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Preface

Writing the Bitcoin Book

I first stumbled upon bitcoin in mid-2011. My immediate reaction was more or less
“Pfft! Nerd money!” and I ignored it for another six months, failing to grasp its
importance. This is a reaction that I have seen repeated among many of the smartest
people I know, which gives me some consolation. The second time I came across bit-
coin, in a mailing list discussion, I decided to read the whitepaper written by Satoshi
Nakamoto to study the authoritative source and see what it was all about. I still
remember the moment I finished reading those nine pages, when I realized that bit-
coin was not simply a digital currency, but a network of trust that could also provide
the basis for so much more than just currencies. The realization that “this isn’t money;,
it's a decentralized trust network,” started me on a four-month journey to devour
every scrap of information about bitcoin I could find. I became obsessed and enthral-
led, spending 12 or more hours each day glued to a screen, reading, writing, coding,
and learning as much as I could. I emerged from this state of fugue, more than 20
pounds lighter from lack of consistent meals, determined to dedicate myself to work-
ing on bitcoin.

Two years later, after creating a number of small startups to explore various bitcoin-
related services and products, I decided that it was time to write my first book. Bit-
coin was the topic that had driven me into a frenzy of creativity and consumed my
thoughts; it was the most exciting technology I had encountered since the internet. It
was now time to share my passion about this amazing technology with a broader
audience.

Intended Audience

This book is mostly intended for coders. If you can use a programming language, this
book will teach you how cryptographic currencies work, how to use them, and how
to develop software that works with them. The first few chapters are also suitable as

xXiii
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an in-depth introduction to bitcoin for noncoders—those trying to understand the
inner workings of bitcoin and cryptocurrencies.

Why Are There Bugs on the Cover?

The leafcutter ant is a species that exhibits highly complex behavior in a colony
super-organism, but each individual ant operates on a set of simple rules driven by
social interaction and the exchange of chemical scents (pheromones). Per Wikipedia:
“Next to humans, leafcutter ants form the largest and most complex animal societies
on Earth” Leafcutter ants don’t actually eat leaves, but rather use them to farm a fun-
gus, which is the central food source for the colony. Get that? These ants are farming!

Although ants form a caste-based society and have a queen for producing offspring,
there is no central authority or leader in an ant colony. The highly intelligent and
sophisticated behavior exhibited by a multimillion-member colony is an emergent
property from the interaction of the individuals in a social network.

Nature demonstrates that decentralized systems can be resilient and can produce
emergent complexity and incredible sophistication without the need for a central
authority, hierarchy, or complex parts.

Bitcoin is a highly sophisticated decentralized trust network that can support myriad
financial processes. Yet, each node in the bitcoin network follows a few simple mathe-
matical rules. The interaction between many nodes is what leads to the emergence of
the sophisticated behavior, not any inherent complexity or trust in any single node.
Like an ant colony, the bitcoin network is a resilient network of simple nodes follow-
ing simple rules that together can do amazing things without any central coordina-
tion.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

xiv | Preface
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Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip or suggestion.

This icon signifies a general note.

This icon indicates a warning or caution.

Code Examples

The examples are illustrated in Python, C++, and using the command line of a Unix-
like operating system such as Linux or macOS. All code snippets are available in the
Github repository (https://github.com/bitcoinbook/bitcoinbook) in the code subdirec-
tory of the main repo. Fork the book code, try the code examples, or submit correc-
tions via GitHub.

All the code snippets can be replicated on most operating systems with a minimal
installation of compilers and interpreters for the corresponding languages. Where
necessary, we provide basic installation instructions and step-by-step examples of the
output of those instructions.

Some of the code snippets and code output have been reformatted for print. In all
such cases, the lines have been split by a backslash (\) character, followed by a newline
character. When transcribing the examples, remove those two characters and join the
lines again and you should see identical results as shown in the example.

All the code snippets use real values and calculations where possible, so that you can
build from example to example and see the same results in any code you write to cal-
culate the same values. For example, the private keys and corresponding public keys
and addresses are all real. The sample transactions, blocks, and blockchain references
have all been introduced in the actual bitcoin blockchain and are part of the public
ledger, so you can review them on any bitcoin system.

Preface | xv
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Using Code Examples

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Mastering Bitcoin by Andreas M.
Antonopoulos  (O'Reilly). Copyright 2017 Andreas M. Antonopoulos,
978-1-491-95438-6”

Some editions of this book are offered under an open source license, such as CC-BY-
NC, in which case the terms of that license apply.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Bitcoin Addresses and Transactions in This Book

The bitcoin addresses, transactions, keys, QR codes, and blockchain data used in this
book are, for the most part, real. That means you can browse the blockchain, look at
the transactions offered as examples, retrieve them with your own scripts or pro-
grams, etc.

However, note that the private keys used to construct addresses are either printed in
this book, or have been “burned” That means that if you send money to any of these
addresses, the money will either be lost forever, or in some cases everyone who can
read the book can take it using the private keys printed in here.

DO NOT SEND MONEY TO ANY OF THE ADDRESSES IN
THIS BOOK. Your money will be taken by another reader, or lost
forever.

xvi | Preface
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0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
‘ NC training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O'Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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Contacting the Author

You can contact me, Andreas M. Antonopoulos, on my personal site: https://antono
poulos.com/

Information about Mastering Bitcoin as well as the Open Edition and translations are
available on: https://bitcoinbook.info/

Follow me on Facebook: https://facebook.com/AndreasMAntonopoulos
Follow me on Twitter: https://twitter.com/aantonop
Follow me on Linkedin: https://linkedin.com/company/aantonop

Many thanks to all my patrons who support my work through monthly donations.
You can follow my Patreon page here: https://patreon.com/aantonop
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Quick Glossary

This quick glossary contains many of the terms used in relation to bitcoin. These
terms are used throughout the book, so bookmark this for a quick reference.

address
A Dbitcoin address looks like 1DSrfJdB2AnWaFNgSbv3MzZC2m74996]afV. It consists
of a string of letters and numbers. It’s really an encoded base58check version of a
public key 160-bit hash. Just like you ask others to send an email to your email
address, you would ask others to send you bitcoin to one of your bitcoin
addresses.

bip
Bitcoin Improvement Proposals. A set of proposals that members of the bitcoin
community have submitted to improve bitcoin. For example, BIP-21 is a pro-
posal to improve the bitcoin uniform resource identifier (URI) scheme.

bitcoin
The name of the currency unit (the coin), the network, and the software.

block
A grouping of transactions, marked with a timestamp, and a fingerprint of the
previous block. The block header is hashed to produce a proof of work, thereby
validating the transactions. Valid blocks are added to the main blockchain by net-
work consensus.

blockchain
A list of validated blocks, each linking to its predecessor all the way to the genesis
block.

Byzantine Generals Problem
A reliable computer system must be able to cope with the failure of one or more
of its components. A failed component may exhibit a type of behavior that is
often overlooked—namely, sending conflicting information to different parts of
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the system. The problem of coping with this type of failure is expressed abstractly
as the Byzantine Generals Problem.

coinbase
A special field used as the sole input for coinbase transactions. The coinbase
allows claiming the block reward and provides up to 100 bytes for arbitrary data.
Not to be confused with Coinbase transaction.

coinbase transaction
The first transaction in a block. Always created by a miner, it includes a single
coinbase. Not to be confused with Coinbase.

cold storage
Refers to keeping a reserve of bitcoin offline. Cold storage is achieved when Bit-
coin private keys are created and stored in a secure offline environment. Cold
storage is important for anyone with bitcoin holdings. Online computers are vul-
nerable to hackers and should not be used to store a significant amount of bit-
coin.

colored coins
An open source Bitcoin 2.0 protocol that enables developers to create digital
assets on top of bitcoin blockchain utilizing its functionalities beyond currency.

confirmations
Once a transaction is included in a block, it has one confirmation. As soon as
another block is mined on the same blockchain, the transaction has two confir-
mations, and so on. Six or more confirmations is considered sufficient proof that
a transaction cannot be reversed.

consensus
When several nodes, usually most nodes on the network, all have the same blocks
in their locally-validated best block chain. Not to be confused with consensus
rules.

consensus rules
The block validation rules that full nodes follow to stay in consensus with other
nodes. Not to be confused with consensus.

difficulty
A network-wide setting that controls how much computation is required to pro-

duce a proof of work.

difficulty retargeting
A network-wide recalculation of the difficulty that occurs once every 2,016
blocks and considers the hashing power of the previous 2,016 blocks.
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difficulty target
A difficulty at which all the computation in the network will find blocks approxi-
mately every 10 minutes.

double spending
Double spending is the result of successfully spending some money more than
once. Bitcoin protects against double spending by verifying each transaction
added to the block chain to ensure that the inputs for the transaction had not
previously already been spent.

ECDSA
Elliptic Curve Digital Signature Algorithm or ECDSA is a cryptographic algo-
rithm used by Bitcoin to ensure that funds can only be spent by their rightful
owners.

extra nonce
As difficulty increased, miners often cycled through all 4 billion values of the
nonce without finding a block. Because the coinbase script can store between 2
and 100 bytes of data, miners started using that space as extra nonce space, allow-

ing them to explore a much larger range of block header values to find valid
blocks.

fees

The sender of a transaction often includes a fee to the network for processing the
requested transaction. Most transactions require a minimum fee of 0.5 mBTC.

fork
Fork, also known as accidental fork, occurs when two or more blocks have the
same block height, forking the block chain. Typically occurs when two or more
miners find blocks at nearly the same time. Can also happen as part of an attack.

genesis block
The first block in the blockchain, used to initialize the cryptocurrency.

hard fork
Hard fork, also known as Hard-Forking Change, is a permanent divergence in
the blockchain, commonly occurs when non-upgraded nodes can’t validate
blocks created by upgraded nodes that follow newer consensus rules. Not to be
confused with fork, soft fork, software fork or Git fork.

hardware wallet
A hardware wallet is a special type of bitcoin wallet which stores the user’s private
keys in a secure hardware device.

hash
A digital fingerprint of some binary input.

Quick Glossary | xxv

www.EBookswWorld.ir



hashlocks
A hashlock is a type of encumbrance that restricts the spending of an output until
a specified piece of data is publicly revealed. Hashlocks have the useful property
that once any hashlock is opened publicly, any other hashlock secured using the
same key can also be opened. This makes it possible to create multiple outputs
that are all encumbered by the same hashlock and which all become spendable at
the same time.

HD protocol
The Hierarchical Deterministic (HD) key creation and transfer protocol (BIP32),
which allows creating child keys from parent keys in a hierarchy.

HD wallet
Wallets using the Hierarchical Deterministic (HD Protocol) key creation and
transfer protocol (BIP32).

HD wallet seed
HD wallet seed or root seed is a potentially-short value used as a seed to generate
the master private key and master chain code for an HD wallet.

HTLC
A Hashed TimeLock Contract or HTLC is a class of payments that use hashlocks
and timelocks to require that the receiver of a payment either acknowledge
receiving the payment prior to a deadline by generating cryptographic proof of
payment or forfeit the ability to claim the payment, returning it to the payer.

KYC
Know your customer (KYC) is the process of a business, identifying and verify-
ing the identity of its clients. The term is also used to refer to the bank regulation
which governs these activities.

LevelDB
LevelDB is an open source on-disk key-value store. LevelDB is a light-weight,
single-purpose library for persistence with bindings to many platforms.

Lightning Networks
Lightning Network is a proposed implementation of Hashed Timelock Contracts
(HTLCs) with bi-directional payment channels which allows payments to be
securely routed across multiple peer-to-peer payment channels. This allows the
formation of a network where any peer on the network can pay any other peer
even if they don’t directly have a channel open between each other.

Locktime
Locktime, or more technically nLockTime, is the part of a transaction which
indicates the earliest time or earliest block when that transaction may be added to
the block chain.

xxvi | Quick Glossary

www.EBookswWorld.ir



mempool
The bitcoin Mempool (memory pool) is a collection of all transaction data in a
block that have been verified by bitcoin nodes, but are not yet confirmed.

merkle root
The root node of a merkle tree, a descendant of all the hashed pairs in the tree.
Block headers must include a valid merkle root descended from all transactions
in that block.

merkle tree
A tree constructed by hashing paired data (the leaves), then pairing and hashing
the results until a single hash remains, the merkle root. In Bitcoin, the leaves are
almost always transactions from a single block.

miner
A network node that finds valid proof of work for new blocks, by repeated hash-
ing.

multisignature
Multisignature (multisig) refers to requiring more than one key to authorize a
bitcoin transaction.

network
A peer-to-peer network that propagates transactions and blocks to every bitcoin
node on the network.

nonce
The “nonce” in a bitcoin block is a 32-bit (4-byte) field whose value is set so that
the hash of the block will contain a run of leading zeros. The rest of the fields
may not be changed, as they have a defined meaning.

off-chain transactions
An off-chain transaction is the movement of value outside of the block chain.
While an on-chain transaction—usually referred to as simply a transaction—
modifies the blockchain and depends on the blockchain to determine its validity
an off-chain transaction relies on other methods to record and validate the trans-
action.

opcode
Operation codes from the Bitcoin Script language which push data or perform
functions within a pubkey script or signature script.

Open Assets protocol
The Open Assets Protocol is a simple and powerful protocol built on top of the
bitcoin blockchain. It allows issuance and transfer of user-created assets. The
Open Assets protocol is an evolution of the concept of colored coins.
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OP_RETURN
An opcode used in one of the outputs in an OP_RETURN transaction. Not to be
confused with OP_RETURN transaction.

OP_RETURN transaction
A transaction type relayed and mined by default in Bitcoin Core 0.9.0 and later
that adds arbitrary data to a provably unspendable pubkey script that full nodes
don’t have to store in their UTXO database. Not to be confused with
OP_RETURN opcode.

orphan block
Blocks whose parent block has not been processed by the local node, so they can’t
be fully validated yet.

orphan transactions
Transactions that can’t go into the pool due to one or more missing input trans-
actions.

output
Output, transaction output, or TxOut is an output in a transaction which con-
tains two fields: a value field for transferring zero or more satoshis and a pubkey
script for indicating what conditions must be fulfilled for those satoshis to be fur-
ther spent.

P2PKH
Transactions that pay a bitcoin address contain P2PKH or Pay To PubKey Hash
scripts. An output locked by a P2PKH script can be unlocked (spent) by present-
ing a public key and a digital signature created by the corresponding private key.

P2SH
P2SH or Pay-to-Script-Hash is a powerful new type of transaction that greatly
simplifies the use of complex transaction scripts. With P2SH the complex script
that details the conditions for spending the output (redeem script) is not presen-
ted in the locking script. Instead, only a hash of it is in the locking script.

P2SH address
P2SH addresses are Base58Check encodings of the 20-byte hash of a script, P2SH
addresses use the version prefix “5” which results in Base58Check-encoded
addresses that start with a “3”. P2SH addresses hide all of the complexity, so that
the person making a payment does not see the script.

P2WPKH
The signature of a P2ZWPKH (Pay-to-Witness-Public-Key-Hash) contains the
same information as a P2PKH spending, but is located in the witness field
instead of the scriptSig field. The scriptPubKey is also modified.
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P2WSH
The difference between P2SH and P2WSH (Pay-to-Witness-Script-Hash) is
about the cryptographic proof location change from the scriptSig field to the wit-
ness field and the scriptPubKey that is also modified.

paper wallet
In the most specific sense, a paper wallet is a document containing all of the data
necessary to generate any number of Bitcoin private keys, forming a wallet of
keys. However, people often use the term to mean any way of storing bitcoin off-
line as a physical document. This second definition also includes paper keys and
redeemable codes.

payment channels
A micropayment channel or payment channel is class of techniques designed to
allow users to make multiple bitcoin transactions without committing all of the
transactions to the bitcoin blockchain. In a typical payment channel, only two
transactions are added to the block chain but an unlimited or nearly unlimited
number of payments can be made between the participants.

pooled mining
Pooled mining is a mining approach where multiple generating clients contribute
to the generation of a block, and then split the block reward according the con-
tributed processing power.

Proof-of-Stake
Proof-of-Stake (PoS) is a method by which a cryptocurrency blockchain network
aims to achieve distributed consensus. Proof-of-Stake asks users to prove owner-
ship of a certain amount of currency (their “stake” in the currency).

Proof-of-Work
A piece of data that requires significant computation to find. In bitcoin, miners
must find a numeric solution to the SHA256 algorithm that meets a network-
wide target, the difficulty target.

reward
An amount included in each new block as a reward by the network to the miner
who found the Proof-of-Work solution. It is currently 12.5 BTC per block.

RIPEMD-160
RIPEMD-160 is a 160-bit cryptographic hash function. RIPEMD-160 is a
strengthened version of RIPEMD with a 160-bit hash result, and is expected to be
secure for the next ten years or more.
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satoshi
A satoshi is the smallest denomination of bitcoin that can be recorded on the
blockchain. It is the equivalent of 0.00000001 bitcoin and is named after the crea-
tor of Bitcoin, Satoshi Nakamoto.

Satoshi Nakamoto
Satoshi Nakamoto is the name used by the person or people who designed Bit-
coin and created its original reference implementation, Bitcoin Core. As a part of
the implementation, they also devised the first blockchain database. In the pro-
cess they were the first to solve the double spending problem for digital currency.
Their real identity remains unknown.

Script
Bitcoin uses a scripting system for transactions. Forth-like, Script is simple,
stack-based, and processed from left to right. It is purposefully not Turing-
complete, with no loops.

ScriptPubKey (aka pubkey script)
ScriptPubKey or pubkey script, is a script included in outputs which sets the con-
ditions that must be fulfilled for those satoshis to be spent. Data for fulfilling the
conditions can be provided in a signature script.

ScriptSig (aka signature script)
ScriptSig or signature script, is the data generated by a spender which is almost
always used as variables to satisfy a pubkey script.

secret key (aka private key)
The secret number that unlocks bitcoin sent to the corresponding address.
A secret key looks like the following:

5J76sF8L5jTtzE96r66Sf8ckady44wdpIjMwCxR3tzLh31bVPxh

Segregated Witness
Segregated Witness is a proposed upgrade to the Bitcoin protocol which techno-
logical innovation separates signature data from bitcoin transactions. Segregated
Witness is a proposed soft fork; a change that technically makes Bitcoin’s proto-
col rules more restrictive.

SHA
The Secure Hash Algorithm or SHA is a family of cryptographic hash functions
published by the National Institute of Standards and Technology (NIST).

simplified payment verification (SPV)
SPV or simplified payment verification is a method for verifying particular trans-
actions were included in a block without downloading the entire block. The
method is used by some lightweight Bitcoin clients.
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soft fork

soft fork or Soft-Forking Change is a temporary fork in the blockchain which
commonly occurs when miners using non-upgraded nodes don’t follow a new
consensus rule their nodes don’t know about. Not to be confused with fork, hard
fork, software fork or Git fork.

stale block
Block which were successfully mined but which isn’t included on the current best
block chain, likely because some other block at the same height had its chain
extended first.

timelocks
A timelock is a type of encumbrance that restricts the spending of some bitcoin
until a specified future time or block height. Timelocks feature prominently in
many Bitcoin contracts, including payment channels and hashed timelock con-
tracts.

transaction
In simple terms, a transfer of bitcoin from one address to another. More pre-
cisely, a transaction is a signed data structure expressing a transfer of value.
Transactions are transmitted over the bitcoin network, collected by miners, and
included into blocks, made permanent on the blockchain.

transaction pool
An unordered collection of transactions that are not in blocks in the main chain,
but for which we have input transactions.

Turing completeness
A program language is called “Turing complete,” if that it can run any program
that a Turing machine can run given enough time and memory.

unspent transaction output (UTXO)
UTXO is an unspent transaction output that can be spent as an input in a new
transaction.

wallet
Software that holds all your bitcoin addresses and secret keys. Use it to send,
receive, and store your bitcoin.

Wallet Import Format (WIF)
WIF or Wallet Import Format is a data interchange format designed to allow
exporting and importing a single private key with a flag indicating whether or
not it uses a compressed public key.

Some contributed definitions have been sourced under a CC-BY license from the bit-
coin Wiki or from other open source documentation sources.
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CHAPTER1
Introduction

What Is Bitcoin?

Bitcoin is a collection of concepts and technologies that form the basis of a digital
money ecosystem. Units of currency called bitcoin are used to store and transmit
value among participants in the bitcoin network. Bitcoin users communicate with
each other using the bitcoin protocol primarily via the internet, although other trans-
port networks can also be used. The bitcoin protocol stack, available as open source
software, can be run on a wide range of computing devices, including laptops and
smartphones, making the technology easily accessible.

Users can transfer bitcoin over the network to do just about anything that can be
done with conventional currencies, including buy and sell goods, send money to peo-
ple or organizations, or extend credit. Bitcoin can be purchased, sold, and exchanged
for other currencies at specialized currency exchanges. Bitcoin in a sense is the per-
fect form of money for the internet because it is fast, secure, and borderless.

Unlike traditional currencies, bitcoin are entirely virtual. There are no physical coins
or even digital coins per se. The coins are implied in transactions that transfer value
from sender to recipient. Users of bitcoin own keys that allow them to prove owner-
ship of bitcoin in the bitcoin network. With these keys they can sign transactions to
unlock the value and spend it by transferring it to a new owner. Keys are often stored
in a digital wallet on each user’s computer or smartphone. Possession of the key that
can sign a transaction is the only prerequisite to spending bitcoin, putting the control
entirely in the hands of each user.

Bitcoin is a distributed, peer-to-peer system. As such there is no “central” server or
point of control. Bitcoin are created through a process called “mining,” which
involves competing to find solutions to a mathematical problem while processing bit-
coin transactions. Any participant in the bitcoin network (i.e., anyone using a device

www.EBookswWorld.ir



running the full bitcoin protocol stack) may operate as a miner, using their comput-
er’s processing power to verify and record transactions. Every 10 minutes, on average,
a bitcoin miner is able to validate the transactions of the past 10 minutes and is
rewarded with brand new bitcoin. Essentially, bitcoin mining decentralizes the
currency-issuance and clearing functions of a central bank and replaces the need for
any central bank.

The bitcoin protocol includes built-in algorithms that regulate the mining function
across the network. The difficulty of the processing task that miners must perform is
adjusted dynamically so that, on average, someone succeeds every 10 minutes regard-
less of how many miners (and how much processing) are competing at any moment.
The protocol also halves the rate at which new bitcoin are created every 4 years, and
limits the total number of bitcoin that will be created to a fixed total just below 21
million coins. The result is that the number of bitcoin in circulation closely follows an
easily predictable curve that approaches 21 million by the year 2140. Due to bitcoin’s
diminishing rate of issuance, over the long term, the bitcoin currency is deflationary.
Furthermore, bitcoin cannot be inflated by “printing” new money above and beyond
the expected issuance rate.

Behind the scenes, bitcoin is also the name of the protocol, a peer-to-peer network,
and a distributed computing innovation. The bitcoin currency is really only the first
application of this invention. Bitcoin represents the culmination of decades of
research in cryptography and distributed systems and includes four key innovations
brought together in a unique and powerful combination. Bitcoin consists of:

o A decentralized peer-to-peer network (the bitcoin protocol)
o A public transaction ledger (the blockchain)

« A set of rules for independent transaction validation and currency issuance (con-
sensus rules)

o A mechanism for reaching global decentralized consensus on the valid block-
chain (Proof-of-Work algorithm)

As a developer, I see bitcoin as akin to the internet of money, a network for propagat-
ing value and securing the ownership of digital assets via distributed computation.
There’s a lot more to bitcoin than first meets the eye.

In this chapter we'll get started by explaining some of the main concepts and terms,
getting the necessary software, and using bitcoin for simple transactions. In following
chapters we'll start unwrapping the layers of technology that make bitcoin possible
and examine the inner workings of the bitcoin network and protocol.
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Digital Currencies Before Bitcoin

The emergence of viable digital money is closely linked to developments in cryptog-
raphy. This is not surprising when one considers the fundamental challenges involved
with using bits to represent value that can be exchanged for goods and services. Three
basic questions for anyone accepting digital money are:

1. Can I trust that the money is authentic and not counterfeit?

2. Can I trust that the digital money can only be spent once (known as the “double-
spend” problem)?

3. Can I be sure that no one else can claim this money belongs to them and not me?

Issuers of paper money are constantly battling the counterfeiting problem by using
increasingly sophisticated papers and printing technology. Physical money addresses
the double-spend issue easily because the same paper note cannot be in two places at
once. Of course, conventional money is also often stored and transmitted digitally. In
these cases, the counterfeiting and double-spend issues are handled by clearing all
electronic transactions through central authorities that have a global view of the cur-
rency in circulation. For digital money, which cannot take advantage of esoteric inks
or holographic strips, cryptography provides the basis for trusting the legitimacy of a
user’s claim to value. Specifically, cryptographic digital signatures enable a user to
sign a digital asset or transaction proving the ownership of that asset. With the appro-
priate architecture, digital signatures also can be used to address the double-spend
issue.

When cryptography started becoming more broadly available and understood in the
late 1980s, many researchers began trying to use cryptography to build digital curren-
cies. These early digital currency projects issued digital money, usually backed by a
national currency or precious metal such as gold.

Although these earlier digital currencies worked, they were centralized and, as a
result, were easy to attack by governments and hackers. Early digital currencies used a
central clearinghouse to settle all transactions at regular intervals, just like a tradi-
tional banking system. Unfortunately, in most cases these nascent digital currencies
were targeted by worried governments and eventually litigated out of existence. Some
failed in spectacular crashes when the parent company liquidated abruptly. To be
robust against intervention by antagonists, whether legitimate governments or crimi-
nal elements, a decentralized digital currency was needed to avoid a single point of
attack. Bitcoin is such a system, decentralized by design, and free of any central
authority or point of control that can be attacked or corrupted.

What Is Bitcoin? |
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History of Bitcoin

Bitcoin was invented in 2008 with the publication of a paper titled “Bitcoin: A Peer-
to-Peer Electronic Cash System,” written under the alias of Satoshi Nakamoto (see
Appendix A). Nakamoto combined several prior inventions such as b-money and
HashCash to create a completely decentralized electronic cash system that does not
rely on a central authority for currency issuance or settlement and validation of trans-
actions. The key innovation was to use a distributed computation system (called a
“Proof-of-Work” algorithm) to conduct a global “election” every 10 minutes, allowing
the decentralized network to arrive at consensus about the state of transactions. This
elegantly solves the issue of double-spend where a single currency unit can be spent
twice. Previously, the double-spend problem was a weakness of digital currency and
was addressed by clearing all transactions through a central clearinghouse.

The bitcoin network started in 2009, based on a reference implementation published
by Nakamoto and since revised by many other programmers. The implementation of
the Proof-of-Work algorithm (mining) that provides security and resilience for bit-
coin has increased in power exponentially, and now exceeds the combined processing
power of the world’s top supercomputers. Bitcoins total market value has at times
exceeded $35 billion US dollars, depending on the bitcoin-to-dollar exchange rate.
The largest transaction processed so far by the network was $150 million US dollars,
transmitted instantly and processed without any fees.

Satoshi Nakamoto withdrew from the public in April 2011, leaving the responsibility
of developing the code and network to a thriving group of volunteers. The identity of
the person or people behind bitcoin is still unknown. However, neither Satoshi Naka-
moto nor anyone else exerts individual control over the bitcoin system, which oper-
ates based on fully transparent mathematical principles, open source code, and
consensus among participants. The invention itself is groundbreaking and has
already spawned new science in the fields of distributed computing, economics, and
econometrics.

A Solution to a Distributed Computing Problem

Satoshi Nakamoto’s invention is also a practical and novel solution to a problem in
distributed computing, known as the “Byzantine Generals’ Problem.” Briefly, the
problem consists of trying to agree on a course of action or the state of a system by
exchanging information over an unreliable and potentially compromised network.

Satoshi Nakamoto’s solution, which uses the concept of Proof-of-Work to achieve
consensus without a central trusted authority, represents a breakthrough in dis-
tributed computing and has wide applicability beyond currency. It can be used to ach-

1 “Bitcoin: A Peer-to-Peer Electronic Cash System,” Satoshi Nakamoto (https://bitcoin.org/bitcoin.pdyf).
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ieve consensus on decentralized networks to prove the fairness of elections, lotteries,
asset registries, digital notarization, and more.

Bitcoin Uses, Users, and Their Stories

Bitcoin is an innovation in the ancient technology of money. At its core, money sim-
ply facilitates the exchange of value between people. Therefore, in order to fully
understand bitcoin and its uses, we'll examine it from the perspective of people using
it. Each of the people and their stories, as listed here, illustrates one or more specific
use cases. We'll be seeing them throughout the book:

North American low-value retail
Alice lives in Northern California’s Bay Area. She has heard about bitcoin from
her techie friends and wants to start using it. We will follow her story as she
learns about bitcoin, acquires some, and then spends some of her bitcoin to buy a
cup of coffee at Bob’s Cafe in Palo Alto. This story will introduce us to the soft-
ware, the exchanges, and basic transactions from the perspective of a retail con-
sumer.

North American high-value retail
Carol is an art gallery owner in San Francisco. She sells expensive paintings for
bitcoin. This story will introduce the risks of a “51%” consensus attack for retail-
ers of high-value items.

Offshore contract services
Bob, the cafe owner in Palo Alto, is building a new website. He has contracted
with an Indian web developer, Gopesh, who lives in Bangalore, India. Gopesh has
agreed to be paid in bitcoin. This story will examine the use of bitcoin for out-
sourcing, contract services, and international wire transfers.

Web store
Gabriel is an enterprising young teenager in Rio de Janeiro, running a small web
store that sells bitcoin-branded t-shirts, coffee mugs, and stickers. Gabriel is too
young to have a bank account, but his parents are encouraging his entrepreneu-
rial spirit.

Charitable donations
Eugenia is the director of a children’s charity in the Philippines. Recently she has
discovered bitcoin and wants to use it to reach a whole new group of foreign and
domestic donors to fundraise for her charity. She’s also investigating ways to use
bitcoin to distribute funds quickly to areas of need. This story will show the use
of bitcoin for global fundraising across currencies and borders and the use of an
open ledger for transparency in charitable organizations.

Bitcoin Uses, Users, and Their Stories | 5
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Import/export
Mohammed is an electronics importer in Dubai. He’s trying to use bitcoin to buy
electronics from the United States and China for import into the UAE to acceler-
ate the process of payments for imports. This story will show how bitcoin can be
used for large business-to-business international payments tied to physical goods.

Mining for bitcoin
Jing is a computer engineering student in Shanghai. He has built a “mining” rig
to mine for bitcoin using his engineering skills to supplement his income. This
story will examine the “industrial” base of bitcoin: the specialized equipment
used to secure the bitcoin network and issue new currency.

Each of these stories is based on the real people and real industries currently using
bitcoin to create new markets, new industries, and innovative solutions to global eco-
nomic issues.

Getting Started

Bitcoin is a protocol that can be accessed using a client application that speaks the
protocol. A “bitcoin wallet” is the most common user interface to the bitcoin system,
just like a web browser is the most common user interface for the HTTP protocol.
There are many implementations and brands of bitcoin wallets, just like there are
many brands of web browsers (e.g., Chrome, Safari, Firefox, and Internet Explorer).
And just like we all have our favorite browsers (Mozilla Firefox, Yay!) and our villains
(Internet Explorer, Yuck!), bitcoin wallets vary in quality, performance, security, pri-
vacy, and reliability. There is also a reference implementation of the bitcoin protocol
that includes a wallet, known as the “Satoshi Client” or “Bitcoin Core,” which is
derived from the original implementation written by Satoshi Nakamoto.

Choosing a Bitcoin Wallet

Bitcoin wallets are one of the most actively developed applications in the bitcoin eco-
system. There is intense competition, and while a new wallet is probably being devel-
oped right now, several wallets from last year are no longer actively maintained. Many
wallets focus on specific platforms or specific uses and some are more suitable for
beginners while others are filled with features for advanced users. Choosing a wallet
is highly subjective and depends on the use and user expertise. It is therefore impossi-
ble to recommend a specific brand or project of wallet. However, we can categorize
bitcoin wallets according to their platform and function and provide some clarity
about all the different types of wallets that exist. Better yet, moving money between
bitcoin wallets is easy, cheap, and fast, so it is worth trying out several different wal-
lets until you find one that fits your needs.
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Bitcoin wallets can be categorized as follows, according to the platform:

Desktop wallet
A desktop wallet was the first type of bitcoin wallet created as a reference imple-
mentation and many users run desktop wallets for the features, autonomy, and
control they offer. Running on general-use operating systems such as Windows
and Mac OS has certain security disadvantages however, as these platforms are
often insecure and poorly configured.

Mobile wallet
A mobile wallet is the most common type of bitcoin wallet. Running on smart-
phone operating systems such as Apple iOS and Android, these wallets are often
a great choice for new users. Many are designed for simplicity and ease-of-use,
but there are also fully featured mobile wallets for power users.

Web wallet

Web wallets are accessed through a web browser and store the user’s wallet on a
server owned by a third party. This is similar to webmail in that it relies entirely
on a third-party server. Some of these services operate using client-side code run-
ning in the user’s browser, which keeps control of the bitcoin keys in the hands of
the user. Most, however, present a compromise by taking control of the bitcoin
keys from users in exchange for ease-of-use. It is inadvisable to store large
amounts of bitcoin on third-party systems.

Hardware wallet
Hardware wallets are devices that operate a secure self-contained bitcoin wallet
on special-purpose hardware. They are operated via USB with a desktop web
browser or via near-field-communication (NFC) on a mobile device. By handling
all bitcoin-related operations on the specialized hardware, these wallets are con-
sidered very secure and suitable for storing large amounts of bitcoin.

Paper wallet
The keys controlling bitcoin can also be printed for long-term storage. These are
known as paper wallets even though other materials (wood, metal, etc.) can be
used. Paper wallets offer a low-tech but highly secure means of storing bitcoin
long term. Offline storage is also often referred to as cold storage.

Another way to categorize bitcoin wallets is by their degree of autonomy and how
they interact with the bitcoin network:

Full-node client
A full client, or “full node,” is a client that stores the entire history of bitcoin
transactions (every transaction by every user, ever), manages users wallets, and
can initiate transactions directly on the bitcoin network. A full node handles all
aspects of the protocol and can independently validate the entire blockchain and
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any transaction. A full-node client consumes substantial computer resources
(e.g., more than 125 GB of disk, 2 GB of RAM) but offers complete autonomy
and independent transaction verification.

Lightweight client
A lightweight client, also known as a simple-payment-verification (SPV) client,
connects to bitcoin full nodes (mentioned previously) for access to the bitcoin
transaction information, but stores the user wallet locally and independently cre-
ates, validates, and transmits transactions. Lightweight clients interact directly
with the bitcoin network, without an intermediary.

Third-party API client
A third-party API client is one that interacts with bitcoin through a third-party
system of application programming interfaces (APIs), rather than by connecting
to the bitcoin network directly. The wallet may be stored by the user or by third-
party servers, but all transactions go through a third party.

Combining these categorizations, many bitcoin wallets fall into a few groups, with the
three most common being desktop full client, mobile lightweight wallet, and web
third-party wallet. The lines between different categories are often blurry, as many
wallets run on multiple platforms and can interact with the network in different ways.

For the purposes of this book, we will be demonstrating the use of a variety of down-
loadable bitcoin clients, from the reference implementation (Bitcoin Core) to mobile
and web wallets. Some of the examples will require the use of Bitcoin Core, which, in
addition to being a full client, also exposes APIs to the wallet, network, and transac-
tion services. If you are planning to explore the programmatic interfaces into the bit-
coin system, you will need to run Bitcoin Core, or one of the alternative clients (see
“Alternative Clients, Libraries, and Toolkits” on page 51).

Quick Start

Alice, who we introduced in “Bitcoin Uses, Users, and Their Stories” on page 5, is not
a technical user and only recently heard about bitcoin from her friend Joe. While at a
party, Joe is once again enthusiastically explaining bitcoin to all around him and is
offering a demonstration. Intrigued, Alice asks how she can get started with bitcoin.
Joe says that a mobile wallet is best for new users and he recommends a few of his
favorite wallets. Alice downloads “Mycelium” for Android and installs it on her
phone.

When Alice runs Mycelium for the first time, as with many bitcoin wallets, the appli-
cation automatically creates a new wallet for her. Alice sees the wallet on her screen,
as shown in Figure 1-1 (note: do not send bitcoin to this sample address, it will be lost
forever).
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ACCOUNTS BALANCE TRANSACTIONS

Alice

0.00 USD
Receive

1 BTC ~ USD 449.08 (BitcoinAverage)

Buy / Sell Bitcoin

Figure 1-1. The Mycelium Mobile Wallet

The most important part of this screen is Alice’s bitcoin address. On the screen it
appears as a long string of letters and numbers: 1Cdid9KFAaatwczBwBttQcw
XYCpvK8h7FK. Next to the wallet’s bitcoin address is a QR code, a form of barcode that
contains the same information in a format that can be scanned by a smartphone cam-
era. The QR code is the square with a pattern of black and white dots. Alice can copy
the bitcoin address or the QR code onto her clipboard by tapping the QR code, or the
Receive button. In most wallets, tapping the QR code will also magnify it, so that it
can be more easily scanned by a smartphone camera.
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Bitcoin addresses start with a 1 or 3. Like email addresses, they can
be shared with other bitcoin users who can use them to send bit-
coin directly to your wallet. There is nothing sensitive, from a secu-
rity perspective, about the bitcoin address. It can be posted
anywhere without risking the security of the account. Unlike email
addresses, you can create new addresses as often as you like, all of
which will direct funds to your wallet. In fact, many modern wal-
lets automatically create a new address for every transaction to
maximize privacy. A wallet is simply a collection of addresses and
the keys that unlock the funds within.

Alice is now ready to receive funds. Her wallet application randomly generated a pri-
vate key (described in more detail in “Private Keys” on page 58) together with its cor-
responding bitcoin address. At this point, her bitcoin address is not known to the
bitcoin network or “registered” with any part of the bitcoin system. Her bitcoin
address is simply a number that corresponds to a key that she can use to control
access to the funds. It was generated independently by her wallet without reference or
registration with any service. In fact, in most wallets, there is no association between
the bitcoin address and any externally identifiable information including the user’s
identity. Until the moment this address is referenced as the recipient of value in a
transaction posted on the bitcoin ledger, the bitcoin address is simply part of the vast
number of possible addresses that are valid in bitcoin. Only once it has been associ-
ated with a transaction does it become part of the known addresses in the network.

Alice is now ready to start using her new bitcoin wallet.

Getting Your First Bitcoin

The first and often most difficult task for new users is to acquire some bitcoin. Unlike

other foreign currencies, you cannot yet buy bitcoin at a bank or foreign exchange
kiosk.

Bitcoin transactions are irreversible. Most electronic payment networks such as credit
cards, debit cards, PayPal, and bank account transfers are reversible. For someone
selling bitcoin, this difference introduces a very high risk that the buyer will reverse
the electronic payment after they have received bitcoin, in effect defrauding the seller.
To mitigate this risk, companies accepting traditional electronic payments in return
for bitcoin usually require buyers to undergo identity verification and credit-
worthiness checks, which may take several days or weeks. As a new user, this means
you cannot buy bitcoin instantly with a credit card. With a bit of patience and crea-
tive thinking, however, you won’t need to.
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Here are some methods for getting bitcoin as a new user:

« Find a friend who has bitcoin and buy some from him or her directly. Many bit-
coin users start this way. This method is the least complicated. One way to meet
people with bitcoin is to attend a local bitcoin meetup listed at Meetup.com.

« Use a classified service such as localbitcoins.com to find a seller in your area to
buy bitcoin for cash in an in-person transaction.

« Earn bitcoin by selling a product or service for bitcoin. If you are a programmer,
sell your programming skills. If you're a hairdresser, cut hair for bitcoin.

+ Use a bitcoin ATM in your city. A bitcoin ATM is a machine that accepts cash
and sends bitcoin to your smartphone bitcoin wallet. Find a bitcoin ATM close to
you using an online map from Coin ATM Radar.

 Use a bitcoin currency exchange linked to your bank account. Many countries
now have currency exchanges that offer a market for buyers and sellers to swap
bitcoin with local currency. Exchange-rate listing services, such as BitcoinAver-
age, often show a list of bitcoin exchanges for each currency.

One of the advantages of bitcoin over other payment systems is
that, when used correctly, it affords users much more privacy.
Acquiring, holding, and spending bitcoin does not require you to
divulge sensitive and personally identifiable information to third
parties. However, where bitcoin touches traditional systems, such
as currency exchanges, national and international regulations often
apply. In order to exchange bitcoin for your national currency, you
will often be required to provide proof of identity and banking
information. Users should be aware that once a bitcoin address is
attached to an identity, all associated bitcoin transactions are also
easy to identify and track. This is one reason many users choose to
maintain dedicated exchange accounts unlinked to their wallets.

Alice was introduced to bitcoin by a friend so she has an easy way to acquire her first
bitcoin. Next, we will look at how she buys bitcoin from her friend Joe and how Joe
sends the bitcoin to her wallet.

Finding the Current Price of Bitcoin

Before Alice can buy bitcoin from Joe, they have to agree on the exchange rate
between bitcoin and US dollars. This brings up a common question for those new to
bitcoin: “Who sets the bitcoin price?” The short answer is that the price is set by mar-
kets.
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Bitcoin, like most other currencies, has a floating exchange rate. That means that the
value of bitcoin vis-a-vis any other currency fluctuates according to supply and
demand in the various markets where it is traded. For example, the “price” of bitcoin
in US dollars is calculated in each market based on the most recent trade of bitcoin
and US dollars. As such, the price tends to fluctuate minutely several times per sec-
ond. A pricing service will aggregate the prices from several markets and calculate a
volume-weighted average representing the broad market exchange rate of a currency
pair (e.g., BTC/USD).

There are hundreds of applications and websites that can provide the current market
rate. Here are some of the most popular:

Bitcoin Average
A site that provides a simple view of the volume-weighted-average for each cur-
rency.

CoinCap
A service listing the market capitalization and exchange rates of hundreds of
crypto-currencies, including bitcoin.

Chicago Mercantile Exchange Bitcoin Reference Rate
A reference rate that can be used for institutional and contractual reference, pro-
vided as part of investment data feeds by the CME.

In addition to these various sites and applications, most bitcoin wallets will automati-
cally convert amounts between bitcoin and other currencies. Joe will use his wallet to
convert the price automatically before sending bitcoin to Alice.

Sending and Receiving Bitcoin

Alice has decided to exchange $10 US dollars for bitcoin, so as not to risk too much
money on this new technology. She gives Joe $10 in cash, opens her Mycelium wallet
application, and selects Receive. This displays a QR code with Alice’s first bitcoin
address.

Joe then selects Send on his smartphone wallet and is presented with a screen con-
taining two inputs:

« A destination bitcoin address

o The amount to send, in bitcoin (BTC) or his local currency (USD)

In the input field for the bitcoin address, there is a small icon that looks like a QR
code. This allows Joe to scan the barcode with his smartphone camera so that he
doesn’t have to type in Alice’s bitcoin address, which is quite long and difficult to
type. Joe taps the QR code icon and activates the smartphone camera, scanning the
QR code displayed on Alice’s smartphone.
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Joe now has Alice’s bitcoin address set as the recipient. Joe enters the amount as $10
US dollars and his wallet converts it by accessing the most recent exchange rate from
an online service. The exchange rate at the time is $100 US dollars per bitcoin, so $10
US dollars is worth 0.10 bitcoin (BTC), or 100 millibitcoin (mBTC) as shown in the
screenshot from Joe’s wallet (see Figure 1-2).

