio, and you don't
need to sign in to Azure to do this:

Tip

The Application Insights template option is only available under the Web templates
not the .NET Core templates.

Build and run the new project, then open the Application Insights Search window to
see the output. Navigate around the web app in your browser, and you will see
records start to appear, which should look something like the following:

www.EBooksWorld.ir

Tip

If you don't see any records in the output, then you may need to update the NuGet
package (Microsoft.ApplicationInsights.AspNetCore) or click on the Search
icon.

You can filter by event type, for example, requests or exceptions, and there are more
detailed filters to refine your search. You can select an individual record to see more
details, which will look something like the following:

www.EBooksWorld.ir

Although you can access this information locally without Azure, you can choose to
select Configure Application Insights and set up logging of data to your Azure
account.

www.EBooksWorld.ir

If you know what you're doing, then you can use Advanced Mode and enter your
Subscription ID and Instrumentation Key manually:

Note

Secret configuration information, such as this, is now stored outside of the source
tree to help prevent it leaking. You can now define secrets as environment variables
or in a secrets store held in your user profile.

Once you set up Azure, then you can view the telemetry results online and aggregate
information from many diverse systems. We don't have space to cover this in more
detail here, but you can find more information online at azure.microsoft.com/en-
us/documentation/services/application-insights .

Integrated logging

Logging is now built into ASP.NET Core (in the Microsoft.Extensions.Logging
package) as well as Dependency Injection (DI), and both are included in the default
templates. This reduces the barrier to entry, and it's now trivial to use these helpful

www.EBooksWorld.ir

http://azure.microsoft.com/en-us/documentation/services/application-insights

technologies in even the smallest of projects.

Previously, you would have to add logging and DI libraries before you started, which
could put many people off using them. If you didn't already have a standard choice for
both, then you would need to wade through the plethora of projects and research the
merits of each.

Tip

You can still use your preferred libraries if you are already acquainted with them. It's
just that there are now sensible defaults, which you can override.

Logging is configured in the Startup class, and if you use the standard web
application template, then this will already be included for you. The logger factory
reads settings from the appsettings.json file. In here, you can configure the
logging level, and by default, the relevant section looks like the following:

"Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
}

This sets a very chatty log level, which is useful for development, but you will
probably want to only log warnings, and errors when you run this in production.

Note

Along with Application Insights and logging, useful debugging tools included by
default in the Startup class include a developer exception page, which is like an
advanced version of the old Yellow Screen Of Death (YSOD) ASP.NET error page.
Also included is a database error page, which can helpfully apply EF migrations and
mitigates a common pitfall of previous EF code-first migration deployments.

To add the logger to your MVC home controller via constructor injection, you can use
the following code (after adding using Microsoft.Extensions.Logging; to your
using statements at the top of the file):

private readonly ILogger Logger;
public HomeController(ILoggerFactory loggerFactory)
{
 Logger = loggerFactory.CreateLogger<HomeController>();
}

www.EBooksWorld.ir

After this, you can use Logger to log events inside action methods, as follows:

Logger.LogDebug("Home page loaded");

There are many more logging levels available and overloaded methods so that you
can log additional information, for example, exceptions. We won't go into any more
detail here, but you don't simply have to log text events, you can also record
execution times (perhaps with a stopwatch) or increment counters to see how often
certain events occur. Next, we'll see how to view these numbers centrally and read
them correctly.

Note

For more examples of how to use logging, you can examine the default account
controller (if you included individual user accounts authentication in the template).
For more information, you can read the documentation at
docs.asp.net/en/latest/fundamentals/logging.html .

Centralized logging

Logging is great. However, in a distributed system, you will want to feed all of your
logs and exceptions into a single location, where you can easily analyze them and
generate alerts. One potential option for this is Logstash (
elastic.co/products/logstash), which we fleetingly mentioned in Chapter 2,
Measuring Performance Bottlenecks .

If you prefer a more modular approach and want to record performance counters and
metrics, then there is StatsD, which listens for UDP packets and pushes to Graphite
for storage and graphing. You can get it at github.com/etsy/statsd and there are a few
.NET clients listed on the wiki, along with example C# code in the main repository.

You may wish to use message queuing for logging so that you can quickly put a
logged event into a queue and forget about it, rather than directly hitting a logging
server. If you directly call an API (and aren't using UDP), then make sure that it's
asynchronous and nonblocking. You don't want to slow down your application by
logging inefficiently.

There are also cloud options available, although the usual caveats about lock-in
apply. AWS has CloudWatch, which you can read more about at
aws.amazon.com/cloudwatch . Azure Diagnostics is similar, and you can integrate it
with Application Insights, read more at azure.microsoft.com/en-
us/documentation/articles/azure-diagnostics .

There are other cross-platform cloud services available, such as New Relic or

www.EBooksWorld.ir

http://docs.asp.net/en/latest/fundamentals/logging.html
http://elastic.co/products/logstash
http://github.com/etsy/statsd
http://aws.amazon.com/cloudwatch
http://azure.microsoft.com/en-us/documentation/articles/azure-diagnostics

Stackify, but these can be quite expensive, and you may wish to keep your logging
within your own infrastructure. You could shoehorn the data into analytics software,
such as Google Analytics or the privacy-focused Piwik (which is open source and
can be self-hosted), but these are less suitable because they're designed for a slightly
different purpose.

www.EBooksWorld.ir

Statistics
When interpreting your collected metrics, it helps to know some basic statistics in
order to read them correctly. Taking a simple mean average can mislead you and may
not be as important as some other characteristics.

When instrumenting your code to collect metadata, you should have a rough idea of
how often particular logging statements will be called. This doesn't have to be exact,
and a rough order of magnitude approximation (or Fermi estimate) will usually
suffice.

The question you should try to answer is how much of the data should be collected,
all of it or a random sample? If you need to perform sampling, then you should
calculate how big the sample size should be. We covered sampling in relation to SQL
in Chapter 5 , Optimizing I/O Performance , and the idea is similar here.
Performance statistics require the same level of rigor as benchmarking does, and you
can easily be misled or draw incorrect conclusions.

StatsD includes built-in support for sampling, but there are many other approaches
available if you want to investigate them. For example, online streaming algorithms
and reservoirs are two options. The important thing to keep in mind for performance
is to use a fast random number generator (RNG). As, for sampling, this doesn't
need to be cryptographically secure, a pseudorandom number generator (PRNG)
is fine. In .NET, you can use new Random() for a PRNG, rather than the more secure
option of RandomNumberGenerator.Create(). See Chapter 6, Understanding
Code Execution and Asynchronous Operations , for more examples of how to use
both of these.

When looking at your results, the outliers may be more interesting than the average.
Although the median is more valuable than the mean, in this case, you should really
look at the percentiles, for example, the 90th, 95th, and 99th percentiles. These data
points can represent only a small fraction of your data, but at scale, they can occur
frequently. You want to optimize for these worst case scenarios because if your users
experience pages loads taking over five seconds ten percent of the time (even though
the average looks fast), then they may go elsewhere.

There's much more to say on statistics, but beyond the basics, there are diminishing
returns. If your math is rusty, then it is probably wise to have a refresher (Wikipedia
is great for this). Then, you can explore some more advanced techniques, for
example, the high-performance HyperLogLog (HLL) algorithm, which can estimate
the size of a large set of elements using very little memory. Redis supports the HLL

www.EBooksWorld.ir

data structure (with the PFADD, PFCOUNT, and PFMERGE commands). For more on
different data structures, refer to Chapter 6, Understanding Code Execution and
Asynchronous Operations.

Note

This is only a brief introduction to performance logging, but there is much more for
you to explore. For example, if you want to standardize your approach, then you can
look into APDEX (apdex.org), which sets a standard method to record the
performance of applications and compute scores.

www.EBooksWorld.ir

http://apdex.org

Managing stale caches
It's worth providing a quick reminder to still consider simple issues after all of this
complexity. It is far too easy to get lost in the details of a complicated bug or
performance tweak and miss the obvious.

Tip

A good technique to help with this is rubber duck debugging, which gets its name
from the process of explaining your problem to a rubber duck on your desk. Most of
us have experienced solving a problem after asking for help, even though the other
person hasn't said anything. The process of explaining the problem to someone (or
something) else clarifies it, and the solution becomes obvious.

If something appears to not be working after a fix, then check simple things first. See
whether the patch has actually been delivered and deployed. You may be seeing stale
code from a cache instead of your new version.

When managing caches, versioning is a useful tool to help you identify stale assets.
You can alter filenames or add comments to include a unique version string. This can
be Sematic Versioning (SemVer), an ISO date and timestamp, or a hash of the
contents. For more on cache busting, refer to Chapter 7, Learning Caching and
Message Queuing .

Note

SemVer, is a great way to version your code because it implicitly captures
information on compatibility and breaking changes. You can read more about SemVer
at semver.org .

www.EBooksWorld.ir

http://semver.org

Summary
In this chapter, we saw how there are always downsides to every decision and every
choice has a cost attached because nothing comes for free. There are always
tradeoffs involved, and you need to be aware of the consequences of your actions,
which may be small and subtle.

The key lesson is to take a thoughtful and rigorous approach to adding any
performance-enhancing technique. Measurement is crucial to achieving this, but you
also need to know how data can mislead you if you collect or interpret it incorrectly.

In the next chapter, we will continue with the measurement theme and learn how to
use tests to monitor for performance regressions. You will see how to use testing
(including unit testing), automation, and continuous integration to ensure that once you
solve a performance problem, it stays this way.

www.EBooksWorld.ir

Chapter 9. Monitoring Performance
Regressions
This chapter will cover writing automated tests to monitor performance along with
adding these to a Continuous Integration (CI) and deployment system. By constantly
checking for regressions, you'll avoid accidentally building a slow application. We'll
also cover how to safely load test a system without forcing it offline and how to
ensure that tests mimic real life usage as far as possible.

