
Elisabeth Robson & Eric FreemanPaul Barry

A Brain-Friendly Guide

Head First

Python
Model data as
lists, tuples,
sets, and
dictionaries

Objects?
Decorators?

Generators?
They’re all here.

Load important Python
concepts directly into

your brain

Create a modern
webapp with Flask

Share your code
with modules

Don’t get
in a pickle:

use DB-API
instead

2nd
Edition

Covers Python 3

www.EBooksWorld.ir

www.EBooksWorld.ir

Advance Praise for Head First Python, Second Edition

“A Python book should be as much fun as the language is. With Head First Python, master teacher Paul
Barry delivers a quick-paced, entertaining and engaging guide to the language that will leave you well
prepared to write real-world Python code.”

— Dr. Eric Freeman, computer scientist, technology educator, and former CTO
of Disney Online

“Head First Python is a great introduction to both the language and how to use Python in the real world.
It’s full of practical advice on coding for the web and databases, and it doesn’t shy away from difficult
subjects like collections and immutability. If you’re looking for a great introduction to Python, then this
is the place to start.”

— David Griffiths, author and Agile coach

“With major changes and updates from the first edition, this edition of Head First Python is sure to
become a favourite in the rapidly growing collection of great Python guides. The content is structured
to deliver high impact to the reader, and is heavily focused on being productive as soon as possible. All
the necessary topics are covered with great clarity, and the entertaining delivery makes this book a
delight to read.”

— Caleb Hattingh, author of 20 Python Libraries You Aren’t Using (But Should)
and Learning Cython

“Here’s a clear and clean entry into the Python pool. No bellyflops, and you’ll go deeper than you
expected to.”

— Bill Lubanovic, author of Introducing Python

Praise for the f irst edit ion
“Head First Python is a great introduction to not just the Python language, but Python as it’s used in the
real world. The book goes beyond the syntax to teach you how to create applications for Android phones,
Google’s App Engine, and more.”

— David Griffiths, author and Agile coach

“Where other books start with theory and progress to examples, Head First Python jumps right in with code
and explains the theory as you read along. This is a much more effective learning environment, because
it engages the reader to do from the very beginning. It was also just a joy to read. It was fun without
being flippant and informative without being condescending. The breadth of examples and explanation
covered the majority of what you’ll use in your job every day. I’ll recommend this book to anyone
starting out on Python.”

— Jeremy Jones, coauthor of Python for Unix and Linux System Administration

www.EBooksWorld.ir

Praise for other Head First books

“Kathy and Bert’s Head First Java transforms the printed page into the closest thing to a GUI you’ve ever
seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’
experience.”

— Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head
First Java covers a huge amount of practical matters that other texts leave as the dreaded ‘exercise for the
reader.…’ It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that claim and live
up to it while also teaching you about object serialization and network launch protocols.”

— Dr. Dan Russell, Director of User Sciences and Experience Research
IBM Almaden Research Center (and teaches Artificial Intelligence at
Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

— Ken Arnold, former Senior Engineer at Sun Microsystems
Coauthor (with James Gosling, creator of Java), The Java Programming
Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

— Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practi-
cal development strategies—gets my brain going without having to slog through a bunch of tired, stale
professor -speak.”

— Travis Kalanick, cofounder and CEO of Uber

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-eared,
mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I have
for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even nonprogrammers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

www.EBooksWorld.ir

Praise for other Head First books

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive Vice President, Disney Online

“I ♥ Head First HTML with CSS & XHTML—it teaches you everything you need to learn in a ‘fun-coated’
format.”

— Sally Applin, UI Designer and Artist

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller…Bueller…Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

www.EBooksWorld.ir

Other related books from O’Reilly

Learning Python

Programming Python

Python in a Nutshell

Python Cookbook

Fluent Python

Other books in O’Reilly’s Head First series

Head First Ajax

Head First Android Development

Head First C

Head First C#, Third Edition

Head First Data Analysis

Head First HTML and CSS, Second Edition

Head First HTML5 Programming

Head First iPhone and iPad Development, Third Edition

Head First JavaScript Programming

Head First jQuery

Head First Networking

Head First PHP & MySQL

Head First PMP, Third Edition

Head First Programming

Head First Python, Second Edition

Head First Ruby

Head First Servlets and JSP, Second Edition

Head First Software Development

Head First SQL

Head First Statistics

Head First Web Design

Head First WordPress

For a full list of titles, go to headfirstlabs.com/books.php.

www.EBooksWorld.ir

http://headfirstlabs.com/books.php

Beijing • Boston • Farnham • Sebastopol • Tokyo

Head First Python

Wouldn’t it be dreamy if there
were a Python book that didn’t

make you wish you were anywhere
other than stuck in front of your
computer writing code? I guess it’s

just a fantasy...

Paul Barry

Second Edition

www.EBooksWorld.ir

Head First Python, Second Edition
by Paul Barry

Copyright © 2017 Paul Barry. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Dawn Schanafelt

Cover Designer: Randy Comer

Production Editor: Melanie Yarbrough

Proofreader: Rachel Monaghan

Indexer: Lucie Haskins

Page Viewers: Deirdre, Joseph, Aaron, and Aideen

Printing History:
November 2010: First edition.
November 2016: Second edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Python, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No weblogs were inappropriately searched in the making of this book, and the photos on this page (as well as the
one on the author page) were supplied by Aideen Barry.

ISBN: 978-1-491-91953-8

[M]

This book uses RepKover™, a durable and flexible lay-flat binding.
TM

Deirdre

Joseph

Aaron

Aideen

www.EBooksWorld.ir

I continue to dedicate this book to all those
generous people in the Python community who
continue to help make Python what it is today.

And to all those that made learning Python and
its technologies just complex enough that people
need a book like this to learn it.

www.EBooksWorld.ir

viii

the author

Author of Head First Python, 2nd Edit ion

Paul Barry lives and works in Carlow, Ireland, which
is a small town of 35,000 people or so, located just over
80km southwest of the nation’s capital: Dublin.

Paul has a B.Sc. in Information Systems, as well as an M.Sc.
in Computing. He also has a postgraduate qualification in
Learning and Teaching.

Paul has worked at The Institute of Technology, Carlow
since 1995, and lectured there since 1997. Prior to
becoming involved in teaching, Paul spent a decade in
the IT industry working in Ireland and Canada, with the
majority of his work within a healthcare setting. Paul is
married to Deirdre, and they have three children (two of
whom are now in college).

The Python programming language (and its related
technologies) has formed an integral part of Paul’s
undergraduate courses since the 2007 academic year.

Paul is the author (or coauthor) of four other technical
books: two on Python and two on Perl. In the past, he’s
written a heap of material for Linux Journal Magazine,
where he was a contributing editor.

Paul was raised in Belfast, Northern Ireland, which may go
some of the way toward explaining his take on things
as well as his funny accent (unless, of course, you’re also
from “The North,” in which case Paul’s outlook and
accent are perfectly normal).

Find Paul on Twitter (@barrypj), as well as at his home on
the Web: http://paulbarry.itcarlow.ie.

While out walking,
Paul pauses to
discuss the correct
pronunciation of the
word “tuple” with his
long-suffering wife.

This is
Deirdre’s usual
reaction. §

www.EBooksWorld.ir

http://paulbarry.itcarlow.ie

table of contents

ix

Table of Contents (Summary)
1 The Basics: Getting Started Quickly 1
2 List Data: Working with Ordered Data 47
3 Structured Data: Working with Structured Data 95
4 Code Reuse: Functions and Modules 145
5 Building a Webapp: Getting Real 195
6 Storing and Manipulating Data: Where to Put Your Data 243
7 Using a Database: Putting Python’s DB-API to Use 281
8 A Little Bit of Class: Abstracting Behavior and State 309
9 The Context Management Protocol: Hooking into Python’s with Statement 335
10 Function Decorators: Wrapping Functions 363
11 Exception Handling: What to Do When Things Go Wrong 413
11¾ A Little Bit of Threading: Dealing with Waiting 461
12 Advanced Iteration: Looping like Crazy 477
A Installing: Installing Python 521
B Pythonanywhere: Deploying Your Webapp 529
C Top Ten Things We Didn’t Cover: There’s Always More to Learn 539
D Top Ten Projects Not Covered: Even More Tools, Libraries, and Modules 551
E Getting Involved: The Python Community 563

Table of Contents (the real thing)

Your brain on Python. Here you are trying to learn something, while here

your brain is, doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to

avoid and whether naked snowboarding is a bad idea.” So how do you trick your brain

into thinking that your life depends on knowing how to program in Python?

Intro

Who is this book for? xxviii

We know what you’re thinking xxix

We know what your brain is thinking xxix

Metacognition: thinking about thinking xxxi

Here’s what WE did xxxii

Read me xxxiv

Acknowledgments xxxvii

www.EBooksWorld.ir

table of contents

x

the basics

Getting Started Quickly
Get going with Python programming as quickly as possible.
In this chapter, we introduce the basics of programming in Python, and we do this in

typical Head First style: by jumping right in. After just a few pages, you’ll have run

your first sample program. By the end of the chapter, you’ll not only be able to run the

sample program, but you’ll understand its code too (and more besides). Along the way,

you’ll learn about a few of the things that make Python the programming language it is.

Understanding IDLE’s Windows 4

Executing Code, One Statement at a Time 8

Functions + Modules = The Standard Library 9

Data Structures Come Built-in 13

Invoking Methods Obtains Results 14

Deciding When to Run Blocks of Code 15

What “else” Can You Have with “if ”? 17

Suites Can Contain Embedded Suites 18

Returning to the Python Shell 22

Experimenting at the Shell 23

Iterating Over a Sequence of Objects 24

Iterating a Specific Number of Times 25

Applying the Outcome of Task #1 to Our Code 26

Arranging to Pause Execution 28

Generating Random Integers with Python 30

Coding a Serious Business Application 38

Is Indentation Driving You Crazy? 40

Asking the Interpreter for Help on a Function 41

Experimenting with Ranges 42

Chapter 1’s Code 46

1

www.EBooksWorld.ir

table of contents

xi

list data

Working with Data
All programs process data, and Python programs are no exception.
In fact, take a look around: data is everywhere. A lot of, if not most, programming is all about

data: acquiring data, processing data, understanding data. To work with data effectively, you need

somewhere to put your data when processing it. Python shines in this regard, thanks (in no small

part) to its inclusion of a handful of widely applicable data structures: lists, dictionaries, tuples, and

sets. In this chapter, we’ll preview all four, before spending the majority of this chapter digging deeper

into lists (and we’ll deep-dive into the other three in the next chapter). We’re covering these data

structures early, as most of what you’ll likely do with Python will revolve around working with data.

0

D
-12

1

o
-11

2

n
-10

3

'
-9

4

t
-8

5

-7

6

p
-6

7

a
-5

8

n
-4

9

i
-3

10

c
-2

11

!
-1

Numbers, Strings...and Objects 48

Meet the Four Built-in Data Structures 50

An Unordered Data Structure: Dictionary 52

A Data Structure That Avoids Duplicates: Set 53

Creating Lists Literally 55

Use Your Editor When Working on More Than a Few Lines of Code 57

“Growing” a List at Runtime 58

Checking for Membership with “in” 59

Removing Objects from a List 62

Extending a List with Objects 64

Inserting an Object into a List 65

How to Copy a Data Structure 73

Lists Extend the Square Bracket Notation 75

Lists Understand Start, Stop, and Step 76

Starting and Stopping with Lists 78

Putting Slices to Work on Lists 80

Python’s “for” Loop Understands Lists 86

Marvin’s Slices in Detail 88

When Not to Use Lists 91

Chapter 2’s Code, 1 of 2 92

2

www.EBooksWorld.ir

table of contents

xii

Name: Ford Prefect
Gender: Male
Occupation: Researcher
Home Planet: Betelgeuse Seven

structured data

Working with Structured Data
Python’s list data structure is great, but it isn’t a data
panacea. When you have truly structured data (and using a list to store it may not be

the best choice), Python comes to your rescue with its built-in dictionary. Out of the box,

the dictionary lets you store and manipulate any collection of key/value pairs. We look

long and hard at Python’s dictionary in this chapter, and—along the way—meet set and

tuple, too. Together with the list (which we met in the previous chapter), the dictionary,

set, and tuple data structures provide a set of built-in data tools that help to make Python

and data a powerful combination.

A Dictionary Stores Key/Value Pairs 96

How to Spot a Dictionary in Code 98

Insertion Order Is NOT Maintained 99

Value Lookup with Square Brackets 100

Working with Dictionaries at Runtime 101

Updating a Frequency Counter 105

Iterating Over a Dictionary 107

Iterating Over Keys and Values 108

Iterating Over a Dictionary with “items” 110

Just How Dynamic Are Dictionaries? 114

Avoiding KeyErrors at Runtime 116

Checking for Membership with “in” 117

Ensuring Initialization Before Use 118

Substituting “not in” for “in” 119

Putting the “setdefault” Method to Work 120

Creating Sets Efficiently 124

Taking Advantage of Set Methods 125

Making the Case for Tuples 132

Combining the Built-in Data Structures 135

Accessing a Complex Data Structure’s Data 141

Chapter 3’s Code, 1 of 2 143

3

www.EBooksWorld.ir

table of contents

xiii

module

code reuse

Functions and Modules
Reusing code is key to building a maintainable system.
And when it comes to reusing code in Python, it all starts and ends with the humble

function. Take some lines of code, give them a name, and you’ve got a function (which

can be reused). Take a collection of functions and package them as a file, and you’ve

got a module (which can also be reused). It’s true what they say: it’s good to share, and

by the end of this chapter, you’ll be well on your way to sharing and reusing your code,

thanks to an understanding of how Python’s functions and modules work.

Reusing Code with Functions 146

Introducing Functions 147

Invoking Your Function 150

Functions Can Accept Arguments 154

Returning One Value 158

Returning More Than One Value 159

Recalling the Built-in Data Structures 161

Making a Generically Useful Function 165

Creating Another Function, 1 of 3 166

Specifying Default Values for Arguments 170

Positional Versus Keyword Assignment 171

Updating What We Know About Functions 172

Running Python from the Command Line 175

Creating the Required Setup Files 179

Creating the Distribution File 180

Installing Packages with “pip” 182

Demonstrating Call-by-Value Semantics 185

Demonstrating Call-by-Reference Semantics 186

Install the Testing Developer Tools 190

How PEP 8–Compliant Is Our Code? 191

Understanding the Failure Messages 192

Chapter 4’s Programs 194

4

www.EBooksWorld.ir

table of contents

xiv

building a webapp

Getting Real
At this stage, you know enough Python to be dangerous.
With this book’s first four chapters behind you, you’re now in a position to productively

use Python within any number of application areas (even though there’s still lots of

Python to learn). Rather than explore the long list of what these application areas

are, in this and subsequent chapters, we’re going to structure our learning around the

development of a web-hosted application, which is an area where Python is especially

strong. Along the way, you’ll learn a bit more about Python.

Python: What You Already Know 196

What Do We Want Our Webapp to Do? 200

Let’s Install Flask 202

How Does Flask Work? 203

Running Your Flask Webapp for the First Time 204

Creating a Flask Webapp Object 206

Decorating a Function with a URL 207

Running Your Webapp’s Behavior(s) 208

Exposing Functionality to the Web 209

Building the HTML Form 213

Templates Relate to Web Pages 216

Rendering Templates from Flask 217

Displaying the Webapp’s HTML Form 218

Preparing to Run the Template Code 219

Understanding HTTP Status Codes 222

Handling Posted Data 223

Refining the Edit/Stop/Start/Test Cycle 224

Accessing HTML Form Data with Flask 226

Using Request Data in Your Webapp 227

Producing the Results As HTML 229

Preparing Your Webapp for the Cloud 238

Chapter 5’s Code 241

5

www.EBooksWorld.ir

table of contents

xv

 Form Data Remote_addr User_agent Results

ImmutableMultiDict([(‘phrase’, 127.0.0.1 Mozilla/5.0 (Macintosh; {‘e’, ‘i’}
‘hitch-hiker’), (‘letters’, ‘aeiou’)]) Intel Mac OS X 10_11_2)
 AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/47.0.2526
 .106 Safari/537.36

storing and manipulating data

Where to Put Your Data
Sooner or later, you’ll need to safely store your data somewhere.
And when it comes to storing data, Python has you covered. In this chapter, you’ll learn

about storing and retrieving data from text files, which—as storage mechanisms go—may

feel a bit simplistic, but is nevertheless used in many problem areas. As well as storing and

retrieving your data from files, you’ll also learn some tricks of the trade when it comes to

manipulating data. We’re saving the “serious stuff” (storing data in a database) until the next

chapter, but there’s plenty to keep us busy for now when working with files.

Doing Something with Your Webapp’s Data 244

Python Supports Open, Process, Close 245

Reading Data from an Existing File 246

A Better Open, Process, Close: “with” 248

View the Log Through Your Webapp 254

Examine the Raw Data with View Source 256

It’s Time to Escape (Your Data) 257

Viewing the Entire Log in Your Webapp 258

Logging Specific Web Request Attributes 261

Log a Single Line of Delimited Data 262

From Raw Data to Readable Output 265

Generate Readable Output With HTML 274

Embed Display Logic in Your Template 275

Producing Readable Output with Jinja2 276

The Current State of Our Webapp Code 278

Asking Questions of Your Data 279

Chapter 6’s Code 280

6

www.EBooksWorld.ir

table of contents

xvi

Python’s
DB-API

The MySQL-
Connector/Python

Driver

MySQL
Your code

using a database

Putting Python’s DB-API to Use
Storing data in a relational database system is handy. In this chapter,

you’ll learn how to write code that interacts with the popular MySQL database technology, using

a generic database API called DB-API. The DB-API (which comes standard with every Python

install) allows you to write code that is easily transferred from one database product to the next...

assuming your database talks SQL. Although we’ll be using MySQL, there’s nothing stopping you

from using your DB-API code with your favorite relational database, whatever it may be. Let’s

see what’s involved in using a relational database with Python. There’s not a lot of new Python in

this chapter, but using Python to talk to databases is a big deal, so it’s well worth learning.

Database-Enabling Your Webapp 282

Task 1: Install the MySQL Server 283

Introducing Python’s DB-API 284

Task 2: Install a MySQL Database Driver for Python 285

Install MySQL-Connector/Python 286

Task 3: Create Our Webapp’s Database and Tables 287

Decide on a Structure for Your Log Data 288

Confirm Your Table Is Ready for Data 289

Task 4: Create Code to Work with Our Webapp’s Database and Tables 296

Storing Data Is Only Half the Battle 300

How Best to Reuse Your Database Code? 301

Consider What You’re Trying to Reuse 302

What About That Import? 303

You’ve Seen This Pattern Before 305

The Bad News Isn’t Really All That Bad 306

Chapter 7’s Code 307

7

www.EBooksWorld.ir

table of contents

xvii

a little bit of class

Abstracting Behavior and State
Classes let you bundle code behavior and state together.
In this chapter, you’re setting your webapp aside while you learn about creating Python classes.

You’re doing this in order to get to the point where you can create a context manager with the

help of a Python class. As creating and using classes is such a useful thing to know about

anyway, we’re dedicating this chapter to them. We won’t cover everything about classes, but we’ll

touch on all the bits you’ll need to understand in order to confidently create the context manager

your webapp is waiting for.

Hooking into the “with” Statement 310

An Object-Oriented Primer 311

Creating Objects from Classes 312

Objects Share Behavior but Not State 313

Doing More with CountFromBy 314

Invoking a Method: Understand the Details 316

Adding a Method to a Class 318

The Importance of “self ” 320

Coping with Scoping 321

Prefix Your Attribute Names with “self ” 322

Initialize (Attribute) Values Before Use 323

Dunder “init” Initializes Attributes 324

Initializing Attributes with Dunder “init” 325

Understanding CountFromBy’s Representation 328

Defining CountFromBy’s Representation 329

Providing Sensible Defaults for CountFromBy 330

Classes: What We Know 332

Chapter 8’s Code 333

8

www.EBooksWorld.ir

table of contents

xviii

§
$ mysql -u vsearch -p vsearchlogDB
Enter password:

Welcome to MySQL monitor...

mysql> select * from log;
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
| id | ts | phrase | letters | ip | browser_string | results |
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
1	2016-03-09 13:40:46	life, the uni ... ything	aeiou	127.0.0.1	firefox	{'u', 'e', 'i', 'a'}
2	2016-03-09 13:42:07	hitch-hiker	aeiou	127.0.0.1	safari	{'i', 'e'}
3	2016-03-09 13:42:15	galaxy	xyz	127.0.0.1	chrome	{'y', 'x'}
4	2016-03-09 13:43:07	hitch-hiker	xyz	127.0.0.1	firefox	set()
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
4 rows in set (0.0 sec)

mysql> quit
Bye

File Edit Window Help Checking our log DB

the context management protocol

Hooking into Python’s with Statements
It’s time to take what you’ve just learned and put it to work.
Chapter 7 discussed using a relational database with Python, while Chapter 8 provided an

introduction to using classes in your Python code. In this chapter, both of these techniques are

combined to produce a context manager that lets us extend the with statement to work with

relational database systems. In this chapter, you’ll hook into the with statement by creating a

new class, which conforms to Python’s context management protocol.

What’s the Best Way to Share Our Webapp’s Database Code? 336

Managing Context with Methods 338

You’ve Already Seen a Context Manager in Action 339

Create a New Context Manager Class 340

Initialize the Class with the Database Config 341

Perform Setup with Dunder “enter” 343

Perform Teardown with Dunder “exit” 345

Reconsidering Your Webapp Code, 1 of 2 348

Recalling the “log_request” Function 350

Amending the “log_request” Function 351

Recalling the “view_the_log” Function 352

It’s Not Just the Code That Changes 353

Amending the “view_the_log” Function 354

Answering the Data Questions 359

Chapter 9’s Code, 1 of 2 360

9

www.EBooksWorld.ir

table of contents

xix

function decorators

Wrapping Functions
When it comes to augmenting your code, Chapter 9’s context
management protocol is not the only game in town. Python also lets you

use function decorators, a technique whereby you can add code to an existing function without

having to change any of the existing function’s code. If you think this sounds like some sort of

black art, don’t despair: it’s nothing of the sort. However, as coding techniques go, creating a

function decorator is often considered to be on the harder side by many Python programmers,

and thus is not used as often as it should be. In this chapter, our plan is to show you that, despite

being an advanced technique, creating and using your own decorators is not that hard.

Your Web Server (Not Your Computer) Runs Your Code 366

Flask’s Session Technology Adds State 368

Dictionary Lookup Retrieves State 369

Managing Logins with Sessions 374

Let’s Do Logout and Status Checking 377

Pass a Function to a Function 386

Invoking a Passed Function 387

Accepting a List of Arguments 390

Processing a List of Arguments 391

Accepting a Dictionary of Arguments 392

Processing a Dictionary of Arguments 393

Accepting Any Number and Type of Function Arguments 394

Creating a Function Decorator 397

The Final Step: Handling Arguments 401

Putting Your Decorator to Work 404

Back to Restricting Access to /viewlog 408

Chapter 10’s Code, 1 of 2 410

10

www.EBooksWorld.ir

table of contents

xx

 ...

Exception

 +-- St
opIteration

 +-- St
opAsyncItera

tion

 +-- Ar
ithmeticErro

r

 | +
-- FloatingP

ointError

 | +
-- OverflowE

rror

 | +
-- ZeroDivis

ionError

 +-- As
sertionError

 +-- At
tributeError

 +-- Bu
fferError

 +-- EO
FError

 ...

exception handling

What to Do When Things Go Wrong
Things go wrong, all the time—no matter how good your code is.
You’ve successfully executed all of the examples in this book, and you’re likely confident all of

the code presented thus far works. But does this mean the code is robust? Probably not. Writing

code based on the assumption that nothing bad ever happens is (at best) naive. At worst, it’s

dangerous, as unforeseen things do (and will) happen. It’s much better if you’re wary while

coding, as opposed to trusting. Care is needed to ensure your code does what you want it to, as

well as reacts properly when things go south.

Databases Aren’t Always Available 418

Web Attacks Are a Real Pain 419

Input-Output Is (Sometimes) Slow 420

Your Function Calls Can Fail 421

Always Try to Execute Error-Prone Code 423

try Once, but except Many Times 426

The Catch-All Exception Handler 428

Learning About Exceptions from “sys” 430

The Catch-All Exception Handler, Revisited 431

Getting Back to Our Webapp Code 433

Silently Handling Exceptions 434

Handling Other Database Errors 440

Avoid Tightly Coupled Code 442

The DBcm Module, Revisited 443

Creating Custom Exceptions 444

What Else Can Go Wrong with “DBcm”? 448

Handling SQLError Is Different 451

Raising an SQLError 453

A Quick Recap: Adding Robustness 455

How to Deal with Wait? It Depends... 456

Chapter 11’s Code, 1 of 3 457

11

www.EBooksWorld.ir

table of contents

xxi

Wait!

a little bit of threading

Dealing with Waiting
Your code can sometimes take a long time to execute.
 Depending on who notices, this may or may not be an issue. If some code takes 30

seconds to do its thing “behind the scenes,” the wait may not be an issue. However,

if your user is waiting for your application to respond, and it takes 30 seconds,

everyone notices. What you should do to fix this problem depends on what you’re

trying to do (and who’s doing the waiting). In this short chapter, we’ll briefly discuss

some options, then look at one solution to the issue at hand: what happens if

something takes too long?

Waiting: What to Do? 462

How Are You Querying Your Database? 463

Database INSERTs and SELECTs Are Different 464

Doing More Than One Thing at Once 465

Don’t Get Bummed Out: Use Threads 466

First Things First: Don’t Panic 470

Don’t Get Bummed Out: Flask Can Help 471

Is Your Webapp Robust Now? 474

Chapter 11¾’s Code, 1 of 2 475

11 3/4

www.EBooksWorld.ir

table of contents

xxii

advanced iteration

Looping Like Crazy
It’s often amazing how much time our programs spend in loops.
This isn’t a surprise, as most programs exist to perform something quickly a whole heap of times.

When it comes to optimizing loops, there are two approaches: (1) improve the loop syntax (to

make it easier to specify a loop), and (2) improve how loops execute (to make them go faster).

Early in the lifetime of Python 2 (that is, a long, long time ago), the language designers added a

single language feature that implements both approaches, and it goes by a rather strange name:

comprehension.

Reading CSV Data As Lists 479

Reading CSV Data As Dictionaries 480

Stripping, Then Splitting, Your Raw Data 482

Be Careful When Chaining Method Calls 483

Transforming Data into the Format You Need 484

Transforming into a Dictionary Of Lists 485

Spotting the Pattern with Lists 490

Converting Patterns into Comprehensions 491

Take a Closer Look at the Comprehension 492

Specifying a Dictionary Comprehension 494

Extend Comprehensions with Filters 495

Deal with Complexity the Python Way 499

The Set Comprehension in Action 505

What About “Tuple Comprehensions”? 507

Parentheses Around Code == Generator 508

Using a Listcomp to Process URLs 509

Using a Generator to Process URLs 510

Define What Your Function Needs to Do 512

Yield to the Power of Generator Functions 513

Tracing Your Generator Function, 1 of 2 514

One Final Question 518

Chapter 12’s Code 519

It’s Time to Go… 520

12

www.EBooksWorld.ir

table of contents

xxiii

installation

Installing Python

pythonanywhere

Deploying Your Webapp

First things first: let’s get Python installed on your computer.
Whether you’re running on Windows, Mac OS X, or Linux, Python’s got you covered. How you

install it on each of these platforms is specific to how things work on each of these operating

systems (we know...a shocker, eh?), and the Python community works hard to provide installers

that target all the popular systems. In this short appendix, you’ll be guided through installing

Python on your computer.

At the end of Chapter 5, we claimed that deploying your webapp to
the cloud was only 10 minutes away. It’s now time to make good on that promise.

In this appendix, we are going to take you through the process of deploying your webapp on

PythonAnywhere, going from zero to deployed in about 10 minutes. PythonAnywhere is a

favorite among the Python programming community, and it’s not hard to see why: it works exactly

as you’d expect it to, has great support for Python (and Flask), and—best of all—you can get

started hosting your webapp at no cost.

Install Python 3 on Windows 522

Check Python 3 on Windows 523

Add to Python 3 on Windows 524

Install Python 3 on Mac OS X (macOS) 525

Check and Configure Python 3 on Mac OS X 526

Install Python 3 on Linux 527

Step 0: A Little Prep 530

Step 1: Sign Up for PythonAnywhere 531

Step 2: Upload Your Files to the Cloud 532

Step 3: Extract and Install Your Code 533

Step 4: Create a Starter Webapp, 1 of 2 534

Step 5: Configure Your Webapp 536

Step 6: Take Your Cloud-Based Webapp for a Spin! 537

a

b

www.EBooksWorld.ir

table of contents

xxiv

top ten things we didn’t cover

There’s Always More to Learn
It was never our intention to try to cover everything. This book’s goal was

always to show you enough Python to get you up to speed as quickly as possible. There’s a lot

more we could’ve covered, but didn’t. In this appendix, we discuss the top 10 things that—given

another 600 pages or so—we would’ve eventually gotten around to. Not all of the 10 things will

interest you, but quickly flip through them just in case we’ve hit on your sweet spot, or provided

an answer to that nagging question. All the programming technologies in this appendix come

baked in to Python and its interpreter.

1. What About Python 2? 540

2. Virtual Programming Environments 541

3. More on Object Orientation 542

4. Formats for Strings and the Like 543

5. Getting Things Sorted 544

6. More from the Standard Library 545

7. Running Your Code Concurrently 546

8. GUIs with Tkinter (and Fun with Turtles) 547

9. It’s Not Over ’Til It’s Tested 548

10. Debug, Debug, Debug 549

c

www.EBooksWorld.ir

table of contents

xxv

top ten projects not covered

Even More Tools, Libraries, and Modules
We know what you’re thinking as you read this appendix’s title.
Why on Earth didn’t they make the title of the last appendix: The Top Twenty Things We Didn’t

Cover? Why another 10? In the last appendix, we limited our discussion to stuff that comes

baked in to Python (part of the language’s “batteries included”). In this appendix, we cast the net

much further afield, discussing a whole host of technologies that are available to you because

Python exists. There’s lots of good stuff here and—just like with the last appendix—a quick

perusal won’t hurt you one single bit.

1. Alternatives to >>> 552

2. Alternatives to IDLE 553

3. Jupyter Notebook: The Web-Based IDE 554

4. Doing Data Science 555

5. Web Development Technologies 556

6. Working with Web Data 557

7. More Data Sources 558

8. Programming Tools 559

9. Kivy: Our Pick for “Coolest Project Ever” 560

10. Alternative Implementations 561

d

www.EBooksWorld.ir

table of contents

xxvi

getting involved

The Python Community
Python is much more than a great programming language.
It’s a great community, too. The Python Community is welcoming, diverse, open, friendly,

sharing, and giving. We’re just amazed that no one, to date, has thought to put that on a

greeting card! Seriously, though, there’s more to programming in Python than the language. An

entire ecosystem has grown up around Python, in the form of excellent books, blogs, websites,

conferences, meetups, user groups, and personalities. In this appendix, we take a survey of the

Python community and see what it has to offer. Don’t just sit around programming on your own:

get involved!

BDFL: Benevolent Dictator for Life 564

A Tolerant Community: Respect for Diversity 565

Python Podcasts 566

The Zen of Python 567

Which Book Should I Read Next? 568

Our Favorite Python Books 569

e

www.EBooksWorld.ir

xxviixxvii

the howto

how to use this book

Intro

In this section, we answer the burning question:
“So why DID they put that in a Python book?”

I can’t believe
they put that in a

Python book.

www.EBooksWorld.ir

xxviii intro

how to use this book

Who Is This Book For?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card… we’ll accept a check, too.]

Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

3

Do you wish you had the know-how to program Python,
add it to your list of tools, and make it do new things?

2

Are you looking for a reference book to Python, one that
covers all the details in excruciating detail?

2

Do you already know how to program in another
programming language?

1

Do you already know most of what you need to know to
program with Python?

1

Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a Python book should cover everything and if it
bores the reader to tears in the process, then so much
the better?

3

This is NOT a
reference book,
and we assume
you’ve programmed
before.

www.EBooksWorld.ir

intro xxix

the intro

“How can this be a serious Python book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, 10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously nonimportant content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things.
Like tigers. Like the danger of fire. Like how you should never have
posted those “party” photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I’m registering on the
emotional Richter scale right now, I really do want you to keep this
stuff around.”

We Know What You’re Thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 450
more dull, dry,
boring pages.

www.EBooksWorld.ir

xxx intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner party

companion or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this, but I can’t

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be

boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you care about. You remember when you feel something.

No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that “I’m more technical than

thou” Bob from engineering doesn’t.

www.EBooksWorld.ir

intro xxxi

the intro

Metacognition: Thinking About Thinking
I wonder how

I can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to solve programming problems with Python. And you probably don’t want to
spend a lot of time. If you want to use what you read in this book, you need to
remember what you read. And for that, you’ve got to understand it. To get the most
from this book, or any book or learning experience, take responsibility for your
brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat
programming like it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

www.EBooksWorld.ir

xxxii intro

how to use this book

Here’s What WE Did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and asked questions that don’t always have a
straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, and so on, because, well, you’re a person. And
your brain pays more attention to people than it does to things.

www.EBooksWorld.ir

intro xxxiii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

6 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

9 Write a lot of code!
There’s only one way to learn to program in Python:
write a lot of code. And that’s what you’re going
to do throughout this book. Coding is a skill, and
the only way to get good at it is to practice. We’re
going to give you a lot of practice: every chapter has
exercises that pose a problem for you to solve. Don’t
just skip over them—a lot of the learning happens
when you solve the exercises. We included a solution
to each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged
on something small.) But try to solve the problem
before you look at the solution. And definitely get it
working before you move on to the next part of the
book.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

5 Talk about it. Out loud.
Speaking activates a different part of the brain. If
you’re trying to understand something or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

4 Make this the last thing you read before bed.
Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

3 Read the “There Are No Dumb Questions”
sections.
That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity while learning can increase the learning.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The
more deeply you force your brain to think, the better
chance you have of learning and remembering.

Slow down. The more you understand, the
less you have to memorize.

1

www.EBooksWorld.ir

xxxiv intro

how to use this book

Read Me, 1 of 2
This is a learning experience, not a reference book. We deliberately stripped out everything that
might get in the way of learning whatever it is we’re working on at that point in the book. And
the first time through, you need to begin at the beginning, because the book makes assumptions
about what you’ve already seen and learned.

This book is designed to get you up to speed as quickly as possible.

As you need to know stuff, we teach it. So you won’t find long lists of technical material, no
tables of Python’s operators, nor its operator precedence rules. We don’t cover everything, but
we’ve worked really hard to cover the essential material as well as we can, so that you can get
Python into your brain quickly and have it stay there. The only assumption we make is that you
already know how to program in some other programming language.

This book targets Python 3

We use Release 3 of the Python programming language in this book, and we cover how to get
and install Python 3 in Appendix A. This book does not use Python 2.

We put Python to work for you right away.

We get you doing useful stuff in Chapter 1 and build from there. There’s no hanging around,
because we want you to be productive with Python right away.

The activities are NOT optional—you have to do the work.

The exercises and activities are not add-ons; they’re part of the core content of the book. Some
of them are to help with memory, some are for understanding, and some will help you apply
what you’ve learned. Don’t skip the exercises.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want
you to finish the book remembering what you’ve learned. Most reference books don’t have
retention and recall as a goal, but this book is about learning, so you’ll see some of the same
concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking for the
two lines they need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. Don’t expect all of
the examples to be robust, or even complete—they are written specifically for learning, and
aren’t always fully functional (although we’ve tried to ensure as much as possible that they are).

www.EBooksWorld.ir

intro xxxv

the intro

Yes, there’s more...

This second edition is NOT at all like the first.
This is an update to the first edition of Head First Python, which published late in 2010.
Although that book and this one share the same author, he’s now older and (hopefully)
wiser, and thus, decided to completely rewrite the first edition’s content for this edition.
So...everything is new: the order is different, the content has been updated, the examples
are better, and the stories are either gone or have been replaced. We kept the cover—
with minor amendments—as we figured we didn’t want to rock the boat too much. It’s
been a long six years...we hope you enjoy what we’ve come up with.

Where’s the code?
We’ve placed the code examples on the Web so you can copy and paste them as needed
(although we do recommend that you type in the code as you follow along). You’ll find the
code at these locations:

 http://bit.ly/head-first-python-2e

 http://python.itcarlow.ie

Read Me, 2 of 2

www.EBooksWorld.ir

http://bit.ly/head-first-python-2e
http://python.itcarlow.ie

xxxvi intro

the intro

Bill Lubanovic has been a developer and admin for forty years.
He’s also written for O’Reilly: chapters for two Linux security
books, co-authored a Linux admin book, and solo “Introducing
Python”. He lives by a frozen lake in the Sangre de Sasquatch
mountains of Minnesota with one lovely wife, two lovely children,
and three fur-laden cats.

Edward Yue Shung Wong has been hooked on coding since he
wrote his first line of Haskell in 2006. Currently he works on event
driven tradeprocessing in the heart of the City of London. He
enjoys sharing his passion for development with the London Java
Community and Software Craftsmanship Community. Away from
the keyboard, find Edward in his element on a football pitch or
gaming on YouTube (@arkangelofkaos).

Adrienne Lowe is a former personal chef from Atlanta turned
Python developer who shares stories, conference recaps, and recipes
at her cooking and coding blog Coding with Knives (http://
codingwithknives.com). She organizes PyLadiesATL and Django
Girls Atlanta and runs the weekly Django Girls “Your Django
Story” interview series for women in Python. Adrienne works as a
Support Engineer at Emma Inc., as Director of Advancement of
the Django Software Foundation, and is on the core team of Write
the Docs. She prefers a handwritten letter to email and has been
building out her stamp collection since childhood.

Monte Milanuk provided valuable feedback.

The Technical Review Team
Bill

Edward

Adrienne

www.EBooksWorld.ir

intro xxxvii

the intro

My editor: This edition’s editor is Dawn Schanafelt, and this book
is much, much better for Dawn’s involvement. Not only is Dawn a
great editor, but her eye for detail and the right way to express things
has greatly improved what’s written here. O’Reilly Media make a
habit of hiring bright, friendly, capable people, and Dawn is the very
personification of these attributes.

Acknowledgments and Thanks

The O’Reilly Media team: This edition of Head First Python took four years to write (it’s a long story). It’s only
natural, then, that a lot of people from the O’Reilly Media team were involved. Courtney Nash talked me into doing

“a quick rewrite” in 2012, then was on hand as the project’s scope ballooned. Courtney was this edition’s first editor, and
was on hand when disaster struck and it looked like this book was doomed. As things slowly got back on track, Courtney
headed off to bigger and better things within O’Reilly Media, handing over the editing reins in 2014 to the very busy
Meghan Blanchette, who watched (I’m guessing, with mounting horror) as delay piled upon delay, and this book
went on and off the tracks at regular intervals. Things were only just getting back to normal when Meghan went off
to pastures new, and Dawn took over as this book’s editor. That was one year ago, and the bulk of this book’s 12¾
chapters were written under Dawn’s ever-watchful eye. As I mentioned above, O’Reilly Media hires good people, and
Courtney and Meghan’s editing contributions and support are gratefully acknowledged. Elsewhere, thanks are due to
Maureen Spencer, Heather Scherer, Karen Shaner, and Chris Pappas for working away “behind the scenes.”
Thanks, also, to the invisible unsung heroes known as Production, who took my InDesign chapters and turned them
into this finished product. They did a great job.

A shout-out to Bert Bates who, together with Kathy Sierra, created this series of books with their wonderful Head
First Java. Bert spent a lot of time working with me to ensure this edition was firmly pointed in the right direction.

Friends and colleagues: My thanks again to Nigel Whyte (Head of the Department of Computing at the Institute
of Technology, Carlow) for supporting my involvement in this rewrite. Many of my students had a lot of this material
thrust upon them as part of their studies, and I hope they get a chuckle out of seeing one (or more) of their classroom
examples on the printed page.

Thanks once again to David Griffiths (my partner-in-crime on Head First Programming) for telling me at one
particularly low point to stop agonizing over everything and just write the damned thing! It was perfect advice, and it’s
great to know that David, together with Dawn (his wife and Head First coauthor), is only ever an email away. Be sure to
check out David and Dawn’s great Head First books.

Family: My family (wife Deirdre, and children Joseph, Aaron, and Aideen) had to endure four years of ups-and-
downs, fits-and-starts, huffs-and-puffs, and a life-changing experience from which we all managed to come through with
our wits, thankfully, still intact. This book survived, I survived, and our family survived. I’m very thankful and love them
all, and I know I don’t need to say this, but will: I do this for you guys.

The without-whom list: My technical review team did an excellent job: check out their mini-profiles on the previous
page. I considered all of the feedback they gave me, fixed all the errors they found, and was always rather chuffed when
any of them took the time to tell me what a great job I was doing. I’m very grateful to them all.

Dawn

www.EBooksWorld.ir

xxxviii intro

safari books online

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress,
Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and
hundreds more. For more information about Safari Books Online, please visit us
online.

www.EBooksWorld.ir

this is a new chapter 1

the basics1

Getting Started Quickly

Get going with Python programming as quickly as possible.
In this chapter, we introduce the basics of programming in Python, and we do this in

typical Head First style: by jumping right in. After just a few pages, you’ll have run your

first sample program. By the end of the chapter, you’ll not only be able to run the sample

program, but you’ll understand its code too (and more besides). Along the way, you’ll learn

about a few of the things that make Python the programming language it is. So, let’s not

waste any more time. Flip the page and let’s get going!

What’s Python? A nonvenomous
snake? A late 1960s comedy troupe?
A programming language? Gosh! It’s
all of these things!

Somebody’s obviously spent
far too many days at sea...

www.EBooksWorld.ir

2 Chapter 1

say hello—not!

Breaking with Tradit ion
Pick up almost any book on a programming language, and the first thing
you’ll see is the Hello World example.

I knew it—you’re
starting with “Hello,
World!”, aren’t you?

No, we aren’t.
This is a Head First book, and we do things
differently ’round here. With other books,
there is a tradition to start by showing you
how to write the Hello World program in the
language under consideration. However,
with Python, what you end up with is a
single statement that invokes Python’s
built-in print function, which displays
the traditional “Hello, World!” message
on screen. It’s almost too exciting...and it
teaches you next to nothing.

So, no, we aren’t going to show you the Hello
World program in Python, as there’s really
nothing to learn from it. We’re going to take
a different path...

Start ing with a meat ier example
Our plan for this chapter is to start with an example that’s somewhat larger
and, consequently, more useful than Hello World.

We’ll be right up front and tell you that the example we have is somewhat
contrived: it does do something, but may not be entirely useful in the long run.
That said, we’ve chosen it to provide a vehicle with which to cover a lot of
Python in as short a timespan as possible. And we promise by the time you’ve
worked through the first example program, you’ll know enough to write Hello
World in Python without our help.

www.EBooksWorld.ir

you are here 4 3

the basics

Jump Right In
If you haven’t already installed a version of Python 3 on your computer,
pause now and head on over to Appendix A for some step-by-step installation
instructions (it’ll only take a couple minutes, promise).

With the latest Python 3 installed, you’re ready to start programming
Python, and to help with this—for now—we’re going to use Python’s built-in
integrated development environment (IDE).

Python’s IDLE is al l you need to get going
When you install Python 3 on your computer, you also get a very simple yet
usable IDE called IDLE. Although there are many different ways in which to
run Python code (and you’ll meet a lot of them throughout this book), IDLE
is all you need when starting out.

Start IDLE on your computer, then use the File..."New File... menu option to
open a new editing window. When we did this on our computer, we ended up
with two windows: one called the Python Shell and another called Untitled:

Starting IDLE, then
choosing “File..."New
File...” results in two
windows appearing on
screen.

After you select File..."New File..., this window appears. Think of this as the “second window.”

This window pops
up first. Think of
it as the “first
window.”

www.EBooksWorld.ir

4 Chapter 1

let’s get going

Understanding IDLE’s Windows
Both of these IDLE windows are important.

The first window, the Python Shell, is a REPL environment used to run
snippets of Python code, typically a single statement at a time. The more
you work with Python, the more you’ll come to love the Python Shell,
and you’ll be using it a lot as you progress through this book. For now,
though, we are more interested in the second window.

The second window, Untitled, is a text editing window that can be used
to write complete Python programs. It’s not the greatest editor in the
world (as that honor goes to <insert your favorite text editor’s name here>), but
IDLE’s editor is quite usable, and has a bunch of modern features built
right in, including color-syntax handling and the like.

As we are jumping right in, let’s go ahead and enter a small Python
program into this window. When you are done typing in the code below,
use the File..."Save... menu option to save your program under the name
odd.py.

Be sure to enter the code exactly as shown here:

Geek Bits

What does REPL mean?

It‘s geek shorthand for “read-
eval-print-loop,” and describes an
interactive programming tool that
lets you experiment with snippets of
code to your heart’s desire. Find out
way more than you need to know by
visiting http://en.wikipedia.org/wiki/
Read-eval-print_loop.

Don’t worry about
what this code
does for now. Just
type it into the
editing window.
Be sure to save it
as “odd.py” before
continuing.