— My Wallet

Send

To: 1Cdid...8h7FK

1mBTC=%$0.1 USD  Max

mB 100 mBTC

S 10 uSsD

Figure 1-2. Airbitz mobile bitcoin wallet send screen

Joe then carefully checks to make sure he has entered the correct amount, because he
is about to transmit money and mistakes are irreversible. After double-checking the
address and amount, he presses Send to transmit the transaction. Joe’s mobile bitcoin
wallet constructs a transaction that assigns 0.10 BTC to the address provided by
Alice, sourcing the funds from Joe’s wallet and signing the transaction with Jo€’s pri-
vate keys. This tells the bitcoin network that Joe has authorized a transfer of value to
Alice’s new address. As the transaction is transmitted via the peer-to-peer protocol, it
quickly propagates across the bitcoin network. In less than a second, most of the well-
connected nodes in the network receive the transaction and see Alice’s address for the
first time.

Meanwhile, Alice’s wallet is constantly “listening” to published transactions on the
bitcoin network, looking for any that match the addresses in her wallets. A few sec-
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onds after Joe’s wallet transmits the transaction, Alice’s wallet will indicate that it is
receiving 0.10 BTC.

Confirmations

At first, Alice’s address will show the transaction from Joe as “Unconfirmed.” This
means that the transaction has been propagated to the network but has not yet been
recorded in the bitcoin transaction ledger, known as the blockchain. To be confirmed,
a transaction must be included in a block and added to the blockchain, which hap-
pens every 10 minutes, on average. In traditional financial terms this is known as
clearing. For more details on propagation, validation, and clearing (confirmation) of
bitcoin transactions, see Chapter 10.

Alice is now the proud owner of 0.10 BTC that she can spend. In the next chapter we
will look at her first purchase with bitcoin, and examine the underlying transaction
and propagation technologies in more detail.
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CHAPTER 2
How Bitcoin Works

Transactions, Blocks, Mining, and the Blockchain

The bitcoin system, unlike traditional banking and payment systems, is based on
decentralized trust. Instead of a central trusted authority, in bitcoin, trust is achieved
as an emergent property from the interactions of different participants in the bitcoin
system. In this chapter, we will examine bitcoin from a high level by tracking a single
transaction through the bitcoin system and watch as it becomes “trusted” and
accepted by the bitcoin mechanism of distributed consensus and is finally recorded
on the blockchain, the distributed ledger of all transactions. Subsequent chapters will
delve into the technology behind transactions, the network, and mining.

Bitcoin Overview

In the overview diagram shown in Figure 2-1, we see that the bitcoin system consists
of users with wallets containing keys, transactions that are propagated across the net-
work, and miners who produce (through competitive computation) the consensus
blockchain, which is the authoritative ledger of all transactions.

Each example in this chapter is based on an actual transaction made on the bitcoin
network, simulating the interactions between the users (Joe, Alice, Bob, and Gopesh)
by sending funds from one wallet to another. While tracking a transaction through
the bitcoin network to the blockchain, we will use a blockchain explorer site to visual-
ize each step. A blockchain explorer is a web application that operates as a bitcoin
search engine, in that it allows you to search for addresses, transactions, and blocks
and see the relationships and flows between them.

15
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Figure 2-1. Bitcoin overview

Popular blockchain explorers include:

« Bitcoin Block Explorer
o BlockCypher Explorer
« blockchain.info

« BitPay Insight

Each of these has a search function that can take a bitcoin address, transaction hash,
block number, or block hash and retrieve corresponding information from the bit-
coin network. With each transaction or block example, we will provide a URL so you
can look it up yourself and study it in detail.

Buying a Cup of Coffee

Alice, introduced in the previous chapter, is a new user who has just acquired her first
bitcoin. In “Getting Your First Bitcoin” on page 10, Alice met with her friend Joe to
exchange some cash for bitcoin. The transaction created by Joe funded Alice’s wallet
with 0.10 BTC. Now Alice will make her first retail transaction, buying a cup of coffee
at Bob’s coffee shop in Palo Alto, California.

Bob’s Cafe recently started accepting bitcoin payments by adding a bitcoin option to
its point-of-sale system. The prices at Bob’s Cafe are listed in the local currency (US
dollars), but at the register, customers have the option of paying in either dollars or
bitcoin. Alice places her order for a cup of coffee and Bob enters it into the register, as
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he does for all transactions. The point-of-sale system automatically converts the total
price from US dollars to bitcoin at the prevailing market rate and displays the price in
both currencies:

Total:
$1.50 USD
0.015 BTC

Bob says, “That’s one-dollar-fifty, or fifteen millibits”

Bob’s point-of-sale system will also automatically create a special QR code containing
a payment request (see Figure 2-2).

Unlike a QR code that simply contains a destination bitcoin address, a payment
request is a QR-encoded URL that contains a destination address, a payment amount,
and a generic description such as “Bob’s Cafe” This allows a bitcoin wallet application
to prefill the information used to send the payment while showing a human-readable
description to the user. You can scan the QR code with a bitcoin wallet application to
see what Alice would see.

Figure 2-2. Payment request QR code

Try to scan this with your wallet to see the address and amount but
DO NOT SEND MONEY.

bitcoin:1GdK9UzpHBzqzX2A9JFP3D14weBwqgmoQA?
amount=0.015&

label=Bob%27s%20Cafe&
message=Purchase%20at%20Bob%27s%20Cafe

Components of the URL

A bitcoin address: "1GdK9UzpHBzqzX2A9JFP3D14weBwqgmoQA"
The payment amount: "0.015"

A label for the recipient address: "Bob's Cafe"

A description for the payment: "Purchase at Bob's Cafe"
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Alice uses her smartphone to scan the barcode on display. Her smartphone shows a
payment of 0.0150 BTC to Bob’s Cafe and she selects Send to authorize the payment.
Within a few seconds (about the same amount of time as a credit card authorization),
Bob sees the transaction on the register, completing the transaction.

In the following sections we will examine this transaction in more detail. We'll see
how Alice’s wallet constructed it, how it was propagated across the network, how it
was verified, and finally, how Bob can spend that amount in subsequent transactions.

The bitcoin network can transact in fractional values, e.g., from
millibitcoin (1/1000th of a bitcoin) down to 1/100,000,000th of a
bitcoin, which is known as a satoshi. Throughout this book we’ll
use the term “bitcoin” to refer to any quantity of bitcoin currency,
from the smallest unit (1 satoshi) to the total number (21,000,000)
of all bitcoin that will ever be mined.

You can examine Alice’s transaction to Bob’s Cafe on the blockchain using a block
explorer site (Example 2-1):

Example 2-1. View Alice’s transaction on blockexplorer.com

https://blockexplorer.com/tx/
0627052b6128912f2703066a912ea577f2ced4dadcaas5a5fbd8a57286c345c2f2

Bitcoin Transactions

In simple terms, a transaction tells the network that the owner of some bitcoin value
has authorized the transfer of that value to another owner. The new owner can now
spend the bitcoin by creating another transaction that authorizes transfer to another
owner, and so on, in a chain of ownership.

Transaction Inputs and Outputs

Transactions are like lines in a double-entry bookkeeping ledger. Each transaction
contains one or more “inputs,” which are like debits against a bitcoin account. On the
other side of the transaction, there are one or more “outputs,” which are like credits
added to a bitcoin account. The inputs and outputs (debits and credits) do not neces-
sarily add up to the same amount. Instead, outputs add up to slightly less than inputs
and the difference represents an implied transaction fee, which is a small payment col-
lected by the miner who includes the transaction in the ledger. A bitcoin transaction
is shown as a bookkeeping ledger entry in Figure 2-3.

The transaction also contains proof of ownership for each amount of bitcoin (inputs)
whose value is being spent, in the form of a digital signature from the owner, which
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can be independently validated by anyone. In bitcoin terms, “spending” is signing a
transaction that transfers value from a previous transaction over to a new owner
identified by a bitcoin address.

Transaction as Double-Entry Bookkeeping

Inputs Value . Outputs Value
Input 1 0.10 BIC - Qutput 1 0.10 BTC
Input 2 0.20 BTC . Output 2 0.20 BTC
Input 3 0.10 BTC = Output 3 0.20 BTC
Input 4 0.15 BIC :
Total Inputs: 0.55 BTC Total Outputs: 0.50 BTC

Inputs 0.55BTC

- Qutputs 0.50BTC
Difference 0.05 BTC (implied transaction fee)

Figure 2-3. Transaction as double-entry bookkeeping

Transaction Chains

Alice’s payment to Bob’s Cafe uses a previous transaction’s output as its input. In the
previous chapter, Alice received bitcoin from her friend Joe in return for cash. That
transaction created a bitcoin value locked by Alice’s key. Her new transaction to Bob’s
Cafe references the previous transaction as an input and creates new outputs to pay
for the cup of coffee and receive change. The transactions form a chain, where the
inputs from the latest transaction correspond to outputs from previous transactions.
Alice’s key provides the signature that unlocks those previous transaction outputs,
thereby proving to the bitcoin network that she owns the funds. She attaches the pay-
ment for coffee to Bob’s address, thereby “encumbering” that output with the require-
ment that Bob produces a signature in order to spend that amount. This represents a
transfer of value between Alice and Bob. This chain of transactions, from Joe to Alice
to Bob, is illustrated in Figure 2-4.
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Transaction 7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a82999f6f18

INPUTS From OUTPUTS To
N SR
Transaction Fees: 0.0005 BTC
Transaction 0627052b628912f2703066a912ea577f2ceddadeda5a5fbd8a57286¢345¢2f2
INPUTS From OUTPUTS To
:ns:assfe@fsud;ﬂgsdssazasnaodsmsaﬂasad%gag%zsasws o: .5u-tpTJt-#ﬁ 505’5-A?1n1-re-ss- B T (-sp-eth)-:
o LR e o UG (change) 0.0845 BC (anspen)
0.0005 BTC
Transaction 2bbac8bb3a57a2363407ac8¢16a67015ed2e 8af58cf90299e0744d3ded
eeoeo o MNPUSFOM . OUTPUTS To
S S TGS L Outpt 10 Gopeshs Address  00100BIC (rspen)
i i S e e e S - Output #1 Bob's Address (change) 0.0045 BTC (unspent)
Transaction Fees: 0.0005 BTC

Figure 2-4. A chain of transactions, where the output of one transaction is the input of
the next transaction

Making Change

Many bitcoin transactions will include outputs that reference both an address of the
new owner and an address of the current owner, called the change address. This is
because transaction inputs, like currency notes, cannot be divided. If you purchase a
$5 US dollar item in a store but use a $20 US dollar bill to pay for the item, you expect
to receive $15 US dollars in change. The same concept applies with bitcoin transac-
tion inputs. If you purchased an item that costs 5 bitcoin but only had a 20 bitcoin
input to use, you would send one output of 5 bitcoin to the store owner and one out-
put of 15 bitcoin back to yourself as change (less any applicable transaction fee).
Importantly, the change address does not have to be the same address as that of the
input and for privacy reasons is often a new address from the owner’s wallet.

Different wallets may use different strategies when aggregating inputs to make a pay-
ment requested by the user. They might aggregate many small inputs, or use one that
is equal to or larger than the desired payment. Unless the wallet can aggregate inputs
in such a way to exactly match the desired payment plus transaction fees, the wallet
will need to generate some change. This is very similar to how people handle cash. If
you always use the largest bill in your pocket, you will end up with a pocket full of
loose change. If you only use the loose change, you'll always have only big bills. Peo-
ple subconsciously find a balance between these two extremes, and bitcoin wallet
developers strive to program this balance.
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In summary, transactions move value from transaction inputs to transaction outputs.
An input is a reference to a previous transaction’s output, showing where the value is
coming from. A transaction output directs a specific value to a new owner’s bitcoin
address and can include a change output back to the original owner. Outputs from
one transaction can be used as inputs in a new transaction, thus creating a chain of
ownership as the value is moved from owner to owner (see Figure 2-4).

Common Transaction Forms

The most common form of transaction is a simple payment from one address to
another, which often includes some “change” returned to the original owner. This
type of transaction has one input and two outputs and is shown in Figure 2-5.

Common Transaction

Output 0
“To Bob”

Input 0

“From Alice,
signed by

Alice”
Output 1
“To Alice”
(change)

Figure 2-5. Most common transaction

Another common form of transaction is one that aggregates several inputs into a sin-
gle output (see Figure 2-6). This represents the real-world equivalent of exchanging a
pile of coins and currency notes for a single larger note. Transactions like these are
sometimes generated by wallet applications to clean up lots of smaller amounts that
were received as change for payments.

Aggregating Transaction
Input 0
InputN

Figure 2-6. Transaction aggregating funds

Bitcoin Transactions | 21

www.EBookswWorld.ir



Finally, another transaction form that is seen often on the bitcoin ledger is a transac-
tion that distributes one input to multiple outputs representing multiple recipients
(see Figure 2-7). This type of transaction is sometimes used by commercial entities to
distribute funds, such as when processing payroll payments to multiple employees.

Distributing Transaction

Output 1

Output 2

Output N

Figure 2-7. Transaction distributing funds

Constructing a Transaction

Alice’s wallet application contains all the logic for selecting appropriate inputs and
outputs to build a transaction to Alice’s specification. Alice only needs to specify a
destination and an amount, and the rest happens in the wallet application without her
seeing the details. Importantly, a wallet application can construct transactions even if
it is completely offline. Like writing a check at home and later sending it to the bank
in an envelope, the transaction does not need to be constructed and signed while con-
nected to the bitcoin network.

Getting the Right Inputs

Alice’s wallet application will first have to find inputs that can pay for the amount she
wants to send to Bob. Most wallets keep track of all the available outputs belonging to
addresses in the wallet. Therefore, Alice’s wallet would contain a copy of the transac-
tion output from Joe’s transaction, which was created in exchange for cash (see “Get-
ting Your First Bitcoin” on page 10). A bitcoin wallet application that runs as a full-
node client actually contains a copy of every unspent output from every transaction
in the blockchain. This allows a wallet to construct transaction inputs as well as
quickly verify incoming transactions as having correct inputs. However, because a
full-node client takes up a lot of disk space, most user wallets run “lightweight” clients
that track only the user’s own unspent outputs.

If the wallet application does not maintain a copy of unspent transaction outputs, it
can query the bitcoin network to retrieve this information using a variety of APIs
available by different providers or by asking a full-node using an application pro-
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gramming interface (API) call. Example 2-2 shows a API request, constructed as an
HTTP GET command to a specific URL. This URL will return all the unspent trans-
action outputs for an address, giving any application the information it needs to con-
struct transaction inputs for spending. We use the simple command-line HTTP client
cURL to retrieve the response.

Example 2-2. Look up all the unspent outputs for Alice’s bitcoin address
$ curl https://blockchain.info/unspent?active=1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK

{
"unspent_outputs":[

{
"tx_hash":"186f9f998a5. ..2836dd734d2804fe65fa35779",
"tx_index":104810202,
"tx_output_n": 0O,

"script":"76a9147f9b1a7fb68d60c536c2fd8aeaas3a8f3cch25a888ac",
"value": 10000000,
"value_hex": "00989680",
"confirmations":0

}

The response in Example 2-2 shows one unspent output (one that has not been
redeemed yet) under the ownership of Alice’s address 1Cdid9KFAaatwczBwBttQcw
XYCpVK8h7FK. The response includes the reference to the transaction in which this
unspent output is contained (the payment from Joe) and its value in satoshis, at 10
million, equivalent to 0.10 bitcoin. With this information, Alice’s wallet application
can construct a transaction to transfer that value to new owner addresses.

View the transaction from Joe to Alice.

As you can see, Alice’s wallet contains enough bitcoin in a single unspent output to
pay for the cup of coffee. Had this not been the case, Alice’s wallet application might
have to “rummage” through a pile of smaller unspent outputs, like picking coins from
a purse until it could find enough to pay for the coffee. In both cases, there might be a
need to get some change back, which we will see in the next section, as the wallet
application creates the transaction outputs (payments).
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Creating the Qutputs

A transaction output is created in the form of a script that creates an encumbrance on
the value and can only be redeemed by the introduction of a solution to the script. In
simpler terms, Alice’s transaction output will contain a script that says something like,
“This output is payable to whoever can present a signature from the key correspond-
ing to Bob’s public address” Because only Bob has the wallet with the keys corre-
sponding to that address, only Bob’s wallet can present such a signature to redeem
this output. Alice will therefore “encumber” the output value with a demand for a sig-
nature from Bob.

This transaction will also include a second output, because Alice’s funds are in the
form of a 0.10 BTC output, too much money for the 0.015 BTC cup of coffee. Alice
will need 0.085 BTC in change. Alice’s change payment is created by Alice’s wallet as
an output in the very same transaction as the payment to Bob. Essentially, Alice’s wal-
let breaks her funds into two payments: one to Bob and one back to herself. She can
then use (spend) the change output in a subsequent transaction.

Finally, for the transaction to be processed by the network in a timely fashion, Alice’s
wallet application will add a small fee. This is not explicit in the transaction; it is
implied by the difference between inputs and outputs. If instead of taking 0.085 in
change, Alice creates only 0.0845 as the second output, there will be 0.0005 BTC (half
a millibitcoin) left over. The input’s 0.10 BTC is not fully spent with the two outputs,
because they will add up to less than 0.10. The resulting difference is the transaction
fee that is collected by the miner as a fee for validating and including the transaction
in a block to be recorded on the blockchain.

The resulting transaction can be seen using a blockchain explorer web application, as
shown in Figure 2-8.

0627052b612891212703066a3122a57712ceddadcaa5a5ibd8as7286c345¢c2f2
1GdK8UzpHBzqzX2A9JFP3DidweBwagmoQA
- (Unspent) 0.015 BTC
1Cdid9KFAaatwezBwBHQewXYCpvKBh7FK (0.1 BTG - Output) é P N
1Cdid9KFAaatwezBwBHQowXYCpvK8h7FK -
(Unspent) 0.0845 BTC
Summary Inputs and Qutputs
Size 258 (bytes) Total Input 0.1BTC
Received Time 2013-12-27 23:03:05 Total Output 0.0995 BTC
Included In 277316 (2013-12-27 23:11:54 +9 Fees 0.0005 BTC
Blocks minutes)
Estimated BTC Transacted 0.016 BTC

Figure 2-8. Alice’s transaction to Bob’s Cafe
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View the transaction from Alice to Bob’s Cafe.

Adding the Transaction to the Ledger

The transaction created by Alice’s wallet application is 258 bytes long and contains
everything necessary to confirm ownership of the funds and assign new owners.
Now, the transaction must be transmitted to the bitcoin network where it will become
part of the blockchain. In the next section we will see how a transaction becomes part
of a new block and how the block is “mined”” Finally, we will see how the new block,
once added to the blockchain, is increasingly trusted by the network as more blocks

are added.

Transmitting the transaction

Because the transaction contains all the information necessary to process, it does not
matter how or where it is transmitted to the bitcoin network. The bitcoin network is a
peer-to-peer network, with each bitcoin client participating by connecting to several
other bitcoin clients. The purpose of the bitcoin network is to propagate transactions
and blocks to all participants.

How it propagates

Any system, such as a server, desktop application, or wallet, that participates in the
bitcoin network by “speaking” the bitcoin protocol is called a bitcoin node. Alice’s wal-
let application can send the new transaction to any bitcoin node it is connected to
over any type of connection: wired, WiFi, mobile, etc. Her bitcoin wallet does not
have to be connected to Bob’s bitcoin wallet directly and she does not have to use the
internet connection offered by the cafe, though both those options are possible, too.
Any bitcoin node that receives a valid transaction it has not seen before will immedi-
ately forward it to all other nodes to which it is connected, a propagation technique
known as flooding. Thus, the transaction rapidly propagates out across the peer-to-
peer network, reaching a large percentage of the nodes within a few seconds.

Bob's view

If Bob’s bitcoin wallet application is directly connected to Alice’s wallet application,
Bob’s wallet application might be the first node to receive the transaction. However,
even if Alice’s wallet sends the transaction through other nodes, it will reach Bob’s
wallet within a few seconds. Bob’s wallet will immediately identify Alice’s transaction
as an incoming payment because it contains outputs redeemable by Bob’s keys. Bob’s
wallet application can also independently verify that the transaction is well formed,
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uses previously unspent inputs, and contains sufficient transaction fees to be included
in the next block. At this point Bob can assume, with little risk, that the transaction
will shortly be included in a block and confirmed.

A common misconception about bitcoin transactions is that they
must be “confirmed” by waiting 10 minutes for a new block, or up
to 60 minutes for a full six confirmations. Although confirmations
ensure the transaction has been accepted by the whole network,
such a delay is unnecessary for small-value items such as a cup of
coffee. A merchant may accept a valid small-value transaction with
no confirmations, with no more risk than a credit card payment
made without an ID or a signature, as merchants routinely accept
today.

Bitcoin Mining
Alice’s transaction is now propagated on the bitcoin network. It does not become part

of the blockchain until it is verified and included in a block by a process called mining.
See Chapter 10 for a detailed explanation.

The bitcoin system of trust is based on computation. Transactions are bundled into
blocks, which require an enormous amount of computation to prove, but only a small
amount of computation to verify as proven. The mining process serves two purposes
in bitcoin:

« Mining nodes validate all transactions by reference to bitcoins consensus rules.
Therefore, mining provides security for bitcoin transactions by rejecting invalid
or malformed transactions.

+ Mining creates new bitcoin in each block, almost like a central bank printing new
money. The amount of bitcoin created per block is limited and diminishes with
time, following a fixed issuance schedule.

Mining achieves a fine balance between cost and reward. Mining uses electricity to
solve a mathematical problem. A successful miner will collect a reward in the form of
new bitcoin and transaction fees. However, the reward will only be collected if the
miner has correctly validated all the transactions, to the satisfaction of the rules of
consensus. This delicate balance provides security for bitcoin without a central
authority.

A good way to describe mining is like a giant competitive game of sudoku that resets
every time someone finds a solution and whose difficulty automatically adjusts so
that it takes approximately 10 minutes to find a solution. Imagine a giant sudoku puz-
zle, several thousand rows and columns in size. If I show you a completed puzzle you
can verify it quite quickly. However, if the puzzle has a few squares filled and the rest
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are empty, it takes a lot of work to solve! The difficulty of the sudoku can be adjusted
by changing its size (more or fewer rows and columns), but it can still be verified
quite easily even if it is very large. The “puzzle” used in bitcoin is based on a crypto-
graphic hash and exhibits similar characteristics: it is asymmetrically hard to solve
but easy to verify, and its difficulty can be adjusted.

In “Bitcoin Uses, Users, and Their Stories” on page 5, we introduced Jing, an entre-
preneur in Shanghai. Jing runs a mining farm, which is a business that runs thousands
of specialized mining computers, competing for the reward. Every 10 minutes or so,
Jing’s mining computers compete against thousands of similar systems in a global
race to find a solution to a block of transactions. Finding such a solution, the so-
called Proof-of-Work (PoW), requires quadrillions of hashing operations per second
across the entire bitcoin network. The algorithm for Proof-of-Work involves repeat-
edly hashing the header of the block and a random number with the SHA256 crypto-
graphic algorithm until a solution matching a predetermined pattern emerges. The
first miner to find such a solution wins the round of competition and publishes that
block into the blockchain.

Jing started mining in 2010 using a very fast desktop computer to find a suitable
Proof-of-Work for new blocks. As more miners started joining the bitcoin network,
the difficulty of the problem increased rapidly. Soon, Jing and other miners upgraded
to more specialized hardware, such as high-end dedicated graphical processing units
(GPUgs) cards such as those used in gaming desktops or consoles. At the time of this
writing, the difficulty is so high that it is profitable only to mine with application-
specific integrated circuits (ASIC), essentially hundreds of mining algorithms printed
in hardware, running in parallel on a single silicon chip. Jing’s company also partici-
pates in a mining pool, which much like a lottery pool allows several participants to
share their efforts and rewards. Jing’s company now runs a warehouse containing
thousands of ASIC miners to mine for bitcoin 24 hours a day. The company pays its
electricity costs by selling the bitcoin it is able to generate from mining, creating some
income from the profits.

Mining Transactions in Blocks

New transactions are constantly flowing into the network from user wallets and other
applications. As these are seen by the bitcoin network nodes, they get added to a tem-
porary pool of unverified transactions maintained by each node. As miners construct
a new block, they add unverified transactions from this pool to the new block and
then attempt to prove the validity of that new block, with the mining algorithm
(Proof-of-Work). The process of mining is explained in detail in Chapter 10.

Transactions are added to the new block, prioritized by the highest-fee transactions
first and a few other criteria. Each miner starts the process of mining a new block of
transactions as soon as he receives the previous block from the network, knowing he
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has lost that previous round of competition. He immediately creates a new block, fills
it with transactions and the fingerprint of the previous block, and starts calculating
the Proof-of-Work for the new block. Each miner includes a special transaction in his
block, one that pays his own bitcoin address the block reward (currently 12.5 newly
created bitcoin) plus the sum of transaction fees from all the transactions included in
the block. If he finds a solution that makes that block valid, he “wins” this reward
because his successful block is added to the global blockchain and the reward transac-
tion he included becomes spendable. Jing, who participates in a mining pool, has set
up his software to create new blocks that assign the reward to a pool address. From
there, a share of the reward is distributed to Jing and other miners in proportion to
the amount of work they contributed in the last round.

Alice’s transaction was picked up by the network and included in the pool of unveri-
fied transactions. Once validated by the mining software it was included in a new
block, called a candidate block, generated by Jing’s mining pool. All the miners partici-
pating in that mining pool immediately start computing Proof-of-Work for the can-
didate block. Approximately five minutes after the transaction was first transmitted
by Alice’s wallet, one of Jing’s ASIC miners found a solution for the candidate block
and announced it to the network. Once other miners validated the winning block
they started the race to generate the next block.

Jing’s winning block became part of the blockchain as block #277316, containing 420
transactions, including Alice’s transaction. The block containing Alice’s transaction is
counted as one “confirmation” of that transaction.

You can see the block that includes Alice’s transaction.

Approximately 19 minutes later, a new block, #277317, is mined by another miner.
Because this new block is built on top of block #277316 that contained Alice’s transac-
tion, it added even more computation to the blockchain, thereby strengthening the
trust in those transactions. Each block mined on top of the one containing the trans-
action counts as an additional confirmation for Alice’s transaction. As the blocks pile
on top of each other, it becomes exponentially harder to reverse the transaction,
thereby making it more and more trusted by the network.

In the diagram in Figure 2-9, we can see block #277316, which contains Alice’s trans-
action. Below it are 277,316 blocks (including block #0), linked to each other in a
chain of blocks (blockchain) all the way back to block #0, known as the genesis block.
Over time, as the “height” in blocks increases, so does the computation difficulty for
each block and the chain as a whole. The blocks mined after the one that contains
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Alice’s transaction act as further assurance, as they pile on more computation in a
longer and longer chain. By convention, any block with more than six confirmations
is considered irrevocable, because it would require an immense amount of computa-
tion to invalidate and recalculate six blocks. We will examine the process of mining
and the way it builds trust in more detail in Chapter 10.

—

Block 277318
Transactions

Block Depth -

Block 277317
Transactions

\

Block 277316
Alice's Transaction
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Figure 2-9. Alice’s transaction included in block #277316

Spending the Transaction

Now that Alice’s transaction has been embedded in the blockchain as part of a block,
it is part of the distributed ledger of bitcoin and visible to all bitcoin applications.
Each bitcoin client can independently verify the transaction as valid and spendable.
Full-node clients can track the source of the funds from the moment the bitcoin were
first generated in a block, incrementally from transaction to transaction, until they
reach Bob’s address. Lightweight clients can do what is called a simplified payment
verification (see “Simplified Payment Verification (SPV) Nodes” on page 183) by con-
firming that the transaction is in the blockchain and has several blocks mined after it,
thus providing assurance that the miners accepted it as valid.

Bob can now spend the output from this and other transactions. For example, Bob
can pay a contractor or supplier by transferring value from Alice’s coffee cup payment
to these new owners. Most likely, Bob’s bitcoin software will aggregate many small
payments into a larger payment, perhaps concentrating all the day’s bitcoin revenue
into a single transaction. This would aggregate the various payments into a single
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output (and a single address). For a diagram of an aggregating transaction, see
Figure 2-6.

As Bob spends the payments received from Alice and other customers, he extends the
chain of transactions. Let’s assume that Bob pays his web designer Gopesh in Banga-
lore for a new website page. Now the chain of transactions will look like Figure 2-10.

INPUTS OUTPUTS

Transaction#1  Joe - Alice

Transaction#2  Alice — Bob

Transaction¥3  Bob — Gopesh

Figure 2-10. Alice’s transaction as part of a transaction chain from Joe to Gopesh

In this chapter, we saw how transactions build a chain that moves value from owner
to owner. We also tracked Alice’s transaction, from the moment it was created in her
wallet, through the bitcoin network and to the miners who recorded it on the block-
chain. In the rest of this book we will examine the specific technologies behind wal-
lets, addresses, signatures, transactions, the network, and finally mining.
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CHAPTER 3

Bitcoin Core: The Reference
Implementation

Bitcoin is an open source project and the source code is available under an open
(MIT) license, free to download and use for any purpose. Open source means more
than simply free to use. It also means that bitcoin is developed by an open commu-
nity of volunteers. At first, that community consisted of only Satoshi Nakamoto. By
2016, bitcoin’s source code had more than 400 contributors with about a dozen devel-
opers working on the code almost full-time and several dozen more on a part-time
basis. Anyone can contribute to the code—including you!

When bitcoin was created by Satoshi Nakamoto, the software was actually completed
before the whitepaper reproduced in Appendix A was written. Satoshi wanted to
make sure it worked before writing about it. That first implementation, then simply
known as “Bitcoin” or “Satoshi client,” has been heavily modified and improved. It has
evolved into what is known as Bitcoin Core, to differentiate it from other compatible
implementations. Bitcoin Core is the reference implementation of the bitcoin system,
meaning that it is the authoritative reference on how each part of the technology
should be implemented. Bitcoin Core implements all aspects of bitcoin, including
wallets, a transaction and block validation engine, and a full network node in the
peer-to-peer bitcoin network.

Even though Bitcoin Core includes a reference implementation of a
wallet, this is not intended to be used as a production wallet for
. users or for applications. Application developers are advised to

% build wallets using modern standards such as BIP-39 and BIP-32
(see “Mnemonic Code Words (BIP-39)” on page 99 and “HD Wal-
lets (BIP-32/BIP-44)” on page 96). BIP stands for Bitcoin Improve-
ment Proposal.
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Figure 3-1 shows the architecture

of Bitcoin Core.
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Figure 3-1. Bitcoin Core architecture (Source: Eric Lombrozo)

Bitcoin Development Environment

If you're a developer, you will want to set up a development environment with all the
tools, libraries, and support software for writing bitcoin applications. In this highly
technical chapter, we’ll walk through that process step-by-step. If the material
becomes too dense (and you’re not actually setting up a development environment)

feel free to skip to the next chapter, which is less technical.

Compiling Bitcoin Core from the Source Code

Bitcoin Core’s source code can be downloaded as a ZIP archive or by cloning the
authoritative source repository from GitHub. On the GitHub bitcoin page, select
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Download ZIP from the sidebar. Alternatively, use the git command line to create a
local copy of the source code on your system.

In many of the examples in this chapter we will be using the oper-
ating system’s command-line interface (also known as a “shell”),
accessed via a “terminal” application. The shell will display a
prompt; you type a command; and the shell responds with some
text and a new prompt for your next command. The prompt may
look different on your system, but in the following examples it is
denoted by a $ symbol. In the examples, when you see text after a $
symbol, don't type the $ symbol but type the command immedi-
ately following it, then press Enter to execute the command. In the
examples, the lines below each command are the operating system’s
responses to that command. When you see the next $ prefix, you'll
know it’s a new command and you should repeat the process.

In this example, we are using the git command to create a local copy (“clone”) of the
source code:

$ git clone https://github.com/bitcoin/bitcoin.git

Cloning into 'bitcoin'...

remote: Counting objects: 66193, done.

remote: Total 66193 (delta 0), reused 0 (delta 0), pack-reused 66193
Receiving objects: 100% (66193/66193), 63.39 MiB | 574.00 KiB/s, done.
Resolving deltas: 100% (48395/48395), done.

Checking connectivity... done.

$

Git is the most widely used distributed version control system, an
essential part of any software developer’s toolkit. You may need to
install the git command, or a graphical user interface for git, on
your operating system if you do not have it already.

When the git cloning operation has completed, you will have a complete local copy of
the source code repository in the directory bitcoin. Change to this directory by typing
cd bitcoin at the prompt:

$ cd bitcoin

Selecting a Bitcoin Core Release

By default, the local copy will be synchronized with the most recent code, which
might be an unstable or beta version of bitcoin. Before compiling the code, select a
specific version by checking out a release tag. This will synchronize the local copy
with a specific snapshot of the code repository identified by a keyword tag. Tags are
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used by the developers to mark specific releases of the code by version number. First,
to find the available tags, we use the git tag command:

$ git tag

v0.1.5

vO.1.6testl
v0.10.0

v0.11.2
v0.11.2rcl

v0.12.0rcl
v0.12.0rc2

The list of tags shows all the released versions of bitcoin. By convention, release candi-
dates, which are intended for testing, have the suffix “rc” Stable releases that can be
run on production systems have no suffix. From the preceding list, select the highest
version release, which at the time of writing was v0.11.2. To synchronize the local
code with this version, use the git checkout command:

$ git checkout v0.11.2
HEAD 1s now at 7e27892... Merge pull request #6975

You can confirm you have the desired version “checked out” by issuing the command
git status:

$ git status
HEAD detached at v0.11.2
nothing to commit, working directory clean

Configuring the Bitcoin Core Build

The source code includes documentation, which can be found in a number of files.
Review the main documentation located in README.md in the bitcoin directory by
typing more README.md at the prompt and using the spacebar to progress to the next
page. In this chapter, we will build the command-line bitcoin client, also known as
bitcoind on Linux. Review the instructions for compiling the bitcoind command-
line client on your platform by typing more doc/build-unix.md. Alternative instruc-
tions for macOS and Windows can be found in the doc directory, as build-osx.md or
build-windows.md, respectively.

Carefully review the build prerequisites, which are in the first part of the build docu-
mentation. These are libraries that must be present on your system before you can
begin to compile bitcoin. If these prerequisites are missing, the build process will fail
with an error. If this happens because you missed a prerequisite, you can install it and
then resume the build process from where you left off. Assuming the prerequisites
are installed, you start the build process by generating a set of build scripts using the
autogen.sh script.
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The Bitcoin Core build process was changed to use the autogen/
configure/make system starting with version 0.9. Older versions
use a simple Makefile and work slightly differently from the follow-
ing example. Follow the instructions for the version you want to
compile. The autogen/configure/make introduced in 0.9 is likely to
be the build system used for all future versions of the code and is
the system demonstrated in the following examples.

$ ./autogen.sh

glibtoolize: copying file 'build-aux/m4/libtool.m4'
glibtoolize: copying file 'build-aux/m4/ltoptions.m4’
glibtoolize: copying file 'build-aux/m4/ltsugar.m4'
glibtoolize: copying file 'build-aux/m4/ltversion.m4'

configure.ac:10: installing 'build-aux/compile’
configure.ac:5: installing 'build-aux/config.guess'
configure.ac:5: installing 'build-aux/config.sub'
configure.ac:9: installing 'build-aux/install-sh'
configure.ac:9: installing 'build-aux/missing'
Makefile.am: installing 'build-aux/depcomp’

The autogen.sh script creates a set of automatic configuration scripts that will inter-
rogate your system to discover the correct settings and ensure you have all the neces-
sary libraries to compile the code. The most important of these is the configure
script that offers a number of different options to customize the build process.
Type . /configure --help to see the various options:

$ ./configure --help
‘configure' configures Bitcoin Core 0.11.2 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

Optional Features:
--disable-option-checking 1ignore unrecognized --enable/--with options
--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)
--enable-FEATURE[=ARG] 1include FEATURE [ARG=yes]

--enable-wallet enable wallet (default is yes)
--with-gui[=no|qt4|qt5|auto]
The configure script allows you to enable or disable certain features of bitcoind
through the use of the --enable-FEATURE and --disable-FEATURE flags, where

FEATURE is replaced by the feature name, as listed in the help output. In this chapter,
we will build the bitcoind client with all the default features. We won't be using the
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configuration flags, but you should review them to understand what optional features
are part of the client. If you are in an academic setting, computer lab restrictions may
require you to install applications in your home directory (e.g., using --prefix=
SHOME).

Here are some useful options that override the default behavior of the configure
script:

- -prefix=$HOME
This overrides the default installation location (which is /usr/local/) for the
resulting executable. Use $HOME to put everything in your home directory, or a
different path.

--disable-wallet
This is used to disable the reference wallet implementation.

--with-incompatible-bdb
If you are building a wallet, allow the use of an incompatible version of the
Berkeley DB library.

--with-gui=no
Don't build the graphical user interface, which requires the Qt library. This builds
server and command-line bitcoin only.

Next, run the configure script to automatically discover all the necessary libraries
and create a customized build script for your system:

$ ./configure

checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk

checking whether make sets $(MAKE)... yes

[many pages of configuration tests follow]

$

If all went well, the configure command will end by creating the customized build
scripts that will allow us to compile bitcoind. If there are any missing libraries or
errors, the configure command will terminate with an error instead of creating the
build scripts. If an error occurs, it is most likely because of a missing or incompatible
library. Review the build documentation again and make sure you install the missing
prerequisites. Then run configure again and see if that fixes the error.
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Building the Bitcoin Core Executables

Next, you will compile the source code, a process that can take up to an hour to com-
plete, depending on the speed of your CPU and available memory. During the compi-
lation process you should see output every few seconds or every few minutes, or an
error if something goes wrong. If an error occurs, or the compilation process is inter-
rupted, it can be resumed any time by typing make again. Type make to start compiling
the executable application:

$ make
Making all in src
CXX crypto/libbitcoinconsensus_la-hmac_sha512.lo
CXX crypto/libbitcoinconsensus_la-ripemd160.lo
CXX crypto/libbitcoinconsensus_la-shal.lo
CXX crypto/libbitcoinconsensus_la-sha256. 1o
CXX crypto/libbitcoinconsensus_la-sha512.1lo
CXX libbitcoinconsensus_la-hash.lo
CXX primitives/libbitcoinconsensus_la-transaction.lo
CXX libbitcoinconsensus_la-pubkey.lo
CXX script/libbitcoinconsensus_la-bitcoinconsensus.lo
CXX script/libbitcoinconsensus_la-interpreter.lo
[... many more compilation messages follow ...]
$

If all goes well, Bitcoin Core is now compiled. The final step is to install the various
executables on your system using the sudo make install command. You may be
prompted for your user password, because this step requires administrative privi-
leges:

$ sudo make install

Password:

Making install in src

../build-aux/install-sh -c -d '/usr/local/lib'

libtool: install: /usr/bin/install -c bitcoind /usr/local/bin/bitcoind

libtool: install: /usr/bin/install -c bitcoin-cli /usr/local/bin/bitcoin-cli

libtool: install: /usr/bin/install -c bitcoin-tx /usr/local/bin/bitcoin-tx

$

The default installation of bitcoind puts it in /usr/local/bin. You can confirm that Bit-
coin Core is correctly installed by asking the system for the path of the executables, as
follows:

$ which bitcoind
Jusr/local/bin/bitcoind

$ which bitcoin-cli
Jusr/local/bin/bitcoin-cli
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Running a Bitcoin Core Node

Bitcoin’s peer-to-peer network is composed of network “nodes,” run mostly by volun-
teers and some of the businesses that build bitcoin applications. Those running bit-
coin nodes have a direct and authoritative view of the bitcoin blockchain, with a local
copy of all the transactions, independently validated by their own system. By running
a node, you don't have to rely on any third party to validate a transaction. Moreover,
by running a bitcoin node you contribute to the bitcoin network by making it more
robust.

Running a node, however, requires a permanently connected system with enough
resources to process all bitcoin transactions. Depending on whether you choose to
index all transactions and keep a full copy of the blockchain, you may also need a lot
of disk space and RAM. As of late 2016, a full-index node needs 2 GB of RAM and
125 GB of disk space so that it has room to grow. Bitcoin nodes also transmit and
receive bitcoin transactions and blocks, consuming internet bandwidth. If your inter-
net connection is limited, has a low data cap, or is metered (charged by the gigabit),
you should probably not run a bitcoin node on it, or run it in a way that constrains its
bandwidth (see Example 3-2).

Bitcoin Core keeps a full copy of the blockchain by default, with
every transaction that has ever occurred on the bitcoin network
since its inception in 2009. This dataset is dozens of gigabytes in
size and is downloaded incrementally over several days or weeks,
depending on the speed of your CPU and internet connection. Bit-
coin Core will not be able to process transactions or update
account balances until the full blockchain dataset is downloaded.
Make sure you have enough disk space, bandwidth, and time to
complete the initial synchronization. You can configure Bitcoin
Core to reduce the size of the blockchain by discarding old blocks
(see Example 3-2), but it will still download the entire dataset
before discarding data.

Despite these resource requirements, thousands of volunteers run bitcoin nodes.
Some are running on systems as simple as a Raspberry Pi (a $35 USD computer the
size of a pack of cards). Many volunteers also run bitcoin nodes on rented servers,
usually some variant of Linux. A Virtual Private Server (VPS) or Cloud Computing
Server instance can be used to run a bitcoin node. Such servers can be rented for $25
to $50 USD per month from a variety of providers.

Why would you want to run a node? Here are some of the most common reasons:

« If you are developing bitcoin software and need to rely on a bitcoin node for pro-
grammable (API) access to the network and blockchain.
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« If you are building applications that must validate transactions according to bit-
coin’s consensus rules. Typically, bitcoin software companies run several nodes.

o If you want to support bitcoin. Running a node makes the network more robust
and able to serve more wallets, more users, and more transactions.

« If you do not want to rely on any third party to process or validate your transac-
tions.

If you're reading this book and interested in developing bitcoin software, you should
be running your own node.

Running Bitcoin Core for the First Time

When you first run bitcoind, it will remind you to create a configuration file with a
strong password for the JSON-RPC interface. This password controls access to the
application programming interface (API) offered by Bitcoin Core.

Run bitcoind by typing bitcoind into the terminal:

$ bitcoind

Error: To use the
tion file:
/home/ubuntu/.bitcoin/bitcoin.conf

It is recommended you use the following random password:

rpcuser=bitcoinrpc

rpcpassword=2XA4DUKNCbtZXsBQRRNDEWEY2nM6M4HITX5dF joAVVbK

(you do not need to remember this password)

The username and password MUST NOT be the same.

If the file does not exist, create it with owner-readable-only file permissions.
It is also recommended to set alertnotify so you are notified of problems;

for example: alertnotify=echo %s | mail -s "Bitcoin Alert" admin@foo.com

'-server" option, you must set a rpcpassword in the configura-

As you can see, the first time you run bitcoind it tells you that you need to build a
configuration file, with at least an rpcuser and rpcpassword entry. Additionally, it is
recommended that you set up the alerting mechanism. In the next section we will
examine the various configuration options and set up a configuration file.