Topics covered in this chapter include the following:

Profiling
Load testing
Automated testing
Performance monitoring
Continuous integration and deployment
Realistic environments and production-like data
UI testing with selenium and phantom headless browsers
A/B testing for conversion optimization
Cloud services and hosting
DevOps

You will see how to automate performance monitoring and testing so that you don't
need to remember to keep doing it manually. You'll learn how to catch regressions
early before they cause trouble and how to safely back them out for rework.

www.EBooksWorld.ir

Profiling and measurement
We started this book by highlighting the importance of measurement and profiling by
covering some simple techniques in Chapter 2, Measuring Performance Bottlenecks
. We continued this theme throughout, and we'll end the book on it as well because it's
impossible to overstate how important measuring and analyzing reliable evidence is.

Previously, we covered using Glimpse to provide insights into the running of your
web application. We also demonstrated the Visual Studio diagnostics tools and the
Application Insights Software Development Kit (SDK). There's another tool that's
worth mentioning and that's the Prefix profiler, which you can get at prefix.io .

Prefix is a free web-based ASP.NET profiler that supports ASP.NET Core.
However, it doesn't support .NET Core yet (although this is planned), so you'll need
to run ASP.NET Core on .NET Framework 4.6 for now. There's a live demo on their
website (at demo.prefix.io) if you want to quickly check it out and it looks like the
following:

www.EBooksWorld.ir

http://prefix.io
http://demo.prefix.io

Note

ASP.NET Core can run on top of either .NET Core or the existing stable framework.
For a refresher on how everything fits together, refer back to Chapter 1, Why
Performance Is a Feature, or for more details, refer to Chapter 6, Understanding
Code Execution and Asynchronous Operations .

You may also want to look at the PerfView performance analysis tool from
Microsoft, which is used in the development of .NET Core. You can download
PerfView from microsoft.com/download/details.aspx?id=28567 as a ZIP file that
you can just extract and run. It is useful to analyze the memory of .NET applications
among other things, and it looks like this when you launch it:

www.EBooksWorld.ir

http://microsoft.com/download/details.aspx?id=28567

You can use PerfView for many debugging activities, for example, to take a snapshot
of the heap or force GC runs. We don't have space for a detailed walkthrough here,
but the included instructions are good, and there are blogs on MSDN with guides and
many video tutorials on Channel 9 at channel9.msdn.com/Series/PerfView-Tutorial
if you need more information.

Tip

Sysinternals tools (technet.microsoft.com/sysinternals) can also be helpful, but as
they do not focus much on .NET, they are less useful in this context.

While tools such as these are great, what would be even better is to build
performance monitoring into your development workflow. Automate everything that
you can, and this makes performance checks transparent, routine, and run by default.

Manual processes are bad because you can skip steps, and you can easily make
errors. You wouldn't dream of developing software by e-mailing files around or
editing code directly on a production server, so why not automate your performance

www.EBooksWorld.ir

http://channel9.msdn.com/Series/PerfView-Tutorial
http://technet.microsoft.com/sysinternals

tests too.

Change control processes exist to ensure consistency and reduce errors. This is why
using a Source Control Management (SCM) system, such as Git or Team
Foundation Server (TFS) is essential. It's also extremely useful to have a build
server and perform CI or even fully-automated deployments.

Note

Source control allows multiple people to work on a file simultaneously and merge
the changes later. It's like Word's track changes feature, but actually usable. We
assume that we're preaching to the converted and you already use source control. If
not, stop reading right now and go install an SCM system.

If the code deployed in production differs from what you have on your local
workstation, then you have very little chance of success. This is one of the reasons
why SQL Stored Procedures (SPs/sprocs) are difficult to work with, at least
without rigorous version control. It's far too easy to modify an old version of an SP
on a development DB, accidentally revert a bug fix, and end up with a regression. If
you must use SPs, then you will need a versioning system, such as ReadyRoll (which
Redgate has now acquired).

As this isn't a book on Continuous Delivery (CD), we will assume that you are
already practicing CI and have a build server, such as JetBrains TeamCity,
ThoughtWorks GoCD, CruiseControl.NET, or a cloud service, such as AppVeyor.
Perhaps you're even automating your deployments using a tool, such as Octopus
Deploy, and you have your own internal NuGet feeds, using software such as The
Motley Fool's Klondike, or a cloud service, such as MyGet (which also supports
npm, bower, and VSIX packages).

Tip

NuGet packages are a great way of managing internal projects. In new versions of
Visual Studio, you can see the source code of packages and debug into them. This
means no more huge solutions containing a ludicrous number of projects.

Bypassing processes and doing things manually will cause problems, even if you are
following a script. If it can be automated then it probably should be, and this includes
testing.

www.EBooksWorld.ir

Testing
Testing is essential to producing high-quality and well-performing software. The
secret to productive testing is to make it easy, reliable, and routine. If testing is
difficult or tests regularly fail because of issues unrelated to the software (for
example, environmental problems), then tests will not be performed or the results
will be ignored. This will cause you to miss genuine problems and ship bugs that you
could have easily avoided.

There are many different varieties of testing, and you may be familiar with the more
common cases used for functional verification. In this book, we will mainly focus on
tests pertaining to performance. However, the advice here is applicable to many
types of testing.

www.EBooksWorld.ir

Automated testing
As previously mentioned, the key to improving almost everything is automation. Tests
that are only run manually on developer workstations add very little value. Of course,
it should be possible to run the tests on desktops, but this shouldn't be the official
result because there's no guarantee that they will pass on a server (where the correct
functioning matters more).

Tip

Although automation usually occurs on servers, it can be useful to automate tests that
run on developer workstations too. One way of doing this in Visual Studio is to use a
plugin, such as NCrunch. This runs your tests as you work, which can be very useful
if you practice Test-Driven Development (TDD) and write your tests before your
implementations. You can read more about NCrunch and see the pricing at
ncrunch.net , or there's a similar open source project at continuoustests.com .

One way of enforcing testing is to use gated check-ins in TFS, but this can be a little
draconian, and if you use an SCM, such as Git, then it's easier to work on branches
and simply block merges until all the tests pass. You want to encourage developers to
check-in early and often because this makes merges easier. Therefore, it's a bad idea
to have features in progress sitting on workstations for a long time (generally no
longer than a day).

www.EBooksWorld.ir

http://ncrunch.net
http://continuoustests.com

Continuous integration
CI systems automatically build and test all of your branches and feed this information
back to your version control system. For example, using the GitHub API, you can
block the merging of pull requests until the build server reports a successfully tested
merge result.

Both Bitbucket and GitLab offer free CI systems, called pipelines, so you may not
need any extra systems in addition to one for source control because everything is in
one place. GitLab also offers an integrated Docker container registry, and there is an
open source version that you can install locally. .NET Core and Visual Studio
support Docker well, and we'll cover this again later in the chapter.

You can do something similar with Visual Studio Team Services for CI builds and
unit testing. Visual Studio also has Git services built into it.

This process works well for unit testing because unit tests must be quick so that you
get feedback early. Shortening the iteration cycle is a good way of increasing
productivity, and you'll want the lag to be as small as possible.

However, running tests on each build isn't suitable for all types of testing because not
all tests can be quick. In this case, you'll need an additional strategy so as not to slow
down your feedback loop.

Note

There are many unit testing frameworks available for .NET, for example, NUnit,
xUnit, and MSTest (Microsoft's unit test framework) along with multiple graphical
ways of running tests locally, such as the Visual Studio Test Explorer and the
ReSharper plugin. People have their favorites, but it doesn't really matter what you
choose because most CI systems will support all of them.

www.EBooksWorld.ir

Slow testing
Some tests are slow, but even if each test is fast, they can easily add up to a lengthy
time if you have a lot of them. This is especially true if they can't be parallelized and
need to be run in sequence, so you should always aim to have each test stand on its
own without any dependencies on others.

It's good practice to divide your tests into rings of importance so that you can at least
run a subset of the most crucial on every CI build. However, if you have a large test
suite or some tests that are unavoidably slow, then you may choose to only run these
once a day (perhaps overnight) or every week (maybe over the weekend).

Some testing is simply slow by nature and performance testing can often fall into this
category, for example, load testing or User Interface (UI) testing. We usually class
this as integration testing, rather than unit testing because they require your code to be
deployed to an environment for testing and the tests can't simply exercise the
binaries.

To make use of such automated testing, you will need to have an automated
deployment system in addition to your CI system. If you have enough confidence in
your test system, then you can even have live deployments happen automatically. This
works well if you also use feature switching to control the rollout of new features.

We won't go into the implementation details of Continuous Integration or automated
deployments in this book. However, we will cover feature switching, how to apply
performance testing to CI processes, and what to do when you discover a regression.

www.EBooksWorld.ir

Fixing performance regressions
If you discover a performance issue at the unit testing stage, then you can simply
rework this feature, but it's more likely that these problems will surface in a later
testing phase. This can make it more challenging to remedy the problem because the
work may already have been built upon and have other commits on top of it.

The correct course of action is often to back-out regressions immediately or at least
as soon as possible upon discovery. Delays will only make the issue harder to fix
later, which is why it's important to get fast feedback and highlight problems quickly.

It's important to be disciplined and always remove regressions, even though it may be
painful. If you let the occasional minor regression in, then you can easily become
sloppy and let more serious ones in over time because of the precedent it sets.

www.EBooksWorld.ir

Load testing
Load testing is the process of discovering how many concurrent users your web app
can support. You generally perform it on a test environment with a tool that gradually
ramps up a simulated load, for example, JMeter (jmeter.apache.org). Perhaps, you'd
prefer using a JMeter compatible cloud service, such as BlazeMeter, or an
alternative, such as Loader.io, if your test systems are web-facing.

Load testing can take a significant amount of time depending on the scale of your
service because it can be configured to continue until the test environment gets
unacceptably slow for users or falls over and becomes unresponsive. You need to be
extremely careful with load testing and not only from the point of view of
accidentally testing your live systems to destruction while they're in use.

You also need to be wary of getting false results, which may mislead you into
concluding that your system can handle more load than it actually will. Balancing
these two competing concerns of safety and realism can be difficult. It's important to
get realistic results, but you need to balance this against not stressing your production
environment and impacting the experience of real users.

www.EBooksWorld.ir

http://jmeter.apache.org

Realism
Keeping it real is an important principle of performance testing. If you don't use a
realistic environment and workload, then your results may be worse than having no
data because they could mislead you into bad decisions. When you have no
information, you at least know that you're in the dark and just guessing.