So...now what? If you’re anything like us, you can’t wait to run this code, right?
Let’s do this now. With your code in the edit window (as shown above), press the
F5 key on your keyboard. A number of things can happen...

www.EBooksWorld.ir

http://en.wikipedia.org/wiki/Read-eval-print_loop
http://en.wikipedia.org/wiki/Read-eval-print_loop

you are here 4 5

the basics

What Happens Next...
If your code ran without error, flip over to the next page, and keep going.

If you forgot to save your code before you tried to run it, IDLE complains, as
you have to save any new code to a file first. You’ll see a message similar to
this one if you didn’t save your code:

Click the OK button, then note where IDLE thinks the syntax error is: look
for the large red block in the edit window. Make sure your code matches ours
exactly, save your file again, and then press F5 to ask IDLE to execute your
code once more.

Click the OK button, then provide a name for your file. We’ve chosen odd
as the name for our file, and we’ve added a .py extension (which is a Python
convention well worth adhering to):

If your code now runs (having been saved), flip over to the next page, and keep
going. If, however, you have a syntax error somewhere in your code, you’ll see
this message:

By default, IDLE
won’t run code that
hasn’t been saved.

You are free to use
whatever name you
like for your program,
but it’s probably
best—if you’re
following along—to
stick to the same
name as us.

As you can no doubt
tell, IDLE isn’t great
at stating what the
syntax error is. But
click OK, and a large
red block indicates
where IDLE thinks
the problem is.

www.EBooksWorld.ir

6 Chapter 1

pressing F5 works!

Press F5 to Run Your Code
Pressing F5 executes the code in the currently selected IDLE text-editing
window—assuming, of course, that your code doesn’t contain a runtime error.
If you have a runtime error, you’ll see a Traceback error message (in red).
Read the message, then return to the edit window to make sure the code you
entered is exactly the same as ours. Save your amended code, then press F5
again. When we pressed F5, the Python Shell became the active window, and
here’s what we saw:

Depending on what time of day it is, you may have seen the Not an odd minute
message instead. Don’t worry if you did, as this program displays one or the
other message depending on whether your computer’s current time contains
a minute value that’s an odd number (we did say this example was contrived,
didn’t we?). If you wait a minute, then click the edit window to select it, then
press F5 again, your code runs again. You’ll see the other message this time
(assuming you waited the required minute). Feel free to run this code as often
as you like. Here is what we saw when we (very patiently) waited the required
minute:

Pressing F5 while in the
edit window runs your
code, then displays the
resulting output in the
Python Shell.

Let’s spend some time learning how this code runs.

From this point on, we’ll refer to “the IDLE text-editing window” simply as “the edit window.”

Don’t worry if you see a
different message. Read
on to learn why this is.

www.EBooksWorld.ir

you are here 4 7

the basics

Code Runs Immediate ly
When IDLE asks Python to run the code in the edit window, Python starts at
the top of the file and begins executing code straightaway.

For those of you coming to Python from one of the C-like languages, note
that there is no notion of a main() function or method in Python. There’s
also no notion of the familiar edit-compile-link-run process. With Python,
you edit your code and save it, and run it immediately.

Hang on a second. You said “IDLE asks
Python to run the code”...but isn’t Python the
programming language and IDLE the IDE? If so,
what’s actually doing the running here?!?

Oh, good catch. That is confusing.
Here’s what you need to know: “Python” is the name given to the
programming language and “IDLE” is the name given to the built-in
Python IDE.

That said, when you install Python 3 on your computer, an interpreter
is installed, too. This is the technology that runs your Python code. Rather
confusingly, this interpreter is also known by the name “Python.” By
right, everyone should use the more correct name when referring to this
technology, which is to call it “the Python interpreter.” But, alas, nobody
ever does.

Starting this very second, in this book, we’ll use the word “Python”
to refer to the language, and the word “interpreter” to refer to the
technology that runs your Python code. “IDLE” refers to the IDE, which
takes your Python code and runs it through the interpreter. It’s the
interpreter that does all the actual work here.

Q: Is the Python interpreter something like the Java VM?

A: Yes and no. Yes, in that the interpreter runs your code. But
no, in how it does it. In Python, there’s no real notion of your source
code being compiled into an “executable.” Unlike the Java VM, the
interpreter doesn’t run .class files, it just runs your code.

Q: But, surely, compilation has to happen at some stage?

A: Yes, it does, but the interpreter does not expose this process
to the Python programmer (you). All of the details are taken care of
for you. All you see is your code running as IDLE does all the heavy
lifting, interacting with the interpreter on your behalf. We’ll talk more
about this process as this book progresses.

www.EBooksWorld.ir

8 Chapter 1

step by step

Execut ing Code, One Statement at a Time
Here is the program code from page 4 again:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Let’s be the Python interpreter
Let’s take some time to run through this code in much the same way that the
interpreter does, line by line, from the top of the file to the bottom.

The first line of code imports some preexisting functionality from Python’s
standard library, which is a large stock of software modules providing lots
of prebuilt (and high-quality) reusable code.

In our code, we specifically request one submodule from the standard
library’s datetime module. The fact that the submodule is also called
datetime is confusing, but that’s how this works. The datetime
submodule provides a mechanism to work out the time, as you’ll see over the
next few pages.

This is the
name of the
submodule.

This is the name of the standard library module to import the reusable code from.

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

 ...

Remember: the interpreter starts at the top of the file and works down toward the bottom, executing each line of Python code as it goes.

Think of modules
as a collection of
related functions.

In this book, when we want you to pay particular
attention to a line of code, we highlight it (just
like we did here).

www.EBooksWorld.ir

you are here 4 9

the basics

Funct ions + Modules = The Standard Library
Python’s standard library is very rich, and provides a lot of reusable code.

Let’s look at another module, called os, which provides a platform-independent way
to interact with your underlying operating system (we’ll return to the datetime
module in a moment). Let’s concentrate on just one provided function, getcwd,
which—when invoked—returns your current working directory.

Here’s how you’d typically import, then invoke, this function within a Python program:

from os import getcwd

where_am_I = getcwd()Import the function
from its module...

...then invoke as
required.

getcwd

getcwd chmod
mkdir

getcwd chmod
mkdir

os

getcwd chmod
mkdir

getcwd chmod
mkdir

enum
getcwd chmod

mkdir

random

getcwd chmod
mkdir

json

getcwd chmod
mkdir

getcwd chmod
mkdir

datetime

getcwd chmod
mkdir

getcwd chmod
mkdir

timegetcwd chmod
mkdir

sys

getcwd chmod
mkdir

os

Functions are inside
modules inside the
standard library.

The function...

...is part of a
module...

...which comes as part of
the standard library.

A collection of related functions makes up a module, and there are lots of
modules in the standard library:

Don’t worry about what each of these modules does at this stage. We have a quick preview of some of them over the page, and will see more of the rest later in this book. www.EBooksWorld.ir

10 Chapter 1

digging deeper

Up Close with the Standard Library

The standard library is the jewel in Python’s crown, supplying reusable modules that help you with
everything from, for example, working with data, through manipulating ZIP archives, to sending emails,
to working with HTML. The standard library even includes a web server, as well as the popular SQLite
database technology. In this Up Close, we’ll present an overview of just a few of the most commonly used
modules in the standard library. To follow along, you can enter these examples as shown at your >>>
prompt (in IDLE). If you are currently looking at IDLE’s edit window, choose Run..."Python Shell from the
menu to access the >>> prompt.

Let’s start by learning a little about the system your interpreter is running on. Although Python prides
itself on being cross-platform, in that code written on one platform can be executed (generally unaltered)
on another, there are times when it’s important to know that you are running on, say, Mac OS X. The sys
module exists to help you learn more about your interpreter’s system. Here’s how to determine the identity
of your underlying operating system, by first importing the sys module, then accessing the platform
attribute:

>>> import sys
>>> sys.platform
'darwin'

The sys module is a good example of a reusable module that primarily provides access to preset attributes
(such as platform). As another example, here’s how to determine which version of Python is running,
which we pass to the print function to display on screen:

>>> print(sys.version)
3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)]

The os module is a good example of a reusable module that primarily yields functionality, as well as
providing a system-independent way for your Python code to interact with the underlying operating system,
regardless of exactly which operating system that is.

For example, here’s how to work out the name of the folder your code is operating within using the
getcwd function. As with any module, you begin by importing the module before invoking the function:

>>> import os
>>> os.getcwd()
'/Users/HeadFirst/CodeExamples'

You can access your system’s environment variables, as a whole (using the environ attribute) or
individually (using the getenv function):

>>> os.environ
'environ({'XPC_FLAGS': '0x0', 'HOME': '/Users/HeadFirst', 'TMPDIR': '/var/
folders/18/t93gmhc546b7b2cngfhz10l00000gn/T/', ... 'PYTHONPATH': '/Applications/
Python 3.4/IDLE.app/Contents/Resources', ... 'SHELL': '/bin/bash', 'USER':
'HeadFirst'})'
>>> os.getenv('HOME')
'/Users/HeadFirst'

Import the module you need, then access the attribute of interest. It looks like we are running “darwin”, which is the Mac OS X kernel name.

There’s a lot of information about
the Python version we’re running,
including that it’s 3.4.3.

Import the module, then invoke the functionality you need.
The “environ” attribute
contains lots
of data.

You can access a specifically named attribute (from the data contained in “environ”) using “getenv”.

www.EBooksWorld.ir

you are here 4 11

the basics

Up Close with the Standard Library, Continued

Working with dates (and times) comes up a lot, and the standard library provides the datetime module to
help when you’re working with this type of data. The date.today function provides today’s date:

>>> import datetime
>>> datetime.date.today()
datetime.date(2015, 5, 31)

That’s certainly a strange way to display today’s date, though, isn’t it? You can access the day, month, and
year values separately by appending an attribute access onto the call to date.today:

>>> datetime.date.today().day
31
>>> datetime.date.today().month
5
>>> datetime.date.today().year
2015

You can also invoke the date.isoformat function and pass in today’s date to display a much more user-
friendly version of today’s date, which is converted to a string by isoformat:

>>> datetime.date.isoformat(datetime.date.today())
'2015-05-31'

Today’s date

Today’s date as a string

The component parts of
today’s date

And then there’s time, which none of us seem to have enough of. Can the standard library tell us what time it
is? Yes. After importing the time module, call the strftime function and specify how you want the time
displayed. In this case, we are interested in the current time’s hours (%H) and minutes (%M) values in 24-hour
format:

>>> import time
>>> time.strftime("%H:%M")
'23:55'

How about working out the day of the week, and whether or not it’s before noon? Using the %A %p
specification with strftime does just that:

>>> time.strftime("%A %p")
'Sunday PM'

As a final example of the type of reusable functionality the standard library provides, imagine you have some
HTML that you are worried might contain some potentially dangerous <script> tags. Rather than
parsing the HTML to detect and remove the tags, why not encode all those troublesome angle brackets
using the escape function from the html module? Or maybe you have some encoded HTML that you’d
like to return to its original form? The unescape function can do that. Here are examples of both:

>>> import html
>>> html.escape("This HTML fragment contains a <script>script</script> tag.")
'This HTML fragment contains a <script>script</script> tag.'
>>> html.unescape("I ♥ Python's <standard library>.")
"I ♥ Python's <standard library>."

Converting
to and
from HTML
encoded text

Good heavens! Is that the time?

We’ve now worked out that it’s five minutes to midnight
on Sunday evening...time for bed, perhaps?

www.EBooksWorld.ir

12 Chapter 1

everything you need

Batteries Included

I guess this is what
people mean by the term

“Python comes with batteries
included,” right?

Yes. That’s what they mean.
As the standard library is so rich, the thinking is all
you need to be immediately productive with
the language is to have Python installed.

Unlike Christmas morning, when you open
your new toy only to discover that it doesn’t
come with batteries, Python doesn’t disappoint;
it comes with everything you need to get going.
And it’s not just the modules in the standard
library that this thinking applies to: don’t forget
the inclusion of IDLE, which provides a small,
yet usable, IDE right out of the box.

All you have to do is code.

Q: How am I supposed to work out what any particular
module from the standard library does?

A: .The Python documentation has all the answers on
the standard library. Here’s the kicking-off point: https://docs.
python.org/3/library/index.html.

Geek Bits

The standard library isn’t the only place you’ll
find excellent importable modules to use with
your code. The Python community also supports a
thriving collection of third-party modules, some of
which we’ll explore later in this book. If you want a
preview, check out the community-run repository:
http://pypi.python.org.

www.EBooksWorld.ir

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
http://pypi.python.org/

you are here 4 13

the basics

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

 ...

Data Structures Come Built-in
As well as coming with a top-notch standard library, Python also has some
powerful built-in data structures. One of these is the list, which can be
thought of as a very powerful array. Like arrays in many other languages, lists
in Python are enclosed within square brackets ([]).

The next three lines of code in our program (shown below) assign a literal
list of odd numbers to a variable called odds. In this code, odds is a list of
integers, but lists in Python can contain any data of any type, and you can even
mix the types of data in a list (if that’s what you’re into). Note how the odds
list extends over three lines, despite being a single statement. This is OK, as
the interpreter won’t decide a single statement has come to an end until it
finds the closing bracket (]) that matches the opening one ([). Typically, the
end of the line marks the end of a statement in Python, but there
can be exceptions to this general rule, and multiline lists are just one of them
(we’ll meet the others later).

This is a new
variable, called
“odds”, which is
assigned a list of
odd numbers.

This is the list of odd numbers, enclosed in square brackets. This single statement extends over three lines, which is OK.

There are lots of things that can be done with lists, but we’re going to defer
any further discussion until a later chapter. All you need to know now is that
this list now exists, has been assigned to the odds variable (thanks to the use of
the assignment operator, =), and contains the numbers shown.

Python variables are dynamically assigned
Before getting to the next line of code, perhaps a few words are needed about
variables, especially if you are one of those programmers who might be used
to predeclaring variables with type information before using them (as is the
case in statically typed programming languages).

In Python, variables pop into existence the first time you use them, and their
type does not need to be predeclared. Python variables take their type
information from the type of the object they’re assigned. In our program, the
odds variable is assigned a list of numbers, so odds is a list in this case.

Let’s look at another variable assignment statement. As luck would have it,
this just so happens to also be the next line of code in our program.

Python comes with all
the usual operators,
including <, >, <=, >=,
==, !=, as well as the
= assignment operator.

Like arrays, lists
can hold data of
any type.

www.EBooksWorld.ir

14 Chapter 1

assignment is everywhere

Invoking Methods Obtains Results
The third line of code in our program is another assignment statement.

Unlike the last one, this one doesn’t assign a data structure to a variable, but instead assigns
the result of a method call to another new variable, called right_this_minute. Take
another look at the third line of code:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Here’s another
variable being
created and
assigned a value.

This call generates
a value to assign to
the variable.

Invoking built-in module funct ionality
The third line of code invokes a method called today that comes with the datetime
submodule, which is itself part of the datetime module (we did say this naming strategy was
a little confusing). You can tell today is being invoked due to the standard postfix parentheses:
().

When today is invoked, it returns a “time object,” which contains many pieces of information
about the current time. These are the current time’s attributes, which you can access via the
customary dot-notation syntax. In this program, we are interested in the minute attribute,
which we can access by appending .minute to the method invocation, as shown above. The
resulting value is then assigned to the right_this_minute variable. You can think of this
line of code as saying: create an object that represents today’s time, then extract the value of the minute
attribute before assigning it to a variable. It is tempting to split this single line of code into two lines
to make it “easier to understand,” as follows:

time_now = datetime.today()

right_this_minute = time_now.minute

You’ll see
more of the
dot-notation
syntax later
in this book.

You can do this (if you like), but most Python programmers prefer not to create the temporary
variable (time_now in this example) unless it’s needed at some point later in the program.

First, determine the
current time.... ...then extract the

minute value.

www.EBooksWorld.ir

you are here 4 15

the basics

Deciding When to Run Blocks of Code
At this stage we have a list of numbers called odds. We also have a minute value
called right_this_minute. In order to work out whether the current minute
value stored in right_this_minute is an odd number, we need some way of
determining if it is in the odds list. But how do we do this?

It turns out that Python makes this type of thing very straightforward. As well
as including all the usual comparison operators that you’d expect to find in any
programming language (such as >, <, >=, <=, and so on), Python comes with a few

“super” operators of its own, one of which is in.

The in operator checks if one thing is inside another. Take a look at the next line of
code in our program, which uses the in operator to check whether right_this_
minute is inside the odds list:

 ...

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

 ...

The in operator returns either True or False. As you’d expect, if the value in
right_this_minute is in odds, the if statement evaluates to True, and the
block of code associated with the if statement executes.

Blocks in Python are easy to spot, as they are always indented.

In our program there are two blocks, which each contain a single call to the print
function. This function can display messages on screen (and we’ll see lots of uses of it
throughout this book). When you enter this program code into the edit window, you
may have noticed that IDLE helps keep you straight by indenting automatically. This
is very useful, but do be sure to check that IDLE’s indentation is what you want:

This “if” statement
will evaluate to either
“True” or “False”.

The “in” operator
is powerful. It can
determine whether
one thing is inside
another.

 ...

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Here is one
block of code.
Note: the code
is indented.

And here is another block of code.
Note: it’s indented, too.

Did you notice that there are no curly braces here?

The “print” function displays a message on standard output (i.e., your screen).

www.EBooksWorld.ir

16 Chapter 1

no curly braces

What Happened to My Curly Braces?
If you are used to a programming language that uses curly braces ({ and })
to delimit blocks of code, encountering blocks in Python for the first time can
be disorienting, as Python doesn’t use curly braces for this purpose. Python
uses indentation to demarcate a block of code, which Python programmers
prefer to call suite as opposed to block (just to mix things up a little).

It’s not that curly braces don’t have a use in Python. They do, but—as we’ll
see in Chapter 3—curly braces have more to do with delimiting data than
they have to do with delimiting suites (i.e., blocks) of code.

Suites within any Python program are easy to spot, as they are always
indented. This helps your brain quickly identify suites when reading code.
The other visual clue for you to look out for is the colon character (:), which
is used to introduce a suite that’s associated with any of Python’s control
statements (such as if, else, for, and the like). You’ll see lots of examples
of this usage as you progress through this book.

A colon introduces an indented suite of code
The colon (:) is important, in that it introduces a new suite of code that must
be indented to the right. If you forget to indent your code after a colon, the
interpreter raises an error.

Not only does the if statement in our example have a colon, the else has
one, too. Here’s all the code again:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Colons introduce
indented suites.

Instead of referring
to a code “block,”
Python programmers
use the word “suite.”
Both names are used
in practice, but the
Python docs prefer
“suite.”

We’re nearly done. There’s just one final statement to discuss.

www.EBooksWorld.ir

you are here 4 17

the basics

What “e lse” Can You Have with “if”?
We are nearly done with the code for our example program, in that there is
only one line of code left to discuss. It is not a very big line of code, but it’s
an important one: the else statement that identifies the block of code that
executes when the matching if statement returns a False value.

Take a closer look at the else statement from our program code, which we
need to unindent to align with the if part of this statement:

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")
See the colon?

I guess if there’s an “else”,
there must also be an “else if”,
or does Python spell it “elseif”?

Neither. Python spells it elif.
If you have a number of conditions that you need to
check as part of an if statement, Python provides
elif as well as else. You can have as many elif
statements (each with its own suite) as needed.

Here’s a small example that assumes a variable
called today is previously assigned a string
representing whatever today is:

if today == 'Saturday':
 print('Party!!')
elif today == 'Sunday':
 print('Recover.')
else:
 print('Work, work, work.')

Three individual
suites: one for
the “if”, another
for the “elif”,
and the final
catch-all for
the “else”.

Did you spot
that the “else” is
unindented to align
with the “if”?

It is a very common
slip-up for Python
newbies to forget
the colon when
first writing code.

www.EBooksWorld.ir

18 Chapter 1

indent like crazy

Suites Can Contain Embedded Suites
Any suite can contain any number of embedded suites, which also have to be
indented. When Python programmers talk about embedded suites, they tend
to talk about levels of indentation.

The initial level of indentation for any program is generally referred to as the
first or (as is so common when it comes to counting with many programming
languages) indentation level zero. Subsequent levels are referred to as the
second, third, fourth, and so on (or level one, level two, level three, and so on).

Here’s a variation on the today example code from the last page. Note how
an embedded if/else has been added to the if statement that executes
when today is set to 'Sunday'. We’re also assuming another variable called
condition exists and is set to a value that expresses how you’re currently
feeling. We’ve indicated where each of the suites is, as well as at which level of
indentation it appears:

if today == 'Saturday':
 print('Party!')
elif today == 'Sunday':
 if condition == 'Headache':
 print('Recover, then rest.')
 else:
 print('Rest.')
else:
 print('Work, work, work.')

This single line of code is a suite.

These single
lines of code
are both
suites.

This single line of code is
a suite.

These four
lines of code
are a suite

Indentation
level zero

Indentation
level twoIndentation

level one

It is important to note that code at the same level of indentation is only
related to other code at the same level of indentation if all the code appears
within the same suite. Otherwise, they are in separate suites, and it does
not matter that they share a level of indentation. The key point is that
indentation is used to demarcate suites of code in Python.

www.EBooksWorld.ir

you are here 4 19

the basics

What We Already Know
With the final few lines of code discussed, let’s pause to review what
the odd.py program has told us about Python:

That’s a long list
for such a short program!
So...what’s the plan for the
rest of this chapter?

Let’s extend this program to do more.
It’s true that we needed more lines to describe what this short
program does than we actually needed to write the code. But
this is one of the great strengths of Python: you can get a lot
done with a few lines of code.

Review the list above once more, and then turn the page to
make a start on seeing what our program’s extensions will be.

 � Python comes with a built-in IDE called IDLE, which
lets you create, edit, and run your Python code—all
you need to do is type in your code, save it, and then
press F5.

 � IDLE interacts with the Python interpreter, which
automates the compile-link-run process for you. This
lets you concentrate on writing your code.

 � The interpreter runs your code (stored in a file) from
top to bottom, one line at a time. There is no notion of
a main() function/method in Python.

 � Python comes with a powerful standard library, which
provides access to lots of reusable modules (of which
datetime is just one example).

 � There is a collection of standard data structures
available to you when you're writing Python
programs. The list is one of them, and is very similar
in notion to an array.

 � The type of a variable does not need to be declared.
When you assign a value to a variable in Python, it
dynamically takes on the type of the data it refers to.

 � You make decisions with the if/elif/else
statement. The if, elif, and else keywords
precede blocks of code, which are known in the
Python world as “suites.”

 � It is easy to spot suites of code, as they are always
indented. Indentation is the only code grouping
mechanism provided by Python.

 � In addition to indentation, suites of code are also
preceded by a colon (:). This is a syntactical
requirement of the language.

www.EBooksWorld.ir

20 Chapter 1

now what?

Extending Our Program to Do More
Let’s extend our program in order to learn a bit more Python.

At the moment, the program runs once, then terminates. Imagine that we
want this program to execute more than once; let’s say five times. Specifically,
let’s execute the “minute checking code” and the if/else statement five
times, pausing for a random number of seconds between each message
display (just to keep things interesting). When the program terminates, five
messages should be on screen, as opposed to one.

Here’s the code again, with the code we want to run multiple times circled:

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:

 print("This minute seems a little odd.")

else:

 print("Not an odd minute.")

Let’s tweak
the program to
run this code a
number of times.

What we need to do:

Loop over the encircled code.
A loop lets us iterate over any suite, and Python provides a number of ways to do just that. In this
case (and without getting into why), we’ll use Python’s for loop to iterate.

1

Pause execution.
Python’s standard time module provides a function called sleep that can pause execution for an
indicated number of seconds.

2

Generate a random number.
Happily, another Python module, random, provides a function called randint that we can use
to generate a random number. Let’s use randint to generate a number between 1 and 60, then
use that number to pause the execution of our program on each iteration.

3

We now know what we want to do. But is there a
preferred way of going about making these changes?

www.EBooksWorld.ir

you are here 4 21

the basics

What’s the Best Approach to Solv ing
This Problem?

You know what you need to do: put
your head down, read the docs, and
work out the Python code you need
to solve this problem. When you’ve
done this, you’re ready to change
your program as needed...

That approach works, but I’m more
of an experimenter myself. I like to
try out small snippets of code before
I commit to making changes to my
working program. I’m happy to read
the docs, but like to experiment too...

Both approaches work with Python
You can follow both of these approaches when working with Python, but most
Python programmers favor experimentation when trying to work out what
code they need for a particular situation.

Don’t get us wrong: we are not suggesting that Bob’s approach is wrong and
Laura’s is right. It’s just that Python programmers have both options available
to them, and the Python Shell (which we met briefly at the start of this
chapter) makes experimentation a natural choice for Python programmers.

Let’s determine the code we need in order to extend our program, by
experimenting at the >>> prompt.

Bob Laura

Experimenting at
the >>> prompt
helps you work out
the code you need.

www.EBooksWorld.ir

22 Chapter 1

shell experiments

Returning to the Python Shell
Here’s how the Python Shell looked the last time we interacted with it (yours might
look a little different, as your messages may have appeared in an alternate order):

The Python Shell (or just “shell” for short) has displayed our program’s messages, but
it can do so much more than this. The >>> prompt allows you to enter any Python
code statement and have it execute immediately. If the statement produces output, the
shell displays it. If the statement results in a value, the shell displays the calculated
value. If, however, you create a new variable and assign it a value, you need to enter
the variable’s name at the >>> prompt to see what value it contains.

Check out the example interactions, shown below. It is even better if you follow along
and try out these examples at your shell. Just be sure to press the Enter key to terminate
each program statement, which also tells the shell to execute it now:

The shell displays a message on screen as a result of this code statement executing (don’t forget to press Enter).
If you perform a calculation, the shell displays the
resulting value (after you press Enter).

Assigning a value to a variable does not display the
variable’s value. You have to specifically ask the
shell to do so.

www.EBooksWorld.ir

you are here 4 23

the basics

Experiment ing at the Shell
Now that you know you can type a single Python statement into the >>> prompt
and have it execute immediately, you can start to work out the code you need to
extend your program.

Here’s what you need your new code to do:

Loop a specified number of times. We’ve already decided to use
Python’s for loop here.

Pause the program for a specified number of seconds. The sleep
function from the standard library’s time module can do this.

Generate a random number between two provided values. The
randint function from the random module will do the trick.

Rather than continuing to show you complete IDLE screenshots, we’re only
going to show you the >>> prompt and any displayed output. Specifically, from
this point onward, you’ll see something like the following instead of the earlier
screenshots:

>>> print('Hello Mum!')
Hello Mum!

The shell prompt

The single code statement, which you need to type in (followed by a press of the Enter key)

The output resulting from executing
the single code statement, which is
shown in blue in your shell

Over the next few pages, we’re going to experiment to figure out how to add
the three features listed above. We’ll play with code at the >>> prompt until we
determine exactly the statements we need to add to our program. Leave the odd.
py code as is for now, then make sure the shell window is active by selecting it.
The cursor should be blinking away to the right of the >>> , waiting for you to
type some code.

Flip the page when you’re ready. Let the experiments begin.

www.EBooksWorld.ir

24 Chapter 1

repeat yourself

Iterat ing Over a Sequence of Objects
We said earlier that we were going to employ Python’s for loop here. The
for loop is perfect for controlling looping when you know ahead of time how
many iterations you need. (When you don’t know, we recommend the while
loop, but we’ll save discussing the details of this alternate looping construct
until we actually need it). At this stage, all we need is for, so let’s see it in
action at the >>> prompt.

We present three typical uses of for. Let’s see which one best fits our needs.

Use “for” when
looping a known
number of times.

Usage example 1. This for loop, below, takes a list of numbers and
iterates once for each number in the list, displaying the current number on
screen. As it does so, the for loop assigns each number in turn to a loop
iteration variable, which is given the name i in this code.

As this code is more than a single line, the shell indents automatically for you
when you press Enter after the colon. To signal to the shell that you are done
entering code, press Enter twice at the end of the loop’s suite:

>>> for i in [1, 2, 3]:
 print(i)

1
2
3

As this is a suite, you need to press the Enter key TWICE after typing in this code in order to terminate the statement and see it execute.
Note the indentation and colon. Like if statements, the code associated with a
for statement needs to be indented.

Usage example 2. This for loop, below, iterates over a string, with
each character in the string being processed during each iteration. This
works because a string in Python is a sequence. A sequence is an ordered
collection of objects (and we’ll see lots of examples of sequences in this book),
and every sequence in Python can be iterated over by the interpreter.

Nowhere did you have to tell the for loop how big the string is. Python is smart
enough to work out when the string ends, and arranges to terminate (i.e., end)
the for loop on your behalf when it exhausts all the objects in the sequence.

>>> for ch in "Hi!":
 print(ch)

H
i
!

Python is smart enough to work out that this
string should be iterated over one-character
at a time (and that’s why we used “ch” as
the loop variable name here).

We used “i” as the loop iteration variable in
this example, but we could’ve called it just
about anything. Having said that, “i”, “j”,
and “k” are incredibly popular among most
programmers in this situation.

A sequence is an
ordered collection
of objects.

www.EBooksWorld.ir

you are here 4 25

the basics

Iterat ing a Specif ic Number of Times
In addition to using for to iterate over a sequence, you can be more exact
and specify a number of iterations, thanks to the built-in function called
range.

Let’s look at another usage example that showcases using range.

Usage example 3. In its most basic form, range accepts a single integer
argument that dictates how many times the for loop runs (we’ll see other
uses of range later in this book). In this loop, we use range to generate a
list of numbers that are assigned one at a time to the num variable:

The for loop didn’t use the num loop iteration variable anywhere in the
loop’s suite. This did not raise an error, which is OK, as it is up to you (the
programmer) to decide whether or not num needs to be processed further in
the suite. In this case, doing nothing with num is fine.

>>> for num in range(5):
 print('Head First Rocks!')

Head First Rocks!
Head First Rocks!
Head First Rocks!
Head First Rocks!
Head First Rocks!

We asked for a range of five numbers, so we iterated five times, which results in five messages. Remember: press Enter twice to run code that has a suite.

It looks like our “for”
loop experiments are about
to pay off. Are we done with
the first task?

Indeed we are. Task #1 is complete.
The three usage examples show that Python’s for loop is
what we need to use here, so let’s take the technique shown
in Usage example 3 and use it to iterate a specified number
of times using a for loop.

www.EBooksWorld.ir

26 Chapter 1

make that change

Applying the Outcome of Task #1 to Our Code
Here’s how our code looked in IDLE’s edit window before we worked on Task #1:

You now know that you can use a for loop to repeat the five lines of code at the
bottom of this program five times. The five lines will need to be indented under the
for loop, as they are going to form the loop’s suite. Specifically, each line of code
needs to be indented once. However, don’t be tempted to perform this action on each
individual line. Instead, let IDLE indent the entire suite for you in one go.

Begin by using your mouse to select the lines of code you want to indent:

This is the
code we
want to
repeat.

Use your mouse
to select the
lines of code
you want to
indent.

www.EBooksWorld.ir

you are here 4 27

the basics

Indent Suites with Format...Indent Region
With the five lines of code selected, choose Indent Region from the Format menu in
IDLE’s edit window. The entire suite moves to the right by one indentation level:

The Indent Region
option from the
Format menu
indents all of the
selected lines of
code in one go.

Note that IDLE also has a Dedent Region menu option, which unindents suites, and
that both the Indent and Dedent menu commands have keyboard shortcuts, which differ
slightly based on the operating system you are running. Take the time to learn the
keyboard shortcuts that your system uses now (as you’ll use them all the time). With the
suite indented, it’s time to add the for loop:

Add the
“for”
loop line.

The “for”
loop’s suite
is properly
indented.

www.EBooksWorld.ir

28 Chapter 1

feeling sleepy?

Arranging to Pause Execut ion
Let’s remind ourselves of what we need this code to do:

Loop a specified number of times.

Pause the program for a specified number of seconds.

Generate a random number between two provided values.

We’re now ready to return to the shell and try out some more code to help
with the second task: pause the program for a specified number of seconds.

However, before we do that, recall the opening line of our program, which
imported a specifically named function from a specifically named module:

>>> import time
>>>

This tells the shell to
import the “time” module.

from datetime import datetime

When the import statement is used as it is with the time module above,
you get access to the facilities provided by the module without anything
expressly named being imported into your program’s code. To access a
function provided by a module imported in this way, use the dot-notation
syntax to name it, as shown here:

>>> time.sleep(5)
>>>

This usage of “import” brings in the named function to your program. You can then invoke it without using the dot-notation syntax.

Name the module
first (before
the period). Specify the function you want

to invoke (after the period).Note that when you invoke sleep in this way, the shell pauses for five
seconds before the >>> prompt reappears. Go ahead, and try it now.

This is one way to import a function into your program. Another equally
common technique is to import a module without being specific about the
function you want to use. Let’s use this second technique here, as it will
appear in many Python programs you’ll come across.

As mentioned earlier in this chapter, the sleep function can pause execution
for a specified number of seconds, and is provided by the standard library’s
time module. Let’s import the module first, without mentioning sleep just
yet:

This is the number of seconds to sleep for.

www.EBooksWorld.ir

you are here 4 29

the basics

Importat ion Confusion

Hang on a second...Python supports two
importation mechanisms? Doesn’t that get
kind of confusing?

That’s a great question.
Just to be clear, there aren’t two importation mechanisms in
Python, as there is only one import statement. However, the
import statement can be used in two ways.

The first, which we initially saw in our example program,
imports a named function into our program’s namespace,
which then allows us to invoke the function as necessary without
having to link the function back to the imported module. (The
notion of a namespace is important in Python, as it defines the
context within which your code runs. That said, we’re going to
wait until a later chapter to explore namespaces in detail).

In our example program, we use the first importation technique,
then invoke the datetime function as datetime(), not as
datetime.datetime().

The second way to use import is to just import the module, as
we did when experimenting with the time module. When we
import this way, we have to use the dot-notation syntax to access
the module’s functionality, as we did with time.sleep().

Q: Is there a correct way to use import?

A: It can often come down to personal preference, as some programmers like to be very specific, while others don’t. However, there is a
situation that occurs when two modules (we’ll call them A and B) have a function of the same name, which we’ll call F. If you put from A
import F and from B import F in your code, how is Python to know which F to invoke when you call F()? The only way you
can be sure is to use the nonspecific import statement (that is, put import A and import B in your code), then invoke the specific
F you want using either A.F() or B.F() as needed. Doing so negates any confusion.

www.EBooksWorld.ir

30 Chapter 1

every now and again

Generat ing Random Integers with Python
Although it is tempting to add import time to the top of our program, then
call time.sleep(5) in the for loop’s suite, we aren’t going to do this right
now. We aren’t done with our experimentations. Pausing for five seconds isn’t
enough; we need to be able to pause for a random amount of time. With that in
mind, let’s remind ourselves of what we’ve done, and what remains:

Loop a specified number of times.

Pause the program for a specified number of seconds.

Generate a random number between two provided values.

Once we have this last task completed, we can get back to confidently changing
our program to incorporate all that we’ve learned from our experimentations.
But we’re not there yet—let’s look at the last task, which is to generate a random
number.

As with sleeping, the standard library can help here, as it includes a module called
random. With just this piece of information to guide us, let’s experiment at the
shell:

>>> import random
>>>

Now what? We could look at the Python docs or consult a Python reference
book...but that involves taking our attention away from the shell, even though it
might only take a few moments. As it happens, the shell provides some additional
functions that can help here. These functions aren’t meant to be used within
your program code; they are designed for use at the >>> prompt. The first is
called dir, and it displays all the attributes associated with anything in Python,
including modules:

>>> dir(random)
['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF',
'Random', ... 'randint', 'random', 'randrange',
'sample', 'seed', 'setstate', 'shuffle', 'triangular',
'uniform', 'vonmisesvariate', 'weibullvariate']

This is an abridged list. What you’ll see on your screen is much longer.

This list has a lot in it. Of interest is the randint() function. To learn more
about randint, let’s ask the shell for some help.

Buried in the middle of this long list is the name of the function we need.

Use “dir” to
query an
object.

www.EBooksWorld.ir

you are here 4 31

the basics

Asking the Interpreter for Help
Once you know the name of something, you can ask the shell for help. When
you do, the shell displays the section from the Python docs related to the name
you’re interested in.

Let’s see this mechanism in action at the >>> prompt by asking for help with
the randint function from the random module:

>>> help(random.randint)
Help on method randint in module random:

randint(a, b) method of random.Random instance
 Return random integer in range [a, b], including
 both end points.

Ask for help at
the >>> prompt...

...and see the associated
documentation right in the shell.

A quick read of the displayed docs for the randint function confirms what
we need to know: if we provide two integers to randint, we get back a
random integer from the resulting inclusive range.

A few final experiments at the >>> prompt show the randint function in
action:

>>> random.randint(1,60)
27
>>> random.randint(1,60)
34
>>> random.randint(1,60)
46

If you’re following along, what you’ll see on your screen will vary, as the integers returned by “randint” are generated randomly.

Because you imported the “random” module using “import random”, you
need to remember to prefix the call to “randint” with the module name

and a dot. So it’s “random.randint()” and not “randint()”.

With this, you are now in a position to place a satisfying check mark against
the last of our tasks, as you now know enough to generate a random number
between two provided values:

Generate a random number between two provided values.

It’s time to return to our program and make our changes.

Geek Bits

You can recall the last
command(s) typed into
the IDLE >>> prompt
by typing Alt-P when
using Linux or Windows.
On Mac OS X, use Ctrl-P.
Think of the “P” as
meaning “previous.”

Use “help”
to read the
Python docs.

www.EBooksWorld.ir

32 Chapter 1

what we now know

Reviewing Our Experiments
Before you forge ahead and change your program, let’s quickly review the
outcome of our shell experiments.

We started by writing a for loop, which iterated five times:

>>> for num in range(5):
 print('Head First Rocks!')

Head First Rocks!
Head First Rocks!
Head First Rocks!
Head First Rocks!
Head First Rocks!

We asked for a range of five numbers, so we iterated five times, which results in five messages.

Then we used the sleep function from the time module to pause execution
of our code for a specified number of seconds:

>>> import time
>>> time.sleep(5)

The shell imports the “time” module, letting us
invoke the “sleep” function.

And then we experimented with the randint function (from the random
module) to generate a random integer from a provided range:

>>> import random
>>> random.randint(1,60)
12
>>> random.randint(1,60)
42
>>> random.randint(1,60)
17

Note: different integers are generated once more, as “randint” returns a different random integer each time it’s invoked.

We can now put all of this together and change our program.

Let’s remind ourselves of what we decided to do earlier in this chapter: have
our program iterate, executing the “minute checking code” and the if/
else statement five times, and pausing for a random number of seconds
between each iteration. This should result in five messages appearing on
screen before the program terminates.

www.EBooksWorld.ir

you are here 4 33

the basics

Code Experiments Magnets
Based on the specification at the bottom of the last page, as well as
the results of our experimentations, we went ahead and did some
of the required work for you. But, as we were arranging our code
magnets on the fridge (don’t ask) someone slammed the door, and
now some of our code’s all over the floor.

Your job is to put everything back together, so that we can run the
new version of our program and confirm that it’s working as required.

random.randint(1, 60)

import random
import time

for i in range(5):

wait_time

time.sleep

Decide which code
magnet goes in each
of the dashed-line
locations.

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

 right_this_minute = datetime.today().minute

 if right_this_minute in odds:

 print("This minute seems a little odd.")

 else:

 print("Not an odd minute.")

 wait_time =

 ()

Where do
all these
go?

www.EBooksWorld.ir

34 Chapter 1

rearranged code

Code Experiments Magnets Solution
Based on the specification from earlier, as well as the results of our
experimentations, we went ahead and did some of the required work
for you. But, as we were arranging our code magnets on the fridge
(don’t ask) someone slammed the door, and now some of our code’s all
over the floor.

Your job was to put everything back together, so that we could run the
new version of our program and confirm that it’s working as required.

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

 right_this_minute = datetime.today().minute

 if right_this_minute in odds:

 print("This minute seems a little odd.")

 else:

 print("Not an odd minute.")

 wait_time =

 ()

import time

import random

for i in range(5):

random.randint(1, 60)

wait_timetime.sleep

You don’t have to
put your imports
at the top of your
code, but it is a
well-established
convention among
Python programmers
to do so.

All of this code
is indented
under the “for”
statement, as it
is all part of the “for” statement’s suite. Remember: Python does not use curly braces to delimit suites; it

uses indentation
instead.

The “for”
loop iterates
EXACTLY
five times.

The “randint” function
provides a random
integer that is assigned
to a new variable called
“wait_time”, which...

...is then used in the call to “sleep” to pause the program’s execution for a random number of seconds.

www.EBooksWorld.ir

you are here 4 35

the basics

Test Drive
Let’s try running our upgraded program in IDLE to see what happens. Change your version
of odd.py as needed, then save a copy of your new program as odd2.py. When you’re
ready, press F5 to execute your code.

When you press F5 to
run this code...

...you should see output similar to this. Just remember that your output will differ, as the random numbers your program generates most likely won’t match ours.

Don’t worry if you see a different list of messages
than those shown here. You should see five messages,
as that’s how many times the loop code runs.

www.EBooksWorld.ir

36 Chapter 1

update our list

Updat ing What We Already Know
With odd2.py working, let’s pause once more to review the new
things we’re learned about Python from these last 15 pages:

Q: Do I have to remember all this stuff?

A: No, and don’t freak out if your brain is resisting the insertion of everything seen so far. This is only the first chapter, and we’ve designed it
to be a quick introduction to the world of Python programming. If you’re getting the gist of what’s going on with this code, then you’re doing fine.

 � When trying to determine the code that they
need to solve a particular problem, Python
programmers often favor experimenting with code
snippets at the shell.

 � If you’re looking at the >>> prompt, you’re at the
Python Shell. Go ahead: type in a single Python
statement and see what happens when it runs.

 � The shell takes your line of code and sends it to
the interpreter, which then executes it. Any results
are returned to the shell and are then displayed
on screen.

 � The for loop can be used to iterate a fixed
number of times. If you know ahead of time how
many times you need to loop, use for.

 � When you don’t know ahead of time how often
you’re going to iterate, use Python’s while loop
(which we have yet to see, but—don’t worry—we
will see it in action later).

 � The for loop can iterate over any sequence
(like a list or a string), as well as execute a fixed
number of times (thanks to the range function).

 � If you need to pause the execution of your
program for a specified number of seconds, use
the sleep function provided by the standard
library’s time module.

 � You can import a specific function from a module.
For example, from time import sleep
imports the sleep function, letting you invoke it
without qualification.

 � If you simply import a module—for example,
import time—you then need to qualify the
usage of any of the module’s functions with the
module name, like so: time.sleep().

 � The random module has a very useful function
called randint that generates a random
integer within a specified range.

 � The shell provides two interactive functions that
work at the >>> prompt. The dir function lists
an object’s attributes, whereas help provides
access to the Python docs.

www.EBooksWorld.ir

you are here 4 37

the basics

Phew! That’s another
big list...

It is, but we are on a roll here.
It’s true we’ve only touched on a small amount
of the Python language so far. But what we’ve
looked at has been very useful.

What we’ve seen so far helps to demonstrate
one of Python’s big selling points: a few lines of
code do a lot. Another of the language’s claims
to fame is this: Python code is easy to read.

In an attempt to prove just how easy, we
present on the next page a completely different
program that you already know enough about
Python to understand.

Who’s in the mood for a nice, cold beer?

A Few Lines of Code Do a Lot

www.EBooksWorld.ir

38 Chapter 1

serious about beer

Coding a Serious Business Applicat ion
With a tip of the hat to Head First Java, let’s take a look at the Python version of
that classic’s first serious application: the beer song.

Shown below is a screenshot of the Python version of the beer song code. Other
than a slight variation on the usage of the range function (which we’ll discuss in
a bit), most of this code should make sense. The IDLE edit window contains the
code, while the tail end of the program’s output appears in a shell window:

Dealing with all that beer...
With the code shown above typed
into an IDLE edit window and saved,
pressing F5 produces a lot of output in
the shell. We’ve only shown a little bit
of the resulting output in the window
on the right, as the beer song starts
with 99 bottles of beer on the wall and
counts down until there’s no more beer.
In fact, the only real twist in this code
is how it handles this “counting down,”
so let’s take a look at how that works
before looking at the program’s code in
detail.

Running this code produces this output in the shell.

www.EBooksWorld.ir

you are here 4 39

the basics

Python Code Is Easy to Read

That code really is easy
to read. But what’s the
catch?

There isn’t one!
When most programmers new to Python
first encounter code like that of the beer
song, they assume that something’s got to
give somewhere else.

There has to be a catch, doesn’t there?

No, there doesn’t. It’s not by accident that
Python code is easy to read: the language
was designed with that specific goal in mind.
Guido van Rossum, the language’s creator,
wanted to create a powerful programming
tool that produced code that was easy to
maintain, which meant code created in
Python has to be easy to read, too.

www.EBooksWorld.ir

40 Chapter 1

losing your mind?

Is Indentat ion Dri v ing You Crazy?

Hang on a second. All this
indentation is driving me crazy.
Surely that’s the catch?

Indentation takes time to get used to.
Don’t worry. Everyone coming to Python from a “curly-
braced language” struggles with indentation at first. But it
does get better. After a day or two of working with Python,
you’ll hardly notice you’re indenting your suites.