Configuring the Bitcoin Core Node

Edit the configuration file in your preferred editor and set the parameters, replacing
the password with a strong password as recommended by bitcoind. Do not use the
password shown in the book. Create a file inside the .bitcoin directory (under your
user’s home directory) so that it is named .bitcoin/bitcoin.conf and provide a user-
name and password:

rpcuser=bitcoinrpc
rpcpassword=CHANGE_THIS
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In addition to the rpcuser and rpcpassword options, Bitcoin Core offers more than
100 configuration options that modify the behavior of the network node, the storage
of the blockchain, and many other aspects of its operation. To see a listing of these
options, run bitcoind --help:

bitcoind --help
Bitcoin Core Daemon version v0.11.2

Usage:
bitcoind [options] Start Bitcoin Core Daemon

Options:

-2

This help message

-alerts
Receive and display P2P network alerts (default: 1)

-alertnotify=<cmd>
Execute command when a relevant alert is received or we see a really
long fork (%s in cmd is replaced by message)

[many more options]

-rpcsslciphers=<ciphers>
Acceptable ciphers (default:
TLSv1.2+HIGH: TLSv1+HIGH: !SSLv2: !aNULL: !eNULL: ! 3DES:@STRENGTH)
Here are some of the most important options that you can set in the configuration
file, or as command-line parameters to bitcoind:

alertnotify
Run a specified command or script to send emergency alerts to the owner of this
node, usually by email.

conf

An alternative location for the configuration file. This only makes sense as a
command-line parameter to bitcoind, as it can't be inside the configuration file
it refers to.

datadir
Select the directory and filesystem in which to put all the blockchain data. By
default this is the .bitcoin subdirectory of your home directory. Make sure this
filesystem has several gigabytes of free space.
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prune
Reduce the disk space requirements to this many megabytes, by deleting old
blocks. Use this on a resource-constrained node that can't fit the full blockchain.

txindex
Maintain an index of all transactions. This means a complete copy of the block-
chain that allows you to programmatically retrieve any transaction by ID.

maxconnections
Set the maximum number of nodes from which to accept connections. Reducing
this from the default will reduce your bandwidth consumption. Use if you have a
data cap or pay by the gigabyte.

maxmempool
Limit the transaction memory pool to this many megabytes. Use it to reduce
memory use of the node.

maxreceivebuffer/maxsendbuffer
Limit per-connection memory buffer to this many multiples of 1000 bytes. Use
on memory-constrained nodes.

minrelaytxfee
Set the minimum fee transaction you will relay. Below this value, the transaction
is treated as zero fee. Use this on memory-constrained nodes to reduce the size of
the in-memory transaction pool.

Transaction Database Index and txindex Option

By default, Bitcoin Core builds a database containing only the transactions related to
the user’s wallet. If you want to be able to access any transaction with commands like
getrawtransaction (see “Exploring and Decoding Transactions” on page 45), you
need to configure Bitcoin Core to build a complete transaction index, which can be
achieved with the txindex option. Set txindex=1 in the Bitcoin Core configuration
file. If you don’t set this option at first and later set it to full indexing, you need to
restart bitcoind with the - reindex option and wait for it to rebuild the index.

Example 3-1 shows how you might combine the preceding options, with a fully
indexed node, running as an API backend for a bitcoin application.

Example 3-1. Sample configuration of a full-index node

alertnotify=myemailscript.sh "Alert: %s"
datadir=/lotsofspace/bitcoin
txindex=1

Running a Bitcoin Core Node | 41

www.EBookswWorld.ir



rpcuser=bitcoinrpc
rpcpassword=CHANGE_THIS

Example 3-2 shows a resource-constrained node running on a smaller server.

Example 3-2. Sample configuration of a resource-constrained system

alertnotify=myemailscript.sh "Alert: %s"
maxconnections=15

prune=5000

minrelaytxfee=0.0001

maxmempoo =200

maxreceivebuffer=2500

maxsendbuffer=500

rpcuser=bitcoinrpc
rpcpassword=CHANGE_THIS

Once you've edited the configuration file and set the options that best represent your
needs, you can test bitcoind with this configuration. Run Bitcoin Core with the
option printtoconsole to run in the foreground with output to the console:

$ bitcoind -printtoconsole

Bitcoin version v0.11.20.0

Using OpenSSL version OpenSSL 1.0.2e 3 Dec 2015

Startup time: 2015-01-02 19:56:17

Using data directory /tmp/bitcoin

Using config file /tmp/bitcoin/bitcoin.conf

Using at most 125 connections (275 file descriptors available)
Using 2 threads for script verification

scheduler thread start

HTTP: creating work queue of depth 16

No rpcpassword set - using random cookie authentication
Generated RPC authentication cookie /tmp/bitcoin/.cookie
HTTP: starting 4 worker threads

Bound to [::]:8333

Bound to 0.0.0.0:8333

Cache configuration:

* Using 2.0MiB for block index database

* Using 32.5M1B for chain state database

* Using 65.5MiB for in-memory UTXO set

init message: Loading block index...

Opening LevelDB in /tmp/bitcoin/blocks/index

Opened LevelDB successfully

[... more startup messages ...]

You can hit Ctrl-C to interrupt the process once you are satisfied that it is loading the
correct settings and running as you expect.
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To run Bitcoin Core in the background as a process, start it with the daemon option,
as bitcoind -daemon.

To monitor the progress and runtime status of your bitcoin node, use the command
bitcoin-cli getinfo:

$ bitcoin-cli getinfo

{
"version" : 110200,
"protocolversion" : 70002,
"blocks" : 396328,
"timeoffset" : 0,
"connections" : 15,
"proxy" : "",
"difficulty" : 120033340651.23696899,
"testnet" : false,
"relayfee" : 0.00010000,
"errors" : ""

}

This shows a node running Bitcoin Core version 0.11.2, with a blockchain height of
396328 blocks and 15 active network connections.

Once you are happy with the configuration options you have selected, you should add
bitcoin to the startup scripts in your operating system, so that it runs continuously
and restarts when the operating system restarts. You will find a number of example
startup scripts for various operating systems in bitcoin’s source directory under con-
trib/init and a README.md file showing which system uses which script.

Bitcoin Core Application Programming Interface (API)

The Bitcoin Core client implements a JSON-RPC interface that can also be accessed
using the command-line helper bitcoin-cli. The command line allows us to experi-
ment interactively with the capabilities that are also available programmatically via
the API. To start, invoke the help command to see a list of the available bitcoin RPC
commands:

$ bitcoin-cli help

addmultisigaddress nrequired ["key",...] ( "account" )

addnode "node" "add|remove|onetry"

backupwallet "destination"

createmultisig nrequired ["key",...]

createrawtransaction [{"txid":"id","vout":n},...] {"address":amount,...}
decoderawtransaction "hexstring"

verifymessage "bitcoinaddress
walletlock

signature" "message"
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walletpassphrase "passphrase" timeout
walletpassphrasechange "oldpassphrase

newpassphrase"

Each of these commands may take a number of parameters. To get additional help, a
detailed description, and information on the parameters, add the command name
after help. For example, to see help on the getblockhash RPC command:

$ bitcoin-cli help getblockhash
getblockhash index

Returns hash of block in best-block-chain at index provided.

Arguments:

1. index (numeric, required) The block index

Result:

"hash" (string) The block hash

Examples:

> bitcoin-cli getblockhash 1000

> curl --user myusername --data-binary '{"jsonrpc": "1.0", "id":"curltest",

"method": "getblockhash", "params": [1000] }' -H 'content-type: text/plain;'
http://127.0.0.1:8332/
At the end of the help information you will see two examples of the RPC command,
using the bitcoin-cl1i helper or the HTTP client curl. These examples demonstrate
how you might call the command. Copy the first example and see the result:
$ bitcoin-cli getblockhash 1000
00000000c937983704a73af28acdec37b049d214adbda81d7e2a3dd146f6ed09
The result is a block hash, which is described in more detail in the following chapters.
But for now, this command should return the same result on your system, demon-
strating that your Bitcoin Core node is running, is accepting commands, and has
information about block 1000 to return to you.

In the next sections we will demonstrate some very useful RPC commands and their
expected output.

Getting Information on the Bitcoin Core Client Status
Command: getinfo

Bitcoins getinfo RPC command displays basic information about the status of the
bitcoin network node, the wallet, and the blockchain database. Use bitcoin-cli to
run it:

$ bitcoin-cli getinfo

{
"version" : 110200,
"protocolversion" : 70002,
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"blocks" : 396367,
"timeoffset" : 0,
"connections" : 15,

nn

"proxy" : ,

"difficulty" : 120033340651.23696899,
"testnet" : false,

"relayfee" : 0.00010000,

"errors" : ""

}

The data is returned in JavaScript Object Notation (JSON), a format that can easily be
“consumed” by all programming languages but is also quite human-readable. Among
this data we see the version numbers for the bitcoin software client (110200) and bit-
coin protocol (70002). We see the current block height, showing us how many blocks
are known to this client (396367). We also see various statistics about the bitcoin net-
work and the settings related to this client.

It will take some time, perhaps more than a day, for the bitcoind
client to “catch up” to the current blockchain height as it down-
loads blocks from other bitcoin clients. You can check its progress
using getinfo to see the number of known blocks.

Exploring and Decoding Transactions
Commands: getrawtransaction, decoderawtransaction

In “Buying a Cup of Coffee” on page 16, Alice bought a cup of coffee from Bob’s Cafe.
Her transaction was recorded on the blockchain with transaction ID (txid)
0627052b6128912f2703066a912ea577f2ce4dadcaa5a5fbd8a57286c345c2f2. Let’s use
the API to retrieve and examine that transaction by passing the transaction ID as a
parameter:

$ bitcoin-cli getrawtransaction 0627052b6f28912f2703066a912ea577f2ceddadcaasae
5fbd8a57286c345¢c2f2

0100000001186f9f998a5aa6f048e51dd8419a14d8a0f1a8a2836dd734d2804fe65fa35779000«
000008b483045022100884d142d86652a3f47bad746ec719bbfbd040a570b1deccbb6498c75c4«
2e24cb02204b9f039ffO8dfO9cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813014«
10484ecc0d46f1918b30928fabe4ed99f16a0fbsfded735e7ade8416ab9fe423cc54123363767«
89d172787ec3457eee41c04f4938de5cc17b4a10fa336a8d752adfffffffff0260e3160000000«
0001976a914ab68025513c3dbd2f7b92a94e0581f5d50f654e788acd0ef8000000000001976a9«
147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac00000000
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A transaction ID is not authoritative until a transaction has been
confirmed. Absence of a transaction hash in the blockchain does
not mean the transaction was not processed. This is known as
“transaction malleability,” because transaction hashes can be modi-
fied prior to confirmation in a block. After confirmation, the txid is
immutable and authoritative.

The command getrawtransaction returns a serialized transaction in hexadecimal
notation. To decode that, we use the decoderawtransaction command, passing the
hex data as a parameter. You can copy the hex returned by getrawtransaction and
paste it as a parameter to decoderawtransaction:

$ bitcoin-cli decoderawtransaction 0100000001186f9f998a5aa6f048e51dd8419a14d8«
a0f1a8a2836dd734d2804fe65fa35779000000008b483045022100884d142d86652a3f47bad74«
6ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204b9f039ff08dfO9cbe9f6addac960298«
cad530a863ea8f53982c09db8f6e381301410484ecc0d46f1918b30928fabed4ed99f16a0fbafde
e0735e7ade8416ab9fe423cc5412336376789d172787ec3457eee41c04f4938de5cc17bdal0fa
336a8d752adf ffffffff0260e31600000000001976a914ab68025513c3dbd2f7b92a94e0581f5«
d50f654e788acd0ef8000000000001976a9147f9b1a7fb68d60c536c2fd8aeaas53a8f3cc025a8«
88ac00000000

"txid": "0627052b6128912f2703066a912ea577f2ceddadcaa5a5fbd8a57286c345¢c2f2",
"size": 258,
"version": 1,
"locktime": 0,
"vin": [
{

"txid": "7957a35fe64f80d234d76d83a2...8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"scriptSig": {
"asm":"3045022100884d142d86652a3f47ba4746ec719bbfbd040a570bldecc...",
"hex":"483045022100884d142d86652a3f47bad746ec719bbfbd040a570blide. .. "

}s

"sequence": 4294967295

}
1,
"vout": [
{

"value": 0.01500000,

"n": 0O,

"scriptPubKey": {

"asm": "OP_DUP OP_HASH160 ab68...5f654e7 OP_EQUALVERIFY OP_CHECKSIG",
"hex": "76a914ab68025513c3dbd2f7b92a94e0581f5d50f654e788ac",
"reqSigs": 1,
"type": "pubkeyhash",
"addresses": [
"1GdK9UzpHBzqzX2A9JFP3D14weBwqgmoQA"
1
}
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1,
{
"value": 0.08450000,

"n": 1,
"scriptPubKey": {
"asm": "OP_DUP OP_HASH160 7f9bila...025a8 OP_EQUALVERIFY OP_CHECKSIG",
"hex": "76a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac”,
"reqSigs": 1,
"type": "pubkeyhash",
"addresses": [
"1Cd1d9KFAaatwczBwBttQcwXYCpvK8h7FK"

The transaction decode shows all the components of this transaction, including the
transaction inputs and outputs. In this case we see that the transaction that credited
our new address with 15 millibits used one input and generated two outputs. The
input to this transaction was the output from a previously confirmed transaction
(shown as the vin txid starting with 7957a35fe). The two outputs correspond to the
15 millibit credit and an output with change back to the sender.

We can further explore the blockchain by examining the previous transaction refer-
enced by its txid in this transaction using the same commands (e.g., getrawtransac
tion). Jumping from transaction to transaction we can follow a chain of transactions
back as the coins are transmitted from owner address to owner address.

Exploring Blocks
Commands: getblock, getblockhash

Exploring blocks is similar to exploring transactions. However, blocks can be refer-
enced either by the block height or by the block hash. First, let’s find a block by its
height. In “Buying a Cup of Coffee” on page 16, we saw that Alice’s transaction was
included in block 277316.

We use the getblockhash command, which takes the block height as the parameter
and returns the block hash for that block:

$ bitcoin-cli getblockhash 277316
0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4

Now that we know which block Alice’s transaction was included in, we can query that
block. We use the getblock command with the block hash as the parameter:

$ bitcoin-cli getblock 0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b3«
1b2cc7bdc4
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"hash": "0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdca”,
"confirmations": 37371,
"size": 218629,
"height": 277316,
"version": 2,
"merkleroot":
"c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51ebdcc7cf2e",
"tx": [
"d5ada064c6417ca25c4308bd158c34b77elcOeca2a73cdaleéc737e7424afbazf"”,
"b268b45c59b39d759614757718b9918caf®badd97c5613b91956ff877c503fbe",
"04905ff987ddd4cfe603b03cfb7ca50ee81d89d1f8f5f265c38f763eeada21fd",
"32467aab5d04f51940075055c2f20bbd1195727c961431bf0aff8443f971081",
"561c5216944e21fa29dd12aaa1a45e3397f9c0d888359¢cb05e1f79fe73da37bd",
[... hundreds of transactions ...]
"78b300b2a1d2d9449b58db7bc71c3884d6€0579617e0da4991b9734cef7ab23a",
"6c87130ec283ab4c2c493b190c20de4b28ff3caf72d16ffalce3e96f2069aca9",
"6f423dbc3636ef193fd8898dfdf7621dcadelbbe509e963ffbff91f696d81a62",
"802ba8b2adabc5796a9471f25b02aebaeee2439c679a5¢c33c4bbcee97e081196",
"eaaf6a048588d9ad4d1c092539bd571dd8af30635c152a3b0e8b611e67d1alaf",
"e67abc6bd5e2cac169821afc51b207127f42b92a841e976f9b752157879ba8bd",
"d38985a6a1bfd35037cb7776b2dc86797abbb7a06630f5d03df2785d50d5a2ac",
"45ea0a3f6016d2bb90ab92c34a7aac9767671a8a84b9bcce6c019e60197¢c134b",
"c098445d748ced5f178ef2ff96f2758cbec9eb32cb0fc65db313bcac1d3bcogf"
1,
"time": 1388185914,
"mediantime": 1388183675,
"nonce": 924591752,
"bits": "1903a30c",
"difficulty": 1180923195.258026,
"chainwork":
"000000000000000000000000000000000000000000000934695e92aaf53afala",
"previousblockhash":
"0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569",
"nextblockhash":
"000000000000000010236c269dd6ed714dd5db39d36b33959079d78dfd431ba7"
}

The block contains 419 transactions and the 64th transaction listed (0627052b..) is

Alice’s coffee payment. The height entry tells us this is the 277316th block in the
blockchain.

Using Bitcoin Core’s Programmatic Interface

The bitcoin-cli helper is very useful for exploring the Bitcoin Core API and testing
functions. But the whole point of an application programming interface is to access
functions programmatically. In this section we will demonstrate accessing Bitcoin
Core from another program.

Bitcoin Core’s API is a JSON-RPC interface. JSON stands for JavaScript Object Nota-
tion and it is a very convenient way to present data that both humans and programs
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can easily read. RPC stands for Remote Procedure Call, which means that we are call-
ing procedures (functions) that are remote (on the Bitcoin Core node) via a network
protocol. In this case, the network protocol is HTTP, or HTTPS (for encrypted con-
nections).

When we used the bitcoin-cli command to get help on a command, it showed us

an example of using curl, the versatile command-line HTTP client to construct one
of these JSON-RPC calls:

$ curl --user myusername --data-binary '{"jsonrpc": "1.0", "id":"curltest",
"method": "getinfo", "params": [] }' -H 'content-type: text/plain;' http://
127.0.0.1:8332/
This command shows that curl submits an HTTP request to the local host
(127.0.0.1), connecting to the default bitcoin port (8332), and submitting a jsonrpc
request for the getinfo method using text/plain encoding.

If you're implementing a JSON-RPC call in your own program, you can use a generic
HTTP library to construct the call, similar to what is shown in the preceding curl
example.

However, there are libraries in most every programming language that “wrap” the
Bitcoin Core API in a way that makes this a lot simpler. We will use the python-
bitcoinlib library to simplify API access. Remember, this requires you to have a
running Bitcoin Core instance, which will be used to make JSON-RPC calls.

The Python script in Example 3-3 makes a simple getinfo call and prints the block

parameter from the data returned by Bitcoin Core.

Example 3-3. Running getinfo via Bitcoin Core’s JSON-RPC API

from import RawProxy

# Create a connection to local Bitcoin Core node
p = RawProxy()

# Run the getinfo command, store the resulting data in info
info = p.getinfo()

# Retrieve the 'blocks' element from the info
print(info[ 'blocks'])

Running it gives us the following result:

$ python rpc_example.py
394075

Bitcoin Core Application Programming Interface (API) | 49

www.EBookswWorld.ir



It tells us that our local Bitcoin Core node has 394075 blocks in its blockchain. Not a
spectacular result, but it demonstrates the basic use of the library as a simplified
interface to Bitcoin Core’s JSON-RPC API.

Next, let’s use the getrawtransaction and decodetransaction calls to retrieve the
details of Alice’s coffee payment. In Example 3-4, we retrieve Alice’s transaction and
list the transaction’s outputs. For each output, we show the recipient address and
value. As a reminder, Alice’s transaction had one output paying Bob’s Cafe and one
output for change back to Alice.

Example 3-4. Retrieving a transaction and iterating its outputs
from import RawProxy
p = RawProxy()

# Alice's transaction ID
txid = "0627052b6128912f2703066a912ea577f2ced4dadcaa5a5fbd8a57286¢c345¢c2f2"

# First, retrieve the raw transaction in hex
raw_tx = p.getrawtransaction(txid)

# Decode the transaction hex into a JSON object
decoded_tx = p.decoderawtransaction(raw_tx)

# Retrieve each of the outputs from the transaction
for output in decoded_tx['vout']:
print(output[ 'scriptPubKey']['addresses'], output['value'])

Running this code, we get:

$ python rpc_transaction.py

([u'1GdK9UzpHBZzqzX2A9JFP3D14weBwqgmoQA'], Decimal('0.01500000'))

([u'1Cd1d9KFAaatwczBwBttQcwXYCpvK8h7FK'], Decimal('0.08450000'))
Both of the preceding examples are rather simple. You don’t really need a program to
run them; you could just as easily use the bitcoin-cli helper. The next example,
however, requires several hundred RPC calls and more clearly demonstrates the use
of a programmatic interface.

In Example 3-5, we first retrieve block 277316, then retrieve each of the 419 transac-
tions within by reference to each transaction ID. Next, we iterate through each of the
transaction’s outputs and add up the value.

Example 3-5. Retrieving a block and adding all the transaction outputs

from import RawProxy

p = RawProxy()

50 | Chapter3:Bitcoin Core: The Reference Implementation

www.EBookswWorld.ir



# The block height where Alice's transaction was recorded
blockheight = 277316

# Get the block hash of block with height 277316
blockhash = p.getblockhash(blockheight)

# Retrieve the block by its hash
block = p.getblock(blockhash)

# Element tx contains the list of all transaction IDs in the block
transactions = block['tx']

block_value = 0

# Iterate through each transaction ID in the block
for txid in transactions:
tx_value = 0
# Retrieve the raw transaction by ID
raw_tx = p.getrawtransaction(txid)
# Decode the transaction
decoded_tx = p.decoderawtransaction(raw_tx)
# Iterate through each output in the transaction
for output in decoded_tx['vout']:
# Add up the value of each output
tx_value = tx_value + output['value']

# Add the value of this transaction to the total
block_value = block_value + tx_value

print("Total value in block: ", block_value)

Running this code, we get:

$ python rpc_block.py

('Total value in block: ', Decimal('10322.07722534"))

Our example code calculates that the total value transacted in this block is
10,322.07722534 BTC (including 25 BTC reward and 0.0909 BTC in fees). Compare
that to the amount reported by a block explorer site by searching for the block hash
or height. Some block explorers report the total value excluding the reward and
excluding the fees. See if you can spot the difference.

Alternative Clients, Libraries, and Toolkits

There are many alternative clients, libraries, toolkits, and even full-node implementa-
tions in the bitcoin ecosystem. These are implemented in a variety of programming
languages, offering programmers native interfaces in their preferred language.
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The following sections list some of the best libraries, clients, and toolkits, organized
by programming languages.

(/C++

Bitcoin Core
The reference implementation of bitcoin

libbitcoin
Cross-platform C++ development toolkit, node, and consensus library

bitcoin explorer
Libbitcoin’s command-line tool

picocoin
A C language lightweight client library for bitcoin by Jeff Garzik
JavaScript

beoin
A modular and scalable full-node implementation with API

Bitcore
Full node, API, and library by Bitpay

Bitcoin]S
A pure JavaScript Bitcoin library for node.js and browsers
Java

bitcoinj
A Java full-node client library

Bits of Proof (BOP)
A Java enterprise-class implementation of bitcoin

Python

python-bitcoinlib
A Python bitcoin library, consensus library, and node by Peter Todd

pycoin
A Python bitcoin library by Richard Kiss

pybitcointools
A Python bitcoin library by Vitalik Buterin

52 | Chapter3:Bitcoin Core: The Reference Implementation

www.EBookswWorld.ir


https://github.com/bitcoin/bitcoin
https://github.com/libbitcoin/libbitcoin
https://github.com/libbitcoin/libbitcoin-explorer
https://github.com/jgarzik/picocoin
http://bcoin.io/
https://bitcore.io/
https://github.com/bitcoinjs/bitcoinjs-lib
https://bitcoinj.github.io
https://bitsofproof.com
https://github.com/petertodd/python-bitcoinlib
https://github.com/richardkiss/pycoin
https://github.com/vbuterin/pybitcointools

Ruby

bitcoin-client
A Ruby library wrapper for the JSON-RPC API

Go

btcd
A Go language full-node bitcoin client

Rust

rust-bitcoin
Rust bitcoin library for serialization, parsing, and API calls

C#

NBitcoin
Comprehensive bitcoin library for the NET framework

Objective-C

CoreBitcoin
Bitcoin toolkit for ObjC and Swift

Many more libraries exist in a variety of other programming languages and more are

created all the time.
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https://github.com/sinisterchipmunk/bitcoin-client
https://github.com/btcsuite/btcd
https://github.com/apoelstra/rust-bitcoin
https://github.com/MetacoSA/NBitcoin
https://github.com/oleganza/CoreBitcoin
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CHAPTER 4

Keys, Addresses

You may have heard that bitcoin is based on cryptography, which is a branch of math-
ematics used extensively in computer security. Cryptography means “secret writing”
in Greek, but the science of cryptography encompasses more than just secret writing,
which is referred to as encryption. Cryptography can also be used to prove knowl-
edge of a secret without revealing that secret (digital signature), or prove the authen-
ticity of data (digital fingerprint). These types of cryptographic proofs are the
mathematical tools critical to bitcoin and used extensively in bitcoin applications.
Ironically, encryption is not an important part of bitcoin, as its communications and
transaction data are not encrypted and do not need to be encrypted to protect the
funds. In this chapter we will introduce some of the cryptography used in bitcoin to
control ownership of funds, in the form of keys, addresses, and wallets.

Introduction

Ownership of bitcoin is established through digital keys, bitcoin addresses, and digital
signatures. The digital keys are not actually stored in the network, but are instead cre-
ated and stored by users in a file, or simple database, called a wallet. The digital keys
in a user’s wallet are completely independent of the bitcoin protocol and can be gen-
erated and managed by the user’s wallet software without reference to the blockchain
or access to the internet. Keys enable many of the interesting properties of bitcoin,
including decentralized trust and control, ownership attestation, and the
cryptographic-proof security model.

Most bitcoin transactions requires a valid digital signature to be included in the
blockchain, which can only be generated with a secret key; therefore, anyone with a
copy of that key has control of the bitcoin. The digital signature used to spend funds
is also referred to as a witness, a term used in cryptography. The witness data in a bit-
coin transaction testifies to the true ownership of the funds being spent.
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Keys come in pairs consisting of a private (secret) key and a public key. Think of the
public key as similar to a bank account number and the private key as similar to the
secret PIN, or signature on a check, that provides control over the account. These
digital keys are very rarely seen by the users of bitcoin. For the most part, they are
stored inside the wallet file and managed by the bitcoin wallet software.

In the payment portion of a bitcoin transaction, the recipient’s public key is repre-
sented by its digital fingerprint, called a bitcoin address, which is used in the same way
as the beneficiary name on a check (i.e., “Pay to the order of”). In most cases, a bit-
coin address is generated from and corresponds to a public key. However, not all bit-
coin addresses represent public keys; they can also represent other beneficiaries such
as scripts, as we will see later in this chapter. This way, bitcoin addresses abstract the
recipient of funds, making transaction destinations flexible, similar to paper checks: a
single payment instrument that can be used to pay into people’s accounts, pay into
company accounts, pay for bills, or pay to cash. The bitcoin address is the only repre-
sentation of the keys that users will routinely see, because this is the part they need to
share with the world.

First, we will introduce cryptography and explain the mathematics used in bitcoin.
Next, we will look at how keys are generated, stored, and managed. We will review the
various encoding formats used to represent private and public keys, addresses, and
script addresses. Finally, we will look at advanced use of keys and addresses: vanity,
multisignature, and script addresses and paper wallets.

Public Key Cryptography and Cryptocurrency

Public key cryptography was invented in the 1970s and is a mathematical foundation
for computer and information security.

Since the invention of public key cryptography, several suitable mathematical func-
tions, such as prime number exponentiation and elliptic curve multiplication, have
been discovered. These mathematical functions are practically irreversible, meaning
that they are easy to calculate in one direction and infeasible to calculate in the oppo-
site direction. Based on these mathematical functions, cryptography enables the cre-
ation of digital secrets and unforgeable digital signatures. Bitcoin uses elliptic curve
multiplication as the basis for its cryptography.

In bitcoin, we use public key cryptography to create a key pair that controls access to
bitcoin. The key pair consists of a private key and—derived from it—a unique public
key. The public key is used to receive funds, and the private key is used to sign trans-
actions to spend the funds.

There is a mathematical relationship between the public and the private key that
allows the private key to be used to generate signatures on messages. This signature
can be validated against the public key without revealing the private key.
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When spending bitcoin, the current bitcoin owner presents her public key and a sig-
nature (different each time, but created from the same private key) in a transaction to
spend those bitcoin. Through the presentation of the public key and signature, every-
one in the bitcoin network can verify and accept the transaction as valid, confirming
that the person transferring the bitcoin owned them at the time of the transfer.

In most wallet implementations, the private and public keys are
stored together as a key pair for convenience. However, the public
key can be calculated from the private key, so storing only the pri-
vate key is also possible.

Private and Public Keys

A bitcoin wallet contains a collection of key pairs, each consisting of a private key and
a public key. The private key (k) is a number, usually picked at random. From the pri-
vate key, we use elliptic curve multiplication, a one-way cryptographic function, to
generate a public key (K). From the public key (K), we use a one-way cryptographic
hash function to generate a bitcoin address (A). In this section, we will start with gen-
erating the private key, look at the elliptic curve math that is used to turn that into a
public key, and finally, generate a bitcoin address from the public key. The relation-
ship between private key, public key, and bitcoin address is shown in Figure 4-1.

Elliptic Curve Multiplication Hashing Function
(One-Way) {One-Way)

Bitcoin Address

Private Key Public Key

Figure 4-1. Private key, public key, and bitcoin address

Why Use Asymmetric Cryptography (Public/Private Keys)?

Why is asymmetric cryptography used in bitcoin? It's not used to “encrypt” (make
secret) the transactions. Rather, the useful property of asymmetric cryptography is the
ability to generate digital signatures. A private key can be applied to the digital finger-
print of a transaction to produce a numerical signature. This signature can only be
produced by someone with knowledge of the private key. However, anyone with
access to the public key and the transaction fingerprint can use them to verify the sig-
nature. This useful property of asymmetric cryptography makes it possible for anyone
to verify every signature on every transaction, while ensuring that only the owners of
private keys can produce valid signatures.
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Private Keys

A private key is simply a number, picked at random. Ownership and control over the
private key is the root of user control over all funds associated with the corresponding
bitcoin address. The private key is used to create signatures that are required to spend
bitcoin by proving ownership of funds used in a transaction. The private key must
remain secret at all times, because revealing it to third parties is equivalent to giving
them control over the bitcoin secured by that key. The private key must also be
backed up and protected from accidental loss, because if it’s lost it cannot be recov-
ered and the funds secured by it are forever lost, too.

The bitcoin private key is just a number. You can pick your private
keys randomly using just a coin, pencil, and paper: toss a coin 256
times and you have the binary digits of a random private key you
can use in a bitcoin wallet. The public key can then be generated
from the private key.

Generating a private key from a random number

The first and most important step in generating keys is to find a secure source of
entropy, or randomness. Creating a bitcoin key is essentially the same as “Pick a num-
ber between 1 and 2%¢” The exact method you use to pick that number does not mat-
ter as long as it is not predictable or repeatable. Bitcoin software uses the underlying
operating system’s random number generators to produce 256 bits of entropy (ran-
domness). Usually, the OS random number generator is initialized by a human source
of randomness, which is why you may be asked to wiggle your mouse around for a
few seconds.

More precisely, the private key can be any number between 1 and n - 1, wherenisa
constant (n = 1.158 * 107, slightly less than 22°) defined as the order of the elliptic
curve used in bitcoin (see “Elliptic Curve Cryptography Explained” on page 60). To
create such a key, we randomly pick a 256-bit number and check that it is less than n
- 1. In programming terms, this is usually achieved by feeding a larger string of ran-
dom bits, collected from a cryptographically secure source of randomness, into the
SHA256 hash algorithm, which will conveniently produce a 256-bit number. If the
result is less than n - 1, we have a suitable private key. Otherwise, we simply try
again with another random number.
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Do not write your own code to create a random number or use a
“simple” random number generator offered by your programming
language. Use a cryptographically secure pseudorandom number
. generator (CSPRNG) with a seed from a source of sufficient
entropy. Study the documentation of the random number genera-
tor library you choose to make sure it is cryptographically secure.
Correct implementation of the CSPRNG is critical to the security
of the keys.

The following is a randomly generated private key (k) shown in hexadecimal format
(256 bits shown as 64 hexadecimal digits, each 4 bits):

1E99423A4ED27608A15A2616A2BOEIES2CED330AC530EDCC32C8FFC6A526AEDD
The size of bitcoin’s private key space, (2%) is an unfathomably

large number. It is approximately 1077 in decimal. For comparison,
the visible universe is estimated to contain 10% atoms.

To generate a new key with the Bitcoin Core client (see Chapter 3), use the getnewad
dress command. For security reasons it displays the public key only, not the private
key. To ask bitcoind to expose the private key, use the dumpprivkey command. The
dumpprivkey command shows the private key in a Base58 checksum-encoded format
called the Wallet Import Format (WIF), which we will examine in more detail in “Pri-
vate key formats” on page 70. Here’s an example of generating and displaying a pri-
vate key using these two commands:

$ bitcoin-cli getnewaddress

1J7mdg5rbQyUHENYdx39WVWK7 fsLpEoXZy

$ bitcoin-cli dumpprivkey 137mdg5rbQyUHENYdx39WVWK7fsLpEoXZy
KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrt]

The dumpprivkey command opens the wallet and extracts the private key that was
generated by the getnewaddress command. It is not possible for bitcoind to know
the private key from the public key unless they are both stored in the wallet.

The dumpprivkey command does not generate a private key from a
public key, as this is impossible. The command simply reveals the
private key that is already known to the wallet and which was gen-
erated by the getnewaddress command.
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You can also use the Bitcoin Explorer command-line tool (see Appendix G) to gener-
ate and display private keys with the commands seed, ec-new, and ec-to-wif:

$ bx seed | bx ec-new | bx ec-to-wif
533mBbAH58CpQ3Y5RNIpUKPE62SQ5tfcvU2IpbnkeyhfsYB1Jcn

Public Keys

The public key is calculated from the private key using elliptic curve multiplication,
which is irreversible: K = k * G, where k is the private key, G is a constant point called
the generator point, and K is the resulting public key. The reverse operation, known as
“finding the discrete logarithm”—calculating k if you know K—is as difficult as trying
all possible values of k, i.e., a brute-force search. Before we demonstrate how to gen-
erate a public key from a private key, let’s look at elliptic curve cryptography in a bit
more detail.

Elliptic curve multiplication is a type of function that cryptogra-
phers call a “trap door” function: it is easy to do in one direction
(multiplication) and impossible to do in the reverse direction (divi-
sion). The owner of the private key can easily create the public key
and then share it with the world knowing that no one can reverse
the function and calculate the private key from the public key. This
mathematical trick becomes the basis for unforgeable and secure
digital signatures that prove ownership of bitcoin funds.

Elliptic Curve Cryptography Explained

Elliptic curve cryptography is a type of asymmetric or public key cryptography based
on the discrete logarithm problem as expressed by addition and multiplication on the
points of an elliptic curve.

Figure 4-2 is an example of an elliptic curve, similar to that used by bitcoin.

~
e

_/
~

Figure 4-2. An elliptic curve
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Bitcoin uses a specific elliptic curve and set of mathematical constants, as defined in a
standard called secp256k1, established by the National Institute of Standards and
Technology (NIST). The secp256k1 curve is defined by the following function, which
produces an elliptic curve:

y2 = (x3 + 7) over (Iﬁ‘p)
or
y* mod p= (x3+7) mod p

The mod p (modulo prime number p) indicates that this curve is over a finite field of
prime order p, also written as ]Fp, where p=2%¢-232-2°-28_27_26_2%_1,avery
large prime number.

Because this curve is defined over a finite field of prime order instead of over the real
numbers, it looks like a pattern of dots scattered in two dimensions, which makes it
difficult to visualize. However, the math is identical to that of an elliptic curve over
real numbers. As an example, Figure 4-3 shows the same elliptic curve over a much
smaller finite field of prime order 17, showing a pattern of dots on a grid. The
secp256k1 bitcoin elliptic curve can be thought of as a much more complex pattern
of dots on a unfathomably large grid.

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17

Figure 4-3. Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17
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So, for example, the following is a point P with coordinates (x,y) that is a point on the
secp256k1 curve:

P =
32670510020758816978083085130507043184471273380659243275938904335757337482424)

Example 4-1 shows how you can check this yourself using Python:

Example 4-1. Using Python to confirm that this point is on the elliptic curve

Python 3.4.0 (default, Mar 30 2014, 19:23:13)

[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.38)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> p =
115792089237316195423570985008687907853269984665640564039457584007908834671663
>>> X =
55066263022277343669578718895168534326250603453777594175500187360389116729240
>>> y =
32670510020758816978083085130507043184471273380659243275938904335757337482424
55> (X ** 3 + 7 - y**¥2) % p

0

In elliptic curve math, there is a point called the “point at infinity,” which roughly cor-
responds to the role of zero in addition. On computers, it's sometimes represented by
x =y = 0 (which doesn’t satisfy the elliptic curve equation, but it’s an easy separate
case that can be checked).

There is also a + operator, called “addition,” which has some properties similar to the
traditional addition of real numbers that gradeschool children learn. Given two
points P, and P, on the elliptic curve, there is a third point P, = P, + P,, also on the
elliptic curve.

Geometrically, this third point P, is calculated by drawing a line between P, and P,.
This line will intersect the elliptic curve in exactly one additional place. Call this point
P,' = (%, y). Then reflect in the x-axis to get P, = (x, -y).

There are a couple of special cases that explain the need for the “point at infinity”

If P, and P, are the same point, the line “between” P, and P, should extend to be the
tangent on the curve at this point P,. This tangent will intersect the curve in exactly
one new point. You can use techniques from calculus to determine the slope of the
tangent line. These techniques curiously work, even though we are restricting our
interest to points on the curve with two integer coordinates!

In some cases (i.e., if P, and P, have the same x values but different y values), the tan-
gent line will be exactly vertical, in which case P3 = “point at infinity”
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If P, is the “point at infinity,” then P, + P, = P,. Similarly, if P, is the point at infinity,
then P, + P, = P,. This shows how the point at infinity plays the role of zero.

It turns out that + is associative, which means that (A + B) + C = A + (B + C). That
means we can write A + B + C without parentheses and without ambiguity.

Now that we have defined addition, we can define multiplication in the standard way
that extends addition. For a point P on the elliptic curve, if k is a whole number, then
kP=P+ P+ P+ ... + P (k times). Note that k is sometimes confusingly called an
“exponent” in this case.

Generating a Public Key

Starting with a private key in the form of a randomly generated number k, we multi-
ply it by a predetermined point on the curve called the generator point G to produce
another point somewhere else on the curve, which is the corresponding public key K.
The generator point is specified as part of the secp256k1 standard and is always the
same for all keys in bitcoin:

K=k*G

where k is the private key, G is the generator point, and K is the resulting public key, a
point on the curve. Because the generator point is always the same for all bitcoin
users, a private key k multiplied with G will always result in the same public key K.
The relationship between k and K is fixed, but can only be calculated in one direction,
from k to K. That’s why a bitcoin address (derived from K) can be shared with anyone
and does not reveal the user’s private key (k).

A private key can be converted into a public key, but a public key
cannot be converted back into a private key because the math only
works one way.

Implementing the elliptic curve multiplication, we take the private key k generated
previously and multiply it with the generator point G to find the public key K:

K = 1E99423A4ED27608A15A2616A2BOEIE52CED330AC530EDCC32C8FFC6A526AEDD * G
Public key K is defined as a pointK = (x,y):

K=(x, ¥)

where,

F028892BAD7ED57D2FB57BF33081D5CFCF6FOED3D3D7F159C2E2FFF579DC341A
07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

X
y
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To visualize multiplication of a point with an integer, we will use the simpler elliptic
curve over real numbers—remember, the math is the same. Our goal is to find the
multiple kG of the generator point G, which is the same as adding G to itself, k times
in a row. In elliptic curves, adding a point to itself is the equivalent of drawing a tan-
gent line on the point and finding where it intersects the curve again, then reflecting
that point on the x-axis.

Figure 4-4 shows the process for deriving G, 2G, 4G, as a geometric operation on the
curve.

Most bitcoin implementations use the OpenSSL cryptographic
library to do the elliptic curve math. For example, to derive the
public key, the function EC_POINT_mul() is used.

B
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Figure 4-4. Elliptic curve cryptography: visualizing the multiplication of a point G by an
integer k on an elliptic curve

Bitcoin Addresses

A bitcoin address is a string of digits and characters that can be shared with anyone
who wants to send you money. Addresses produced from public keys consist of a
string of numbers and letters, beginning with the digit “1” Here’s an example of a bit-
coin address:
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http://bit.ly/1ql7bn8
http://bit.ly/1ql7bn8

1J7mdg5rbQyUHENYdx39WVWK7 fsLpEoXZy

The bitcoin address is what appears most commonly in a transaction as the “recipi-
ent” of the funds. If we compare a bitcoin transaction to a paper check, the bitcoin
address is the beneficiary, which is what we write on the line after “Pay to the order
of” On a paper check, that beneficiary can sometimes be the name of a bank account
holder, but can also include corporations, institutions, or even cash. Because paper
checks do not need to specify an account, but rather use an abstract name as the
recipient of funds, they are very flexible payment instruments. Bitcoin transactions
use a similar abstraction, the bitcoin address, to make them very flexible. A bitcoin
address can represent the owner of a private/public key pair, or it can represent some-
thing else, such as a payment script, as we will see in “Pay-to-Script-Hash (P2SH)” on
page 151. For now, let’s examine the simple case, a bitcoin address that represents,
and is derived from, a public key.

The bitcoin address is derived from the public key through the use of one-way cryp-
tographic hashing. A “hashing algorithm” or simply “hash algorithm” is a one-way
function that produces a fingerprint or “hash” of an arbitrary-sized input. Crypto-
graphic hash functions are used extensively in bitcoin: in bitcoin addresses, in script
addresses, and in the mining Proof-of-Work algorithm. The algorithms used to make
a bitcoin address from a public key are the Secure Hash Algorithm (SHA) and the
RACE Integrity Primitives Evaluation Message Digest (RIPEMD), specifically
SHA256 and RIPEMD160.

Starting with the public key K, we compute the SHA256 hash and then compute the
RIPEMD160 hash of the result, producing a 160-bit (20-byte) number:

A = RIPEMD160(SHA256(K))
where K is the public key and A is the resulting bitcoin address.

A bitcoin address is not the same as a public key. Bitcoin addresses
are derived from a public key using a one-way function.

Bitcoin addresses are almost always encoded as “Base58Check” (see “Base58 and
Base58Check Encoding” on page 66), which uses 58 characters (a Base58 number sys-
tem) and a checksum to help human readability, avoid ambiguity, and protect against
errors in address transcription and entry. Base58Check is also used in many other
ways in bitcoin, whenever there is a need for a user to read and correctly transcribe a
number, such as a bitcoin address, a private key, an encrypted key, or a script hash. In
the next section we will examine the mechanics of Base58Check encoding and decod-
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ing and the resulting representations. Figure 4-5 illustrates the conversion of a public
key into a bitcoin address.

Public Key to Bitcoin Address

Public Key
SHA256
“Double Hash"
or
HASH160
RIPEMD160

Public Key Hash
(20 bytes/160 bits)

Base58Check Encode
with 0x00 version prefix

Bitcoin Address
(Base58Check Encoded Public Key Hash)

Figure 4-5. Public key to bitcoin address: conversion of a public key into a bitcoin
address

Base58 and Base58Check Encoding

In order to represent long numbers in a compact way, using fewer symbols, many
computer systems use mixed-alphanumeric representations with a base (or radix)
higher than 10. For example, whereas the traditional decimal system uses the 10
numerals 0 through 9, the hexadecimal system uses 16, with the letters A through F as
the six additional symbols. A number represented in hexadecimal format is shorter
than the equivalent decimal representation. Even more compact, Base64 representa-
tion uses 26 lowercase letters, 26 capital letters, 10 numerals, and 2 more characters
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such as “+” and “/” to transmit binary data over text-based media such as email.
Base64 is most commonly used to add binary attachments to email. Base58 is a text-
based binary-encoding format developed for use in bitcoin and used in many other
cryptocurrencies. It offers a balance between compact representation, readability, and
error detection and prevention. Base58 is a subset of Base64, using upper- and lower-
case letters and numbers, but omitting some characters that are frequently mistaken
for one another and can appear identical when displayed in certain fonts. Specifically,
Base58 is Base64 without the 0 (number zero), O (capital 0), | (lower L), I (capital i),
and the symbols “+” and “/”. Or, more simply, it is a set of lowercase and capital letters
and numbers without the four (0, O, 1, I) just mentioned. Example 4-2 shows the full
Base58 alphabet.