We'll cover workloads and feature switching shortly, including an example of how to
implement your own simple version from scratch. First, let's look at how to make
your test environments representative of production.

Realistic environments

Using a test environment that is as close to production (or as live-like) as possible is
a good step toward ensuring reliable results. You can try and use a smaller set of
servers and then scale your results up to get an estimate of live performance.
However, this assumes that you have an intimate knowledge of how your application
scales and what hardware constraints will be the bottlenecks.

A better option is to use your live environment or rather what will become your
production stack. You first create a staging environment that is identical to live, then
you deploy your code to it, and then you run your full test suite, including a
comprehensive performance test, ensuring that it behaves correctly. Once you are
happy, then you simply swap staging and production, perhaps using DNS or Azure
staging slots.

The following diagram shows how you first release to staging and go live simply by
making staging become production:

www.EBooksWorld.ir

Your old live environment now either becomes your test environment or if you use
immutable cloud instances, then you can simply terminate it and Spin-up a new
staging system. This concept is known as blue-green deployment, but unfortunately
specific implementation instructions are beyond the scope of this book.

www.EBooksWorld.ir

You don't necessarily have to move all users across at once in a big bang, and you
can move a few over first to test whether everything is correct. We'll cover this
shortly in the section on feature switching.

Realistic workloads

Another important part of performing realistic testing is to use real data and real
workloads. Synthetic data often won't exercise a system fully or find exotic edge
cases. You can use fuzzing to generate random data, but if you have a production
system, then you can simply use the data from this and parse your logs to generate a
realistic workload to replay.

Obviously, don't replay actions onto a live system that could modify user data and be
wary of data privacy concerns or any action that could generate an external event, for
example, sending a mass e-mail or charging a credit card. You can use a dedicated
test system, but you still need to be careful to stub out any external APIs that don't
have a test version.

Another approach is to use dummy users for your testing if you don't mind your users
discovering the fakes and possibly interacting with them. One case of this approach
is Netflix's cult Example Show, which is a homemade video of an employee running
around their office grounds with a laptop.

Feature switching

An alternative to fake users or test environments is to run performance tests on your
real live environment using genuine users as they interact with your web application.
You can use feature switching to gradually roll out a new feature to a small subset of
your user base and monitor the system for excessive load. If everything seems
normal, then you can continue the rollout; otherwise, you can rollback.

Note

You may hear similar ideas referred to by other names, such as Feature Flags,
Feature Toggles, Canary Releases, or Branch by Abstraction. Some of these may
have subtly different meanings but the general guiding principle of gradually
releasing a change is much the same.

The following diagram shows how you could progressively migrate users to a new
feature by deploying it but not initially enabling it. Your first users could be members
of staff so that any issues are detected early:

www.EBooksWorld.ir

Once all users are consuming the new feature, then you can safely remove the old
feature (and the feature switch itself). It's a good idea to regularly tidy up like this to
avoid clutter and make later work easier.

If you discover that your system experiences excessive load as you slowly increase
the percentage of users on the new feature, then you can halt the rollout and avoid
your servers becoming overloaded and unresponsive. You then have time to
investigate and either back out of the change or increase available resources.

www.EBooksWorld.ir

One variation on this theme is when a new feature requires a data migration and this
migration is computationally or networking-intensive, for example, migrating user-
submitted videos to a new home and transcoding them in the process. In this case, the
excessive load that you are monitoring will only be transient, and you don't need to
back out of a feature. You only need to ensure that the rate of migration is low enough
to not excessively tax your infrastructure.

Although the new feature is usually branched to in code, you can instead perform
switching at the network level if you use blue-green deployment. This is known as a
canary release and can be done at the DNS or load balancer level. However, specific
implementation details are again beyond the remit of this book.

You can find many open source feature switching libraries online or you could write
your own, which we will show you how to do later. A couple of .NET feature-
switching libraries are github.com/mexx/FeatureSwitcher and github.com/Jason-
roberts/FeatureToggle . Unfortunately, neither of these work on .NET Core yet,
although support is planned for FeatureToggle. There are also paid cloud services
available, which offer easy management interfaces, such as LaunchDarkly.

Note

Library and framework support for .NET Core and ASP.NET Core change rapidly, so
check ANCLAFS.com for the latest information.

To illustrate feature switching, let's build our own extremely simple implementation
for an ASP.NET Core web application. To start with, we take the default existing
homepage view (Index.cshtml) and make a copy (IndexOld.cshtml). We then
make our changes to Index.cshtml, but these aren't important for the purposes of
this demo.

In HomeController.cs, we change the logic to return the new view a relatively
small percentage of the time, and the old one otherwise. The original code was
simply the following:

public IActionResult Index()
{
 return View();
}

We change this action to return the new view in a quarter of the cases, like the
following:

public IActionResult Index()
{
 var rand = new Random();

www.EBooksWorld.ir

http://github.com/mexx/FeatureSwitcher
http://github.com/Jason-roberts/FeatureToggle
http://ANCLAFS.com

 if (rand.Next(99) < 25)
 {
 return View();
 }
 return View("IndexOld");
}

This code picks a random number out of a hundred, and if it is less than 25, then it
loads the new view. Clearly, you wouldn't hardcode values like this, and you would
probably use a database to store configuration and control it with a web admin page.

If you load the page in a browser, then three out of four times you should get the
original page, which looks like the following:

However, roughly one every four page loads, you will get the new page, which looks
like the following:

www.EBooksWorld.ir

We removed the carousel and cut the number of image loads in half. You can see the
difference in the browser developer tools, for example, the Firefox performance
analysis for the original looks like the following:

www.EBooksWorld.ir

Whereas for the new version it looks like this.

www.EBooksWorld.ir

You can see that the number of images decreased, which has reduced the page size
and the total number of requests required.

Note

These measurements were taken with the hosting environment set to Production. If
you remain with the default of Development, then your results will differ. Refer to
the following documentation page for how to change this:
docs.asp.net/en/latest/fundamentals/environments.html .

Once the new view has been progressively rolled out to all users (with no
performance problems), then the action method code can be reverted to the original
state and the old view deleted. Obviously, this is a trivial example. Hopefully, you
can now see how feature switching can be performed.

Using feature switching to rollout in this way works well for performance testing, but

www.EBooksWorld.ir

http://docs.asp.net/en/latest/fundamentals/environments.html

you need to be confident that your new code is functionally correct or at least safe to
deploy. However, in certain circumstances you can also test functionality by
extending this approach and performing experiments.

www.EBooksWorld.ir

Experimenting for science
If you take the feature switching rollout to its logical conclusion, then you can switch
on a new refactored version for a small percentage of users, but not actually expose
the output. You will run the existing version in parallel as a control and show this to
the user. However, you will collect the results of both versions, including
performance data. You can then compare them to ensure that the new (hopefully
higher performance) version is correct and consistent with the existing behavior.

GitHub have an open source Ruby library, called Scientist, which they used to
successfully refactor their permissions and merging code. In the process, they
discovered existing legacy bugs, found missing features, optimized database queries,
and swapped a search system. Scientist not only displays the correctness of new code
but also its performance relative to the old implementation.

Tip

An important concern with Scientist (or any method using this experimentation
approach) is to not change data. All operations should be read-only and have no side
effects; otherwise, you will perform the modification more than once, which could
have undesirable consequences.

There's a .NET port of Scientist by GitHub employee Phil Haack, called
Scientist.NET, and you can get it at github.com/Haacked/Scientist.net . You could
also install it via NuGet. However, it's currently a prerelease as it's still a work in
progress, but it should support .NET Core. Check ANCLAFS.com for the latest
information.

This idea of experimenting on users is similar to the marketing concept of A/B
testing, which is used to discover conversion effectiveness. However, with
Scientist, you don't typically show the users different outputs or even intend the
output to change, you just record the new output for the subset of users that you have
it enabled for.

www.EBooksWorld.ir

http://github.com/Haacked/Scientist.net
http://ANCLAFS.com

A/B testing
A/B testing is similar to feature switching, but we usually use it to test the
effectiveness of different web page designs and how they affect the conversion
funnel analytics. We normally use it for digital marketing rather than for software
development because it's less about what is correct and more about what customers
prefer. However, the underlying technical principals are comparable to feature
switching and experimenting.

In a simple example, you serve half of your visitors the old version of a page and the
other half a new version designed to increase engagement. You then record how many
visitors click through or perform some action on each variant. If the new version
performs better, then you keep it and roll it out to everyone. However, if it converted
worse, you roll back to the old version and try again.

You can see that this is very similar to how feature switching works, and you can use
the same tools to do both. The only difference is what you are measuring, user
analytics or the health of your infrastructure.

A/B testing is not normally used for backend features and is simply to assess UI
alternatives. However, it is different to functionally testing your web interface, so
let's cover the basics of UI testing now.

www.EBooksWorld.ir

User interface testing
There's one area of an application that is traditionally difficult to test, and that's the
UI. This is particularly the case for GUIs, as used in web applications. One reason
for this is that users typically have a lot of flexibility in how they display their
interface, and this is especially true for web browsers. A naïve pixel-based testing
approach is going to be extremely fragile.

You need to design your application to be easily testable, and the UI is no exception.
While it is possible to test the UI of a poorly-designed legacy application and this
may even be the easiest testing approach, if you consider UI testing up front, then life
will be a lot easier. For example, including sensible IDs on your HTML Document
Object Model (DOM) elements makes testing much more straightforward and less
fragile.

Checking your application from a web browser perspective can be a useful
additional step on top of automated unit and integration testing. You can use it not
only to test for functional correctness and regressions but also to measure client side
performance, which is increasingly important. There are many UI testing tools
available, most of which you can integrate into your CI pipeline to automate testing.

Web UI testing tools

One of the most popular web-testing tools is Selenium, which allows you to easily
write tests and automate web browsers using WebDriver. Selenium is useful for
many other tasks apart from testing, and you can read more about it at
docs.seleniumhq.org .

Note

WebDriver is a protocol to remote control web browsers, and you can read about it
at w3c.github.io/webdriver/webdriver-spec.html .

Selenium uses real browsers, the same versions your users will access your web
application with. This makes it excellent to get representative results, but it can cause
issues if it runs from the command line in an unattended fashion. For example, you
may find your test server's memory full of dead browser processes which timed out.