One problem that some programmers do have with
indentation occurs when they mix tabs with spaces. Due to
the way the interpreter counts whitespace, this can lead
to problems, in that the code “looks fine” but refuses to run.
This is frustrating when you're starting out with Python.

Our advice: don’t mix tabs with spaces in your Python code.

In fact, we’d go even further and advise you to configure
your editor to replace a tap of the Tab key with four spaces
(and while you’re at it, automatically remove any trailing
whitespace, too). This is the well-established convention
among many Python programmers, and you should
follow it, too. We’ll have more to say about dealing with
indentation at the end of this chapter.

Gett ing back to the beer song code
If you take a look at the invocation of range in the beer song, you’ll notice
that it takes three arguments as opposed to just one (as in our first example
program).

Take a closer look, and without looking at the explanation on the next page,
see if you can work out what’s going on with this call to range:

This is new: the call to “range” takes three arguments, not one.

www.EBooksWorld.ir

you are here 4 41

the basics

Asking the Interpreter for Help on a
Funct ion
Recall that you can use the shell to ask for help with anything to do with
Python, so let’s ask for some help with the range function.

When you do this in IDLE, the resulting documentation is more than a
screen’s worth and it quickly scrolls off the screen. All you need to do is scroll
back in the window to where you asked the shell for help (as that’s where the
interesting stuff about range is):

>>> help(range)
Help on class range in module builtins:

class range(object)
 | range(stop) -> range object
 | range(start, stop[, step]) -> range object
 |
 | Return a sequence of numbers from start to stop by step.
 ...

This looks like it will give us
what we need here.

The “range” function can be invoked in one of two ways.

Start ing , stopping , and stepping
As range is not the only place you’ll come across start, stop, and step,
let’s take a moment to describe what each of these means, before looking at
some representative examples (on the next page):

The START value lets you control from WHERE the range begins.
So far, we’ve used the single-argument version of range, which—from the documentation—
expects a value for stop to be provided. When no other value is provided, range defaults to
using 0 as the start value, but you can set it to a value of your choosing. When you do, you
must provide a value for stop. In this way, range becomes a multi-argument invocation.

1

The STOP value lets you control WHEN the range ends.
We’ve already seen this in use when we invoked range(5) in our code. Note that the range
that’s generated never contains the stop value, so it’s a case of up-to-but-not-including stop.

2

The STEP value lets you control HOW the range is generated.
When specifying start and stop values, you can also (optionally) specify a value for step. By
default, the step value is 1, and this tells range to generate each value with a stride of 1; that
is, 0, 1, 2, 3, 4, and so on. You can set step to any value to adjust the stride taken. You can
also set step to a negative value to adjust the direction of the generated range.

3

www.EBooksWorld.ir

42 Chapter 1

home on the range

Experiment ing with Ranges
Now that you know a little bit about start, stop, and step, let’s experiment at
the shell to learn how we can use the range function to produce many different
ranges of integers.

To help see what’s going on, we use another function, list, to transform
range’s output into a human-readable list that we can see on screen:

This is how we used “range” in our first program.

Feeding the output from “range” to “list” produces a list.

We can adjust the START and STOP values for “range”.

It is also possible to adjust the STEP value.

Things get really interesting when you adjust the
range’s direction by negating the STEP value.

After all of our experimentations, we arrive at a range invocation (shown last,
above) that produces a list of values from 99 down to 1, which is exactly what
the beer song’s for loop does:

The call to “range” takes three
arguments: start, stop, and step.

>>> range(5)
range(0, 5)

>>> list(range(5))
[0, 1, 2, 3, 4]

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]

>>> list(range(10, 0, -2))
[10, 8, 6, 4, 2]

>>> list(range(10, 0, 2))
[]

>>> list(range(99, 0, -1))
[99, 98, 97, 96, 95, 94, 93, 92, ... 5, 4, 3, 2, 1]

Python won’t stop you from being silly. If your START
value is bigger than your STOP value, and STEP is positive,

you get back nothing (in this case, an empty list).

www.EBooksWorld.ir

you are here 4 43

the basics

Here again is the beer code, which has been spread out over the
entire page so that you can concentrate on each line of code
that makes up this “serious business application.”

Grab your pencil and, in the spaces provided, write in what you
thought each line of code does. Be sure to attempt this yourself
before looking at what we came up with on the next page. We’ve
got you started by doing the first line of code for you.

word = "bottles"

for beer_num in range(99, 0, -1):

 print(beer_num, word, "of beer on the wall.")

 print(beer_num, word, "of beer.")

 print("Take one down.")

 print("Pass it around.")

 if beer_num == 1:

 print("No more bottles of beer on the wall.")

 else:

 new_num = beer_num - 1

 if new_num == 1:

 word = "bottle"

 print(new_num, word, "of beer on the wall.")

 print()

Assign the value “bottles” (a string) to a
new variable called “word”.

www.EBooksWorld.ir

44 Chapter 1

beer explained

word = "bottles"

for beer_num in range(99, 0, -1):

 print(beer_num, word, "of beer on the wall.")

 print(beer_num, word, "of beer.")

 print("Take one down.")

 print("Pass it around.")

 if beer_num == 1:

 print("No more bottles of beer on the wall.")

 else:

 new_num = beer_num - 1

 if new_num == 1:

 word = "bottle"

 print(new_num, word, "of beer on the wall.")

 print()

Assign the value “bottles” (a string) to a
new variable called “word”.
Loop a specified number of times, from
99 down to none. Use “beer_num” as the
loop iteration variable.
The four calls to the print function
display the current iteration’s song
lyrics, “99 bottles of beer on the wall. 99
bottles of beer. Take one down. Pass it
around.”, and so on with each iteration.
Check to see if we are on the last
passed-around beer...
And if we are, end the song lyrics.
Otherwise...
Remember the number of the next beer in
another variable called “new_num”.
If we’re about to drink our last beer...
Change the value of the “word” variable
so the last lines of the lyric make sense.
Complete this iteration’s song lyrics.
At the end of this iteration, print a
blank line. When all the iterations are
complete, terminate the program.

Here again is the beer code, which has been spread out over the
entire page so that you can concentrate on each line of code
that makes up this “serious business application.”

You were to grab your pencil and then, in the spaces provided,
write in what you thought each line of code does. We did the first
line of code for you to get you started.

How did you get on? Are your explanations similar to ours?

www.EBooksWorld.ir

you are here 4 45

the basics

Don’t Forget to Try the Beer Song Code
If you haven’t done so already, type the beer song code into IDLE, save it as beersong.py,
and then press F5 to take it for a spin. Do not move on to the next chapter until you have a working beer
song.

Wrapping up what you already know
Here are some new things you learned as a result of working through (and
running) the beer song code:

With all the beer gone, what’s next?
That’s it for Chapter 1. In the next chapter, you are going to learn a bit more
about how Python handles data. We only just touched on lists in this chapter,
and it’s time to dive in a little deeper.

Q: I keep getting errors when I try to run my beer
song code. But my code looks fine to me, so I’m a little
frustrated. Any suggestions?

A: The first thing to check is that you have your
indentation right. If you do, then check to see if you have
mixed tabs with spaces in your code. Remember: the code
will look fine (to you), but the interpreter refuses to run it. If
you suspect this, a quick fix is to bring your code into an
IDLE edit window, then choose Edit..."Select All from the
menu system, before choosing Format..."Untabify Region.
If you’ve mixed tabs with spaces, this will convert all your
tabs to spaces in one go (and fix any indentation issues).

You can then save your code and press F5 to try running it
again. If it still refuses to run, check that your code is exactly
the same as we presented in this chapter. Be very careful
of any spelling mistakes you may have made with your
variable names.

Q: The Python interpreter won’t warn me if I misspell
new_num as nwe_num?

A: No, it won’t. As long as a variable is assigned a value,
Python assumes you know what you’re doing, and continues
to execute your code. It is something to watch for, though,
so be vigilant.

 � Indentation takes a little time to get used to. Every
programmer new to Python complains about
indentation at some point, but don’t worry: soon
you’ll not even notice you’re doing it.

 � If there’s one thing that you should never, ever
do, it’s mix tabs with spaces when indenting
your Python code. Save yourself some future
heartache, and don’t do this.

 � The range function can take more than one
argument when invoked. These arguments let you
control the start and stop values of the generated
range, as well as the step value.

 � The range function’s step value can also be
specified with a negative value, which changes the
direction of the generated range

www.EBooksWorld.ir

46 Chapter 1

the code

Chapter 1’s Code

from datetime import datetime

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

right_this_minute = datetime.today().minute

if right_this_minute in odds:
 print("This minute seems a little odd.")
else:
 print("Not an odd minute.")

from datetime import datetime

import random
import time

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

for i in range(5):
 right_this_minute = datetime.today().minute
 if right_this_minute in odds:
 print("This minute seems a little odd.")
 else:
 print("Not an odd minute.")
 wait_time = random.randint(1, 60)
 time.sleep(wait_time)

word = "bottles"
for beer_num in range(99, 0, -1):
 print(beer_num, word, "of beer on the wall.")
 print(beer_num, word, "of beer.")
 print("Take one down.")
 print("Pass it around.")
 if beer_num == 1:
 print("No more bottles of beer on the wall.")
 else:
 new_num = beer_num - 1
 if new_num == 1:
 word = "bottle"
 print(new_num, word, "of beer on the wall.")
 print()

We started with the “odd.py”
program, then...

... extended the code to
create “odd2.py”, which ran
the “minute checking code”
five times (thanks to the use
of Python’s “for” loop).

We concluded this chapter with the Python version of the Head First classic “beer song.” And, yes, we know: it’s hard not to work on this code without singing along... §

www.EBooksWorld.ir

this is a new chapter 47

list data2

Working with Ordered Data

All programs process data, and Python programs are no exception.
In fact, take a look around: data is everywhere. A lot of, if not most, programming is all about

data: acquiring data, processing data, understanding data. To work with data effectively, you need

somewhere to put your data when processing it. Python shines in this regard, thanks (in no small

part) to its inclusion of a handful of widely applicable data structures: lists, dictionaries, tuples, and

sets. In this chapter, we’ll preview all four, before spending the majority of this chapter digging deeper

into lists (and we’ll deep-dive into the other three in the next chapter). We’re covering these data

structures early, as most of what you’ll likely do with Python will revolve around working with data.

This data would be
sooooo much easier to
work with...if only I’d
arranged it as a list.

www.EBooksWorld.ir

48 Chapter 2

variable basics

Numbers, Strings...and Objects
Working with a single data value in Python works just like you’d expect it to.
Assign a value to a variable, and you’re all set. With help from the shell, let’s
look at some examples to recall what we learned in the last chapter.

Numbers
Let’s assume that this example has already imported the random module.
We then call the random.randint function to generate a random number
between 1 and 60, which is then assigned to the wait_time variable. As
the generated number is an integer, that’s what type wait_time is in this
instance:

>>> wait_time = random.randint(1, 60)
>>> wait_time
26

>>> word = "bottles"
>>> word
'bottles'

Note how you didn’t have to tell the interpreter that wait_time is going to
contain an integer. We assigned an integer to the variable, and the interpreter
took care of the details (note: not all programming languages work this way).

Strings
If you assign a string to a variable, the same thing happens: the interpreter
takes care of the details. Again, we do not need to declare ahead of time that
the word variable in this example is going to contain a string:

This ability to dynamically assign a value to a variable is central to Python’s
notion of variables and type. In fact, things are more general than this in that
you can assign anything to a variable in Python.

Objects
In Python everything is an object. The means that numbers, strings, functions,
modules—everything—is an object. A direct consequence of this is that all
objects can be assigned to variables. This has some interesting ramifications,
which we’ll start learning about on the next page.

Everything is an
object in Python,
and any object
can be assigned
to a variable.

A variable
takes on the
type of the
value assigned.

www.EBooksWorld.ir

you are here 4 49

data

“Everything Is an Object”
Any object can be dynamically assigned to any variable in Python. Which begs the
question: what’s an object in Python? The answer: everything is an object.

All data values in Python are objects, even though—on the face of things—“Don’t
panic!” is a string and 42 is a number. To Python programmers, “Don’t panic!” is a
string object and 42 is a number object. Like in other programming languages, objects can
have state (attributes or values) and behavior (methods).

All this talk of “objects” can
mean only one thing: Python is object-
oriented, right?

Sort of.
You can certainly program Python in an object-oriented way
using classes, objects, instances, and so on (more on all of this later
in this book), but you don’t have to. Recall the programs from the
last chapter...none of them needed classes. Those programs just
contained code, and they worked fine.

Unlike some other programming languages (most notably, Java),
you do not need to start with a class when first creating code in
Python: you just write the code you need.

Now, having said all that (and just to keep you on your toes),
everything in Python behaves as if it is an object derived from some
class. In this way, you can think of Python as being more object-
based as opposed to purely object-oriented, which means that
object-oriented programming is optional in Python.

But...what does all this actually mean?
As everything is an object in Python, any “thing” can be assigned to any variable, and
variables can be assigned anything (regardless of what the thing is: a number, a string, a
function, a widget...any object). Tuck this away in the back of your brain for now; we’ll
return to this theme many times throughout this book.

There’s really not a lot more to storing single data values in variables. Let’s now take a
look at Python’s built-in support for storing a collection of values.

www.EBooksWorld.ir

50 Chapter 2

data structures 101

Meet the Four Built-in Data Structures
Python comes with four built-in data structures that you can use to hold any
collection of objects, and they are list, tuple, dictionary, and set.

Note that by “built-in” we mean that lists, tuples, dictionaries, and sets are always
available to your code and they do not need to be imported prior to use: each of these
data structures is part of the language.

Over the next few pages, we present an overview of all four of these built-in data
structures. You may be tempted to skip over this overview, but please don’t.

If you think you have a pretty good idea what a list is, think again. Python’s list
is more similar to what you might think of as an array, as opposed to a linked-list,
which is what often comes to mind when programmers hear the word “list.” (If
you’re lucky enough not to know what a linked-list is, sit back and be thankful).

Python’s list is the first of two ordered-collection data structures:

A list is like
an array—
the objects
it stores
are ordered
sequentially
in slots.

List: an ordered mutable collection of objects
A list in Python is very similar to the notion of an array in other
programming languages, in that you can think of a list as being an indexed
collection of related objects, with each slot in the list numbered from zero
upward.

Unlike arrays in a lot of other programming languages, though, lists are
dynamic in Python, in that they can grow (and shrink) on demand. There
is no need to predeclare the size of a list prior to using it to store any objects.

Lists are also heterogeneous, in that you do not need to predeclare the type
of the object you’re storing—you can mix’n’match objects of different types
in the one list if you like.

Lists are mutable, in that you can change a list at any time by adding,
removing, or changing objects.

1

Lists can
dynamically shrink
and grow to any
size.

Objects are stored in individual slots in the list.

As with arrays, slots are numbered from zero upward...these are “index values.”
object

object

object

object

object

List

0

1

2

3

4

www.EBooksWorld.ir

you are here 4 51

data

A tuple
is an
immutable
list.

Tuple: an ordered immutable collection of objects
A tuple is an immutable list. This means that once you assign objects to a tuple,
the tuple cannot be changed under any circumstance.

It is often useful to think of a tuple as a constant list.

Most new Python programmers scratch their head in bemusement when they
first encounter tuples, as it can be hard to work out their purpose. After all,
what use is a list that cannot change? It turns out that there are plenty of use
cases where you’ll want to ensure that your objects can’t be changed by your (or
anyone else’s) code. We’ll return to tuples in the next chapter (as well as later in
this book) when we talk about them in a bit more detail, as well as use them.

2

Ordered Collect ions Are Mutable/Immutable
Python’s list is an example of a mutable data structure, in that it can change (or
mutate) at runtime. You can grow and shrink a list by adding and removing objects as
needed. It’s also possible to change any object stored in any slot. We’ll have lots more
to say about lists in a few pages’ time as the remainder of this chapter is devoted to
providing a comprehensive introduction to using lists.

When an ordered list-like collection is immutable (that is, it cannot change), it’s
called a tuple:

Tuples are like lists,
except once created
they CANNOT
change. Tuples are
constant lists.

Tuples use index
values, too (just
like lists).

object

object

object

Tuple

0

1

2

Lists and tuples are great when you want to present data in an ordered way (such as a
list of destinations on a travel itinerary, where the order of destinations is important).
But sometimes the order in which you present the data isn’t important. For instance,
you might want to store some user’s details (such as their id and password), but you
may not care in what order they’re stored (just that they are). With data like this, an
alternative to Python’s list/tuple is needed.

www.EBooksWorld.ir

52 Chapter 2

data structures 201

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Dictionaries associate keys
with values, and (like lists) can
dynamically shrink and grow to
any size.

Keys
Values

A dictionary
stores key/
value pairs.

Dictionary: an unordered set of key/value pairs
Depending on your programming background, you may already know what a
dictionary is, but you may know it by another name, such as associative array,
map, symbol table, or hash.

Like those other data structures in those other languages, Python’s dictionary
allows you to store a collection of key/value pairs. Each unique key has a value
associated with it in the dictionary, and dictionaries can have any number of
pairs. The values associated with a key can be any object.

Dictionaries are unordered and mutable. It can be useful to think of Python’s
dictionary as a two-columned, multirow data structure. Like lists, dictionaries
can grow (and shrink) on demand.

3

An Unordered Data Structure: Dict ionary
If keeping your data in a specific order isn’t important to you, but structure
is, Python comes with a choice of two unordered data structures: dictionary
and set. Let’s look at each in turn, starting with Python’s dictionary.

Something to watch out for when using a dictionary is that you cannot rely
upon the internal ordering used by the interpreter. Specifically, the order
in which you add key/value pairs to a dictionary is not maintained by the
interpreter, and has no meaning (to Python). This can stump programmers
when they first encounter it, so we’re making you aware of it now so that
when we meet it again—and in detail—in the next chapter, you’ll get less of a
shock. Rest assured: it is possible to display your dictionary data in a specific
order if need be, and we’ll show you how to do that in the next chapter, too.

www.EBooksWorld.ir

you are here 4 53

data

A Data Structure That Avoids Duplicates: Set
The final built-in data structure is the set, which is great to have at hand when you want
to remove duplicates quickly from any other collection. And don’t worry if the mention
of sets has you recalling high school math class and breaking out in a cold sweat.
Python’s implementation of sets can be used in lots of places.

object b
object f

object a object e

object d

object c

Set

Think of a set
as a collection of
unordered unique
items—no duplicates
allowed.

The 80/20 data structure rule of thumb
The four built-in data structures are useful, but they don’t cover every possible data
need. However, they do cover a lot of them. It’s the usual story with technologies
designed to be generally useful: about 80% of what you need to do is covered, while
the other, highly specific, 20% requires you to do more work. Later in this book, you’ll
learn how to extend Python to support any bespoke data requirements you may
have. However, for now, in the remainder of this chapter and the next, we’re going to
concentrate on the 80% of your data needs.

The rest of this chapter is dedicated to exploring how to work with the first of our four
built-in data structures: the list. We’ll get to know the remaining three data structures,
dictionary, set, and tuple, in the next chapter.

A set does not
allow duplicate
objects.

Set: an unordered set of unique objects
In Python, a set is a handy data structure for remembering a collection of
related objects while ensuring none of the objects are duplicated.

The fact that sets let you perform unions, intersections, and differences is an
added bonus (especially if you are a math type who loves set theory).

Sets, like lists and dictionaries, can grow (and shrink) as needed. Like dictionaries,
sets are unordered, so you cannot make assumptions about the order of the
objects in your set. As with tuples and dictionaries, you’ll get to see sets in action
in the next chapter.

4

www.EBooksWorld.ir

54 Chapter 2

lists are everywhere

object

object

object

object

object

List

0

1

2

3

4

A List Is an Ordered Collect ion of Objects
When you have a bunch of related objects and you need to put them somewhere
in your code, think list. For instance, imagine you have a month’s worth of daily
temperature readings; storing these readings in a list makes perfect sense.

Whereas arrays tend to be homogeneous affairs in other programming languages,
in that you can have an array of integers, or an array of strings, or an array of
temperature readings, Python’s list is less restrictive. You can have a list of objects,
and each object can be of a differing type. In addition to being heterogeneous,
lists are dynamic: they can grow and shrink as needed.

Before learning how to work with lists, let’s spend some time learning how to spot
lists in Python code.

How to spot a list in code
Lists are always enclosed in square brackets, and the objects contained within
the list are always separated by a comma.

Recall the odds list from the last chapter, which contained the odd numbers from
0 through 60, as follows:

 ...

odds = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

 41, 43, 45, 47, 49, 51, 53, 55, 57, 59]

 ...

The list starts with an
opening square bracket.

The list ends with a closing square bracket.The data values (a.k.a. “the
objects”) are separated from one
another by a comma.

A list of the
odd numbers

When a list is created where the objects are assigned to a new list directly in
your code (as shown above), Python programmers refer to this as a literal
list, in that the list is created and populated in one go.

The other way to create and populate a list is to “grow” the list in code,
appending objects to the list as the code executes. We’ll see an example of
this method later in this chapter.

Let’s look at some literal list examples.

Lists can be
created literally
or “grown” in code.

www.EBooksWorld.ir

you are here 4 55

data

object

object

object

object

object

List

0

1

2

3

4

Creat ing Lists Literally
Our first example creates an empty list by assigning [] to a variable called prices:

prices = []

Here’s a list of temperatures in degrees Fahrenheit, which is a list of floats:

temps = [32.0, 212.0, 0.0, 81.6, 100.0, 45.3]

words = ['hello', 'world']

How about a list of the most famous words in computer programming? Here they are:

car_details = ['Toyota', 'RAV4', 2.2, 60807]

Here’s a list of car details. Note how it is OK to store data of mixed types in a list.
Recall that a list is “a collection of related objects.” The two strings, one float, and one
integer in this example are all Python objects, so they can be stored in a list if needed:

everything = [prices, temps, words, car_details]

Our two final examples of literal lists exploit the fact that—as in the last example—
everything is an object in Python. Like strings, floats, and integers, lists are objects, too.
Here’s an example of a list of list objects:

odds_and_ends = [[1, 2, 3], ['a', 'b', 'c'],

 ['One', 'Two', 'Three']]

And here’s an example of a literal list of literal lists:

Lists inside
of a list

Don’t worry if
these last two
examples are
freaking you
out. We won’t
be working with
anything as complex
as this until a later
chapter.

The variable name is on the left of the
assignment operator...

...and the “literal list” is on the right. In this case, the list is empty.

Objects (in this case, some floats) are
separated by commas and surrounded by square brackets—it’s a list.

A list of
string objects

A list of
objects
of
differing
type

www.EBooksWorld.ir

56 Chapter 2

lists at work

A list of the
five vowels

>>> vowels = ['a', 'e', 'i', 'o', 'u']

>>> for letter in word:
 if letter in vowels:
 print(letter)

i
i
a

Here’s a word
to check.

Take each letter in the word...

...and if it is in the “vowels” list...

...display the letter on screen.

The output from this code confirms the identity of the vowels in the word “Milliways”.

With vowels defined, we now need a word to check, so let’s create a
variable called word and set it to "Milliways":

Working with lists
We’ll use the shell to first define a list called vowels, then check to see if
each letter in a word is in the vowels list. Let’s define a list of vowels:

Let’s use this code as the basis for our working with lists.

object

object

object

object

object

List

0

1

2

3

4

Putt ing Lists to Work
The literal lists on the last page demonstrate how quickly lists can be created
and populated in code. Type in the data, and you’re off and running.

In a page or two, we’ll cover the mechanism that allows you to grow (or
shrink) a list while your program executes. After all, there are many situations
where you don’t know ahead of time what data you need to store, nor how
many objects you’re going to need. In this case, your code has to grow (or

“generate”) the list as needed. You’ll learn how to do that in a few pages’ time.

For now, imagine you have a requirement to determine whether a given
word contains any of the vowels (that is, the letters a, e, i, o, or u). Can we use
Python’s list to help code up a solution to this problem? Let’s see whether we
can come up with a solution by experimenting at the shell.

>>> word = "Milliways"

Is one object inside another? Check with “in”
If you remember the programs from Chapter 1, you will recall that we
used Python’s in operator to check for membership when we needed to ask
whether one object was inside another. We can take advantage of in again
here:

Geek Bits

We’re only using the letters
aeiou as vowels, even though
the letter y is considered to be
both a vowel and a consonant.

www.EBooksWorld.ir

you are here 4 57

data

Use Your Editor When Working on More
Than a Few Lines of Code
In order to learn a bit more about how lists work, let’s take this code and
extend it to display each found vowel only once. At the moment, the code
displays each vowel more than once on output if the word being searched
contains more than one instance of the vowel.

First, let’s copy and paste the code you’ve just typed from the shell into a new
IDLE edit window (select File..."New File... from IDLE’s menu). We’re going
to be making a series of changes to this code, so moving it into the editor
makes perfect sense. As a general rule, when the code we’re experimenting
with at the >>> prompt starts to run to more than a few lines, we find it more
convenient to use the editor. Save your five lines of code as vowels.py.

When copying code from the shell into the editor, be careful not to include
the >>> prompt in the copy, as your code won’t run if you do (the interpreter
will throw a syntax error when it encounters >>>).

When you’ve copied your code and saved your file, your IDLE edit window
should look like this:

Your list example code
saved as “vowels.py” inside
an IDLE edit window.

Don’t forget: press F5 to run your program
With the code in the edit window, press F5 and then watch as IDLE jumps to
a restarted shell window, then displays the program’s output:

object

object

object

object

object

List

0

1

2

3

4

As expected, this output matches what we produced at the bottom of the last page, so we’re good to go.
www.EBooksWorld.ir

58 Chapter 2

one at a time

“Growing” a List at Runt ime
Our current program displays each found vowel on screen, including any
duplicates found. In order to list each unique vowel found (and avoid displaying
duplicates), we need to remember any unique vowels that we find, before
displaying them on screen. To do this, we need to use a second data structure.

We can’t use the existing vowels list because it exists to let us quickly determine
whether the letter we’re currently processing is a vowel. We need a second list that
starts out empty, as we’re going to populate it at runtime with any vowels we find.

As we did in the last chapter, let’s experiment at the shell before making any
changes to our program code. To create a new, empty list, decide on a new
variable name, then assign an empty list to it. Let’s call our second list found.
Here we assign an empty list ([]) to found, then use Python’s built-in function
len to check how many objects are in a collection:

object

object

object

object

object

List

0

1

2

3

4

>>> found = []
>>> len(found)
0

Lists come with a collection of built-in methods that you can use to manipulate
the list’s objects. To invoke a method use the dot-notation syntax: postfix the list’s
name with a dot and the method invocation. We’ll meet more methods later in
this chapter. For now, let’s use the append method to add an object to the end of
the empty list we just created:

>>> found.append('e')
>>> found.append('i')
>>> found.append('o')
>>> len(found)
4
>>> found
['a', 'e', 'i' 'o']

Repeated calls to the append method add more objects onto the end of the list:

>>> found.append('a')
>>> len(found)
1
>>> found
['a']

An empty list...

...which the interpreter (thanks
to “len”) confirms has no objects.

Add to an existing list at runtime
using the “append” method.

The length of the list has now increased.

Asking the shell to display the contents of the list
confirms the object is now part of the list.

More runtime
additions

Once again, we use the shell to confirm all is in order.

The “len” built-
in function
reports on the
size of an object.

Let’s now look at what’s involved in checking whether a list contains an object.

Lists come with a
bunch of built-in
methods.

www.EBooksWorld.ir

you are here 4 59

data

 ...
if right_this_minute in odds:
 print("This minute seems a little odd.")
 ...

The “in” operator
checks for
membership.

Would it not be better to
use a set here? Isn’t a set a
better choice when you're
trying to avoid duplicates?

Good catch. A set might be better here.
But, we’re going to hold off on using a set until the next
chapter. We’ll return to this example when we do. For now,
concentrate on learning how a list can be generated at
runtime with the append method.

Checking for Membership with “in”
We already know how to do this. Recall the “Millyways” example from a few
pages ago, as well as the odds.py code from the previous chapter, which
checked to see whether a calculated minute value was in the odds list:

Is the object “in” or “not in”?
As well as using the in operator to check whether an object is contained
within a collection, it is also possible to check whether an object does not exist
within a collection using the not in operator combination.

Using not in allows you to append to an existing list only when you know
that the object to be added isn’t already part of the list:

>>> if 'u' not in found:
 found.append('u')

>>> found
['a', 'e', 'i' 'o', 'u']
>>>
>>> if 'u' not in found:
 found.append('u')

>>> found
['a', 'e', 'i' 'o', 'u']

This first invocation of “append” works, as “u” does not currently exist within the “found” list (as you saw on the previous page, the list contained [‘a’, ‘e’, ‘i’, ‘o’]).

This next invocation of “append”
does not execute, as “u” already
exists in “found” so does not need
to be added again.

object

object

object

object

object

List

0

1

2

3

4

www.EBooksWorld.ir

60 Chapter 2

unique vowels only

It’s Time to Update Our Code
Now that we know about not in and append, we can change our code with
some confidence. Here’s the original code from vowels.py again:

Save a copy of this code as vowels2.py so that we can make our changes to
this new version while leaving the original code intact.

We need to add in the creation of an empty found list. Then we need some extra
code to populate found at runtime. As we no longer display the found vowels as
we find them, another for loop is required to process the letters in found, and
this second for loop needs to execute after the first loop (note how the indentation
of both loops is aligned below). The new code you need is highlighted:

vowels = ['a', 'e', 'i', 'o', 'u']
word = "Milliways"
for letter in word:
 if letter in vowels:
 print(letter)

The original
“vowels.py”
code

This code displays
the vowels in “word”
as they are found.

vowels = ['a', 'e', 'i', 'o', 'u']
word = "Milliways"
found = []
for letter in word:
 if letter in vowels:
 if letter not in found:
 found.append(letter)
for vowel in found:
 print(vowel)

This is
“vowels2.py”.

Start with
an empty list. Include the code that decides whether to update the list of found vowels.

When this first “for” loop terminates, this second one gets to run, and it displays the vowels found in “word”.
Let’s make a final tweak to this code to change the line that sets word to

“Milliways” to be more generic and more interactive.

Changing the line of code that reads:

 word = "Milliways"
to:
 word = input("Provide a word to search for vowels: ")

instructs the interpreter to prompt your user for a word to search for vowels. The
input function is another piece of built-in goodness provided by Python.

Do this!

Make the change as suggested
on the left, then save your
updated code as vowels3.py.

object

object

object

object

object

List

0

1

2

3

4

www.EBooksWorld.ir

you are here 4 61

data

Test Drive
With the change at the bottom of the last page applied, and this latest version of your program
saved as vowels3.py, let’s take this program for a few spins within IDLE. Remember: to run your
program multiple times, you need to return to the IDLE edit window before pressing the F5 key.

Here’s our version
of “vowels3.py”
with the “input”
edit applied.

Our output confirms that this small program is working as expected, and it even does the right thing
when the word contains no vowels. How did you get on when you ran your program in IDLE?

And here are our
test runs...

www.EBooksWorld.ir

62 Chapter 2

manipulating lists

Removing Objects from a List
Lists in Python are just like arrays in other languages, and then some.

The fact that lists can grow dynamically when more space is needed (thanks
to the append method) is a huge productivity boon. Like a lot of other
things in Python, the interpreter takes care of the details for you. If the list
needs more memory, the interpreter dynamically allocates as much memory
as needed. Likewise, when a list shrinks, the interpreter dynamically reclaims
memory no longer needed by the list.

Other methods exist to help you manipulate lists. Over the next four pages
we introduce four of the most useful methods: remove, pop, extend, and
insert:

object

object

object

object

object

List

0

1

2

3

4

remove: takes an object’s value as its sole argument
The remove method removes the first occurrence of a specified data value from a list. If
the data value is found in the list, the object that contains it is removed from the list (and
the list shrinks in size by one). If the data value is not in the list, the interpreter will raise an
error (more on this later):

1

This is *not* an index value, it’s the value to remove.

>>> nums = [1, 2, 3, 4]
>>> nums
[1, 2, 3, 4]

>>> nums.remove(3)
>>> nums
[1, 2, 4]

1 432
This is what the
“nums” list looks like
before the call
to the “remove”
method.

1 42
After the call
to “remove”, the
object with 3 as
its value is gone.

www.EBooksWorld.ir

you are here 4 63

data

pop: takes an optional index value as its argument
The pop method removes and returns an object from an existing list based on the
object’s index value. If you invoke pop without specifying an index value, the last
object in the list is removed and returned. If you specify an index value, the object
in that location is removed and returned. If a list is empty or you invoke pop with
a nonexistent index value, the interpreter raises an error (more on this later).

Objects returned by pop can be assigned to a variable if you so wish, in which case
they are retained. However, if the popped object is not assigned to a variable, its
memory is reclaimed and the object disappears.

2

This is an index value. Zero corresponds to the first object in the list (the number 1).

>>> nums.pop()
4
>>> nums
[1, 2]

>>> nums.pop(0)
1

>>> nums
[2]

At this point, “nums”
has been reduced to
a single-item list.

Popping Objects Off a List
The remove method is great for when you know the value of the object you
want to remove. But often it is the case that you want to remove an object
from a specific index slot.

For this, Python provides the pop method:
object

object

object

object

object

List

0

1

2

3

4

1 42Before “pop” is called,
we have a list with
three objects.

1

4

2

1

2

The “pop” method returns the removed object, which is reclaimed.

After the
“pop”, the list
shrinks.

As before, “pop”
returns the removed
object. Once again,
the object is
reclaimed by the
interpreter.

The “nums” list has shrunk to a single-item list.

You didn’t tell “pop” which item to remove, so it operates on the last item in the list.

www.EBooksWorld.ir

64 Chapter 2

growing your list

extend: takes a list of objects as its sole argument
The extend method takes a second list and adds each of its objects to an existing
list. This method is very useful for combining two lists into one:

3

Extending a List with Objects
You already know that append can be used to add a single object to an existing
list. Other methods can dynamically add data to a list, too:

object

object

object

object

object

List

0

1

2

3

4

Using an empty list here is valid, if a little silly (as you’re adding no items to the end of an existing list). If you’d instead called “append([])”, an empty list would be added to the end of the existing list, but—in this example—using “extend([])” does nothing.

>>> nums.extend([3, 4])
[2, 3, 4]

>>> nums.extend([])
[2, 3, 4]

2
This is what
the “nums” list
currently looks like:
it is a single-item
list.

2 43

We've extended this “nums”
list by taking each of the
objects in the provided list
and appending its objects.

2 43Because the empty list used to
extend the “nums” list contained
no objects, nothing changes.

Provide a list of objects to append to the existing list.

www.EBooksWorld.ir

you are here 4 65

datalist data

insert: takes an index value and an object as its arguments
The insert method inserts an object into an existing list before a specified index
value. This lets you insert the object at the start of an existing list or anywhere
within the list. It is not possible to insert at the end of the list, as that’s what the
append method does:

4

Insert ing an Object into a List
The append and extend methods get a lot of use, but they are restricted to
adding objects onto the end (the righthand side) of an existing list. Sometimes,
you’ll want to add to the beginning (the lefthand side) of a list. When this is the
case, you’ll want to use the insert method.

object

object

object

object

object

List

0

1

2

3

4

>>> nums.insert(0, 1)
>>> nums
[1, 2, 3, 4]

The index of the object
to insert *before*

The value (aka “object”) to insert

After all that removing, popping, extending, and inserting, we’ve ended up with the
same list we started with a few pages ago: [1, 2, 3, 4].

Note how it’s also possible to use insert to add an object into any slot in an
existing list. In the example above, we decided to add an object (the number 1) to
the start of the list, but we could just as easily have used any slot number to insert
into the list. Let’s look at one final example, which—just for fun—adds a string into
the middle of the nums list, thanks to the use of the value 2 as the first argument
to insert:

Let’s now gain some experience using these list methods.

2 43Here’s how the “nums” list looked
after all that extending from the
previous page.

2 431

>>> nums.insert(2, "two-and-a-half")
>>> nums
[1, 2, 'two-and-a-half', 3, 4]

2 431 two-and-a-half

The first
argument to

“insert” indicates the index
value to insert
before.

And there it is—the final “nums” list, which has five objects: four numbers and one string.

Back to where we started

www.EBooksWorld.ir

66 Chapter 2

just like arrays?

I’m a little confused. You keep telling me that
lists are “just like arrays in other programming
languages,” but you’ve yet to say anything about the
square bracket notation I use with arrays in my other
favorite programming language. What gives?

What About Using Square Brackets?

Don’t worry, we’re going to get to that in a bit.
The familiar square bracket notation that you know and love
from working with arrays in other programming languages
does indeed work with Python’s lists. However, before we get
around to discussing how, let’s have a bit of fun with some of
the list methods that you now know about.

Q: How do I find out more about these and any other list methods?

A: You ask for help. At the >>> prompt, type help(list) to access Python’s list documentation (which provides a few pages of
material) or type help(list.append) to request just the documentation for the append method. Replace append with any other
list method name to access that method’s documentation.

www.EBooksWorld.ir

you are here 4 67

data

Time for a challenge.

Before you do anything else, take the seven lines of code shown below and
type them into a new IDLE edit window. Save the code as panic.py, and
execute it (by pressing F5).

Study the messages that appear on screen. Note how the first four lines of code
take a string (in phrase), and turn it into a list (in plist), before displaying
both phrase and plist on screen.

The other three lines of code take plist and transform it back into a string (in
new_phrase) before displaying plist and new_phrase on screen.

Your challenge is to transform the string "Don’t panic!" into the string
"on tap" using only the list methods shown thus far in this book. (There’s no

hidden meaning in the choice of these two strings: it’s merely a matter of the
letters in “on tap” appearing in "Don’t panic!"). At the moment, panic.
py displays "Don’t panic!" twice.

Hint: use a for loop when performing any operation multiple times.

phrase = "Don't panic!"

plist = list(phrase)

print(phrase)

print(plist)

new_phrase = ''.join(plist)

print(plist)

print(new_phrase)

We are starting
with a string.

We turn the
string into a list. We display the string

and the list on screen.

Add your list
manipulation code
here.

This line takes the
list and turns it
back into a string.

We display the
transformed list and
the new string on screen.

www.EBooksWorld.ir

68 Chapter 2

on tap

It was time for a challenge.

Before you did anything else, you were to take the seven lines of code shown
on the previous page and type them into a new IDLE edit window, save the
code as panic.py, and execute it (by pressing F5).

Your challenge was to transform the string "Don’t panic!" into the
string "on tap" using only the list methods shown thus far in this book.
Before your changes, panic.py displayed “Don’t panic!” twice.

The new string (displaying “on tap”) is to be stored in the new_phrase
variable.

phrase = "Don't panic!"

plist = list(phrase)

print(phrase)

print(plist)

new_phrase = ''.join(plist)

print(plist)

print(new_phrase)

You were to add your list
manipulation code here.
This is what we came
up with—don’t worry if
yours is very different
from ours. There’s
more than one way to
perform the necessary
transformations using the
list methods.

for i in range(4):
 plist.pop()
plist.pop(0)
plist.remove(“ ’ ”)
plist.extend([plist.pop(), plist.pop()])
plist.insert(2, plist.pop(3))

This small loop pops the
last four objects from

“plist”. No more “nic!”.
Get rid of the
‘D’ at the start
of the list.

Find, then remove, the apostrophe from the list.

Swap the two objects at
the end of the list by
first popping each object
from the list, then using
the popped objects to
extend the list. This is a
line of code that you’ll
need to think about for a
little bit. Key point: the
pops occur *first* (in
the order shown), then
the extend happens.

This line of code pops the space from the list, then inserts it back into the list at index location 2. Just like the last line of code, the pop occurs *first*, before the insert happens. And, remember: spaces are characters, too.

As there’s a lot going on in this exercise solution, the next two
pages explain this code in detail.

www.EBooksWorld.ir

you are here 4 69

data

What Happened to “plist”?
Let’s pause to consider what actually happened to plist as the code in
panic.py executed.

On the left of this page (and the next) is the code from panic.py, which,
like every other Python program, is executed from top to bottom. On the
right of this page is a visual representation of plist together with some
notes about what’s happening. Note how plist dynamically shrinks and
grows as the code executes:

The Code The State of plist

phrase = "Don't panic!"

plist = list(phrase)

print(phrase)
print(plist)

for i in range(4):
 plist.pop()

plist.pop(0)

plist.remove("'")

At this point in the code, plist does not yet exist. The
second line of code transforms the phrase string into a
new list, which is assigned to the plist variable:

Each time the for loop iterates, plist shrinks by one
object until the last four objects are gone:

The loop terminates, and plist has shrunk until eight
objects remain. It’s now time to get rid of some other
unwanted objects. Another call to pop removes the first
item on the list (which is at index number 0):

With the letter D popped off the front of the list, a call to
remove dispatches with the apostrophe:

D
0

o
1

n
2

 '
3

t
4 5

p
6

a
7

n
8

i
9

c
10

 !
11

D o n ' t p a n i c
10D o n ' t p a n i

9D o n ' t p a n
8D

0

o
1

n
2

 '
3

t
4 5

p
6

a
7

o
0

n
1

 '
2

t
3 4

p
5

a
6

o
0

n
1

t
2 3

p
4

a
5

object

object

object

object

object

List

0

1

2

3

4

These calls to “print” display the current state of the
variables (before we start
our manipulations).

www.EBooksWorld.ir

70 Chapter 2

manipulating plist

What Happened to “plist”, Cont inued
We’ve been pausing for a moment to consider what actually happened to
plist as the code in panic.py executed.

Based on the execution of the code from the last page, we now have a six-
item list with the characters o, n, t, space, p, and a available to us. Let’s
keep executing our code:

The Code The State of plist

plist.extend([plist.pop(), plist.pop()])

plist.insert(2, plist.pop(3))

new_phrase = ''.join(plist)
print(plist)
print(new_phrase)

This is what plist looks like as a result of the code on
the previous page executing:

The next line of code contains three method
invocations: two calls to pop and one to extend. The
calls to pop happen first (from left to right):

The call to extend takes the popped objects and adds
them to the end of plist. It can be useful to think of
extend as shorthand for multiple calls to the append
method:

All that’s left to do (to plist) is to swap the t character
at location 2 with the space character at index location 3.
The next line of code contains two method invocations.
The first uses pop to extract the space character:

Then the call to insert slots the space character into
the correct place (before index location 2):

o
0

n
1

t
2 3

p
4

a
5

o
0

n
1

t
2 3

p

a

o
0

n
1

t
2 3

a
4

p
5

o
0

n
1

t
2

a
3

p
4

o
0

n
1 2

t
3

a
4

p
5

object

object

object

object

object

List

0

1

2

3

4

Ta da!
These calls to “print” display the state of the variables
(after we’ve performed our
manipulations).

Turn “plist” back into a string.

www.EBooksWorld.ir

you are here 4 71

data

Lists: What We Know
We’re 20 pages in, so let’s take a little break and review what we’ve
learned about lists so far:

That’s all fine by me,
but is there anything I
need to watch out for
when manipulating lists?

Yes. Care is always needed.
As working with and manipulating lists
in Python is often very convenient, care
needs to be taken to ensure the interpreter
is doing exactly what you want it to.

A case in point is copying one list to
another list. Are you copying the list, or
are you copying the objects in the list?
Depending on your answer and on what
you are trying to do, the interpreter will
behave differently. Flip the page to learn
what we mean by this.

 � Lists are great for storing a collection of
related objects. If you have a bunch of
similar things that you’d like to treat as
one, a list is a great place to put them.

 � List are similar to arrays in other
languages. However, unlike arrays in
other languages (which tend to be fixed
in size), Python’s lists can grow and
shrink dynamically as needed.

 � In code, a list of objects is enclosed in
square brackets, and the list objects are
separated from each other by a comma.

 � An empty list is represented like this: [].

 � The fastest way to check whether an
object is in a list is to use Python’s in
operator, which checks for membership.

 � Growing a list at runtime is possible
due to the inclusion of a handful of list
methods, which include append,
extend, and insert.

 � Shrinking a list at runtime is possible
due to the inclusion of the remove and
pop methods.

www.EBooksWorld.ir

72 Chapter 2

be careful copying

What Looks Like a Copy, But Isn’t
When to comes to copying an existing list to another one, it’s tempting to use
the assignment operator:

>>> first = [1, 2, 3, 4, 5]
>>> first
[1, 2, 3, 4, 5]
>>> second = first
>>> second
[1, 2, 3, 4, 5]

Create a new list (and assign five number objects to it).
The “first” list’s five numbers

“Copy” the existing list to a
new one, called “second”.

The “second” list’s five numbers

So far, so good. That looks like it worked, as the five number objects from
first have been copied to second:

>>> second.append(6)
>>> second
[1, 2, 3, 4, 5, 6] This seems OK, but isn’t.

Or, have they? Let’s see what happens when we append a new number to
second, which seems like a reasonable thing to do, but leads to a problem:

2 431 5first second

Again, so far, so good—but there’s a bug here. Look what happens when we
ask the shell to display the contents of first—the new object is appended
to first too!