Example 4-2. Bitcoin’s Base58 alphabet
123456789ABCDEFGHIKLMNPQRSTUVWXYZabcdefghijkmnopgrstuvwxyz

To add extra security against typos or transcription errors, Base58Check is a Base58
encoding format, frequently used in bitcoin, which has a built-in error-checking
code. The checksum is an additional four bytes added to the end of the data that is
being encoded. The checksum is derived from the hash of the encoded data and can
therefore be used to detect and prevent transcription and typing errors. When pre-
sented with Base58Check code, the decoding software will calculate the checksum of
the data and compare it to the checksum included in the code. If the two do not
match, an error has been introduced and the Base58Check data is invalid. This pre-
vents a mistyped bitcoin address from being accepted by the wallet software as a valid
destination, an error that would otherwise result in loss of funds.

To convert data (a number) into a Base58Check format, we first add a prefix to the
data, called the “version byte,” which serves to easily identify the type of data that is
encoded. For example, in the case of a bitcoin address the prefix is zero (0x00 in hex),
whereas the prefix used when encoding a private key is 128 (0x80 in hex). A list of
common version prefixes is shown in Table 4-1.

Next, we compute the “double-SHA” checksum, meaning we apply the SHA256 hash-
algorithm twice on the previous result (prefix and data):

checksum = SHA256(SHA256(prefix+data))

From the resulting 32-byte hash (hash-of-a-hash), we take only the first four bytes.
These four bytes serve as the error-checking code, or checksum. The checksum is
concatenated (appended) to the end.

The result is composed of three items: a prefix, the data, and a checksum. This result
is encoded using the Base58 alphabet described previously. Figure 4-6 illustrates the
Base58Check encoding process.
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Base58Check Encoding

Payload
o Add Version Prefix
e Hash (Version Prefix + Payload)
Version Payload I SHA256
SHA256
first 4 bytes
) )
Version Payload Checksum |
oAdd first 4 bytes as checksum
Base 58 Encode
o Encode in Base-58
Base58Check Encoded Payload

Figure 4-6. Base58Check encoding: a Base58, versioned, and checksummed format for
unambiguously encoding bitcoin data

In bitcoin, most of the data presented to the user is Base58Check-encoded to make it
compact, easy to read, and easy to detect errors. The version prefix in Base58Check
encoding is used to create easily distinguishable formats, which when encoded in
Base58 contain specific characters at the beginning of the Base58Check-encoded pay-
load. These characters make it easy for humans to identify the type of data that is
encoded and how to use it. This is what differentiates, for example, a Base58Check-
encoded bitcoin address that starts with a 1 from a Base58Check-encoded private key
WIF that starts with a 5. Some example version prefixes and the resulting Base58
characters are shown in Table 4-1.

Table 4-1. Base58Check version prefix and encoded result examples

Type Version prefix (hex) Base58 result prefix

Bitcoin Address 0x00 1
Pay-to-Script-Hash Address  0x05 3
Bitcoin Testnet Address 0x6F morn
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Type Version prefix (hex) Base58 result prefix

Private Key WIF 0x80 5K orlL
BIP-38 Encrypted Private Key 0x0142 6P
BIP-32 Extended Public Key ~ 0x0488B21E xpub

Let’s look at the complete process of creating a bitcoin address, from a private key, to
a public key (a point on the elliptic curve), to a double-hashed address, and finally,
the Base58Check encoding. The C++ code in Example 4-3 shows the complete step-
by-step process, from private key to Base58Check-encoded bitcoin address. The code
example uses the libbitcoin library introduced in “Alternative Clients, Libraries, and
Toolkits” on page 51 for some helper functions.

Example 4-3. Creating a Base58 Check-encoded bitcoin address from a private key

#include <bitcoin/bitcoin.hpp>
int main()

// Private secret key string as basel6

bc::ec_secret decoded;

bc: :decode_basel6(decoded,
"038109007313a5807b2eccc082c8c3fbb988a973cacf1a7df9ce725¢31b14776");

bc::wallet::ec_private secret(
decoded, bc::wallet::ec_private::mainnet_p2kh);

// Get public key.
bc::wallet::ec_public public_key(secret);
std::cout << "Public key: " << public_key.encoded() << std::endl;

// Create Bitcoin address.

// Normally you can use:

// bc::wallet: :payment_address payaddr =

// public_key.to_payment_address(

// bc::wallet::ec_public::mainnet_p2kh);
// const std::string address = payaddr.encoded();

// Compute hash of public key for P2PKH address.
bc::data_chunk public_key_data;
public_key.to_data(public_key_data);

const auto hash = bc::bitcoin_short_hash(public_key_data);

bc::data_chunk unencoded_address;

// Reserve 25 bytes

// [ version:1 ]

// [ hash:20 ]

// [ checksum:4 ]
unencoded_address.reserve(25);

// Version byte, 0 is normal BTC address (P2PKH).
unencoded_address.push_back(0);

// Hash data

bc::extend_data(unencoded_address, hash);
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// Checksum is computed by hashing data, and adding 4 bytes from hash.
bc: :append_checksum(unencoded_address);

// Finally we must encode the result in Bitcoin's base58 encoding.
assert(unencoded_address.size() == 25);

const std::string address = bc::encode_base58(unencoded_address);
std::cout << "Address: "
return 0;

<< address << std::endl;
}

The code uses a predefined private key to produce the same bitcoin address every
time it is run, as shown in Example 4-4.

Example 4-4. Compiling and running the addr code

# Compile the addr.cpp code

$ g++ -0 addr addr.cpp $(pkg-config --cflags --libs libbitcoin)

# Run the addr executable

$ ./addr

Public key: 0202a406624211f2abbdc68da3df929f938c3399dd79fac1b51bledad1d26a47aa
Address: 1PRTTaJesdNovgne6EhcdulfpEdX7913CK

Key Formats

Both private and public keys can be represented in a number of different formats.
These representations all encode the same number, even though they look different.
These formats are primarily used to make it easy for people to read and transcribe
keys without introducing errors.

Private key formats

The private key can be represented in a number of different formats, all of which cor-
respond to the same 256-bit number. Table 4-2 shows three common formats used to
represent private keys. Different formats are used in different circumstances. Hexa-
decimal and raw binary formats are used internally in software and rarely shown to
users. The WIF is used for import/export of keys between wallets and often used in
QR code (barcode) representations of private keys.

Table 4-2. Private key representations (encoding formats)

Type Prefix Description

Raw None 32 bytes
Hex None 64 hexadecimal digits
WIF 5 Base58Check encoding: Base58 with version prefix of 128- and 32-bit checksum

WIF-compressed KorL Asabove, with added suffix 0x01 before encoding

Table 4-3 shows the private key generated in these three formats.
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Table 4-3. Example: Same key, different formats

Format Private key

Hex 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2pbnkeyhfsYB1Jcn
WIF-compressed ~ KxFCTjmww(CoACICAWZ3eXa96mBM6th3TYzGmf6YwgdGWZgawvrt)

All of these representations are different ways of showing the same number, the same
private key. They look different, but any one format can easily be converted to any
other format. Note that the “raw binary” is not shown in Table 4-3 as any encoding
for display here would, by definition, not be raw binary data.

We use the wif-to-ec command from Bitcoin Explorer (see Appendix G) to show
that both WIF keys represent the same private key:

$ bx wif-to-ec 533mBbAH58CpQ3Y5RNIpUKPE62SQ5tfcvU2IpbnkeyhfsYB1Jcn
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

$ bx wif-to-ec KxFC1jmwwCoAC1CAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrt]
1e9942334ed27608315a2616a2bbe9e52ced330ac530edcc32c8ffc6a526aedd

Decode from Base58Check

The Bitcoin Explorer commands (see Appendix G) make it easy to write shell scripts
and command-line “pipes” that manipulate bitcoin keys, addresses, and transactions.
You can use Bitcoin Explorer to decode the Base58Check format on the command
line.

We use the base58check-decode command to decode the uncompressed key:

$ bx base58check-decode 5J3mBbAH58CpQ3Y5RNIpUKPE62SQ5tfcvU2IpbnkeyhfsYB1Jcn
wrapper

{
checksum 4286807748
payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
version 128

}
The result contains the key as payload, the WIF version prefix 128, and a checksum.

Notice that the “payload” of the compressed key is appended with the suffix 01, sig-
nalling that the derived public key is to be compressed:

$ bx base58check-decode KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrt]
wrapper

{
checksum 2339607926
payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aeddol
version 128
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Encode from hex to Base58Check

To encode into Base58Check (the opposite of the previous command), we use the
base58check-encode command from Bitcoin Explorer (see Appendix G) and provide
the hex private key, followed by the WIF version prefix 128:

bx base58check-encode

1e9942334ed27608a15a2616a2bbe9e52ced330ac530edcc32c8ffc6a526aedd --version 128
533mBbAH58CpQ3Y5RNIpUKPE62SQ5tfcvU2IpbnkeyhfsYB1Jcn

Encode from hex (compressed key) to Base58Check

To encode into Base58Check as a “compressed” private key (see “Compressed private
keys” on page 75), we append the suffix 01 to the hex key and then encode as in the
preceding section:
$ bx base58check-encode
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedddl --version 128
KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrt]
The resulting WIF-compressed format starts with a “K” This denotes that the private
key within has a suffix of “01” and will be used to produce compressed public keys
only (see “Compressed public keys” on page 73).

Public key formats

Public keys are also presented in different ways, usually as either compressed or
uncompressed public keys.

As we saw previously, the public key is a point on the elliptic curve consisting of a
pair of coordinates (x,y). It is usually presented with the prefix 04 followed by two
256-bit numbers: one for the x coordinate of the point, the other for the y coordinate.
The prefix 04 is used to distinguish uncompressed public keys from compressed pub-
lic keys that begin with a 02 or a 83.

Here’s the public key generated by the private key we created earlier, shown as the
coordinates x and y:

F028892BAD7ED57D2FB57BF33081D5CFCF6FOED3D3D7F159C2E2FFF579DC341A
07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

X
y

Here’s the same public key shown as a 520-bit number (130 hex digits) with the prefix
04 followed by x and then y coordinates, as 04 x y:

K = 04F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A«
07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB
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Compressed public keys

Compressed public keys were introduced to bitcoin to reduce the size of transactions
and conserve disk space on nodes that store the bitcoin blockchain database. Most
transactions include the public key, which is required to validate the owner’s creden-
tials and spend the bitcoin. Each public key requires 520 bits (prefix + x + y), which
when multiplied by several hundred transactions per block, or tens of thousands of
transactions per day, adds a significant amount of data to the blockchain.

As we saw in the section “Public Keys” on page 60, a public key is a point (x,y) on an
elliptic curve. Because the curve expresses a mathematical function, a point on the
curve represents a solution to the equation and, therefore, if we know the x coordi-
nate we can calculate the y coordinate by solving the equation y*> mod p = (x* + 7)
mod p. That allows us to store only the x coordinate of the public key point, omitting
the y coordinate and reducing the size of the key and the space required to store it by
256 bits. An almost 50% reduction in size in every transaction adds up to a lot of data
saved over time!

Whereas uncompressed public keys have a prefix of 04, compressed public keys start
with either a 02 or a 03 prefix. Let’s look at why there are two possible prefixes:
because the left side of the equation is y?, the solution for y is a square root, which can
have a positive or negative value. Visually, this means that the resulting y coordinate
can be above or below the x-axis. As you can see from the graph of the elliptic curve
in Figure 4-2, the curve is symmetric, meaning it is reflected like a mirror by the x-
axis. So, while we can omit the y coordinate we have to store the sign of y (positive or
negative); or in other words, we have to remember if it was above or below the x-axis
because each of those options represents a different point and a different public key.
When calculating the elliptic curve in binary arithmetic on the finite field of prime
order p, the y coordinate is either even or odd, which corresponds to the positive/
negative sign as explained earlier. Therefore, to distinguish between the two possible
values of y, we store a compressed public key with the prefix 02 if the y is even, and 03
if it is odd, allowing the software to correctly deduce the y coordinate from the x
coordinate and uncompress the public key to the full coordinates of the point. Public
key compression is illustrated in Figure 4-7.
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Public Key Compression
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Figure 4-7. Public key compression

Here’s the same public key generated previously, shown as a compressed public key
stored in 264 bits (66 hex digits) with the prefix 03 indicating the y coordinate is odd:

K = ©03F028892BAD7ED57D2FB57BF33081D5CFCF6FOED3D3D7F159C2E2FFF579DC341A

This compressed public key corresponds to the same private key, meaning it is gener-
ated from the same private key. However, it looks different from the uncompressed
public key. More importantly, if we convert this compressed public key to a bitcoin
address using the double-hash function (RIPEMD160(SHA256(K))) it will produce a
different bitcoin address. This can be confusing, because it means that a single private
key can produce a public key expressed in two different formats (compressed and
uncompressed) that produce two different bitcoin addresses. However, the private
key is identical for both bitcoin addresses.

Compressed public keys are gradually becoming the default across bitcoin clients,
which is having a significant impact on reducing the size of transactions and there-
fore the blockchain. However, not all clients support compressed public keys yet.
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Newer clients that support compressed public keys have to account for transactions
from older clients that do not support compressed public keys. This is especially
important when a wallet application is importing private keys from another bitcoin
wallet application, because the new wallet needs to scan the blockchain to find trans-
actions corresponding to these imported keys. Which bitcoin addresses should the
bitcoin wallet scan for? The bitcoin addresses produced by uncompressed public
keys, or the bitcoin addresses produced by compressed public keys? Both are valid
bitcoin addresses, and can be signed for by the private key, but they are different
addresses!

To resolve this issue, when private keys are exported from a wallet, the WIF that is
used to represent them is implemented differently in newer bitcoin wallets, to indi-
cate that these private keys have been used to produce compressed public keys and
therefore compressed bitcoin addresses. This allows the importing wallet to distin-
guish between private keys originating from older or newer wallets and search the
blockchain for transactions with bitcoin addresses corresponding to the uncom-
pressed, or the compressed, public keys, respectively. Let’s look at how this works in
more detail, in the next section.

Compressed private keys

Ironically, the term “compressed private key” is a misnomer, because when a private
key is exported as WIF-compressed it is actually one byte longer than an “uncom-
pressed” private key. That is because the private key has an added one-byte suffix
(shown as 01 in hex in Table 4-4), which signifies that the private key is from a newer
wallet and should only be used to produce compressed public keys. Private keys are
not themselves compressed and cannot be compressed. The term “compressed private
key” really means “private key from which only compressed public keys should be
derived,” whereas “uncompressed private key” really means “private key from which
only uncompressed public keys should be derived” You should only refer to the
export format as “WIF-compressed” or “WIF” and not refer to the private key itself as
“compressed” to avoid further confusion

Table 4-4 shows the same key, encoded in WIF and WIF-compressed formats.

Table 4-4. Example: Same key, different formats

Format Private key

Hex 1E99423A4ED27608A15A2616A2BOE9E52CED330AC530EDCC(32C8FFC6A526AEDD
WIF 5J3mBbAH58CpQ3Y5RNJpUKPE625Q5tfcvU2)phnkeyhfsYB1)cn

Hex-compressed  1£99423A4ED27608A15A2616A2BOE9E52CED330AC530EDCC32C8FFC6A526AEDDO1
WIF-compressed  KxFC1jmwwCoACICAWZ3eXa96mBM6th3TYzGmf6YwgdGWZgawvrt)
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Notice that the hex-compressed private key format has one extra byte at the end (01
in hex). While the Base58 encoding version prefix is the same (0x80) for both WIF
and WIF-compressed formats, the addition of one byte on the end of the number
causes the first character of the Base58 encoding to change from a 5 to either a K or L.
Think of this as the Base58 equivalent of the decimal encoding difference between the
number 100 and the number 99. While 100 is one digit longer than 99, it also has a
prefix of 1 instead of a prefix of 9. As the length changes, it affects the prefix. In
Base58, the prefix 5 changes to a K or L as the length of the number increases by one

byte.

Remember, these formats are not used interchangeably. In a newer wallet that imple-
ments compressed public keys, the private keys will only ever be exported as WIF-
compressed (with a K or L prefix). If the wallet is an older implementation and does
not use compressed public keys, the private keys will only ever be exported as WIF
(with a 5 prefix). The goal here is to signal to the wallet importing these private keys
whether it must search the blockchain for compressed or uncompressed public keys
and addresses.

If a bitcoin wallet is able to implement compressed public keys, it will use those in all
transactions. The private keys in the wallet will be used to derive the public key points
on the curve, which will be compressed. The compressed public keys will be used to
produce bitcoin addresses and those will be used in transactions. When exporting
private keys from a new wallet that implements compressed public keys, the WIF is
modified, with the addition of a one-byte suffix 01 to the private key. The resulting
Base58Check-encoded private key is called a “compressed WIF” and starts with the
letter K or L, instead of starting with “5” as is the case with WIF-encoded (noncom-
pressed) keys from older wallets.

“Compressed private keys” is a misnomer! They are not com-
pressed; rather, WIF-compressed signifies that the keys should only
be used to derive compressed public keys and their corresponding
bitcoin addresses. Ironically, a “WIF-compressed” encoded private
key is one byte longer because it has the added 01 suffix to distin-
guish it from an “uncompressed” one.

Implementing Keys and Addresses in Python

The most comprehensive bitcoin library in Python is pybitcointools by Vitalik
Buterin. In Example 4-5, we use the pybitcointools library (imported as “bitcoin”) to
generate and display keys and addresses in various formats.
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Example 4-5. Key and address generation and formatting with the pybitcointools library
import bitcoin

# Generate a random private key
valid_private_key = False
while not valid_private_key:
private_key = bitcoin.random_key()
decoded_private_key = bitcoin.decode_privkey(private_key, 'hex')
valid_private_key = 0 < decoded_private_key < bitcoin.N
print "Private Key (hex) is: ", private_key
print "Private Key (decimal) is: ", decoded_private_key

# Convert private key to WIF format
wif_encoded_private_key = bitcoin.encode_privkey(decoded_private_key, 'wif')
print "Private Key (WIF) is: ", wif_encoded_private_key

# Add suffix "01" to indicate a compressed private key
compressed_private_key = private_key + '01'
print "Private Key Compressed (hex) is: ", compressed_private_key

# Generate a WIF format from the compressed private key (WIF-compressed)

wif_compressed_private_key = bitcoin.encode_privkey(
bitcoin.decode_privkey(compressed_private_key, 'hex'), 'wif')

print "Private Key (WIF-Compressed) is: ", wif_compressed_private_key

# Multiply the EC generator point G with the private key to get a public key point
public_key = bitcoin.fast_multiply(bitcoin.G, decoded_private_key)
print "Public Key (x,y) coordinates is:", public_key

# Encode as hex, prefix 04
hex_encoded_public_key = bitcoin.encode_pubkey(public_key, "hex")
print "Public Key (hex) is:", hex_encoded_public_key

# Compress public key, adjust prefix depending on whether y is even or odd
(public_key_x, public_key_y) = public_key
if (public_key_y % 2) == 0:

compressed_prefix = '02'
else:

compressed_prefix = '03'
hex_compressed_public_key = compressed_prefix + bitcoin.encode(public_key_x, 16)
print "Compressed Public Key (hex) is:", hex_compressed_public_key

# Generate bitcoin address from public key
print "Bitcoin Address (b58check) is:", bitcoin.pubkey_to_address(public_key)

# Generate compressed bitcoin address from compressed public key
print "Compressed Bitcoin Address (b58check) is:", \

bitcoin.pubkey_to_address(hex_compressed_public_key)

Example 4-6 shows the output from running this code.
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Example 4-6. Running key-to-address-ecc-example.py

$ python key-to-address-ecc-example.py
Private Key (hex) is:
3aba4162c7251c891207b747840551a71939b0de081f85c4e44cf7c13e41daab
Private Key (decimal) 1is:
26563230048437957592232553826663696440606756685920117476832299673293013768870
Private Key (WIF) is:

5JG9hT3beGTIJuUAMCQEMNaxAuMacCTfXuwlR3FCX1g23RQHMr4K
Private Key Compressed (hex) 1is:
3aba4162c7251c891207b747840551a71939b0de081f85c4e44cf7c13e41daa60l
Private Key (WIF-Compressed) {is:
KyBsPXxTuVD82av65KZkrGriwi5qLMah5SdNg6uftawDbgKa2wv6s
Public Key (x,y) coordinates 1is:
(41637322786646325214887832269588396900663353932545912953362782457239403430124L,
16388935128781238405526710466724741593761085120864331449066658622400339362166L)
Public Key (hex) is:
045c0de3b9c8ab18dd04e3511243ec2952002dbfadc864b9628910169d9b9bb0ece
243bcefdd4347074d44bd7356d6a53c495737dd96295e2a9374bf5f02ebfc176
Compressed Public Key (hex) is:
025c0de3b9c8ab18dd04e3511243ec2952002dbfadc864b9628910169d9b9b00ec
Bitcoin Address (b58check) is:

1thMirt546nngXqyPEz53258fLwbozud8
Compressed Bitcoin Address (b58check) is:

14cxpo3MBCYYWCGF74SWTdecmxipnGUsPw3

Example 4-7 is another example, using the Python ECDSA library for the elliptic
curve math and without using any specialized bitcoin libraries.

Example 4-7. A script demonstrating elliptic curve math used for bitcoin keys

import ecdsa
import os
from ecdsa.util import string_to_number, number_to_string

# secp256k1, http://www.oid-info.com/get/1.3.132.0.10

_p = OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0O364141L
0x0000000000000000000000000000000000000000000000000000000000000007L
0x0000000000000000000000000000000000000000000000000000000000000000L
OXx79BE667EFODCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
0x483ada7726a3c4655dadfbfcOe1108a8fd17b448a68554199c47d08ffb10d4b8L
curve_secp256kl = ecdsa.ellipticcurve.CurveFp(_p, _a, _b)

generator_secp256kl = ecdsa.ellipticcurve.Point(curve_secp256ki, _Gx, _Gy, _r)
oid_secp256kl = (1, 3, 132, 0, 10)

SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256kl, generator_secp256kil,
oid_secp256k1)

ec_order = _r

|
OO0 o o N
< X
wonon
non

curve = curve_secp256ki1
generator = generator_secp256k1
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def random_secret():
convert_to_int = lambda array: int("".join(array).encode("hex"), 16)

# Collect 256 bits of random data from the 0S's cryptographically secure random

generator
byte_array = os.urandom(32)

return convert_to_int(byte_array)

def get_point_pubkey(point):
if point.y() & 1:
key = '03' + '%064x' % point.x()
else:
key = '02' + '%064x' % point.x()
return key.decode('hex")

def get_point_pubkey_uncompressed(point):
key = '04" + \
'%064x" % point.x() + \
'%064x" % point.y()
return key.decode('hex")

# Generate a new private key.
secret = random_secret()
print "Secret: ", secret

# Get the public key point.
point = secret * generator
print "EC point:", point

print "BTC public key:", get_point_pubkey(point).encode("hex")

# Given the point (x, y) we can create the object using:
pointl = ecdsa.ellipticcurve.Point(curve, point.x(), point.y(), ec_order)
assert pointl == point

Example 4-8 shows the output produced by running this script.

Example 4-7 uses os.urandom, which reflects a cryptographically
secure random number generator (CSRNG) provided by the
underlying operating system. In the case of a Unix-like operating
system such as Linux, it draws from /dev/urandom; and in the case
of Windows, it calls CryptGenRandom(). If a suitable randomness
source is not found, NotImplementedError will be raised. While
the random number generator used here is for demonstration pur-
poses, it is not appropriate for generating production-quality bit-
coin keys as it is not implemented with sufficient security.
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Example 4-8. Installing the Python ECDSA library and running the ec_math.py script

$ # Install Python PIP package manager

$ sudo apt-get install python-pip

$ # Install the Python ECDSA library

$ sudo pip install ecdsa

$ # Run the script

$ python ec-math.py

Secret:
38090835015954358862481132628887443905906204995912378278060168703580660294000
EC point:
(70048853531867179489857750497606966272382583471322935454624595540007269312627,
105262206478686743191060800263479589329920209527285803935736021686045542353380)
BTC public key: 029ade3effb0a67d5c8609850d797366af428f4a0d5194cb221d807770a1522873

Advanced Keys and Addresses

In the following sections we will look at advanced forms of keys and addresses, such
as encrypted private keys, script and multisignature addresses, vanity addresses, and
paper wallets.

Encrypted Private Keys (BIP-38)

Private keys must remain secret. The need for confidentiality of the private keys is a
truism that is quite difficult to achieve in practice, because it conflicts with the equally
important security objective of availability. Keeping the private key private is much
harder when you need to store backups of the private key to avoid losing it. A private
key stored in a wallet that is encrypted by a password might be secure, but that wallet
needs to be backed up. At times, users need to move keys from one wallet to another
—to upgrade or replace the wallet software, for example. Private key backups might
also be stored on paper (see “Paper Wallets” on page 88) or on external storage media,
such as a USB flash drive. But what if the backup itself is stolen or lost? These con-
flicting security goals led to the introduction of a portable and convenient standard
for encrypting private keys in a way that can be understood by many different wallets
and bitcoin clients, standardized by BIP-38 (see Appendix C).

BIP-38 proposes a common standard for encrypting private keys with a passphrase
and encoding them with Base58Check so that they can be stored securely on backup
media, transported securely between wallets, or kept in any other conditions where
the key might be exposed. The standard for encryption uses the Advanced Encryp-
tion Standard (AES), a standard established by the NIST and used broadly in data
encryption implementations for commercial and military applications.

A BIP-38 encryption scheme takes as input a bitcoin private key, usually encoded in
the WIE as a Base58Check string with the prefix of “5” Additionally, the BIP-38
encryption scheme takes a passphrase—a long password—usually composed of sev-
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eral words or a complex string of alphanumeric characters. The result of the BIP-38
encryption scheme is a Base58Check-encoded encrypted private key that begins with
the prefix 6P. If you see a key that starts with 6P, it is encrypted and requires a pass-
phrase in order to convert (decrypt) it back into a WIF-formatted private key (prefix
5) that can be used in any wallet. Many wallet applications now recognize BIP-38-
encrypted private keys and will prompt the user for a passphrase to decrypt and
import the key. Third-party applications, such as the incredibly useful browser-based
Bit Address (Wallet Details tab), can be used to decrypt BIP-38 keys.

The most common use case for BIP-38 encrypted keys is for paper wallets that can be
used to back up private keys on a piece of paper. As long as the user selects a strong
passphrase, a paper wallet with BIP-38 encrypted private keys is incredibly secure and
a great way to create offline bitcoin storage (also known as “cold storage”).

Test the encrypted keys in Table 4-5 using bitaddress.org to see how you can get the
decrypted key by entering the passphrase.

Table 4-5. Example of BIP-38 encrypted private key

Private Key (WIF) 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2)pbnkeyhfsYB1Jcn
Passphrase MyTestPassphrase
Encrypted Key (BIP-38) 6PRTHL6mWa48xSophU1cKrVjpKbBZxcLRRCdctLI3z5yxE87MobKoXdTs)

Pay-to-Script Hash (P2SH) and Multisig Addresses

As we know, traditional bitcoin addresses begin with the number “1” and are derived
from the public key, which is derived from the private key. Although anyone can send
bitcoin to a “1” address, that bitcoin can only be spent by presenting the correspond-
ing private key signature and public key hash.

Bitcoin addresses that begin with the number “3” are pay-to-script hash (P2SH)
addresses, sometimes erroneously called multisignature or multisig addresses. They
designate the beneficiary of a bitcoin transaction as the hash of a script, instead of the
owner of a public key. The feature was introduced in January 2012 with BIP-16 (see
Appendix C), and is being widely adopted because it provides the opportunity to add
functionality to the address itself. Unlike transactions that “send” funds to traditional
“1” bitcoin addresses, also known as a pay-to-public-key-hash (P2PKH), funds sent
to “3” addresses require something more than the presentation of one public key hash
and one private key signature as proof of ownership. The requirements are designated
at the time the address is created, within the script, and all inputs to this address will
be encumbered with the same requirements.

A P2SH address is created from a transaction script, which defines who can spend a
transaction output (for more details, see “Pay-to-Script-Hash (P2SH)” on page 151).
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Encoding a P2SH address involves using the same double-hash function as used dur-
ing creation of a bitcoin address, only applied on the script instead of the public key:

script hash = RIPEMD160(SHA256(script))

The resulting “script hash” is encoded with Base58Check with a version prefix of 5,
which results in an encoded address starting with a 3. An example of a P2SH address
is 3F616kwkevijR7AsAd4te2YB2zZyASEm1HM, which can be derived using the Bitcoin
Explorer commands script-encode, sha256, ripemd160, and base58check-encode
(see Appendix G) as follows:

$ echo dup hash160 [ 89abcdefabbaabbaabbaabbaabbaabbaabbaabba ] equalverify
checksig > script

$ bx script-encode < script | bx sha256 | bx ripemd160 | bx base58check-encode
--version 5

3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM

P2SH is not necessarily the same as a multisignature standard
transaction. A P2SH address most often represents a multi-
signature script, but it might also represent a script encoding other
types of transactions.

Multisignature addresses and P2SH

Currently, the most common implementation of the P2SH function is the multi-
signature address script. As the name implies, the underlying script requires more
than one signature to prove ownership and therefore spend funds. The bitcoin multi-
signature feature is designed to require M signatures (also known as the “threshold”)
from a total of N keys, known as an M-of-N multisig, where M is equal to or less than
N. For example, Bob the coffee shop owner from Chapter 1 could use a multisigna-
ture address requiring 1-of-2 signatures from a key belonging to him and a key
belonging to his spouse, ensuring either of them could sign to spend a transaction
output locked to this address. This would be similar to a “joint account” as imple-
mented in traditional banking where either spouse can spend with a single signature.
Or Gopesh, the web designer paid by Bob to create a website, might have a 2-of-3
multisignature address for his business that ensures that no funds can be spent unless
at least two of the business partners sign a transaction.

We will explore how to create transactions that spend funds from P2SH (and multi-
signature) addresses in Chapter 6.

Vanity Addresses

Vanity addresses are valid bitcoin addresses that contain human-readable messages.
For example, 1LoveBPzzD72PUXLzCkYAtGFYmK5VYNR33 is a valid address that contains
the letters forming the word “Love” as the first four Base-58 letters. Vanity addresses
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require generating and testing billions of candidate private keys, until a bitcoin
address with the desired pattern is found. Although there are some optimizations in
the vanity generation algorithm, the process essentially involves picking a private key
at random, deriving the public key, deriving the bitcoin address, and checking to see
if it matches the desired vanity pattern, repeating billions of times until a match is
found.

Once a vanity address matching the desired pattern is found, the private key from
which it was derived can be used by the owner to spend bitcoin in exactly the same
way as any other address. Vanity addresses are no less or more secure than any other
address. They depend on the same Elliptic Curve Cryptography (ECC) and SHA as
any other address. You can no more easily find the private key of an address starting
with a vanity pattern than you can any other address.

In Chapter 1, we introduced Eugenia, a children’s charity director operating in the
Philippines. Let’s say that Eugenia is organizing a bitcoin fundraising drive and wants
to use a vanity bitcoin address to publicize the fundraising. Eugenia will create a van-
ity address that starts with “1Kids” to promote the children’s charity fundraiser. Let’s
see how this vanity address will be created and what it means for the security of Euge-
nia’s charity.

Generating vanity addresses

It's important to realize that a bitcoin address is simply a number represented by sym-
bols in the Base58 alphabet. The search for a pattern like “1Kids” can be seen as
searching for an address in the range from 1Kids11111111111111111111111111111
to 1Kidszzzzzzzzzzzzzzzzz772227772272. There are approximately 58% (approxi-
mately 1.4 * 10°') addresses in that range, all starting with “1Kids” Table 4-6 shows
the range of addresses that have the prefix 1Kids.

Table 4-6. The range of vanity addresses starting with “1Kids”

From 1Kids11111111111111111111111111111
1K1ds11111111111111111111111111112
1Kids11111111111111111111111111113

To 1Kidszzzzzzzzzz72222222222222222722

Lets look at the pattern “1Kids” as a number and see how frequently we might find
this pattern in a bitcoin address (see Table 4-7). An average desktop computer PC,
without any specialized hardware, can search approximately 100,000 keys per second.
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Table 4-7. The frequency of a vanity pattern (1KidsCharity) and average search time on a
desktop PC

Length Pattern Frequency Average search time
1 1K 1in 58 keys < 1 milliseconds

2 1Ki 1in 3,364 50 milliseconds

3 1Kid 1in 195,000 < 2 seconds

4 1Kids 1in 11 million 1 minute

5 1KidsC 1in 656 million 1 hour

6 1KidsCh 1in 38 billion 2 days

7 1KidsCha 1in 2.2 trillion 3—4 months

8 1KidsChar ~ 1in 128 trillion 13-18 years

9 1KidsChari ~ 1in7 quadrillion 800 years

—_
o

1KidsCharit ~ 1in 400 quadrillion 46,000 years
1KidsCharity  1in 23 quintillion 2.5 million years

—_
s

As you can see, Eugenia won't be creating the vanity address “1KidsCharity” anytime
soon, even if she had access to several thousand computers. Each additional character
increases the difficulty by a factor of 58. Patterns with more than seven characters are
usually found by specialized hardware, such as custom-built desktops with multiple
GPUs. These are often repurposed bitcoin mining “rigs” that are no longer profitable
for bitcoin mining but can be used to find vanity addresses. Vanity searches on GPU
systems are many orders of magnitude faster than on a general-purpose CPU.

Another way to find a vanity address is to outsource the work to a pool of vanity min-
ers, such as the pool at Vanity Pool. A pool is a service that allows those with GPU
hardware to earn bitcoin searching for vanity addresses for others. For a small pay-
ment (0.01 bitcoin or approximately $5 at the time of this writing), Eugenia can out-
source the search for a seven-character pattern vanity address and get results in a few
hours instead of having to run a CPU search for months.

Generating a vanity address is a brute-force exercise: try a random key, check the
resulting address to see if it matches the desired pattern, repeat until successful.
Example 4-9 shows an example of a “vanity miner;” a program designed to find vanity
addresses, written in C++. The example uses the libbitcoin library, which we intro-
duced in “Alternative Clients, Libraries, and Toolkits” on page 51.

Example 4-9. Vanity address miner

#include <random>
#include <bitcoin/bitcoin.hpp>

// The string we are searching for
const std::string search = "1kid";
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// Generate a random secret key. A random 32 bytes.

bc:

:ec_secret random_secret(std::default_random_engine& engine);

// Extract the Bitcoin address from an EC secret.

std

::string bitcoin_address(const bc::ec_secret& secret);

// Case insensitive comparison with the search string.
bool match_found(const std::string& address);

int

{

std:

main()

// random_device on Linux uses "/dev/urandom"

// CAUTION: Depending on implementation this RNG may not be secure enough!
// Do not use vanity keys generated by this example in production

std: :random_device random;

std: :default_random_engine engine(random());

// Loop continuously...
while (true)

{
// Generate a random secret.
bc::ec_secret secret = random_secret(engine);
// Get the address.
std::string address = bitcoin_address(secret);
// Does it match our search string? (1kid)
if (match_found(address))
{
// Success!
std::cout << "Found vanity address! " << address << std::endl;
std::cout << "Secret: " << bc::encode_basel6(secret) << std::endl;
return 0;
}
}
// Should never reach here!
return 0;

::ec_secret random_secret(std::default_random_engine& engine)

// Create new secret...
bc::ec_secret secret;
// Iterate through every byte setting a random value...
for (uint8_t& : secret)

byte = engine() % std::numeric_limits<uint8_t>::max();
// Return result
return secret;

:string bitcoin_address(const bc::ec_secret& secret)
// Convert secret to payment address

bc::wallet::ec_private private_key(secret);
bc::wallet: :payment_address payaddr(private_key);

Advanced Keys and Addresses

www.EBookswWorld.ir

85



// Return encoded form.
return payaddr.encoded();

}

bool match_found(const std::string& address)
{
auto addr_1it = address.begin();
// Loop through the search string comparing it to the lower case
// character of the supplied address.
for (auto it = search.begin(); it !'= search.end(); ++it, ++addr_it)
if (*1t != std::tolower(*addr_1it))
return false;
// Reached end of search string, so address matches.
return true;

Example 4-10 uses std: : random_device. Depending on the imple-
mentation it may reflect a CSRNG provided by the underlying
operating system. In the case of a Unix-like operating system such

b ) as Linux, it draws from /dev/urandom. The random number gener-
ator used here is for demonstration purposes, and it is not appro-
priate for generating production-quality bitcoin keys as it is not
implemented with sufficient security.

The example code must be compiled using a C++ compiler and linked against the lib-
bitcoin library (which must be first installed on that system). To run the example, run
the vanity-miner executable with no parameters (see Example 4-10) and it will
attempt to find a vanity address starting with “1kid”

Example 4-10. Compiling and running the vanity-miner example

S # Compile the code with g++

$ g++ -0 vanity-miner vanity-miner.cpp $(pkg-config --cflags --1libs libbitcoin)
$ # Run the example

$ ./vanity-miner

Found vanity address! 1KiDzkG4MxmovZryZRj8tK810QRhbZ46YT

Secret: 57cc268305f83a233c9d930bc8565bac4e277055f4794cbd1a39e5e71c038f3f
$ # Run it again for a different result

$ ./vanity-miner

Found vanity address! 1Kidxr3wsmMzzouwXibKfwTYs5Pau8TUFn

Secret: 7f65bbbbe6d8caae74a0c6a0d2d7b5c6663d71b60337299a1a2cf34c04b2a623
# Use "time" to see how long it takes to find a result

$ time ./vanity-miner

Found vanity address! 1KidPWhKgGRQWD5PPSTANGfDyfWp5yceXM

Secret: 2a802e7a53d8aa237cd059377b616d2bfcfa4b0140bc85fa008f2d3d4b225349

real Om8.868s
user Om8.828s
sys Om0.035s
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The example code will take a few seconds to find a match for the three-character pat-
tern “kid,” as we can see when we use the time Unix command to measure the execu-
tion time. Change the search pattern in the source code and see how much longer it
takes for four- or five-character patterns!

Vanity address security

Vanity addresses can be used to enhance and to defeat security measures; they are
truly a double-edged sword. Used to improve security, a distinctive address makes it
harder for adversaries to substitute their own address and fool your customers into
paying them instead of you. Unfortunately, vanity addresses also make it possible for
anyone to create an address that resembles any random address, or even another van-
ity address, thereby fooling your customers.

Eugenia could advertise a randomly generated address (e.g., 137mdg5rbQyUHE
NYdx39WVWK7fsLpEoXZy) to which people can send their donations. Or, she could
generate a vanity address that starts with 1Kids, to make it more distinctive.

In both cases, one of the risks of using a single fixed address (rather than a separate
dynamic address per donor) is that a thief might be able to infiltrate your website and
replace it with his own address, thereby diverting donations to himself. If you have
advertised your donation address in a number of different places, your users may vis-
ually inspect the address before making a payment to ensure it is the same one they
saw on your website, on your email, and on your flyer. In the case of a random
address like 137mdg5rbQyUHENYdx39WVWK7fsLpEoXZy, the average user will perhaps
inspect the first few characters “1J7mdg” and be satisfied that the address matches.
Using a vanity address generator, someone with the intent to steal by substituting a
similar-looking address can quickly generate addresses that match the first few char-
acters, as shown in Table 4-8.

Table 4-8. Generating vanity addresses to match a random address

Original Random Address ~ 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy
Vanity (4-character match) 1J7md1QqU4LpctBetHS2ZoyLV5d6dShhEy
Vanity (5-character match) 1)7mdgYqyNd4ya3UEcq31Q7sqRMXw2XZ6n
Vanity (6-character match) 1)7mdg5WxGENmwyJP9xuGhG5KRzu99BBCX

So does a vanity address increase security? If Eugenia generates the vanity address
1Kids33q44erFfpeXrmDSz7zEqG2FesZEN, users are likely to look at the vanity pattern
word and a few characters beyond, for example noticing the “1Kids33” part of the
address. That would force an attacker to generate a vanity address matching at least
six characters (two more), expending an effort that is 3,364 times (58 x 58) higher
than the effort Eugenia expended for her 4-character vanity. Essentially, the effort
Eugenia expends (or pays a vanity pool for) “pushes” the attacker into having to pro-
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duce a longer pattern vanity. If Eugenia pays a pool to generate an 8-character vanity
address, the attacker would be pushed into the realm of 10 characters, which is infea-
sible on a personal computer and expensive even with a custom vanity-mining rig or
vanity pool. What is affordable for Eugenia becomes unaffordable for the attacker,
especially if the potential reward of fraud is not high enough to cover the cost of the
vanity address generation.

Paper Wallets

Paper wallets are bitcoin private keys printed on paper. Often the paper wallet also
includes the corresponding bitcoin address for convenience, but this is not necessary
because it can be derived from the private key. Paper wallets are a very effective way
to create backups or offline bitcoin storage, also known as “cold storage” As a backup
mechanism, a paper wallet can provide security against the loss of key due to a com-
puter mishap such as a hard-drive failure, theft, or accidental deletion. As a “cold
storage” mechanism, if the paper wallet keys are generated offline and never stored
on a computer system, they are much more secure against hackers, keyloggers, and
other online computer threats.

Paper wallets come in many shapes, sizes, and designs, but at a very basic level are
just a key and an address printed on paper. Table 4-9 shows the simplest form of a
paper wallet.

Table 4-9. Simplest form of a paper wallet—a printout of the bitcoin address and private key

Public address Private key (WIF)

1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x  513mBbAH58CpQ3Y5RNJpUKPE625Q5tfcvU2)pbnkeyhfsYB1Jcn

Paper wallets can be generated easily using a tool such as the client-side JavaScript
generator at bitaddress.org. This page contains all the code necessary to generate keys
and paper wallets, even while completely disconnected from the internet. To use it,
save the HTML page on your local drive or on an external USB flash drive. Discon-
nect from the internet and open the file in a browser. Even better, boot your com-
puter using a pristine operating system, such as a CD-ROM bootable Linux OS. Any
keys generated with this tool while offline can be printed on a local printer over a
USB cable (not wirelessly), thereby creating paper wallets whose keys exist only on
the paper and have never been stored on any online system. Put these paper wallets in
a fireproof safe and “send” bitcoin to their bitcoin address, to implement a simple yet
highly effective “cold storage” solution. Figure 4-8 shows a paper wallet generated
from the bitaddress.org site.
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Figure 4-8. An example of a simple paper wallet from bitaddress.org

The disadvantage of a simple paper wallet system is that the printed keys are vulnera-
ble to theft. A thief who is able to gain access to the paper can either steal it or photo-
graph the keys and take control of the bitcoin locked with those keys. A more
sophisticated paper wallet storage system uses BIP-38 encrypted private keys. The
keys printed on the paper wallet are protected by a passphrase that the owner has
memorized. Without the passphrase, the encrypted keys are useless. Yet, they still are
superior to a passphrase-protected wallet because the keys have never been online
and must be physically retrieved from a safe or other physically secured storage.
Figure 4-9 shows a paper wallet with an encrypted private key (BIP-38) created on the
bitaddress.org site.
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Figure 4-9. An example of an encrypted paper wallet from bitaddress.org. The pass-
phrase is “test”
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Although you can deposit funds into a paper wallet several times,
you should withdraw all funds only once, spending everything.
This is because in the process of unlocking and spending funds
7 \ some wallets might generate a change address if you spend less
than the whole amount. Additionally, if the computer you use to
sign the transaction is compromised, you risk exposing the private
key. By spending the entire balance of a paper wallet only once, you
reduce the risk of key compromise. If you need only a small
amount, send any remaining funds to a new paper wallet in the
same transaction.