You may find it easier to use a dedicated headless test browser, which, while not
exactly the same as what your users will see, is more suitable for automation. Of
course, the best approach is to use a combination of both, perhaps running headless
tests first and then running the same tests on real browsers with WebDriver.

www.EBooksWorld.ir

http://docs.seleniumhq.org
http://w3c.github.io/webdriver/webdriver-spec.html

One of the most well-known headless test browsers is PhantomJS. This is based on
the WebKit engine, so it should give you similar results to Chrome and Safari.
PhantomJS is useful for many things apart from testing, such as capturing screenshots,
and you can drive it with many different testing frameworks. As the name suggests,
you can control PhantomJS with JavaScript, and you can read more about it at
phantomjs.org .

Note

WebKit is an open source engine for web browsers, which was originally part of the
KDE Linux desktop environment. It is mainly used in Apple's Safari browser, but a
fork called Blink is used in Google Chrome, Chromium, and Opera. You can read
more at webkit.org .

Other automatable testing browsers, based on different engines, are available, but
they have some limitations. For example, SlimerJS (slimerjs.org) is based on the
Gecko engine used by Firefox, but is not fully headless.

You probably want to use a higher-level testing utility rather than scripting browser
engines directly. One such utility that provides many useful abstractions is CasperJS
(casperjs.org), which supports running on both PhantomJS and SlimerJS.

Another tool is Capybara, which allows you to easily simulate user interactions in
Ruby. It supports Selenium, WebKit, Rack, and PhantomJS (via Poltergeist), although
it's more suitable for Rails apps. You can read more at jnicklas.github.io/capybara.

There is also TrifleJS (triflejs.org), which uses the .NET WebBrowser class (the
Internet Explorer Trident engine), but this is a work in progress. Additionally, there's
Watir (watir.com), which is a set of Ruby libraries targeting Internet Explorer and
WebDriver. However, neither have been updated in a while, and IE has changed a lot
recently.

Note

Microsoft Edge (codenamed Spartan) is the new version of IE, and the Trident engine
was forked to EdgeHTML. The JavaScript engine (Chakra) was open sourced as
ChakraCore (github.com/Microsoft/ChakraCore).

It shouldn't matter too much what browser engine you use, and PhantomJS will work
fine as a first pass for automated tests. You can always test with real browsers after
using a headless one, perhaps with Selenium or with PhantomJS using WebDriver.

Tip

www.EBooksWorld.ir

http://phantomjs.org
http://webkit.org
http://slimerjs.org
http://casperjs.org
http://jnicklas.github.io/capybara
http://triflejs.org
http://watir.com
http://github.com/Microsoft/ChakraCore

When we refer to browser engines (WebKit/Blink, Gecko, or Trident/EdgeHTML),
we generally mean only the rendering and layout engine, not the JavaScript engine
(SFX/Nitro/FTL/B3, V8, SpiderMonkey, or Chakra/ChakraCore).

You'll probably still want to use a utility such as CasperJS to make writing tests
easier, and you'll likely need a test framework, such as Jasmine (jasmine.github.io)
or QUnit (qunitjs.com) too. You can also use a test runner that supports both Jasmine
and QUnit, such as Chutzpah (mmanela.github.io/chutzpah).

You can integrate your automated tests with many different CI systems, for example,
Jenkins or JetBrains TeamCity. If you prefer a cloud-hosted option, then there's
Travis CI (travis-ci.org) and AppVeyor (appveyor.com), which is also suitable to
build .NET apps.

You may prefer to run your integration and UI tests from your deployment system, for
example, to verify a successful deployment in Octopus Deploy. There are also
dedicated, cloud-based web-application UI testing services available, such as
BrowserStack (browserstack.com).

Automating UI performance tests

Automated UI tests are clearly great to check for functional regressions, but they are
also useful to test performance. You have programmatic access to the same
information provided by the network inspector in the browser developer tools.

You can integrate the YSlow (yslow.org) performance analyzer with PhantomJS,
enabling your CI system to check for common web-performance mistakes on every
commit. YSlow came out of Yahoo!, and it provides rules used to identify bad
practices, which can slow down web applications for users. It's a similar idea to
Google's PageSpeed Insights service (which you can automate via its API).

However, YSlow is pretty old, and things have moved on in web development
recently, for example, HTTP/2. A modern alternative is "the coach" from
sitespeed.io , and you can read more at github.com/sitespeedio/coach . You should
check out their other open source tools too, such as the dashboard at
dashboard.sitespeed.io , which uses Graphite and Grafana.

You can also export the network results (in industry standard HAR format) and
analyze them however you like, for example, visualizing them graphically in
waterfall format, as you might do manually with your browser developer tools.

Note

www.EBooksWorld.ir

http://jasmine.github.io
http://qunitjs.com
http://mmanela.github.io/chutzpah
http://travis-ci.org
http://appveyor.com
http://browserstack.com
http://yslow.org
http://github.com/sitespeedio/coach
http://dashboard.sitespeed.io

The HTTP Archive (HAR) format is a standard way of representing the content of
monitored network data to export it to other software. You can copy or save as HAR
in some browser developer tools by right-clicking a network request.

www.EBooksWorld.ir

Staying alert
Whenever you perform testing, particularly UI or performance testing, you will get
noisy results. Reliability is not perfect, and there will always be failures that are not
due to bugs in the code. You shouldn't let these false positives cause you to ignore
failing tests, and although the easiest course of action may be disabling them, the
correct thing to do to make them more reliable.

Tip

The scientifically minded know that there is no such thing as a perfect filter in binary
classification, and always look at the precision and recall of a system. Knowing the
rate of false positives and negatives is important to get a good idea of the accuracy
and tradeoffs involved.

To avoid testing fatigue, it can be helpful to engage developers and instill a
responsibility to fix failing tests. You don't want everyone thinking that it's somebody
else's problem. It should be pretty easy to see who broke a test by the commit in
version control, and it's then their job to fix the broken test.

You can have a bit of fun with this and create something a bit more interesting than a
wall mounted dashboard. Although having information radiators is useful if you
don't get desensitized to them. There's plenty of cheap Internet of Things (IoT)
hardware available today, which allows you to turn some interesting things into build
or test failure alarms. For example, an Arduino-controlled traffic light, an ESP8266-
operated foam-missile turret, or a Raspberry Pi-powered animatronic figure.

www.EBooksWorld.ir

DevOps
When using automation and techniques such as feature switching, it is essential to
have a good view of your environments so that you know the utilization of all the
hardware. Good tooling is important to perform this monitoring, and you want to
easily be able to see the vital statistics of every server. This will consist of at least
the CPU, memory, and disk space consumption, but it may include more, and you will
want alarms set up to alert you if any of these stray outside allowed bands.

The practice of DevOps is the culmination of all of the automation we covered
previously with development, operations, and quality-assurance testing teams all
collaborating. The only missing pieces left now are to provision and configure
infrastructure and then monitor it while in use. Although DevOps is a culture, there is
plenty of tooling that can help.

www.EBooksWorld.ir

DevOps tooling
One of the primary themes of DevOps tooling is defining infrastructure as code. The
idea is that you shouldn't manually perform a task, such as setting up a server, when
you can create software to do it for you. You can then reuse these provisioning
scripts, which will not only save you time but will also ensure that all of the
machines are consistent and free of mistakes or missed steps.

Provisioning

There are many systems available to commission and configure new machines. Some
popular configuration-management automation tools are Ansible (ansible.com), Chef
(chef.io), and Puppet (puppet.com).

Not all of these tools work great on Windows servers, partly because Linux is easier
to automate. However, you can run ASP.NET Core on Linux and still develop on
Windows, using Visual Studio while testing in a VM. Developing for a VM is a great
idea because it solves the problems in setting up environments and issues where it
"works on my machine" but not in production.

Vagrant (vagrantup.com) is a great command line tool to manage developer VMs. It
allows you to easily create, Spin-up, and share developer environments. The
successor to Vagrant, Otto (ottoproject.io) takes this a step further and abstracts
deployment too so that you can push to multiple cloud providers without worrying
about the intricacies of CloudFormation, OpsWorks, or anything else.

If you create your infrastructure as code, then your scripts can be versioned and
tested, just like your application code. We'll stop before we get too far off topic, but
the point is that if you have reliable environments, which you can easily verify,
instantiate, and perform testing on, then CI is a lot easier.

Monitoring

Monitoring is essential, especially for web applications, and there are many tools
available to help with it. A popular open source infrastructure-monitoring system is
Nagios (nagios.org). Another more modern open source alerting and metrics tool is
Prometheus (prometheus.io).

If you use a cloud platform, then there will be monitoring built in, for example, AWS
CloudWatch or Azure Diagnostics. There are also cloud services to directly monitor
your website, such as Pingdom (pingdom.com), UptimeRobot (uptimerobot.com),
Datadog (datadoghq.com), and PagerDuty (pagerduty.com).

www.EBooksWorld.ir

http://ansible.com
http://chef.io
http://puppet.com
http://vagrantup.com
http://ottoproject.io
http://nagios.org
http://prometheus.io
http://pingdom.com
http://uptimerobot.com
http://datadoghq.com
http://pagerduty.com

You probably already have a system in place to measure availability, but you can
also use the same systems to monitor performance. This is not only helpful to ensure
a responsive user experience, but it can also provide early warning signs that a
failure is imminent. If you are proactive and take preventative action, then you can
save yourself a lot of trouble reactively fighting fires.

This isn't a book on operations, but it helps to consider application support
requirements at design time. Development, testing, and operations aren't competing
disciplines, and you will succeed more often if you work as one team rather than
simply throwing an application over the fence and saying it "worked in test, ops
problem now."

www.EBooksWorld.ir

Hosting
It's well worth considering the implications of various hosting options because if
developers can't easily access the environments they need, then this will reduce their
agility. They may have to work around an availability problem and end up using
insufficient or unsuitable hardware, which will hamper progress and cause future
maintenance problems. Or their work will simply be blocked and delivery set back.

Unless you are a very large organization, hosting in-house is generally a bad idea for
reliability, flexibility, and cost reasons. Unless you have some very sensitive data,
then you should probably use a data center.