>>> first
[1, 2, 3, 4, 5, 6]

Whoops! The new
object is appended to

“first” too.

first second2 431 5 6

This is a problem, in that both first and second are pointing to the same
data. If you change one list, the other changes, too. This is not good.

www.EBooksWorld.ir

you are here 4 73

data

To solve this problem, lists come with a copy method, which does the right
thing. Take a look at how copy works:

>>> third = second.copy()
>>> third
[1, 2, 3, 4, 5, 6]

Don’t use the
assignment
operator to copy a
list; use the “copy”
method instead.

list data

How to Copy a Data Structure
If using the assignment operator isn’t the way to copy one list to another,
what is? What’s happening is that a reference to the list is shared among
first and second.

first second2 431 5 6

>>> third.append(7)
>>> third
[1, 2, 3, 4, 5, 6, 7]
>>> second
[1, 2, 3, 4, 5, 6]

Much better. The existing list is unchanged.

The “third” list
has grown by
one object.

first second2 431 5 6

third 2 431 5 6

first second2 431 5 6

third 2 431 5 6 7

With third created (thanks to the copy method), let’s append an object to
it, then see what happens:

That’s more like it—the
new object is only added to the “third” list, not to the other two lists (“first” and “second”).

www.EBooksWorld.ir

74 Chapter 2

give me brackets

Square Brackets Are Everywhere

I can’t believe how many square
brackets are on that last page...yet
I still haven’t seen how they can be
used to select and access data in my
Python list.

Python supports the square bracket
notation, and then some.
Everyone who has used square brackets with an
array in almost any other programming language
knows that they can access the first value in an array
called names using names[0]. The next value
is in names[1], the next in names[2], and so
on. Python works this way, too, when it comes to
accessing objects in any list.

However, Python extends the notation to improve
upon this standardized behavior by supporting
negative index values (-1, -2, -3, and so on) as
well as a notation to select a range of objects from
a list.

Lists: Updat ing What We Already Know
Before we dive into a description of how Python extends the square bracket
notation, let’s add to our list of bullet points:

 � Take care when copying one list to another. If you want to have another variable reference an existing list,
use the assignment operator (=). If you want to make a copy of the objects in an existing list and use them
to initialize a new list, be sure to use the copy method instead.

www.EBooksWorld.ir

you are here 4 75

data

Lists Extend the Square Bracket Notat ion
All our talk of Python’s lists being like arrays in other programming languages wasn’t
just idle talk. Like other languages, Python starts counting from zero when it comes to
numbering index locations, and uses the well-known square bracket notation to
access objects in a list.

Unlike a lot of other programming languages, Python lets you access the list relative to
each end: positive index values count from left to right, whereas negative index values
count from right to left:

object

object

object

object

object

List

0

1

2

3

4

0

D
-12

1

o
-11

2

n
-10

3

'
-9

4

t
-8

5

-7

6

p
-6

7

a
-5

8

n
-4

9

i
-3

10

c
-2

11

!
-1

Let’s see some examples while working at the shell:

>>> saying = "Don't panic!"
>>> letters = list(saying)
>>> letters
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']
>>> letters[0]
'D'
>>> letters[3]
"'"
>>> letters[6]
'p'
>>> letters[-1]
'!'
>>> letters[-3]
'i'
>>> letters[-6]
'p'

Create a list of letters.

Python’s lists understand
positive index values,
which start from 0...

...as well as negative index values, which start from -1.

Using positive index values counts from left to right...

...whereas negative index values
count right to left.

As lists grow and shrink while your Python code executes, being able to
index into the list using a negative index value is often useful. For instance,
using -1 as the index value is always guaranteed to return the last object
in the list no matter how big the list is, just as using 0 always returns the first
object.

Python’s extensions to the square bracket notation don’t stop with support
for negative index values. Lists understand start, stop, and step, too.

>>> first = letters[0]
>>> last = letters[-1]
>>> first
'D'
>>> last
'!'

It’s easy to get at
the first and last
objects in any list.

www.EBooksWorld.ir

76 Chapter 2

start stop step

Lists Understand Start, Stop, and Step
We first met start, stop, and step in the previous chapter when discussing the three-
argument version of the range function:

The call
to “range”
takes three
arguments,
one each for
start, stop,
and step.

Recall what start, stop, and step mean when it comes to specifying ranges (and let’s
relate them to lists):

The START value lets you control WHERE the range begins.
When used with lists, the start value indicates the starting index value.

The STOP value lets you control WHEN the range ends.
When used with lists, the stop value indicates the index value to stop at, but not include.

The STEP value lets you control HOW the range is generated.
When used with lists, the step value refers to the stride to take.

You can put start, stop, and step inside square brackets
When used with lists, start, stop, and step are specified within the square brackets and
are separated from one another by the colon (:) character:

 letters[start:stop:step]

It might seem somewhat counterintuitive, but all three values are optional when used
together:

 When start is missing, it has a default value of 0.

 When stop is missing, it takes on the maximum value allowable for the list.

 When step is missing, it has a default value of 1.

object

object

object

object

object

List

0

1

2

3

4

The square
bracket
notation is
extended to
work with
start, stop,
and step.

www.EBooksWorld.ir

you are here 4 77

data

>>> letters
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']

>>> letters[0:10:3]
['D', "'", 'p', 'i']

>>> letters[3:]
["'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']

>>> letters[:10]
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i']

>>> letters[::2]
['D', 'n', 't', 'p', 'n', 'c']

All the letters

Every third letter up to (but not including) index location 10

All letters up to (but
not including) index
location 10

Skip the first three letters, then give me everything else.

Every second letter

object

object

object

object

object

List

0

1

2

3

4

List Slices in Act ion
Given the existing list letters from a few pages back, you can specify
values for start, stop, and step in any number of ways.

Let’s look at some examples:

Using the start, stop, step slice notation with lists is very powerful (not to
mention handy), and you are advised to take some time to understand how
these examples work. Be sure to follow along at your >>> prompt, and feel
free to experiment with this notation, too.

Q: I notice that some of the characters on this page are surrounded by single quotes and others by double quotes. Is there some
sort of standard I should follow?

A: No, there’s no standard, as Python lets you use either single or double quotes around strings of any length, including strings that contain
only a single character (like the ones shown on this page; technically, they are single-character strings, not letters). Most Python programmers
use single quotes to delimit their strings (but that’s a preference, not a rule). If a string contains a single quote, double quotes can be used to
avoid the requirement to escape characters with a backslash (\), as most programmers find it’s easier to read "'" than '\''. You’ll see
more examples of both quotes being used on the next two pages.

www.EBooksWorld.ir

78 Chapter 2

start stop list

object

object

object

object

object

List

0

1

2

3

4

>>> book = "The Hitchhiker's Guide to the Galaxy"
>>> booklist = list(book)
>>> booklist
['T', 'h', 'e', ' ', 'H', 'i', 't', 'c', 'h', 'h', 'i', 'k',
'e', 'r', "'", 's', ' ', 'G', 'u', 'i', 'd', 'e', ' ', 't',
'o', ' ', 't', 'h', 'e', ' ', 'G', 'a', 'l', 'a', 'x', 'y']

Start ing and Stopping with Lists
Follow along with the examples on this page (and the next) at your >>> prompt and
make sure you get the same output as we do.

We start by turning a string into a list of letters:

Turn a
string
into a
list, then
display
the list.

The newly created list (called booklist above) is then used to select a range of
letters from within the list:

>>> booklist[0:3]
['T', 'h', 'e']

>>> ''.join(booklist[0:3])
'The'

>>> ''.join(booklist[-6:])
'Galaxy'

Select the first three objects (letters) from the list.

Turn the selected range into a string (which
you learned how to do near the end of the
“panic.py” code). The second example selects
the last six objects from the list.

Note that the original string contained a
single quote character. Python is smart
enough to spot this, and surrounds the
single quote character with double quotes.

Be sure to take time to study this page (and the next) until you’re confident you
understand how each example works, and be sure to try out each example within
IDLE.

With the last example above, note how the interpreter is happy to use any of the
default values for start, stop, and step.

www.EBooksWorld.ir

you are here 4 79

data

>>> backwards = booklist[::-1]
>>> ''.join(backwards)
"yxalaG eht ot ediuG s'rekihhctiH ehT"

>>> every_other = booklist[::2]
>>> ''.join(every_other)
"TeHthie' ud oteGlx"

Looks like gobbledegook,
doesn’t it? But it is actually the original string reversed.

And this looks like gibberish! But “every_other” is a list made

up from every second object (letter) starting from the first

and going to the last. Note: “start” and “stop” are defaulted.

Two final examples confirm that it is possible to start and stop anywhere within the list
and select objects. When you do this, the returned data is referred to as a slice. Think
of a slice as a fragment of an existing list.

Both of these examples select the letters from booklist that spell the word
'Hitchhiker'. The first selection is joined to show the word 'Hitchhiker',
whereas the second displays 'Hitchhiker' in reverse:

>>> ''.join(booklist[4:14])
'Hitchhiker'

>>> ''.join(booklist[13:3:-1])
'rekihhctiH'

Slice out the
word “Hitchhiker”.

Slice out the word “Hitchhiker”, but
do it in reverse order (i.e., backward).

A “slice” is
a fragment
of a list.

object

object

object

object

object

List

0

1

2

3

4

Stepping with Lists
Here are two more examples, which show off the use of step with lists.

The first example selects all the letters, starting from the end of the list (that is, it is
selecting in reverse), whereas the second selects every other letter in the list. Note how
the step value controls this behavior:

Slices are everywhere
The slice notation doesn’t just work with lists. In fact, you’ll find that you can slice any
sequence in Python, accessing it with [start:stop:step].

www.EBooksWorld.ir

80 Chapter 2

panic some more

Putt ing Slices to Work on Lists
Python’s slice notation is a useful extension to the square bracket notation,
and it is used in many places throughout the language. You’ll see lots of uses
of slices as you continue to work your way through this book.

For now, let’s see Python’s square bracket notation (including the use of slices)
in action. We are going to take the panic.py program from earlier and
refactor it to use the square bracket notation and slices to achieve what was
previously accomplished with list methods.

Before doing the actual work, here’s a quick reminder of what panic.py
does.

Convert ing “Don’t panic!” to “on tap”
This code transforms one string into another by manipulating an existing list
using the list methods. Starting with the string "Don’t panic!", this code
produced "on tap" after the manipulations:

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)
for i in range(4):
 plist.pop()
plist.pop(0)
plist.remove("'")
plist.extend([plist.pop(), plist.pop()])
plist.insert(2, plist.pop(3))
new_phrase = ''.join(plist)
print(plist)
print(new_phrase)

Display the initial
state of the string
and list.

Display the
resulting state of
the string and list.

Use a collection of list methods
to transform and manipulate
the list of objects.

object

object

object

object

object

List

0

1

2

3

4

Here’s the output produced by this program when it runs within IDLE:

The string “Don’t panic!” is transformed into “on tap” thanks to the list methods.

This is
“panic.py”.

www.EBooksWorld.ir

you are here 4 81

data

For this exercise, replace the highlighted code above with new code that takes
advantage of Python’s square bracket notation. Note that you can still use list
methods where it makes sense. As before, you’re trying to transform "Don’t
panic!" into "on tap". Add your code in the space provided and call your
new program panic2.py:

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)

print(plist)
print(new_phrase)

object

object

object

object

object

List

0

1

2

3

4

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)
for i in range(4):
 plist.pop()
plist.pop(0)
plist.remove("'")
plist.extend([plist.pop(), plist.pop()])
plist.insert(2, plist.pop(3))
new_phrase = ''.join(plist)
print(plist)
print(new_phrase)

Putt ing Slices to Work on Lists, Cont inued
It’s time for the actual work. Here’s the panic.py code again, with the code
you need to change highlighted:

These are the lines
of code you need
to change.

www.EBooksWorld.ir

82 Chapter 2

don’t panic again

For this exercise, you were to replace the highlighted code on the previous page
with new code that takes advantage of Python’s square bracket notation. Note
that you can still use list methods where it makes sense. As before, you’re trying
to transform "Don’t panic!" into "on tap". You were to call your new
program panic2.py:

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)

print(plist)
print(new_phrase)

new_phrase = ‘’.join(plist[1:3])
new_phrase = new_phrase + ‘’.join([plist[5], plist[4], plist[7], plist[6]])

We started by slicing out the word “on” from “plist”...

...then picked out each additional letter that
we needed: space, “t”, “a”, and “p”.

I wonder which of these
two programs—“panic.py”
or “panic2.py”—is better?

That’s a great question.
Some programmers will look at the code
in panic2.py and, when comparing it
to the code in panic.py, conclude that
two lines of code is always better than
seven, especially when the output from
both programs is the same. Which is a
fine measurement of “betterness,” but not
really useful in this case.

To see what we mean by this, let’s take
a look at the output produced by both
programs.

www.EBooksWorld.ir

you are here 4 83

data

Test Drive
Use IDLE to open panic.py and panic2.py in separate edit windows. Select the panic.
py window first, then press F5. Next select the panic2.py window, then press F5. Compare the
results from both programs in your shell.

The output produced by running the “panic2.py” program

The output produced
by running the “panic.py”
program

Notice how different these outputs are.

“panic.py”

“panic2.py”

www.EBooksWorld.ir

84 Chapter 2

which panic?

Which Is Bet ter? It Depends...
We executed both panic.py and panic2.py in IDLE to help us
determine which of these two programs is “better.”

Take a look at the second-to-last line of output from both programs:

Although both programs conclude by displaying the string "on tap"
(having first started with the string "Don’t panic!"), panic2.py does
not change plist in any way, whereas panic.py does.

It is worth pausing for a moment to consider this.

Recall our discussion from earlier in this chapter called “What happened to
‘plist’?”. That discussion detailed the steps that converted this list:

>>>
Don't panic!
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']
['o', 'n', ' ', 't', 'a', 'p']
on tap
>>> ========================= RESTART =========================
>>>
Don't panic!
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']
['D', 'o', 'n', "'", 't', ' ', 'p', 'a', 'n', 'i', 'c', '!']
on tap
>>>

This is the
output
produced by “panic.py”...

...whereas this
output is produced
by “panic2.py”.

D
0

o
1

n
2

 '
3

t
4 5

p
6

a
7

n
8

i
9

c
10

 !
11

into this much shorter list:

o
0

n
1 2

t
3

a
4

p
5

The “panic.py”
program started
with this list...

...and turned it into
this one.

All those list manipulations using the pop, remove, extend, and insert
methods changed the list, which is fine, as that’s primarily what the list
methods are designed to do: change the list. But what about panic2.py?

www.EBooksWorld.ir

you are here 4 85

data

object

object

object

object

object

List

0

1

2

3

4

List methods
change the state
of a list, whereas
using square
brackets and slices
(typically) does not.

So...which is bet ter?
Using list methods to manipulate and transform an existing list does just that:
it manipulates and transforms the list. The original state of the list is no longer
available to your program. Depending on what you’re doing, this may (or
may not) be an issue. Using Python’s square bracket notation generally does
not alter an existing list, unless you decide to assign a new value to an existing
index location. Using slices also results in no changes to the list: the original
data remains as it was.

Which of these two approaches you decide is “better” depends on what you
are trying to do (and it’s perfectly OK not to like either). There is always
more than one way to perform a computation, and Python lists are flexible
enough to support many ways of interacting with the data you store in them.

We are nearly done with our initial tour of lists. There’s just one more topic
to introduce you to at this stage: list iteration.

Slicing a List Is Nondestruct i ve
The list methods used by the panic.py program to convert one string into
another were destructive, in that the original state of the list was altered
by the code. Slicing a list is nondestructive, as extracting objects from an
existing list does not alter it; the original data remains intact.

D
0

o
1

n
2

 '
3

t
4 5

p
6

a
7

n
8

i
9

c
10

 !
11

The “panic2.py”
program started
with this list.

D
0

o
1

n
2

 '
3

t
4 5

p
6

a
7

n
8

i
9

c
10

 !
11

The “panic2.py”
program ended up with
this list (i.e. no change)

The slices used by panic2.py are shown here. Note that each extracts data
from the list, but does not change it. Here are the two lines of code that do all
the heavy lifting, together with a representation of the data each slice extracts:

plist[1:3] o n

plist[5] plist[4] t plist[7] a plist[6] p

new_phrase = ''.join(plist[1:3])
new_phrase = new_phrase + ''.join([plist[5], plist[4], plist[7], plist[6]])

The code

The
nondestructive
slices

www.EBooksWorld.ir

86 Chapter 2

for loves lists

Python’s “for” Loop Understands Lists
Python’s for loop knows all about lists and, when provided with any list, knows
where the start of the list is, how many objects the list contains, and where the
end of the list is. You never have to tell the for loop any of this, as it works it
out for itself.

An example helps to illustrate. Follow along by opening up a new edit window
in IDLE and typing in the code shown below. Save this new program as
marvin.py, then press F5 to take it for a spin:

object

object

object

object

object

List

0

1

2

3

4

Execute this
small program...

...to produce this output.

Understanding marvin.py’s code
The first two lines of marvin.py are familiar: assign a string to a variable (called
paranoid_android), then turn the string into a list of character objects
(assigned to a new variable called letters).

It’s the next statement—the for loop—that we want you to concentrate on.

On each iteration, the for loop arranges to take each object in the letters
list and assign them one at a time to another variable, called char. Within the
indented loop body char takes on the current value of the object being processed
by the for loop. Note that the for loop knows when to start iterating, when to
stop iterating, as well as how many objects are in the letters list. You don’t need
to worry about any of this: that’s the interpreter’s job.

Each character from the “letters” list is printed on its own line, preceded by a tab character (that’s what the \t does).

for char in letters:
 print('\t', char)

This is the list to
iterate over.

On each iteration,
this variable
refers to the
current object.

This block of code
executes on each iteration.

www.EBooksWorld.ir

you are here 4 87

data

Python’s “for” Loop Understands Slices
If you use the square bracket notation to select a slice from a list, the for loop “does
the right thing” and only iterates over the sliced objects. An update to our most recent
program shows this in action. Save a new version of marvin.py as marvin2.py,
then change the code to look like that shown below.

Of interest is our use of Python’s multiplication operator (*) , which is used to
control how many tab characters are printed before each object in the second and
third for loop. We use * here to “multiply” how many times we want tab to appear:

object

object

object

object

object

List

0

1

2

3

4

The first loop iterates
over a slice of the first
six objects in the list.

The second loop iterates over a slice of the last seven objects in the list. Note how “*2” inserts two tab characters before each printed object.
The third (and final) loop iterates
over a slice from within the list,
selecting the characters that spell
the word “Paranoid”. Note how
“*3” inserts three tab characters
before each printed object.

www.EBooksWorld.ir

88 Chapter 2

for loop slices

object

object

object

object

object

List

0

1

2

3

4

Marvin’s Slices in Detail
Let’s take a look at each of the slices in the last program in detail, as this
technique appears a lot in Python programs. Below, each line of slice code
is presented once more, together with a graphical representation of what’s
going on.

Before looking at the three slices, note that the program begins by assigning a
string to a variable (called paranoid_android) and converting it to a list
(called letters):

paranoid_android = "Marvin, the Paranoid Android"
letters = list(paranoid_android)

letters

0
M

1
a

6
,

9
h

5
n

8
t

4
i

72
r

3
v

10
e

11 14
r

13
a

12
P

15
a

16
r

17
n

o
18

-11

i
19

-10

d
24
-5

n
23
-6

A
22
-7

d
20
-9

21
-8

i
27
-2

o
26
-3

r
25
-4

d
28
 -1

Recall that you can access any
slot in a list using a positive or
negative index value. We’re only
showing some of the negative
index values here.

We’ll look at each of the slices from the marvin2.py program and see what
they produce. When the interpreter sees the slice specification, it extracts the
sliced objects from letters and returns a copy of the objects to the for
loop. The original letters list is unaffected by these slices.

The first slice extracts from the start of the list and ends (but doesn’t include)
the object in slot 6:

for char in letters[:6]:
 print('\t', char)

letters[:6] M a nir v

The second slice extracts from the end of the letters list, starting at slot –7
and going to the end of letters:

for char in letters[-7:]:
 print('\t'*2, char)

for char in letters[12:20]:
 print('\t'*3, char)

letters[-7:] A n iod r d

And finally, the third slice extracts from the middle of the list, starting at slot
12 and including everything up to but not including slot 20:

letters[12:20] P a ior n da

www.EBooksWorld.ir

you are here 4 89

data

Lists are used a lot, but...
They are not a data structure panacea. Lists can be used in lots
of places; if you have a collection of similar objects that you
need to store in a data structure, lists are the perfect choice.

However—and perhaps somewhat counterintuitively—if the
data you’re working with exhibits some structure, lists can be a
bad choice. We’ll start exploring this problem (and what you
can do about it) on the next page.

Q: Surely there’s a lot more to lists than this?

A: Yes, there is. Think of the material in this chapter as a quick
introduction to Python’s built-in data structures, together with what
they can do for you. We are by no means done with lists, and will be
returning to them throughout the remainder of this book.

Q: But what about sorting lists? Isn’t that important?

A: Yes, it is, but let’s not worry about stuff like that until we actually
need to. For now, if you have a good grasp of the basics, that’s all
you need at this stage. And don’t worry: we’ll get to sorting soon.

Lists: Updat ing What We Know
Now that you’ve seen how lists and for loops interact, let’s quickly review
what you’ve learned over the last few pages:

I can see myself putting lists to lots
of uses in my Python programs. But is there
anything lists aren’t good at?

 � Lists understand the square bracket notation,
which can be used to select individual objects
from any list.

 � Like a lot of other programming languages,
Python starts counting from zero, so the first
object in any list is at index location 0, the
second at 1, and so on.

 � Unlike a lot of other programming languages,
Python lets you index into a list from either end.
Using –1 selects the last item in the list, –2 the
second last, and so on.

 � Lists also provide slices (or fragments) of a list
by supporting the specification of start, stop,
and step as part of the square bracket notation.

www.EBooksWorld.ir

90 Chapter 2

not a panacea

What’s Wrong with Lists?
When Python programmers find themselves in a situation where they need to
store a collection of similar objects, using a list is often the natural choice. After all,
we’ve used nothing but lists in this chapter so far.

Recall how lists are great at storing a collection of related letters, such as with the
vowels list:

vowels = ['a', 'e', 'i', 'o', 'u']

And if the data is a collection of numbers, lists are a great choice, too:

nums = [1, 2, 3, 4, 5]

In fact, lists are a great choice when you have a collection of related anythings.

But imagine you need to store data about a person, and the sample data you’ve
been given looks something like this:

Name: Ford Prefect

Gender: Male
Occupation: Researcher

Home Planet: Betelgeuse Seven

On the face of things, this data does indeed conform to a structure, in that there’s
tags on the left and associated data values on the right. So, why not put this data in a
list? After all, this data is related to the person, right?

To see why we shouldn’t, let’s look at two ways to store this data using lists (starting
on the next page). We are going to be totally upfront here: both of our attempts
exhibit problems that make using lists less than ideal for data like this. But, as the
journey is often half the fun of getting there, we’re going to try lists anyway.

Our first attempt concentrates on the data values on the right of the napkin,
whereas our second attempt uses the tags on the left as well as the associated data
values. Have a think about how you’d handle this type of structured data using
lists, then flip to the next page to see how our two attempts fared.

Some data for you to play with

www.EBooksWorld.ir

you are here 4 91

data

>>> person1 = ['Ford Prefect', 'Male',
'Researcher', 'Betelgeuse Seven']
>>> person1
['Ford Prefect', 'Male', 'Researcher',
'Betelgeuse Seven']

When Not to Use Lists
We have our sample data (on the back of a napkin) and we’ve decided to store
the data in a list (as that’s all we know at this point in our Python travels).

Our first attempt takes the data values and puts them in a list:

>>> person2 = ['Name', 'Ford Prefect', 'Gender',
'Male', 'Occupation', 'Researcher', 'Home Planet',
'Betelgeuse Seven']
>>> person2
['Name', 'Ford Prefect', 'Gender', 'Male',
'Occupation', 'Researcher', 'Home Planet',
'Betelgeuse Seven']

This results in a list of string objects, which works. As shown above, the shell
confirms that the data values are now in a list called person1.

But we have a problem, in that we have to remember that the first index
location (at index value 0) is the person’s name, the next is the person’s gender
(at index value 1), and so on. For a small number of data items, this is not
a big deal, but imagine if this data expanded to include many more data
values (perhaps to support a profile page on that Facebook-killer you’re been
meaning to build). With data like this, using index values to refer to the data
in the person1 list is brittle, and best avoided.

Our second attempt adds the tags into the list, so that each data value is
preceded by its associated tag. Meet the person2 list:

This clearly works, but now we no longer have one problem; we have two.
Not only do we still have to remember what’s at each index location, but we
now have to remember that index values 0, 2, 4, 6, and so on are tags, while
index values 1, 3, 5, 7, and so on are data values.

Surely there has to be a better way to handle data with a structure like this?

There is, and it involves foregoing the use of lists for structured data like this.
We need to use something else, and in Python, that something else is called a
dictionary, which we get to in the next chapter.

Name: Ford Prefect
Gender: Male
Occupation: Researcher
Home Planet: Betelgeuse Seven

Does “person[1]”
refer to gender or
occupation? I can
never remember!

If the data you
want to store has
an identifiable
structure, consider
using something
other than a list.

www.EBooksWorld.ir

92 Chapter 2

the code

Chapter 2’s Code, 1 of 2

vowels = ['a', 'e', 'i', 'o', 'u']
word = "Milliways"
for letter in word:
 if letter in vowels:
 print(letter)

The first version of the vowels program that displays *all* the vowels found in the word “Milliways” (including any duplicates).

vowels = ['a', 'e', 'i', 'o', 'u']
word = "Milliways"
found = []
for letter in word:
 if letter in vowels:
 if letter not in found:
 found.append(letter)
for vowel in found:
 print(vowel)

The “vowels2.py” program
added code that used a list
to avoid duplicates. This
program displays the list of
unique vowels found in the
word “Milliways”.

vowels = ['a', 'e', 'i', 'o', 'u']
word = input("Provide a word to search for vowels: ")
found = []
for letter in word:
 if letter in vowels:
 if letter not in found:
 found.append(letter)
for vowel in found:
 print(vowel)

The third (and final) version of the vowels program for this chapter, “vowels3.py”, displays the unique vowels found in a word entered by our user.

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)

for i in range(4):
 plist.pop()
plist.pop(0)
plist.remove("'")
plist.extend([plist.pop(), plist.pop()])
plist.insert(2, plist.pop(3))

new_phrase = ''.join(plist)
print(plist)
print(new_phrase)

It’s the best advice in the universe: “Don’t
panic!” This program, called “panic.py”,
takes a string containing this advice and,
using a bunch of list methods, transforms
the string into another string that
describes how the Head First editors
prefer their beer: “on tap”.

www.EBooksWorld.ir

you are here 4 93

data

Chapter 2’s Code, 2 of 2

phrase = "Don't panic!"
plist = list(phrase)
print(phrase)
print(plist)

new_phrase = ''.join(plist[1:3])
new_phrase = new_phrase + ''.join([plist[5], plist[4], plist[7], plist[6]])

print(plist)
print(new_phrase)

When it comes to manipulating lists, using
methods isn’t the only game in town. The
“panic2.py” program achieved the same end
using Python’s square bracket notation.

paranoid_android = "Marvin"
letters = list(paranoid_android)
for char in letters:
 print('\t', char)

The shortest program in this chapter, “marvin.py”, demonstrated how well lists play with Python’s “for” loop. (Just don’t tell Marvin...if he hears that his program is the shortest in this chapter, it’ll make him even more paranoid than he already is).

paranoid_android = "Marvin, the Paranoid Android"
letters = list(paranoid_android)
for char in letters[:6]:
 print('\t', char)
print()
for char in letters[-7:]:
 print('\t'*2, char)
print()
for char in letters[12:20]:
 print('\t'*3, char)

The “marvin2.py” program
showed off Python’s square
bracket notation by using three
slices to extract and display
fragments from a list of
letters.

www.EBooksWorld.ir

www.EBooksWorld.ir

this is a new chapter 95

structured data3

Working with Structured Data

Python’s list data structure is great, but it isn’t a data panacea.
When you have truly structured data (and using a list to store it may not be the best

choice), Python comes to your rescue with its built-in dictionary. Out of the box, the

dictionary lets you store and manipulate any collection of key/value pairs. We look long

and hard at Python’s dictionary in this chapter, and—along the way—meet set and tuple,

too. Together with the list (which we met in the previous chapter), the dictionary, set, and

tuple data structures provide a set of built-in data tools that help to make Python and data

a powerful combination.

Lists are great, but I
sometimes need more
structure in my life...

www.EBooksWorld.ir

96 Chapter 3

key: value

A Dict ionary Stores Key/Value Pairs
Unlike a list, which is a collection of related objects, the dictionary is used
to hold a collection of key/value pairs, where each unique key has a value
associated with it. The dictionary is often referred to as an associative array by
computer scientists, and other programming languages often use other names
for dictionary (such as map, hash, and table).

The key part of a Python dictionary is typically a string, whereas the
associated value part can be any Python object.

Data that conforms to the dictionary model is easy to spot: there are two
columns, with potentially multiple rows of data. With this in mind, take
another look at our “data napkin” from the end of the last chapter:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Name: Ford Prefect

Gender: Male
Occupation: Researcher

Home Planet: Betelgeuse Seven

Here’s one
column of
data...

...and here’s the second column of data.

There are
multiple rows of
two-columned
data on this
napkin.

>>> person3 = { 'Name': 'Ford Prefect',
 'Gender': 'Male',
 'Occupation': 'Researcher',
 'Home Planet': 'Betelgeuse Seven' }

The name of
the dictionary.
(Recall that we
met “person1”
and “person2” at
the end of the
last chapter.)

The key The associated data value

Key Value

In C++ and Java, a
dictionary is known
as “map,” whereas
Perl and Ruby use
the name “hash.”

It looks like the data on this napkin is a perfect fit for Python’s dictionary.

Let’s return to the >>> shell to see how to create a dictionary using our
napkin data. It’s tempting to try to enter the dictionary as a single line of
code, but we’re not going to do this. As we want our dictionary code to be
easy to read, we’re purposely entering each row of data (i.e., each key/value
pair) on its own line instead. Take a look:

www.EBooksWorld.ir

you are here 4 97

structured data

Make Dict ionaries Easy to Read
It’s tempting to take the four lines of code from the bottom of the last page and
type them into the shell like this:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary
>>> person3 = { 'Name': 'Ford Prefect', 'Gender':
'Male', 'Occupation': 'Researcher', 'Home Planet':
'Betelgeuse Seven' }

Although the interpreter doesn’t care which approach you use, entering a
dictionary as one long line of code is hard to read, and should be avoided
whenever possible.

If you litter your code with dictionaries that are hard to read, other
programmers (which includes you in six months’ time) will get upset...so take the
time to align your dictionary code so that it is easy to read.

Here’s a visual representation of how the dictionary appears in Python’s
memory after either of these dictionary-assigning statements executes:

person3

Gender Male

Name Ford Prefect

Home Planet Betelgeuse Seven

Occupation Researcher

Keys Value

The “person3” variable
references the entire
dictionary, which is
made up of a collection
of key/value pairs.

This is a more complicated structure than the array-like list. If the idea behind
Python’s dictionary is new to you, it’s often useful to think of it as a lookup
table. The key on the left is used to look up the value on the right (just like you
look up a word in a paper dictionary).

Let’s spend some time getting to know Python’s dictionary in more detail. We’ll
begin with a detailed explanation of how to spot a Python dictionary in your
code, before talking about some of this data structure’s unique characteristics
and uses.

www.EBooksWorld.ir

98 Chapter 3

it’s a dictionary

How to Spot a Dict ionary in Code
Take a closer look at how we defined the person3 dictionary at the >>>
shell. For starters, the entire dictionary is enclosed in curly braces. Each key is
enclosed in quotes, as they are strings, as is each value, which are also strings
in this example. (Keys and values don’t have to be strings, however.) Each key
is separated from its associated value by a colon character (:), and each key/
value pair (a.k.a. “row”) is separated from the next by a comma:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

{ 'Name': 'Ford Prefect',
 'Gender': 'Male',
 'Occupation': 'Researcher',
 'Home Planet': 'Betelgeuse Seven' }

An opening curly
brace starts
each dictionary.

A closing curly
brace ends each
dictionary.

Each key is
enclosed in
quotes.

In this dictionary, the values are all string objects, so they are enclosed in quotes.

Each key/value pair is separated from the next by a comma.

A colon associates each
key with its value.

As stated earlier, the data on this napkin maps nicely to a Python dictionary.
In fact, any data that exhibits a similar structure—multiple two-columned
rows—is as perfect a fit as you’re likely to find. Which is great, but it does
come at a price. Let’s return to the >>> prompt to learn what this price is:

What happened to the insert ion order?
Take a long hard look at the dictionary displayed by the interpreter. Did you
notice that the ordering is different from what was used on input? When you
created the dictionary, you inserted the rows in name, gender, occupation,
and home planet order, but the shell is displaying them in gender, name,
home planet, and occupation order. The ordering has changed.

What’s going on here? Why did the ordering change?

>>> person3
{'Gender': 'Male', 'Name': 'Ford Prefect', 'Home
Planet': 'Betelgeuse Seven', 'Occupation': 'Researcher'}

Ask the shell
to display the
contents of the
dictionary... ...and there it is. All the key/value pairs are shown.

www.EBooksWorld.ir

you are here 4 99

structured data

Insert ion Order Is NOT Maintained
Unlike lists, which keep your objects arranged in the order in which you
inserted them, Python’s dictionary does not. This means you cannot assume
that the rows in any dictionary are in any particular order; for all intents and
purposes, they are unordered.

Take another look at the person3 dictionary and compare the ordering on
input to that shown by the interpreter at the >>> prompt:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

If you’re scratching your head and wondering why you’d want to trust
your precious data to such an unordered data structure, don’t worry, as
the ordering rarely makes a difference. When you select data stored in a
dictionary, it has nothing to do with the dictionary’s order, and everything to
do with the key you used. Remember: a key is used to look up a value.

Dict ionaries understand square brackets
Like lists, dictionaries understand the square bracket notation. However,
unlike lists, which use numeric index values to access data, dictionaries use
keys to access their associated data values. Let’s see this in action at the
interpreter’s >>> prompt:

>>> person3 = { 'Name': 'Ford Prefect',
 'Gender': 'Male',
 'Occupation': 'Researcher',
 'Home Planet': 'Betelgeuse Seven' }
>>> person3
{'Gender': 'Male', 'Name': 'Ford Prefect', 'Home Planet':
'Betelgeuse Seven', 'Occupation': 'Researcher'}

You insert your data into a dictionary in one order...
...but the interpreter
uses another
ordering.

>>> person3['Home Planet']
'Betelgeuse Seven'

>>> person3['Name']
'Ford Prefect'

Provide the key
between the square
brackets.

The data value associated with the key is shown.

Use keys to
access data in
a dictionary.

When you consider you can access your data in this way, it becomes apparent
that it does not matter in what order the interpreter stores your data.

www.EBooksWorld.ir

100 Chapter 3

dictionaries love brackets

Value Lookup with Square Brackets
Using square brackets with dictionaries works the same as with lists. However,
instead of accessing your data in a specified slot using an index value, with Python’s
dictionary you access your data via the key associated with it.

As we saw at the bottom of the last page, when you place a key inside a dictionary’s
square brackets, the interpreter returns the value associated with the key. Let’s
consider those examples again to help cement this idea in your brain:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

>>> person3['Home Planet']
'Betelgeuse Seven'

Gender Male

Name Ford Prefect

Home Planet

Occupation Researcher

Betelgeuse Seven

>>> person3['Name']
'Ford Prefect'

Gender Male

Name Ford Prefect

Home Planet

Occupation Researcher

Betelgeuse Seven

Dict ionary lookup is fast !
This ability to extract any value from a dictionary using its associated key is what
makes Python’s dictionary so useful, as there are lots of occasions when doing so is
needed—for instance, looking up user details in a profile, which is essentially what
we’re doing here with the person3 dictionary.

It does not matter in what order the dictionary is stored. All that matters is that the
interpreter can access the value associated with a key quickly (no matter how big
your dictionary gets). The good news is that the interpreter does just that, thanks to
the employment of a highly optimized hashing algorithm. As with a lot of Python’s
internals, you can safely leave the interpreter to handle all the details here, while
you get on with taking advantage of what Python’s dictionary has to offer.

Geek
 Bits

Python’s dictionary
is implemented as a
resizeable hash table,
which has been heavily
optimized for lots of
special cases. As a result,
dictionaries perform
lookups very quickly.

www.EBooksWorld.ir

you are here 4 101

structured data

Working with Dict ionaries at Runt ime
Knowing how the square bracket notation works with dictionaries is central to
understanding how dictionaries grow at runtime. If you have an existing dictionary,
you can add a new key/value pair to it by assigning an object to a new key, which you
provide within square brackets.

For instance, here we display the current state of the person3 dictionary, then add
a new key/value pair that associates 33 with a key called Age. We then display the
person3 dictionary again to confirm the new row of data is successfully added:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

>>> person3
{'Name': 'Ford Prefect', 'Gender': 'Male',
'Home Planet': 'Betelgeuse Seven',
'Occupation': 'Researcher'}

Before the new
row is added

Gender Male

Name Ford Prefect

Home Planet

Occupation Researcher

Betelgeuse Seven

>>> person3
{'Name': 'Ford Prefect', 'Gender': 'Male',
'Age': 33, 'Home Planet': 'Betelgeuse Seven',
'Occupation': 'Researcher'}

>>> person3['Age'] = 33
Assign an object (in this case, a number) to a new key to add a row of data to the dictionary.

After the new
row is added

Before

Gender Male

Name Ford Prefect

Home Planet

Occupation Researcher

Betelgeuse Seven

Age 33 After

Here’s the new
row of data:
“33” is associated
with “Age”.

www.EBooksWorld.ir

102 Chapter 3

remembering vowels3.py

Recap: Displaying Found Vowels (Lists)
As shown on the last page, growing a dictionary in this way can be used
in many different situations. One very common application is to perform
a frequency count: processing some data and maintaining a count of what
you find. Before demonstrating how to perform a frequency count using a
dictionary, let’s return to our vowel counting example from the last chapter.

Recall that vowels3.py determines a unique list of vowels found in a word.
Imagine you’ve now been asked to extend this program to produce output
that details how many times each vowel appears in the word.

Here’s the code from Chapter 2, which, given a word, displays a unique list of
found vowels:

This is “vowels3.py”,
which reports on
the unique vowels
found in a word.

Recall that we ran this code through IDLE a number of times:

www.EBooksWorld.ir

you are here 4 103

structured data

How Can a Dict ionary Help Here?

I don’t get it. The “vowels3.py” program
works just fine...so why are you looking to
fix something that isn’t broken?

We aren’t.
The vowels3.py program does what it is
supposed to do, and using a list for this version
of the program’s functionality makes perfect
sense.

However, imagine if you need to not only list
the vowels in any word, but also report their
frequency. What if you need to know how many
times each vowel appears in a word?

If you think about it, this is a little harder to do
with lists alone. But throw a dictionary into the
mix, and things change.

Let’s explore using a dictionary with the vowels
program over the next few pages to satisfy this
new requirement.

Q: Is it just me, or is the word “dictionary” a strange name for something that’s basically a table?

A: No, it’s not just you. The word “dictionary” is what the Python documentation uses. In fact, most Python programmers use the shorter
“dict” as opposed to the full word. In its most basic form, a dictionary is a table that has exactly two columns and any number of rows.

www.EBooksWorld.ir

104 Chapter 3

what’s the frequency, kenneth?

Select ing a Frequency Count Data Structure
We want to adjust the vowels3.py program to maintain a count of how often each
vowel is present in a word; that is, what is each vowel’s frequency? Let’s sketch out
what we expect to see as output from this program:

a
e
i
o
u

0
1
2
0
0

Given the word “hitchhiker”, here’s the

frequency count we expect to see:

Vowels in the
lefthand
column

Frequency
counts in the
righthand
column

This output is a perfect match with how the interpreter regards a dictionary. Rather
than using a list to store the found vowels (as is the case in vowels3.py), let’s use
a dictionary instead. We can continue to call the collection found, but we need to
initialize it to an empty dictionary as opposed to an empty list.

As always, let’s experiment and work out what we need to do at the >>> prompt,
before committing any changes to the vowels3.py code. To create an empty
dictionary, assign {} to a variable:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

>>> found = {}
>>> found
{}

Curly braces on their own mean the dictionary starts out empty.

Let’s record the fact that we haven’t found any vowels yet by creating a row for each
vowel and initializing its associated value to 0. Each vowel is used as a key:

>>> found['a'] = 0
>>> found['e'] = 0
>>> found['i'] = 0
>>> found['o'] = 0
>>> found['u'] = 0
>>> found
{'o': 0, 'u': 0, 'a': 0, 'i': 0, 'e': 0}

We’ve initialized all the
vowel counts to 0. Note
how insertion order is
not maintained (but
that doesn’t matter
here).

All we need to do now is find a vowel in a given word, then update these frequency
counts as required.

www.EBooksWorld.ir

you are here 4 105

structured data

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Updat ing a Frequency Counter
Before getting to the code that updates the frequency counts, consider how
the interpreter sees the found dictionary in memory after the dictionary
initialization code executes:

With the frequency counts initialized to 0, it’s not difficult to increment
any particular value, as needed. For instance, here’s how to increment e’s
frequency count:

o 0

u 0

a 0

i 0

e 0

found

>>> found
{'o': 0, 'u': 0, 'a': 0, 'i': 0, 'e': 0}
>>> found['e'] = found['e'] + 1
>>> found
{'o': 0, 'i': 0, 'a': 0, 'u': 0, 'e': 1}

Everything
is 0.

The dictionary has been
updated. The value
associated with “e” has
been incremented.

Increment e’s
count.

o 0

u 0

a 0

i 0

e 1

found

All the values
are initially
set to 0.

Code like that highlighted above certainly works, but having to repeat
found['e'] on either side of the assignment operator gets very old, very
quickly. So, let’s look at a shortcut for this operation (on the next page).

www.EBooksWorld.ir

106 Chapter 3

plus equals

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Updat ing a Frequency Counter, v2.0
Having to put found['e'] on either side of the assignment operator
(=) quickly becomes tiresome, so Python supports the familiar +=
operator, which does the same thing, but in a more succinct way:

>>> found['e'] += 1
>>> found
{'o': 0, 'i': 0, 'a': 0, 'u': 0, 'e': 2}

Increment e’s
count (once more).

The dictionary
is updated
again.At this point, we’ve incremented the value associated with the e key twice,

so here’s how the dictionary looks to the interpreter now:

o 0

u 0

a 0

i 0

e 2

found

Q: Does Python have ++?

A: No...which is a bummer. If you’re a fan of the ++ increment
operator in other programming languages, you’ll just have to get used
to using += instead. Same goes for the -- decrement operator:
Python doesn’t have it. You need to use -= instead.

Q: Is there a handy list of operators?

A: Yes. Head over to https://docs.python.org/3/reference/lexical_
analysis.html#operators for a list, and then see https://docs.python.
org/3/library/stdtypes.html for a detailed explanation of their usage in
relation to Python’s built-in types.

Thanks to the += operator, the value associated with the ‘e’ key has been incremented once more.

www.EBooksWorld.ir

https://docs.python.org/3/reference/lexical_analysis.html#operators
https://docs.python.org/3/reference/lexical_analysis.html#operators
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

you are here 4 107

structured data

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

Iterat ing Over a Dict ionary
At this point, we’ve shown you how to initialize a dictionary with zeroed
data, as well as update a dictionary by incrementing a value associated
with a key. We’re nearly ready to update the vowels3.py program to
perform a frequency count based on vowels found in a word. However,
before doing so, let’s determine what happens when we iterate over a
dictionary, as once we have the dictionary populated with data, we’ll
need a way to display our frequency counts on screen.

You’d be forgiven for thinking that all we need to do here is use the
dictionary with a for loop, but doing so produces unexpected results:

>>> for kv in found:
 print(kv)

o
i
a
u
e

We iterate over the
dictionary in the usual
way, using a “for” loop.
Here, we’re using “kv” as
shorthand for “key/value
pair” (but could’ve used
any variable name).

The iteration worked, but
this isn’t what we were
expecting. Where have the
frequency counts gone?
This output is only showing
the keys...

Flip the page to learn what
happened to the values.

Something’s really not right
with this output. The keys are
being displayed, but not their
associated values. What gives?

www.EBooksWorld.ir

108 Chapter 3

k and found[k]

Iterat ing Over Keys and Values
When you iterated over a dictionary with your for loop, the interpreter only
processed the dictionary’s keys.

To access the associated data values, you need to put each key within square
brackets and use it together with the dictionary name to gain access to the
values associated with the key.

The version of the loop shown below does just that, providing not just the
keys, but also their associated data values. We’ve changed the suite to access
each value based on each key provided to the for loop.

As the for loop iterates over each key/value pair in the dictionary, the
current row’s key is assigned to k, then found[k] is used to access its
associated value. We’ve also produced more human-friendly output by
passing two strings to the call to the print function:

>>> for k in found:
 print(k, 'was found', found[k], 'time(s).')

o was found 0 time(s).
i was found 0 time(s).
a was found 0 time(s).
u was found 0 time(s).
e was found 2 time(s).

We’re using “k” to represent the key, and “found[k]” to access the value.

This is more like it. The keys and the
values are being processed by the loop and
displayed on screen.