Paper wallets come in many designs and sizes, with many different features. Some are
intended to be given as gifts and have seasonal themes, such as Christmas and New
Year’s themes. Others are designed for storage in a bank vault or safe with the private
key hidden in some way, either with opaque scratch-off stickers, or folded and sealed
with tamper-proof adhesive foil. Figures 4-10 through 4-12 show various examples of
paper wallets with security and backup features.
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Figure 4-10. An example of a paper wallet from bitcoinpaperwallet.com with the private
key on a folding flap

Figure 4-11. The bitcoinpaperwallet.com paper wallet with the private key concealed
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Other designs feature additional copies of the key and address, in the form of detach-
able stubs similar to ticket stubs, allowing you to store multiple copies to protect
against fire, flood, or other natural disasters.

Figure 4-12. An example of a paper wallet with additional copies of the keys on a backup
“stub”
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CHAPTER 5
Wallets

The word “wallet” is used to describe a few different things in bitcoin.

At a high level, a wallet is an application that serves as the primary user interface. The
wallet controls access to a user’s money, managing keys and addresses, tracking the
balance, and creating and signing transactions.

More narrowly, from a programmer’s perspective, the word “wallet” refers to the data
structure used to store and manage a user’s keys.

In this chapter we will look at the second meaning, where wallets are containers for
private keys, usually implemented as structured files or simple databases.

Wallet Technology Overview

In this section we summarize the various technologies used to construct user-
friendly, secure, and flexible bitcoin wallets.

A common misconception about bitcoin is that bitcoin wallets contain bitcoin. In
fact, the wallet contains only keys. The “coins” are recorded in the blockchain on the
bitcoin network. Users control the coins on the network by signing transactions with
the keys in their wallets. In a sense, a bitcoin wallet is a keychain.

Bitcoin wallets contain keys, not coins. Each user has a wallet con-
taining keys. Wallets are really keychains containing pairs of pri-
vate/public keys (see “Private and Public Keys” on page 57). Users
sign transactions with the keys, thereby proving they own the
transaction outputs (their coins). The coins are stored on the
blockchain in the form of transaction outputs (often noted as vout
or txout).
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There are two primary types of wallets, distinguished by whether the keys they con-
tain are related to each other or not.

The first type is a nondeterministic wallet, where each key is independently generated
from a random number. The keys are not related to each other. This type of wallet is
also known as a JBOK wallet from the phrase “Just a Bunch Of Keys.”

The second type of wallet is a deterministic wallet, where all the keys are derived from
a single master key, known as the seed. All the keys in this type of wallet are related to
each other and can be generated again if one has the original seed. There are a num-
ber of different key derivation methods used in deterministic wallets. The most com-
monly used derivation method uses a tree-like structure and is known as a
hierarchical deterministic or HD wallet.

Deterministic wallets are initialized from a seed. To make these easier to use, seeds
are encoded as English words, also known as mnemonic code words.

The next few sections introduce each of these technologies at a high level.

Nondeterministic (Random) Wallets

In the first bitcoin wallet (now called Bitcoin Core), wallets were collections of ran-
domly generated private keys. For example, the original Bitcoin Core client pregener-
ates 100 random private keys when first started and generates more keys as needed,
using each key only once. Such wallets are being replaced with deterministic wallets
because they are cumbersome to manage, back up, and import. The disadvantage of
random keys is that if you generate many of them you must keep copies of all of
them, meaning that the wallet must be backed up frequently. Each key must be
backed up, or the funds it controls are irrevocably lost if the wallet becomes inaccessi-
ble. This conflicts directly with the principle of avoiding address reuse, by using each
bitcoin address for only one transaction. Address reuse reduces privacy by associating
multiple transactions and addresses with each other. A Type-0 nondeterministic wal-
let is a poor choice of wallet, especially if you want to avoid address reuse because it
means managing many keys, which creates the need for frequent backups. Although
the Bitcoin Core client includes a Type-0 wallet, using this wallet is discouraged by
developers of Bitcoin Core. Figure 5-1 shows a nondeterministic wallet, containing a
loose collection of random keys.

The use of nondeterministic wallets is discouraged for anything
other than simple tests. They are simply too cumbersome to back
up and use. Instead, use an industry-standard-based HD wallet
with a mnemonic seed for backup.
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Figure 5-1. Type-0 nondeterministic (random) wallet: a collection of randomly generated
keys

Deterministic (Seeded) Wallets

Deterministic, or “seeded,” wallets are wallets that contain private keys that are all
derived from a common seed, through the use of a one-way hash function. The seed
is a randomly generated number that is combined with other data, such as an index
number or “chain code” (see “HD Wallets (BIP-32/BIP-44)” on page 96) to derive the
private keys. In a deterministic wallet, the seed is sufficient to recover all the derived
keys, and therefore a single backup at creation time is sufficient. The seed is also suffi-
cient for a wallet export or import, allowing for easy migration of all the user’s keys
between different wallet implementations. Figure 5-2 shows a logical diagram of a
deterministic wallet.
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Figure 5-2. Type-1 deterministic (seeded) wallet: a deterministic sequence of keys derived
from a seed
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HD Wallets (BIP-32/BIP-44)

Deterministic wallets were developed to make it easy to derive many keys from a sin-
gle “seed” The most advanced form of deterministic wallets is the HD wallet defined
by the BIP-32 standard. HD wallets contain keys derived in a tree structure, such that
a parent key can derive a sequence of children keys, each of which can derive a
sequence of grandchildren keys, and so on, to an infinite depth. This tree structure is
illustrated in Figure 5-3.

Child Grandchild
Keys

=

z
m:s;r/z, %
O-C55-%

=

o

Figure 5-3. Type-2 HD wallet: a tree of keys generated from a single seed

HD wallets offer two major advantages over random (nondeterministic) keys. First,
the tree structure can be used to express additional organizational meaning, such as
when a specific branch of subkeys is used to receive incoming payments and a differ-
ent branch is used to receive change from outgoing payments. Branches of keys can
also be used in corporate settings, allocating different branches to departments, sub-
sidiaries, specific functions, or accounting categories.

The second advantage of HD wallets is that users can create a sequence of public keys
without having access to the corresponding private keys. This allows HD wallets to be
used on an insecure server or in a receive-only capacity, issuing a different public key
for each transaction. The public keys do not need to be preloaded or derived in
advance, yet the server doesn’t have the private keys that can spend the funds.
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Seeds and Mnemonic Codes (BIP-39)

HD wallets are a very powerful mechanism for managing many keys and addresses.
They are even more useful if they are combined with a standardized way of creating
seeds from a sequence of English words that are easy to transcribe, export, and
import across wallets. This is known as a mnemonic and the standard is defined by
BIP-39. Today, most bitcoin wallets (as well as wallets for other cryptocurrencies) use
this standard and can import and export seeds for backup and recovery using intero-
perable mnemonics.

Let’s look at this from a practical perspective. Which of the following seeds is easier to
transcribe, record on paper, read without error, export, and import into another wal-
let?

0C1E24E5917779D297E14D45F14E1A1A

army van defense carry jealous true
garbage claim echo media make crunch

Wallet Best Practices

As bitcoin wallet technology has matured, certain common industry standards have
emerged that make bitcoin wallets broadly interoperable, easy to use, secure, and flex-
ible. These common standards are:

o Mnemonic code words, based on BIP-39
o HD wallets, based on BIP-32
« Multipurpose HD wallet structure, based on BIP-43

o Multicurrency and multiaccount wallets, based on BIP-44

These standards may change or may become obsolete by future developments, but for
now they form a set of interlocking technologies that have become the de facto wallet
standard for bitcoin.

The standards have been adopted by a broad range of software and hardware bitcoin
wallets, making all these wallets interoperable. A user can export a mnemonic gener-
ated on one of these wallets and import it in another wallet, recovering all transac-
tions, keys, and addresses.

Some example of software wallets supporting these standards include (listed alpha-
betically) Breadwallet, Copay, Multibit HD, and Mycelium. Examples of hardware
wallets supporting these standards include (listed alphabetically) Keepkey, Ledger,
and Trezor.

The following sections examine each of these technologies in detail.
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If you are implementing a bitcoin wallet, it should be built as a HD
wallet, with a seed encoded as mnemonic code for backup, follow-

! ing the BIP-32, BIP-39, BIP-43, and BIP-44 standards, as described
in the following sections.

Using a Bitcoin Wallet

In “Bitcoin Uses, Users, and Their Stories” on page 5 we introduced Gabriel, an enter-
prising young teenager in Rio de Janeiro, who is running a simple web store that sells
bitcoin-branded t-shirts, coffee mugs, and stickers.

Gabriel uses a Trezor bitcoin hardware wallet (Figure 5-4) to securely manage his bit-
coin. The Trezor is a simple USB device with two buttons that stores keys (in the
form of an HD wallet) and signs transactions. Trezor wallets implement all the indus-
try standards discussed in this chapter, so Gabriel is not reliant on any proprietary
technology or single vendor solution.

Figure 5-4. A Trezor device: a bitcoin HD wallet in hardware

When Gabriel used the Trezor for the first time, the device generated a mnemonic
and seed from a built-in hardware random number generator. During this initializa-
tion phase, the wallet displayed a numbered sequence of words, one by one, on the
screen (see Figure 5-5).

'i Write down the seed
Tth word
actual
&g

Figure 5-5. Trezor displaying one of the mnemonic words

By writing down this mnemonic, Gabriel created a backup (see Table 5-1) that can be
used for recovery in the case of loss or damage to the Trezor device. This mnemonic
can be used for recovery in a new Trezor or in any one of the many compatible soft-
ware or hardware wallets. Note that the sequence of words is important, so
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mnemonic paper backups have numbered spaces for each word. Gabriel had to care-
fully record each word in the numbered space to preserve the correct sequence.

Table 5-1. Gabriel’s paper backup of the mnemonic

1 army 7. garbage
2 van 8. claim

3 defense 9. echo

4, carry 10. media
5 jealous 1. make

6 true 12. crunch

A 12-word mnemonic is shown in Table 5-1, for simplicity. In fact,
most hardware wallets generate a more secure 24-word mnemonic.
The mnemonic is used in exactly the same way, regardless of
length.

For the first implementation of his web store, Gabriel uses a single bitcoin address,
generated on his Trezor device. This single address is used by all customers for all
orders. As we will see, this approach has some drawbacks and can be improved upon
with an HD wallet.

Wallet Technology Details

Let’s now examine each of the important industry standards that are used by many
bitcoin wallets in detail.

Mnemonic Code Words (BIP-39)

Mnemonic code words are word sequences that represent (encode) a random num-
ber used as a seed to derive a deterministic wallet. The sequence of words is sufficient
to re-create the seed and from there re-create the wallet and all the derived keys. A
wallet application that implements deterministic wallets with mnemonic words will
show the user a sequence of 12 to 24 words when first creating a wallet. That
sequence of words is the wallet backup and can be used to recover and re-create all
the keys in the same or any compatible wallet application. Mnemonic words make it
easier for users to back up wallets because they are easy to read and correctly tran-
scribe, as compared to a random sequence of numbers.
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Mnemonic words are often confused with “brainwallets” They are
not the same. The primary difference is that a brainwallet consists
of words chosen by the user, whereas mnemonic words are created
randomly by the wallet and presented to the user. This important
difference makes mnemonic words much more secure, because
humans are very poor sources of randomness.

Mnemonic codes are defined in BIP-39 (see Appendix C). Note that BIP-39 is one
implementation of a mnemonic code standard. There is a different standard, with a
different set of words, used by the Electrum wallet and predating BIP-39. BIP-39 was
proposed by the company behind the Trezor hardware wallet and is incompatible
with Electrum’s implementation. However, BIP-39 has now achieved broad industry
support across dozens of interoperable implementations and should be considered
the de facto industry standard.

BIP-39 defines the creation of a mnemonic code and seed, which we describe here in
nine steps. For clarity, the process is split into two parts: steps 1 through 6 are shown
in “Generating mnemonic words” on page 100 and steps 7 through 9 are shown in
“From mnemonic to seed” on page 101.

Generating mnemonic words
Mnemonic words are generated automatically by the wallet using the standardized
process defined in BIP-39. The wallet starts from a source of entropy, adds a check-
sum, and then maps the entropy to a word list:

1. Create a random sequence (entropy) of 128 to 256 bits.

2. Create a checksum of the random sequence by taking the first (entropy-
length/32) bits of its SHA256 hash.

Add the checksum to the end of the random sequence.

3.

4. Divide the sequence into sections of 11 bits.

5. Map each 11-bit value to a word from the predefined dictionary of 2048 words.
6.

The mnemonic code is the sequence of words.

Figure 5-6 shows how entropy is used to generate mnemonic words.
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Mnemonic Words
128-bit entropy/12-word example

| (D Generate Entropy (128bits) | SHA256 ®
First 4 bits
| Entropy (128 bits) CT:(Q%”‘ @

@ Split 132-bits into 12 segments of 11-bits each

BIP39 English Word List (2048 words)

100 | abandon
ability

00001100000 | army

Twelve word mnemonic code:

army van defense carry jealous true
garbage claim echo media make crunch

Figure 5-6. Generating entropy and encoding as mnemonic words

Table 5-2 shows the relationship between the size of the entropy data and the length
of mnemonic codes in words.

Table 5-2. Mnemonic codes: entropy and word length

Entropy (bits) Checksum (bits) Entropy + checksum (bits) Mnemonic length (words)

128 4 132 12
160 5 165 15
192 6 198 18
224 7 231 21
256 8 264 24

From mnemonic to seed

The mnemonic words represent entropy with a length of 128 to 256 bits. The entropy
is then used to derive a longer (512-bit) seed through the use of the key-stretching
function PBKDF2. The seed produced is then used to build a deterministic wallet and
derive its keys.
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The key-stretching function takes two parameters: the mnemonic and a salt. The pur-
pose of a salt in a key-stretching function is to make it difficult to build a lookup table
enabling a brute-force attack. In the BIP-39 standard, the salt has another purpose—it
allows the introduction of a passphrase that serves as an additional security factor
protecting the seed, as we will describe in more detail in “Optional passphrase in
BIP-39” on page 104.

The process described in steps 7 through 9 continues from the process described pre-
viously in “Generating mnemonic words” on page 100:

7. The first parameter to the PBKDF2 key-stretching function is the mnemonic pro-
duced from step 6.

8. The second parameter to the PBKDF?2 key-stretching function is a salt. The salt is
composed of the string constant "mnemonic” concatenated with an optional user-
supplied passphrase string.

9. PBKDEF2 stretches the mnemonic and salt parameters using 2048 rounds of hash-
ing with the HMAC-SHA512 algorithm, producing a 512-bit value as its final
output. That 512-bit value is the seed.

Figure 5-7 shows how a mnemonic is used to generate a seed.

@ Mnemonic to Seed

Mnemonic Code Words Salt
“army van defense carry jealous true “mnemonic” + (optional) passphrase
garbage claim echo media make crunch”

Key Stretching Function
PBKDF2 using HMAC-SHAS512

2048

@ rounds

512-bit Seed

5b56c417303faal3fcba7e57400e120a0ca83ec5ad4fc9ffba757fbeb3fbd77a89
ala3bedc671%6£57¢c39aB88b763737338%1bfabalbed27a813ceed498804c0570

Figure 5-7. From mnemonic to seed
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The key-stretching function, with its 2048 rounds of hashing, is a
very effective protection against brute-force attacks against the
mnemonic or the passphrase. It makes it extremely costly (in com-
putation) to try more than a few thousand passphrase and
mnemonic combinations, while the number of possible derived
seeds is vast (2°12).

Tables 5-3, 5-4, and 5-5 show some examples of mnemonic codes and the seeds they
produce (without any passphrase).

Table 5-3. 128-bit entropy mnemonic code, no passphrase, resulting seed

Entropy input (128 bits)

0c1e24e5917779d297e14d45f14elala

Mnemonic (12 words)

army van defense carry jealous true garbage claim echo media make crunch
Passphrase

(none)

Seed (512 bits)

5b56c417303faa3fcba7e57400e120a0ca83ec5a4fc9ffba757fbe63fbd77a89a1a3be4c67196f57¢39
a88b76373733891bfabal6ed27a813ceed498804c0570

Table 5-4. 128-bit entropy mnemonic code, with passphrase, resulting seed

Entropy input (128 bits)

0c1e24e5917779d297e14d45f14elala

Mnemonic (12 words)

army van defense carry jealous true garbage claim echo media make crunch
Passphrase

SuperDuperSecret

Seed (512 bits)

3b5df16df2157104cfdd22830162a5e170c0161653e3afe6c88defeefb0818c793dbb28ab3ab091897d0
715861dc8a18358f80b79d49acf64142ae57037d1d54

Table 5-5. 256-bit entropy mnemonic code, no passphrase, resulting seed

Entropy input (256 bits)
2041546864449caff939d32d574753fe684d3c947c3346713dd8423e74abcf8¢c
Mnemonic (24 words)

cake apple borrow silk endorse fitness top denial coil riot stay wolf
luggage oxygen faint major edit measure invite love trap field dilemma oblige

Passphrase
(none)
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Seed (512 bits)

3269bce2674acbd188d4f120072b13b088abkecf87c6e4cae41657a0bb78f5315b33b3304356e53d062e5
5f1e0deaa082df8d487381379df848a6ad7e98798404

Optional passphrase in BIP-39

The BIP-39 standard allows the use of an optional passphrase in the derivation of the
seed. If no passphrase is used, the mnemonic is stretched with a salt consisting of the
constant string "mnemonic", producing a specific 512-bit seed from any given
mnemonic. If a passphrase is used, the stretching function produces a different seed
from that same mnemonic. In fact, given a single mnemonic, every possible pass-
phrase leads to a different seed. Essentially, there is no “wrong” passphrase. All pass-
phrases are valid and they all lead to different seeds, forming a vast set of possible
uninitialized wallets. The set of possible wallets is so large (2°'?) that there is no prac-
tical possibility of brute-forcing or accidentally guessing one that is in use.

There are no “wrong” passphrases in BIP-39. Every passphrase
leads to some wallet, which unless previously used will be empty.

The optional passphrase creates two important features:

o A second factor (something memorized) that makes a mnemonic useless on its
own, protecting mnemonic backups from compromise by a thief.

« A form of plausible deniability or “duress wallet,” where a chosen passphrase
leads to a wallet with a small amount of funds used to distract an attacker from
the “real” wallet that contains the majority of funds.

However, it is important to note that the use of a passphrase also introduces the risk
of loss:

o If the wallet owner is incapacitated or dead and no one else knows the pass-
phrase, the seed is useless and all the funds stored in the wallet are lost forever.

o Conversely, if the owner backs up the passphrase in the same place as the seed, it
defeats the purpose of a second factor.

While passphrases are very useful, they should only be used in combination with a
carefully planned process for backup and recovery, considering the possibility of sur-
viving the owner and allowing his or her family to recover the cryptocurrency estate.
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Working with mnemonic codes

BIP-39 is implemented as a library in many different programming languages:

python-mnemonic
The reference implementation of the standard by the SatoshiLabs team that pro-
posed BIP-39, in Python

bitcoinjs/bip39
An implementation of BIP-39, as part of the popular bitcoin]S framework, in
JavaScript

libbitcoin/mnemonic
An implementation of BIP-39, as part of the popular Libbitcoin framework, in
C++

There is also a BIP-39 generator implemented in a standalone webpage, which is
extremely useful for testing and experimentation. Figure 5-8 shows a standalone web
page that generates mnemonics, seeds, and extended private keys.

Mnemonic

You can enter an existing BIP38 mnemonic, or generate a new random one. Typing your
own twelve words will probably not work how you expect, since the words require a
particular structure (the last word is a checksum)

For more info see the BIP38 spec

Generate arandom 12 5 word mnemonic, or enter your own below.

BIP3%9 army van defense carry jealous true garbage claim echo media make crunch|
Mnemonic

BIP39
Passphrase
(optional)

BIP39 Seed 5b56c417303faadfcba7e57400e120alcaB3ecbadfcoffbars7fbe63fbd77aBlaladbed4c6719
6157¢39a88b76373733891bfaba16ed27a813ceed498804c0570

Coin Bitcoin :
BIP32 Root xprv3s21ZrQH143K3t4UZrNgeA3wE61fw]YLaGwmPtQyPMmzshV2ow\VpfBSd2Q7YsHZ9j6
Key i6ddYjb5SPLIUdMZnBLhwuCVhGeQntgSrn7JVMgnie

Figure 5-8. A BIP-39 generator as a standalone web page

The page (https://iancoleman.github.io/bip39/) can be used offline in a browser, or
accessed online.
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https://github.com/trezor/python-mnemonic
https://github.com/bitcoinjs/bip39
https://github.com/libbitcoin/libbitcoin/blob/master/src/wallet/mnemonic.cpp
https://iancoleman.github.io/bip39/

Creating an HD Wallet from the Seed

HD wallets are created from a single root seed, which is a 128-, 256-, or 512-bit ran-
dom number. Most commonly, this seed is generated from a mnemonic as detailed in
the previous section.

Every key in the HD wallet is deterministically derived from this root seed, which
makes it possible to re-create the entire HD wallet from that seed in any compatible
HD wallet. This makes it easy to back up, restore, export, and import HD wallets con-
taining thousands or even millions of keys by simply transferring only the mnemonic
that the root seed is derived from.

The process of creating the master keys and master chain code for an HD wallet is
shown in Figure 5-9.

Cryptographically Secure Pseudo-Random Master
Number Generator Private Key
* o
Mnemonic Code Words (256 bits)
“army van defense " +
¥ '
Master
Root Seed > (};TZA gtf?&iltz Public Key
(128, 256 or 512 bits) g
One-Way Hash ) (264 bits)
Function %
Master
Chain Code
(256 bits)

Figure 5-9. Creating master keys and chain code from a root seed

The root seed is input into the HMAC-SHA512 algorithm and the resulting hash is
used to create a master private key (m) and a master chain code (c).

The master private key (m) then generates a corresponding master public key (M)
using the normal elliptic curve multiplication process m * G that we saw in “Public
Keys” on page 60.

The chain code (c) is used to introduce entropy in the function that creates child keys
from parent keys, as we will see in the next section.
Private child key derivation

HD wallets use a child key derivation (CKD) function to derive child keys from parent
keys.
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The child key derivation functions are based on a one-way hash function that com-
bines:

o A parent private or public key (ECDSA uncompressed key)
o A seed called a chain code (256 bits)
e An index number (32 bits)

The chain code is used to introduce deterministic random data to the process, so that
knowing the index and a child key is not sufficient to derive other child keys. Know-
ing a child key does not make it possible to find its siblings, unless you also have the
chain code. The initial chain code seed (at the root of the tree) is made from the seed,
while subsequent child chain codes are derived from each parent chain code.

These three items (parent key, chain code, and index) are combined and hashed to
generate children keys, as follows.

The parent public key, chain code, and the index number are combined and hashed
with the HMAC-SHA512 algorithm to produce a 512-bit hash. This 512-bit hash is
split into two 256-bit halves. The right-half 256 bits of the hash output become the
chain code for the child. The left-half 256 bits of the hash are added to the parent
private key to produce the child private key. In Figure 5-10, we see this illustrated
with the index set to 0 to produce the “zero” (first by index) child of the parent.

Parent Child (Index 0)
Private Key Private Key
(256 bits) (256 bits)
y y
Parent HMAC-5HA512 Child
Public Key (512 bits output) Public Key
(264 bits) (264 bits)
One-Way Hash Function
Parent Child (Index 0)
Chain Code Chain Code
(256 bits) (256 bits)
Index
Number
(32 bits, e.g. 0)

Figure 5-10. Extending a parent private key to create a child private key

Changing the index allows us to extend the parent and create the other children in
the sequence, e.g., Child 0, Child 1, Child 2, etc. Each parent key can have
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2,147,483,647 (2*') children (2*' is half of the entire 2** range available because the
other half is reserved for a special type of derivation we will talk about later in this
chapter).

Repeating the process one level down the tree, each child can in turn become a parent
and create its own children, in an infinite number of generations.

Using derived child keys

Child private keys are indistinguishable from nondeterministic (random) keys.
Because the derivation function is a one-way function, the child key cannot be used
to find the parent key. The child key also cannot be used to find any siblings. If you
have the ny, child, you cannot find its siblings, such as the n-1 child or the n+1 child,
or any other children that are part of the sequence. Only the parent key and chain
code can derive all the children. Without the child chain code, the child key cannot
be used to derive any grandchildren either. You need both the child private key and
the child chain code to start a new branch and derive grandchildren.

So what can the child private key be used for on its own? It can be used to make a
public key and a bitcoin address. Then, it can be used to sign transactions to spend
anything paid to that address.

A child private key, the corresponding public key, and the bitcoin
address are all indistinguishable from keys and addresses created
randomly. The fact that they are part of a sequence is not visible
outside of the HD wallet function that created them. Once created,
they operate exactly as “normal” keys.

Extended keys

As we saw earlier, the key derivation function can be used to create children at any
level of the tree, based on the three inputs: a key, a chain code, and the index of the
desired child. The two essential ingredients are the key and chain code, and com-
bined these are called an extended key. The term “extended key” could also be thought
of as “extensible key” because such a key can be used to derive children.

Extended keys are stored and represented simply as the concatenation of the 256-bit
key and 256-bit chain code into a 512-bit sequence. There are two types of extended
keys. An extended private key is the combination of a private key and chain code and
can be used to derive child private keys (and from them, child public keys). An exten-
ded public key is a public key and chain code, which can be used to create child pub-
lic keys (public only), as described in “Generating a Public Key” on page 63.

Think of an extended key as the root of a branch in the tree structure of the HD wal-
let. With the root of the branch, you can derive the rest of the branch. The extended
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private key can create a complete branch, whereas the extended public key can only
create a branch of public keys.

An extended key consists of a private or public key and chain code.
An extended key can create children, generating its own branch in
the tree structure. Sharing an extended key gives access to the
entire branch.

Extended keys are encoded using Base58Check, to easily export and import between
different BIP-32—compatible wallets. The Base58Check coding for extended keys uses
a special version number that results in the prefix “xprv” and “xpub” when encoded
in Base58 characters to make them easily recognizable. Because the extended key is
512 or 513 bits, it is also much longer than other Base58Check-encoded strings we
have seen previously.

Here’s an example of an extended private key, encoded in Base58Check:

xprvotyuQve43T5qs3RSTIKXCWKMyU -
goQp7F3hA1xzG6ZGubu6Q9VMNIGré7Lctvy5P8oyaYALICAWrUES16GONM -
KUga5biW6Hx4tws2six3b9c

Here’s the corresponding extended public key, encoded in Base58Check:

Xpub67xpozcx8pe9d5XVuZLHXZeG6XWXHpGq6Qv5cmNfi7cS5mtji2tgy -
peQbBs2UAR6KECeeMVKZBPLrtJunSDMstweylLXhRgPxdp14sk9tIPW9

Public child key derivation

As mentioned previously, a very useful characteristic of HD wallets is the ability to
derive public child keys from public parent keys, without having the private keys.
This gives us two ways to derive a child public key: either from the child private key,
or directly from the parent public key.

An extended public key can be used, therefore, to derive all of the public keys (and
only the public keys) in that branch of the HD wallet structure.

This shortcut can be used to create very secure public key-only deployments where a
server or application has a copy of an extended public key and no private keys what-
soever. That kind of deployment can produce an infinite number of public keys and
bitcoin addresses, but cannot spend any of the money sent to those addresses. Mean-
while, on another, more secure server, the extended private key can derive all the cor-
responding private keys to sign transactions and spend the money.

One common application of this solution is to install an extended public key on a
web server that serves an ecommerce application. The web server can use the public
key derivation function to create a new bitcoin address for every transaction (e.g., for
a customer shopping cart). The web server will not have any private keys that would
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be vulnerable to theft. Without HD wallets, the only way to do this is to generate
thousands of bitcoin addresses on a separate secure server and then preload them on
the ecommerce server. That approach is cumbersome and requires constant mainte-
nance to ensure that the ecommerce server doesn’t “run out” of keys.

Another common application of this solution is for cold-storage or hardware wallets.
In that scenario, the extended private key can be stored on a paper wallet or hardware
device (such as a Trezor hardware wallet), while the extended public key can be kept
online. The user can create “receive” addresses at will, while the private keys are safely
stored offline. To spend the funds, the user can use the extended private key on an
offline signing bitcoin client or sign transactions on the hardware wallet device (e.g.,
Trezor). Figure 5-11 illustrates the mechanism for extending a parent public key to
derive child public keys.

Parent Child
Public Key B PublicKey
(264 bits) (264 bits)

'

Parent HMAC-SHA512 Child (Index 0)
Chain Code 2 (512 bits output) Chain Code
(256 hits) , right 256 bits | (256 bits)

One-Way Hash Function

Index /

Number
(32 bits, eq. 0)

Figure 5-11. Extending a parent public key to create a child public key

Using an Extended Public Key on a Web Store
Let’s see how HD wallets are used by continuing our story with Gabriel’s web store.

Gabriel first set up his web store as a hobby, based on a simple hosted Wordpress
page. His store was quite basic with only a few pages and an order form with a single
bitcoin address.

Gabriel used the first bitcoin address generated by his Trezor device as the main bit-
coin address for his store. This way, all incoming payments would be paid to an
address controlled by his Trezor hardware wallet.

Customers would submit an order using the form and send payment to Gabriel’s
published bitcoin address, triggering an email with the order details for Gabriel to
process. With just a few orders each week, this system worked well enough.
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However, the little web store became quite successful and attracted many orders from
the local community. Soon, Gabriel was overwhelmed. With all the orders paying the
same address, it became difficult to correctly match orders and transactions, espe-
cially when multiple orders for the same amount came in close together.

Gabriel's HD wallet offers a much better solution through the ability to derive public
child keys without knowing the private keys. Gabriel can load an extended public key
(xpub) on his website, which can be used to derive a unique address for every cus-
tomer order. Gabriel can spend the funds from his Trezor, but the xpub loaded on the
website can only generate addresses and receive funds. This feature of HD wallets is a
great security feature. Gabriel’s website does not contain any private keys and there-
fore does not need high levels of security.

To export the xpub, Gabriel uses the web-based software in conjunction with the Tre-
zor hardware wallet. The Trezor device must be plugged in for the public keys to be
exported. Note that hardware wallets will never export private keys—those always
remain on the device. Figure 5-12 shows the web interface Gabriel uses to export the
xpub.

B Basic ksl Homescreen il Advanced
Label Gabriel's Change label

Trezor
PIN protection Enabled Change PIN

Total balance 0.00 BTC

Account public xpub6Cy7dURAZKF22HEUVg7ep
keys (XPUB) RgRsoXFL2MK1RES1CSvp1ZySy
SoYGXk5PUY9y9CcSExpnSwXyi
mQAsVhyyPDNDrfjdxjDskKZJINY

gsHXoEPNCYQ

Be careful with your XPUBs.When you
give them to a third party, you allow it
to see your whole transaction history.
Learn more

Figure 5-12. Exporting an xpub from a Trezor hardware wallet

Gabriel copies the xpub to his web store’s bitcoin shop software. He uses Mycelium
Gear, which is an open source web-store plugin for a variety of web hosting and con-
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tent platforms. Mycelium Gear uses the xpub to generate a unique address for every
purchase.

Hardened child key derivation

The ability to derive a branch of public keys from an xpub is very useful, but it comes
with a potential risk. Access to an xpub does not give access to child private keys.
However, because the xpub contains the chain code, if a child private key is known, or
somehow leaked, it can be used with the chain code to derive all the other child pri-
vate keys. A single leaked child private key, together with a parent chain code, reveals
all the private keys of all the children. Worse, the child private key together with a
parent chain code can be used to deduce the parent private key.

To counter this risk, HD wallets use an alternative derivation function called hard-
ened derivation, which “breaks” the relationship between parent public key and child
chain code. The hardened derivation function uses the parent private key to derive
the child chain code, instead of the parent public key. This creates a “firewall” in the
parent/child sequence, with a chain code that cannot be used to compromise a parent
or sibling private key. The hardened derivation function looks almost identical to the
normal child private key derivation, except that the parent private key is used as input
to the hash function, instead of the parent public key, as shown in the diagram in
Figure 5-13.

Parent Child (Index 0')
Private Key Private Key
(256 bits) (256 bits)
y
HMAC-SHA512 Child
(512 bits output) Public Key
(264 bits)
One-Way Hash Function
Parent Child (Index 0')
Chain Code Chain Code
(256 bits) (256 bits)
Index
Number
(32 bits, e.q.0')

Figure 5-13. Hardened derivation of a child key; omits the parent public key
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When the hardened private derivation function is used, the resulting child private key
and chain code are completely different from what would result from the normal der-
ivation function. The resulting “branch” of keys can be used to produce extended
public keys that are not vulnerable, because the chain code they contain cannot be
exploited to reveal any private keys. Hardened derivation is therefore used to create a
“gap” in the tree above the level where extended public keys are used.

In simple terms, if you want to use the convenience of an xpub to derive branches of
public keys, without exposing yourself to the risk of a leaked chain code, you should
derive it from a hardened parent, rather than a normal parent. As a best practice, the
level-1 children of the master keys are always derived through the hardened deriva-
tion, to prevent compromise of the master keys.

Index numbers for normal and hardened derivation

The index number used in the derivation function is a 32-bit integer. To easily distin-
guish between keys derived through the normal derivation function versus keys
derived through hardened derivation, this index number is split into two ranges.
Index numbers between 0 and 2°'-1 (0x0 to 0x7FFFFFFF) are used only for normal
derivation. Index numbers between 2% and 232-1 (0x80000000 to OxFFFFFFFF) are
used only for hardened derivation. Therefore, if the index number is less than 2°!, the
child is normal, whereas if the index number is equal or above 2!, the child is hard-
ened.

To make the index number easier to read and display, the index number for hardened
children is displayed starting from zero, but with a prime symbol. The first normal
child key is therefore displayed as 0, whereas the first hardened child (index
0x80000000) is displayed as 0'. In sequence then, the second hardened key would
have index 0x80000001 and would be displayed as 1', and so on. When you see an
HD wallet index i', that means 2*'+i.

HD wallet key identifier (path)

Keys in an HD wallet are identified using a “path” naming convention, with each level
of the tree separated by a slash (/) character (see Table 5-6). Private keys derived from
the master private key start with “m.” Public keys derived from the master public key
start with “M>” Therefore, the first child private key of the master private key is m/0.
The first child public key is M/0. The second grandchild of the first child is m/0/1,
and so on.

The “ancestry” of a key is read from right to left, until you reach the master key from
which it was derived. For example, identifier m/x/y/z describes the key that is the z-th
child of key m/x/y, which is the y-th child of key m/x, which is the x-th child of m.
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Table 5-6. HD wallet path examples

HD path Key described

m/0 The first (0) child private key from the master private key (m)

m/0/0 The first grandchild private key of the first child (m/0)

m/0'/0 The first normal grandchild of the first hardened child (m/0")

m/1/0 The first grandchild private key of the second child (m/1)

M/23/17/0/0  The first great-great-grandchild public key of the first great-grandchild of the 18th grandchild of the 24th
child

Navigating the HD wallet tree structure

The HD wallet tree structure offers tremendous flexibility. Each parent extended key
can have 4 billion children: 2 billion normal children and 2 billion hardened children.
Each of those children can have another 4 billion children, and so on. The tree can be
as deep as you want, with an infinite number of generations. With all that flexibility,
however, it becomes quite difficult to navigate this infinite tree. It is especially diffi-
cult to transfer HD wallets between implementations, because the possibilities for
internal organization into branches and subbranches are endless.

Two BIPs offer a solution to this complexity by creating some proposed standards for
the structure of HD wallet trees. BIP-43 proposes the use of the first hardened child
index as a special identifier that signifies the “purpose” of the tree structure. Based on
BIP-43, an HD wallet should use only one level-1 branch of the tree, with the index
number identifying the structure and namespace of the rest of the tree by defining its
purpose. For example, an HD wallet using only branch m/i'/ is intended to signify a

«s»

specific purpose and that purpose is identified by index number “i

Extending that specification, BIP-44 proposes a multiaccount structure as “purpose”
number 44' under BIP-43. All HD wallets following the BIP-44 structure are identi-
fied by the fact that they only used one branch of the tree: m/44'/.

BIP-44 specifies the structure as consisting of five predefined tree levels:
m / purpose' / coin_type' / account' / change / address_index

The first-level “purpose” is always set to 44'. The second-level “coin_type” specifies
the type of cryptocurrency coin, allowing for multicurrency HD wallets where each
currency has its own subtree under the second level. There are three currencies
defined for now: Bitcoin is m/44'/0', Bitcoin Testnet is m/44'/1', and Litecoin is
m/44'/2".

The third level of the tree is “account,” which allows users to subdivide their wallets
into separate logical subaccounts, for accounting or organizational purposes. For
example, an HD wallet might contain two bitcoin “accounts” m/44'/0'/0' and
m/44'/0'/1'. Each account is the root of its own subtree.
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On the fourth level, “change,” an HD wallet has two subtrees, one for creating receiv-
ing addresses and one for creating change addresses. Note that whereas the previous
levels used hardened derivation, this level uses normal derivation. This is to allow this
level of the tree to export extended public keys for use in a nonsecured environment.
Usable addresses are derived by the HD wallet as children of the fourth level, making
the fifth level of the tree the “address_index” For example, the third receiving address
for bitcoin payments in the primary account would be M/44'/0'/0'/0/2. Table 5-7
shows a few more examples.

Table 5-7. BIP-44 HD wallet structure examples
HD path Key described
M/44'/0'/0'/0/2  The third receiving public key for the primary bitcoin account
M/44'/0'/3'/1/14 The fifteenth change-address public key for the fourth bitcoin account

m/44'/2'/0'/0/1  The second private key in the Litecoin main account, for signing transactions

Wallet Technology Details | 115

www.EBookswWorld.ir



www.EBookswWorld.ir



CHAPTER 6
Transactions

Introduction

Transactions are the most important part of the bitcoin system. Everything else in bit-
coin is designed to ensure that transactions can be created, propagated on the net-
work, validated, and finally added to the global ledger of transactions (the
blockchain). Transactions are data structures that encode the transfer of value
between participants in the bitcoin system. Each transaction is a public entry in bit-
coin’s blockchain, the global double-entry bookkeeping ledger.

In this chapter we will examine all the various forms of transactions, what they con-
tain, how to create them, how they are verified, and how they become part of the per-
manent record of all transactions. When we use the term “wallet” in this chapter, we
are referring to the software that constructs transactions, not just the database of
keys.

Transactions in Detail

In Chapter 2, we looked at the transaction Alice used to pay for coffee at Bob’s coffee
shop using a block explorer (Figure 6-1).

The block explorer application shows a transaction from Alice’s “address” to Bob's
“address” This is a much simplified view of what is contained in a transaction. In fact,
as we will see in this chapter, much of the information shown is constructed by the
block explorer and is not actually in the transaction.
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Transaction view information about a bitcoin transaction

0627052b612891272703066a912ea57 7f2ceddadcaabasibdBab7286c345c212

1GdK9UzpHBzqzX2A9JFP3DidweBwagmoQA

- (Unspent) 0.015 BTC
1Cdid9KFAaatwezBwBttQewXYCpvKBh7FK (0.1 BTC - Qutput) * ( ) pent) N

1Cdid9KFAaatwczBwBttQowXYCpvKBh7FK -

(Unspent) 0.0B45 BTC

97 Confirmations 0.0995 BTC |

Summary Inputs and Outputs
Size 258 (bytes) Total Input 0.1 BTC
Received Time 2013-12-27 23:03:05 Total Output 0.09885 BTC
Included In 277316 (2013-12-27 23:11:64 +9 Fees 0.0005 BTC
Blocks minutes)

Estimated BTC Transacted 0.015 BTC

Figure 6-1. Alice’s transaction to Bob’s Cafe

Transactions—Behind the Scenes

Behind the scenes, an actual transaction looks very different from a transaction pro-
vided by a typical block explorer. In fact, most of the high-level constructs we see in
the various bitcoin application user interfaces do not actually exist in the bitcoin sys-
tem.

We can use Bitcoin Core’s command-line interface (getrawtransaction and decoder
awtransaction) to retrieve Alice’s “raw” transaction, decode it, and see what it con-
tains. The result looks like this:

{
"version": 1,
"locktime": 0,
"vin": [
{
"txid":
"7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",
"vout": 0,
"scriptSig" :

"3045022100884d142d86652a3f47bad746ec719bbfbd040a570bldeccbb6498c75c4ae24cb02204
b9f039ff08dfO9cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813[ALL]
0484ecc0d46f1918b30928fabeded99f16a0fbafde0735e7ade8416ab9fe423cc5412336376789d1
72787ec3457eeed41c04f4938de5cc17b4a10fa336a8d752adf",
"sequence": 4294967295
}
1,

"vout": [
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{
"value": 0.01500000,

"scriptPubKey": "OP_DUP OP_HASH160
ab68025513c3dbd2f7b92a94e0581f5d50f654e7 OP_EQUALVERIFY OP_CHECKSIG"
1,
{
"value": 0.08450000,
"scriptPubKey": "OP_DUP OP_HASH160
7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8 OP_EQUALVERIFY OP_CHECKSIG",
}
1
}

You may notice a few things about this transaction, mostly the things that are miss-
ing! Where is Alice’s address? Where is Bob’s address? Where is the 0.1 input “sent”
by Alice? In bitcoin, there are no coins, no senders, no recipients, no balances, no
accounts, and no addresses. All those things are constructed at a higher level for the
benefit of the user, to make things easier to understand.

You may also notice a lot of strange and indecipherable fields and hexadecimal
strings. Don’t worry, we will explain each field shown here in detail in this chapter.

Transaction Qutputs and Inputs

The fundamental building block of a bitcoin transaction is a transaction output.
Transaction outputs are indivisible chunks of bitcoin currency, recorded on the
blockchain, and recognized as valid by the entire network. Bitcoin full nodes track all
available and spendable outputs, known as unspent transaction outputs, or UTXO.
The collection of all UTXO is known as the UTXO set and currently numbers in the
millions of UTXO. The UTXO set grows as new UTXO is created and shrinks when
UTZXO is consumed. Every transaction represents a change (state transition) in the
UTXO set.

When we say that a user’s wallet has “received” bitcoin, what we mean is that the wal-
let has detected a UTXO that can be spent with one of the keys controlled by that
wallet. Thus, a user’s bitcoin “balance” is the sum of all UTXO that user’s wallet can
spend and which may be scattered among hundreds of transactions and hundreds of
blocks. The concept of a balance is created by the wallet application. The wallet calcu-
lates the user’s balance by scanning the blockchain and aggregating the value of any
UTZXO the wallet can spend with the keys it controls. Most wallets maintain a data-
base or use a database service to store a quick reference set of all the UTXO they can
spend with the keys they control.

A transaction output can have an arbitrary (integer) value denominated as a multiple
of satoshis. Just like dollars can be divided down to two decimal places as cents, bit-
coin can be divided down to eight decimal places as satoshis. Although an output can
have any arbitrary value, once created it is indivisible. This is an important character-
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istic of outputs that needs to be emphasized: outputs are discrete and indivisible units
of value, denominated in integer satoshis. An unspent output can only be consumed
in its entirety by a transaction.

If an UTXO is larger than the desired value of a transaction, it must still be consumed
in its entirety and change must be generated in the transaction. In other words, if you
have a UTXO worth 20 bitcoin and want to pay only 1 bitcoin, your transaction must
consume the entire 20-bitcoin UTXO and produce two outputs: one paying 1 bitcoin
to your desired recipient and another paying 19 bitcoin in change back to your wallet.
As a result of the indivisible nature of transaction outputs, most bitcoin transactions
will have to generate change.

Imagine a shopper buying a $1.50 beverage, reaching into her wallet and trying to
find a combination of coins and bank notes to cover the $1.50 cost. The shopper will
choose exact change if available e.g. a dollar bill and two quarters (a quarter is $0.25),
or a combination of smaller denominations (six quarters), or if necessary, a larger
unit such as a $5 note. If she hands too much money, say $5, to the shop owner, she
will expect $3.50 change, which she will return to her wallet and have available for
future transactions.