You can co-locate servers in a data center, but then you need staff to be on call to fix
hardware problems. Or you can rent a physical server and run your application on
"bare metal", but you may still need remote hands to perform resets or other tasks on
the machine.

The most flexible situation is to rent self-service virtual machines, commonly known
as cloud hosting. There are many hosting companies that offer this, but the big players
are Amazon, Google, and Microsoft.

Microsoft's Azure is the obvious choice for a .NET shop and it has improved
immensely since launch compared to its original offering. Its Platform as a Service
(PaaS) to host .NET applications is the most polished and the easiest to get running
on quickly. It also offers lots of extra services that go beyond simple VMs.

However, .NET Core and ASP.NET Core are new types of framework, which are not
aimed solely at C# developers, who would usually pick the default option offered by
Microsoft. The targeted market is developers who may be used to choosing
alternative platforms and open source frameworks. Therefore, it makes sense to
cover other options, which people new to .NET may be more familiar with.

Note

The difference between PaaS and Infrastructure as a Service (IaaS) is that PaaS is
higher level and provides a service to run applications, not computers. IaaS simply
provides you with a VM. However, with PaaS, this is abstracted away, and you don't
need to worry about setting up and updating an instance.

Amazon Web Services (AWS) is the most established cloud host, and it started by
only offering IaaS, although they now offer PaaS options. For example, Elastic
Beanstalk supports .NET. Even though Windows (and SQL Server) support has

www.EBooksWorld.ir

improved, it is still not first class, and Linux is clearly their main platform.

However, now that .NET Core and SQL Server 2016 run on Linux, this may be less
of a problem. You will pay a premium for Windows server instances, but you're also
charged more for some enterprise Linux distributions (Redhat and SUSE). However,
you can run other Linux distributions, such as Ubuntu or CentOS without paying a
premium.

Google Cloud Platform used to consist of App Engine (GAE), which was quite a
restrictive PaaS, but it is getting more flexible. They now offer a generic IaaS called
Compute Engine (GCE), and there's a new flexible version of GAE, which is more
like GCE. These new offerings are useful, as you couldn't traditionally run .NET on
GAE, and they also provide other products such as pre-emptible VMs and a cloud
CDN (with HTTPS at no extra cost).

Azure may still be the best choice for you, and it integrates well with other Microsoft
products, such as Visual Studio. However, it is worth having healthy competition
because this keeps everyone innovating. It's definitely a good idea to frequently look
at the pricing of all options, (which changes regularly) because you can save a lot of
money depending on the workload that you run. You can avoid vendor lock-in by
avoiding custom services.

Tip

If you are eligible for Microsoft's BizSpark program, then you can get three years of
Azure credits (suitable to host a small application). You also get an MSDN
subscription for free software licenses.

Whatever hosting provider you choose to use, it is sensible to avoid vendor lock-in
and use services that are generic, which you can easily swap for an alternative. For
example, using hosted open source software, such as PostgreSQL, Redis, or
RabbitMQ, rather than an equivalent custom cloud provider product. You can also
take a resilient multicloud approach to protect yourself from an outage of a single
provider.

Docker is a great technology for this purpose because many different cloud services
support it. For example, you can run the same container on Azure Container Service,
Docker Cloud, AWS EC2 Container Service, and Google's Kubernetes Container
Engine.

Docker also runs on Windows (using Hyper-V), and in the new version of Visual
Studio you can deploy to and debug into a container. This can run ASP.NET Core on
Linux, and when you are ready to deploy, you can just push to production and have

www.EBooksWorld.ir

confidence that it will work as it did on your machine. You can read more about this
at docker.com/Microsoft , and there are some interesting videos on the Docker blog.

Note

When choosing a cloud (or even a region), it's important to not only consider the
monetary cost. You should also factor in environmental concerns, such as the main
fuel used for the power supply. For example, some regions can be cheaper, but this
may be because they use dirty coal power, which contributes to climate change and
our future security.

www.EBooksWorld.ir

http://docker.com/Microsoft

Summary
In this chapter, you saw how you might integrate automated testing into a CI system in
order to monitor for performance regressions. You also learned some strategies to
roll out changes and ensure that tests accurately reflect real life. We also briefly
covered some options for DevOps practices and cloud-hosting providers, which
together make continuous performance testing much easier.

In the next chapter, we'll wrap-up everything that we covered throughout this book
and suggest some areas for further investigation. We'll reinforce our learnings so far,
give you some interesting ideas to think about, contemplate possible futures for .NET,
and consider the exciting direction the platform is taking.

www.EBooksWorld.ir

Chapter 10. The Way Ahead
This chapter sums up what you learned by reading this book. It refreshes the main
tenets of performance and it reminds you that you should always remain pragmatic.
We'll recap why you shouldn't optimize just for optimization's sake and why you
should always measure the problems and results. This chapter also introduces more
advanced and exotic techniques that you may wish to consider learning about if you
need more speed or are a serious performance enthusiast.

Topics covered in this chapter include the following:

A summary of previously-covered topics
Platform invoke and native code
Alternative architectures, such as ARM
Advanced hardware (GPUs, FPGAs, ASICs, SSDs, and RAM SANs)
Machine learning and AI
Big data and MapReduce
The Orleans virtual actor model
Custom transport layers
Advanced hashing functions
Library and framework support
The future of .NET Core

We'll reinforce how to assess and solve performance issues by refreshing your
memory of the lessons in the previous chapters. You'll also gain an awareness of
other advanced technology that's available to assist you with delivering high
performance, which you may wish to investigate further. Finally, we'll highlight what
libraries and frameworks support .NET Core and ASP.NET Core, and try to
hypothesize possible future directions for these exciting new platforms.

www.EBooksWorld.ir

Reviewing what we learned
Let's briefly recap what we covered earlier in this book to serve as an aide-
mÃ©moire.

In Chapter 1, Why Performance Is a Feature , we discussed the basic premise of this
book and showed you why you need to care about the performance of your software.
Then, in Chapter 2, Measuring Performance Bottlenecks, we showed you that the
only way you can solve performance problems is to carefully measure your
application.

In Chapter 3, Fixing Common Performance Problems, we looked at some of the
most frequent performance mistakes and how to fix them. After this, we went a little
deeper in Chapter 4, Addressing Network Performance , and dug into the networking
layer that underpins all web applications. Then in Chapter 5, Optimizing I/O
Performance, we focused on input/output and how this can negatively affect
performance.

In Chapter 6, Understanding Code Execution and Asynchronous Operations, we
jumped into the intricacies of C# code and looked at how its execution can alter
performance. Then in Chapter 7, Learning Caching and Message Queuing, we
initially looked at caching, which is widely regarded to be quite hard. Then, we
investigated message queuing as a way to build a distributed and reliable system.

In Chapter 8, The Downsides of Performance Enhancing Tools, we concentrated on
the negatives of the techniques that we previously covered, as nothing comes for free.
Then in Chapter 9, Monitoring Performance Regressions, we looked at measuring
performance again but, in this case, from an automation and Continuous Integration
(CI) perspective.

www.EBooksWorld.ir

Further reading
If you've read this far, then you will probably want some pointers for other things to
research and read up on. For the rest of this chapter, we'll highlight some interesting
topics that you may want to look into further, but we couldn't cover in more detail in
this book.

www.EBooksWorld.ir

Going native
One of the problems with the old ASP.NET is that it was really slow, which is why
one of the main guiding principles of ASP.NET Core has been performance.
Impressive progress has already been made, but there are plenty more opportunities
for further enhancements.

One of the most promising areas is the native tool chain, which we briefly mentioned
in Chapter 6, Understanding Code Execution and Asynchronous Operations . It's
still in its early days but it looks like it could be very significant.

Previously, if you wanted to call unmanaged native code from managed .NET code,
you needed to use Platform Invoke (PInvoke), but this had performance overheads
and safety concerns. Even if your native code was faster, the overheads often meant it
was not worth bothering about.

The native tool chain should give native levels of performance, but with the safety
and convenience of a managed runtime. Ahead-of-time compilation is fascinating and
very technical, but it can offer a performance boost along with simplified
deployments if we know the architecture.

It's also possible to optimize for different processors that may offer special
performance features and instructions. For example, targeting low-energy ARM chips
instead of the usual Intel style processors.

www.EBooksWorld.ir

Processor architecture
Typically, when writing desktop or server software, you will target an Intel-based
architecture, such as x86 or x64. However, ARM-based chips are gaining popularity,
and they can offer fantastic power efficiency. If software is specially optimized for
them, then they can also offer excellent performance.

For example, the Scratch graphical programming language, used to teach computing,
has been optimized for a Raspberry Pi 3 and it now runs roughly twice as quick as it
does on an Intel Core i5. Other software has also been optimized for the ARM
processor, for example, the Kodi open source media player.

ARM Holdings is simply an intellectual property company and they don't make any
processors themselves. Other companies, such as Apple and Broadcom, license the
designs or architecture and fabricate their System on a Chip (SoC) products.

This means that there are many different chips available, which run multiple different
versions of the ARM architecture and instruction set. This fragmentation can make it
harder to support unless you pick a specific platform.

Windows 10 IoT Core runs on the Raspberry Pi (version 2 and 3) and it can now be
set up using the standard New Out Of the Box Software (NOOBS) installer.
Windows 10 IoT Core is not a full desktop environment to run normal applications,
but it does allow you to make hardware projects and program them with C# and
.NET. However, for web applications, you would probably run .NET Core on Linux,
such as Raspbian (based on Debian).

www.EBooksWorld.ir

Hardware is hard
We previously mentioned additional hardware that can be used for computation in
Chapter 6, Understanding Code Execution and Asynchronous Operations ,
including Graphics Processing Units (GPUs), Field Programmable Gate Arrays
(FPGAs), and Application Specific Integrated Circuits (ASICs).

Not only can these devices be used for specific processing tasks, but their storage
can be used as well. For example, you can borrow the RAM from a GPU if main
memory is exhausted. However, this technique is not required as much as it used to
be when memory was more limited.

You may have heard of RAM SANs, which were SANs using standard RAM for
permanent storage (with a battery backup). However, these have become less
relevant as SSDs (based on flash memory) improved in speed and increased in
capacity to the point of replacing mechanical drives for many common tasks.