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

If you are following along at your >>> prompt and your output is ordered
differently from ours, don’t worry: the interpreter uses a random internal
ordering as you’re using a dictionary here, and there are no guarantees
regarding ordering when one is used. Your ordering will likely differ from
ours, but don’t be alarmed. Our primary concern is that the data is safely
stored in the dictionary, which it is.

The above loop obviously works. However, there are two points that we’d like
to make.

Firstly: it would be nice if the output was ordered a, e, i, o, u, as opposed to
randomly, wouldn’t it?

Secondly: even though this loop clearly works, coding a dictionary iteration in
this way is not the preferred approach—most Python programmers code this
differently.

Let’s explore these two points in a bit more detail (after a quick review).

www.EBooksWorld.ir

you are here 4 109

structured data

Dict ionaries: What We Already Know
Here’s what we know about Python’s dictionary data structure so far:

Specifying the ordering of a dict ionary on output
We want to be able to produce output from the for loop in a, e, i, o, u
order as opposed to randomly. Python makes this trivial thanks to the
inclusion of the sorted built-in function. Simply pass the found dictionary
to the sorted function as part of the for loop to arrange the output
alphabetically:

>>> for k in sorted(found):
 print(k, 'was found', found[k], 'time(s).')

a was found 0 time(s).
e was found 2 time(s).
i was found 0 time(s).
o was found 0 time(s).
u was found 0 time(s).

It’s a small change to the loop’s code, but... it packs quite the punch. Look: the output is sorted in “a, e, i, o, u” order.

That’s point one of two dealt with. Next up is learning about the approach
that most Python programmers prefer over the above code (although the
approach shown on this page is often used, so you still need to know about it).

 � Think of a dictionary as a collection of rows, with each
row containing exactly two columns. The first column
stores a key, while the second contains a value.

 � Each row is known as a key/value pair, and a dictionary
can grow to contain any number of key/value pairs. Like
lists, dictionaries grow and shrink on demand.

 � A dictionary is easy to spot: it’s enclosed in curly braces,
with each key/value pair separated from the next by a
comma, and each key separated from its value by a
colon.

 � Insertion order is not maintained by a dictionary. The
order in which rows are inserted has nothing to do with
how they are stored.

 � Accessing data in a dictionary uses the square bracket
notation. Put a key inside square brackets to access its
associated value.

 � Python’s for loop can be used to iterate over a
dictionary. On each iteration, the key is assigned to the
loop variable, which is used to access the data value.

www.EBooksWorld.ir

110 Chapter 3

the items idiom

Iterat ing Over a Dict ionary with “items”
We’ve seen that it’s possible to iterate over the rows of data in a dictionary using this
code:

>>> for k in sorted(found):
 print(k, 'was found', found[k], 'time(s).')

a was found 0 time(s).
e was found 2 time(s).
i was found 0 time(s).
o was found 0 time(s).
u was found 0 time(s).

Like lists, dictionaries have a bunch of built-in methods, and one of these is the
items method, which returns a list of the key/value pairs. Using items with for is
often the preferred technique for iterating over a dictionary, as it gives you access to the
key and the value as loop variables, which you can then use in your suite. The resulting
suite is easier on the eye, which makes it easier to read.

Here is the items equivalent of the above loop code. Note how there are now two
loop variables in this version of the code (k and v), and that we continue to use the
sorted function to control the output ordering:

Q: Why are we calling sorted again in the second loop? The first loop arranged the dictionary in the ordering we want, so this
must mean we don’t have to sort it a second time, right?

A: No, not quite. The sorted built-in function doesn’t change the ordering of the data you provide to it, but instead returns an ordered
copy of the data. In the case of the found dictionary, this is an ordered copy of each key/value pair, with the key being used to determine
the ordering (alphabetical, from A through Z). The original ordering of the dictionary remains intact, which means every time we need to iterate
over the key/value pairs in some specific order, we need to call sorted, as the random ordering still exists in the dictionary.

>>> for k, v in sorted(found.items()):
 print(k, 'was found', v, 'time(s).')

a was found 0 time(s).
e was found 2 time(s).
i was found 0 time(s).
o was found 0 time(s).
u was found 0 time(s).

Same output
as before... ...but this code is so much easier to read.

We invoke the
“items” method
on the “found”
dictionary.

The “items”
method passes
back two loop
variables.

www.EBooksWorld.ir

you are here 4 111

structured data

Frequency Count Magnets
Having concluded our experimentation at the >>> prompt, it’s now time
to make changes to the vowels3.py program. Below are all of the code
snippets we think you might need. Your job is to rearrange the magnets to
produce a working program that, when given a word, produces a frequency
count for each vowel found.

found.items()

+= 1

found[letter]

k, v

found['a'] = 0
found['e'] = 0
found['i'] = 0
found['o'] = 0
found['u'] = 0

found = {}

Where do all these
go? Be careful: not
all these magnets are
needed.

found = []

found

k

vkey

value

Decide which code
magnet goes in each
of the dashed-line
locations to create
“vowels4.py”.

vowels = ['a', 'e', 'i', 'o', 'u']

word = input("Provide a word to search for vowels: ")

for letter in word:

 if letter in vowels:

for in sorted():

 print(, 'was found', , 'time(s).')

Once you’ve placed the magnets where you think they should go, bring
vowels3.py into IDLE’s edit window, rename it vowels4.py, and then
apply your code changes to the new version of this program.

www.EBooksWorld.ir

112 Chapter 3

how many vowels

Frequency Count Magnets Solution
Having concluded our experimentation at the >>> prompt, it was time to
make changes to the vowels3.py program. Your job was to rearrange the
magnets to produce a working program that, when given a word, produces
a frequency count for each vowel found.

Once you’d placed the magnets where you thought they should go,
you were to bring vowels3.py into an IDLE’s edit window, rename it
vowels4.py, and then apply your code changes to the new version of
this program.

found.items()

+= 1found[letter]

k, v

found['a'] = 0
found['e'] = 0
found['i'] = 0
found['o'] = 0
found['u'] = 0

found = {}

vowels = ['a', 'e', 'i', 'o', 'u']

word = input("Provide a word to search for vowels: ")

for letter in word:

 if letter in vowels:

for in sorted():

 print(, 'was found', , 'time(s).')k v

These magnets
weren’t needed.

found = []

found

key

value

Create an empty
dictionary.

Initialize the value
associated with each
of the keys (each
vowel) to 0.

Increment the value referred to by
“found[letter]” by one.

As the “for” loop
is using the “items”
method, we need
to provide two loop
variables, “k” for
the key and “v” for
the value.

Invoke the
“items” method
on the “found”
dictionary to
access each row
of data with
each iteration.The key and the value

are used to create
each output message.

This is the
“vowels4.py”
program.

www.EBooksWorld.ir

you are here 4 113

structured data

Test Drive
Let’s take vowels4.py for a spin. With your code in an IDLE edit window, press F5 to see how it
performs:

The “vowels4.py”
code

We ran the code three
times to see how well it
performs.

These three “runs”
produce the output we
expect them to.

I like where this is going.
But do I really need to
be told when a vowel isn’t
found?

www.EBooksWorld.ir

114 Chapter 3

no more zeros

Just How Dynamic Are Dict ionaries?
The vowels4.py program reports on all the found vowels, even when they
aren’t found. This may not bother you, but let’s imagine that it does and you
want this code to only display results when results are actually found. That is,
you don’t want to see any of those “found 0 time(s)” messages.

How might you go about solving this problem?

Python’s dictionary is dynamic, right? So,
all we have to do is remove those five lines
that initialize each vowel’s frequency count?
With those lines gone, only found vowels will be

counted, right?

That sounds like it might work.
We currently have five lines of code near
the start of the vowels4.py program
that we’ve included in order to initially set
each vowel’s frequency count to 0. This
creates a key/value pair for each vowel, even
though some may never be used. If we take
those five lines away, we should end up only
recording frequency counts for found vowels,
and ignore the rest.

Let’s give this idea a try.

Do this!

Take the code in vowels4.py
and save it as vowels5.py.
Then remove the five lines of
initialization code. Your IDLE
edit window should look like
that on the right of this page.

This is the “vowels5.py” code with the initialization code removed.

www.EBooksWorld.ir

you are here 4 115

structured datastructured data

Test Drive
You know the drill. Make sure vowels5.py is in an IDLE edit window, then press F5 to run your
program. You’ll be confronted by a runtime error message:

It’s clear that removing the five lines of initialization code wasn’t the way to go here. But why has this
happened? The fact that Python’s dictionary grows dynamically at runtime should mean that this code
cannot crash, but it does. Why are we getting this error?

Dict ionary keys must be init ialized
Removing the initialization code has resulted in a runtime error, specifically
a KeyError, which is raised when you try to access a value associated with
a nonexistent key. Because the key can’t be found, the value associated with it
can’t be found either, and you get an error.

Does this mean that we have to put the initialization code back in? After all, it
is only five short lines of code, so what’s the harm? We can certainly do this,
but let’s think about doing so for a moment.

Imagine that, instead of five frequency counts, you have a requirement to
track a thousand (or more). Suddenly, we have lots of initialization code. We
could “automate” the initialization with a loop, but we’d still be creating a
large dictionary with lots of rows, many of which may end up never being
used.

If only there were a way to create a key/value pair on the fly, just as soon as
we realize we need it.

This can’t
be good.

I wonder does the “in”
operator work with
dictionaries?

That’s a great question.
We first met in when checking lists for a value.
Maybe in works with dictionaries, too?

Let’s experiment at the >>> prompt to find out.

Geek Bits

An alternative approach to
handling this issue is to deal
with the run-time exception
raised here (which is a

“KeyError” in this example).
We’re holding off talking
about how Python handles
run-time exceptions until a
later chapter, so bear with
us for now.

www.EBooksWorld.ir

116 Chapter 3

check with in

Avoiding KeyErrors at Runt ime
As with lists, it is possible to use the in operator to check whether a key exists in a
dictionary; the interpreter returns True or False depending on what’s found.

Let’s use this fact to avoid that KeyError exception, because it can be annoying
when your code stops as a result of this error being raised during an attempt to
populate a dictionary at runtime.

To demonstrate this technique, we’re going to create a dictionary called fruits,
then use the in operator to avoid raising a KeyError when accessing a
nonexistent key. We start by creating an empty dictionary; then we assign a
key/value pair that associates the value 10 with the key apples. With the row
of data in the dictionary, we can use the in operator to confirm that the key
apples now exists:

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

>>> fruits
{}
>>> fruits['apples'] = 10
>>> fruits
{'apples': 10}
>>> 'apples' in fruits
True

This is all as expected. The value is associated with the key, and there’s no runtime error when we use the “in” operator to check for the key’s existence.

Before we do anything else, let’s consider how the interpreter views the fruits
dictionary in memory after executing the above code:

10fruits
The “apples” key
is associated with the value 10.

Q: I take it from the example on this page that Python uses the constant value True for true? Is there a False, too, and does
case matter when using either of these values?

A: Yes, to all those questions. When you need to specify a boolean in Python, you can use either True or False. These are constant
values provided by the interpreter, and must be specified with a leading uppercase letter, as the interpreter treats true and false as
variable names, not boolean values, so care is needed here.

apples

www.EBooksWorld.ir

you are here 4 117

structured data

Checking for Membership with “in”
Let’s add in another row of data to the fruits dictionary for bananas and
see what happens. However, instead of a straight assignment to bananas,
(as was the case with apples), let’s increment the value associated with
bananas by 1 if it already exists in the fruits dictionary or, if it doesn’t
exist, let’s initialize bananas to 1. This is a very common activity, especially
when you’re performing frequency counts using a dictionary, and the logic we
employ should hopefully help us avoid a KeyError.

>>> if 'bananas' in fruits:
 fruits['bananas'] += 1
else:
 fruits['bananas'] = 1

>>> fruits
{'bananas': 1, 'apples': 10}

We check to see if the “bananas” key
is in the dictionary, and as it isn’t, we
initialize its value to 1. Critically, we
avoid any possibility of a “KeyError”.

We’ve set the “bananas” value to 1.

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

apples 10fruits
Before the

“bananas” code runs

In the code that follows, the in operator in conjunction with an if statement
avoids any slip-ups with bananas, which—as wordplays go—is pretty bad
(even for us):

The above code changes the state of the fruits dictionary within the
interpreter’s memory, as shown here:

apples 10
fruits

After the “bananas”
code runs.

bananas 1

As expected, the fruits dictionary has grown by one key/value pair, and
the bananas value has been initialized to 1. This happened because the
condition associated with the if statement evaluated to False (as the key
wasn’t found), so the second suite (that is, the one associated with else)
executed instead. Let’s see what happens when this code runs again.

Geek Bits

If you are familiar with the ?:
ternary operator from other
languages, note that Python
supports a similar construct. You
can say this:

x = 10 if y > 3 else 20

to set x to either 10 or 20
depending on whether or not the
value of y is greater than 3. That
said, most Python programmers
frown on its use, as the equivalent
if... else... statements
are considered easier to read.

www.EBooksWorld.ir

118 Chapter 3

one more time

Ensuring Init ializat ion Before Use
If we execute the code again, the value associated with bananas should now
be increased by 1, as the if suite executes this time due to the fact that the
bananas key already exists in the fruits dictionary:

>>> if 'bananas' in fruits:
 fruits['bananas'] += 1
else:
 fruits['bananas'] = 1

>>> fruits
{'bananas': 2, 'apples': 10}

This time around, the “bananas” key does exist in the dictionary, so we increment its value by 1. As before, our use of “if” and “in” together stop a “KeyError” exception from crashing this code.

We’ve increased the “bananas” value by 1.

apples 10
fruits

Before the “bananas” code runs (again)
bananas 1

apples 10
fruits After the “bananas”

code runs, the value
associated with
“bananas” has increased.

bananas 2

To run this code again, press Ctrl-P (on a Mac) or Alt-P (on Linux/Windows) to
cycle back through your previously entered code statements while at IDLE’s >>>
prompt (as using the up arrow to recall input doesn’t work at IDLE’s >>> prompt).
Remember to press Enter twice to execute the code once more:

As the code associated with the if statement now executes, the value associated
with bananas is incremented within the interpreter’s memory:

This mechanism is so common that many Python programmers shorten these four
lines of code by inverting the condition. Instead of checking with in, they use
not in. This allows you to initialize the key to a starter value (usually 0) if it isn’t
found, then perform the increment right after.

Let’s take a look at how this mechanism works.

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

www.EBooksWorld.ir

you are here 4 119

structured data

Subst itut ing “not in” for “in”
At the bottom of the last page, we stated that most Python programmers refactor
the original four lines of code to use not in instead of in. Let’s see this in
action by using this mechanism to ensure the pears key is set to 0 before we try
to increment its value: object

object

object

object

key#1

key#2

key#3

key#4

Dictionary>>> if 'pears' not in fruits:
 fruits['pears'] = 0

>>> fruits['pears'] += 1
>>> fruits
{'bananas': 2, 'pears': 1, 'apples': 10}

Initialize (if needed).

Increment.

apples 10

fruits After the two
lines of “pears”
code runs

bananas 2

pears 1

These three lines of code have grown the dictionary once more. There are now
three key/value pairs in the fruits dictionary:

The above three lines of code are so common in Python that the language
provides a dictionary method that makes this if/not in combination more
convenient and less error prone. The setdefault method does what the two-
line if/not in statements do, but uses only a single line of code.

Here’s the equivalent of the pears code from the top of the page rewritten to
use setdefault:

>>> fruits.setdefault('pears', 0)
>>> fruits['pears'] += 1
>>> fruits
{'bananas': 2, 'pears': 2, 'apples': 10}

Initialize (if needed).

Increment.

apples 10

fruits bananas 2

pears 2
The single call to setdetfault has replaced the two-line
if/not in statement, and its usage guarantees that a key
is always initialized to a starter value before it’s used. Any
possibility of a KeyError exception is negated. The current
state of the fruits dictionary is shown here (on the right) to
confirm that invoking setdefault after a key already exists
has no effect (as is the case with pears), which is exactly
what we want in this case.

www.EBooksWorld.ir

120 Chapter 3

long live setdefault

Putt ing the “setdefault” Method to Work
Recall that our current version of vowels5.py results in a runtime error,
specifically a KeyError, which is raised due to our code trying to access the
value of a nonexistent key:

This code
produces
this error.

From our experiments with fruits, we know we can call setdefault
as often as we like without having to worry about any nasty errors. We
know setdefault’s behavior is guaranteed to initialize a nonexistent key
to a supplied default value, or to do nothing (that is, to leave any existing
value associated with any existing key alone). If we invoke setdefault
immediately before we try to use a key in our vowels5.py code, we are
guaranteed to avoid a KeyError, as the key will either exist or it won’t.
Either way, our program keeps running and no longer crashes (thanks to our
use of setdefault).

Within your IDLE edit window, change the first of the vowels5.py
program’s for loops to look like this (by adding the call to setdefault),
then save your new version as vowels6.py:

for letter in word:
 if letter in vowels:
 found.setdefault(letter, 0)
 found[letter] += 1

Use “setdefault”
to help avoid
the “KeyError”
exception.

A single line of code
can often make all
the difference.

object

object

object

object

key#1

key#2

key#3

key#4

Dictionary

www.EBooksWorld.ir

you are here 4 121

structured datastructured data

Test Drive
With the most recent vowels6.py program in your IDLE edit window, press F5. Run this version a
few times to confirm the nasty KeyError exception no longer appears.

The use of the setdefault method has solved the KeyError problem
we had with our code. Using this technique allows you to dynamically grow a
dictionary at runtime, safe in the knowledge that you’ll only ever create a new
key/value pair when you actually need one.

When you use setdefault in this way, you never need to spend time
initializing all your rows of dictionary data ahead of time.

Dict ionaries: updat ing what we already know
Let’s add to the list of things you now know about Python’s dictionary:

This is looking good. The “KeyError” is gone.

 � By default, every dictionary is unordered, as insertion
order is not maintained. If you need to sort a dictionary
on output, use the sorted built-in function.

 � The items method allows you to iterate over a
dictionary by row—that is, by key/value pair. On each
iteration, the items method returns the next key and
its associated value to your for loop.

 � Trying to access a nonexistent key in an existing
dictionary results in a KeyError. When a
KeyError occurs, your program crashes with a
runtime error.

 � You can avoid a KeyError by ensuring every key
in your dictionary has a value associated with it before
you try to access it. Although the in and not in
operators can help here, the established technique is to
use the setdefault method instead.

www.EBooksWorld.ir

122 Chapter 3

how much more?

Aren’t Dict ionaries (and Lists) Enough?

We’ve been talking about data structures
for ages...how much more of this is there?
Surely dictionaries—together with lists—
are all I’ll need most of the time?

Dictionaries (and lists) are great.
But they are not the only show in town.

Granted, you can do a lot with dictionaries and
lists, and many Python programmers rarely
need anything more. But, if truth be told, these
programmers are missing out, as the two remaining
built-in data structures—set and tuple—are useful
in specific circumstances, and using them can greatly
simplify your code, again in specific circumstances.

The trick is spotting when the specific circumstances
occur. To help with this, let’s look at typical examples
for both set and tuple, starting with set.

Q: Is that it for dictionaries? Surely it’s common for the value part of a dictionary to be, for instance, a list or another dictionary?

A: Yes, that is a common usage. But we’re going to hang on until the end of this chapter to show you how to do this. In the meantime, let
what you already know about dictionaries sink in...

www.EBooksWorld.ir

you are here 4 123

structured data

Sets Don’t Allow Duplicates
Python’s set data structure is just like the sets you learned about in school: it has
certain mathematical properties that always hold, the key characteristic being that
duplicate values are forbidden.

Imagine you are provided with a long list of all the first names for everyone in a large
organization, but you are only interested in the (much smaller) list of unique first
names. You need a quick and foolproof way to remove any duplicates from your long
list of names. Sets are great at solving this type of problem: simply convert the long
list of names to a set (which removes the duplicates), then convert the set back to a list
and—ta da!—you have a list of unique first names.

Python’s set data structure is optimized for very speedy lookup, which makes using a
set much faster than its equivalent list when lookup is the primary requirement. As lists
always perform slow sequential searches, sets should always be preferred for lookup.

Spott ing sets in your code
Sets are easy to spot in code: a collection of objects are separated from one another by
commas and surrounded by curly braces.

For example, here’s a set of vowels:

The fact that a set is enclosed in curly braces can often result in your brain mistaking a
set for a dictionary, which is also enclosed in curly braces. The key difference is the use
of the colon character (:) in dictionaries to separate keys from values. The colon never
appears in a set, only commas.

In addition to forbidding duplicates, note that—as in a dictionary—insertion order
is not maintained by the interpreter when a set is used. However. like all other data
structures, sets can be ordered on output with the sorted function. And, like lists and
dictionaries, sets can also grow and shrink as needed.

Being a set, this data structure can perform set-like operations, such as difference,
intersection, and union. To demonstrate sets in action, we are going to revisit our vowel
counting program from earlier in this chapter once more. We made a promise when
we were first developing vowels3.py (in the last chapter) that we’d consider a set
over a list as the primary data structure for that program. Let’s make good on that
promise now.

>>> vowels = { 'a', 'e', 'e', 'i', 'o', 'u', 'u' }
>>> vowels
{'e', 'u', 'a', 'i', 'o'}

Sets start and end with a curly brace.

Objects are separated from one another by a comma.

Check out the ordering.
It’s changed from what was
originally inserted, and the
duplicates are gone too.

object b
object f

object a object e

object d

object c

Set

www.EBooksWorld.ir

124 Chapter 3

sets hate duplicates

Creat ing Sets Eff icient ly
Let’s take yet another look at vowels3.py, which uses a list to work out which
vowels appear in any word.

Here’s the code once more. Note how we have logic in this program to ensure we
only remember each found vowel once. That is, we are very deliberately ensuring
that no duplicate vowels are ever added to the found list:

This is “vowels3.py”,
which reports on
the unique vowels
found in a word.
This code uses a list
as its primary data
structure.

We never allow duplicates
in the “found” list.

Before continuing, use IDLE to save this code as vowels7.py so that we can
make changes without having to worry about breaking our list-based solution
(which we know works). As is becoming our standard practice, let’s experiment at
the >>> prompt first before adjusting the vowels7.py code. We’ll edit the code
in the IDLE edit window once we’ve worked out the code we need.

Creat ing sets from sequences
We start by creating a set of vowels using the code from the middle of the last
page (you can skip this step if you’ve already typed that code into your >>>
prompt):

>>> vowels = { 'a', 'e', 'e', 'i', 'o', 'u', 'u' }
>>> vowels
{'e', 'u', 'a', 'i', 'o'}

Below is a useful shorthand that allows you to pass any sequence (such as a string)
to the set function to quickly generate a set. Here’s how to create the set of
vowels using the set function:

>>> vowels2 = set('aeeiouu')
>>> vowels2
{'e', 'u', 'a', 'i', 'o'}

These two lines of code do the same thing: both assign a new set object to a variable.

object b
object f

object a object e

object d

object c

Set

www.EBooksWorld.ir

you are here 4 125

structured data

Taking Advantage of Set Methods
Now that we have our vowels in a set, our next step is to take a word and
determine whether any of the letters in the word are vowels. We could do this by
checking whether each letter in the word is in the set, as the in operator works
with sets in much the same way as it does with dictionaries and lists. That is,
we could use in to determine whether a set contains any letter, and then cycle
through the letters in the word using a for loop.

However, let’s not follow that strategy here, as the set methods can do a lot of this
looping work for us.

There’s a much better way to perform this type of operation when using sets. It
involves taking advantage of the methods that come with every set, and that
allow you to perform operations such as union, difference, and intersection. Prior
to changing the code in vowels7.py, let’s learn how these methods work by
experimenting at the >>> prompt and considering how the interpreter sees the
set data. Be sure to follow along on your computer. Let’s start by creating a set of
vowels, then assigning a value to the word variable:

>>> vowels = set('aeiou')
>>> word = 'hello'

The interpreter creates two objects: one set and one string. Here’s what the
vowels set looks like in the interpreter’s memory:

Let’s see what happens when we perform a union of the vowels set and the set
of letters created from the value in the word variable. We’ll create a second set
on-the-fly by passing the word variable to the set function, which is then passed
to the union method provided by vowels. The result of this call is another
set, which we assign to another variable (called u here). This new variable is a
combination of the objects in both sets (a union):

a o

u

i

e

vowels
The set
contains the five letter
objects.

>>> u = vowels.union(set(word))

Python conversts the value in “word” into a set of letter objects (removing any duplicates as it does so).

The “union” method combines one set with another, which is then assigned to a new variable called “u” (which is another set).

After this call to the union method, what do
the vowels and u sets look like?

object b
object f

object a object e

object d

object c

Set

www.EBooksWorld.ir

126 Chapter 3

fun with sets

union Works by Combining Sets
At the bottom of the previous page we used the union method to create a
new set called u, which was a combination of the letters in the vowels set
together with the set of unique letters in word. The act of creating this new
set has no impact on vowels, which remains as it was before the union.
However, the u set is new, as it is created as a result of the union.

Here’s what happens:

u = vowels.union(set(word))

h

ol

e
set(word)

The word “hello” is turned into a set, which results
in duplicate letters being removed.

a o

u

i

e

vowels

The set of vowels

a o

u

i

e

l

h The “u” set consists of all the unique objects from
both sets.

What happened to the loop code?
That single line of code packs a lot of punch. Note that you haven’t
specifically instructed the interpreter to perform a loop. Instead, you told the
interpreter what you wanted done—not how you wanted it done—and the
interpreter has obliged by creating a new set containing the objects you’re
after.

A common requirement (now that we’ve created the union) is to turn the
resulting set into a sorted list. Doing so is trivial, thanks to the sorted and
list functions:

>>> u_list = sorted(list(u))
>>> u_list
['a', 'e', 'h', 'i', 'l', 'o', 'u']

A sorted list of
unique letters

u

object b
object f

object a object e

object d

object c

Set

www.EBooksWorld.ir

you are here 4 127

structured data

difference Tells You What’s Not Shared
Another set method is difference, which, given two sets, can tell you
what’s in one set but not the other. Let’s use difference in much the same
way as we did with union and see what we end up with:

>>> d = vowels.difference(set(word))
>>> d
{'u', 'i', 'a'}

d = vowels.difference(set(word))

h

ol

e
set(word)

The word “hello” is
turned into a set.

a o

u

i

e

vowels

The set of vowels

a

u

i

The “d” set consists of
all the objects in “vowels” that aren’t in “set(word)”.

The difference function compares the objects in vowels against the
objects in set(word), then returns a new set of objects (called d here)
which are in the vowels set but not in set(word).

Here’s what happens:

We once again draw your attention to the fact that this outcome has been
accomplished without using a for loop. The difference function does all
the grunt work here; all we did was state what was required.

Flip over to the next page to look at one final set method: intersection.

d

object b
object f

object a object e

object d

object c

Set

www.EBooksWorld.ir

128 Chapter 3

what is shared

intersect ion Reports on Commonality
The third set method that we’ll look at is intersection, which takes the
objects in one set and compares them to those in another, then reports on any
common objects found.

In relation to the requirements that we have with vowels7.py, what the
intersection method does sounds very promising, as we want to know which
of the letters in the user’s word are vowels.

Recall that we have the string "hello" in the word variable, and our vowels in
the vowels set. Here’s the intersection method in action:

>>> i = vowels.intersection(set(word))
>>> i
{'e', 'o'}

The intersection method confirms the vowels e and o are in the word
variable. Here’s what happens:

i = vowels.intersection(set(word))

h

ol

e
set(word)

The word “hello” is
turned into a set.

a o

u

i

e

vowels

The set of vowels

o
e

The “i” set consists of all
the objects in “vowels” that
are also in “set(word)”.

There are more set methods than the three we’ve looked at over these last few
pages, but of the three, intersection is of most interest to us here. In a single
line of code, we’ve solved the problem we posed near the start of the last chapter:
identify the vowels in any string. And all without having to use any loop code. Let’s
return to the vowels7.py program and apply what we know now.

i

object b
object f

object a object e

object d

object c

Set

www.EBooksWorld.ir

you are here 4 129

structured data

Here is the code to the vowels3.py program once more.

Based on what you now know about sets, grab your pencil and
strike out the code you no longer need. In the space provided on
the right, provide the code you’d add to convert this list-using
program to take advantage of a set.

Hint: you’ll end up with a lot less code.

Sets: What You Already Know
Here’s a quick rundown of what you already know about Python’s set data
structure:

 � Sets in Python do not allow duplicates.

 � Like dictionaries, sets are enclosed in curly braces,
but sets do not identify key/value pairs. Instead, each
unique object in the set is separated from the next by a
comma.

 � Also like dictionaries, sets do not maintain insertion
order (but can be ordered with the sorted function).

 � You can pass any sequence to the set function
to create a set of elements from the objects in the
sequence (minus any duplicates).

 � Sets come pre-packaged with lots of built-in functionality,
including methods to perform union, difference, and
intersection.

When you’re done, be sure to rename your file vowels7.py.

vowels = ['a', 'e', 'i', 'o', 'u']

word = input("Provide a word to search for vowels: ")

found = []

for letter in word:

 if letter in vowels:

 if letter not in found:

 found.append(letter)

for vowel in found:

 print(vowel)

www.EBooksWorld.ir

130 Chapter 3

vowels with sets

Here is the code to the vowels3.py program once more.

Based on what you now know about sets, you were to grab your
pencil and strike out the code you no longer needed. In the space
provided on the right, you were to provide the code you’d add to
convert this list-using program to take advantage of a set.

Hint: you’ll end up with a lot less code.

When you were done, you were to rename your file vowels7.py.

vowels = ['a', 'e', 'i', 'o', 'u']

word = input("Provide a word to search for vowels: ")

found = []

for letter in word:

 if letter in vowels:

 if letter not in found:

 found.append(letter)

for vowel in found:

 print(vowel)

vowels = set('aeiou')

found = vowels.intersection(set(word))

These five lines
of list-processing code are replaced by a single line of set code.

Create a set
of vowels.

I feel cheated...all that time wasted
learning about lists and dictionaries, and
the best solution to this vowels problem
all along was to use a set? Seriously?

It wasn’t a waste of time.
Being able to spot when to use one built-in data
structure over another is important (as you’ll want to
be sure you’re picking the right one). The only way you
can do this is to get experience using all of them. None
of the built-in data structures qualify as a “one size
fits all” technology, as they all have their strengths and
weaknesses. Once you understand what these are, you’ll
be better equipped to select the correct data structure
based on your application’s specific data requirements.

There’s lots of
code to get rid of.

www.EBooksWorld.ir

you are here 4 131

structured data

Test Drive
Let’s take vowels7.py for a spin to confirm that the set-based version of our program runs as
expected:

Our latest code

Everything is working as expected.
Using a set was the perfect choice here ...
But that’s not to say that the two other data structures don’t have their
uses. For instance, if you need to perform, say, a frequency count, Python’s
dictionary works best. However, if you are more concerned with maintaining
insertion order, then only a list will do...which is almost true. There’s one
other built-in data structure that maintains insertion order, and which we’ve
yet to discuss: the tuple.

Let’s spend the remainder of this chapter in the company of Python’s tuple.

www.EBooksWorld.ir

132 Chapter 3

why?

Making the Case for Tuples
When most programmers new to Python first come across the tuple, they
question why such a data structure even exists. After all, a tuple is like a list
that cannot be changed once it’s created (and populated with data). Tuples
are immutable: they cannot change. So, why do we need them?

It turns out that having an immutable data structure can often be useful.
Imagine that you need to guard against side effects by ensuring some data
in your program never changes. Or perhaps you have a large constant list
(which you know won’t change) and you’re worried about performance.
Why incur the cost of all that extra (mutable) list processing code if you’re
never going to need it? Using a tuple in these cases avoids unnecessary
overhead and guards against nasty data side effects (were they to occur).

How to spot a tuple in code
As tuples are closely related to lists, it’s no surprise that they look similar
(and behave in a similar way. Tuples are surrounded by parentheses,
whereas lists use square brackets. A quick visit to the >>> prompt lets us
compare tuples with lists. Note how we’re using the type built-in function
to confirm the type of each object created:

object

object

object

Tuple

0

1

2

>>> vowels = ['a', 'e', 'i', 'o', 'u']
>>> type(vowels)
<class 'list'>
>>> vowels2 = ('a', 'e', 'i', 'o', 'u')
>>> type(vowels2)
<class 'tuple'>

There’s nothing
new here. A list of
vowels is created.

The “type”
built-in
function reports the type of any
object.

This tuple looks
like a list, but
isn’t. Tuples are
surrounded by
parentheses (not square brackets).Now that vowels and vowels2 exist (and are populated with data), we

can ask the shell to display what they contain. Doing so confirms that the
tuple is not quite the same as the list:

>>> vowels
['a', 'e', 'i', 'o', 'u']
>>> vowels2
('a', 'e', 'i', 'o', 'u')

The
parentheses
indicate that
this is a tuple.

But what happens if we try to change a tuple?

Q: Where does the name “tuple” come from?

A: It depends whom you ask, but the name has
its origin in mathematics. Find out more than you’d
ever want to know by visiting https://en.wikipedia.
org/wiki/Tuple.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Tuple

you are here 4 133

structured data

object

object

object

Tuple

0

1

2Tuples Are Immutable
As tuples are sort of like lists, they support the same square bracket notation
commonly associated with lists. We already know that we can use this
notation to change the contents of a list. Here’s what we’d do to change the
lowercase letter i in the vowels list to be an uppercase I:

>>> vowels[2] = 'I'
>>> vowels
[' a', 'e', 'I', 'o', 'u']

Assign an uppercase “I” to the third element of the “vowels” list.

As expected, the third element in the list (at index location 2) has changed,
which is fine and expected, as lists are mutable. However, look what happens
if we try to do the same thing with the vowels2 tuple:

>>> vowels2[2] = 'I'
Traceback (most recent call last):
 File "<pyshell#16>", line 1, in <module>
 vowels2[2] = 'I'
TypeError: 'tuple' object does not support item assignment
>>> vowels2
(' a', 'e', 'i', 'o', 'u')

No change here, as tuples are immutable

The interpreter
complains loudly if you try to change a tuple.

Tuples are immutable, so we can’t complain when the interpreter protests
at our trying to change the objects stored in the tuple. After all, that’s the
whole point of a tuple: once created and populated with data, a tuple cannot
change.

Make no mistake: this behavior is useful, especially when you need to ensure
that some data can’t change. The only way to ensure this is to put the data in
a tuple, which then instructs the interpreter to stop any code from trying to
change the tuple’s data.

As we work our way through the rest of this book, we’ll always use tuples
when it makes sense to do so. With reference to the vowel-processing code, it
should now be clear that the vowels data structure should always be stored
in a tuple as opposed to a list, as it makes no sense to use a mutable data
structure in this instance (as the five vowels never need to change).

There’s not much else to tuples—think of them as immutable lists, nothing
more. However, there is one usage that trips up many a programmer, so let’s
learn what this is so that you can avoid it.

If the data in
your structure
never changes,
put it in a tuple.

www.EBooksWorld.ir

134 Chapter 3

a tuple caveat

Watch Out for Single-Object Tuples
Let’s imagine you want to store a single string in a tuple. It’s tempting to put
the string inside parentheses, and then assign it to a variable name...but doing
so does not produce the expected outcome.

Take a look at this interaction with the >>> prompt, which demonstrates
what happens when you do this:

object

object

object

Tuple

0

1

2

>>> t = ('Python')
>>> type(t)
<class 'str'>
>>> t
'Python'

What looks like a single-object tuple isn’t; it’s a string. This has happened
due to a syntactical quirk in the Python language. The rule is that, in order
for a tuple to be a tuple, every tuple needs to include at least one comma
between the parentheses, even when the tuple contains a single object. This
rule means that in order to assign a single object to a tuple (we’re assigning a
string object in this instance), we need to include the trailing comma, like so:

This is not what we
expected. We’ve ended up with a string. What happened to our tuple?

>>> t2 = ('Python',)

>>> type(t2)
<class 'tuple'>
>>> t2
('Python',)

This looks a little weird, but don’t let that worry you. Just remember this
rule and you’ll be fine: every tuple needs to include at least one comma between the
parentheses. When you now ask the interpreter to tell you what type t2 is
(as well as display its value), you learn that t2 is a tuple, which is what is
expected:

That trailing comma makes
all the difference, as it
tells the interpreter that
this is a tuple.

That’s better: we now have a tuple.

The interpreter displays
the single-object tuple
with the trailing comma.

It is quite common for functions to both accept and return their arguments
as a tuple, even when they accept or return a single object. Consequently,
you’ll come across this syntax often when working with functions. We’ll have
more to say about the relationship between functions and tuples in a little bit;
in fact, we’ll devote the next chapter to functions (so you won’t have long to
wait).

Now that you know about the four data structure built-ins, and before we get
to the chapter on functions, let’s take a little detour and squeeze in a short—
and fun!—example of a more complex data structure.

www.EBooksWorld.ir

you are here 4 135

structured data

Combining the Built-in Data Structures

All this talk of data structures
has me wondering if things can get
more complex. Specifically, can I
store a dictionary in a dictionary?

This question gets asked a lot.
Once programmers become used to storing numbers,
strings, and booleans in lists and dictionaries, they very
quickly graduate to wondering whether the built-ins
support storing more complex data. That is, can the
built-in data structures themselves store built-in data
structures?

The answer is yes, and the reason this is so is due to
the fact that everything is an object in Python.

Everything we’ve stored so far in each of the built-ins
has been an object. The fact they’ve been “simple
objects” (like numbers and strings) does not matter, as
the built-ins can store any object. All of the built-ins
(despite being “complex”) are objects, too, so you can
mix-and-match in whatever way you choose. Simply
assign the built-in data structure as you would a simple
object, and you’re golden.

Let’s look at an example that uses a dictionary of
dictionaries.

Q: Does what you’re about to do only work with dictionaries? Can I have a list of lists, or a set of lists, or a tuple of dictionaries?

A: Yes, you can. We’ll demonstrate how a dictionary of dictionaries works, but you can combine the built-ins in whichever way you choose.

www.EBooksWorld.ir

136 Chapter 3

a mutable table

Storing a Table of Data
As everything is an object, any of the built-in data structures can be stored in any
other built-in data structure, enabling the construction of arbitrarily complex data
structures...subject to your brain’s ability to actually visualize what’s going on. For
instance, although a dictionary of lists containing tuples that contain sets of dictionaries
might sound like a good idea, it may not be, as its complexity is off the scale.

A complex structure that comes up a lot is a dictionary of dictionaries. This
structure can be used to create a mutable table. To illustrate, imagine we have this
table describing a motley collection of characters:

Name Gender Occupation Home Planet

Ford Prefect Male Researcher Betelgeuse Seven
Arthur Dent Male Sandwich-Maker Earth
Tricia McMillan Female Mathematician Earth
Marvin Unknown Paranoid Android Unknown

Recall how, at the start of this chapter, we created a dictionary called
person3 to store Ford Prefect’s data:

person3 = { 'Name': 'Ford Prefect',
 'Gender': 'Male',
 'Occupation': 'Researcher',
 'Home Planet': 'Betelgeuse Seven' }

Rather than create (and then grapple with) four individual dictionary
variables for each line of data in our table, let’s create a single dictionary
variable, called people. We’ll then use people to store any number of
other dictionaries.

To get going, we first create an empty people dictionary, then assign Ford
Prefect’s data to a key:

>>> people = {}
>>> people['Ford'] = { 'Name': 'Ford Prefect',
 'Gender': 'Male',
 'Occupation': 'Researcher',
 'Home Planet': 'Betelgeuse Seven' }

Start with a new, empty dictionary.

The key is “Ford”,
and the value is
another dictionary.

www.EBooksWorld.ir

you are here 4 137

structured data

A Dict ionary Containing a Dict ionary
With the people dictionary created and one row of data added (Ford’s), we can
ask the interpreter to display the people dictionary at the >>> prompt. The
resulting output looks a little confusing, but all of our data is there:

>>> people
{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male',
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'}}

A dictionary embedded in a dictionary—note the extra curly braces.

There is only one embedded dictionary in people (at the moment), so calling
this a “dictionary of dictionaries” is a bit of a stretch, as people contains just
the one right now. Here’s what people looks like to the interpreter:

Fordpeople

Occupation Researcher
Gender Male

Home Planet Betelgeuse Seven
Name Ford PrefectThe “people”

dictionary....

...contains another dictionary (which is the value associated with the “Ford” key).

We can now proceed to add in the data from the other three rows in our table:

>>> people['Arthur'] = { 'Name': 'Arthur Dent',
 'Gender': 'Male',
 'Occupation': 'Sandwich-Maker',
 'Home Planet': 'Earth' }
>>> people['Trillian'] = { 'Name': 'Tricia McMillan',
 'Gender': 'Female',
 'Occupation': 'Mathematician',
 'Home Planet': 'Earth' }
>>> people['Robot'] = { 'Name': 'Marvin',
 'Gender': 'Unknown',
 'Occupation': 'Paranoid Android',
 'Home Planet': 'Unknown' }

Arthur’s data

Tricia’s data is associated with the
“Trillian” key.

Marvin’s data is associated with
the “Robot” key.

www.EBooksWorld.ir

138 Chapter 3

it’s just data

A Dict ionary of Dict ionaries (a.k .a. a Table)
With the people dictionary populated with four embedded dictionaries, we can
ask the interpreter to display the people dictionary at the >>> prompt.

Doing so results in an unholy mess of data on screen (see below).

Despite the mess, all of our data is there. Note that each opening curly brace starts
a new dictionary, while a closing curly brace terminates a dictionary. Go ahead and
count them (there are five of each):

>>> people
{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male',
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'},
'Trillian': {'Occupation': 'Mathematician', 'Gender':
'Female', 'Home Planet': 'Earth', 'Name': 'Tricia
McMillan'}, 'Robot': {'Occupation': 'Paranoid Android',
'Gender': 'Unknown', 'Home Planet': 'Unknown', 'Name':
'Marvin'}, 'Arthur': {'Occupation': 'Sandwich-Maker',
'Gender': 'Male', 'Home Planet': 'Earth', 'Name': 'Arthur
Dent'}}

It’s a little hard to read, but all the data is there.

The interpreter just
dumps the data to the screen.
Any chance we can make this
more presentable?

Yes, we can make this easier to read.
We could pop over to the >>> prompt and code
up a quick for loop that could iterate over each
of the keys in the people dictionary. As we did
this, a nested for loop could process each of
the embedded dictionaries, being sure to output
something easier to read on screen.

We could...but we aren’t going to, as someone else
has already done this work for us.

www.EBooksWorld.ir

you are here 4 139

structured data

Pretty-Print ing Complex Data Structures
The standard library includes a module called pprint that can take any data
structure and display it in a easier-to-read format. The name pprint is a
shorthand for “pretty print.”

Let’s use the pprint module with our people dictionary (of dictionaries).
Below, we once more display the data “in the raw” at the >>> prompt, and then
we import the pprint module before invoking its pprint function to produce
the output we need:

>>> people
{'Ford': {'Occupation': 'Researcher', 'Gender': 'Male',
'Home Planet': 'Betelgeuse Seven', 'Name': 'Ford Prefect'},
'Trillian': {'Occupation': 'Mathematician', 'Gender':
'Female', 'Home Planet': 'Earth', 'Name': 'Tricia
McMillan'}, 'Robot': {'Occupation': 'Paranoid Android',
'Gender': 'Unknown', 'Home Planet': 'Unknown', 'Name':
'Marvin'}, 'Arthur': {'Occupation': 'Sandwich-Maker',
'Gender': 'Male', 'Home Planet': 'Earth', 'Name': 'Arthur
Dent'}}
>>>
>>> import pprint
>>>
>>> pprint.pprint(people)
{'Arthur': {'Gender': 'Male',
 'Home Planet': 'Earth',
 'Name': 'Arthur Dent',
 'Occupation': 'Sandwich-Maker'},
 'Ford': {'Gender': 'Male',
 'Home Planet': 'Betelgeuse Seven',
 'Name': 'Ford Prefect',
 'Occupation': 'Researcher'},
 'Robot': {'Gender': 'Unknown',
 'Home Planet': 'Unknown',
 'Name': 'Marvin',
 'Occupation': 'Paranoid Android'},
 'Trillian': {'Gender': 'Female',
 'Home Planet': 'Earth',
 'Name': 'Tricia McMillan',
 'Occupation': 'Mathematician'}}

Our dictionary of dictionaries is hard to read.

Import the “pprint” module, then invoke
the “pprint” function to do the work.

This output
is much easier
on the eye.
Note that we
still have five
opening and five closing curly
braces. It’s just that—thanks to “pprint”—they
are now so much easier to see
(and count).

www.EBooksWorld.ir

140 Chapter 3

how it looks

people

Occupation Sandwich-Maker
Gender Male

Home Planet Earth
Name Arthur Dent

Arthur

The “people”
dictionary

Occupation Researcher
Gender Male

Home Planet Betelgeuse Seven
Name Ford Prefect

Ford

Occupation Paranoid Android
Gender Unknown

Home Planet Unknown
Name Marvin

Robot

Occupation Mathematician
Gender Female

Home Planet Earth
Name Tricia McMillan

Trillian

Visualizing Complex Data Structures
Let’s update our diagram depicting what the interpreter now “sees” when the
people dictionary of dictionaries is populated with data:

Four
embedded
dictionaries

At this point, a reasonable question to ask is: Now that we have all this data stored in a
dictionary of dictionaries, how do we get at it? Let’s answer this question on the next page.

www.EBooksWorld.ir

you are here 4 141

structured data

Accessing a Complex Data Structure’s Data
We now have our table of data stored in the people dictionary. Let’s remind
ourselves of what the original table of data looked like:

Name Gender Occupation Home Planet

Ford Prefect Male Researcher Betelgeuse Seven
Arthur Dent Male Sandwich-Maker Earth
Tricia McMillan Female Mathematician Earth
Marvin Unknown Paranoid Android Unknown

If we were asked to work out what Arthur does, we’d start by looking down the
Name column for Arthur’s name, and then we’d look across the row of data until
we arrived at the Occupation column, where we’d be able to read “Sandwich-
Maker.”