Similarly, a bitcoin transaction must be created from a user’s UTXO in whatever
denominations that user has available. Users cannot cut an UTXO in half any more
than they can cut a dollar bill in half and use it as currency. The user’s wallet applica-
tion will typically select from the user’s available UTXO to compose an amount
greater than or equal to the desired transaction amount.

As with real life, the bitcoin application can use several strategies to satisfy the pur-
chase amount: combining several smaller units, finding exact change, or using a sin-
gle unit larger than the transaction value and making change. All of this complex
assembly of spendable UTXO is done by the user’s wallet automatically and is invisi-
ble to users. It is only relevant if you are programmatically constructing raw transac-
tions from UTXO.

A transaction consumes previously recorded unspent transaction outputs and creates
new transaction outputs that can be consumed by a future transaction. This way,
chunks of bitcoin value move forward from owner to owner in a chain of transac-
tions consuming and creating UTXO.

The exception to the output and input chain is a special type of transaction called the
coinbase transaction, which is the first transaction in each block. This transaction is
placed there by the “winning” miner and creates brand-new bitcoin payable to that
miner as a reward for mining. This special coinbase transaction does not consume
UTXO; instead, it has a special type of input called the “coinbase” This is how bit-
coin’s money supply is created during the mining process, as we will see in Chap-
ter 10.
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What comes first? Inputs or outputs, the chicken or the egg?
Strictly speaking, outputs come first because coinbase transactions,
which generate new bitcoin, have no inputs and create outputs
from nothing.

Transaction Qutputs

Every bitcoin transaction creates outputs, which are recorded on the bitcoin ledger.
Almost all of these outputs, with one exception (see “Data Recording Output
(RETURN)” on page 155) create spendable chunks of bitcoin called UTXO, which are
then recognized by the whole network and available for the owner to spend in a
future transaction.

UTZXO are tracked by every full-node bitcoin client in the UTXO set. New transac-
tions consume (spend) one or more of these outputs from the UTXO set.

Transaction outputs consist of two parts:

o An amount of bitcoin, denominated in satoshis, the smallest bitcoin unit

+ A cryptographic puzzle that determines the conditions required to spend the
output

The cryptographic puzzle is also known as a locking script, a witness script, or a
scriptPubKey.

The transaction scripting language, used in the locking script mentioned previously,
is discussed in detail in “Transaction Scripts and Script Language” on page 131.

Now, let’s look at Alice’s transaction (shown previously in “Transactions—Behind the
Scenes” on page 118) and see if we can identify the outputs. In the JSON encoding,
the outputs are in an array (list) named vout:

"vout": [
{
"value": 0.01500000,
"scriptPubKey": "OP_DUP OP_HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
OP_EQUALVERIFY
OP_CHECKSIG"
}s
{
"value": 0.08450000,

"scriptPubKey": "OP_DUP OP_HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8
OP_EQUALVERIFY OP_CHECKSIG",
}
1

As you can see, the transaction contains two outputs. Each output is defined by a
value and a cryptographic puzzle. In the encoding shown by Bitcoin Core, the value is
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shown in bitcoin, but in the transaction itself it is recorded as an integer denominated
in satoshis. The second part of each output is the cryptographic puzzle that sets the
conditions for spending. Bitcoin Core shows this as scriptPubKey and shows us a
human-readable representation of the script.

The topic of locking and unlocking UTXO will be discussed later, in “Script Con-
struction (Lock + Unlock)” on page 132. The scripting language that is used for the
script in scriptPubKey is discussed in “Transaction Scripts and Script Language” on
page 131. But before we delve into those topics, we need to understand the overall
structure of transaction inputs and outputs.

Transaction serialization—outputs

When transactions are transmitted over the network or exchanged between applica-
tions, they are serialized. Serialization is the process of converting the internal repre-
sentation of a data structure into a format that can be transmitted one byte at a time,
also known as a byte stream. Serialization is most commonly used for encoding data
structures for transmission over a network or for storage in a file. The serialization
format of a transaction output is shown in Table 6-1.

Table 6-1. Transaction output serialization

Size Field Description

8 bytes (little-endian)  Amount Bitcoin value in satoshis (1078 bitcoin)

1-9 bytes (Varint) Locking-Script Size  Locking-Script length in bytes, to follow

Variable Locking-Script A script defining the conditions needed to spend the output

Most bitcoin libraries and frameworks do not store transactions internally as byte-
streams, as that would require complex parsing every time you needed to access a sin-
gle field. For convenience and readability, bitcoin libraries store transactions
internally in data structures (usually object-oriented structures).

The process of converting from the byte-stream representation of a transaction to a
library’s internal representation data structure is called deserialization or transaction
parsing. The process of converting back to a byte-stream for transmission over the
network, for hashing, or for storage on disk is called serialization. Most bitcoin libra-
ries have built-in functions for transaction serialization and deserialization.

See if you can manually decode Alice’s transaction from the serialized hexadecimal
form, finding some of the elements we saw previously. The section containing the two
outputs is highlighted in Example 6-1 to help you:

122 | Chapter 6: Transactions

www.EBookswWorld.ir



Example 6-1. Alice’s transaction, serialized and presented in hexadecimal notation

0100000001186f9f998a5aa6f048e51dd8419a14d8a0f1a8a2836dd73
4d2804fe65fa35779000000008b483045022100884d142d86652a3f47
ba4746ec719bbfbd040a570bldeccbb6498c75c4ae24cb02204b91f039
ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813
01410484ecc0d46f1918b30928fafe4ed99f16a0fb4fded735e7ade84
16ab9fed423cc5412336376789d172787ec3457eee41c04f4938de5ccl
7b4a10fa336a8d752adfffffffff0260e31600000000001976a914ab6
8025513¢c3dbd2f7b92a94e0581f5d50f654e788acd0ef800000000000
1976a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac 000QOOOO

Here are some hints:

o There are two outputs in the highlighted section, each serialized as shown in
Table 6-1.

e The value of 0.015 bitcoin is 1,500,000 satoshis. That’s 16 e3 60 in hexadecimal.

e In the serialized transaction, the value 16 e3 60 is encoded in little-endian
(least-significant-byte-first) byte order, so it looks like 60 e3 16.

o+ The scriptPubKey length is 25 bytes, which is 19 in hexadecimal.

Transaction Inputs

Transaction inputs identify (by reference) which UTXO will be consumed and pro-
vide proof of ownership through an unlocking script.

To build a transaction, a wallet selects from the UTXO it controls, UTXO with
enough value to make the requested payment. Sometimes one UTXO is enough,
other times more than one is needed. For each UTXO that will be consumed to make
this payment, the wallet creates one input pointing to the UTXO and unlocks it with
an unlocking script.

Let’s look at the components of an input in greater detail. The first part of an input is
a pointer to an UTXO by reference to the transaction hash and sequence number
where the UTXO is recorded in the blockchain. The second part is an unlocking
script, which the wallet constructs in order to satisfy the spending conditions set in
the UTXO. Most often, the unlocking script is a digital signature and public key prov-
ing ownership of the bitcoin. However, not all unlocking scripts contain signatures.
The third part is a sequence number, which will be discussed later.

Consider our example in “Transactions—Behind the Scenes” on page 118. The trans-
action inputs are an array (list) called vin:
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"vin": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",
"vout": 0,
"scriptSig" :

"3045022100884d142d86652a3f47bad746ec719bbfbd040a570bldeccbb6498c75c4ae24cb02204
bof039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813[ALL]
0484ecc0d46f1918b30928faleded99f16a0fbafded735e7ade8416ab9fed23cc5412336376789d1
72787ec3457eeed1c04f4938de5cc17b4al10fa336a8d752adf",

"sequence": 4294967295

}
]
As you can see, there is only one input in the list (because one UTXO contained suffi-
cient value to make this payment). The input contains four elements:

+ A transaction ID, referencing the transaction that contains the UTXO being
spent

+ An output index (vout), identifying which UTXO from that transaction is refer-
enced (first one is zero)

o A scriptSig, which satisfies the conditions placed on the UTXO, unlocking it
for spending

« A sequence number (to be discussed later)

In Alice’s transaction, the input points to the transaction ID:
7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de5480a65a8a999f 618

and output index 0 (i.e., the first UTXO created by that transaction). The unlocking
script is constructed by Alice’s wallet by first retrieving the referenced UTXO, exam-
ining its locking script, and then using it to build the necessary unlocking script to
satisfy it.

Looking just at the input you may have noticed that we don’t know anything about
this UTXO, other than a reference to the transaction containing it. We don’t know its
value (amount in satoshi), and we don’t know the locking script that sets the condi-
tions for spending it. To find this information, we must retrieve the referenced UTXO
by retrieving the underlying transaction. Notice that because the value of the input is
not explicitly stated, we must also use the referenced UTXO in order to calculate the
fees that will be paid in this transaction (see “Transaction Fees” on page 126).

It’s not just Alice’s wallet that needs to retrieve UTXO referenced in the inputs. Once
this transaction is broadcast to the network, every validating node will also need to
retrieve the UTXO referenced in the transaction inputs in order to validate the trans-
action.
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Transactions on their own seem incomplete because they lack context. They reference
UTZXO in their inputs but without retrieving that UTXO we cannot know the value of
the inputs or their locking conditions. When writing bitcoin software, anytime you
decode a transaction with the intent of validating it or counting the fees or checking
the unlocking script, your code will first have to retrieve the referenced UTXO from
the blockchain in order to build the context implied but not present in the UTXO
references of the inputs. For example, to calculate the amount paid in fees, you must
know the sum of the values of inputs and outputs. But without retrieving the UTXO
referenced in the inputs, you do not know their value. So a seemingly simple opera-
tion like counting fees in a single transaction in fact involves multiple steps and data
from multiple transactions.

We can use the same sequence of commands with Bitcoin Core as we used when
retrieving Alice’s transaction (getrawtransaction and decoderawtransaction).
With that we can get the UTXO referenced in the preceding input and take a look:

"vout": [
{
"value": 0.10000000,
"scriptPubKey": "OP_DUP OP_HASH160
7f9b1a7fb68d60c536c2fd8aeaas53a8f3cc025a8 OP_EQUALVERIFY OP_CHECKSIG"

}
]

We see that this UTXO has a value of 0.1 BTC and that it has a locking script (script
PubKey) that contains “OP_DUP OP_HASH160...”.

To fully understand Alice’s transaction we had to retrieve the previ-
ous transaction(s) referenced as inputs. A function that retrieves
previous transactions and unspent transaction outputs is very com-
mon and exists in almost every bitcoin library and APL

Transaction serialization—inputs

When transactions are serialized for transmission on the network, their inputs are
encoded into a byte stream as shown in Table 6-2.

Table 6-2. Transaction input serialization

Size Field Description

32 bytes Transaction Hash Pointer to the transaction containing the UTXO to be spent
4 bytes Output Index The index number of the UTXO to be spent; first one is 0
1-9 bytes (Varint)  Unlocking-Script Size  Unlocking-Script length in bytes, to follow

Variable Unlocking-Script A script that fulfills the conditions of the UTXO locking script
4 bytes Sequence Number  Used for locktime or disabled (OxFFFFFFFF)
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As with the outputs, let’s see if we can find the inputs from Alice’s transaction in the
serialized format. First, the inputs decoded:

"vin": [
{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",
"vout": 0,
"scriptSig" :

"3045022100884d142d86652a3f47bad746ec719bbfbd040a570bldeccbb6498c75c4ae24cb02204
bof039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813[ALL]
0484ecc0d46f1918b30928faleded99f16a0fbafded735e7ade8416ab9fed23cc5412336376789d1
72787ec3457eeed1c04f4938de5cc17b4al10fa336a8d752adf",

"sequence": 4294967295

}
1.
Now, let’s see if we can identify these fields in the serialized hex encoding in
Example 6-2:

Example 6-2. Alice’s transaction, serialized and presented in hexadecimal notation

0100000001186f9f998a5aa6f048e51dd8419a14d8a0f1a8a2836dd73
4d2804fe65fa35779000000008b483045022100884d142d86652a3f47
ba4746ec719bbfbd040a570bideccbb6498c75c4ae24cb02204b9f039
ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813
01410484ecc0d46f1918b30928fabe4ed99f16a0fbafde0735e7ade84
16ab9fe423cc5412336376789d172787ec3457eee41c04f4938de5ccl
7b4a10fa336a8d752adfffffffff0260e31600000000001976a914ab6
8025513c3dbd2f7b92a94e0581f5d50f654e788acd0ef800000000000
1976a9147f9b1a7fb68d60c536c2fd8aecaas3a8f3cc025a888ac00000 00O

Hints:
o The transaction ID is serialized in reversed byte order, so it starts with (hex) 18
and ends with 79
o The output index is a 4-byte group of zeros, easy to identify
o The length of the scriptSig is 139 bytes, or 8b in hex

o The sequence number is set to FFFFFFFF, again easy to identify

Transaction Fees

Most transactions include transaction fees, which compensate the bitcoin miners for
securing the network. Fees also serve as a security mechanism themselves, by making
it economically infeasible for attackers to flood the network with transactions. Min-
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ing and the fees and rewards collected by miners are discussed in more detail in
Chapter 10.

This section examines how transaction fees are included in a typical transaction.
Most wallets calculate and include transaction fees automatically. However, if you are
constructing transactions programmatically, or using a command-line interface, you
must manually account for and include these fees.

Transaction fees serve as an incentive to include (mine) a transaction into the next
block and also as a disincentive against abuse of the system by imposing a small cost
on every transaction. Transaction fees are collected by the miner who mines the block
that records the transaction on the blockchain.

Transaction fees are calculated based on the size of the transaction in kilobytes, not
the value of the transaction in bitcoin. Overall, transaction fees are set based on mar-
ket forces within the bitcoin network. Miners prioritize transactions based on many
different criteria, including fees, and might even process transactions for free under
certain circumstances. Transaction fees affect the processing priority, meaning that a
transaction with sufficient fees is likely to be included in the next block mined,
whereas a transaction with insufficient or no fees might be delayed, processed on a
best-effort basis after a few blocks, or not processed at all. Transaction fees are not
mandatory, and transactions without fees might be processed eventually; however,
including transaction fees encourages priority processing.

Over time, the way transaction fees are calculated and the effect they have on transac-
tion prioritization has evolved. At first, transaction fees were fixed and constant
across the network. Gradually, the fee structure relaxed and may be influenced by
market forces, based on network capacity and transaction volume. Since at least the
beginning of 2016, capacity limits in bitcoin have created competition between trans-
actions, resulting in higher fees and effectively making free transactions a thing of the
past. Zero fee or very low fee transactions rarely get mined and sometimes will not
even be propagated across the network.

In Bitcoin Core, fee relay policies are set by the minrelaytxfee option. The current
default minrelaytxfee is 0.00001 bitcoin or a hundredth of a millibitcoin per kilo-
byte. Therefore, by default, transactions with a fee less than 0.0001 bitcoin are treated
as free and are only relayed if there is space in the mempool; otherwise, they are
dropped. Bitcoin nodes can override the default fee relay policy by adjusting the value
of minrelaytxfee.

Any bitcoin service that creates transactions, including wallets, exchanges, retail
applications, etc., must implement dynamic fees. Dynamic fees can be implemented
through a third-party fee estimation service or with a built-in fee estimation algo-
rithm. If you're unsure, begin with a third-party service and as you gain experience
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design and implement your own algorithm if you wish to remove the third-party
dependency.

Fee estimation algorithms calculate the appropriate fee, based on capacity and the
fees offered by “competing” transactions. These algorithms range from simplistic
(average or median fee in the last block) to sophisticated (statistical analysis). They
estimate the necessary fee (in satoshis per byte) that will give a transaction a high
probability of being selected and included within a certain number of blocks. Most
services offer users the option of choosing high, medium, or low priority fees. High
priority means users pay higher fees but the transaction is likely to be included in the
next block. Medium and low priority means users pay lower transaction fees but the
transactions may take much longer to confirm.

Many wallet applications use third-party services for fee calculations. One popular
service is http://bitcoinfees.21.co, which provides an API and a visual chart showing
the fee in satoshi/byte for different priorities.

Static fees are no longer viable on the bitcoin network. Wallets that
set static fees will produce a poor user experience as transactions
will often get “stuck” and remain unconfirmed. Users who don't
understand bitcoin transactions and fees are dismayed by “stuck”
transactions because they think they’ve lost their money.

The chart in Figure 6-2 shows the real-time estimate of fees in 10 satoshi/byte incre-
ments and the expected confirmation time (in minutes and number of blocks) for
transactions with fees in each range. For each fee range (e.g., 61-70 satoshi/byte), two
horizontal bars show the number of unconfirmed transactions (1405) and total num-
ber of transactions in the past 24 hours (102,975), with fees in that range. Based on
the graph, the recommended high-priority fee at this time was 80 satoshi/byte, a fee
likely to result in the transaction being mined in the very next block (zero block
delay). For perspective, the median transaction size is 226 bytes, so the recommended
fee for a transaction size would be 18,080 satoshis (0.00018080 BTC).

The fee estimation data can be retrieved via a simple HTTP REST API, at https://
bitcoinfees.21.co/api/v1/fees/recommended. For example, on the command line using
the curl command:

$ curl https://bitcoinfees.21.co/api/v1l/fees/recommended

{"fastestFee":80,"halfHourFee":80, "hourFee":60}

The API returns a JSON object with the current fee estimate for fastest confirmation
(fastestFee), confirmation within three blocks (halfHourFee) and six blocks (hour
Fee), in satoshi per byte.
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Figure 6-2. Fee estimation service bitcoinfees.21.co

Adding Fees to Transactions

The data structure of transactions does not have a field for fees. Instead, fees are
implied as the difference between the sum of inputs and the sum of outputs. Any
excess amount that remains after all outputs have been deducted from all inputs is the
fee that is collected by the miners:

Fees = Sum(Inputs) - Sum(Outputs)

This is a somewhat confusing element of transactions and an important point to
understand, because if you are constructing your own transactions you must ensure
you do not inadvertently include a very large fee by underspending the inputs. That
means that you must account for all inputs, if necessary by creating change, or you
will end up giving the miners a very big tip!

For example, if you consume a 20-bitcoin UTXO to make a 1-bitcoin payment, you
must include a 19-bitcoin change output back to your wallet. Otherwise, the 19-
bitcoin “leftover” will be counted as a transaction fee and will be collected by the
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miner who mines your transaction in a block. Although you will receive priority pro-
cessing and make a miner very happy, this is probably not what you intended.

If you forget to add a change output in a manually constructed
transaction, you will be paying the change as a transaction fee.
s “Keep the change!” might not be what you intended.

Let’s see how this works in practice, by looking at Alice’s coffee purchase again. Alice
wants to spend 0.015 bitcoin to pay for coffee. To ensure this transaction is processed
promptly, she will want to include a transaction fee, say 0.001. That will mean that the
total cost of the transaction will be 0.016. Her wallet must therefore source a set of
UTXO that adds up to 0.016 bitcoin or more and, if necessary, create change. Let’s say
her wallet has a 0.2-bitcoin UTXO available. It will therefore need to consume this
UTXO, create one output to Bob’s Cafe for 0.015, and a second output with 0.184 bit-
coin in change back to her own wallet, leaving 0.001 bitcoin unallocated, as an
implicit fee for the transaction.

Now let’s look at a different scenario. Eugenia, our children’s charity director in the
Philippines, has completed a fundraiser to purchase schoolbooks for the children. She
received several thousand small donations from people all around the world, totaling
50 bitcoin, so her wallet is full of very small payments (UTXO). Now she wants to
purchase hundreds of schoolbooks from a local publisher, paying in bitcoin.

As Eugenia’s wallet application tries to construct a single larger payment transaction,
it must source from the available UTXO set, which is composed of many smaller
amounts. That means that the resulting transaction will source from more than a
hundred small-value UTXO as inputs and only one output, paying the book pub-
lisher. A transaction with that many inputs will be larger than one kilobyte, perhaps a
kilobyte or several kilobytes in size. As a result, it will require a much higher fee than
the median-sized transaction.

Eugenia’s wallet application will calculate the appropriate fee by measuring the size of
the transaction and multiplying that by the per-kilobyte fee. Many wallets will over-
pay fees for larger transactions to ensure the transaction is processed promptly. The
higher fee is not because Eugenia is spending more money, but because her transac-
tion is more complex and larger in size—the fee is independent of the transaction’s
bitcoin value.
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Transaction Scripts and Script Language

The bitcoin transaction script language, called Script, is a Forth-like reverse-polish
notation stack-based execution language. If that sounds like gibberish, you probably
haven't studied 1960s programming languages, but that's ok—we will explain it all in
this chapter. Both the locking script placed on a UTXO and the unlocking script are
written in this scripting language. When a transaction is validated, the unlocking
script in each input is executed alongside the corresponding locking script to see if it
satisfies the spending condition.

Script is a very simple language that was designed to be limited in scope and exe-
cutable on a range of hardware, perhaps as simple as an embedded device. It requires
minimal processing and cannot do many of the fancy things modern programming
languages can do. For its use in validating programmable money;, this is a deliberate
security feature.

Today, most transactions processed through the bitcoin network have the form “Pay-
ment to Bob’s bitcoin address” and are based on a script called a Pay-to-Public-Key-
Hash script. However, bitcoin transactions are not limited to the “Payment to Bob’s
bitcoin address” script. In fact, locking scripts can be written to express a vast variety
of complex conditions. In order to understand these more complex scripts, we must
first understand the basics of transaction scripts and script language.

In this section, we will demonstrate the basic components of the bitcoin transaction
scripting language and show how it can be used to express simple conditions for
spending and how those conditions can be satisfied by unlocking scripts.

Bitcoin transaction validation is not based on a static pattern, but
instead is achieved through the execution of a scripting language.
This language allows for a nearly infinite variety of conditions to be
expressed. This is how bitcoin gets the power of “programmable
money.

Turing Incompleteness

The bitcoin transaction script language contains many operators, but is deliberately
limited in one important way—there are no loops or complex flow control capabili-
ties other than conditional flow control. This ensures that the language is not Turing
Complete, meaning that scripts have limited complexity and predictable execution
times. Script is not a general-purpose language. These limitations ensure that the lan-
guage cannot be used to create an infinite loop or other form of “logic bomb” that
could be embedded in a transaction in a way that causes a denial-of-service attack
against the bitcoin network. Remember, every transaction is validated by every full
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node on the bitcoin network. A limited language prevents the transaction validation
mechanism from being used as a vulnerability.

Stateless Verification

The bitcoin transaction script language is stateless, in that there is no state prior to
execution of the script, or state saved after execution of the script. Therefore, all the
information needed to execute a script is contained within the script. A script will
predictably execute the same way on any system. If your system verifies a script, you
can be sure that every other system in the bitcoin network will also verify the script,
meaning that a valid transaction is valid for everyone and everyone knows this. This
predictability of outcomes is an essential benefit of the bitcoin system.

Script Construction (Lock + Unlock)

Bitcoin’s transaction validation engine relies on two types of scripts to validate trans-
actions: a locking script and an unlocking script.

A locking script is a spending condition placed on an output: it specifies the condi-
tions that must be met to spend the output in the future. Historically, the locking
script was called a scriptPubKey, because it usually contained a public key or bitcoin
address (public key hash). In this book we refer to it as a “locking script” to acknowl-
edge the much broader range of possibilities of this scripting technology. In most bit-
coin applications, what we refer to as a locking script will appear in the source code as
scriptPubKey. You will also see the locking script referred to as a witness script (see
Appendix D) or more generally as a cryptographic puzzle. These terms all mean the
same thing, at different levels of abstraction.

An unlocking script is a script that “solves,” or satisfies, the conditions placed on an
output by a locking script and allows the output to be spent. Unlocking scripts are
part of every transaction input. Most of the time they contain a digital signature pro-
duced by the user’s wallet from his or her private key. Historically, the unlocking
script was called scriptSig, because it usually contained a digital signature. In most bit-
coin applications, the source code refers to the unlocking script as scriptSig. You
will also see the unlocking script referred to as a witness (see Appendix D). In this
book, we refer to it as an “unlocking script” to acknowledge the much broader range
of locking script requirements, because not all unlocking scripts must contain signa-
tures.

Every bitcoin validating node will validate transactions by executing the locking and
unlocking scripts together. Each input contains an unlocking script and refers to a
previously existing UTXO. The validation software will copy the unlocking script,
retrieve the UTXO referenced by the input, and copy the locking script from that
UTZXO. The unlocking and locking script are then executed in sequence. The input is
valid if the unlocking script satisfies the locking script conditions (see “Separate exe-
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cution of unlocking and locking scripts” on page 136). All the inputs are validated
independently, as part of the overall validation of the transaction.

Note that the UTXO is permanently recorded in the blockchain, and therefore is
invariable and is unaffected by failed attempts to spend it by reference in a new trans-
action. Only a valid transaction that correctly satisfies the conditions of the output
results in the output being considered as “spent” and removed from the set of
unspent transaction outputs (UTXO set).

Figure 6-3 is an example of the unlocking and locking scripts for the most common
type of bitcoin transaction (a payment to a public key hash), showing the combined
script resulting from the concatenation of the unlocking and locking scripts prior to
script validation.

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
Unlock Script Lock Script (scriptPubKey) is found in a transaction output and is the
(scriptSig) is provided encumbrance that must be fulfilled to spend the output
by the user to resolve
the encumbrance

Figure 6-3. Combining scriptSig and scriptPubKey to evaluate a transaction script

The script execution stack

Bitcoin’s scripting language is called a stack-based language because it uses a data
structure called a stack. A stack is a very simple data structure that can be visualized
as a stack of cards. A stack allows two operations: push and pop. Push adds an item
on top of the stack. Pop removes the top item from the stack. Operations on a stack
can only act on the topmost item on the stack. A stack data structure is also called a
Last-In-First-Out, or “LIFO” queue.

The scripting language executes the script by processing each item from left to right.
Numbers (data constants) are pushed onto the stack. Operators push or pop one or
more parameters from the stack, act on them, and might push a result onto the stack.
For example, OP_ADD will pop two items from the stack, add them, and push the
resulting sum onto the stack.

Conditional operators evaluate a condition, producing a boolean result of TRUE or
FALSE. For example, OP_EQUAL pops two items from the stack and pushes TRUE
(TRUE is represented by the number 1) if they are equal or FALSE (represented by
zero) if they are not equal. Bitcoin transaction scripts usually contain a conditional
operator, so that they can produce the TRUE result that signifies a valid transaction.
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A simple script
Now let’s apply what we've learned about scripts and stacks to some simple examples.

In Figure 6-4, the script 2 3 OP_ADD 5 OP_EQUAL demonstrates the arithmetic addi-
tion operator OP_ADD, adding two numbers and putting the result on the stack, fol-
lowed by the conditional operator OP_EQUAL, which checks that the resulting sum is
equal to 5. For brevity, the OP_ prefix is omitted in the step-by-step example. For
more details on the available script operators and functions, see Appendix B.

Although most locking scripts refer to a public key hash (essentially, a bitcoin
address), thereby requiring proof of ownership to spend the funds, the script does not
have to be that complex. Any combination of locking and unlocking scripts that
results in a TRUE value is valid. The simple arithmetic we used as an example of the
scripting language is also a valid locking script that can be used to lock a transaction
output.

Use part of the arithmetic example script as the locking script:
3 OP_ADD 5 OP_EQUAL

which can be satisfied by a transaction containing an input with the unlocking script:
2

The validation software combines the locking and unlocking scripts and the resulting
script is:

2 3 OP_ADD 5 OP_EQUAL

As we saw in the step-by-step example in Figure 6-4, when this script is executed, the
result is OP_TRUE, making the transaction valid. Not only is this a valid transaction
output locking script, but the resulting UTXO could be spent by anyone with the
arithmetic skills to know that the number 2 satisfies the script.

Transactions are valid if the top result on the stack is TRUE (noted
as {06x01}), any other nonzero value, or if the stack is empty after
script execution. Transactions are invalid if the top value on the
stack is FALSE (a zero-length empty value, noted as {}) or if script
execution is halted explicitly by an operator, such as OP_VERIFY,
OP_RETURN, or a conditional terminator such as OP_ENDIF. See
Appendix B for details.
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STACK

STACK

STACK

STACK

STACK

TRUE

SCRIPT

2 3 ADD 5 EQUAL

EXECUTION
POINTER

Execution starts from the left
Constant value "2" is pushed to the top of the stack

SCRIPT

3 ADD 5 EQUAL

EXECUTION
POINTER

Execution continues, moving to the right with each step
Constant value “3" is pushed to the top of the stack

SCRIPT

ADD 5 EQUAL

EXECUTION
POINTER
Operator ADD pops the top two items out of the stack and adds them together (3 add 2);
then Operator ADD pushes the result (5) to the top of the stack

SCRIPT

5 EQUAL

EXECUTION
POINTER

Constant value "5" is pushed to the top of the stack

SCRIPT

EQUAL

]

EXECUTION
POINTER
Operator EQUAL pops the top two items out of the stack and compares the values (5 and 5)
and if they are equal, EQUAL pushes TRUE (TRUE = 1) to the top of the stack

Figure 6-4. Bitcoin’s script validation doing simple math
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The following is a slightly more complex script, which calculates 2 + 7-3 + 1.
Notice that when the script contains several operators in a row, the stack allows the
results of one operator to be acted upon by the next operator:

2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

Try validating the preceding script yourself using pencil and paper. When the script
execution ends, you should be left with the value TRUE on the stack.

Separate execution of unlocking and locking scripts

In the original bitcoin client, the unlocking and locking scripts were concatenated
and executed in sequence. For security reasons, this was changed in 2010, because of
a vulnerability that allowed a malformed unlocking script to push data onto the stack
and corrupt the locking script. In the current implementation, the scripts are exe-
cuted separately with the stack transferred between the two executions, as described
next.

First, the unlocking script is executed, using the stack execution engine. If the
unlocking script is executed without errors (e.g., it has no “dangling” operators left
over), the main stack (not the alternate stack) is copied and the locking script is exe-
cuted. If the result of executing the locking script with the stack data copied from the
unlocking script is “TRUE,” the unlocking script has succeeded in resolving the con-
ditions imposed by the locking script and, therefore, the input is a valid authorization
to spend the UTXO. If any result other than “TRUE” remains after execution of the
combined script, the input is invalid because it has failed to satisfy the spending con-
ditions placed on the UTXO.

Pay-to-Public-Key-Hash (P2PKH)

The vast majority of transactions processed on the bitcoin network spend outputs
locked with a Pay-to-Public-Key-Hash or “P2PKH” script. These outputs contain a
locking script that locks the output to a public key hash, more commonly known as a
bitcoin address. An output locked by a P2PKH script can be unlocked (spent) by pre-
senting a public key and a digital signature created by the corresponding private key
(see “Digital Signatures (ECDSA)” on page 138).

For example, let’s look at Alice’s payment to Bobs Cafe again. Alice made a payment
of 0.015 bitcoin to the cafe’s bitcoin address. That transaction output would have a
locking script of the form:

OP_DUP OP_HASH160 <Cafe Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG

The Cafe Public Key Hash is equivalent to the bitcoin address of the cafe, without
the Base58Check encoding. Most applications would show the public key hash in hex-
adecimal encoding and not the familiar bitcoin address Base58Check format that
begins with a “1”
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The preceding locking script can be satisfied with an unlocking script of the form:
<Cafe Signature> <Cafe Public Key>
The two scripts together would form the following combined validation script:

<Cafe Signature> <Cafe Public Key> OP_DUP OP_HASH160

<Cafe Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG
When executed, this combined script will evaluate to TRUE if, and only if, the
unlocking script matches the conditions set by the locking script. In other words, the
result will be TRUE if the unlocking script has a valid signature from the cafe’s private
key that corresponds to the public key hash set as an encumbrance.

Figures 6-5 and 6-6 show (in two parts) a step-by-step execution of the combined
script, which will prove this is a valid transaction.

SCRIPT
<sig> <PubK> DUP HASH168 <PubKHash> EQUALVERIFY CHECKSIG
EXECUTION
g POINTER
= <sigs Execution starts
& Value <sig> is pushed to the top of the stack
SCRIPT
<PubK> DUP HASH16@ <PubKHash> EQUALVERIFY CHECKSIG
<Pubk> EXECUTION
= POINTER
= <sig> Execution continues, moving to the ri?ht with each step
n Value <PubK> is pushed to the top of the stack, on top of <sig>
SCRIPT
DUP \insH16@ <PubKHash> EQUALVERIFY CHECKSIG
<PubK >
<PubK> EXECUTION
£ POINTER
2 <sig> DUP operator duplicates the top item in the stack,
& the resulting value is pushed to the top of the stack

Figure 6-5. Evaluating a script for a P2PKH transaction (part 1 of 2)
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<PubKHash>
<PubKk>

<sig>

STACK

<PubKHash>
<PubKHash>
<Pubk>

<sig>

STACK

<PubKk>

<sig>

STACK

STACK

TRUE

SCRIPT

HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER
HASH160 operator hashes the top item in the stack with RIPEMD160(SHA256(PubK))
the resulting value (PubKHash) is pushed to the top of the stack

SCRIPT

<PubKHash> EQUALVERIFY CHECKSIG

EXECUTION
POINTER
The value PubKHash from the script is pushed on top of the value PubKHash calculated previously
from the HASH160 of the PubK

SCRIPT

EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER
The EQUALVERIFY operator compares the PubKHash encumbering the transaction with the PubKHash
calculated from the user's PubK. If they match, both are removed and execution continues

SCRIPT

CHECKSIG

1

EXECUTION
POINTER
The CHECKSIG operator checks that the signature <sig> matches the public key <PubK> and pushes
TRUE to the top of the stack if true.

Figure 6-6. Evaluating a script for a P2PKH transaction (part 2 of 2)

Digital Signatures (ECDSA)

So far, we have not delved into any detail about “digital signatures” In this section we
look at how digital signatures work and how they can present proof of ownership of a
private key without revealing that private key.

The digital signature algorithm used in bitcoin is the Elliptic Curve Digital Signature
Algorithm, or ECDSA. ECDSA is the algorithm used for digital signatures based on
elliptic curve private/public key pairs, as described in “Elliptic Curve Cryptography
Explained” on page 60. ECDSA is used by the script functions OP_CHECKSIG,
OP_CHECKSIGVERIFY, OP_CHECKMULTISIG, and OP_CHECKMULTISIGVERIFY. Any time
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you see those in a locking script, the unlocking script must contain an ECDSA signa-
ture.

A digital signature serves three purposes in bitcoin (see the following sidebar). First,
the signature proves that the owner of the private key, who is by implication the
owner of the funds, has authorized the spending of those funds. Secondly, the proof
of authorization is undeniable (nonrepudiation). Thirdly, the signature proves that
the transaction (or specific parts of the transaction) have not and cannot be modified
by anyone after it has been signed.

Note that each transaction input is signed independently. This is critical, as neither
the signatures nor the inputs have to belong to or be applied by the same “owners.” In
fact, a specific transaction scheme called “CoinJoin” uses this fact to create multi-
party transactions for privacy.

Each transaction input and any signature it may contain is com-
pletely independent of any other input or signature. Multiple par-
ties can collaborate to construct transactions and sign only one
input each.

Wikipedia’s Definition of a “Digital Signature”

A digital signature is a mathematical scheme for demonstrating the authenticity of a
digital message or documents. A valid digital signature gives a recipient reason to
believe that the message was created by a known sender (authentication), that the
sender cannot deny having sent the message (nonrepudiation), and that the message
was not altered in transit (integrity).

Source: https://en.wikipedia.org/wiki/Digital_signature

How Digital Signatures Work

A digital signature is a mathematical scheme that consists of two parts. The first part is
an algorithm for creating a signature, using a private key (the signing key), from a
message (the transaction). The second part is an algorithm that allows anyone to ver-
ify the signature, given also the message and a public key.

Creating a digital signature

In bitcoin’s implementation of the ECDSA algorithm, the “message” being signed is
the transaction, or more accurately a hash of a specific subset of the data in the trans-
action (see “Signature Hash Types (SIGHASH)” on page 141). The signing key is the
user’s private key. The result is the signature:
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Sig = F; (F},n(m), dA)

sig
where:
o dA is the signing private key
« m is the transaction (or parts of it)
o F,, is the hashing function
o F,, is the signing algorithm

o Sig is the resulting signature

More details on the mathematics of ECDSA can be found in “ECDSA Math” on page
143.

The function F;, produces a signature Sig that is composed of two values, commonly
referred to asRand S:

Sig = (R, S)

Now that the two values R and S have been calculated, they are serialized into a byte-
stream using an international standard encoding scheme called the Distinguished
Encoding Rules, or DER.

Serialization of signatures (DER)

Lets look at the transaction Alice created again. In the transaction input there is an
unlocking script that contains the following DER-encoded signature from Alice’s wal-
let:

3045022100884d142d86652a3f47bad746ec719bbfbd040a570bldeccbb6498c75c4ae24cb02204b
9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e381301

That signature is a serialized byte-stream of the R and S values produced by Alice’s
wallet to prove she owns the private key authorized to spend that output. The seriali-
zation format consists of nine elements as follows:

» 0x30—indicating the start of a DER sequence
o 0x45—the length of the sequence (69 bytes)

o 0x02—an integer value follows

 0x21—the length of the integer (33 bytes)

¢ R—
00884d142d86652a3f47bad746ec719bbfbd040a570b1deccbb6498c75c4ae24ch

o 0x02—another integer follows

+ 0x20—the length of the integer (32 bytes)
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e S—4b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813
o A suffix (0x01) indicating the type of hash used (SIGHASH_ALL)

See if you can decode Alice’s serialized (DER-encoded) signature using this list. The
important numbers are R and S; the rest of the data is part of the DER encoding
scheme.

Verifying the Signature

To verify the signature, one must have the signature (R and S), the serialized transac-
tion, and the public key (that corresponds to the private key used to create the signa-
ture). Essentially, verification of a signature means “Only the owner of the private key
that generated this public key could have produced this signature on this transaction.”

The signature verification algorithm takes the message (a hash of the transaction or
parts of it), the signer’s public key and the signature (R and S values), and returns
TRUE if the signature is valid for this message and public key.

Signature Hash Types (SIGHASH)

Digital signatures are applied to messages, which in the case of bitcoin, are the trans-
actions themselves. The signature implies a commitment by the signer to specific
transaction data. In the simplest form, the signature applies to the entire transaction,
thereby committing all the inputs, outputs, and other transaction fields. However, a
signature can commit to only a subset of the data in a transaction, which is useful for
a number of scenarios as we will see in this section.

Bitcoin signatures have a way of indicating which part of a transaction’s data is
included in the hash signed by the private key using a SIGHASH flag. The SIGHASH flag
is a single byte that is appended to the signature. Every signature has a SIGHASH flag
and the flag can be different from to input to input. A transaction with three signed
inputs may have three signatures with different SIGHASH flags, each signature signing
(committing) different parts of the transaction.

Remember, each input may contain a signature in its unlocking script. As a result, a
transaction that contains several inputs may have signatures with different SIGHASH
flags that commit different parts of the transaction in each of the inputs. Note also
that bitcoin transactions may contain inputs from different “owners,” who may sign
only one input in a partially constructed (and invalid) transaction, collaborating with
others to gather all the necessary signatures to make a valid transaction. Many of the
SIGHASH flag types only make sense if you think of multiple participants collaborating
outside the bitcoin network and updating a partially signed transaction.
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There are three SIGHASH flags: ALL, NONE, and SINGLE, as shown in Table 6-3.

Table 6-3. SIGHASH types and their meanings

SIGHASHflag Value Description

ALL 0x01  Signature applies to all inputs and outputs

NONE 0x02  Signature applies to all inputs, none of the outputs

SINGLE 0x03  Signature applies to all inputs but only the one output with the same index number as the signed
input

In addition, there is a modifier flag STGHASH_ANYONECANPAY, which can be combined
with each of the preceding flags. When ANYONECANPAY is set, only one input is signed,
leaving the rest (and their sequence numbers) open for modification. The ANYONECAN
PAY has the value 0x80 and is applied by bitwise OR, resulting in the combined flags
as shown in Table 6-4.

Table 6-4. SIGHASH types with modifiers and their meanings

SIGHASH flag Value Description

ALL|ANYONECANPAY 0x81  Signature applies to one inputs and all outputs
NONEJANYONECANPAY ~ 0x82  Signature applies to one inputs, none of the outputs
SINGLE|ANYONECANPAY  0x83  Signature applies to one input and the output with the same index number

The way SIGHASH flags are applied during signing and verification is that a copy of the
transaction is made and certain fields within are truncated (set to zero length and
emptied). The resulting transaction is serialized. The SIGHASH flag is added to the end
of the serialized transaction and the result is hashed. The hash itself is the “message”
that is signed. Depending on which SIGHASH flag is used, different parts of the trans-
action are truncated. The resulting hash depends on different subsets of the data in
the transaction. By including the SIGHASH as the last step before hashing, the signa-
ture commits the SIGHASH type as well, so it can’t be changed (e.g., by a miner).

All SIGHASH types sign the transaction nLocktime field (see “Trans-
action Locktime (nLocktime)” on page 157). In addition, the SIGH
ASH type itself is appended to the transaction before it is signed, so
that it can’t be modified once signed.

In the example of Alice’s transaction (see the list in “Serialization of signatures
(DER)” on page 140), we saw that the last part of the DER-encoded signature was 01,
which is the SIGHASH_ALL flag. This locks the transaction data, so Alice’s signature is
committing the state of all inputs and outputs. This is the most common signature
form.
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Let’s look at some of the other SIGHASH types and how they can be used in practice:

ALL | ANYONECANPAY

This construction can be used to make a “crowdfunding’-style transaction.
Someone attempting to raise funds can construct a transaction with a single out-
put. The single output pays the “goal” amount to the fundraiser. Such a transac-
tion is obviously not valid, as it has no inputs. However, others can now amend it
by adding an input of their own, as a donation. They sign their own input with
ALL | ANYONECANPAY. Unless enough inputs are gathered to reach the value of the
output, the transaction is invalid. Each donation is a “pledge,” which cannot be
collected by the fundraiser until the entire goal amount is raised.

NONE
This construction can be used to create a “bearer check” or “blank check” of a
specific amount. It commits to the input, but allows the output locking script to
be changed. Anyone can write their own bitcoin address into the output locking
script and redeem the transaction. However, the output value itself is locked by
the signature.

NONE | ANYONECANPAY
This construction can be used to build a “dust collector” Users who have tiny
UTXO in their wallets can’t spend these without the cost in fees exceeding the
value of the dust. With this type of signature, the dust UTXO can be donated for
anyone to aggregate and spend whenever they want.

There are some proposals to modify or expand the SIGHASH system. One such pro-
posal is Bitmask Sighash Modes by Blockstream’s Glenn Willen, as part of the Ele-
ments project. This aims to create a flexible replacement for SIGHASH types that allows
“arbitrary, miner-rewritable bitmasks of inputs and outputs” that can express “more
complex contractual precommitment schemes, such as signed offers with change in a
distributed asset exchange”

You will not see SIGHASH flags presented as an option in a user’s
wallet application. With few exceptions, wallets construct P2PKH
scripts and sign with SIGHASH_ALL flags. To use a different STGHASH
flag, you would have to write software to construct and sign trans-
actions. More importantly, SIGHASH flags can be used by special-
purpose bitcoin applications that enable novel uses.

ECDSA Math

As mentioned previously, signatures are created by a mathematical function F;, that
produces a signature composed of two values R and S. In this section we look at the
function F;, in more detail.
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The signature algorithm first generates an ephemeral (temporary) private public key
pair. This temporary key pair is used in the calculation of the R and S values, after a
transformation involving the signing private key and the transaction hash.