You can still purchase high performance SANs, but they will probably be based on
flash memory rather than RAM. If you use RAM as your main storage (for example,
with Redis), then it is important to use error-correcting code memory (ECC). ECC
RAM is more expensive, but it is better suited for server use. However, some cloud
instances don't use it or it's hard to find out whether it's even offered because it isn't
listed in the specification.

One application of custom computation hardware is Machine Learning (ML),
specifically the deep learning branch of ML, using multilevel neural networks. This
technology saw impressive advances in recent years and this led to products, such as
self-driving vehicles. ML applications can make very good use of non-CPU
processing, particularly GPUs, and NVIDIA provides many tools and libraries to
help with this.

Google also recently announced that they built a custom ASIC, called a Tensor
Processing Unit (TPU), to accelerate their TensorFlow machine learning library and
cloud services. You can read more at tensorflow.org and cloud.google.com/ml .

www.EBooksWorld.ir

http://tensorflow.org
http://cloud.google.com/ml

Machine learning
You don't only have to use Artificial Intelligence (AI) to replace drivers and other
jobs, such as call center staff or even doctors. You can use some basic ML in your
own web applications to provide product suggestions relevant to your customers or
analyze marketing effectiveness, just like Amazon or Netflix do.

You don't even need to build your own ML systems, as you can use cloud services,
such as Azure ML. This allows you to use a graphical drag and drop interface to
build your ML systems, although you can also use Python and R.

You still need to know a little bit about data science, such as the elementary
principles of binary classification and training data, but even so, it significantly
reduces the barrier to entry. Yet, if you want to fully explore ML and big data
possibilities, then you probably need a dedicated data scientist.

You can try out Azure ML at studio.azureml.net and you don't even need to register.
The following screenshot shows an example of what it looks like:

www.EBooksWorld.ir

http://studio.azureml.net

www.EBooksWorld.ir

Big data and MapReduce
Big data is probably an overused term these days and what is sometimes described
as big is usually more like medium data. Big data is when you have so much
information that it is difficult to process, or even store, on a single machine.
Traditional approaches often break down with big data, as they are not adequate for
the huge automatically-acquired datasets that are common today. For example, the
amount of data constantly collected by IoT sensors or by our interactions with online
services can be vast.

One caveat of big data and ML is that, although they are good at finding correlations
in large sets of data points, you cannot use them to find causations. You also need to
be mindful of data privacy concerns and be very careful of not judging someone
before they have acted, based only on a predicted predisposition.

Note

Anonymizing data is incredibly difficult and is not nearly as simple as removing
personal contact details. There have been many cases of large "anonymized" datasets
being released where individuals were later easily identified from the records.

One technology that is useful to analyze big data is MapReduce, which is a way of
simplifying an operation so that it is suitable to run in parallel on a distributed
infrastructure. A popular implementation of MapReduce is Apache Hadoop and you
can use this in Azure with HDInsight, which also supports related tools, including
Apache Spark and Apache Storm. Other options to handle large datasets include
Google's Cloud Bigtable or BigQuery.

You can see the available options for Azure HDInsight in the portal, as shown in the
following image. Some features are still in preview or have restrictions, but they may
have moved to general availability by the time you read this.

www.EBooksWorld.ir

You can see from this image that Spark is in preview and is currently available only
on Linux. Hadoop is more established and is also available on Windows, as shown
in the following screenshot:

www.EBooksWorld.ir

The next image shows that Storm is also available but not on the premium preview
(including Microsoft R Server):

www.EBooksWorld.ir

www.EBooksWorld.ir

Orleans
Another interesting project is an open source framework from Microsoft called
Orleans, which is a distributed virtual actor model that was used to power the cloud
services of Halo Xbox games. What this means is that, if you build your system by
separating your logic into separate actors, this allows it to easily scale, based on
demand.

In Orleans, actors are known as grains and you can write them in C# by inheriting
from an interface. These are then executed by an Orleans server, called a silo. Grains
can be persisted to storage, such as SQL or Azure Tables, to save their state and to
reactivate later. Orleans can also make use of the Bond serializer for greater
efficiency.

Unfortunately, Orleans does not currently support .NET Core, but the porting work is
in progress. Orleans allows you to write simple and scalable systems with low
latency and you can read more at dotnet.github.io/orleans .

www.EBooksWorld.ir

http://dotnet.github.io/orleans

Custom transports
In Chapter 4, Addressing Network Performance, we started with an introduction to
TCP/IP and briefly mentioned UDP. We also covered TLS encryption and how to
minimize the impact of secure connections while still reaping performance benefits.

UDP is simpler and quicker than TCP, but you either need to not care about reliable
delivery (multiplayer games and voice/video chat) or build your own layer to
provide this. In Chapter 8, The Downsides of Performance-Enhancing Tools, we
highlighted StatsD, which uses UDP to avoid blocking latency while logging to a
remote central server.

There are alternatives to TLS if you aren't constrained to a browser, but if you're
developing a web application, this will probably only apply inside of your server
infrastructure. For example, the WhatsApp messaging app uses Noise Pipes and
Curve25519 from the Noise Protocol Framework (noiseprotocol.org) between the
smartphone app and their servers in addition to the Signal Protocol for end-to-end
encryption.

Using Noise Pipes instead of TLS increases performance because fewer round trips
are required to set up a connection. Another option with similar benefits is the
secure pipe daemon (spiped), as used by and created for the secure Linux backup
software, Tarsnap. However, you do need to preshare the keys, but you can read
more about this at www.tarsnap.com/spiped.html.

www.EBooksWorld.ir

http://noiseprotocol.org
http://www.tarsnap.com/spiped.html

Advanced hashing
We covered hashing functions a fair amount in this book, especially in Chapter 6,
Understanding Code Execution and Asynchronous Operations . This area is
constantly advancing and it is useful to keep an eye on the future to see what's
coming. Although today it is reasonable to use a member of the SHA-2 family for
quick hashing and PBKDF2 for slow (password) hashing, this is unlikely to always
be the case.

For fast hashing, there is a new family of algorithms called SHA-3, which should not
be confused with SHA-384 or SHA-512 (which are both in the SHA-2 family). SHA-
3 is based on an algorithm called Keccak, which was the winner of a competition to
find a suitable algorithm for the new standard. Other finalists included Skein (skein-
hash.info) and BLAKE2 (blake2.net), which is faster than MD5, but actually secure.

An algorithm called Argon2 won a similar competition for password hashing
(password-hashing.net). To see why this matters, you can visit haveibeenpwned.com
(run by .NET security guru Troy Hunt) to see whether your details are in one of the
large number of data breaches. For example, LinkedIn was breached and didn't use
secure password hashing (only an unsalted SHA-1 hash). Consequently, most of the
plain text passwords were cracked. Therefore, if a LinkedIn account password was
reused on other sites, then these accounts can be taken over.

It's a very good idea to use a password manager and create strong unique passwords
for every site. It is also beneficial to use two-factor authentication (sometimes also
called two-step verification) if available. For example, you can do this by entering a
code from a smartphone app in addition to a password. This is particularly useful for
e-mail accounts, as they can normally be used to recover other accounts.

www.EBooksWorld.ir

http://skein-hash.info
http://blake2.net
http://password-hashing.net
http://haveibeenpwned.com

Library and framework support
There have been some significant changes to .NET Core and ASP.NET Core between
RC1 and RC2, more than normal for release candidates. Sensibly, many popular
libraries and frameworks were waiting for RC2, or later, before adding support.

Obviously, a book is a bad place to keep up with the changes, so the author has put
together a website to display the latest compatibility information. You can find the
ASP.NET Core Library and Framework Support list at ANCLAFS.com .

If you would like to update anything or add a library or framework, then please send
a pull request. The repository is located at github.com/jpsingleton/ANCLAFS and it
includes lots of useful tools, libraries, frameworks, and more. We mentioned many of
these earlier in this book and the following sample is just a small selection of what is
listed because package support will grow over time:

Scientist.NET
FeatureSwitcher
FeatureToggle
MiniProfiler
Glimpse
Prefix
Dapper
Simple.Data
EF Core
Hangfire
ImageResizer
DynamicImage
ImageProcessorCore
RestBus
EasyNetQ
RabbitMQ Client
MassTransit
Topshelf
Nancy
SignalR
Orleans

www.EBooksWorld.ir

http://ANCLAFS.com
http://github.com/jpsingleton/ANCLAFS

The future
A quote often attributed to the physicist Niels Bohr goes, as follows:

"Prediction is very difficult, especially about the future."

However, we'll have a go at this anyway, starting with the more straightforward bits.
The official ASP.NET Core roadmap lists SignalR, Web Pages, and Visual Basic
support shipping after the version 1.0 Release To Manufacturing/Marketing
(RTM).

After this, it is fairly safe to assume that features will be added to bring the Core line
closer to the existing frameworks. This includes Entity Framework, which is
currently missing some of the big features of the full EF, for example, lazy loading.

There is also the move towards the .NET Platform Standard, to enhance portability
across .NET Core, the .NET Framework and Mono. For example, .NET Core 1.0 and
.NET Framework 4.6.3 both implement .NET Platform Standard 1.6
(netstandard1.6). However, you probably don't need to worry about this unless
you are writing a library. Refer to the documents at dotnet.github.io/docs/core-
concepts/libraries if you are.

Microsoft has said it will listen to user feedback and use it to drive the direction of
the platforms, so you have a voice. Even if you don't, then, as the code is all open
source, you can help shape the future by adding the features that you want.

Further into the future is harder to predict, but there has been a steady stream of
projects being open sourced by Microsoft from the early offerings of ASP.NET MVC
to the Xamarin framework for cross-platform app development.

It's an exciting time to be working with C# and .NET, especially if you want to
branch out from web development. The Unity game engine is now part of the .NET
foundation, and there are some interesting recent developments in Virtual Reality
(VR) or Augmented Reality (AR) hardware. For example, Microsoft Hololens,
Oculus Rift, Samsung Gear VR, and HTC Vive are all unbelievably better than the
basic VR that came out a couple of decades ago.