When it comes to accessing data in a complex data structure (such as our people
dictionary of dictionaries), we can follow a similar process, which we’re now going
to demonstrate at the >>> prompt.

We start by finding Arthur’s data in the people dictionary, which we can do by
putting Arthur’s key between square brackets:

>>> people['Arthur']
{'Occupation': 'Sandwich-Maker', 'Home Planet': 'Earth',
'Gender': 'Male', 'Name': 'Arthur Dent'}

Ask for
Arthur’s
row of
data. The row of dictionary data associated with the “Arthur” keyHaving found Arthur’s row of data, we can now ask for the value associated with

the Occupation key. To do this, we employ a second pair of square brackets to
index into Arthur’s dictionary and access the data we’re looking for:

>>> people['Arthur']['Occupation']
'Sandwich-Maker'

Identify the row. Identify the column.

Using double square brackets lets you access any data value from a table by
identifying the row and column you are interested in. The row corresponds to a
key used by the enclosing dictionary (people, in our example), while the column
corresponds to any of the keys used by an embedded dictionary.

www.EBooksWorld.ir

142 Chapter 3

complex wrap-up

Data Is As Complex As You Make It
Whether you have a small amount of data (a simple list) or something more
complex (a dictionary of dictionaries), it’s nice to know that Python’s four
built-in data structures can accommodate your data needs. What’s especially
nice is the dynamic nature of the data structures you build; other than tuples,
each of the data structures can grow and shrink as needed, with Python’s
interpreter taking care of any memory allocation/deallocation details for you.

We are not done with data yet, and we’ll come back to this topic again later in
this book. For now, though, you know enough to be getting on with things.

In the next chapter, we start to talk about techniques to effectively reuse code
with Python, by learning about the most basic of the code reuse technologies:
functions.

www.EBooksWorld.ir

you are here 4 143

structured data

Chapter 3’s Code, 1 of 2

vowels = ['a', 'e', 'i', 'o', 'u']
word = input("Provide a word to search for vowels: ")

found = {}

found['a'] = 0
found['e'] = 0
found['i'] = 0
found['o'] = 0
found['u'] = 0

for letter in word:
 if letter in vowels:
 found[letter] += 1

for k, v in sorted(found.items()):
 print(k, 'was found', v, 'time(s).')

This is the code for “vowels4.py”, which performed a frequency count. This code was (loosely) based on “vowels3.py”, which we first saw in Chapter 2.

vowels = ['a', 'e', 'i', 'o', 'u']
word = input("Provide a word to search for vowels: ")

found = {}

for letter in word:
 if letter in vowels:
 found[letter] += 1

for k, v in sorted(found.items()):
 print(k, 'was found', v, 'time(s).')

In an attempt to
remove the dictionary
initialization code, we
created “vowels5.py”,
which crashed with a
runtime error (due to
us failing to initialize
the frequency counts).

vowels = ['a', 'e', 'i', 'o', 'u']
word = input("Provide a word to search for vowels: ")

found = {}

for letter in word:
 if letter in vowels:
 found.setdefault(letter, 0)
 found[letter] += 1

for k, v in sorted(found.items()):
 print(k, 'was found', v, 'time(s).')

“vowels6.py” fixed the
runtime error thanks to
the use of the “setdefault”
method, which comes with
every dictionary (and assigns
a default value to a key if a
value isn’t already set).

www.EBooksWorld.ir

144 Chapter 3

the code

Chapter 3’s Code, 2 of 2

vowels = set('aeiou')
word = input("Provide a word to search for vowels: ")
found = vowels.intersection(set(word))
for vowel in found:
 print(vowel)

The final version of the vowels program, “vowels7.py", took advantage of Python’s set data structure to considerably shrink the list-based “vowels3.py” code, while still providing the same functionality.

Was there no sample
program that took
advantage of tuples?

No, there wasn’t. But that’s OK.
We didn’t exploit tuples in this chapter with an
example program, as tuples don’t come into their
own until discussed in relation to functions. As we
have already stated, we’ll see tuples again when
we meet functions (in the next chapter), as well
as elsewhere in this book. Each time we see them,
we’ll be sure to point out each tuple usage. As
you continue with your Python travels, you’ll see
tuples pop up all over the place.

www.EBooksWorld.ir

this is a new chapter 145

code reuse4

Functions and Modules

Reusing code is key to building a maintainable system.
And when it comes to reusing code in Python, it all starts and ends with the humble

function. Take some lines of code, give them a name, and you’ve got a function (which

can be reused). Take a collection of functions and package them as a file, and you’ve

got a module (which can also be reused). It’s true what they say: it’s good to share, and

by the end of this chapter, you’ll be well on your way to sharing and reusing your code,

thanks to an understanding of how Python’s functions and modules work.

No matter how much code I
write, things just become totally
unmanageable after a while...

www.EBooksWorld.ir

146 Chapter 4

starting with functions

Reusing Code with Funct ions
Although a few lines of code can accomplish a lot in Python, sooner or later
you’re going to find your program’s codebase is growing...and, when it does,
things quickly become harder to manage. What started out as 20 lines of
Python code has somehow ballooned to 500 lines or more! When this happens,
it’s time to start thinking about what strategies you can use to reduce the
complexity of your codebase.

Like many other programming languages, Python supports modularity, in
that you can break large chunks of code into smaller, more manageable pieces.
You do this by creating functions, which you can think of as named chunks
of code. Recall this diagram from Chapter 1, which shows the relationship
between functions, modules, and the standard library:

getcwd

getcwd chmod
mkdir

getcwd chmod
mkdir

os

getcwd chmod
mkdir

getcwd chmod
mkdir

enum
getcwd chmod

mkdir

random

getcwd chmod
mkdir

json

getcwd chmod
mkdir

getcwd chmod
mkdir

datetime

getcwd chmod
mkdir

getcwd chmod
mkdir

timegetcwd chmod
mkdir

sys

getcwd chmod
mkdir

os

The function...

...is part of a
module...

...which comes as part of
the standard library.

In this chapter, we’re going to concentrate on what’s involved in creating your
own functions, shown at the very top of the diagram. Once you’re happily
creating functions, we’ll also show you how to create a module.

In this chapter, we are concentrating on creating and using functions (but we’re repeating the entire diagram from Chapter 1 in this instance to remind you how functions fit into the larger scheme of things). We will create our own module, too, but are leaving the creation of libraries to other books.

www.EBooksWorld.ir

you are here 4 147

code reuse

Introducing Funct ions
Before we get to turning some of our existing code into a function, let’s spend a
moment looking at the anatomy of any function in Python. Once this introduction is
complete, we’ll look at some of our existing code and go through the steps required to
turn it into a function that you can reuse.

Don’t sweat the details just yet. All you need to do here is get a feel for what functions
look like in Python, as described on this and the next page. We’ll delve into the details
of all you need to know as this chapter progresses. The IDLE window on this page
presents a template you can use when creating any function. As you are looking at it,
consider the following:

Functions introduce two new keywords: def and return
Both of these keywords are colored orange in IDLE. The def keyword names the function
(shown in blue), and details any arguments the function may have. The use of the return
keyword is optional, and is used to pass back a value to the code that invoked the function.

1

Functions can accept argument data
A function can accept argument data (i.e., input to the function). You can specify a list of
arguments between the parentheses on the def line, following the function’s name.

2

Functions contain code and (usually) documentation
Code is indented one level beneath the def line, and should include comments where it
makes sense. We demonstrate two ways to add comments to code: using a triple-quoted
string (shown in green in the template and known as a docstring), and using a single-line
comment, which is prefixed by the # symbol (and shown in red, below).

3

Geek Bits
Python uses the name “function” to describe a reusable chunk of code. Other programming languages
use names such as “procedure,” “subroutine,” and “method.” When a function is part of a Python class,
it‘s known as a “method.”. You’ll learn all about Python’s classes and methods in a later chapter.

A handy
function
template

The “def” line names
the function and lists
any arguments.

Your code goes
here (in place
of these single-
line comment
placeholders).

The “docstring”
describes the
function’s purpose.

www.EBooksWorld.ir

148 Chapter 4

what about type?

What About Type Information?
Take another look at our function template. Other than some code to execute,
do you think there’s anything missing? Is there anything you’d expect to be
specified, but isn’t? Take another look:

I’m a little freaked out by
that function template. How does
the interpreter know what types the
arguments are, as well as what type the

return value is?

It doesn’t know, but don’t let that worry you.
The Python interpreter does not force you to specify the
type of your function’s arguments or the return value.
Depending on the programming languages you’ve used
before, this may well freak you out. Don’t let it.

Python lets you send any object as a argument, and pass
back any object as a return value. The interpreter doesn’t
care or check what type these objects are (only that they are
provided).

With Python 3, it is possible to indicate the expected types for
arguments/return values, and we’ll do just that later in this
chapter. However, indicating the types expected does not

“magically” switch on type checking, as Python never checks
the types of the arguments or any return values.

Is there
anything
missing from
this function
template?

www.EBooksWorld.ir

you are here 4 149

code reuse

Naming a Chunk of Code with “def”
Once you’ve identified a chunk of your Python code you want to reuse, it’s
time to create a function. You create a function using the def keyword
(which is short for define). The def keyword is followed by the function’s
name, an optionally empty list of arguments (enclosed in parentheses), a
colon, and then one or more lines of indented code.

Recall the vowels7.py program from the end of the last chapter, which,
given a word, prints the vowels contained in that word:

vowels = set('aeiou')
word = input("Provide a word to search for vowels: ")
found = vowels.intersection(set(word))
for vowel in found:
 print(vowel)

Let’s imagine you plan to use these five lines of code many times in a much
larger program. The last thing you’ll want to do is copy and paste this code
everywhere it’s needed...so, to keep things manageable and to ensure you
only need to maintain one copy of this code, let’s create a function.

We’ll demonstrate how at the Python Shell (for now). To turn the above five
lines of code into a function, use the def keyword to indicate that a function
is starting; give the function a descriptive name (always a good idea); provide
an optionally empty list of arguments in parentheses, followed by a colon;
and then indent the lines of code relative to the def keyword, as follows:

>>> def search4vowels():
 vowels = set('aeiou')
 word = input("Provide a word to search for vowels: ")
 found = vowels.intersection(set(word))
 for vowel in found:
 print(vowel)

Start with the
“def” keyword.

Give your function a nice,
descriptive name.

Don’t forget
the colon.

Provide an optional list of arguments—in this case, this function has no arguments, so the list is empty.

The fives lines
of code from
the “vowels7.py”
program, suitably
indented As this is the shell, remember to press the Enter key

TWICE to confirm that the indented code has concluded.

This is “vowels7.py” from the end of Chapter 3.

Now that the function exists, let’s invoke it to see if it is working the way we
expect it to.

Display any
results.

Take a set of
vowels...

...and a word...
...then perform
an intersection.

Take the time
to choose a good
descriptive name
for your function.

www.EBooksWorld.ir

150 Chapter 4

calling functions

Invoking Your Funct ion
To invoke functions in Python, provide the function name together with
values for any arguments the function expects. As the search4vowels
function (currently) takes no arguments, we can invoke it with an empty
argument list, like so:

>>> search4vowels()
Provide a word to search for vowels: hitch-hiker
e
i

Invoking the function again runs it again:

>>> search4vowels()
Provide a word to search for vowels: galaxy
a

There are no surprises here: invoking the function executes its code.

Edit your funct ion in an editor, not at the prompt
At the moment, the code for the search4vowels function has been
entered into the >>> prompt, and it looks like this:

>>> def search4vowels():
 vowels = set('aeiou')
 word = input("Provide a word to search for vowels: ")
 found = vowels.intersection(set(word))
 for vowel in found:
 print(vowel)

In order to work further with this code, you can recall it at the >>> prompt
and edit it, but this becomes very unwieldy, very quickly. Recall that once the
code you’re working with at the >>> prompt is more than a few lines long,
you’re better off copying the code into an IDLE edit window. You can edit it
much more easily there. So, let’s do that before continuing.

Create a new, empty IDLE edit window, then copy the function’s code from
the >>> prompt (being sure not to copy the >>> characters), and paste it into
the edit window. Once you’re satisfied that the formatting and indentation are
correct, save your file as vsearch.py before continuing.

Our function
as entered
at the shell
prompt.

Be sure you’ve
saved your code
as “vsearch.py”
after copying the
function’s code
from the shell.

www.EBooksWorld.ir

you are here 4 151

code reuse

The function’s code is now in an IDLE edit window, and has been saved as “vsearch.py”.

If you press F5 while in the edit window, two things happen: the IDLE shell
is brought to the foreground, and the shell restarts. However, nothing appears
on screen. Try this now to see what we mean: press F5.

The reason for nothing displaying is that you have yet to invoke the function.
We’ll invoke it in a little bit, but for now let’s make one change to our function
before moving on. It’s a small change, but an important one nonetheless.

Let’s add some documentation to the top of our function.

To add a multiline comment (a docstring) to any code, enclose your
comment text in triple quotes.

Here’s the vsearch.py file once more, with a docstring added to the top of
the function. Go ahead and make this change to your code, too:

If IDLE displays an error
when you press F5, don’t
panic! Return to your edit
window and check that your
code is the exact same as
ours, then try again.

Use IDLE’s Editor to Make Changes
Here’s what the vsearch.py file looks like in IDLE:

A docstring has been
added to the function’s
code, which (briefly)
describes the purpose
of this function.

www.EBooksWorld.ir

152 Chapter 4

whither PEP compliance?

What’s the Deal with All Those Strings?
Take another look at the function as it currently stands. Pay particular attention to
the three strings in this code, which are all colored green by IDLE:

IDLE’s syntax-highlighting shows that we have
a consistency problem with our use of string
quotes. When do we use which style?Understanding the str ing quote characters

In Python, strings can be enclosed in a single quote character ('), a double quote
character ("), or what’s known as triple quotes (""" or ''').

As mentioned earlier, triple quotes around strings are known as docstrings,
because they are mainly used to document a function’s purpose (as shown above).
Even though you can use """ or ''' to surround your docstrings, most Python
programmers prefer to use """. Docstrings have an interesting characteristic in
that they can span multiple lines (other programming languages use the name

“heredoc” for the same concept).

Strings enclosed by a single quote character (') or a double quote character (")
cannot span multiple lines: you must terminate the string with a matching quote
character on the same line (as Python uses the end of the line as a statement
terminator).

Which character you use to enclose your strings is up to you, although using the
single quote character is very popular with the majority of Python programmers.
That said, and above all else, your usage should be consistent.

The code shown at the top of this page (despite being only a handful of lines of
code) is not consistent in its use of string quote characters. Note that the code runs
fine (as the interpreter doesn’t care which style you use), but mixing and matching
styles can make the code harder to read than it needs to be (which is a shame).

Be consistent in
your use of string
quote characters.
If possible, use
single quotes.

www.EBooksWorld.ir

you are here 4 153

code reuse

Follow Best Pract ice As Per the PEPs
When it comes to formatting your code (not just strings), the Python programming
community has spent a long time establishing and documenting best practice. This
best practice is known as PEP 8. PEP is shorthand for “Python Enhancement
Protocol.”

There are a large number of PEP documents in existence, and they primarily detail
proposed and implemented enhancements to the Python programming language,
but can also document advice (on what to do and what not to do), as well as describe
various Python processes. The details of the PEP documents can be very technical and
(often) esoteric. Thus, the vast majority of Python programmers are aware of their
existence but rarely interact with PEPs in detail. This is true of most PEPs except for
PEP 8.

PEP 8 is the style guide for Python code. It is recommended reading for all Python
programmers, and it is the document that suggests the “be consistent” advice for string
quotes described on the last page. Take the time to read PEP 8 at least once. Another
document, PEP 257, offers conventions on how to format docstrings, and it’s worth
reading, too.

Here is the search4vowels function once more in its PEP 8– and PEP 257–
compliant form. The changes aren’t extensive, but standardizing on single quote
characters around our strings (but not around our docstrings) does look a bit better:

Find the list
of PEPs here:
https://www.
python.org/
dev/peps/.

This is a PEP
257-compliant docstring.

We’ve heeded PEP
8’s advice on being
consistent with the single
quote character we use
to surround our strings.

Of course, you don’t have to write code that conforms exactly to PEP 8. For example,
our function name, search4vowels, does not conform to the guidelines, which
suggests that words in a function’s name should be separated by an underscore:
a more compliant name is search_for_vowels. Note that PEP 8 is a set of
guidelines, not rules. You don’t have to comply, only consider, and we like the name
search4vowels.

That said, the vast majority of Python programmers will thank you for writing code
that conforms to PEP 8, as it is often easier to read than code that doesn’t.

Let’s now return to enhancing the search4vowels function to accept arguments.

www.EBooksWorld.ir

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/

154 Chapter 4

add an argument

Funct ions Can Accept Arguments
Rather than having the function prompt the user for a word to search, let’s change
the search4vowels function so we can pass it the word as input to an argument.

Adding an argument is straightforward: you simply insert the argument’s name
between the parentheses on the def line. This argument name then becomes a
variable in the function’s suite. This is an easy edit.

Let’s also remove the line of code that prompts the user to supply a word to search,
which is another easy edit.

Let’s remind ourselves of the current state of our code:

Applying the two suggested edits (from above) to our function results in the IDLE
edit window looking like this (note: we’ve updated our docstring, too, which is always
a good idea):

Remember:
“suite” is
Python-speak
for “block.”

Be sure to save your file after each code change, before pressing F5 to take the new
version of your function for a spin.

Here’s our
original
function.

Put the
argument’s
name
between the
parentheses.

The call to the
“input” function is gone (as we don’t need that line of code anymore).

This line isn’t
needed anymore.

www.EBooksWorld.ir

you are here 4 155

code reuse

Test Drive
With your code loaded into IDLE’s edit window (and saved), press F5, then invoke the function a few
times and see what happens:

The current
“search4vowels”
code

Although we’ve invoked the “search4vowels” function three times in this Test Drive, the only invocation that ran successfully was the one that passed in a single, stringed argument. The other two failed. Take a moment to read the error messages produced by the interpreter to learn why each of the incorrect calls failed.

Q: Am I restricted to only a single argument when creating functions in Python?

A: No, you can have as many arguments as you want, depending on the service your function is providing. We are deliberately starting
off with a straightforward example, and we’ll get to more involved examples as this chapter progresses. You can do a lot with arguments to
functions in Python, and we plan to discuss most of what’s possible over the next dozen pages or so.

www.EBooksWorld.ir

156 Chapter 4

return a value

Funct ions Return a Result
As well as using a function to abstract some code and give it a name,
programmers typically want functions to return some calculated value, which
the code that called the function can then work with. To support returning a
value (or values) from a function, Python provides the return statement.

When the interpreter encounters a return statement in your function’s suite,
two things happen: the function terminates at the return statement, and
any value provided to the return statement is passed back to your calling
code. This behavior mimics how return works in the majority of other
programming languages.

Let’s start with a straightforward example of returning a single value from
our search4vowels function. Specifically, let’s return either True or
False depending on whether the word supplied as an argument contains
any vowels.

This is a bit of a departure from our function’s existing functionality, but bear
with us, as we are going to build up to something more complex (and useful)
in a bit. Starting with a simple example ensures we have the basics in place
first, before moving on.

That sounds like a plan I can
live with. The only question
I have is how do I know
whether something is true or

false?

The truth is...
Python comes with a built-in function called bool
that, when provided with any value, tells you whether
the value evaluates to True or False.

Not only does bool work with any value, it works
with any Python object. The effect of this is that
Python’s notion of truth extends far beyond the 1 for
True and the 0 for False that other programming
languages employ.

Let’s pause and take a brief look at True and False
before getting back to our discussion of return.

www.EBooksWorld.ir

you are here 4 157

code reuse

Every object in Python has a truth value associated with it, in that the object
evaluates to either True or False.

Something is False if it evaluates to 0, the value None, an empty string,
or an empty built-in data structure. This means all of these examples are
False:

>>> bool(0)
False
>>> bool(0.0)
False
>>> bool('')
False
>>> bool([])
False
>>> bool({})
False
>>> bool(None)
False

Every other object in Python evaluates to True. Here are some examples of
objects that are True:

If an object evaluates to 0, it is always False.

An empty string, an empty list, and
an empty dictionary all evaluate to
False.

Python’s “None” value is
always False.

>>> bool(1)
True
>>> bool(-1)
True
>>> bool(42)
True
>>> bool(0.0000000000000000000000000000001)
True
>>> bool('Panic')
True
>>> bool([42, 43, 44])
True
>>> bool({'a': 42, 'b':42})
True

A number that isn’t 0 is always True, even when it’s negative.
It may be
really small,
but it is
still not 0,
so it’s True.A nonempty string is

always True.
A nonempty built-in data
structure is True.

We can pass any object to the bool function and determine whether it is
True or False.

Critically, any nonempty data structure evaluates to True.

Truth Up Close

www.EBooksWorld.ir

158 Chapter 4

handling the truth

Returning One Value
Take another look at our function’s code, which currently accepts any value
as an argument, searches the supplied value for vowels, and then displays the
found vowels on screen:

def search4vowels(word):
 """Display any vowels found in a supplied word."""
 vowels = set('aeiou')
 found = vowels.intersection(set(word))
 for vowel in found:
 print(vowel)

Changing this function to return either True or False, based on whether
any vowels were found, is straightforward. Simply replace the last two lines of
code (the for loop) with this line of code:

We’ll change these two lines.

return bool(found)

Call the “bool”
function, and...

...pass in the name of the data structure that contains the results of the vowels search.
If nothing is found, the function returns False; otherwise, it returns True.
With this change made, you can now test this new version of your function at
the Python Shell and see what happens:

>>> search4vowels('hitch-hiker')
True
>>> search4vowels('galaxy')
True
>>> search4vowels('sky')
False

If you continue to see the previous version’s behavior, ensure you’ve saved the
new version of your function, as well as pressed F5 from the edit window.

The “return”
statement (thanks
to “bool”) gives us
either “True” or
“False”.

Geek Bits
Don’t be tempted to put parentheses around the object that return passes back to the calling
code. You don’t need to. The return statement is not a function call, so the use of parentheses isn’t a
syntactical requirement. You can use them (if you really want to), but most Python programmers don’t.

As in earlier
chapters, we are not classing ‘y’ as a vowel.

www.EBooksWorld.ir

you are here 4 159

code reuse

Returning More Than One Value
Functions are designed to return a single value, but it is sometimes necessary
to return more than one value. The only way to do this is to package the
multiple values in a single data structure, then return that. Thus, you’re still
returning one thing, even though it potentially contains many individual
pieces of data.

Here’s our current function, which returns a boolean value (i.e., one thing):

def search4vowels(word):
 """Return a boolean based on any vowels found."""
 vowels = set('aeiou')
 found = vowels.intersection(set(word))
 return bool(found)

def search4vowels(word):
 """Return any vowels found in a supplied word."""
 vowels = set('aeiou')
 found = vowels.intersection(set(word))
 return found We’ve updated

the comment
again.

Return the results as a
data structure (a set).

It’s a trivial edit to have the function return multiple values (in one set) as
opposed to a boolean. All we need to do is drop the call to bool:

We can further reduce the last two lines of code in the above version of our
function to one line by removing the unnecessary use of the found variable.
Rather than assigning the results of the intersection to the found
variable and returning that, just return the intersection:

def search4vowels(word):
 """Return any vowels found in a supplied word."""
 vowels = set('aeiou')
 return vowels.intersection(set(word))

Return the data without the use
of the unnecessary “found” variable.

Our function now returns a set of vowels found in a word, which is exactly
what we set out to do.

However, when we tested it, one of our results has us scratching our head...

Note: we’ve
updated the comment.

www.EBooksWorld.ir

160 Chapter 4

set weirdness

Test Drive
Let’s take this latest version of the search4vowels function for a spin and see how it behaves.
With the latest code loaded into an IDLE edit window, press F5 to import the function into the Python
Shell, and then invoke the function a few times:

Each of these function invocations works as expected, even though the result from the last one looks a little weird.

What’s the deal with “set()”?
Each example in the above Test Drive works fine, in that the function takes a
single string value as an argument, then returns the set of vowels found. The
one result, the set, contains many values. However, the last response looks a
little weird, doesn’t it? Let’s have a closer look:

>>> search4vowels('sky')
set()

We don’t need a
function to tell us that
the word “sky” doesn’t
contain any vowels... ...but look what our function returns. What gives?

You may have expected the function to return {} to represent an empty set,
but that’s a common misunderstanding, as {} represents an empty dictionary,
not an empty set.

An empty set is represented as set() by the interpreter.

This may well look a little weird, but it’s just the way things work in Python.
Let’s take a moment to recall the four built-in data structures, with a eye to
seeing how each empty data structure is represented by the interpreter.

www.EBooksWorld.ir

you are here 4 161

code reuse

Recalling the Built-in Data Structures
Let’s remind ourselves of the four built-in data structures available to us. We’ll take
each data structure in turn, working through list, dictionary, set, and finally tuple.

Working at the shell, let’s create an empty data structure using the data structure built-
in functions (BIFs for short), then assign a small amount of data to each. We’ll then
display the contents of each data structure after each assignment:

BIF is short-
hand for “built-
in function.”>>> l = list()

>>> l
[]
>>> l = [1, 2, 3]
>>> l
[1, 2, 3]

>>> d = dict()
>>> d
{}
>>> d = { 'first': 1, 'second': 2, 'third': 3 }
>>> d
{'second': 2, 'third': 3, 'first': 1}

>>> s = set()
>>> s
set()
>>> s = {1, 2, 3}
>>> s
{1, 2, 3}

>>> t = tuple()
>>> t
()
>>> t = (1, 2, 3)
>>> t
(1, 2, 3)

Use the “list” BIF to
define an empty list,
then assign some data.

Use the “dict” BIF to
define an empty dictionary,
then assign some data.

Use the “set” BIF to define an empty set, then assign some data.

Use the “tuple” BIF to
define an empty tuple,
then assign some data.

An
empty
list

An empty
dictionary

An empty
set

An empty
tuple

Before moving on, take a moment to review
how the interpreter represents each of the
empty data structures as shown on this page.

Even though sets are enclosed
in curly braces, so too are
dictionaries. An empty
dictionary is already using
the double curly braces, so
an empty set has to be
represented as “set()”.

www.EBooksWorld.ir

162 Chapter 4

annotate your functions

Use Annotat ions to Improve Your Docs
Our review of the four data structures confirms that the search4vowels function
returns a set. But, other than calling the function and checking the return type, how
can users of our function know this ahead of time? How do they know what to expect?

A solution is to add this information to the docstring. This assumes that you very
clearly indicate in your docstring what the arguments and return value are going
to be and that this information is easy to find. Getting programmers to agree on a
standard for documenting functions is problematic (PEP 257 only suggests the format
of docstrings), so Python 3 now supports a notation called annotations (also known
as type hints). When used, annotations document—in a standard way—the return type,
as well as the types of any arguments. Keep these points in mind:

def search4vowels(word:str) -> set:
 """Return any vowels found in a supplied word."""
 vowels = set('aeiou')
 return vowels.intersection(set(word))

We are stating that the
“word” argument is expected
to be a string.

We are stating that the
function returns a set to its caller.

Annotation syntax is straightforward. Each function argument has a colon appended
to it, together with the type that is expected. In our example, :str specifies that the
function expects a string. The return type is provided after the argument list, and is
indicated by an arrow symbol, which is itself followed by the return type, then the
colon. Here -> set: indicates that the function is going to return a set.

So far, so good.

We’ve now annotated our function in a standard way. Because of this, programmers
using our function now know what’s expected of them, as well as what to expect from
the function. However, the interpreter won’t check that the function is always called
with a string, nor will it check that the function always returns a set. Which begs a
rather obvious question...

For more details
on annotations,
see PEP 3107
at https://www.
python.org/dev/
peps/pep-3107/.

Let’s annotate the search4vowels function’s arguments. The first annotation states
that the function expects a string as the type of the word argument (:str), while the
second annotation states that the function returns a set to its caller (-> set):

Function annotations are optional
It’s OK not to use them. In fact, a lot of existing Python code doesn’t (as they were only
made available to programmers in the most recent versions of Python 3).

1

Function annotations are informational
They provide details about your function, but they do not imply any other behavior (such as
type checking).

2

www.EBooksWorld.ir

https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-3107/

you are here 4 163

code reuse

Why Use Funct ion Annotat ions?
If the Python interpreter isn’t going to use your annotations to check the types of
your function’s arguments and its return type, why bother with annotations at all?

The goal of annotations is not to make life easier for the interpreter; it’s to make
life easier for the user of your function. Annotations are a documentation
standard, not a type enforcement mechanism.

In fact, the interpreter does not care what type your arguments are, nor does it
care what type of data your function returns. The interpreter calls your function
with whatever arguments are provided to it (no matter their type), executes your
function’s code, and then returns to the caller whatever value it is given by the
return statement. The type of the data being passed back and forth is not
considered by the interpreter.

What annotations do for programmers using your function is rid them of the need
to read your function’s code to learn what types are expected by, and returned
from, your function. This is what they’ll have to do if annotations aren’t used.
Even the most beautifully written docstring will still have to be read if it doesn’t
include annotations.

Which leads to another question: how do we view the annotations without reading
the function’s code? From IDLE’s editor, press F5, then use the help BIF at the
>>> prompt.

Use annotations
to help document
your functions,
and use the “help”
BIF to view them.

Test Drive
If you haven’t done so already, use IDLE’s editor to annotate your copy of search4vowels, save
your code, and then press the F5 key. The Python Shell will restart and the >>> prompt will be waiting
for you to do something. Ask the help BIF to display search4vowels documentation, like so:

Not only does “help” display the annotations, but it shows the docstring too.

www.EBooksWorld.ir

164 Chapter 4

function recap

Funct ions: What We Know Already
Let’s pause for a moment and review what we know (so far) about Python functions.

 � Functions are named chunks of
code.

 � The def keyword is used to name
a function, with the function’s code
indented under (and relative to) the
def keyword.

 � Python’s triple-quoted strings can be
used to add multiline comments to a
function. When they are used in this
way, they are known as docstrings.

 � Functions can accept any number of
named arguments, including none.

 � The return statement lets your
functions return any number of
values (including none).

 � Function annotations can be used to
document the type of your function’s
arguments, as well as its return type.

Let’s take a moment to once more review the code for the search4vowels function.
Now that it accepts an argument and returns a set, it is more useful than the very first
version of the function from the start of this chapter, as we can now use it in many
more places:

def search4vowels(word:str) -> set:
 """Return any vowels found in a supplied word."""
 vowels = set('aeiou')
 return vowels.intersection(set(word))

This function would be even more useful if, in addition to accepting an argument for
the word to search, it also accepted a second argument detailing what to search for.
This would allow us to look for any set of letters, not just the five vowels.

Additionally, the use of the name word as an argument name is OK, but not great,
as this function clearly accepts any string as an argument, as opposed to a single word.
A better variable name might be phrase, as it more closely matches what it is we
expect to receive from the users of our function.

Let’s change our function now to reflect this last suggestion.

The most
recent
version of
our function

www.EBooksWorld.ir

you are here 4 165

code reuse

Making a Generically Useful Funct ion
Here’s a version of the search4vowels function (as it appears in IDLE) after it
has been changed to reflect the second of the two suggestions from the bottom of
the last page. Namely, we’ve changed the name of the word variable to the more
appropriate phrase:

The other suggestion from the bottom of the last page was to allow users to
specify the set of letters to search for, as opposed to always using the five vowels.
To do this we can add a second argument to the function that specifies the letters
to search phrase for. This is an easy change to make. However, once we make
it, the function (as it stands) will be incorrectly named, as we’ll no longer be
searching for vowels, we’ll be searching for any set of letters. Rather than change
the current function, let’s create a second one that is based on the first. Here’s
what we propose to do:

Give the new function a more generic name
Rather than continuing to adjust search4vowels, let’s create a new function called
search4letters, which is a name that better reflects the new function’s purpose.

1

Remove the vowels variable
The use of the name vowels in the function’s suite no longer makes any sense, as we are
now looking for a user-specified set of letters.

3

Update the docstring
There’s no point copying, then changing, the code if we don’t also adjust the docstring. Our
documentation needs be updated to reflect what the new function does.

4

We are going to work through these four tasks together. As each task is discussed,
be sure to edit your vsearch.py file to reflect the presented changes.

The “word” variable is now called “phrase”.

Add a second argument
Adding a second argument allows us to specify the set of letters to search the string for. Let’s
call the second argument letters. And let’s not forget to annotate letters, too.

2

www.EBooksWorld.ir

166 Chapter 4

step by step

Creat ing Another Funct ion, 1 of 3
If you haven’t done so already, open the vsearch.py file in an IDLE edit window.

Step 1 involves creating a new function, which we’ll call search4letters. Be
aware that PEP 8 suggests that all top-level functions are surrounded by two blank
lines. All of this book’s downloads conform to this guideline, but the code we show on
the printed page doesn’t (as space is at a premium here).

At the bottom of the file, type def followed by the name of your new function:

For Step 2 we’re completing the function’s def line by adding in the names of the
two required arguments, phrase and letters. Remember to enclose the list of
arguments within parentheses, and don’t forget to include the trailing colon (and the
annotations):

Start by giving your new
function a name.

Specify the list of arguments, and don’t
forget the colon (and the annotations, too

).

Did you notice how IDLE’s editor has anticipated that the next line of code needs to be indented (and automatically positioned the cursor)?

With Steps 1 and 2 complete, we’re now ready to write
the function’s code. This code is going to be similar to
that in the search4vowels function, except that we
plan to remove our reliance on the vowels variable.

www.EBooksWorld.ir

you are here 4 167

code reuse

Creat ing Another Funct ion, 2 of 3
On to Step 3, which is to write the code for the function in such a way as to
remove the need for the vowels variable. We could continue to use the variable,
but give it a new name (as vowels no longer represents what the variable does),
but a temporary variable is not needed here, for much the same reason as why
we no longer needed the found variable earlier. Take a look at the new line
of code in search4letters, which does the same job as the two lines in
search4vowels:

If that single line of code in search4letters has you scratching your head,
don’t despair. It looks more complex than it is. Let’s go through this line of
code in detail to work out exactly what it does. It starts when the value of the
letters argument is turned into a set:

set(letters)

This call to the set BIF creates a set object from the characters in the
letters variable. We don’t need to assign this set object to a variable, as we
are more interested in using the set of letters right away than in storing the set
in a variable for later use. To use the just-created set object, append a dot, then
specify the method you want to invoke, as even objects that aren’t assigned to
variables have methods. As we know from using sets in the last chapter, the
intersection method takes the set of characters contained in its argument
(phrase) and intersects them with an existing set object (letters):

set(letters).intersection(set(phrase))

And, finally, the result of the intersection is returned to the calling code, thanks
to the return statement:

return set(letters).intersection(set(phrase))

Create a set object
from “letters”.

Perform a set intersection
on the set object made
from “letters” with the
set object made from
“phrase”.

Send the results
back to the
calling code.

Two lines
of code
become
one.

www.EBooksWorld.ir

168 Chapter 4

don’t forget!

Creat ing Another Funct ion, 3 of 3
All that remains is Step 4, where we add a docstring to our newly created
function. To do this, add a triple-quoted string right after your new function’s
def line. Here’s what we used (as comments go it’s terse, but effective):

Why go to all the trouble of creating a
one-line function? Isn’t it better to just
copy and paste that line of code whenever
you need it?

And with that, our four steps are complete and search4letters is
ready to be tested.

Functions can hide complexity, too.
It is correct to observe that we’ve just created a one-line
function, which may not feel like much of a “savings.”
However, note that our function contains a complex single
line of code, which we are hiding from the users of this
function, and this can be a very worthwhile practice (not
to mention, way better than all that copying and pasting).

For instance, most programmers would be able to guess
what search4letters does if they were to come
across an invocation of it in a program. However, if
they came across that complex single line of code in a
program, they may well scratch their heads and wonder
what it does. So, even though search4letters
is “short,” it’s still a good idea to abstract this type of
complexity inside a function.

A docstring

www.EBooksWorld.ir

you are here 4 169

code reuse

Test Drive
Save the vsearch.py file once more, and then press F5 to try out the search4letters function:

All of these
examples
produce what
we expect them
to.

The search4letters function is now more generic than search4vowels,
in that it takes any set of letters and searches a given phrase for them, rather
than just searching for the letters a, e, i, o, and u. This makes our new
function much more useful than search4vowels. Let’s now imagine that
we have a large, existing codebase that has used search4vowels extensively.
A decision has been made to retire search4vowels and replace it with
search4letters, as the “powers that be” don’t see the need for both
functions, now that search4letters can do what search4vowels does.
A global search-and-replace of your codebase for the name “search4vowels”
with “search4letters” won’t work here, as you’ll need to add in that second
argument value, which is always going to be aeiou when simulating the
behavior of search4vowels with search4letters. So, for instance, this
single-argument call:

 search4vowels("Don't panic!")

now needs to be replaced with this dual-argument one (which is a much harder
edit to automate):

 search4letters("Don't panic!", 'aeiou')

It would be nice if we could somehow specify a default value for
search4letters’s second argument, then have the function use it if no
alternative value is provided. If we could arrange to set the default to aeiou,
we’d then be able to apply a global search-and-replace (which is an easy edit).

Wouldn’t it be dreamy
if Python let me specify
default values? But I know
it’s just a fantasy...

Use the “help” BIF to learn how to use “search4letters”.

www.EBooksWorld.ir

170 Chapter 4

revert automatically to

Specifying Default Values for Arguments
Any argument to a Python function can be assigned a default value, which can
then be automatically used if the code calling the function fails to supply an
alternate value. The mechanism for assigning a default value to an argument is
straightforward: include the default value as an assignment in the function’s def
line.

Here’s search4letters’s current def line:

def search4letters(phrase:str, letters:str) -> set:

This version of our function’s def line (above) expects exactly two arguments, one
for phrase and another for letters. However, if we assign a default value to
letters, the function’s def line changes to look like this:

We can continue to use the search4letters function in the same way as
before: providing both arguments with values as needed. However, if we forget
to supply the second argument (letters), the interpreter will substitute in the
value aeiou on our behalf.

If we were to make this change to our code in the vsearch.py file (and save it),
we could then invoke our functions as follows:

A default value has been
assigned to the “letters”
argument and will be used
whenever the calling code
doesn’t provide an alternate
value.

>>> search4letters('life, the universe, and everything')
{'a', 'e', 'i', 'u'}
>>> search4letters('life, the universe, and everything', 'aeiou')
{'a', 'e', 'i', 'u'}
>>> search4vowels('life, the universe, and everything')
{'a', 'e', 'i', 'u'}

Not only do these function calls produce the same output, they also demonstrate
that the search4vowels function is no longer needed now that the letters
argument to search4letters supports a default value (compare the first and
last invocations above).

Now, if we are asked to retire the search4vowels function and replace all
invocations of it within our codebase with search4letters, our exploitation
of the default value mechanism for function arguments lets us do so with a simple
global search-and-replace. And we don’t have to use search4letters to only
search for vowels. That second argument allows us to specify any set of characters
to look for. As a consequence, search4letters is now more generic, and more
useful.

These three
function calls
all produce
the same
results.

In this invocation, we are calling
“search4vowels”, not “search4letters”.

def search4letters(phrase:str, letters:str='aeiou') -> set:

www.EBooksWorld.ir

you are here 4 171

code reuse

Posit ional Versus Keyword Assignment
As we’ve just seen, the search4letters function can be invoked with
either one or two arguments, the second argument being optional. If you
provide only one argument, the letters argument defaults to a string of
vowels. Take another look at the function’s def line:

def search4letters(phrase:str, letters:str='aeiou') -> set:

As well as supporting default arguments, the Python interpreter also lets
you invoke a function using keyword arguments. To understand what a
keyword argument is, consider how we’ve invoked search4letters up
until now, for example:

Our function’s
“def” line

In the above invocation, the two strings are assigned to the phrase and
letters arguments based on their position. That is, the first string is
assigned to phrase, while the second is assigned to letters. This is known
as positional assignment, as it’s based on the order of the arguments.

In Python, it is also possible to refer to arguments by their argument name,
and when you do, positional ordering no longer applies. This is known as
keyword assignment. To use keywords, assign each string in any order to its
correct argument name when invoking the function, as shown here:

search4letters('galaxy', 'xyz')

def search4letters(phrase:str, letters:str='aeiou') -> set:

search4letters(letters='xyz', phrase='galaxy')

def search4letters(phrase:str, letters:str='aeiou') -> set:

Both invocations of the search4letters function on this page produce
the same result: a set containing the letters y and z. Although it may be
hard to appreciate the benefit of using keyword arguments with our small
search4letters function, the flexibility this feature gives you becomes
clear when you invoke a function that accepts many arguments. We’ll see an
example of one such function (provided by the standard library) before the
end of this chapter.

The ordering of the
arguments isn’t important when keyword arguments are used during invocation.

www.EBooksWorld.ir

172 Chapter 4

a quick update

Updat ing What We Know About Funct ions
Let’s update what you know about functions now that you’ve spent some time exploring
how function arguments work:

 � As well as supporting code reuse,
functions can hide complexity. If you
have a complex line of code you
intend to use a lot, abstract it behind
a simple function call.

 � Any function argument can be
assigned a default value in the
function’s def line. When this
happens, the specification of a value
for that argument during a function’s
invocation is optional.

 � As well as assigning arguments by
position, you can use keywords,
too. When you do, any ordering is
acceptable (as any possibility of
ambiguity is removed by the use of
keywords and position doesn’t matter
anymore).

These functions really
hit the mark for me.
How do I go about using
and sharing them?

There’s more than one way to do it.
Now that you have some code that’s worth
sharing, it is reasonable to ask how best to use
and share these functions. As with most things,
there’s more than one answer to that question.
However, on the next pages, you’ll learn how best
to package and distribute your functions to ensure
it’s easy for you and others to benefit from your
work.

www.EBooksWorld.ir

you are here 4 173

code reuse

Funct ions Beget Modules
Having gone to all the trouble of creating a reusable function (or two, as is the
case with the functions currently in our vsearch.py file), it is reasonable to ask:
what’s the best way to share functions?

It is possible to share any function by copying and pasting it throughout your
codebase where needed, but as that’s such a wasteful and bad idea, we aren’t
going to consider it for very much longer. Having multiple copies of the same
function littering your codebase is a sure-fire recipe for disaster (should you ever
decide to change how your function works). It’s much better to create a module
that contains a single, canonical copy of any functions you want to share. Which
raises another question: how are modules created in Python?

The answer couldn’t be simpler: a module is any file that contains functions.
Happily, this means that vsearch.py is already a module. Here it is again, in all
its module glory:

“vsearch.py” contains functions in
a file, making it a fully formed
module.

Creat ing modules couldn’t be easier, however...
Creating modules is a piece of cake: simply create a file of the functions you want
to share.

Once your module exists, making its contents available to your programs is also
straightforward: all you have to do is import the module using Python’s import
statement.

This in itself is not complex. However, the interpreter makes the assumption that
the module in question is in the search path, and ensuring this is the case can
be tricky. Let’s explore the ins and outs of module importation over the next few
pages.

Share your
functions
in modules.

module

www.EBooksWorld.ir

174 Chapter 4

where’s my module?

How Are Modules Found?
Recall from this book’s first chapter how we imported and then used the
randint function from the random module, which comes included as part
of Python’s standard library. Here’s what we did at the shell:

>>> import random
>>> random.randint(0, 255)
42

Identify the module
to import, then... ...invoke one of

the module’s
functions.What happens during module importation is described in great detail in the

Python documentation, which you are free to go and explore if the nitty-
gritty details float your boat. However, all you really need to know are the
three main locations the interpreter searches when looking for a module.
These are:

Your current working directory
This is the folder that the interpreter thinks you are currently
working in.

1

Your interpreter’s site-packages locations
These are the directories that contain any third-party Python
modules you may have installed (including any written by you).

2

The standard library locations
These are the directories that contains all the modules that make up
the standard library.

3

The order in which locations 2 and 3 are searched by the interpreter can vary
depending on many factors. But don’t worry: it is not important that you
know how this searching mechanism works. What is important to understand
is that the interpreter always searches your current working directory first,
which is what can cause trouble when you’re working with your own custom
modules.

To demonstrate what can go wrong, let’s run though a small exercise that is
designed to highlight the issue. Here’s what you need to do before we begin:

Create a folder called mymodules, which we’ll use to store your modules. It
doesn’t matter where in your filesystem you create this folder; just make sure it
is somewhere where you have read/write access.

Move your vsearch.py file into your newly created mymodules folder.
This file should be the only copy of the vsearch.py file on your computer.