The temporary key pair is based on a random number k, which is used as the tempo-
rary private key. From k, we generate the corresponding temporary public key P (cal-
culated as P = k*G, in the same way bitcoin public keys are derived; see “Public Keys”
on page 60). The R value of the digital signature is then the x coordinate of the
ephemeral public key P.

From there, the algorithm calculates the S value of the signature, such that:
S=k' (Hash(m) + dA* R) mod p

where:

« kis the ephemeral private key

« Ris the x coordinate of the ephemeral public key
o dA is the signing private key

« m is the transaction data

o p is the prime order of the elliptic curve

Verification is the inverse of the signature generation function, using the R, S values
and the public key to calculate a value P, which is a point on the elliptic curve (the
ephemeral public key used in signature creation):

P=S'"*Hash(m)* G +S'*R* Qa

where:

o Rand S are the signature values
 Qais Alice’s public key
« m is the transaction data that was signed

o G is the elliptic curve generator point

If the x coordinate of the calculated point P is equal to R, then the verifier can con-
clude that the signature is valid.

Note that in verifying the signature, the private key is neither known nor revealed.
The math of ECDSA is complex and difficult to understand. There

are a number of great guides online that might help. Search for
“ECDSA explained” or try this one: http://bit.ly/2rOHhGB.
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The Importance of Randomness in Signatures

As we saw in “ECDSA Math” on page 143, the signature generation algorithm uses a
random key k, as the basis for an ephemeral private/public key pair. The value of k is
not important, as long as it is random. If the same value k is used to produce two sig-
natures on different messages (transactions), then the signing private key can be cal-
culated by anyone. Reuse of the same value for k in a signature algorithm leads to
exposure of the private key!

If the same value k is used in the signing algorithm on two different
transactions, the private key can be calculated and exposed to the
. world!

This is not just a theoretical possibility. We have seen this issue lead to exposure of
private keys in a few different implementations of transaction-signing algorithms in
bitcoin. People have had funds stolen because of inadvertent reuse of a k value. The
most common reason for reuse of a k value is an improperly initialized random-
number generator.

To avoid this vulnerability, the industry best practice is to not generate k with a
random-number generator seeded with entropy, but instead to use a deterministic-
random process seeded with the transaction data itself. This ensures that each trans-
action produces a different k. The industry-standard algorithm for deterministic
initialization of k is defined in RFC 6979, published by the Internet Engineering Task
Force.

If you are implementing an algorithm to sign transactions in bitcoin, you must use
RFC 6979 or a similarly deterministic-random algorithm to ensure you generate a
different k for each transaction.

Bitcoin Addresses, Balances, and Other Abstractions

We began this chapter with the discovery that transactions look very different
“behind the scenes” than how they are presented in wallets, blockchain explorers, and
other user-facing applications. Many of the simplistic and familiar concepts from the
earlier chapters, such as bitcoin addresses and balances, seem to be absent from the
transaction structure. We saw that transactions don’t contain bitcoin addresses, per
se, but instead operate through scripts that lock and unlock discrete values of bitcoin.
Balances are not present anywhere in this system and yet every wallet application
prominently displays the balance of the user’s wallet.
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Now that we have explored what is actually included in a bitcoin transaction, we can
examine how the higher-level abstractions are derived from the seemingly primitive
components of the transaction.

Let’s look again at how Alice’s transaction was presented on a popular block explorer
(Figure 6-7).

Transaction

06270520612891212703066a912ea57 T2ceddadcaasasibdBas 728603450212

1GdK9UzpHBzqzX2A9JFP3DidweBwagmoQA

- (Unspent) 0.015 BTC
1Cdid9KFAaatwezBwBtQowXYCpvKBh7FK (0.1 BTC - Output) # ) o ) o °_

1CdidOKFAaatweczBwBtQewXYCpvKBh7FK -

(Unspent) 0.0845 BTC

97 Confirmations | 0.0995 BTC .

Summary Inputs and Outputs
Size 258 (bytes) Total Input 0.1 BTC
Received Time 2013-12-27 23:03:05 Total Output 0.0995 BTC
Included In 277316 (2013-12-27 23:11:54 +9 Fees 0.0005 BTC
Blocks minutes)

Estimated BTC Transacted 0.015 BTC

Figure 6-7. Alice’s transaction to Bob’s Cafe

On the left side of the transaction, the blockchain explorer shows Alice’s bitcoin
address as the “sender” In fact, this information is not in the transaction itself. When
the blockchain explorer retrieved the transaction it also retrieved the previous trans-
action referenced in the input and extracted the first output from that older transac-
tion. Within that output is a locking script that locks the UTXO to Alice’s public key
hash (a P2PKH script). The blockchain explorer extracted the public key hash and
encoded it using Base58Check encoding to produce and display the bitcoin address
that represents that public key.

Similarly, on the right side, the blockchain explorer shows the two outputs; the first to
Bob’s bitcoin address and the second to Alice’s bitcoin address (as change). Once
again, to create these bitcoin addresses, the blockchain explorer extracted the locking
script from each output, recognized it as a P2PKH script, and extracted the public-
key-hash from within. Finally, the blockchain explorer reencoded that public key
hash with Base58Check to produce and display the bitcoin addresses.

If you were to click on Bob’s bitcoin address, the blockchain explorer would show you
the view in Figure 6-8.
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Bitcoin Address

Summary Transactions

Address 1GdK9UZzpHBzqzX2A3IFP3Di4weBwagmoQA No. Transactions 25 din
Hash 160 ab68025513c3dbd2{7b32a94e0581f5d50f654e7 Total Received 0.17579525 BTC dif
Tools Taint Analysis - Related Tags - Unspent Outputs Final Balance 0.17579525 BTC din

Figure 6-8. The balance of Bob’s bitcoin address

The blockchain explorer displays the balance of Bob’s bitcoin address. But nowhere in
the bitcoin system is there a concept of a “balance” Rather, the values displayed here
are constructed by the blockchain explorer as follows.

To construct the “Total Received” amount, the blockchain explorer first will decode
the Base58Check encoding of the bitcoin address to retrieve the 160-bit hash of Bob’s
public key that is encoded within the address. Then, the blockchain explorer will
search through the database of transactions, looking for outputs with P2PKH locking
scripts that contain Bob’s public key hash. By summing up the value of all the outputs,
the blockchain explorer can produce the total value received.

Constructing the current balance (displayed as “Final Balance”) requires a bit more
work. The blockchain explorer keeps a separate database of the outputs that are cur-
rently unspent, the UTXO set. To maintain this database, the blockchain explorer
must monitor the bitcoin network, add newly created UTXO, and remove spent
UTXO, in real time, as they appear in unconfirmed transactions. This is a compli-
cated process that depends on keeping track of transactions as they propagate, as well
as maintaining consensus with the bitcoin network to ensure that the correct chain is
followed. Sometimes, the blockchain explorer goes out of sync and its perspective of
the UTXO set is incomplete or incorrect.

From the UTXO set, the blockchain explorer sums up the value of all unspent out-
puts referencing Bob’s public key hash and produces the “Final Balance” number
shown to the user.

In order to produce this one image, with these two “balances,” the blockchain
explorer has to index and search through dozens, hundreds, or even hundreds of
thousands of transactions.

In summary, the information presented to users through wallet applications, block-
chain explorers, and other bitcoin user interfaces is often composed of higher-level
abstractions that are derived by searching many different transactions, inspecting
their content, and manipulating the data contained within them. By presenting this
simplistic view of bitcoin transactions that resemble bank checks from one sender to
one recipient, these applications have to abstract a lot of underlying detail. They
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mostly focus on the common types of transactions: P2PKH with SIGHASH_ALL sig-
natures on every input. Thus, while bitcoin applications can present more than 80%
of all transactions in an easy-to-read manner, they are sometimes stumped by trans-
actions that deviate from the norm. Transactions that contain more complex locking
scripts, or different SIGHASH flags, or many inputs and outputs, demonstrate the
simplicity and weakness of these abstractions.

Every day, hundreds of transactions that do not contain P2PKH outputs are con-
firmed on the blockchain. The blockchain explorers often present these with red
warning messages saying they cannot decode an address. The following link contains
the most recent “strange transactions” that were not fully decoded: https://block
chain.info/strange-transactions.

As we will see in the next chapter, these are not necessarily strange transactions. They
are transactions that contain more complex locking scripts than the common
P2PKH. We will learn how to decode and understand more complex scripts and the
applications they support next.
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CHAPTER7
Advanced Transactions and Scripting

Introduction

In the previous chapter, we introduced the basic elements of bitcoin transactions and
looked at the most common type of transaction script, the P2PKH script. In this
chapter we will look at more advanced scripting and how we can use it to build trans-
actions with complex conditions.

First, we will look at multisignature scripts. Next, we will examine the second most
common transaction script, Pay-to-Script-Hash, which opens up a whole world of
complex scripts. Then, we will examine new script operators that add a time dimen-
sion to bitcoin, through timelocks.

Multisignature

Multisignature scripts set a condition where N public keys are recorded in the script
and at least M of those must provide signatures to unlock the funds. This is also
known as an M-of-N scheme, where N is the total number of keys and M is the thres-
hold of signatures required for validation. For example, a 2-of-3 multisignature is one
where three public keys are listed as potential signers and at least two of those must
be used to create signatures for a valid transaction to spend the funds. At this time,
standard multisignature scripts are limited to at most 15 listed public keys, meaning
you can do anything from a 1-of-1 to a 15-of-15 multisignature or any combination
within that range. The limitation to 15 listed keys might be lifted by the time this
book is published, so check the isStandard() function to see what is currently
accepted by the network.

The general form of a locking script setting an M-of-N multisignature condition is:

M <Public Key 1> <Public Key 2> ... <Public Key N> N CHECKMULTISIG
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where N is the total number of listed public keys and M is the threshold of required
signatures to spend the output.

A locking script setting a 2-of-3 multisignature condition looks like this:
2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

The preceding locking script can be satisfied with an unlocking script containing
pairs of signatures and public keys:

<Signature B> <Signature C>

or any combination of two signatures from the private keys corresponding to the
three listed public keys.

The two scripts together would form the combined validation script:

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
CHECKMULTISIG
When executed, this combined script will evaluate to TRUE if, and only if, the
unlocking script matches the conditions set by the locking script. In this case, the
condition is whether the unlocking script has a valid signature from the two private
keys that correspond to two of the three public keys set as an encumbrance.

A bug in CHECKMULTISIG execution

There is a bug in CHECKMULTISIG’s execution that requires a slight workaround. When
CHECKMULTISIG executes, it should consume M+N+2 items on the stack as parame-
ters. However, due to the bug, CHECKMULTISIG will pop an extra value or one value
more than expected.

Let’s look at this in greater detail using the previous validation example:

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
CHECKMULTISIG

First, CHECKMULTISIG pops the top item, which is N (in this example “3”). Then it pops
N items, which are the public keys that can sign. In this example, public keys A, B, and
C. Then, it pops one item, which is M, the quorum (how many signatures are needed).
Here M = 2. At this point, CHECKMULTISIG should pop the final M items, which are the
signatures, and see if they are valid. However, unfortunately, a bug in the implemen-
tation causes CHECKMULTISIG to pop one more item (M+1 total) than it should. The
extra item is disregarded when checking the signatures so it has no direct effect on
CHECKMULTISIG itself. However, an extra value must be present because if it is not
present, when CHECKMULTISIG attempts to pop on an empty stack, it will cause a stack
error and script failure (marking the transaction as invalid). Because the extra item is
disregarded it can be anything, but customarily 0 is used.
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Because this bug became part of the consensus rules, it must now be replicated for-
ever. Therefore the correct script validation would look like this:

0 <Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
CHECKMULTISIG

Thus the unlocking script actually used in multisig is not:
<Signature B> <Signature C>

but instead it is:
0 <Signature B> <Signature C>

From now on, if you see a multisig unlocking script, you should expect to see an extra
0 in the beginning, whose only purpose is as a workaround to a bug that accidentally
became a consensus rule.

Pay-to-Script-Hash (P2SH)

Pay-to-Script-Hash (P2SH) was introduced in 2012 as a powerful new type of trans-
action that greatly simplifies the use of complex transaction scripts. To explain the
need for P2SH, let’s look at a practical example.

In Chapter 1 we introduced Mohammed, an electronics importer based in Dubai.
Mohammed’s company uses bitcoin’s multisignature feature extensively for its corpo-
rate accounts. Multisignature scripts are one of the most common uses of bitcoin’s
advanced scripting capabilities and are a very powerful feature. Mohammed’s com-
pany uses a multisignature script for all customer payments, known in accounting
terms as “accounts receivable,” or AR. With the multisignature scheme, any payments
made by customers are locked in such a way that they require at least two signatures
to release, from Mohammed and one of his partners or from his attorney who has a
backup key. A multisignature scheme like that offers corporate governance controls
and protects against theft, embezzlement, or loss.

The resulting script is quite long and looks like this:

2 <Mohammed's Public Key> <Partnerl Public Key> <Partner2 Public Key> <Partner3
Public Key> <Attorney Public Key> 5 CHECKMULTISIG

Although multisignature scripts are a powerful feature, they are cumbersome to use.
Given the preceding script, Mohammed would have to communicate this script to
every customer prior to payment. Each customer would have to use special bitcoin
wallet software with the ability to create custom transaction scripts, and each cus-
tomer would have to understand how to create a transaction using custom scripts.
Furthermore, the resulting transaction would be about five times larger than a simple
payment transaction, because this script contains very long public keys. The burden
of that extra-large transaction would be borne by the customer in the form of fees.
Finally, a large transaction script like this would be carried in the UTXO set in RAM
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in every full node, until it was spent. All of these issues make using complex locking
scripts difficult in practice.

P2SH was developed to resolve these practical difficulties and to make the use of
complex scripts as easy as a payment to a bitcoin address. With P2SH payments, the
complex locking script is replaced with its digital fingerprint, a cryptographic hash.
When a transaction attempting to spend the UTXO is presented later, it must contain
the script that matches the hash, in addition to the unlocking script. In simple terms,
P2SH means “pay to a script matching this hash, a script that will be presented later
when this output is spent.”

In P2SH transactions, the locking script that is replaced by a hash is referred to as the
redeem script because it is presented to the system at redemption time rather than as a
locking script. Table 7-1 shows the script without P2SH and Table 7-2 shows the same
script encoded with P2SH.

Table 7-1. Complex script without P2SH

Locking Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5 CHECKMULTISIG
Unlocking Script  Sig1 Sig2

Table 7-2. Complex script as P2SH

Redeem Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5 CHECKMULTISIG
Locking Script ~ HASH160 <20-byte hash of redeem script> EQUAL
Unlocking Script - Sig1 Sig2 <redeem script>

As you can see from the tables, with P2SH the complex script that details the condi-
tions for spending the output (redeem script) is not presented in the locking script.
Instead, only a hash of it is in the locking script and the redeem script itself is presen-
ted later, as part of the unlocking script when the output is spent. This shifts the bur-
den in fees and complexity from the sender to the recipient (spender) of the
transaction.

Lets look at Mohammed’s company, the complex multisignature script, and the
resulting P2SH scripts.

First, the multisignature script that Mohammed’s company uses for all incoming pay-
ments from customers:

2 <Mohammed's Public Key> <Partnerl Public Key> <Partner2 Public Key> <Partner3
Public Key> <Attorney Public Key> 5 CHECKMULTISIG

If the placeholders are replaced by actual public keys (shown here as 520-bit numbers
starting with 04) you can see that this script becomes very long:
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2
04C16B8698A9ABF84250A7C3EA7TEEDEF9897D1C8C6ADF47FO6CF73370D74DCCAO1CDCA79DCC5C395
D7EEC6984D83F1F50C900A24DD47F569FD4193AF5DE762C58704A2192968D8655D6A935BEAF2CA23
E3FB87A3495E7AF308EDFO8DAC3C1FCBFC2C75B4BOF4DOB1B70CD2423657738C0C2B1D5CE65C97D7
8DOE34224858008E8B49047E63248B75DB7379BESCDA8CES751D16485F431E46117B9DOC1837C9D5
737812F393DA7D4420D7E1A9162F0279CFC10F1E8E8F3020DECDBC3CODD389D99779650421D65CBD
7149B255382ED7F78E946580657EE6FDA162A187543A9D85BAAA93A4AB3A8F044DADA618D0872274
40645ABE8A35DA8C5B73997AD343BESC2AFD94A5043752580AFA1ECED3C68D446BCAB69ACOBATDFS
0D56231BEOAABF1FDEEC78A6A45E394BA29A1EDF518C022DD618DA774D207D137AAB59EOBOOOEB7E
D238F4D800 5 CHECKMULTISIG

This entire script can instead be represented by a 20-byte cryptographic hash, by first

applying the SHA256 hashing algorithm and then applying the RIPEMD160 algo-
rithm on the result. The 20-byte hash of the preceding script is:

54c557e07dde5bb6cb791c7a540e0a4796f5e97e
A P2SH transaction locks the output to this hash instead of the longer script, using
the locking script:

HASH160 54c557e07dde5bb6cb791c7a540e0a4796f5e97e EQUAL

which, as you can see, is much shorter. Instead of “pay to this 5-key multisignature
script,” the P2SH equivalent transaction is “pay to a script with this hash” A customer
making a payment to Mohammed’s company need only include this much shorter
locking script in his payment. When Mohammed and his partners want to spend this
UTXO, they must present the original redeem script (the one whose hash locked the
UTXO) and the signatures necessary to unlock it, like this:

<Sigl> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG>

The two scripts are combined in two stages. First, the redeem script is checked
against the locking script to make sure the hash matches:

<2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG> HASH160 <redeem scriptHash> EQUAL

If the redeem script hash matches, the unlocking script is executed on its own, to
unlock the redeem script:

<Sig1> <Sig2> 2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG

Almost all the scripts described in this chapter can only be implemented as P2SH
scripts. They cannot be used directly in the locking script of a UTXO.

P2SH Addresses

Another important part of the P2SH feature is the ability to encode a script hash as an
address, as defined in BIP-13. P2SH addresses are Base58Check encodings of the 20-
byte hash of a script, just like bitcoin addresses are Base58Check encodings of the 20-
byte hash of a public key. P2SH addresses use the version prefix “5,” which results in
Base58Check-encoded addresses that start with a “3” For example, Mohammed’s
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complex script, hashed and Base58Check-encoded as a P2SH address, becomes
39RF61qAB1HdYHkfChV6USGMe6Nsr66Gzw. Now, Mohammed can give this “address” to
his customers and they can use almost any bitcoin wallet to make a simple payment,
as if it were a bitcoin address. The 3 prefix gives them a hint that this is a special type
of address, one corresponding to a script instead of a public key, but otherwise it
works in exactly the same way as a payment to a bitcoin address.

P2SH addresses hide all of the complexity, so that the person making a payment does
not see the script.

Benefits of P2SH

The P2SH feature offers the following benefits compared to the direct use of complex
scripts in locking outputs:

o Complex scripts are replaced by shorter fingerprints in the transaction output,
making the transaction smaller.

o Scripts can be coded as an address, so the sender and the sender’s wallet don’t
need complex engineering to implement P2SH.

 P2SH shifts the burden of constructing the script to the recipient, not the sender.

 P2SH shifts the burden in data storage for the long script from the output (which
is in the UTXO set) to the input (stored on the blockchain).

o P2SH shifts the burden in data storage for the long script from the present time
(payment) to a future time (when it is spent).

« P2SH shifts the transaction fee cost of a long script from the sender to the recipi-
ent, who has to include the long redeem script to spend it.

Redeem Script and Validation

Prior to version 0.9.2 of the Bitcoin Core client, Pay-to-Script-Hash was limited to the
standard types of bitcoin transaction scripts, by the isStandard() function. That
means that the redeem script presented in the spending transaction could only be one
of the standard types: P2PK, P2PKH, or multisig nature, excluding RETURN and P2SH
itself.

As of version 0.9.2 of the Bitcoin Core client, P2SH transactions can contain any valid
script, making the P2SH standard much more flexible and allowing for experimenta-
tion with many novel and complex types of transactions.

Note that you are not able to put a P2SH inside a P2SH redeem script, because the
P2SH specification is not recursive. While it is technically possible to include RETURN
in a redeem script, as nothing in the rules prevents you from doing so, it is of no

154 | Chapter7: Advanced Transactions and Scripting

www.EBookswWorld.ir



practical use because executing RETURN during validation will cause the transaction to
be marked invalid.

Note that because the redeem script is not presented to the network until you attempt
to spend a P2SH output, if you lock an output with the hash of an invalid redeem
script it will be processed regardless. The UTXO will be successfully locked. However,
you will not be able to spend it because the spending transaction, which includes the
redeem script, will not be accepted because it is an invalid script. This creates a risk,
because you can lock bitcoin in a P2SH that cannot be spent later. The network will
accept the P2SH locking script even if it corresponds to an invalid redeem script,
because the script hash gives no indication of the script it represents.

P2SH locking scripts contain the hash of a redeem script, which
gives no clues as to the content of the redeem script itself. The
| P2SH transaction will be considered valid and accepted even if the

% redeem script is invalid. You might accidentally lock bitcoin in such
a way that it cannot later be spent.

Data Recording Output (RETURN)

Bitcoin’s distributed and timestamped ledger, the blockchain, has potential uses far
beyond payments. Many developers have tried to use the transaction scripting lan-
guage to take advantage of the security and resilience of the system for applications
such as digital notary services, stock certificates, and smart contracts. Early attempts
to use bitcoin’s script language for these purposes involved creating transaction out-
puts that recorded data on the blockchain; for example, to record a digital fingerprint
of a file in such a way that anyone could establish proof-of-existence of that file on a
specific date by reference to that transaction.

The use of bitcoin’s blockchain to store data unrelated to bitcoin payments is a con-
troversial subject. Many developers consider such use abusive and want to discourage
it. Others view it as a demonstration of the powerful capabilities of blockchain tech-
nology and want to encourage such experimentation. Those who object to the inclu-
sion of nonpayment data argue that it causes “blockchain bloat,” burdening those
running full bitcoin nodes with carrying the cost of disk storage for data that the
blockchain was not intended to carry. Moreover, such transactions create UTXO that
cannot be spent, using the destination bitcoin address as a freeform 20-byte field.
Because the address is used for data, it doesn’t correspond to a private key and the
resulting UTXO can never be spent; it’s a fake payment. These transactions that can
never be spent are therefore never removed from the UTXO set and cause the size of
the UTXO database to forever increase, or “bloat”

In version 0.9 of the Bitcoin Core client, a compromise was reached with the intro-
duction of the RETURN operator. RETURN allows developers to add 80 bytes of nonpay-
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ment data to a transaction output. However, unlike the use of “fake” UTXO, the
RETURN operator creates an explicitly provably unspendable output, which does not
need to be stored in the UTXO set. RETURN outputs are recorded on the blockchain,
so they consume disk space and contribute to the increase in the blockchain’s size, but
they are not stored in the UTXO set and therefore do not bloat the UTXO memory
pool and burden full nodes with the cost of more expensive RAM.

RETURN scripts look like this:
RETURN <data>

The data portion is limited to 80 bytes and most often represents a hash, such as the
output from the SHA256 algorithm (32 bytes). Many applications put a prefix in front
of the data to help identify the application. For example, the Proof of Existence digital
notarization service uses the 8-byte prefix DOCPROOF, which is ASCII encoded as 44
4f 43 50 52 4f 4f 46 in hexadecimal.

Keep in mind that there is no “unlocking script” that corresponds to RETURN that
could possibly be used to “spend” a RETURN output. The whole point of RETURN is that
you can’t spend the money locked in that output, and therefore it does not need to be
held in the UTXO set as potentially spendable—RETURN is provably unspendable.
RETURN is usually an output with a zero bitcoin amount, because any bitcoin assigned
to such an output is effectively lost forever. If a RETURN is referenced as an input in a
transaction, the script validation engine will halt the execution of the validation script
and mark the transaction as invalid. The execution of RETURN essentially causes the
script to “RETURN” with a FALSE and halt. Thus, if you accidentally reference a
RETURN output as an input in a transaction, that transaction is invalid.

A standard transaction (one that conforms to the isStandard() checks) can have
only one RETURN output. However, a single RETURN output can be combined in a
transaction with outputs of any other type.

Two new command-line options have been added in Bitcoin Core as of version 0.10.
The option datacarrier controls relay and mining of RETURN transactions, with the
default set to “1” to allow them. The option datacarriersize takes a numeric argu-
ment specifying the maximum size in bytes of the RETURN script, 83 bytes by default,
which, allows for a maximum of 80 bytes of RETURN data plus one byte of RETURN
opcode and two bytes of PUSHDATA opcode.

RETURN was initially proposed with a limit of 80 bytes, but the limit
was reduced to 40 bytes when the feature was released. In February
2015, in version 0.10 of Bitcoin Core, the limit was raised back to
80 bytes. Nodes may choose not to relay or mine RETURN, or only
relay and mine RETURN containing less than 80 bytes of data.
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Timelocks

Timelocks are restrictions on transactions or outputs that only allow spending after a
point in time. Bitcoin has had a transaction-level timelock feature from the begin-
ning. It is implemented by the nLocktime field in a transaction. Two new timelock
features were introduced in late 2015 and mid-2016 that offer UTXO-level timelocks.
These are CHECKLOCKTIMEVERIFY and CHECKSEQUENCEVERIFY.

Timelocks are useful for postdating transactions and locking funds to a date in the
future. More importantly, timelocks extend bitcoin scripting into the dimension of
time, opening the door for complex multistep smart contracts.

Transaction Locktime (nLocktime)

From the beginning, bitcoin has had a transaction-level timelock feature. Transaction
locktime is a transaction-level setting (a field in the transaction data structure) that
defines the earliest time that a transaction is valid and can be relayed on the network
or added to the blockchain. Locktime is also known as nLocktime from the variable
name used in the Bitcoin Core codebase. It is set to zero in most transactions to indi-
cate immediate propagation and execution. If nLocktime is nonzero and below 500
million, it is interpreted as a block height, meaning the transaction is not valid and is
not relayed or included in the blockchain prior to the specified block height. If it is
above 500 million, it is interpreted as a Unix Epoch timestamp (seconds since
Jan-1-1970) and the transaction is not valid prior to the specified time. Transactions
with nLocktime specifying a future block or time must be held by the originating sys-
tem and transmitted to the bitcoin network only after they become valid. If a transac-
tion is transmitted to the network before the specified nLocktime, the transaction will
be rejected by the first node as invalid and will not be relayed to other nodes. The use
of nLocktime is equivalent to postdating a paper check.

Transaction locktime limitations

nLocktime has the limitation that while it makes it possible to spend some outputs in
the future, it does not make it impossible to spend them until that time. Let’s explain
that with the following example.

Alice signs a transaction spending one of her outputs to Bob’s address, and sets the
transaction nLocktime to 3 months in the future. Alice sends that transaction to Bob
to hold. With this transaction Alice and Bob know that:

o Bob cannot transmit the transaction to redeem the funds until 3 months have
elapsed.

« Bob may transmit the transaction after 3 months.
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However:

o Alice can create another transaction, double-spending the same inputs without a
locktime. Thus, Alice can spend the same UTXO before the 3 months have
elapsed.

« Bob has no guarantee that Alice won't do that.

It is important to understand the limitations of transaction nLocktime. The only
guarantee is that Bob will not be able to redeem it before 3 months have elapsed.
There is no guarantee that Bob will get the funds. To achieve such a guarantee, the
timelock restriction must be placed on the UTXO itself and be part of the locking
script, rather than on the transaction. This is achieved by the next form of timelock,
called Check Lock Time Verify.

Check Lock Time Verify (CLTV)

In December 2015, a new form of timelock was introduced to bitcoin as a soft fork
upgrade. Based on a specifications in BIP-65, a new script operator called CHECK-
LOCKTIMEVERIFY (CLTV) was added to the scripting language. CLTV is a per-
output timelock, rather than a per-transaction timelock as is the case with nLocktime.
This allows for much greater flexibility in the way timelocks are applied.

In simple terms, by adding the CLTV opcode in the redeem script of an output it
restricts the output, so that it can only be spent after the specified time has elapsed.

While nLocktime is a transaction-level timelock, CLTV is an output-
based timelock.

CLTV doesn’t replace nLocktime, but rather restricts specific UTXO such that they can
only be spent in a future transaction with nLocktime set to a greater or equal value.

The CLTV opcode takes one parameter as input, expressed as a number in the same
format as nLocktime (either a block height or Unix epoch time). As indicated by the
VERIFY suffix, CLTV is the type of opcode that halts execution of the script if the out-
come is FALSE. If it results in TRUE, execution continues.

In order to lock an output with CLTV, you insert it into the redeem script of the out-
put in the transaction that creates the output. For example, if Alice is paying Bob’s
address, the output would normally contain a P2PKH script like this:

DUP HASH160 <Bob's Public Key Hash> EQUALVERIFY CHECKSIG
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To lock it to a time, say 3 months from now, the transaction would be a P2SH trans-
action with a redeem script like this:

<now + 3 months> CHECKLOCKTIMEVERIFY DROP DUP HASH160 <Bob's Public Key Hash>
EQUALVERIFY CHECKSIG
where <now + 3 months> is a block height or time value estimated 3 months from the
time the transaction is mined: current block height + 12,960 (blocks) or current Unix

epoch time + 7,760,000 (seconds). For now, don't worry about the DROP opcode that
follows CHECKLOCKTIMEVERIFY; it will be explained shortly.

When Bob tries to spend this UTXO, he constructs a transaction that references the
UTXO as an input. He uses his signature and public key in the unlocking script of
that input and sets the transaction nLocktime to be equal or greater to the timelock in
the CHECKLOCKTIMEVERIFY Alice set. Bob then broadcasts the transaction on the bit-
coin network.

Bob’s transaction is evaluated as follows. If the CHECKLOCKTIMEVERIFY parameter Alice
set is less than or equal the spending transaction’s nLocktime, script execution contin-
ues (acts as if a “no operation” or NOP opcode was executed). Otherwise, script exe-
cution halts and the transaction is deemed invalid.

More precisely, CHECKLOCKTIMEVERIFY fails and halts execution, marking the transac-
tion invalid if (source: BIP-65):

1. the stack is empty; or

2. the top item on the stack is less than 0; or

3. the lock-time type (height versus timestamp) of the top stack item and the nLock
time field are not the same; or

4. the top stack item is greater than the transaction’s nLocktime field; or

5. the nSequence field of the input is Oxfttttttt.

CLTV and nLocktime use the same format to describe timelocks,
either a block height or the time elapsed in seconds since Unix
epoch. Critically, when used together, the format of nLocktime
must match that of CLTV in the inputs—they must both reference
either block height or time in seconds.

After execution, if CLTV is satisfied, the time parameter that preceded it remains as the
top item on the stack and may need to be dropped, with DROP, for correct execution
of subsequent script opcodes. You will often see CHECKLOCKTIMEVERIFY followed by
DROP in scripts for this reason.
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By using nLocktime in conjunction with CLTV, the scenario described in “Transaction
locktime limitations” on page 157 changes. Because Alice locked the UTXO itself, it is
now impossible for either Bob or Alice to spend it before the 3-month locktime has
expired.

By introducing timelock functionality directly into the scripting language, CLTV
allows us to develop some very interesting complex scripts.

The standard is defined in BIP-65 (CHECKLOCKTIMEVERIFY).

Relative Timelocks

nLocktime and CLTV are both absolute timelocks in that they specify an absolute point
in time. The next two timelock features we will examine are relative timelocks in that
they specify, as a condition of spending an output, an elapsed time from the confir-
mation of the output in the blockchain.

Relative timelocks are useful because they allow a chain of two or more interdepend-
ent transactions to be held off chain, while imposing a time constraint on one trans-
action that is dependent on the elapsed time from the confirmation of a previous
transaction. In other words, the clock doesn't start counting until the UTXO is recor-
ded on the blockchain. This functionality is especially useful in bidirectional state
channels and Lightning Networks, as we will see in “Payment Channels and State
Channels” on page 284.

Relative timelocks, like absolute timelocks, are implemented with both a transaction-
level feature and a script-level opcode. The transaction-level relative timelock is
implemented as a consensus rule on the value of nSequence, a transaction field that is
set in every transaction input. Script-level relative timelocks are implemented with
the CHECKSEQUENCEVERIFY (CSV) opcode.

Relative timelocks are implemented according to the specifications in BIP-68, Rela-
tive lock-time using consensus-enforced sequence numbers and BIP-112, CHECKSE-
QUENCEVERIFY.

BIP-68 and BIP-112 were activated in May 2016 as a soft fork upgrade to the consen-
sus rules.

Relative Timelocks with nSequence

Relative timelocks can be set on each input of a transaction, by setting the nSequence
field in each input.

Original meaning of nSequence

The nSequence field was originally intended (but never properly implemented) to
allow modification of transactions in the mempool. In that use, a transaction contain-
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ing inputs with nSequence value below 2°? (0xFFFFFFFF) indicated a transaction that
was not yet “finalized.” Such a transaction would be held in the mempool until it was
replaced by another transaction spending the same inputs with a higher nSequence
value. Once a transaction was received whose inputs had an nSequence value of 2% it
would be considered “finalized” and mined.

The original meaning of nSequence was never properly implemented and the value of
nSequence is customarily set to 2% in transactions that do not utilize timelocks. For
transactions with nLocktime or CHECKLOCKTIMEVERIFY, the nSequence value must be
set to less than 2°? for the timelock guards to have effect. Customarily, it is set to
2% — 1 (0OxFFFFFFFE).

nSequence as a consensus-enforced relative timelock

Since the activation of BIP-68, new consensus rules apply for any transaction contain-
ing an input whose nSequence value is less than 2% (bit 1<<31 is not set). Program-
matically, that means that if the most significant (bit 1<<31) is not set, it is a flag that
means “relative locktime.” Otherwise (bit 1<<31 set), the nSequence value is reserved
for other uses such as enabling CHECKLOCKTIMEVERIFY, nLocktime, Opt-In-Replace-
By-Fee, and other future developments.

Transaction inputs with nSequence values less than 2% are interpreted as having a rel-
ative timelock. Such a transaction is only valid once the input has aged by the relative
timelock amount. For example, a transaction with one input with an nSequence rela-
tive timelock of 30 blocks is only valid when at least 30 blocks have elapsed from the
time the UTXO referenced in the input was mined. Since nSequence is a per-input
field, a transaction may contain any number of timelocked inputs, all of which must
have sufficiently aged for the transaction to be valid. A transaction can include both
timelocked inputs (nSequence < 2°') and inputs without a relative timelock (nSe
quence >=23),

The nSequence value is specified in either blocks or seconds, but in a slightly different
format than we saw used in nLocktime. A type-flag is used to differentiate between
values counting blocks and values counting time in seconds. The type-flag is set in
the 23rd least-significant bit (i.e., value 1<<22). If the type-flag is set, then the nSe
quence value is interpreted as a multiple of 512 seconds. If the type-flag is not set, the
nSequence value is interpreted as a number of blocks.

When interpreting nSequence as a relative timelock, only the 16 least significant bits
are considered. Once the flags (bits 32 and 23) are evaluated, the nSequence value is
usually “masked” with a 16-bit mask (e.g., nSequence & 0x0000FFFF).

Figure 7-1 shows the binary layout of the nSequence value, as defined by BIP-68.
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31 22 15 0
Disable Flag Type Flag Value

Figure 7-1. BIP-68 definition of nSequence encoding (Source: BIP-68)

Relative timelocks based on consensus enforcement of the nSequence value are
defined in BIP-68.

The standard is defined in BIP-68, Relative lock-time using consensus-enforced
sequence numbers.

Relative Timelocks with SV

Just like CLTV and nLocktime, there is a script opcode for relative timelocks that lev-
erages the nSequence value in scripts. That opcode is CHECKSEQUENCEVERIFY, com-
monly referred to as CSV for short.

The CSV opcode when evaluated in a UTXO’s redeem script allows spending only in a
transaction whose input nSequence value is greater than or equal to the CSV parame-
ter. Essentially, this restricts spending the UTXO until a certain number of blocks or
seconds have elapsed relative to the time the UTXO was mined.

As with CLTYV, the value in CSV must match the format in the corresponding nSe
quence value. If CSV is specified in terms of blocks, then so must nSequence. If CSV is
specified in terms of seconds, then so must nSequence.

Relative timelocks with CSV are especially useful when several (chained) transactions
are created and signed, but not propagated, when theyre kept “off-chain” A child
transaction cannot be used until the parent transaction has been propagated, mined,
and aged by the time specified in the relative timelock. One application of this use
case can be seen in “Payment Channels and State Channels” on page 284 and “Routed
Payment Channels (Lightning Network)” on page 297.

CSV is defined in detail in BIP-112, CHECKSEQUENCEVERIFY.

Median-Time-Past

As part of the activation of relative timelocks, there was also a change in the way
“time” is calculated for timelocks (both absolute and relative). In bitcoin there is a
subtle, but very significant, difference between wall time and consensus time. Bitcoin
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is a decentralized network, which means that each participant has his or her own per-
spective of time. Events on the network do not occur instantaneously everywhere.
Network latency must be factored into the perspective of each node. Eventually
everything is synchronized to create a common ledger. Bitcoin reaches consensus
every 10 minutes about the state of the ledger as it existed in the past.

The timestamps set in block headers are set by the miners. There is a certain degree of
latitude allowed by the consensus rules to account for differences in clock accuracy
between decentralized nodes. However, this creates an unfortunate incentive for min-
ers to lie about the time in a block so as to earn extra fees by including timelocked
transactions that are not yet mature. See the following section for more information.

To remove the incentive to lie and strengthen the security of timelocks, a BIP was
proposed and activated at the same time as the BIPs for relative timelocks. This is
BIP-113, which defines a new consensus measurement of time called Median-Time-
Past.

Median-Time-Past is calculated by taking the timestamps of the last 11 blocks and
finding the median. That median time then becomes consensus time and is used for
all timelock calculations. By taking the midpoint from approximately two hours in
the past, the influence of any one block’s timestamp is reduced. By incorporating 11
blocks, no single miner can influence the timestamps in order to gain fees from trans-
actions with a timelock that hasn’t yet matured.

Median-Time-Past changes the implementation of time calculations for nLocktime,
CLTV, nSequence, and CSV. The consensus time calculated by Median-Time-Past is
always approximately one hour behind wall clock time. If you create timelock trans-
actions, you should account for it when estimating the desired value to encode in
nLocktime, nSequence, CLTV, and CSV.

Median-Time-Past is specified in BIP-113.

Timelock Defense Against Fee Sniping

Fee-sniping is a theoretical attack scenario, where miners attempting to rewrite past
blocks “snipe” higher-fee transactions from future blocks to maximize their profita-
bility.

For example, let’s say the highest block in existence is block #100,000. If instead of
attempting to mine block #100,001 to extend the chain, some miners attempt to
remine #100,000. These miners can choose to include any valid transaction (that
hasn’t been mined yet) in their candidate block #100,000. They don’t have to remine
the block with the same transactions. In fact, they have the incentive to select the
most profitable (highest fee per kB) transactions to include in their block. They can
include any transactions that were in the “old” block #100,000, as well as any transac-
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tions from the current mempool. Essentially they have the option to pull transactions
from the “present” into the rewritten “past” when they re-create block #100,000.

Today, this attack is not very lucrative, because block reward is much higher than
total fees per block. But at some point in the future, transaction fees will be the
majority of the reward (or even the entirety of the reward). At that time, this scenario
becomes inevitable.

To prevent “fee sniping,” when Bitcoin Core creates transactions, it uses nLocktime to
limit them to the “next block,” by default. In our scenario, Bitcoin Core would set
nLocktime to 100,001 on any transaction it created. Under normal circumstances,
this nLocktime has no effect—the transactions could only be included in block
#100,001 anyway; it’s the next block.

But under a blockchain fork attack, the miners would not be able to pull high-fee
transactions from the mempool, because all those transactions would be timelocked
to block #100,001. They can only remine #100,000 with whatever transactions were
valid at that time, essentially gaining no new fees.

To achieve this, Bitcoin Core sets the nLocktime on all new transactions to <current
block # + 1> and sets the nSequence on all the inputs to 0xXFFFFFFFE to enable nLock
time.

Scripts with Flow Control (Conditional Clauses)

One of the more powerful features of Bitcoin Script is flow control, also known as
conditional clauses. You are probably familiar with flow control in various program-
ming languages that use the construct IF..THEN..ELSE. Bitcoin conditional clauses look
a bit different, but are essentially the same construct.

At a basic level, bitcoin conditional opcodes allow us to construct a redeem script that
has two ways of being unlocked, depending on a TRUE/FALSE outcome of evaluating a
logical condition. For example, if x is TRUE, the redeem script is A and the ELSE
redeem script is B.

Additionally, bitcoin conditional expressions can be “nested” indefinitely, meaning
that a conditional clause can contain another within it, which contains another, etc.
Bitcoin Script flow control can be used to construct very complex scripts with hun-
dreds or even thousands of possible execution paths. There is no limit to nesting, but
consensus rules impose a limit on the maximum size, in bytes, of a script.

Bitcoin implements flow control using the IF, ELSE, ENDIF, and NOTIF opcodes. Addi-
tionally, conditional expressions can contain boolean operators such as BOOLAND,
BOOLOR, and NOT.
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At first glance, you may find the bitcoin’s flow control scripts confusing. That is
because Bitcoin Script is a stack language. The same way that 1 + 1 looks “backward”
when expressed as 1 1 ADD, flow control clauses in bitcoin also look “backward.”

In most traditional (procedural) programming languages, flow control looks like this:

if (condition):

code to run when condition is true
else:

code to run when condition is false
code to run in either case

In a stack-based language like Bitcoin Script, the logical condition comes before the
IF, which makes it look “backward,” like this:
condition
IF
code to run when condition is true
ELSE
code to run when condition is false
ENDIF
code to run in either case
When reading Bitcoin Script, remember that the condition being evaluated comes
before the IF opcode.

Conditional Clauses with VERIFY Opcodes

Another form of conditional in Bitcoin Script is any opcode that ends in VERIFY. The
VERIFY suffix means that if the condition evaluated is not TRUE, execution of the
script terminates immediately and the transaction is deemed invalid.

Unlike an IF clause, which offers alternative execution paths, the VERIFY suffix acts as
a guard clause, continuing only if a precondition is met.

For example, the following script requires Bob’s signature and a pre-image (secret)
that produces a specific hash. Both conditions must be satisfied to unlock:

HASH160 <expected hash> EQUALVERIFY <Bob's Pubkey> CHECKSIG

To redeem this, Bob must construct an unlocking script that presents a valid pre-
image and a signature:

<Bob's Sig> <hash pre-image>

Without presenting the pre-image, Bob can't get to the part of the script that checks
for his signature.

This script can be written with an IF instead:

HASH160 <expected hash> EQUAL
IF
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<Bob's Pubkey> CHECKSIG
ENDIF

Bob’s unlocking script is identical:
<Bob's Sig> <hash pre-image>

The script with IF does the same thing as using an opcode with a VERIFY suffix; they
both operate as guard clauses. However, the VERIFY construction is more efficient,
using one fewer opcode.

So, when do we use VERIFY and when do we use IF? If all we are trying to do is to
attach a precondition (guard clause), then VERIFY is better. If, however, we want to
have more than one execution path (flow control), then we need an IF..ELSE flow
control clause.

An opcode such as EQUAL will push the result (TRUE/FALSE) onto
the stack, leaving it there for evaluation by subsequent opcodes. In
contrast, the opcode EQUALVERIFY suffix does not leave anything on
the stack. Opcodes that end in VERIFY do not leave the result on the
stack.

Using Flow Control in Scripts

A very common use for flow control in Bitcoin Script is to construct a redeem script
that offers multiple execution paths, each a different way of redeeming the UTXO.

Let’s look at a simple example, where we have two signers, Alice and Bob, and either
one is able to redeem. With multisig, this would be expressed as a 1-of-2 multisig
script. For the sake of demonstration, we will do the same thing with an IF clause:

IF

<Alice's Pubkey> CHECKSIG

ELSE

<Bob's Pubkey> CHECKSIG

ENDIF
Looking at this redeem script, you may be wondering: “Where is the condition?
There is nothing preceding the IF clause!”