It's also a great time to be looking at IoT, which, while it may still be looking for its
killer app, has so much more cheap and powerful hardware available. A Raspberry
Pi Zero costs only $5 and it now supports an upgraded camera module. With a
computer such as the Raspberry Pi 3, which offers almost desktop class performance
for $35, anyone can now easily learn to code (perhaps in C# or .NET) and make

www.EBooksWorld.ir

http://dotnet.github.io/docs/core-concepts/libraries

things, especially children.

Following the wisdom of Alan Kay:

"The best way to predict the future is to invent it."

So, get out there and make it! And make sure that you share what you've done.

www.EBooksWorld.ir

Summary
We hope that you enjoyed this book and learned how to make your web applications
high-performing and easy to maintain, particularly when you use C#, ASP.NET Core
and .NET Core. We tried to keep as much advice as possible applicable to general
web app development, while gently introducing you to the latest open source
frameworks from Microsoft and others.

Clearly a topic such as this changes quite rapidly, so keep your eyes open online for
updates. There is an announcements repository on GitHub that is worth watching at
github.com/aspnet/announcements . Hopefully, a lot of the lessons in this book are
generally good ideas and they will still be sensible for a long time to come.

Always keep in mind that optimizing for its own sake is pointless, unless it's just an
academic exercise. You need to measure and weigh the benefits against the
downsides; otherwise, you may end up making things worse. It is easy to make things
more complex, harder to understand, difficult to maintain, or all of these.

It's important to instill these pragmatic performance ideas into team culture, or else
teams won't always adhere to them. However, above all, remember to still have fun!

www.EBooksWorld.ir

http://github.com/aspnet/announcements

Bibliography
This learning path has been prepared for you to explore ASP.NET and learn to use
them in your web applications.It comprises of the following Packt products:

Learning ASP.NET Core MVC, Mugilan T. S. Ragupathi
ASP.NET Core and Angular 2, Valerio De Sanctis
ASP.NET Core 1.0 High Performance, James Singleton