Geek Bits

Depending on the operating
system you’re running, the
name given to a location
that holds files may be either
directory or folder. We’ll use

“folder” in this book, except
when we discuss the current
working directory (which is a
well-established term).

module

www.EBooksWorld.ir

https://docs.python.org/3/reference/import.html
https://docs.python.org/3/reference/import.html

you are here 4 175

code reuse

Running Python from the Command Line
We’re going to run the Python interpreter from your operating system’s
command line (or terminal) to demonstrate what can go wrong here (even
though the problem we are about to discuss also manifests in IDLE).

If you are running any version of Windows, open up a command prompt and
follow along with this session. If you are not on Windows, we discuss your
platform halfway down the next page (but read on for now anyway). You
can invoke the Python interpreter (outside of IDLE) by typing py -3 at the
Windows C:\> prompt. Note below how prior to invoking the interpreter, we
use the cd command to make the mymodules folder our current working
directory. Also, observe that we can exit the interpreter at any time by typing
quit() at the >>> prompt:

C:\Users\Head First> cd mymodules

C:\Users\Head First\mymodules> py -3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC
v.1600 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
>>> vsearch.search4vowels('hitch-hiker')
{'i', 'e'}
>>> vsearch.search4letters('galaxy', 'xyz')
{'y', 'x'}
>>> quit()

C:\Users\Head First\mymodules>

File Edit Window Help Redmond #1

Change into the “mymodules” folder.

Start
Python 3.

Import the
module.

Use the
module’s
functions.

Exit the Python
interpreter and return
to your operating
system’s command prompt.

This works as expected: we successfully import the vsearch module, then
use each of its functions by prefixing the function name with the name of
its module and a dot. Note how the behavior of the >>> prompt at the
command line is identical to the behavior within IDLE (the only difference is
the lack of syntax highlighting). It’s the same Python interpreter, after all.

Although this interaction with the interpreter was successful, it only worked
because we started off in a folder that contained the vsearch.py file.
Doing this makes this folder the current working directory. Based on how the
interpreter searches for modules, we know that the current working directory
is searched first, so it shouldn’t surprise us that this interaction worked and
that the interpreter found our module.

But what happens if our module isn’t in the current
working directory?

module

www.EBooksWorld.ir

176 Chapter 4

no import here

Not Found Modules Produce ImportErrors
Repeat the exercise from the last page, after moving out of the folder that contains
our module. Let’s see what happens when we try to import our module now. Here
is another interaction with the Windows command prompt:

C:\Users\Head First> cd \

C:\>py -3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC
v.1600 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'vsearch'
>>> quit()

C:\>

File Edit Window Help Redmond #2

Change to another folder (in this case, we are moving to the top-level folder).
Start
Python 3
again.

Try to import
the module...

...but this
time we get
an error!

The vsearch.py file is no longer in the interpreter’s current working directory,
as we are now working in a folder other than mymodules. This means our
module file can’t be found, which in turn means we can’t import it—hence the
ImportError from the interpreter.

If we try the same exercise on a platform other than Windows, we get the same
results (whether we’re on Linux, Unix, or Mac OS X). Here’s the above interaction
with the interpreter from within the mymodules folder on OS X:

$ cd mymodules

mymodules$ python3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
>>> vsearch.search4vowels('hitch-hiker')
{'i', 'e'}
>>> vsearch.search4letters('galaxy', 'xyz')
{'x', 'y'}
>>> quit()

mymodules$

File Edit Window Help Cupertino #1Change into the
folder and then type
“python3” to start
the interpreter.

Import the
module.

It works: we
can use the
module’s
functions.

Exit the Python interpreter and return to your operating system’s command prompt.

module

www.EBooksWorld.ir

you are here 4 177

code reuse

ImportErrors Occur No Matter the
Platform
If you think running on a non-Windows platform will somehow fix this import
issue we saw on that platform, think again: the same ImportError occurs on
UNIX-like systems, once we change to another folder:

mymodules$ cd

$ python3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import vsearch
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'vsearch'
>>> quit()

$

File Edit Window Help Cupertino #2Start
Python 3
again.

Try to import
the module...

...but this
time we get
an error!

Change to another folder (in this case, we are moving to our top-level folder).

As was the case when we were working on Windows, the vsearch.py file is no
longer in the interpreter’s current working directory, as we are now working in a
folder other than mymodules. This means our module file can’t be found, which
in turn means we can’t import it—hence the ImportError from the interpreter.
This problem presents no matter which platform you’re running Python on.

Q: Can’t we be location specific and say something like import C:\mymodules\vsearch on Windows platforms, or
perhaps import /mymodules/vsearch on UNIX-like systems?

A: No, you can’t. Granted, doing something like that does sound tempting, but ultimately won’t work, as you can’t use paths in this way with
Python’s import statement. And, anyway, the last thing you’ll want to do is put hardcoded paths into any of your programs, as paths can
often change (for a whole host of reasons). It is best to avoid hardcoding paths in your code, if at all possible.

Q: If I can’t use paths, how can I arrange for the interpreter to find my modules?

A: If the interpreter can’t find your module in the current working directory, it looks in the site-packages locations as well as in the standard
library (and there’s more about site-packages on the next page). If you can arrange to add your module to one of the site-packages locations,
the interpreter can then find it there (no matter its path).

module

www.EBooksWorld.ir

178 Chapter 4

install into Python

Gett ing a Module into Site-packages
Recall what we had to say about site-packages a few pages back when we
introduced them as the second of three locations searched by the interpreter’s
import mechanism:

Your interpreter’s site-packages locations
These are the directories that contain any third-party Python modules
which you may have installed (including any written by you).

2

As the provision and support of third-party modules is central to Python’s
code reuse strategy, it should come as no surprise that the interpreter comes
with the built-in ability to add modules to your Python setup.

Note that the set of modules included with the standard library is managed
by the Python core developers, and this large collection of modules has been
designed to be widely used, but not tampered with. Specifically, don’t add or
remove your own modules to/from the standard library. However, adding or
removing modules to your site-packages locations is positively encouraged, so
much so that Python comes with some tools to make it straightforward.

Using “setuptools” to install into site-packages
As of release 3.4 of Python, the standard library includes a module called
setuptools, which can be used to add any module into site-packages.
Although the details of module distribution can—initially—appear complex,
all we want to do here is install vsearch into site-packages, which is
something setuptools is more than capable of doing in three steps:

Create a distribution description
This identifies the module we want setuptools to install.

1

Generate a distribution file
Using Python at the command line, we’ll create a shareable
distribution file to contain our module’s code.

2

Install the distribution file
Again, using Python at the command line, install the distribution
file (which includes our module) into site-packages.

3

Python 3.4 (or
newer) makes using
setuptools a breeze.
If you aren’t running
3.4 (or newer),
consider upgrading.

Step 1 requires us to create (at a minimum) two descriptive files for our
module: setup.py and README.txt. Let’s see what’s involved.

module

www.EBooksWorld.ir

you are here 4 179

code reuse

Creat ing the Required Setup Files
If we follow the three steps shown at the bottom of the last page, we’ll end up
creating a distribution package for our module. This package is a single
compressed file that contains everything required to install our module into
site-packages.

For Step 1, Create a distribution description, we need to create two files that we’ll
place in the same folder as our vsearch.py file. We’ll do this no matter
what platform we’re running on. The first file, which must be called setup.
py, describes our module in some detail.

Find below the setup.py file we created to describe the module in the
vsearch.py file. It contains two lines of Python code: the first line imports
the setup function from the setuptools module, while the second
invokes the setup function.

The setup function accepts a large number of arguments, many of
which are optional. Note how, for readability purposes, our call to setup
is spread over nine lines. We’re taking advantage of Python’s support for
keyword arguments to clearly indicate which value is being assigned to which
argument in this call. The most important arguments are highlighted; the first
names the distribution, while the second lists the .py files to include when
creating the distribution package:

from setuptools import setup

setup(
 name='vsearch',
 version='1.0',
 description='The Head First Python Search Tools',
 author='HF Python 2e',
 author_email='hfpy2e@gmail.com',
 url='headfirstlabs.com',
 py_modules=['vsearch'],
)

Import the “setup” function from the “setuptools” module. The “name” argument
identifies the distribution. It’s common practice to name the distribution after the module.

This is a list of “.py” files to incl
ude in

the package. For this example, we only

have one: “vsearch”.In addition to setup.py, the setuptools mechanism requires the
existence of one other file—a “readme” file—into which you can put a
textual description of your package. Although having this file is required,
its contents are optional, so (for now) you can create an empty file called
README.txt in the same folder as the setup.py file. This is enough to
satisfy the requirement for a second file in Step 1.

This is an invocation of
the “setup” function.
We’re spreading its
arguments over many
lines.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

We’ll check off each completed step as we work through this material.

www.EBooksWorld.ir

180 Chapter 4

setup on windows

Creat ing the Distr ibut ion File
At this stage, you should have three files, which we have put in our
mymodules folder: vsearch.py, setup.py, and README.txt.

We’re now ready to create a distribution package from these files. This is Step
2 from our earlier list: Generate a distribution file. We’ll do this at the command
line. Although doing so is straightforward, this step requires that different
commands be entered based on whether you are on Windows or on one of the
UNIX-like operating systems (Linux, Unix, or Mac OS X).

Creat ing a distr ibut ion f i le on Windows
If you are running on Windows, open a command prompt in the folder that
contains your three files, then enter this command:

C:\Users\Head First\mymodules> py -3 setup.py sdist

The Python interpreter goes to work immediately after you issue this
command. A large number of messages appear on screen (which we show
here in an abridged form):

running sdist
running egg_info
creating vsearch.egg-info
 ...

creating dist
creating 'dist\vsearch-1.0.zip' and adding 'vsearch-1.0' to it
adding 'vsearch-1.0\PKG-INFO'
adding 'vsearch-1.0\README.txt'
 ...

adding 'vsearch-1.0\vsearch.egg-info\top_level.txt'
removing 'vsearch-1.0' (and everything under it)

When the Windows command prompt reappears, your three files have
been combined into a single distribution file. This is an installable file
that contains the source code for your module and, in this case, is called
vsearch-1.0.zip.

You’ll find your newly created ZIP file in a folder called dist, which has also
been created by setuptools under the folder you are working in (which is
mymodules in our case).

Run Python 3 on Windows.

Execute the code in “setup.py”...
... and pass
“sdist” as an
argument.

If you see this message, all is well. If you get errors, check that you’re running at least Python 3.4, and also make sure your “setup.py” file is identical to ours.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

www.EBooksWorld.ir

you are here 4 181

code reuse

Distribut ion Files on UNIX-like OSes
If you are not working on Windows, you can create a distribution file in much
the same way as on the previous page. With the three files (setup.py,
README.txt, and vsearch.py) in a folder, issue this command at your
operating system’s command line:

mymodules$ python3 setup.py sdist

Run Python 3.

Execute the code in “setup.py”...
...and pass
“sdist” as an
argument.

Like on Windows, this command produces a slew of messages on screen:

running sdist
running egg_info
creating vsearch.egg-info
 ...

running check
creating vsearch-1.0
creating vsearch-1.0/vsearch.egg-info
 ...

creating dist
Creating tar archive
removing 'vsearch-1.0’ (and everything under it)

When your operating system’s command line reappears, your three files have
been combined into a source distribution file (hence the sdist argument
above). This is an installable file that contains the source code for your
module and, in this case, is called vsearch-1.0.tar.gz.

You’ll find your newly created archive file in a folder called dist, which
has also been created by setuptools under the folder you are working in
(which is mymodules in our case).

With your source distribution file created (as a ZIP or as
a compressed tar archive), you’re now ready to install
your module into site-packages.

The messages differ slightly from those produced on Windows. If you see this message, all is well. If not (as with Windows) double-check everything.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

www.EBooksWorld.ir

182 Chapter 4

ready to install

Installing Packages with “pip”
Now that your distribution file exists as a ZIP or a tarred archive (depending on your
platform), it’s time for Step 3: Install the distribution file. As with many such things,
Python comes with the tools to make this straightforward. In particular, Python 3.4
(and newer) includes a tool called pip, which is the Package Installer for Python.

Step 3 on Windows
Locate your newly created ZIP file under the dist folder (recall that the file is
called vsearch-1.0.zip). While in the Windows Explorer, hold down the Shift
key, then right-click your mouse to bring up a context-sensitive menu. Select Open
command window here from this menu. A new Windows command prompt opens. At this
command prompt, type this line to complete Step 3:

C:\Users\...\dist> py -3 -m pip install vsearch-1.0.zip

If this command fails with a permissions error, you may need to restart the command
prompt as the Windows administrator, then try again.

When the above command succeeds, the following messages appear on screen:

Processing c:\users\...\dist\vsearch-1.0.zip
Installing collected packages: vsearch
 Running setup.py install for vsearch
Successfully installed vsearch-1.0

Step 3 on UNIX-like OSes
On Linux, Unix, or Mac OS X, open a terminal within the newly created dict folder,
and then issue this command at the prompt:

.../dist$ sudo python3 -m pip install vsearch-1.0.tar.gz

When the above command succeeds, the following messages appear on screen:

Processing ./vsearch-1.0.tar.gz
Installing collected packages: vsearch
 Running setup.py install for vsearch
Successfully installed vsearch-1.0

The vsearch module is now installed as part of site-packages.

Run Python 3 with the module pip, and then ask pip to install the identified ZIP file.

Success!

Success!

We are using the “sudo” command here to ensure we install with the correct permissions.

Run Python 3 with the module pip, and then ask pip to install the identified compressed tar file.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

www.EBooksWorld.ir

you are here 4 183

code reuse

Modules: What We Know Already
Now that our vsearch module has been installed, we can use import vsearch
in any of our programs, safe in the knowledge that the interpreter can now find the
module’s functions when needed.

If we later decide to update any of the module’s code, we can repeat these three steps
to install any update into site-packages. If you do produce a new version of your
module, be sure to assign a new version number within the setup.py file.

Let’s take a moment to summarize what we now know about modules:

 � A module is one or more functions
saved in a file.

 � You can share a module by
ensuring it is always available with
the interpreter’s current working
directory (which is possible, but
brittle) or within the interpreter’s site-
packages locations (by far the better
choice).

 � Following the setuptools
three-step process ensures that
your module is installed into site-
packages, which allows you to
import the module and use its
functions no matter what your current
working directory happens to be.

Giv ing your code away (a.k .a. sharing)
Now that you have a distribution file created, you can share this file with other Python
programmers, allowing them to install your module using pip, too. You can share
your file in one of two ways: informally, or formally.

To share your module informally, simply distribute it in whatever way you wish and to
whomever you wish (perhaps using email, a USB stick, or via a download from your
personal website). It’s up to you, really.

To share your module formally, you can upload your distribution file to Python’s
centrally managed web-based software repository, called PyPI (pronounced “pie-
pee-eye,” and short for the Python Package Index). This site exists to allow all manner
of Python programmers to share all manner of third-party Python modules. To
learn more about what’s on offer, visit the PyPI site at: https://pypi.python.org/
pypi. To learn more about the process of uploading and sharing your distribution
files through PyPI, read the online guide maintained by the Python Packaging Authority,
which you’ll find here: https://www.pypa.io. (There’s not much to it, but the
details are beyond the scope of this book.)

We are nearly done with our introduction to functions and modules. There’s just a
small mystery that needs our attention (for not more than five minutes). Flip the page
when you’re ready.

Any Python
programmer
can also use
pip to install
your module.

Create a distribution
description.
Generate a
distribution file.
Install the
distribution file.

All done!

www.EBooksWorld.ir

https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://www.pypa.io/

184 Chapter 4

copy or reference

The case of the misbehaving function arguments
Tom and Sarah have just worked through this chapter, and are now arguing
over the behavior of function arguments.

Tom is convinced that when arguments are passed into a function, the data
is passed by value, and he’s written a small function called double to
help make his case. Tom’s double function works with any type of data
provided to it.

Here’s Tom’s code:

 def double(arg):
 print('Before: ', arg)
 arg = arg * 2

 print('After: ', arg)

Sarah, on the other hand, is convinced that when arguments are passed into
a function, the data is passed by reference. Sarah has also written a small
function, called change, which works with lists and helps to prove her point.

Here’s a copy of Sarah’s code:

 def change(arg):
 print('Before: ', arg)
 arg.append('More data')
 print('After: ', arg)

We’d rather nobody was arguing about this type of thing, as—until now—
Tom and Sarah have been the best of programming buddies. To help resolve
this, let’s experiment at the >>> prompt in an attempt to see who is right:

“by value” Tom, or “by reference” Sarah. They can’t both be right, can they?
It’s certainly a bit of a mystery that needs solving, which leads to this often-
asked question:

Do function arguments support by-value or
by-reference call semantics in Python?

Five Minute
Mystery

Geek Bits

In case you need a quick refresher, note that by-value argument passing refers to the practice of using the value of
a variable in place of a function’s argument. If the value changes in the function’s suite, it has no effect on the value
of the variable in the code that called the function. Think of the argument as a copy of the original variable’s value.
By-reference argument passing (sometimes referred to as by-address argument passing) maintains a link to the
variable in the code that called the function. If the variable in the function’s suite is changed, the value in the code
that called the function changes, too. Think of the argument as an alias to the original variable.

www.EBooksWorld.ir

you are here 4 185

code reuse

Demonstrat ing Call-by-Value Semantics
To work out what Tom and Sarah are arguing about, let’s put their functions into
their very own module, which we’ll call mystery.py. Here’s the module in an
IDLE edit window:

These two functions
are similar. Each
takes a single
argument, displays it
on screen, manipulates
its value, and then
displays it on screen
again.

This function
doubles the
value passed in.

This function appends a
string to any passed in list.

As soon as Tom sees this module on screen, he sits down, takes control of the
keyboard, presses F5, and then types the following into IDLE’s >>> prompt.
Once done, Tom leans back in his chair, crosses his arms, and says: “See? I told
you it’s call-by-value.” Take a look at Tom’s shell interactions with his function:

>>> num = 10
>>> double(num)
Before: 10
After: 20
>>> num
10
>>> saying = 'Hello '
>>> double(saying)
Before: Hello
After: Hello Hello
>>> saying
'Hello '
>>> numbers = [42, 256, 16]
>>> double(numbers)
Before: [42, 256, 16]
After: [42, 256, 16, 42, 256, 16]
>>> numbers
[42, 256, 16]

Tom invokes
the “double”
function
three times:
once with an
integer value,
then with a
string, and
finally with
a list.

Each invocation confirms that the value passed in as an argument is changed within the function’s suite, but that the value at the shell remains unchanged. That is,: the function arguments appear to conform to call-by-value semantics.

www.EBooksWorld.ir

186 Chapter 4

over to sarah

Demonstrat ing Call-by-Reference Semantics
Undeterred by Tom’s apparent slam-dunk, Sarah sits down and takes control of the
keyboard in preparation for interacting with the shell. Here’s the code in the IDLE
edit window once more, with Sarah’s change function ready for action:

The is the
“mystery.py”
module. Tom’s

function

Sarah’s
function

Sarah types a few lines of code into the >>> prompt, then leans back in her
chair, crosses her arms, and says to Tom: “Well, if Python only supports call-
by-value, how do you explain this behavior?” Tom is speechless.

Take a look at Sarah’s interaction with the shell:

>>> numbers = [42, 256, 16]
>>> change(numbers)
Before: [42, 256, 16]
After: [42, 256, 16, 'More data']
>>> numbers
[42, 256, 16, 'More data']

Using the same
list data as Tom,
Sarah invokes
her “change”
function.

Look what’s happened! This time the argument’s value has been changed in the function as well as at the shell. This would seem to suggest that Python functions *also* support call-by-reference semantics.

This is strange behavior.

Tom’s function clearly shows call-by-value argument semantics, whereas
Sarah’s function demonstrates call-by-reference.

How can this be? What’s going on here? Does Python support both?

www.EBooksWorld.ir

you are here 4 187

code reuse

Solved: the case of the misbehaving function arguments
Do Python function arguments support by-value or by-reference call semantics?

Here’s the kicker: both Tom and Sarah are right. Depending on the situation, Python’s function argument
semantics support both call-by-value and call-by-reference.

Recall once again that variables in Python aren’t variables as we are used to thinking about them in other
programming languages; variables are object references. It is useful to think of the value stored in the
variable as being the memory address of the value, not its actual value. It’s this memory address that’s passed
into a function, not the actual value. This means that Python’s functions support what’s more correctly called
by-object-reference call semantics.

Based on the type of the object referred to, the actual call semantics that apply at any point in time can differ.
So, how come in Tom’s and Sarah’s functions the arguments appeared to conform to by-value and by-reference
call semantics? First off, they didn’t—they only appeared to. What actually happens is that the interpreter looks
at the type of the value referred to by the object reference (the memory address) and, if the variable refers to a
mutable value, call-by-reference semantics apply. If the type of the data referred to is immutable, call-by-
value semantics kick in. Consider now what this means for our data.

Lists, dictionaries, and sets (being mutable) are always passed into a function by reference—
any changes made to the variable’s data structure within the function’s suite are reflected in
the calling code. The data is mutable, after all.

Strings, integers, and tuples (being immutable) are always passed into a function by value—
any changes to the variable within the function are private to the function and are not
reflected in the calling code. As the data is immutable, it cannot change.

Which all makes sense until you consider this line of code:

 arg = arg * 2

How come this line of code appeared to change a passed-in list within the function’s suite, but when the list
was displayed in the shell after invocation, the list hadn’t changed (leading Tom to believe—incorrectly—that
all argument passing conformed to call-by-value)? On the face of things, this looks like a bug in the interpreter,
as we’ve just stated that changes to a mutable value are reflected back in the calling code, but they aren’t here.
That is, Tom’s function didn’t change the numbers list in the calling code, even though lists are mutable. So,
what gives?

To understand what has happened here, consider that the above line of code is an assignment statement.
Here’s what happens during assignment: the code to the right of the = symbol is executed first, and then
whatever value is created has its object reference assigned to the variable on the left of the = symbol. Executing
the code arg * 2 creates a new value, which is assigned a new object reference, which is then assigned to the
arg variable, overwriting the previous object reference stored in arg in the function’s suite. However, the “old”
object reference still exists in the calling code and its value hasn’t changed, so the shell still sees the original list,
not the new doubled list created in Tom’s code. Contrast this behavior to Sarah’s code, which calls the append
method on an existing list. As there’s no assignment here, there’s no overwriting of object references, so Sarah’s
code changes the list in the shell, too, as both the list referred to in the functions’ suite and the list referred to in
the calling code have the same object reference.

With our mystery solved, we’re nearly ready for Chapter 5. There’s just one outstanding issue.

Five Minute
Mystery

Solved

www.EBooksWorld.ir

188 Chapter 4

Can I Test for PEP 8 Compliance?

I have a quick question before we
move on. I like the idea of writing
PEP 8 compliant code...is there any way
I can automatically check my code for

compliance?

Yes. It is possible.
But not with Python alone, as the
Python interpreter does not provide
any way to check code for PEP 8
compliance. However, there are a
number of third-party tools that do.

Before jumping into Chapter 5, let’s
take a little detour and look at one
tool that can help you stay on the
right side of PEP 8 compliance.

what about pep 8?

www.EBooksWorld.ir

you are here 4 189

code reuse

Gett ing Ready to Check PEP 8 Compliance
Let’s detour for just a moment to check our code for PEP 8 compliance.

The Python programming community at large has spent a great deal of time
creating developer tools to make the lives of Python programmers a little bit
better. One such tool is pytest, which is a testing framework that is primarily
designed to make the testing of Python programs easier. No matter what type
of tests you’re writing, pytest can help. And you can add plug-ins to pytest to
extend its capabilities.

One such plug-in is pep8, which uses the pytest testing framework to check your
code for violations of the PEP 8 guidelines.

Recalling our code
Let’s remind ourselves of our vsearch.py code once more, before feeding it to
the pytest/pep8 combination to find out how PEP 8–compliant it is. Note that
we’ll need to install both of these developer tools, as they do not come installed
with Python (we’ll do that over the page).

One more, here is the code to the vsearch.py module, which is going to be
checked for compliance to the PEP 8 guidelines:

Learn more about
pytest from
http://doc.pytest.
org/en/latest/.

def search4vowels(phrase:str) -> set:
 """Return any vowels found in a supplied phrase."""
 vowels = set('aeiou')
 return vowels.intersection(set(phrase))

def search4letters(phrase:str, letters:str='aeiou') -> set:
 """Return a set of the 'letters' found in 'phrase'."""
 return set(letters).intersection(set(phrase))

Installing pytest and the pep8 plug-in
Earlier in this chapter, you used the pip tool to install your vsearch.py
module into the Python interpreter on your computer. The pip tool can also be
used to install third-party code into your interpreter.

To do so, you need to operate at your operating system’s command prompt (and
be connected to the Internet). You’ll use pip in the next chapter to install a
third-party library. For now, though, let’s use pip to install the pytest testing
framework and the pep8 plug-in.

This
code is in “vsearch.py”.

www.EBooksWorld.ir

190 Chapter 4

py.test intro

Install the Test ing Developer Tools
In the example screens that follow, we are showing the messages that appear when you
are running on the Windows platform. On Windows, you invoke Python 3 using the
py -3 command. If you are on Linux or Mac OS X, replace the Windows command
with sudo python3. To install pytest using pip on Windows, issue this command
from the command prompt while running as administrator (search for cmd.exe, then
right-click on it, and choose Run as Administrator from the pop-up menu):

 py -3 -m pip install pytest

Start in
Administrator
mode...

...then issue the
“pip” command to
install “pytest”...

...then check
whether it
installed
successfully.

If you examine the messages produced by pip, you’ll notice that two of pytest’s
dependencies were also installed (colorama and py). The same thing happens when
you use pip to install the pep8 plug-in: it also installs a host of dependencies. Here’s
the command to install the plug-in:

 py -3 -m pip install pytest-pep8

Remember: if you aren’t running Windows, replace “py -3” with “sudo python3”.

While still in
Administrator mode,
issue this command,
which installs the
“pep8” plug-in.

This command
succeeded too, and also installed the required dependencies.

www.EBooksWorld.ir

you are here 4 191

code reuse

How PEP 8–Compliant Is Our Code?
With pytest and pep8 installed, you’re now ready to test your code for PEP 8
compliance. Regardless of the operating system you’re using, you’ll issue the same
command (as only the installation instructions differ on each platform).

The pytest installation process has installed a new program on your computer
called py.test. Let’s run this program now to check our vsearch.py code for
PEP 8 compliance. Make sure you are in the same folder as the one that contains
the vsearch.py file, then issue this command:

 py.test --pep8 vsearch.py

Here’s the output produced when we did this on our Windows computer:

Whoops! It looks like we have failures, which means this code is not as compliant
with the PEP 8 guidelines as it could be.

Take a moment to read the messages shown here (or on your screen, if you are
following along). All of the “failures” appear to refer—in some way—to whitespace
(for instance, spaces, tabs, newlines, and the like). Let’s take a look at each of them
in a little more detail.

Uh, oh. The red output
can’t be good, can it?

www.EBooksWorld.ir

192 Chapter 4

py.test --pep8 rocks

Understanding the Failure Messages
Together, pytest and the pep8 plug-in have highlighted five issues with our
vsearch.py code.

The first issue has to do with the fact that we haven’t inserted a space after the :
character when annotating our function’s arguments, and we’ve done this in three
places. Look at the first message, noting pytest’s use of the caret character (^) to
indicate exactly where the problem is:

 ...:2:25: E231 missing whitespace after ':'
def search4vowels(phrase:str) -> set:
 ^

Here’s
what’s
wrong.

Here’s where
it’s wrong.

If you look at the two issues at the bottom of pytest’s output, you’ll see that
we’ve repeated this mistake in three locations: once on line 2, and twice on line 7.
There’s an easy fix: add a single space character after the colon.

The next issue may not seem like a big deal, but is raised as a failure because the
line of code in question (line 3) does break a PEP 8 guideline that says not to
include extra spaces at the end of lines:

 ...:3:56: W291 trailing whitespace
"""Return any vowels found in a supplied phrase."""
 ^

Dealing with this issue on line 3 is another easy fix: remove all trailing whitespace.

The last issue (at the start of line 7) is this:

 ...7:1: E302 expected 2 blank lines, found 1
def search4letters(phrase:str, letters:str='aeiou') -> set:
^

What’s wrong

Where it’s wrong

This issue presents at the start of line 7. Here’s what’s wrong.

There is a PEP 8 guideline that offers this advice for creating functions in a
module: Surround top-level function and class definitions with two blank lines. In our code,
the search4vowels and search4letters functions are both at the “top
level” of the vsearch.py file, and are separated from each other by a single
blank line. To be PEP 8–compliant, there should be two blank lines here.

Again, it’s an easy fix: insert an extra blank line between the two functions. Let’s apply
these fixes now, then retest our amended code.

BTW: Check out
http://pep8.org/ for a
beautifully rendered
version of Python’s
style guidelines.

www.EBooksWorld.ir

http://pep8.org/

you are here 4 193

code reuse

Conf irming PEP 8 Compliance
With the amendments made to the Python code in vsearch.py, the file’s
contents now look like this:

def search4vowels(phrase: str) -> set:
 """Return any vowels found in a supplied phrase."""
 vowels = set('aeiou')
 return vowels.intersection(set(phrase))

def search4letters(phrase: str, letters: str='aeiou') -> set:
 """Return a set of the 'letters' found in 'phrase'."""
 return set(letters).intersection(set(phrase))

The PEP 8–compliant version of “vsearch.py”.

When this version of the code is run through pytest’s pep8 plug-in, the output
confirms we no longer have any issues with PEP 8 compliance. Here’s what we
saw on our computer (again, running on Windows):

Conformance to PEP 8 is a good thing
If you’re looking at all of this wondering what all the fuss is about (especially over
a little bit of whitespace), think carefully about why you’d want to comply to PEP
8. The PEP 8 documentation states that readability counts, and that code is read
much more often than it is written. If your code conforms to a standard coding style, it
follows that reading it is easier, as it “looks like” everything else the programmer
has seen. Consistency is a very good thing.

From this point forward (and as much as is practical), all of the code in this book
will conform to the PEP 8 guidelines. You should try to ensure your code does too.

Green is good—this code has no PEP 8 issues. §

This is the
end of the
pytest detour. See you in
Chapter 5.

www.EBooksWorld.ir

194 Chapter 4

the code

Chapter 4’s Code

def search4vowels(phrase: str) -> set:
 """Returns the set of vowels found in 'phrase'."""
 return set('aeiou').intersection(set(phrase))

def search4letters(phrase: str, letters: str='aeiou') -> set:
 """Returns the set of 'letters' found in 'phrase'."""
 return set(letters).intersection(set(phrase))

This is the code
from the “vsearch.py” module, which contains our two functions: “search4vowels” and “search4letters”.

from setuptools import setup

setup(
 name='vsearch',
 version='1.0',
 description='The Head First Python Search Tools',
 author='HF Python 2e',
 author_email='hfpy2e@gmail.com',
 url='headfirstlabs.com',
 py_modules=['vsearch'],
)

This is the “setup.
py” file, which
allowed us to
turn our module
into an installable
distribution.

def double(arg):
 print('Before: ', arg)
 arg = arg * 2
 print('After: ', arg)

def change(arg: list):
 print('Before: ', arg)
 arg.append('More data')
 print('After: ', arg)

And this is the “mystery.py” module, which had Tom and Sarah upset at each other. Thankfully, now that the mystery is solved, they are back to being programming buddies once more. §

www.EBooksWorld.ir

this is a new chapter 195

See? I told you getting
Python into your brain
wouldn’t hurt a bit.

building a webapp5

Getting Real

At this stage, you know enough Python to be dangerous.
With this book’s first four chapters behind you, you’re now in a position to productively use

Python within any number of application areas (even though there’s still lots of Python to

learn). Rather than explore the long list of what these application areas are, in this and

subsequent chapters, we’re going to structure our learning around the development of

a web-hosted application, which is an area where Python is especially strong. Along the

way, you’ll learn a bit more about Python. Before we get going, however, let’s have a quick

recap of the Python you already know.

www.EBooksWorld.ir

196 Chapter 5

a python recap

Python: What You Already Know
Now that you’ve got four chapters under your belt, let’s pause for a moment
and review the Python material presented so far.

 � IDLE, Python’s built-in IDE, is used to experiment with
and execute Python code, either as single-statement
snippets or as larger multistatement programs written
within IDLE’s text editor. As well as using IDLE, you
ran a file of Python code directly from your operating
system’s command line, using the py -3 command
(on Windows) or python3 (on everything else).

 � You’ve learned how Python supports single-value data
items, such as integers and strings, as well as the
booleans True and False.

 � You’ve explored use cases for the four built-in data
structures: lists, dictionaries, sets, and tuples. You
know that you can create complex data structures by
combining these four built-ins in any number of ways.

 � You’ve used a collection of Python statements, including
if, elif, else, return, for, from, and
import.

 � You know that Python provides a rich standard library,
and you’ve seen the following modules in action:
datetime, random, sys, os, time, html,
pprint, setuptools, and pip.

 � As well as the standard library, Python comes with a
handy collection of built-in functions, known as the
BIFs. Here are some of the BIFs you’ve worked with:
print, dir, help, range, list, len, input,
sorted, dict, set, tuple, and type.

 � Python supports all the usual operators, and then some.
Those you’ve already seen include: in, not in, +,
-, = (assignment), == (equality), +=, and *.

 � As well as supporting the square bracket notation for
working with items in a sequence (i.e., []) , Python
extends the notation to support slices, which allow you
to specify start, stop, and step values.

 � You’ve learned how to create your own custom functions
in Python, using the def statement. Python functions
can optionally accept any number of arguments as well
as return a value.

 � Although it’s possible to enclose strings in either single
or double quotes, the Python conventions (documented
in PEP 8) suggest picking one style and sticking to it.
For this book, we’ve decided to enclose all of our strings
within single quotes, unless the string we’re quoting
itself contains a single quote character, in which case
we’ll use double quotes (as a one-off, special case).

 � Triple-quoted strings are also supported, and you’ve
seen how they are used to add docstrings to your
custom functions.

 � You learned that you can group related functions into
modules. Modules form the basis of the code reuse
mechanism in Python, and you’ve seen how the pip
module (included in the standard library) lets you
consistently manage your module installations.

 � Speaking of things working in a consistent manner,
you learned that in Python everything is an object,
which ensures—as much as possible—that everything
works just as you expect it to. This concept really pays
off when you start to define your own custom objects
using classes, which we’ll show you how to do in a later
chapter.

www.EBooksWorld.ir

you are here 4 197

building a webapp

Let’s Build Something

OK. I’m convinced...I already know a bit
about Python. That said, what’s the plan?
What are we going to do now?

Let’s build a webapp.
Specifically, let’s take our search4letters
function and make it accessible over the Web,
enabling anyone with a web browser to access
the service provided by our function.

We could build any type of application, but
building a working web application lets us
explore a number of Python features while
building something that’s generally useful, as
well as being a whole heap meatier than the
code snippets you’ve seen so far in this book.

Python is particularly strong on the server side
of the Web, which is where we’re going to
build and deploy our webapp in this chapter.

But, before we get going, let’s make sure
everyone is on the same page by reviewing
how the Web works.

www.EBooksWorld.ir

198 Chapter 5

how the web works

Webapps Up Close

The Internet

I just type the
web address into my
browser’s address bar
and press Enter...Step 1: Your user enters

a web address, clicks
a hyperlink, or clicks a
button in her chosen

web browser.

No matter what you do on the Web, it’s all about requests and responses. A web request is sent
from a web browser to a web server as the result of some user interaction. On the web server, a
web response (or reply) is formulated and returned to the web browser. The entire process can
be summarized in five steps, as follows:

Step 2: The web
browser converts
the user’s action

into a web request
and sends it to a
server over the

Internet.

Step 3: The web server
receives the web request
and has to decide what

to do next...

Web
Server

Deciding what to do next
One of two things happen at this point. If the web request
is for static content—such as an HTML file, image, or
anything else stored on the web server’s hard disk—the web
server locates the resource and prepares to return it to the web
browser as a web response.

If the request is for dynamic content—that is, content that
must be generated, such as search results or the current contents
of an online shopping basket—the web server runs some code
to produce the web response.

www.EBooksWorld.ir

you are here 4 199

building a webapp

The Internet

That’s exactly what I
want. Thanks!

Step 4: The web server
sends the response

back over the Internet
to the waiting web

browser.

Web
Server

Step 5: The web
browser receives the

web response and
displays it on your

user’s screen.

The (potentially) many substeps of Step 3
In practice, Step 3 can involve multiple substeps, depending
on what the web server has to do to produce the response.
Obviously, if all the server has to do is locate static content
and return it to the browser, the substeps aren’t too taxing, as
it’s just a matter of reading from the web server’s disk drive.

However, when dynamic content must be generated, the
sub steps involve the web server running code and then
capturing the output from the program as a web response,
before sending the response back to the waiting web browser.

www.EBooksWorld.ir

200 Chapter 5

the webapp spec

What Do We Want Our Webapp to Do?
As tempting as it always is to just start coding, let’s first think about how our
webapp is going to work.

Users interact with our webapp using their favorite web browser. All they
have to do is enter the URL for the webapp into their browser’s address bar
to access its services. A web page then appears in the browser asking the user
to provide arguments to the search4letters function. Once these are
entered, the user clicks on a button to see their results.

Recall the def line for our most recent version of search4letters,
which shows the function expecting at least one—but no more than two—
arguments: a phrase to search, together with the letters to search for.
Remember, the letters argument is optional (defaulting to aeiou):

def search4letters(phrase:str, letters:str='aeiou') -> set:

Let’s grab a paper napkin and sketch out how we want our web page to
appear. Here’s what we came up with:

The “def” line for the “search4letters” function, which takes one, but no more than two, arguments

Welcome to search4letters on the Web!

Use this form to submit a search request:

Phrase:
Letters:

When you’re ready, click this butt
on:

aeiou

Do it!

Our web page
has a title
and some
descriptive
text.

One input box
has room for the “phrase”, while
another allows
the “letters” to
be entered (note the default).

Clicking on this button
sends the user’s data to
our waiting web server.

www.EBooksWorld.ir

you are here 4 201

building a webapp

What Happens on the Web Server?
When the user clicks on the Do it! button, the browser sends the data to the waiting
web server, which extracts the phrase and letters values, before calling the
search4letters function on behalf of the now-waiting user.

Any results from the function are returned to the user’s browser as another web page,
which we again sketch out on a paper napkin (shown below). For now, let’s assume the
user entered “hitch-hiker” as the phrase and left the letters value defaulted to
aeiou. Here’s what the results web page might look like:

Here are your results:
You submitted the following data:

Phrase:
Letters:

When “hitch-hiker” is searched for “aeiou”, the following results are returned:

aeiou
hitch-hiker

{ ‘e’, ‘i’ }

The
submitted
data is
echoed
back to
the user.

The results returned
by “search4letters”
are shown, too.

What do we need to get going?
Other than the knowledge you already have about Python, the only thing you need
to build a working server-side web application is a web application framework,
which provides a set of general foundational technologies upon which you can build
your webapp.

Although it’s more than possible to use Python to build everything you need from
scratch, it would be madness to contemplate doing so. Other programmers have
already taken the time to build these web frameworks for you. Python has many
choices here. However, we’re not going to agonize over which framework to choose,
and are instead just going to pick a popular one called Flask and move on.

www.EBooksWorld.ir

202 Chapter 5

get the tools

Let’s Install Flask
We know from Chapter 1 that Python’s standard library comes with lots of batteries
included. However, there are times when we need to use an application-specific third-
party module, which is not part of the standard library. Third-party modules are
imported into your Python program as needed. However, unlike the standard library
modules, third-party modules need to be installed before they are imported and used.
Flask is one such third-party module.

As mentioned in the previous chapter, the Python community maintains a centrally
managed website for third-party modules called PyPI (short for the Python Package
Index), which hosts the latest version of Flask (as well as many other projects).

Recall how we used pip to install our vsearch module into Python earlier in this
book. pip also works with PyPI. If you know the name of the module you want, you
can use pip to install any PyPI-hosted module directly into your Python environment.

Install Flask from the command-line with pip
If you are running on Linux or Mac OS X, type the following command into a terminal
window:

Find PyPI at
pypi.python.org.

$ sudo -H python3 -m pip install flask

If you are running on Windows, open up a command prompt—being sure to Run as
Administrator (by right-clicking on the option and choosing from the pop-up menu)—
and then issue this command:

C:\> py -3 -m pip install flask

This command (regardless of your operating system) connects to the PyPI website,
then downloads and installs the Flask module and four other modules Flask depends
on: Werkzeug, MarkupSafe, Jinja2, and itsdangerous. Don’t worry (for now)
about what these extra modules do; just make sure they install correctly. If all is well,
you’ll see a message similar to the following at the bottom of the output generated by
pip. Note that the output runs to over a dozen lines or so:

 ...

Successfully installed Jinja2-2.8 MarkupSafe-0.23 Werkzeug-0.11 flask-0.10.1
itsdangerous-0.24

Use this
command on Mac
OS X and Linux.

Use this
command on
Windows.

Note: case is
important here.
That’s a lowercase
“f” for “flask”.

If you don’t see the “Successfully installed...” message, make sure you’re
connected to the Internet, and that you’ve entered the command for your operating
system exactly as shown above. And don’t be too alarmed if the version numbers for
the modules installed into your Python differ from ours (as modules are constantly
being updated, and dependencies can change, too). As long as the versions you install
are at least as current as those shown above, everything is fine.

At the time of
writing, these are the current version numbers associated with these modules.

www.EBooksWorld.ir

http://pypi.python.org

you are here 4 203

building a webapp

How Does Flask Work?
Flask provides a collection of modules that help you build server-side web
applications. It’s technically a micro web framework, in that it provides the
minimum set of technologies needed for this task. This means Flask is not as
feature-full as some of its competitors—such as Django, the mother of all
Python web frameworks—but it is small, lightweight, and easy to use.

As our requirements aren’t heavy (we only have two web pages), Flask is more
than enough web framework for us at this time.

Check that Flask is installed and working
Here’s the code for the most basic of Flask webapps, which we are going to
use to test that Flask is set up and ready to go.

Use your favorite text editor to create a new file, and type the code shown
below into the file, saving it is as hello_flask.py (you can save the file in
its own folder, too, if you like—we called our folder webapp):

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

Ready Bake
CodeThis is

“hello_
flask.py”.

Type this code
in exactly as
shown here...
we’ll get to
what it means in a moment.

Run Flask from your OS command line
Don’t be tempted to run this Flask code within IDLE, as IDLE wasn’t really
designed to do this sort of thing well. IDLE is great for experimenting with
small snippets of code, but when it comes to running applications, you
are much better off running your code directly via the interpreter, at your
operating system’s command line. Let’s do that now and see what happens.

Don’t use IDLE
to run this code.

Geek Bits

Django is a hugely popular
web application framework
within the Python community.
It has an especially strong,
prebuilt administration
facility that can make working
with large webapps very
manageable. It’s overkill for
what we’re doing here, so
we’ve opted for the much
simpler, but more lightweight,
Flask.

www.EBooksWorld.ir

204 Chapter 5

time for flask

Running Your Flask Webapp for the First Time
If you are running on Windows, open a command prompt in the folder that contains your
hello_flask.py program file. (Hint: if you have your folder open within the File
Explorer, press the Shift key together with the right mouse button to bring up a context-
sensitive menu from which you can choose Open command window here). With the Windows
command line ready, type in this command to start your Flask app:

C:\webapp> py -3 hello_flask.pyWe saved our
code in a folder
called “webapp”. Asks the Python

interpreter to
run the code in

“hello_flask.py.”
If you are on Mac OS X or Linux, type the following command in a terminal window. Be
sure to issue this command in the same folder that contains your hello_flask.py
program file:

$ python3 hello_flask.py

No matter which operating system you’re running, Flask takes over from this point
on, displaying status messages on screen whenever its built-in web server performs any
operation. Immediately after starting up, the Flask web server confirms it is up and running
and waiting to service web requests at Flask’s test web address (127.0.0.1) and protocol
port number (5000):

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
127.0.0.1 - - [23/Nov/2015 20:15:46] "GET / HTTP/1.1" 200 -

Flask’s web server is ready and waiting. Now what? Let’s interact with the web server using
our web browser. Open whichever browser is your favorite and type in the URL from the
Flask web server’s opening message:

http://127.0.0.1:5000/

After a moment, the “Hello world from Flask!” message from hello_flask.py should
appear in your browser’s window. In addition to this, take a look at the terminal window
where your webapp is running...a new status message should’ve appeared too, as follows:

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

If you see this message, all is well.

This is the address
where your webapp
is running. Enter
it exactly as
shown here.

Ah ha!
Something
happened.

Geek Bits
Getting into the specifics of what constitutes a protocol port number is beyond the scope of this
book. However, if you’d like to know more, start reading here:

 https://en.wikipedia.org/wiki/Port_(computer_networking)

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Port_%28computer_networking%29

you are here 4 205

building a webapp

Here’s What Happened (Line by Line)
In addition to Flask updating the terminal with a status line, your web browser
now displays the web server’s response. Here’s how our browser now looks (this is
Safari on Mac OS X):

There’s the
message
returned from
the Flask web
server.

By using our browser to visit the URL listed in our webapp’s opening status
message, the server has responded with the “Hello world from Flask!” message.