The condition is not part of the redeem script. Instead, the condition will be offered
in the unlocking script, allowing Alice and Bob to “choose” which execution path they
want.

Alice redeems this with the unlocking script:
<Alice's Sig> 1

The 1 at the end serves as the condition (TRUE) that will make the IF clause execute
the first redemption path for which Alice has a signature.
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For Bob to redeem this, he would have to choose the second execution path by giving
a FALSE value to the IF clause:

<Bob's Sig> 0

Bob’s unlocking script puts a @ on the stack, causing the IF clause to execute the sec-
ond (ELSE) script, which requires Bob's signature.

Since IF clauses can be nested, we can create a “maze” of execution paths. The
unlocking script can provide a “map” selecting which execution path is actually exe-
cuted:

IF
script A
ELSE
IF
script B
ELSE
script C
ENDIF
ENDIF

In this scenario, there are three execution paths (script A, script B, and script C).
The unlocking script provides a path in the form of a sequence of TRUE or FALSE val-
ues. To select path script B, for example, the unlocking script must end in 1 @
(TRUE, FALSE). These values will be pushed onto the stack, so that the second value
(FALSE) ends up at the top of the stack. The outer IF clause pops the FALSE value and
executes the first ELSE clause. Then the TRUE value moves to the top of the stack and
is evaluated by the inner (nested) IF, selecting the B execution path.

Using this construct, we can build redeem scripts with tens or hundreds of execution
paths, each offering a different way to redeem the UTXO. To spend, we construct an
unlocking script that navigates the execution path by putting the appropriate TRUE
and FALSE values on the stack at each flow control point.

Complex Script Example

In this section we combine many of the concepts from this chapter into a single
example.

Our example uses the story of Mohammed, the company owner in Dubai who is
operating an import/export business.

In this example, Mohammed wishes to construct a company capital account with
flexible rules. The scheme he creates requires different levels of authorization depend-
ing on timelocks. The participants in the multisig scheme are Mohammed, his two
partners Saeed and Zaira, and their company lawyer Abdul. The three partners make
decisions based on a majority rule, so two of the three must agree. However, in the
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case of a problem with their keys, they want their lawyer to be able to recover the
funds with one of the three partner signatures. Finally, if all partners are unavailable
or incapacitated for a while, they want the lawyer to be able to manage the account
directly.

Here’s the script that Mohammed designs to achieve this:

IF
IF
2
ELSE
<30 days> CHECKSEQUENCEVERIFY DROP
<Abdul the Lawyer's Pubkey> CHECKSIGVERIFY
1
ENDIF
<Mohammed's Pubkey> <Saeed's Pubkey> <Zaira's Pubkey> 3 CHECKMULTISIG
ELSE
<90 days> CHECKSEQUENCEVERIFY DROP
<Abdul the Lawyer's Pubkey> CHECKSIG
ENDIF

Mohammed’s script implements three execution paths using nested IF..ELSE flow
control clauses.

In the first execution path, this script operates as a simple 2-of-3 multisig with the
three partners. This execution path consists of lines 3 and 9. Line 3 sets the quorum
of the multisig to 2 (2-of-3). This execution path can be selected by putting TRUE
TRUE at the end of the unlocking script:

0 <Mohammed's Sig> <Zaira's Sig> TRUE TRUE

The 0 at the beginning of this unlocking script is because of a bug
in CHECKMULTISIG that pops an extra value from the stack. The
extra value is disregarded by the CHECKMULTISIG, but it must be
present or the script fails. Pushing 0 (customarily) is a workaround
to the bug, as described in “A bug in CHECKMULTISIG execution”
on page 150.

The second execution path can only be used after 30 days have elapsed from the cre-
ation of the UTXO. At that time, it requires the signature of Abdul the lawyer and one
of the three partners (a 1-of-3 multisig). This is achieved by line 7, which sets the
quorum for the multisig to 1. To select this execution path, the unlocking script
would end in FALSE TRUE:

0 <Saeed's Sig> <Abdul's Sig> FALSE TRUE

168 | Chapter7: Advanced Transactions and Scripting

www.EBookswWorld.ir



Why FALSE TRUE? Isn't that backward? Because the two values are
pushed on to the stack, with FALSE pushed first, then TRUE pushed
second. TRUE is therefore popped first by the first IF opcode.

Finally, the third execution path allows Abdul the lawyer to spend the funds alone,
but only after 90 days. To select this execution path, the unlocking script has to end in
FALSE:

<Abdul's Sig> FALSE
Try running the script on paper to see how it behaves on the stack.

A few more things to consider when reading this example. See if you can find the
answers:

« Why can’t the lawyer redeem the third execution path at any time by selecting it
with FALSE on the unlocking script?

« How many execution paths can be used 5, 35, and 105 days, respectively, after the
UTXO is mined?

o Are the funds lost if the lawyer loses his key? Does your answer change if 91 days
have elapsed?

o How do the partners “reset” the clock every 29 or 89 days to prevent the lawyer
from accessing the funds?

o Why do some CHECKSIG opcodes in this script have the VERIFY suffix while others
don’t?
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CHAPTER 8
The Bitcoin Network

Peer-to-Peer Network Architecture

Bitcoin is structured as a peer-to-peer network architecture on top of the internet.
The term peer-to-peer, or P2P, means that the computers that participate in the net-
work are peers to each other, that they are all equal, that there are no “special” nodes,
and that all nodes share the burden of providing network services. The network
nodes interconnect in a mesh network with a “flat” topology. There is no server, no
centralized service, and no hierarchy within the network. Nodes in a P2P network
both provide and consume services at the same time with reciprocity acting as the
incentive for participation. P2P networks are inherently resilient, decentralized, and
open. A preeminent example of a P2P network architecture was the early internet
itself, where nodes on the IP network were equal. Today’s internet architecture is
more hierarchical, but the Internet Protocol still retains its flat-topology essence.
Beyond bitcoin, the largest and most successful application of P2P technologies is file
sharing, with Napster as the pioneer and BitTorrent as the most recent evolution of
the architecture.

Bitcoin’s P2P network architecture is much more than a topology choice. Bitcoin is a
P2P digital cash system by design, and the network architecture is both a reflection
and a foundation of that core characteristic. Decentralization of control is a core
design principle that can only be achieved and maintained by a flat, decentralized P2P
consensus network.

The term “bitcoin network” refers to the collection of nodes running the bitcoin P2P
protocol. In addition to the bitcoin P2P protocol, there are other protocols such as
Stratum that are used for mining and lightweight or mobile wallets. These additional
protocols are provided by gateway routing servers that access the bitcoin network
using the bitcoin P2P protocol and then extend that network to nodes running other
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protocols. For example, Stratum servers connect Stratum mining nodes via the Stra-
tum protocol to the main bitcoin network and bridge the Stratum protocol to the bit-
coin P2P protocol. We use the term “extended bitcoin network” to refer to the overall
network that includes the bitcoin P2P protocol, pool-mining protocols, the Stratum
protocol, and any other related protocols connecting the components of the bitcoin
system.

Node Types and Roles

Although nodes in the bitcoin P2P network are equal, they may take on different
roles depending on the functionality they are supporting. A bitcoin node is a collec-
tion of functions: routing, the blockchain database, mining, and wallet services. A full
node with all four of these functions is shown in Figure 8-1.

N...

Routing Node

Figure 8-1. A bitcoin network node with all four functions: wallet, miner, full blockchain
database, and network routing

All nodes include the routing function to participate in the network and might
include other functionality. All nodes validate and propagate transactions and blocks,
and discover and maintain connections to peers. In the full-node example in
Figure 8-1, the routing function is indicated by an orange circle named “Network
Routing Node” or with the letter “N

Some nodes, called full nodes, also maintain a complete and up-to-date copy of the
blockchain. Full nodes can autonomously and authoritatively verify any transaction
without external reference. Some nodes maintain only a subset of the blockchain and
verify transactions using a method called simplified payment verification, or SPV.

These nodes are known as SPV nodes or lightweight nodes. In the full-node example
in the figure, the full-node blockchain database function is indicated by a blue circle
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called “Full Blockchain” or the letter “B.” In Figure 8-3, SPV nodes are drawn without
the blue circle, showing that they do not have a full copy of the blockchain.

Mining nodes compete to create new blocks by running specialized hardware to solve
the Proof-of-Work algorithm. Some mining nodes are also full nodes, maintaining a
full copy of the blockchain, while others are lightweight nodes participating in pool
mining and depending on a pool server to maintain a full node. The mining function
is shown in the full node as a black circle called “Miner” or the letter “M”

User wallets might be part of a full node, as is usually the case with desktop bitcoin
clients. Increasingly, many user wallets, especially those running on resource-
constrained devices such as smartphones, are SPV nodes. The wallet function is
shown in Figure 8-1 as a green circle called “Wallet” or the letter “W.

In addition to the main node types on the bitcoin P2P protocol, there are servers and
nodes running other protocols, such as specialized mining pool protocols and light-
weight client-access protocols.

Figure 8-2 shows the most common node types on the extended bitcoin network.

The Extended Bitcoin Network

The main bitcoin network, running the bitcoin P2P protocol, consists of between
5,000 and 8,000 listening nodes running various versions of the bitcoin reference cli-
ent (Bitcoin Core) and a few hundred nodes running various other implementations
of the bitcoin P2P protocol, such as Bitcoin Classic, Bitcoin Unlimited, Bitcoin], Lib-
bitcoin, btcd, and beoin. A small percentage of the nodes on the bitcoin P2P network
are also mining nodes, competing in the mining process, validating transactions, and
creating new blocks. Various large companies interface with the bitcoin network by
running full-node clients based on the Bitcoin Core client, with full copies of the
blockchain and a network node, but without mining or wallet functions. These nodes
act as network edge routers, allowing various other services (exchanges, wallets, block
explorers, merchant payment processing) to be built on top.

The extended bitcoin network includes the network running the bitcoin P2P proto-
col, described earlier, as well as nodes running specialized protocols. Attached to the
main bitcoin P2P network are a number of pool servers and protocol gateways that
connect nodes running other protocols. These other protocol nodes are mostly pool
mining nodes (see Chapter 10) and lightweight wallet clients, which do not carry a
full copy of the blockchain.

Figure 8-3 shows the extended bitcoin network with the various types of nodes, gate-
way servers, edge routers, and wallet clients and the various protocols they use to
connect to each other.
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Reference Client (Bitcoin Core)

Contains a Wallet, Miner, full Blockchain database, and Network routing
node on the bitcoin P2P network.

Full Block Chain Node

Contains a full Blockchain database, and Network routing node on the
bitcoin P2P network.

Solo Miner

Contains a mining function with a full copy of the blockchain and a bitcoin
P2P network routing node.

Lightweight (SPV) wallet

Contains a Wallet and a Network node on the bitcoin P2P protocol,
without a blockchain.

Pool Protocol Servers

Gateway routers connecting the bitcoin P2P network to nodes running
other protocols such as pool mining nodes or Stratum nodes.

Mining Nodes

Contain a mining function, without a blockchain, with the Stratum protocol
node (S) or other pool (P) mining protocol node.

Lightweight (SPV) Stratum wallet

Contains a Wallet and a Network node on the Stratum protocol, without a
blockchain.

Figure 8-2. Different types of nodes on the extended bitcoin network
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Figure 8-3. The extended bitcoin network showing various node types, gateways, and
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Bitcoin Relay Networks

While the bitcoin P2P network serves the general needs of a broad variety of node
types, it exhibits too high network latency for the specialized needs of bitcoin mining
nodes.

Bitcoin miners are engaged in a time-sensitive competition to solve the Proof-of-
Work problem and extend the blockchain (see Chapter 10). While participating in
this competition, bitcoin miners must minimize the time between the propagation of
a winning block and the beginning of the next round of competition. In mining, net-
work latency is directly related to profit margins.

A Bitcoin Relay Network is a network that attempts to minimize the latency in the
transmission of blocks between miners. The original Bitcoin Relay Network was cre-
ated by core developer Matt Corallo in 2015 to enable fast synchronization of blocks
between miners with very low latency. The network consisted of several specialized
nodes hosted on the Amazon Web Services infrastructure around the world and
served to connect the majority of miners and mining pools.

The original Bitcoin Relay Network was replaced in 2016 with the introduction of the
Fast Internet Bitcoin Relay Engine or FIBRE, also created by core developer Matt Cor-
allo. FIBRE is a UDP-based relay network that relays blocks within a network of
nodes. FIBRE implements compact block optimization to further reduce the amount
of data transmitted and the network latency.

Another relay network (still in the proposal phase) is Falcon, based on research at
Cornell University. Falcon uses “cut-through-routing” instead of “store-and-forward”
to reduce latency by propagating parts of blocks as they are received rather than wait-
ing until a complete block is received.

Relay networks are not replacements for bitcoin’s P2P network. Instead they are over-
lay networks that provide additional connectivity between nodes with specialized
needs. Like freeways are not replacements for rural roads, but rather shortcuts
between two points with heavy traffic, you still need small roads to connect to the
freeways.

Network Discovery

When a new node boots up, it must discover other bitcoin nodes on the network in
order to participate. To start this process, a new node must discover at least one exist-
ing node on the network and connect to it. The geographic location of other nodes is
irrelevant; the bitcoin network topology is not geographically defined. Therefore, any
existing bitcoin nodes can be selected at random.
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To connect to a known peer, nodes establish a TCP connection, usually to port 8333
(the port generally known as the one used by bitcoin), or an alternative port if one is
provided. Upon establishing a connection, the node will start a “handshake” (see
Figure 8-4) by transmitting a version message, which contains basic identifying
information, including:

nVersion
The bitcoin P2P protocol version the client “speaks” (e.g., 70002)

nLocalServices
A list of local services supported by the node, currently just NODE_NETWORK

nTime
The current time

addrYou
The IP address of the remote node as seen from this node

addrMe
The IP address of the local node, as discovered by the local node

subver
A sub-version showing the type of software running on this node
(e.g., /Satoshi:0.9.2.1/)

BestHeight
The block height of this node’s blockchain

(See GitHub for an example of the version network message.)

The version message is always the first message sent by any peer to another peer. The
local peer receiving a version message will examine the remote peer’s reported nver
sion and decide if the remote peer is compatible. If the remote peer is compatible, the
local peer will acknowledge the version message and establish a connection by send-
ing a verack.

How does a new node find peers? The first method is to query DNS using a number
of “DNS seeds,” which are DNS servers that provide a list of IP addresses of bitcoin
nodes. Some of those DNS seeds provide a static list of IP addresses of stable bitcoin
listening nodes. Some of the DNS seeds are custom implementations of BIND
(Berkeley Internet Name Daemon) that return a random subset from a list of bitcoin
node addresses collected by a crawler or a long-running bitcoin node. The Bitcoin
Core client contains the names of five different DNS seeds. The diversity of owner-
ship and diversity of implementation of the different DNS seeds offers a high level of
reliability for the initial bootstrapping process. In the Bitcoin Core client, the option
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to use the DNS seeds is controlled by the option switch -dnsseed (set to 1 by default,
to use the DNS seed).

Alternatively, a bootstrapping node that knows nothing of the network must be given
the IP address of at least one bitcoin node, after which it can establish connections
through further introductions. The command-line argument -seednode can be used
to connect to one node just for introductions using it as a seed. After the initial seed
node is used to form introductions, the client will disconnect from it and use the
newly discovered peers.

Node A Node B

W‘
/’JM

‘//w/'
W‘

Figure 8-4. The initial handshake between peers
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Once one or more connections are established, the new node will send an addr mes-
sage containing its own IP address to its neighbors. The neighbors will, in turn, for-
ward the addr message to their neighbors, ensuring that the newly connected node
becomes well known and better connected. Additionally, the newly connected node
can send getaddr to the neighbors, asking them to return a list of IP addresses of
other peers. That way, a node can find peers to connect to and advertise its existence
on the network for other nodes to find it. Figure 8-5 shows the address discovery pro-
tocol.
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Figure 8-5. Address propagation and discovery

A node must connect to a few different peers in order to establish diverse paths into
the bitcoin network. Paths are not reliable—nodes come and go—and so the node
must continue to discover new nodes as it loses old connections as well as assist other
nodes when they bootstrap. Only one connection is needed to bootstrap, because the
first node can offer introductions to its peer nodes and those peers can offer further
introductions. It’s also unnecessary and wasteful of network resources to connect to
more than a handful of nodes. After bootstrapping, a node will remember its most
recent successful peer connections, so that if it is rebooted it can quickly reestablish
connections with its former peer network. If none of the former peers respond to its
connection request, the node can use the seed nodes to bootstrap again.

On a node running the Bitcoin Core client, you can list the peer connections with the
command getpeerinfo:

$ bitcoin-cli getpeerinfo

[

"addr" : "85.213.199.39:8333",
"services" : "00000001",
"lastsend" : 1405634126,
"lastrecv" : 1405634127,
"bytessent" : 23487651,
"bytesrecv" : 138679099,
"conntime" : 1405021768,
"pingtime" : 0.00000000,
"version" : 70002,

"subver" : "/Satoshi:0.9.2.1/",
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"inbound" : false,
"startingheight" : 310131,
"banscore" : 0,

"syncnode" : true

1,

{
"addr" : "58.23.244.20:8333",
"services" : "00000001",
"lastsend" : 1405634127,
"lastrecv" : 1405634124,
"bytessent" : 4460918,
"bytesrecv" : 8903575,
"conntime" : 1405559628,
"pingtime" : 0.00000000,
"version" : 70001,
"subver" : "/Satoshi:0.8.6/",
"inbound" : false,
"startingheight" : 311074,
"banscore" : 0,
"syncnode" : false

}

]

To override the automatic management of peers and to specify a list of IP addresses,
users can provide the option -connect=<IPAddress> and specify one or more IP
addresses. If this option is used, the node will only connect to the selected IP
addresses, instead of discovering and maintaining the peer connections automatically.

If there is no traffic on a connection, nodes will periodically send a message to main-
tain the connection. If a node has not communicated on a connection for more than
90 minutes, it is assumed to be disconnected and a new peer will be sought. Thus, the
network dynamically adjusts to transient nodes and network problems, and can
organically grow and shrink as needed without any central control.

Full Nodes

Full nodes are nodes that maintain a full blockchain with all transactions. More accu-
rately, they probably should be called “full blockchain nodes.” In the early years of bit-
coin, all nodes were full nodes and currently the Bitcoin Core client is a full
blockchain node. In the past two years, however, new forms of bitcoin clients have
been introduced that do not maintain a full blockchain but run as lightweight clients.
We'll examine these in more detail in the next section.

Full blockchain nodes maintain a complete and up-to-date copy of the bitcoin block-
chain with all the transactions, which they independently build and verify, starting
with the very first block (genesis block) and building up to the latest known block in
the network. A full blockchain node can independently and authoritatively verify any
transaction without recourse or reliance on any other node or source of information.
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The full blockchain node relies on the network to receive updates about new blocks
of transactions, which it then verifies and incorporates into its local copy of the
blockchain.

Running a full blockchain node gives you the pure bitcoin experience: independent
verification of all transactions without the need to rely on, or trust, any other systems.
It’s easy to tell if you're running a full node because it requires more than one hun-
dred gigabytes of persistent storage (disk space) to store the full blockchain. If you
need a lot of disk and it takes two to three days to sync to the network, you are run-
ning a full node. That is the price of complete independence and freedom from cen-
tral authority.

There are a few alternative implementations of full blockchain bitcoin clients, built
using different programming languages and software architectures. However, the
most common implementation is the reference client Bitcoin Core, also known as the
Satoshi client. More than 75% of the nodes on the bitcoin network run various ver-
sions of Bitcoin Core. It is identified as “Satoshi” in the sub-version string sent in the
version message and shown by the command getpeerinfo as we saw earlier; for
example, /Satoshi:0.8.6/.

Exchanging “Inventory”

The first thing a full node will do once it connects to peers is try to construct a com-
plete blockchain. If it is a brand-new node and has no blockchain at all, it only knows
one block, the genesis block, which is statically embedded in the client software.
Starting with block #0 (the genesis block), the new node will have to download hun-
dreds of thousands of blocks to synchronize with the network and reestablish the full
blockchain.

The process of syncing the blockchain starts with the version message, because that
contains BestHeight, a node’s current blockchain height (number of blocks). A node
will see the version messages from its peers, know how many blocks they each have,
and be able to compare to how many blocks it has in its own blockchain. Peered
nodes will exchange a getblocks message that contains the hash (fingerprint) of the
top block on their local blockchain. One of the peers will be able to identify the
received hash as belonging to a block that is not at the top, but rather belongs to an
older block, thus deducing that its own local blockchain is longer than its peer’s.

The peer that has the longer blockchain has more blocks than the other node and can
identify which blocks the other node needs in order to “catch up” It will identify the
first 500 blocks to share and transmit their hashes using an inv (inventory) message.
The node missing these blocks will then retrieve them, by issuing a series of getdata
messages requesting the full block data and identifying the requested blocks using the
hashes from the inv message.
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Lets assume, for example, that a node only has the genesis block. It will then receive
an inv message from its peers containing the hashes of the next 500 blocks in the
chain. It will start requesting blocks from all of its connected peers, spreading the
load and ensuring that it doesn’t overwhelm any peer with requests. The node keeps
track of how many blocks are “in transit” per peer connection, meaning blocks that it
has requested but not received, checking that it does not exceed a limit
(MAX_BLOCKS_IN_TRANSIT_PER_PEER). This way, if it needs a lot of blocks, it will only
request new ones as previous requests are fulfilled, allowing the peers to control the
pace of updates and not overwhelm the network. As each block is received, it is added
to the blockchain, as we will see in Chapter 9. As the local blockchain is gradually
built up, more blocks are requested and received, and the process continues until the
node catches up to the rest of the network.

This process of comparing the local blockchain with the peers and retrieving any
missing blocks happens any time a node goes offline for any period of time. Whether
a node has been offline for a few minutes and is missing a few blocks, or a month and
is missing a few thousand blocks, it starts by sending getblocks, gets an inv
response, and starts downloading the missing blocks. Figure 8-6 shows the inventory
and block propagation protocol.

Node A NodeB
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Figure 8-6. Node synchronizing the blockchain by retrieving blocks from a peer
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Simplified Payment Verification (SPV) Nodes

Not all nodes have the ability to store the full blockchain. Many bitcoin clients are
designed to run on space- and power-constrained devices, such as smartphones, tab-
lets, or embedded systems. For such devices, a simplified payment verification (SPV)
method is used to allow them to operate without storing the full blockchain. These
types of clients are called SPV clients or lightweight clients. As bitcoin adoption
surges, the SPV node is becoming the most common form of bitcoin node, especially
for bitcoin wallets.

SPV nodes download only the block headers and do not download the transactions
included in each block. The resulting chain of blocks, without transactions, is 1,000
times smaller than the full blockchain. SPV nodes cannot construct a full picture of
all the UTXOs that are available for spending because they do not know about all the
transactions on the network. SPV nodes verify transactions using a slightly different
methodology that relies on peers to provide partial views of relevant parts of the
blockchain on demand.

As an analogy, a full node is like a tourist in a strange city, equipped with a detailed
map of every street and every address. By comparison, an SPV node is like a tourist in
a strange city asking random strangers for turn-by-turn directions while knowing
only one main avenue. Although both tourists can verify the existence of a street by
visiting it, the tourist without a map doesn’t know what lies down any of the side
streets and doesn’t know what other streets exist. Positioned in front of 23 Church
Street, the tourist without a map cannot know if there are a dozen other “23 Church
Street” addresses in the city and whether this is the right one. The mapless tourist’s
best chance is to ask enough people and hope some of them are not trying to mug
him.

SPV verifies transactions by reference to their depth in the blockchain instead of their
height. Whereas a full blockchain node will construct a fully verified chain of thou-
sands of blocks and transactions reaching down the blockchain (back in time) all the
way to the genesis block, an SPV node will verify the chain of all blocks (but not all
transactions) and link that chain to the transaction of interest.

For example, when examining a transaction in block 300,000, a full node links all
300,000 blocks down to the genesis block and builds a full database of UTXO, estab-
lishing the validity of the transaction by confirming that the UTXO remains unspent.
An SPV node cannot validate whether the UTXO is unspent. Instead, the SPV node
will establish a link between the transaction and the block that contains it, using a
merkle path (see “Merkle Trees” on page 201). Then, the SPV node waits until it sees
the six blocks 300,001 through 300,006 piled on top of the block containing the trans-
action and verifies it by establishing its depth under blocks 300,006 to 300,001. The
fact that other nodes on the network accepted block 300,000 and then did the neces-
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sary work to produce six more blocks on top of it is proof, by proxy, that the transac-
tion was not a double-spend.

An SPV node cannot be persuaded that a transaction exists in a block when the trans-
action does not in fact exist. The SPV node establishes the existence of a transaction
in a block by requesting a merkle path proof and by validating the Proof-of-Work in
the chain of blocks. However, a transaction’s existence can be “hidden” from an SPV
node. An SPV node can definitely prove that a transaction exists but cannot verify
that a transaction, such as a double-spend of the same UTXO, doesn’t exist because it
doesn’t have a record of all transactions. This vulnerability can be used in a denial-of-
service attack or for a double-spending attack against SPV nodes. To defend against
this, an SPV node needs to connect randomly to several nodes, to increase the proba-
bility that it is in contact with at least one honest node. This need to randomly con-
nect means that SPV nodes also are vulnerable to network partitioning attacks or
Sybil attacks, where they are connected to fake nodes or fake networks and do not
have access to honest nodes or the real bitcoin network.

For most practical purposes, well-connected SPV nodes are secure enough, striking a
balance between resource needs, practicality, and security. For infallible security,
however, nothing beats running a full blockchain node.

A full blockchain node verifies a transaction by checking the entire
chain of thousands of blocks below it in order to guarantee that the
UTXO is not spent, whereas an SPV node checks how deep the
block is buried by a handful of blocks above it.

To get the block headers, SPV nodes use a getheaders message instead of getblocks.
The responding peer will send up to 2,000 block headers using a single headers mes-
sage. The process is otherwise the same as that used by a full node to retrieve full
blocks. SPV nodes also set a filter on the connection to peers, to filter the stream of
future blocks and transactions sent by the peers. Any transactions of interest are
retrieved using a getdata request. The peer generates a tx message containing the
transactions, in response. Figure 8-7 shows the synchronization of block headers.

Because SPV nodes need to retrieve specific transactions in order to selectively verify
them, they also create a privacy risk. Unlike full blockchain nodes, which collect all
transactions within each block, the SPV node’s requests for specific data can inadver-
tently reveal the addresses in their wallet. For example, a third party monitoring a
network could keep track of all the transactions requested by a wallet on an SPV node
and use those to associate bitcoin addresses with the user of that wallet, destroying
the user’s privacy.
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Figure 8-7. SPV node synchronizing the block headers

Shortly after the introduction of SPV/lightweight nodes, bitcoin developers added a
feature called bloom filters to address the privacy risks of SPV nodes. Bloom filters
allow SPV nodes to receive a subset of the transactions without revealing precisely
which addresses they are interested in, through a filtering mechanism that uses prob-
abilities rather than fixed patterns.

Bloom Filters

A bloom filter is a probabilistic search filter, a way to describe a desired pattern
without specifying it exactly. Bloom filters offer an efficient way to express a search
pattern while protecting privacy. They are used by SPV nodes to ask their peers for
transactions matching a specific pattern, without revealing exactly which addresses,
keys, or transactions they are searching for.

In our previous analogy, a tourist without a map is asking for directions to a specific
address, “23 Church St If she asks strangers for directions to this street, she inadver-
tently reveals her destination. A bloom filter is like asking, “Are there any streets in
this neighborhood whose name ends in R-C-H?” A question like that reveals slightly
less about the desired destination than asking for “23 Church St” Using this techni-
que, a tourist could specify the desired address in more detail such as “ending in U-R-
C-H” or less detail as “ending in H” By varying the precision of the search, the tourist
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reveals more or less information, at the expense of getting more or less specific
results. If she asks a less specific pattern, she gets a lot more possible addresses and
better privacy, but many of the results are irrelevant. If she asks for a very specific
pattern, she gets fewer results but loses privacy.

Bloom filters serve this function by allowing an SPV node to specify a search pattern
for transactions that can be tuned toward precision or privacy. A more specific bloom
filter will produce accurate results, but at the expense of revealing what patterns the
SPV node is interested in, thus revealing the addresses owned by the user’s wallet. A
less specific bloom filter will produce more data about more transactions, many irrel-
evant to the node, but will allow the node to maintain better privacy.

How Bloom Filters Work

Bloom filters are implemented as a variable-size array of N binary digits (a bit field)
and a variable number of M hash functions. The hash functions are designed to
always produce an output that is between 1 and N, corresponding to the array of
binary digits. The hash functions are generated deterministically, so that any node
implementing a bloom filter will always use the same hash functions and get the same
results for a specific input. By choosing different length (N) bloom filters and a differ-
ent number (M) of hash functions, the bloom filter can be tuned, varying the level of
accuracy and therefore privacy.

In Figure 8-8, we use a very small array of 16 bits and a set of three hash functions to
demonstrate how bloom filters work.

3 Hash Functions

< B ()

Hash Functions Output
1to 16

Empty Bloom Filter, 16 bit array

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 0 N 12 1B 14 15 16

Figure 8-8. An example of a simplistic bloom filter, with a 16-bit field and three hash
functions

The bloom filter is initialized so that the array of bits is all zeros. To add a pattern to
the bloom filter, the pattern is hashed by each hash function in turn. Applying the
first hash function to the input results in a number between 1 and N. The corre-
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sponding bit in the array (indexed from 1 to N) is found and set to 1, thereby record-
ing the output of the hash function. Then, the next hash function is used to set
another bit and so on. Once all M hash functions have been applied, the search pat-
tern will be “recorded” in the bloom filter as M bits that have been changed from @ to
1.

Figure 8-9 is an example of adding a pattern “A” to the simple bloom filter shown in
Figure 8-8.

Adding a second pattern is as simple as repeating this process. The pattern is hashed
by each hash function in turn and the result is recorded by setting the bits to 1. Note
that as a bloom filter is filled with more patterns, a hash function result might coin-
cide with a bit that is already set to 1, in which case the bit is not changed. In essence,
as more patterns record on overlapping bits, the bloom filter starts to become satura-
ted with more bits set to 1 and the accuracy of the filter decreases. This is why the
filter is a probabilistic data structure—it gets less accurate as more patterns are added.
The accuracy depends on the number of patterns added versus the size of the bit
array (N) and number of hash functions (M). A larger bit array and more hash func-
tions can record more patterns with higher accuracy. A smaller bit array or fewer
hash functions will record fewer patterns and produce less accuracy.

Pattern

Hash Functions

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 8-9. Adding a pattern “A” to our simple bloom filter

Figure 8-10 is an example of adding a second pattern “B” to the simple bloom filter.
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Figure 8-10. Adding a second pattern “B” to our simple bloom filter

To test if a pattern is part of a bloom filter, the pattern is hashed by each hash func-
tion and the resulting bit pattern is tested against the bit array. If all the bits indexed
by the hash functions are set to 1, then the pattern is probably recorded in the bloom
filter. Because the bits may be set because of overlap from multiple patterns, the
answer is not certain, but is rather probabilistic. In simple terms, a bloom filter posi-
tive match is a “Maybe, Yes”

Figure 8-11 is an example of testing the existence of pattern “X” in the simple bloom
filter. The corresponding bits are set to 1, so the pattern is probably a match.

Is Pattern Included?

Hash Functions

v "
leT:Tofelel:foTo oo oo s o]
1 2 3 4 5] 6 7 8 5 10 i1 12 i3 14 15 16

Maybe, Yes

Figure 8-11. Testing the existence of pattern “X” in the bloom filter. The result is a proba-
bilistic positive match, meaning “Maybe.”
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On the contrary, if a pattern is tested against the bloom filter and any one of the bits
is set to 0, this proves that the pattern was not recorded in the bloom filter. A negative
result is not a probability, it is a certainty. In simple terms, a negative match on a
bloom filter is a “Definitely Not!”

Figure 8-12 is an example of testing the existence of pattern “Y” in the simple bloom
filter. One of the corresponding bits is set to @, so the pattern is definitely not a match.

Is Pattern Included?
Y

Hash Functions

»® Ny /
1 o|1 olololrlodofoofjolojr]o 1_|
2 3

1 4 5 6 7 & 9 10 11 12 13 14 15 16

Definitely Not!

Figure 8-12. Testing the existence of pattern “Y” in the bloom filter. The result is a defini-
tive negative match, meaning “Definitely Not!”

How SPV Nodes Use Bloom Filters

Bloom filters are used to filter the transactions (and blocks containing them) that an
SPV node receives from its peers, selecting only transactions of interest to the SPV
node without revealing which addresses or keys it is interested in.

An SPV node will initialize a bloom filter as “empty”; in that state the bloom filter will
not match any patterns. The SPV node will then make a list of all the addresses, keys,
and hashes that it is interested in. It will do this by extracting the public key hash and
script hash and transaction IDs from any UTXO controlled by its wallet. The SPV
node then adds each of these to the bloom filter, so that the bloom filter will “match”
if these patterns are present in a transaction, without revealing the patterns them-
selves.

The SPV node will then send a filterload message to the peer, containing the
bloom filter to use on the connection. On the peer, bloom filters are checked against
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each incoming transaction. The full node checks several parts of the transaction
against the bloom filter, looking for a match including:

o The transaction ID

o The data components from the locking scripts of each of the transaction outputs
(every key and hash in the script)

o Each of the transaction inputs

o Each of the input signature data components (or witness scripts)

By checking against all these components, bloom filters can be used to match public
key hashes, scripts, OP_RETURN values, public keys in signatures, or any future compo-
nent of a smart contract or complex script.

After a filter is established, the peer will then test each transaction’s outputs against
the bloom filter. Only transactions that match the filter are sent to the node.

In response to a getdata message from the node, peers will send a merkleblock mes-
sage that contains only block headers for blocks matching the filter and a merkle path
(see “Merkle Trees” on page 201) for each matching transaction. The peer will then
also send tx messages containing the transactions matched by the filter.

As the full node sends transactions to the SPV node, the SPV node discards any false
positives and uses the correctly matched transactions to update its UTXO set and
wallet balance. As it updates its own view of the UTXO set, it also modifies the bloom
filter to match any future transactions referencing the UTXO it just found. The full
node then uses the new bloom filter to match new transactions and the whole process
repeats.

The node setting the bloom filter can interactively add patterns to the filter by send-
ing a filteradd message. To clear the bloom filter, the node can send a filterclear
message. Because it is not possible to remove a pattern from a bloom filter, a node has
to clear and resend a new bloom filter if a pattern is no longer desired.

The network protocol and bloom filter mechanism for SPV nodes is defined in
BIP-37 (Peer Services).

SPV Nodes and Privacy

Nodes that implement SPV have weaker privacy than a full node. A full node receives
all transactions and therefore reveals no information about whether it is using some
address in its wallet. An SPV node receives a filtered list of transactions related to the
addresses that are in its wallet. As a result, it reduces the privacy of the owner.

Bloom filters are a way to reduce the loss of privacy. Without them, an SPV node
would have to explicitly list the addresses it was interested in, creating a serious
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breach of privacy. However, even with bloom filters, an adversary monitoring the
traftic of an SPV client or connected to it directly as a node in the P2P network can
collect enough information over time to learn the addresses in the wallet of the SPV
client.

Encrypted and Authenticated Connections

Most new users of bitcoin assume that the network communications of a bitcoin
node are encrypted. In fact, the original implementation of bitcoin communicates
entirely in the clear. While this is not a major privacy concern for full nodes, it is a big
problem for SPV nodes.

As a way to increase the privacy and security of the bitcoin P2P network, there are
two solutions that provide encryption of the communications: Tor Transport and P2P
Authentication and Encryption with BIP-150/151.

Tor Transport

Tor, which stands for The Onion Routing network, is a software project and network
that offers encryption and encapsulation of data through randomized network paths
that offer anonymity, untraceability and privacy.

Bitcoin Core offers several configuration options that allow you to run a bitcoin node
with its traffic transported over the Tor network. In addition, Bitcoin Core can also
offer a Tor hidden service allowing other Tor nodes to connect to your node directly
over Tor.

As of Bitcoin Core version 0.12, a node will offer a hidden Tor service automatically if
it is able to connect to a local Tor service. If you have Tor installed and the Bitcoin
Core process runs as a user with adequate permissions to access the Tor authentica-
tion cookie, it should work automatically. Use the debug flag to turn on Bitcoin Core’s
debugging for the Tor service like this:

$ bitcoind --daemon --debug=tor
You should see “tor: ADD_ONION successful” in the logs, indicating that Bitcoin
Core has added a hidden service to the Tor network.

You can find more instructions on running Bitcoin Core as a Tor hidden service in
the Bitcoin Core documentation (docs/tor.md) and various online tutorials.

Peer-to-Peer Authentication and Encryption

Two Bitcoin Improvement Proposals, BIP-150 and BIP-151, add support for P2P
authentication and encryption in the bitcoin P2P network. These two BIPs define
optional services that may be offered by compatible bitcoin nodes. BIP-151 enables
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negotiated encryption for all communications between two nodes that support
BIP-151. BIP-150 offers optional peer authentication that allows nodes to authenticate
each other’s identity using ECDSA and private keys. BIP-150 requires that prior to
authentication the two nodes have established encrypted communications as per
BIP-151.

As of January 2017, BIP-150 and BIP-151 are not implemented in Bitcoin Core. How-
ever, the two proposals have been implemented by at least one alternative bitcoin cli-
ent named bcoin.

BIP-150 and BIP-151 allow users to run SPV clients that connect to a trusted full
node, using encryption and authentication to protect the privacy of the SPV client.

Additionally, authentication can be used to create networks of trusted bitcoin nodes
and prevent Man-in-the-Middle attacks. Finally, P2P encryption, if deployed broadly,
would strengthen the resistance of bitcoin to traffic analysis and privacy-eroding sur-
veillance, especially in totalitarian countries where internet use is heavily controlled
and monitored.

The standard is defined in BIP-150 (Peer Authentication) and BIP-151 (Peer-to-Peer
Communication Encryption).

Transaction Pools

Almost every node on the bitcoin network maintains a temporary list of unconfirmed
transactions called the memory pool, mempool, or transaction pool. Nodes use this
pool to keep track of transactions that are known to the network but are not yet
included in the blockchain. For example, a wallet node will use the transaction pool
to track incoming payments to the user’s wallet that have been received on the net-
work but are not yet confirmed.

As transactions are received and verified, they are added to the transaction pool and
relayed to the neighboring nodes to propagate on the network.

Some node implementations also maintain a separate pool of orphaned transactions.
If a transaction’s inputs refer to a transaction that is not yet known, such as a missing
parent, the orphan transaction will be stored temporarily in the orphan pool until the
parent transaction arrives.

When a transaction is added to the transaction pool, the orphan pool is checked for
any orphans that reference this transaction’s outputs (its children). Any matching
orphans are then validated. If valid, they are removed from the orphan pool and
added to the transaction pool, completing the chain that started with the parent
transaction. In light of the newly added transaction, which is no longer an orphan,
the process is repeated recursively looking for any further descendants, until no more
descendants are found. Through this process, the arrival of a parent transaction trig-
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gers a cascade reconstruction of an entire chain of interdependent transactions by re-
uniting the orphans with their parents all the way down the chain.

Both the transaction pool and orphan pool (where implemented) are stored in local
memory and are not saved on persistent storage; rather, they are dynamically popula-
ted from incoming network messages. When a node starts, both pools are empty and
are gradually populated with new transactions received on the network.

Some implementations of the bitcoin client also maintain a UTXO database or pool,
which is the set of all unspent outputs on the blockchain. Although the name “UTXO
pool” sounds similar to the transaction pool, it represents a different set of data.
Unlike the transaction and orphan pools, the UTXO pool is not initialized empty but
instead contains millions of entries of unspent transaction outputs, everything that is
unspent from all the way back to the genesis block. The UTXO pool may be housed
in local memory or as an indexed database table on persistent storage.

Whereas the transaction and orphan pools represent a single node’s local perspective
and might vary significantly from node to node depending upon when the node was
started or restarted, the UTXO pool represents the emergent consensus of the net-
work and therefore will vary little between nodes. Furthermore, the transaction and
orphan pools only contain unconfirmed transactions, while the UTXO pool only
contains confirmed outputs.
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CHAPTER 9
The Blockchain

Introduction

The blockchain data structure is an ordered, back-linked list of blocks of transactions.
The blockchain can be stored as a flat file, or in a simple database. The Bitcoin Core
client stores the blockchain metadata using Google’s LevelDB database. Blocks are
linked “back,” each referring to the previous block in the chain. The blockchain is
often visualized as a vertical stack, with blocks layered on top of each other and the
first block serving as the foundation of the stack. The visualization of blocks stacked
on top of each other results in the use of terms such as “height” to refer to the dis-
tance from the first block, and “top” or “tip” to refer to the most recently added block.

Each block within the blockchain is identified by a hash, generated using the SHA256
cryptographic hash algorithm on the header of the block. Each block also references a
previous block, known as the parent block, through the “previous block hash” field in
the block header. In other words, each block contains the hash of its parent inside its
own header. The sequence of hashes linking each block to its parent creates a chain
going back all the way to the first block ever created, known as the genesis block.

Although a block has just one parent, it can temporarily have multiple children. Each
of the children refers to the same block as its parent and contains the same (parent)
hash in the “previous block hash” field. Multiple children arise during a blockchain
“fork,” a temporary situation that occurs when different blocks are discovered almost
simultaneously by different miners (see “Blockchain Forks” on page 240). Eventually,
only one child block becomes part of the blockchain and the “fork” is resolved. Even
though a block may have more than one child, each block can have only one parent.
This is because a block has one single “previous block hash” field referencing its single
parent.
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The “previous block hash” field is inside the block header and thereby affects the cur-
rent block’s hash. The child’s own identity changes if the parent’s identity changes.
When the parent is modified in any way, the parents hash changes. The parent’s
changed hash necessitates a change in the “previous block hash” pointer of the child.
This in turn causes the child’s hash to change, which requires a change in the pointer
of the grandchild, which in turn changes the grandchild, and so on. This cascade
effect ensures that once a block has many generations following it, it cannot be
changed without forcing a recalculation of all subsequent blocks. Because such a
recalculation would require enormous computation (and therefore energy consump-
tion), the existence of a long chain of blocks makes the blockchains deep history
immutable, which is a key feature of bitcoin’s security.

One way to think about the blockchain is like layers in a geological formation, or gla-
cier core sample. The surface layers might change with the seasons, or even be blown
away before they have time to settle. But once you go a few inches deep, geological
layers become more and more stable. By the time you look a few hundred feet down,
you are looking at a snapshot of the past that has remained undisturbed for millions
of years. In the blockchain, the most recent few blocks might be revised if there is a
chain recalculation due to a fork. The top six blocks are like a few inches of topsoil.
But once you go more deeply into the blockchain, beyond six blocks, blocks are less
and less likely to change. After 100 blocks back there is so much stability that the
coinbase transaction—the transaction containing newly mined bitcoin—can be spent.
A few thousand blocks back (a month) and the blockchain is settled history, for all
practical purposes. While the protocol always allows a chain to be undone by a longer
chain and while the possibility of any block being reversed always exists, the probabil-
ity of such an event decreases as time passes until it becomes infinitesimal.

Structure of a Block

A block is a container data structure that aggregates transactions for inclusion in the
public ledger, the blockchain. The block is made of a header, containing metadata,
followed by a long list of transactions that make up the bulk of its size. The block
header is 80 bytes, whereas the average transaction is at least 250 bytes and the aver-
ag