www.EBooksWorld.ir

	ASP.NET Core: Cloud-ready, Enterprise Web Application Development
	ASP.NET Core: Cloud-ready, Enterprise Web Application Development
	Credits
	Preface
	What this learning path covers
	What you need for this learning path
	Who this learning path is for
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Module 1
	1. Introduction to ASP.NET Core
	How web applications work
	So what is an HTTP protocol?
	Request-response pattern
	Stateless nature of HTTP
	Client-side and server-side
	HTTP methods
	GET method
	POST method
	What is ASP.NET?
	ASP.NET Web Forms
	ASP.NET Web Pages
	ASP.NET MVC
	Features of ASP.NET MVC
	Convention over configuration
	Separation of concerns
	Control over the generated HTML
	Better support for unit testing
	ASP.NET 5
	Features of ASP.NET 5
	Summary
	2. Setting Up the Environment
	Purpose of IDE
	Visual Studio offerings
	System requirements
	Visual Studio Community 2015
	Visual Studio Professional
	Visual Studio Enterprise
	Visual Studio Test Professional
	Installing Visual Studio Community
	Installing ASP.NET 5
	Project structure in ASP.NET 5 application
	File-based project
	Support for full .NET and .NET core
	The Project.json package
	Controllers
	Models
	Views
	Migrations
	The wwwroot folder
	Other files
	Summary
	3. Controllers
	Role of the Controller in ASP.NET MVC applications
	Introduction to routing
	Creating ASP.NET 5 application
	Installing the ASP.NET Core NuGet package in your application
	Our first Controller
	IActionResult
	Adding Views
	Adding Models
	Passing data from Controller to View
	Filters
	Authorization filters
	Resource filters
	Action filters
	Exception filters
	Result filters
	Summary
	4. Views
	The View engine and the Razor View engine
	Razor View engine
	Programming in Razor View engine
	Variables in Razor View
	The for loop
	The while loop
	The foreach loop
	The if condition
	Layout
	Creating _ViewStart.cshtml
	Creating _Layout.cshtml
	Adding a page-specific View
	Generating HTML
	HTML Helpers
	Partial View
	Calling the Partial View
	View components
	Creating a View component
	Tag Helpers
	Creating custom Tag Helpers
	Summary
	5. Models
	Models
	Models specific to a View component
	Note on ViewModels
	Data flow with respect to a Model
	Model binding
	The Entity Framework
	The Entity Framework is independent of ASP.NET MVC
	Creating console applications with the Entity Framework
	Installing the Entity Framework 7 NuGet package
	Using the NuGet Package Manager
	Using the Package Manager Console
	Installing Entity Framework commands
	Creating Model classes
	Creating the DbContext class
	Create a migration
	How the SaveChanges method works
	Updating the record
	Deleting the record
	Using the Entity Framework in ASP.NET MVC applications
	Database migration
	Summary
	6. Validation
	Client-side and server-side validation
	Server-side validation
	Updating View models with the Data Annotation attribute
	Updating the View model to display the validation error message
	Updating the controller action method to verify the model state
	Client-side validation
	Implementation
	Summary
	7. Routing
	Convention-based routing
	Example 1
	Example 2
	Example 3
	Example 4
	Attribute-based routing
	Route attribute at the controller level
	Passing routing values in HTTP action verbs in the Controller
	Route Constraints
	Summary
	8. Beautifying ASP.NET MVC Applications with Bootstrap
	Knowing HTML and CSS
	Bootstrap
	Bootstrap Grid system
	Forms
	Inline forms
	Horizontal forms
	Table CSS classes
	Striped tables
	Hover tables
	Bordered tables
	Contextual classes in table
	Buttons
	Button sizes
	Contextual colors
	Using Bootstrap in your ASP.NET MVC application
	Installing with Bower
	HTML doctype
	Summary
	9. Deployment of ASP.NET Core Application
	The project.json file
	The dependencies node
	The frameworks node
	Microsoft Azure
	Signing up to Microsoft Azure
	Prerequisites to Azure deployment
	Deploying the ASP.NET Core application in Azure
	Deploying the ASP.NET Core web application in the Linux environment
	Creating a Linux machine
	Installing the PuTTY client
	Installing of .NET Core in a Linux machine
	Creating a new ASP.NET 5 project
	Configuring the Nginx server
	Summary
	10. Building HTTP-based Web Services Using ASP.NET Web API
	HTTP basics
	HTTP verbs
	GET method
	PUT method
	POST method
	DELETE method
	Fiddler tool
	Dependency Injection
	Delete method
	The Web API method for deleting a resource
	Web Repository layer code for deleting the employee data
	Summary
	11. Improving Performance of an ASP.NET Core Application
	The UI layer
	Reducing the number of HTTP requests
	Using GZip compression
	Using the Content Delivery Network (CDN)
	Using JavaScript wherever possible
	Using CSS stylesheets
	Minification of JavaScript and CSS files and their combination
	The caching process
	Client-side caching
	Response caching
	The web/application layer
	No business logic in Views
	Using asynchronous logging
	The DB layer
	Understanding the queries generated by the ORM
	Using classic ADO.NET if you really want to
	Return only the required data
	Fine tuning the indices
	Using the correct column type and size for your database columns
	Avoiding correlated subqueries
	Generic performance improvement tips
	Avoiding the Response.Redirect method
	Using string builder
	Summary
	12. ASP.NET Core Identity
	Authentication
	Authorization
	Adding the relevant dependencies to the project.json file
	Adding ApplicationUser and ApplicationDbContext classes
	Configuring the application to use Identity
	Creating ViewModels
	Creating Controllers and associated action methods
	Creating Views
	E-mail and SMS services
	Securing an action method in a Controller
	Summary
	2. Module 2
	1. Getting Ready
	Two players one goal
	What's new in Angular 2?
	The ASP.NET Core revolution
	The field of choice – single-page application
	Common features of a competitive SPA
	Product owner expectations
	A sample single-page application project
	The vision
	Core requirements
	Preparing the workspace
	Setting up the project
	Package and resource managers
	Installing the packages
	NuGet and ASP.NET
	Project.json
	Startup.cs
	Testing the HTTP request pipeline
	Newtonsoft.Json
	JavaScript, TypeScript, or Dart?
	Adding the tsconfig.json file
	Introducing NPM
	Working with Gulp
	Dependent tasks
	Using Grunt instead of Gulp
	Adding Angular 2
	Using NPM
	Adding Typings
	Using a CDN
	Upgrading the typescriptServices.js file
	Setting up the client code
	The component file
	A word on components and modules
	The module file
	The bootstrap file
	The module loader configuration file
	Why use a dynamic module loader?
	The index.html file
	First run
	Caching issues
	The new ASP.NET Core configuration pattern
	A faster alternative using scaffolding tools
	The reasons to say no (not yet)
	A quick scaffolding sample
	References
	Suggested topics
	Summary
	2. ASP.NET Controllers and Server-Side Routes
	Data flow
	The role of the ViewModel
	Our first Controller
	The ItemViewModel
	The ItemsController
	Understanding routes
	Defining routing
	Routing through the ages
	Handling routes in ASP.NET Core
	Convention-based routing
	Attribute-based routing
	Three choices to route them all
	Adding more routes
	The dummy data provider
	Dealing with single items
	Suggested topics
	Summary
	3. Angular 2 Components and Client-Side Routing
	Master-detail binding
	The Item class
	The ItemService class
	The ItemListComponent class
	A quick implementation test
	The ItemDetailComponent class
	Adding the @angular/forms library
	Updating the root module
	Connecting the dots
	Testing it up
	Adding additional lists
	Multiple component instances
	Two-way data binding
	Disabling two-way data binding
	Client-side routing
	Adding the @angular/router library
	PathLocationStrategy versus HashLocationStrategy
	Refactoring our app
	Adding the AppRouting scheme
	Adding the HomeComponent
	Adding new components
	AboutComponent
	LoginComponent
	PageNotFoundComponent
	Updating the root module
	Revising the master-detail strategy
	Adding the ItemDetail route
	Changing the ItemListComponent
	Updating the ItemDetailComponent
	Full routing test
	Handling rewrites in ASP.NET Core
	Showing the issue
	Understanding the causes
	Implementing the fix
	Validating the outcome
	Suggested topics
	Summary
	4. The Data Model
	Getting ready
	Installing the EntityFramework Core
	Data modeling approaches
	The model-first approach
	Pros
	Cons
	The database-first approach
	Pros
	Cons
	The code-first approach
	Pros
	Cons
	Making a choice
	Creating entities
	Items
	Comments
	Users
	Defining relationships
	Setting up DbContext
	Database initialization strategies
	Choosing the database engine
	Updating appsettings.json
	Creating the database
	Updating Startup.cs
	Configuring the EF tools
	Adding the initial migration
	Understanding migrations
	Implementing a data seed strategy
	Creating a DbSeeder class
	Private members
	Constructor
	Public methods
	Seed methods
	Utility methods
	Adding the DbSeeder to Startup.cs
	Handling exceptions
	Seeding the database
	Updating the ItemsController
	Installing TinyMapper
	Implementing the mapping
	Testing the data provider
	Suggested topics
	Summary
	5. Persisting Changes
	Add, update, and delete items
	Updating the Web API
	Adapting the client
	Improving the ItemService
	Updating the GUI
	Add new
	Update and Delete
	Testing it out
	Adding a new test
	Update test
	Delete test
	Splitting the ItemDetail component
	Adding the ItemDetailView component
	Refactoring ItemDetail into ItemDetailEdit
	Updating the Root module
	Updating the Routes
	Tracking the outdated references
	Implementing the tab menu
	Template
	Class code
	Styles
	Testing it out
	Suggested topics
	Summary
	6. Applying Styles
	How bad is it, doc?
	Introducing LESS
	Style sheet languages
	CSS
	CSS code sample
	What is LESS and why to use it
	Variables
	Import directives
	Nested selectors
	Mixins
	Extend pseudo-class
	LESS docs and support
	Systematically Awesome Style Sheets, Stylus, and other alternatives
	Configuring LESS
	Adding the LESS file
	Updating Gulp script
	Linking the stylesheet
	Testing it up
	DIY versus framework-based styling
	Do it yourself approach
	Pros
	Cons
	Framework-based approach
	Pros
	Cons
	Conclusions
	Adding Bootstrap
	Choosing a native directives module
	Installing ng2-bootstrap
	Applying styles
	Main navigation bar
	Detecting the active route
	Welcome View
	Item Detail View
	Display mode
	Edit mode
	Conclusions
	Suggested topics
	Summary
	7. Authentication and Authorization
	Do we really need these?
	Authentication
	Third-party authentication
	Authorization
	Third-party authorization
	Proprietary or third-party?
	Choosing an authentication mode
	Installing AspNetCore.Identity
	Adding the package
	Updating the project classes
	ApplicationDbContext.cs
	ApplicationUser.cs
	Startup.cs
	DbSeeder.cs
	Updating the database
	Authentication methods
	Sessions
	Tokens
	Signatures
	Two-factor
	Conclusions
	Implementing JSON web token authentication
	JWT provider
	Private members
	Static members
	Constructor
	Public methods
	Private methods
	Extension methods
	Full source code
	Adding the middleware to the pipeline
	Angular 2 login form
	Adding styles
	Updating the root module file
	UI and validation test
	AuthService component
	Updating the AppModule
	Updating the LoginComponent
	Login test
	AuthHttp wrapper
	Adding authorization rules
	Adapting the client
	Testing the client
	Protecting the server
	Retrieving the user ID
	Authorization test
	Suggested topics
	Summary
	8. Third-Party Authentication and External Providers
	Introducing OpenID connect servers
	Installing OpenIddict
	Adding MyGet to the package sources
	Installing the OpenIddict package
	Updating ApplicationUser and ApplicationDbContext
	Adding a new migration
	Updating the DbSeeder
	Moving literal values to appsettings.json
	Configuring the Startup class
	Updating the Web.Config rewrite rules
	Seeding the database
	External authentication providers
	OAuth2 authorization flow
	Facebook
	Creating a Facebook App
	Storing the keys in App settings
	Adding the Facebook middleware
	Adding the AccountsController
	BaseController
	AccountsController
	Namespaces
	Class declaration
	Constructor
	ExternalLogin
	ExternalLoginCallBack
	Logout
	Updating the ItemsController
	Configuring the client
	Updating the LoginComponent
	Updating the AuthService
	Updating the AppComponent
	Understanding zones
	Testing it out
	Google
	Twitter
	Elevated permissions request
	Troubleshooting
	Conclusions
	Suggested topics
	Summary
	9. User Registration and Account Edit
	User Registration
	UserViewModel
	AccountsController
	Get
	Add
	E-mail confirmation
	Update
	Delete
	User class
	AuthService
	UserEditComponent
	Connecting the dots
	Updating the root module
	Implementing the route
	Adding the Register link
	Defining the styles
	Updating the menu
	Testing it out
	Edit Account
	Two routes, one component
	Adapting the UserEditComponent
	Updating the navigation menu
	Adding styles
	Final test
	Conclusions
	Suggested topics
	Summary
	10. Finalization and Deployment
	Switching to SQL Server
	Installing SQL Server 2016 Express
	Installing SQL Server Management Studio
	Configuring the database
	Changing the authentication mode
	Adding the OpenGameList database
	Adding the OpenGameList login
	Mapping the login to the database
	Adding a SQL Server connection string
	Creating an application settings file for production
	Updating AppSettings
	Updating external providers
	Configuring the publishOptions
	Checking the Startup class
	Updating the launchSettings.json
	Publishing our native web application
	Creating a Publish profile
	File System Publish profile
	FTP Publish profile
	Configuring IIS
	Installing the ASP.NET Core module for IIS
	Adding the website
	Configuring the Application Pool
	Firing up the engine
	Troubleshooting
	The Kestrel test
	Suggested topics
	Summary
	3. Module 3
	1. Why Performance Is a Feature
	Performance as a feature
	Common classes of performance problems
	Language considerations
	Types of performance problems
	When performance matters
	Slower is sometimes better
	Why issues are missed
	Measuring
	The benefits of planning ahead
	Understanding hardware
	Storage access speeds
	Scaling approach changes
	Tools and costs
	Tools
	Looking at some alternative tools
	The new .NET
	Summary
	2. Measuring Performance Bottlenecks
	Tools
	SQL
	SQL Server Profiler
	Executing a simple query
	MiniProfiler
	Application profiling
	Glimpse
	Using Glimpse
	IDE
	Monitoring HTTP
	Browsers
	Chrome
	Firefox
	Fiddler
	Network
	Microsoft Message Analyzer
	Wireshark
	Roll your own
	Science
	Repeatability
	Only change one thing
	Summary
	3. Fixing Common Performance Problems
	Latency
	Asynchronous operations
	Simple asynchronous tools
	Background queuing
	Hangfire
	Select N+1 problems
	Efficient paging
	Static site generators
	Pragmatic solutions with hardware
	A desktop example
	Web applications
	Oversized images
	Image resolution
	Image format
	Summary
	4. Addressing Network Performance
	Internet protocols
	TCP/IP
	Slow-start
	HTTP
	Headers
	HTTP methods
	Status codes
	Encryption
	Key exchange
	Delay diagnostics
	Performance tweaks
	HTTP/2
	WebSockets
	Compression
	Lossless compression algorithms
	Bundling and minification
	Bundling
	Minification
	Changes in ASP.NET Core
	Image optimization
	PNG
	JPEG
	Other image formats
	Resizing images
	Caching
	Browser
	Server
	Proxy servers between you and your users
	CDNs
	Summary
	5. Optimizing I/O Performance
	Input/output
	Categories of I/O
	Disks
	Virtual file systems
	Databases
	APIs
	Network diagnostics tools
	Ping
	Tracert
	Nslookup
	Build your own
	Solutions
	Batching API requests
	Efficient DB operations
	Database tuning
	Reporting
	Aggregates
	Sampling
	Inserting data
	GUIDs
	Advanced DB topics
	Simulation and testing
	Summary
	6. Understanding Code Execution and Asynchronous Operations
	Getting started with the core projects
	.NET Core
	ASP.NET Core
	Kestrel
	Data structures
	Lists
	Dictionaries
	Collection benchmarks
	Bloom filters
	Hashing and checksums
	Hashing benchmarks
	Serialization
	SIMD CPU instructions
	Parallel programming
	Task Parallel Library
	Parallel LINQ
	Parallel benchmarking
	Parallel programming limitations
	Practices to avoid
	Reflection
	Regular expressions
	String concatenation in tight loops
	Dynamic typing
	Synchronous operations
	Exceptions
	Summary
	7. Learning Caching and Message Queuing
	Why caching is hard
	Web caching
	Caching background
	HTTP headers
	Cache busting
	Service workers
	Service worker example
	Web and proxy servers
	IIS
	Varnish
	Working with a content delivery network
	When not to cache
	Application layer caching
	Redis
	Database result set caching
	Message queuing
	Coffee shop analogy
	Message queuing styles
	Common messaging patterns
	Unicast
	Pub/sub
	RabbitMQ
	Queuing frameworks and libraries
	Summary
	8. The Downsides of Performance-Enhancing Tools
	Managing complexity
	Understanding complexity
	Complexity reduction
	Frameworks
	Architecture
	Monolith versus microservices
	Architecture comparison
	Refactoring
	A culture of high performance
	A blameless culture
	Intellectual dishonesty
	Slow down to go faster
	From the ground up
	Shared values
	The price of performance
	Distributed debugging
	Logging
	Error logging
	Application Insights
	Integrated logging
	Centralized logging
	Statistics
	Managing stale caches
	Summary
	9. Monitoring Performance Regressions
	Profiling and measurement
	Testing
	Automated testing
	Continuous integration
	Slow testing
	Fixing performance regressions
	Load testing
	Realism
	Realistic environments
	Realistic workloads
	Feature switching
	Experimenting for science
	A/B testing
	User interface testing
	Web UI testing tools
	Automating UI performance tests
	Staying alert
	DevOps
	DevOps tooling
	Provisioning
	Monitoring
	Hosting
	Summary
	10. The Way Ahead
	Reviewing what we learned
	Further reading
	Going native
	Processor architecture
	Hardware is hard
	Machine learning
	Big data and MapReduce
	Orleans
	Custom transports
	Advanced hashing
	Library and framework support
	The future
	Summary
	Bibliography