Although our webapp has only six lines of code, there’s a lot going on here, so
let’s review the code to see how all of this happened, taking each line in turn.
Everything else we plan to do builds on these six lines of code.

The first line imports the Flask class from the flask module:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

This is the
module’s name:
“flask” with a
lowercase “f”.

This is the
class name:

“Flask” with an
uppercase “F”.

Remember when we discussed alternate ways of importing?

You could have written import flask here, then referred to the Flask class
as flask.Flask, but using the from version of the import statement in this
instance is preferred, as the flask.Flask usage is not as easy to read.

www.EBooksWorld.ir

206 Chapter 5

getting into flask

Creat ing a Flask Webapp Object
The second line of code creates an object of type Flask, assigning it to
the app variable. This looks straightforward, but for the use of the strange
argument to Flask, namely __name__:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

Create an
instance of a
Flask object
and assign it to
“app”.

What’s the deal here?

The __name__ value is maintained by the Python interpreter and, when
used anywhere within your program’s code, is set to the name of the currently
active module. It turns out that the Flask class needs to know the current
value of __name__ when creating a new Flask object, so it must be
passed as an argument, which is why we’ve used it here (even though its usage
does look strange).

This single line of code, despite being short, does an awful lot for you, as the
Flask framework abstracts away many web development details, allowing you
to concentrate on defining what you want to happen when a web request
arrives at your waiting web server. We do just that starting on the very next
line of code.

Geek Bits

Note that __name__ is two underscore characters followed by the word “name” followed by another
two underscore characters, which are referred to as “double underscores” when used to prefix and
suffix a name in Python code. You’ll see this naming convention a lot in your Python travels, and
rather than use the long-winded: “double underscore, name, double underscore” phrase, savvy Python
programmers say: “dunder name,” which is shorthand for the same thing. As there’s a lot of double
underscore usages in Python, they are collectively known as “the dunders,” and you’ll see lots of
examples of other dunders and their usages throughout the rest of this book.

As well as the dunders, there is also a convention to use a single underscore character to prefix certain
variable names. Some Python programmers refer to single-underscore-prefixed names by the groan-
inducing name “wonder” (shorthand for “one underscore”).

www.EBooksWorld.ir

you are here 4 207

building a webapp

Decorat ing a Funct ion with a URL
The next line of code introduces a new piece of Python syntax: decorators.
A function decorator, which is what we have in this code, adjusts the behavior
of an existing function without you having to change that function’s code (that
is, the function being decorated).

You might want to read that last sentence a few times.

In essence, decorators allow you to take some existing code and augment
it with additional behavior as needed. Although decorators can also be
applied to classes as well as functions, they are mainly applied to functions,
which results in most Python programmers referring to them as function
decorators.

Let’s take a look at the function decorator in our webapp’s code, which is easy
to spot, as it starts with the @ symbol:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

Here’s the function
decorator, which—like all
decorators—is prefixed
with the @ symbol.

Although it is possible to create your own function decorators (coming up in a
later chapter), for now let’s concentrate on just using them. There are a bunch
of decorators built in to Python, and many third-party modules (such as
Flask) provide decorators for specific purposes (route being one of them).

Flask’s route decorator is available to your webapp’s code via the app
variable, which was created on the previous line of code.

The route decorator lets you associate a URL web path with an existing
Python function. In this case, the URL “/” is associated with the function
defined on the very next line of code, which is called hello. The route
decorator arranges for the Flask web server to call the function when a
request for the “/” URL arrives at the server. The route decorator then
waits for any output produced by the decorated function before returning the
output to the server, which then returns it to the waiting web browser.

It’s not important to know how Flask (and the route decorator) does all of
the above “magic.” What is important is that Flask does all of this for you,
and all you have to do is write a function that produces the output you require.
Flask and the route decorator then take care of the details.

A function decorator
adjusts the behavior
of an existing function
(without changing the
function’s code).

This is the URL.

Geek Bits

Python’s decorator syntax
take inspiration from Java’s
annotation syntax, as well
as the world of functional
programming.

www.EBooksWorld.ir

208 Chapter 5

up and running

Running Your Webapp’s Behavior(s)
With the route decorator line written, the function decorated by it starts on the
next line. In our webapp, this is the hello function, which does only one thing:
returns the message “Hello world from Flask!” when invoked:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

This is just a regular
Python function
which, when invoked,
returns a string to
its caller (note the
‘-> str’ annotation).

The final line of code takes the Flask object assigned to the app variable and asks
Flask to start running its web server. It does this by invoking run:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

At this point, Flask starts up its included web server and runs your webapp code
within it. Any requests received by the web server for the “/” URL are responded
to with the “Hello world from Flask!” message, whereas a request for any other
URL results in a 404 “Resource not found” error message. To see the error
handling in action, type this URL into your browser’s address bar:

http://127.0.0.1:5000/doesthiswork.html

Your browser displays a “Not Found” message, and your webapp running within
its terminal window updates its status with an appropriate message:

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
127.0.0.1 - - [23/Nov/2015 20:15:46] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [23/Nov/2015 21:30:26] "GET /doesthiswork.html HTTP/1.1" 404 -

Asks the
webapp
to start
running

That URL
does not
exist: 404!

The messages you see may differ slightly. Don’t let this worry you.
www.EBooksWorld.ir

you are here 4 209

building a webapp

Exposing Funct ionality to the Web
Putting to one side the fact that you’ve just built a working webapp in a mere
six lines of code, consider what Flask is doing for you here: it’s providing a
mechanism whereby you can take any existing Python function and display its
output within a web browser.

To add more functionality to your webapp, all you have to do is decide on the
URL you want to associate your functionality with, then write an appropriate
@app.route decorator line above a function that does the actual work.
Let’s do this now, using our search4letters functionality from the last
chapter.

Let’s amend hello_flask.py to include a second URL: /search4.
Write the code that associates this URL with a function called do_
search, which calls the search4letters function (from our
vsearch module). Then arrange for the do_search function to return
the results determined when searching the phrase: “life, the universe, and
everything!” for this string of characters: 'eiru,!'.

Shown below is our existing code, with space reserved for the new code
you need to write. Your job is to provide the missing code.

Hint: the results returned from search4letters are a Python set. Be
sure to cast the results to a string by calling the str BIF before returning
anything to the waiting web browser, as it’s expecting textual data, not a
Python set. (Remember: “BIF” is Python-speak for built-in function.)

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

Do you
need to
import
anything?

Add in a
second
decorator.

Add code for
the “do_search”
function here.

www.EBooksWorld.ir

210 Chapter 5

doing a do_search

You were to amend hello_flask.py to include a second URL,
/search4, writing the code that associates the URL with a function
called do_search, which itself calls the search4letters
function (from our vsearch module). You were to arrange for
the do_search function to return the results determined when
searching the phrase: “life, the universe, and everything!” for the
string of characters: 'eiru,!'.

Shown below is our existing code, with space reserved for the new
code you need to write. Your job was to provide the missing code.

How does your code compare to ours?

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

You need to
import the
“search4letters”
function from the
“vsearch” module
before you call it.

A second
decorator sets
up the “/search4”
URL.

The “do_search”
function invokes
“search4letters”,
then returns any
results as a string.

from vsearch import search4letters

@app.route(‘/search4’)
def do_search() -> str:
 return str(search4letters(‘life, the universe, and everything’, ‘eiru,!’))

To test this new functionality, you’ll need to restart your Flask webapp, as it is currently running
the older version of your code. To stop the webapp, return to your terminal window, then press
Ctrl and C together. Your webapp will terminate, and you’ll be returned to your operating
system’s prompt. Press the up arrow to recall the previous command (the one that previously
started hello_flask.py) and then press the Enter key. The initial Flask status message
reappears to confirm your updated webapp is waiting for requests:

$ python3 hello_flask.py
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
127.0.0.1 - - [23/Nov/2015 20:15:46] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [23/Nov/2015 21:30:26] "GET /doesthiswork.html HTTP/1.1" 404 -
^C

$ python3 hello_flask.py
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Stop the
webapp...

...then
restart it. We are up and

running again.
www.EBooksWorld.ir

you are here 4 211

building a webapp

Test Drive
As you haven’t changed the code associated with the default ‘/’ URL, that functionality still works,
displaying the “Hello world from Flask!” message.
However, if you enter http://127.0.0.1:5000/search4 into your browser’s address bar, you’ll
see the results from the call to search4letters:

Q: I’m a little confused by the 127.0.0.1 and :5000
parts of the URL used to access the webapp. What’s the deal
with those?

A: At the moment, you’re testing your webapp on your computer,
which—because it’s connected to the Internet—has its own unique
IP address. Despite this fact, Flask doesn’t use your IP address
and instead connects its test web server to the Internet’s loopback
address: 127.0.0.1, also commonly known as localhost.
Both are shorthand for “my computer, no matter what its actual
IP address is.” For your web browser (also on your computer) to
communicate with your Flask web server, you need to specify the
address that is running your webapp, namely:127.0.0.1. This is
a standard IP address reserved for this exact purpose.

The :5000 part of the URL identifies the protocol port number
your web server is running on.

Typically, web servers run on protocol port 80, which is an Internet
standard, and as such, doesn’t need to be specified. You could type
oreilly.com:80 into your browser’s address bar and it would
work, but nobody does, as oreilly.com alone is sufficient (as
the :80 is assumed).

When you’re building a webapp, it’s very rare to test on protocol
port 80 (as that’s reserved for production servers), so most web
frameworks choose another port to run on. 8080 is a popular
choice for this, but Flask uses 5000 as its test protocol port.

Q: Can I use some protocol port other than 5000 when I test
and run my Flask webapp?

A: Yes, app.run() allows you to specify a value for port
that can be set to any value. But, unless you have a very good
reason to change, stick with Flask’s default of 5000 for now.

There are the results
from the call to
“search4letters”.
Granted, this output
is nothing to get
excited about, but it
does prove that using
the “/search4” URL
invokes the function
and returns the
results.

www.EBooksWorld.ir

212 Chapter 5

what we’re doing

Recall What We’re Trying to Build
Our webapp needs a web page which accepts input, and another which displays the
results of feeding the input to the search4letters function. Our current webapp
code is nowhere near doing all of this, but what we have does provide a basis upon
which to build what is required.

Shown below on the left is a copy of our current code, while on the right, we have
copies of the “napkin specifications” from earlier in this chapter. We have indicated
where we think the functionality for each napkin can be provided in the code:

Welcome to search4letters on the Web!

Use this form to submit a search request:

Phrase:
Letters:

When you’re ready, click this butt
on:

aeiou

Do it!

Here are your results:
You submitted the following data:

Phrase:
Letters:

When “hitch-hiker” is searched for “aeiou”, the following results are returned:

aeiou
hitch-hiker

{ ‘e’, ‘i’ }

from flask import Flask

from vsearch import search4letters

app = Flask(__name__)

@app.route('/')

def hello() -> str:

 return 'Hello world from Flask!'

@app.route('/search4')

def do_search() -> str:

 return str(search4letters(...))

app.run()

Note: to make everything fit,
we aren’t showing the entire
line of code here.

Here’s the plan
Let’s change the hello function to return the
HTML form. Then we’ll change the do_search
function to accept the form’s input, before calling the
search4letters function. The results are then
returned by do_search as another web page.

www.EBooksWorld.ir

you are here 4 213

building a webapp

Building the HTML Form
The required HTML form isn’t all that complicated. Other than the
descriptive text, the form is made up of two input boxes and a button.

But...what if you’re new to all this HTML stuff?
Don’t panic if all this talk of HTML forms, input boxes, and buttons has you
in a tizzy. Fear not, we have what you’re looking for: the second edition of
Head First HTML and CSS provides the best introduction to these technologies
should you require a quick primer (or a speedy refresher).

Even if the thought of setting aside this book in order to bone up on HTML
feels like too much work, note that we provide all the HTML you need to
work with the examples in the book, and we do this without you having to be
an HTML expert. A little exposure to HTML helps, but it’s not a absolute
requirement (after all, this is a book about Python, not HTML).

Create the HTML, then send it to the browser
There’s always more than one way to do things, and when it comes to
creating HTML text from within your Flask webapp, you have choices:

Note from Marketing: This is the book
we wholeheartedly recommend for quickly getting up to speed with HTML…not that we’re biased or anything. §

I like to put my HTML
inside large strings, which I then
embed in my Python code, returning
the strings as needed. That way,
everything I need is right there in my
code, and I have complete control...
which is how I roll. What’s not to

like, Laura?

Well, Bob, putting all the HTML in
your code works, but it doesn’t scale.
As your webapp gets bigger, all that
embedded HTML gets kinda messy...
and it’s hard to hand off your HTML
to a web designer to beautify. Nor
is it easy to reuse chunks of HTML.
Therefore, I always use a template
engine with my webapps. It’s a bit
more work to begin with, but over
time I find using templates really
pays off...

Laura’s right—templates
make HTML much easier
to maintain than Bob’s
approach. We’ll dive into
templates on the next page.

www.EBooksWorld.ir

214 Chapter 5

reusing html pages

Templates Up
Close
Template engines let programmers apply the object-oriented notions of inheritance and reuse to
the production of textual data, such as web pages.

A website’s look and feel can be defined in a top-level HTML template, known as the base
template, which is then inherited from by other HTML pages. If you make a change to the
base template, the change is then reflected in all the HTML pages that inherit from it.

The template engine shipped with Flask is called Jinja2, and it is both easy to use and powerful.
It is not this book’s intention to teach you all you need to know about Jinja2, so what appears
on these two pages is—by necessity—both brief and to the point. For more details on what’s
possible with Jinja2, see:

 http://jinja.pocoo.org/docs/dev/

Here’s the base template we’ll use for our webapp. In this file, called base.html, we put the
HTML markup that we want all of our web pages to share. We also use some Jinja2-specific
markup to indicate content that will be supplied when HTML pages inheriting from this one
are rendered (i.e., prepared prior to delivery to a waiting web browser). Note that markup
appearing between {{ and }}, as well as markup enclosed between {% and %}, is meant for the
Jinja2 template engine: we’ve highlighted these cases to make them easy to spot:

<!doctype html>

<html>

 <head>

 <title>{{ the_title }}</title>

 <link rel="stylesheet" href="static/hf.css" />

 </head>

 <body>

 {% block body %}

 {% endblock %}

 </body>

</html>

This is
standard
HTML5
markup.

This is a Jinja2 directive, which indicates that a value will be provided prior to rendering (think of this as an argument to the template).

These Jinja2 directives indicate that
a block of HTML will be substituted
here prior to rendering, and is to be
provided by any page that inherits
from this one.

This is the
base template.

With the base template ready, we can inherit from it using Jinja2’s extends directive. When
we do, the HTML files that inherit need only provide the HTML for any named blocks in the
base. In our case, we have only one named block: body.

This stylesheet defines the look and feel of all the web pages.

www.EBooksWorld.ir

http://jinja.pocoo.org/docs/dev/

you are here 4 215

building a webapp

Here’s the markup for the first of our pages, which we are calling entry.html. This is markup for
a HTML form that users can interact with in order to provide the value for phrase and letters
expected by our webapp.

Note how the “boilerplate” HTML in the base template is not repeated in this file, as the extends
directive includes this markup for us. All we need to do is provide the HTML that is specific to this
file, and we do this by providing the markup within the Jinja2 block called body:

{% extends 'base.html' %}

{% block body %}

<h2>{{ the_title }}</h2>

<form method='POST' action='/search4'>
<table>
<p>Use this form to submit a search request:</p>
<tr><td>Phrase:</td><td><input name='phrase' type='TEXT' width='60'></td></tr>
<tr><td>Letters:</td><td><input name='letters' type='TEXT' value='aeiou'></td></tr>
</table>
<p>When you're ready, click this button:</p>
<p><input value='Do it!' type='SUBMIT'></p>
</form>

{% endblock %}

{% extends 'base.html' %}

{% block body %}

<h2>{{ the_title }}</h2>

<p>You submitted the following data:</p>
<table>
<tr><td>Phrase:</td><td>{{ the_phrase }}</td></tr>
<tr><td>Letters:</td><td>{{ the_letters }}</td></tr>
</table>

<p>When "{{the_phrase }}" is search for "{{ the_letters }}", the following
results are returned:</p>
<h3>{{ the_results }}</h3>

{% endblock %}

And, finally, here’s the markup for the results.html file, which is used to render the results of
our search. This template inherits from the base template, too:

This template inherits
from the base, and
provides a replacement for
the block called “body”.

As with “entry.html”, this template also inherits from the base, and also provides a replacement for the block called “body”.

Note these additional argument values, which
you need to provide values for prior to rendering.

www.EBooksWorld.ir

216 Chapter 5

it’s just html

Templates Relate to Web Pages
Our webapp needs to render two web pages, and now we have two templates that can
help with this. Both templates inherit from the base template and thus inherit the base
template’s look and feel. Now all we need to do is render the pages.

Before we see how Flask (together with Jinja2) renders, let’s take another look at
our “napkin specifications” alongside our template markup. Note how the HTML
enclosed within the Jinja2 {% block %} directive closely matches the hand-drawn
specifications. The main omission is each page’s title, which we’ll provide in place of
the {{ the_title }} directive during rendering. Think of each name enclosed in
double curly braces as an argument to the template:

Welcome to search4letters on the Web!

Use this form to submit a search request:

Phrase:
Letters:

When you’re ready, click this butt
on:

aeiou

Do it!

Here are your results:
You submitted the following data:

Phrase:
Letters:

When “hitch-hiker” is searched for “aeiou”, the following results are returned:

aeiou
hitch-hiker

{ ‘e’, ‘i’ }

{% extends 'base.html' %}

{% block body %}

<h2>{{ the_title }}</h2>

<form method='POST' action='/search4'>
<table>
<p>Use this form to submit a search request:</p>
<tr><td>Phrase:</td><td><input name='phrase' type='TEXT'
width='60'></td></tr>
<tr><td>Letters:</td><td><input name='letters' type='TEXT'
value='aeiou'></td></tr>
</table>
<p>When you're ready, click this button:</p>
<p><input value='Do it!' type='SUBMIT'></p>
</form>

{% endblock %}

{% extends 'base.html' %}

{% block body %}

<h2>{{ the_title }}</h2>

<p>You submitted the following data:</p>
<table>
<tr><td>Phrase:</td><td>{{ the_phrase }}</td></tr>
<tr><td>Letters:</td><td>{{ the_letters }}</td></tr>
</table>

<p>When "{{the_phrase }}" is search for "{{ the_letters }}",
the following results are returned:</p>
<h3>{{ the_results }}</h3>

{% endblock %}

Don’t forget those additional arguments.

Download these templates
(and the CSS) from here:
http://python.itcarlow.ie/ed2/.

www.EBooksWorld.ir

http://python.itcarlow.ie/ed2/

you are here 4 217

building a webapp

Rendering Templates from Flask
Flask comes with a function called render_template, which, when
provided with the name of a template and any required arguments, returns a
string of HTML when invoked. To use render_template, add its name
to the list of imports from the flask module (at the top of your code), then
invoke the function as needed.

Before doing so, however, let’s rename the file containing our webapp’s code
(currently called hello_flask.py) to something more appropriate. You
can use any name you wish for your webapp, but we’re renaming our file
vsearch4web.py. Here’s the code currently in this file:

from flask import Flask
from vsearch import search4letters

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

@app.route('/search4')
def do_search() -> str:
 return str(search4letters('life, the universe, and everything', 'eiru,!'))

app.run()

To render the HTML form in the entry.html template, we need to make
a number of changes to the above code:

This code now resides in a file called
“vsearch4web.py”.

Import the render_template function
Add render_template to the import list on the from flask line at the top of the code.

1

Create a new URL—in this case, /entry
Every time you need a new URL in your Flask webapp, you need to add a new @app.route line,
too. We’ll do this before the app.run() line of code.

2

Create a function that returns the correctly rendered HTML
With the @app.route line written, you can associate code with it by creating a function that does
the actual work (and makes your webapp more useful to your users). The function calls (and returns
the output from) the render_template function, passing in the name of the template file
(entry.html in this case), as well as any argument values that are required by the template (in the
case, we need a value for the_title).

3

Let’s make these changes to our existing code.

www.EBooksWorld.ir

218 Chapter 5

render html templates

Displaying the Webapp’s HTML Form
Let’s add the code to enable the three changes detailed at the bottom of the
last page. Follow along by making the same changes to your code:

Import the render_template function1

Create a new URL—in this case, /entry2

Create a function that returns the correctly rendered HTML3

from flask import Flask, render_template

@app.route('/entry')

@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!)

Add “render_template” to the list of technologies imported from the “flask” module.

Underneath the “do_search” function, but
before the “app.run()” line, insert this line to
add a new URL to the webapp.

Add this function directly underneath the new “@app.route” line.

Provide the name of the template to render.

Provide a value to
associate with the
“the_title” argument.

With these changes made, the code to our webapp—with the additions
highlighted—now looks like this:

from flask import Flask, render_template
from vsearch import search4letters

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

@app.route('/search4')
def do_search() -> str:
 return str(search4letters('life, the universe, and everything', 'eiru,!'))

@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

app.run()

We’re leaving the rest of this code as is for now.

www.EBooksWorld.ir

you are here 4 219

building a webapp

Preparing to Run the Template Code
It’s tempting to open a command prompt, then run the latest version of our
code. However, for a number of reasons, this won’t immediately work.

For starters, the base template refers to a stylesheet called hf.css, and this
needs to exist in a folder called static (which is relative to the folder that
contains your code). Here’s a snippet of the base template that shows this:

If you haven’t done so
already, download the

templates and the CSS from
here:

http://python.itcarlow.ie/ed2/.

 ...

 <title>{{ the_title }}</title>
 <link rel="stylesheet" href="static/hf.css" />
 </head>
 ...

The “hf.css”
file needs
to exist (in
the “static”
folder).Feel free to grab a copy of the CSS file from this book’s support website

(see the URL at the side of this page). Just be sure to put the downloaded
stylesheet in a folder called static.

In addition to this, Flask requires that your templates be stored in a folder
called templates, which—like static—needs to be relative to the folder
that contains your code. The download for this chapter also contains all three
templates...so you can avoid typing in all that HTML!

Assuming that you’ve put your webapp’s code file in a folder called webapp,
here’s the structure you should have in place prior to attempting to run the
most recent version of vsearch4web.py:

base.html entry.html results.html

static

templates

webapp

vsearch4web.py

hf.css

This folder contains all of our webapp’s files.

This file contains our webapp’s code (shown at the bottom of the last page).

Here’s the stylesheet (in
its very own folder).

All of our application’s
templates are stored here.

www.EBooksWorld.ir

http://python.itcarlow.ie/ed2/

220 Chapter 5

run that webapp

We’re Ready for a Test Run
If you have everything ready—the stylesheet and templates downloaded, and
the code updated—you’re now ready to take your Flask webapp for another
spin.

The previous version of your code is likely still running at your command
prompt.

Return to that window now and press Ctrl and C together to stop the previous
webapp’s execution. Then press the up arrow key to recall the last command
line, edit the name of the file to run, and then press Enter. Your new version
of your code should now run, displaying the usual status messages:

 ...

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
127.0.0.1 - - [23/Nov/2015 21:51:38] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [23/Nov/2015 21:51:48] "GET /search4 HTTP/1.1" 200 -

^C

$ python3 vsearch4web.py
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)Stop the

webapp
again...

Start up your new code (which is in the “vsearch4web.py” file).

The new code is up
and running, and
waiting to service
requests.

Recall that this new version of our code still supports the / and /search4
URLs, so if you use a browser to request those, the responses will be the same
as shown earlier in this chapter. However, if you use this URL:

 http://127.0.0.1:5000/entry

the response displayed in your browser should be the rendered HTML form
(shown at the top of the next page). The command-prompt should display
two additional status lines: one for the /entry request and another related to
your browser’s request for the hf.css stylesheet:

 ...
127.0.0.1 - - [23/Nov/2015 21:55:59] "GET /entry HTTP/1.1" 200 -
127.0.0.1 - - [23/Nov/2015 21:55:59] "GET /static/hf.css HTTP/1.1" 304 -

You request the HTML form....

...and your browser
also requests the
stylesheet.

www.EBooksWorld.ir

you are here 4 221

building a webapp

Test Drive
Here’s what appears on screen when we type http://127.0.0.1:5000/entry into our
browser:

We aren’t going to win any web design awards for this page, but it looks OK, and resembles what we
had on the back of our napkin. Unfortunately, when you type in a phrase and (optionally) adjust the
Letters value to suit, clicking the Do it! button produces this error page:

This is a bit of a bummer, isn’t it? Let’s see what’s going on.

Looking good

Whoops! That
can’t be good.

www.EBooksWorld.ir

222 Chapter 5

what went wrong?

Geek Bits

Here’s a quick and dirty
explanation of the various HTTP
status codes that can be sent
from a web server (e.g., your Flask
webapp) to a web client (e.g.,
your web browser).

There are five main categories
of status code: 100s, 200s, 300s,
400s, and 500s.

Codes in the 100–199 range are
informational messages: all is
OK, and the server is providing
details related to the client’s
request.

Codes in the 200–299 range are
success messages: the server
has received, understood, and
processed the client’s request. All
is good.

Codes in the 300–399 range
are redirection messages: the
server is informing the client
that the request can be handled
elsewhere.

Codes in the 400–499 range are
client error messages: the server
received a request from the client
that it does not understand and
can’t process. Typically, the client
is at fault here.

Codes in the 500–599 range are
server error messages: the server
received a request from the client,
but the server failed while trying
to process it. Typically, the server
is at fault here.

For more details, please see:
https://en.wikipedia.org/wiki/
List_of_HTTP_status_codes.

Understanding HTTP Status Codes
When something goes wrong with your webapp, the web server responds
with a HTTP status code (which it sends to your browser). HTTP is the
communications protocol that lets web browsers and servers communicate.
The meaning of the status codes is well established (see the Geek Bits on the
right). In fact, every web request generates an HTTP status code response.

To see which status code was sent to your browser from your webapp, review
the status messages appearing at your command prompt. Here’s what we saw:

 ...
127.0.0.1 - - [23/Nov/2015 21:55:59] "GET /entry HTTP/1.1" 200 -
127.0.0.1 - - [23/Nov/2015 21:55:59] "GET /static/hf.css HTTP/1.1" 304 -
127.0.0.1 - - [23/Nov/2015 21:56:54] "POST /search4 HTTP/1.1" 405 -

Uh-oh. Something has gone wrong, and the server has generated a client-error status code.
The 405 status code indicates that the client (your browser) sent a request
using a HTTP method that this server doesn’t allow. There are a handful of
HTTP methods, but for our purposes, you only need to be aware of two of
them: GET and POST.

The GET method
Browsers typically use this method to request a resource
from the web server, and this method is by far the most
used. (We say “typically” here as it is possible to—rather
confusingly—use GET to send data from your browser
to the server, but we’re not focusing on that option here.)
All of the URLs in our webapp currently support GET,
which is Flask’s default HTTP method.

1

The POST method
This method allows a web browser to send data to the
server over HTTP, and is closely associated with the
HTML <form> tag. You can tell your Flask webapp to
accept posted data from a browser by providing an extra
argument on the @app.route line.

2

Let’s adjust the @app.route line paired with our webapp’s /search4
URL to accept posted data. To do this, return to your editor and edit the
vsearch4web.py file once more.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

you are here 4 223

building a webapp

Handling Posted Data
As well as accepting the URL as its first argument, the @app.route decorator
accepts other, optional arguments.

One of these is the methods argument, which lists the HTTP method(s) that
the URL supports. By default, Flask supports GET for all URLs. However, if the
methods argument is assigned a list of HTTP methods to support, this default
behavior is overridden. Here’s what the @app.route line currently looks like:

@app.route('/search4')

We have not
specified an
HTTP method
to support here,
so Flask defaults to GET.

To have the /search4 URL support POST, add the methods argument to the
decorator and assign the list of HTTP methods you want the URL to support.
This line of code, below, states that the /search4 URL now only supports the
POST method (meaning GET requests are no longer supported):

@app.route('/search4', methods=['POST'])

Q: What if I need my URL to support both the GET method as well as POST? Is that possible?

A: Yes, all you need to do is add the name of the HTTP method you need to support to the list assigned to the methods arguments. For
example, if you wanted to add GET support to the /search4 URL, you need only change the @app.route line of code to look like this: @
app.route('/search4', methods=['GET', 'POST']). For more on this, see the Flask docs, which are available
here http://flask.pocoo.org.

This small change is enough to rid your webapp of the “Method Not Allowed”
message, as the POST associated with the HTML form matches up with the
POST on the @app.route line:

 ...

<form method='POST' action='/search4'>
<table>
 ...

 ...

@app.route('/search4', methods=['POST'])
def do_search() -> str:
 ...

The “/search4”
URL now
supports only the
POST method.

This HTML
snippet is from
“entry.html”...

...and this Python code is from the “vsearch4web.py” file.

Note how HTML uses “method”
(singular), whereas Flask uses

“methods” (plural).

www.EBooksWorld.ir

http://flask.pocoo.org/

224 Chapter 5

switch on debugging

Ref ining the Edit/Stop/Start/Test Cycle
At this point, having saved our amended code, it’s a reasonable course of action to stop
the webapp at the command prompt, then restart it to test our new code. This edit/
stop/start/test cycle works, but becomes tedious after a while (especially if you end up
making a long series of small changes to your webapp’s code).

To improve the efficiency of this process, Flask allows you to run your webapp in
debugging mode, which, among other things, automatically restarts your webapp every
time Flask notices your code has changed (typically as a result of you making and
saving a change). This is worth doing, so let’s switch on debugging by changing the last
line of code in vsearch4web.py to look like this:

app.run(debug=True)

Your program code should now look like this:

Switches on debugging

from flask import Flask, render_template
from vsearch import search4letters

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

@app.route('/search4', methods=['POST'])
def do_search() -> str:
 return str(search4letters('life, the universe, and everything', 'eiru,!'))

@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

app.run(debug=True)

We are now ready to take this code for a test run. To do so, stop your currently
running webapp (for the last time) by pressing Ctrl-C, then restart it at your command
prompt by pressing the up arrow and Enter.

Rather than showing the usual “Running on http://127...” message, Flask
spits out three new status lines, which is its way of telling you debugging mode is now
active. Here’s what we saw on our computer:

$ python3 vsearch4web.py
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger pin code: 228-903-465

Now that we are up and running again, let’s interact with our webapp once more and
see what’s changed.

This is Flask’s way of telling you that your webapp will automatically restart if your code changes. Also: don’t worry if your debugger pin code is different from ours (that’s OK). We won’t use this pin.

www.EBooksWorld.ir

you are here 4 225

building a webapp

Test Drive
Return to the entry form by typing http://127.0.0.1:5000/entry into your browser:

The “Method Not Allowed” error has gone, but things still aren’t working right. You can type any phrase
into this form, then click the Do it! button without the error appearing. If you try it a few times, you’ll
notice that the results returned are always the same (no matter what phrase or letters you use). Let’s
investigate what’s going on here.

Still looking
good

No matter what we type in
as the phrase, the results are
always the same.

www.EBooksWorld.ir

226 Chapter 5

where’s the data?

Accessing HTML Form Data with Flask
Our webapp no longer fails with a “Method Not Allowed” error. Instead, it
always returns the same set of characters: u, e, comma, i, and r. If you take
a quick look at the code that executes when the /search4 URL is posted to,
you’ll see why this is: the values for phrase and letters are hardcoded into
the function:

 ...

@app.route('/search4', methods=['POST'])
def do_search() -> str:
 return str(search4letters('life, the universe, and everything', 'eiru,!'))

 ...

No matter what we type
into the HTML form, our
code is always going to use
these hardcoded values.

Our HTML form posts its data to the web server, but in order to do
something with the data, we need to amend our webapp’s code to accept the
data, then perform some operation on it.

Flask comes with a built-in object called request that provides easy access
to posted data. The request object contains a dictionary attribute called
form that provides access to a HTML form’s data posted from the browser.
As form is like any other Python dictionary, it supports the same square
bracket notation you first saw in Chapter 3. To access a piece of data from
the form, put the form element’s name inside square brackets:

{% extends 'base.html' %}

{% block body %}

<h2>{{ the_title }}</h2>

<form method='POST' action='/search4'>
<table>
<p>Use this form to submit a search request:</p>
<tr><td>Phrase:</td><td><input name='phrase' type='TEXT'
width='60'></td></tr>
<tr><td>Letters:</td><td><input name='letters' type='TEXT'
value='aeiou'></td></tr>
</table>
<p>When you're ready, click this button:</p>
<p><input value='Do it!' type='SUBMIT'></p>
</form>

{% endblock %}

The data from this form element is available in our webapp’s code as “request.form[‘phrase']”.

The data from this form
element is available in our webapp
as “request.form[‘letters']”.

The HTML template (in
the “entry.html” file) The rendered form

in our web browser
www.EBooksWorld.ir

you are here 4 227

building a webapp

Using Request Data in Your Webapp
To use the request object, import it on the from flask line at the top of your
program code, then access the data from request.form as needed. For our
purposes, we want to replace the hardcoded data value in our do_search function
with the data from the form. Doing so ensures that every time the HTML form is
used with different values for phrase and letters, the results returned from our
webapp adjust accordingly.

Let’s make these changes to our program code. Start by adding the request object
to the list of imports from Flask. To do that, change the first line of vsearch4web.
py to look like this:

@app.route('/search4', methods=['POST'])
def do_search() -> str:
 phrase = request.form['phrase']
 letters = request.form['letters']
 return str(search4letters(phrase, letters))

from flask import Flask, render_template, request
Add
“request” to
the list of
imports.We know from the information on the last page that we can access the phrase

entered into the HTML form within our code as request.form['phrase'],
whereas the entered letters is available to us as request.form['letters'].
Let’s adjust the do_search function to use these values (and remove the hardcoded
strings):

Create two
new variables... ...and assign the HTML form’s data to the newly created variables...

...then, use the
variables in the call to
“search4letters”.Automatic Reloads

Now...before you do anything else (having made the changes to your program code
above) save your vsearch4web.py file, then flip over to your command prompt and
take a look at the status messages produced by your webapp. Here’s what we saw (you
should see something similar):

$ python3 vsearch4web.py
 * Restarting with stat
 * Debugger is active!
 * Debugger pin code: 228-903-465
127.0.0.1 - - [23/Nov/2015 22:39:11] "GET /entry HTTP/1.1" 200 -
127.0.0.1 - - [23/Nov/2015 22:39:11] "GET /static/hf.css HTTP/1.1" 200 -
127.0.0.1 - - [23/Nov/2015 22:17:58] "POST /search4 HTTP/1.1" 200 -
 * Detected change in 'vsearch4web.py', reloading
 * Restarting with stat
 * Debugger is active!
 * Debugger pin code: 228-903-465

The Flask debugger has spotted the
code changes, and restarted your
webapp for you.
Pretty handy, eh?
Don’t panic if you see something other than what’s shown here. Automatic reloading
only works if the code changes you make are correct. If your code has errors, the
webapp bombs out to your command prompt. To get going again, fix your coding
errors, then restart your webapp manually (by pressing the up arrow, then Enter).

www.EBooksWorld.ir

228 Chapter 5

works better now

Test Drive
Now that we’ve changed our webapp to accept (and process) the data from our HTML form, we can
throw different phrases and letters at it, and it should do the right thing:

Remember: an empty set appears as “set()”,
so this means none of the letters ‘m’, ‘n’, ‘o’,
‘p’, or ‘q’ appear in the phrase.

Only the letter ‘y’ appears
in the posted phrase.

The phrase contains all but one of the letters posted to the web server.

www.EBooksWorld.ir

you are here 4 229

building a webapp

Producing the Results As HTML
At this point, the functionality associated with our webapp is working: any
web browser can submit a phrase/letters combination, and our
webapp invokes search4letters on our behalf, returning any results.
However, the output produced isn’t really a HTML webpage—it’s just the
raw data returned as text to the waiting browser (which displays it on screen).

Recall the back-of-the-napkin specifications from earlier in this chapter. This
is what we were hoping to produce:

Welcome to search4letters on the Web!

Use this form to submit a search request:

Phrase:
Letters:

When you’re ready, click this butt
on:

aeiou

Do it!

Here are your results:
You submitted the following data:

Phrase:
Letters:

When “hitch-hiker” is searched for “aeiou”, the following results are returned:

aeiou
hitch-hiker

{ ‘e’, ‘i’ }

This part is done. The “entry.html” template
produces an approximation of this form for us.

This part remains to be done. At the moment, we’re only displaying the results as raw data.When we learned about Jinja2’s template technology, we presented two
HTML templates. The first, entry.html, is used to produce the form. The
second, results.html, is used to display the results. Let’s use it now to
take our raw data output and turn it into HTML.

Q: It is possible to use Jinja2 to template textual data other than HTML?

A: Yes. Jinja2 is a text template engine that can be put to many uses. That said, its typical use case is with web development projects (as
used here with Flask), but there’s nothing stopping you from using it with other textual data if you really want to.

www.EBooksWorld.ir

230 Chapter 5

one more template

Calculat ing the Data We Need
Let’s remind ourselves of the contents of the results.html template as presented
earlier in this chapter. The Jinja2-specific markup is highlighted:

{% extends 'base.html' %}

{% block body %}

<h2>{{ the_title }}</h2>

<p>You submitted the following data:</p>
<table>
<tr><td>Phrase:</td><td>{{ the_phrase }}</td></tr>
<tr><td>Letters:</td><td>{{ the_letters }}</td></tr>
</table>

<p>When "{{the_phrase }}" is search for "{{ the_letters }}", the following
results are returned:</p>
<h3>{{ the_results }}</h3>

{% endblock %}

The highlighted names enclosed in double curly braces are Jinja2 variables that take
their value from corresponding variables in your Python code. There are four of these
variables: the_title, the_phrase, the_letters, and the_results. Take
another look at the do_search function’s code (below), which we are going to adjust
in just a moment to render the HTML template shown above. As you can see, this
function already contains two of the four variables we need to render the template
(and to keep things as simple as possible, we’ve used variable names in our Python
code that are similar to those used in the Jinja2 template):

@app.route('/search4', methods=['POST'])
def do_search() -> str:
 phrase = request.form['phrase']
 letters = request.form['letters']
 return str(search4letters(phrase, letters))

Here are two
of the four
values we need.

The two remaining required template arguments (the_title and the_results)
still need to be created from variables in this function and assigned values.

We can assign the "Here are your results:" string to the_title, and then
assign the call to search4letters to the_results. All four variables can then
be passed into the results.html template as arguments prior to rendering.

This is
“results.
html”.

www.EBooksWorld.ir

you are here 4 231

building a webapp

Template Magnets
The Head First authors got together and, based on the requirements
for the updated do_search function outlined at the bottom of the
last page, wrote the code required. In true Head First style, they did so
with the help of some coding magnets...and a fridge (best if you don’t
ask). Upon their success, the resulting celebrations got so rowdy that
a certain series editor bumped into the fridge (while singing the beer
song) and now the magnets are all over the floor. Your job is to stick
the magnets back in their correct locations in the code.

'Here are your results:'

the_title=title,
results

render_template('results.html',

=
'html

'Here are the
magnets you
have to work
with.

Decide which code magnet goes in each of the dashed-line locations.

from flask import Flask, render_template, request
from vsearch import search4letters

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

@app.route('/search4', methods=['POST'])

def do_search() -> :
 phrase = request.form['phrase']
 letters = request.form['letters']

 return

@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

app.run(debug=True)

=title

the_phrase=phrase,

the_results=results,

the_letters=letters,

)

str(search4letters(phrase, letters))

www.EBooksWorld.ir

232 Chapter 5

magnets all arranged

Template Magnets Solution
Having made a note to keep a future eye on a certain series editor’s
beer consumption, you set to work restoring all of the code magnets
for the updated do_search function. Your job was to stick the
magnets back in their correct locations in the code.

Here’s what we came up with when we performed this task:

'Here are your results:'

the_title=title,

results

render_template('results.html',

=

'html'

from flask import Flask, render_template, request
from vsearch import search4letters

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

@app.route('/search4', methods=['POST'])

def do_search() -> :

 phrase = request.form['phrase']
 letters = request.form['letters']

 return

@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

app.run(debug=True)

str(search4letters(phrase, letters))

=title

the_phrase=phrase,

the_results=results,

the_letters=letters,

)

Now that the magnets are back in their correct locations, make these code
changes to your copy of vsearch4web.py. Be sure to save your file to ensure
that Flask automatically reloads your webapp. We’re now ready for another test.

Change the annotation to
indicate that this function
now returns HTML, not a
plain-text string (as in the
previous version of this code).

Create a Python
variable called
“title”...

...and assign a
string to “title”.

Create another
Python variable
called “results”...

...and assign
the results
of the call to
“search4letters”
to “results”.

Render the “results.html”
template. Remember: this
template expects four
argument values.

Don’t forget the closing parenthesis to end the function call.

Each Python variable is assigned to its corresponding Jinja2 argument. In this way, data from
our program code is passed into the template.

www.EBooksWorld.ir

you are here 4 233

building a webapp

Test Drive
Let’s test the new version of our webapp using the same examples from earlier in this chapter. Note
that Flask restarted your webapp the moment you saved your code.

We’re looking good for input and output now.
www.EBooksWorld.ir

234 Chapter 5

a little redirection

Adding a Finishing Touch
Let’s take another look at the code that currently makes up vsearch4web.py.
Hopefully, by now, all this code should make sense to you. One small syntactical
element that often confuses programmers moving to Python is the inclusion of
the final comma in the call to render_template, as most programmers feel
this should be a syntax error and shouldn’t be allowed. Although it does look
somewhat strange (at first), Python allows it—but does not require it—so we can
safely move on and not worry about it:

from flask import Flask, render_template, request
from vsearch import search4letters

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

app.run(debug=True)

This extra comma looks a little strange, but is perfectly fine (though optional) Python syntax.

This version of our webapp supports three URLs: /, /search4, and /entry, with
some dating back to the very first Flask webapp we created (right at the start of
this chapter). At the moment, the / URL displays the friendly, but somewhat
unhelpful, “Hello world from Flask!” message.

We could remove this URL and its associated hello function from our code (as
we no longer need either), but doing so would result in a 404 “Not Found” error
in any web browser contacting our webapp on the / URL, which is the default
URL for most webapps and websites. To avoid this annoying error message, let’s
ask Flask to redirect any request for the / URL to the /entry URL. We do this by
adjusting the hello function to return a HTML redirect to any web browser
that requests the / URL, effectively substituting the /entry URL for any request
made for /.

www.EBooksWorld.ir

you are here 4 235

building a webapp

Redirect to Avoid Unwanted Errors
To use Flask’s redirection technology, add redirect to the from flask
import line (at the top of your code), then change the hello function’s code to
look like this:

from flask import Flask, render_template, request, redirect
from vsearch import search4letters

app = Flask(__name__)

@app.route('/')
def hello() -> '302':
 return redirect('/entry')

 ...

Add
“redirect”
to the list
of imports.

The rest of
the code
remains
unchanged.

Call Flask’s “redirect” function
to instruct the browser to
request an alternative URL (in
this case, “/entry”).

Adjust the annotation to more clearly indicate what’s being returned by this function. Recall that HTTP status codes in the 300-399 range are redirections, and 302 is what Flask sends back to your browser when “redirect” is invoked.

This small edit ensures our webapp’s users are shown the HTML form should
they request the /entry or / URL.

Make this change, save your code (which triggers an automatic reload), and then
try pointing your browser to each of the URLs. The HTML form should appear
each time. Take a look at the status messages being displayed by your webapp at
your command prompt. You may well see something like this:

 ...
 * Detected change in 'vsearch4web.py', reloading
 * Restarting with stat
 * Debugger is active!
 * Debugger pin code: 228-903-465
127.0.0.1 - - [24/Nov/2015 16:54:13] "GET /entry HTTP/1.1" 200 -
127.0.0.1 - - [24/Nov/2015 16:56:43] "GET / HTTP/1.1" 302 -
127.0.0.1 - - [24/Nov/2015 16:56:44] "GET /entry HTTP/1.1" 200 -

You saved your
code, so Flask
reloaded your
webapp.

A request is made for the “/entry” URL, and it is served up immediately. Note the 200 status code (and remember from earlier in this chapter that codes in the 200-299 range are success messages: the server has received, understood, and processed the client’s request).

When a request is made for the “/” URL, our webapp
first responds with the 302 redirection, and then the
web browser sends another request for the “/entry” URL,
which is successfully served up by our webapp (again, note
the 200 status code).

As a strategy, our use of redirection here works, but it is somewhat wasteful—a
single request for the / URL turns into two requests every time (although client-
side caching can help, this is still not optimal). If only Flask could somehow
associate more than one URL with a given function, effectively removing the need
for the redirection altogether. That would be nice, wouldn’t it?

www.EBooksWorld.ir

236 Chapter 5

no more redirection

Funct ions Can Have Mult iple URLs
It’s not hard to guess where we are going with this, is it?

It turns out that Flask can indeed associate more than one URL with a given function,
which can reduce the need for redirections like the one demonstrated on the last page.
When a function has more than one URL associated with it, Flask tries to match each
of the URLs in turn, and if it finds a match, the function is executed.

It’s not hard to take advantage of this Flask feature. To begin, remove redirect
from the from flask import line at the top of your program code; we no longer
need it, so let’s not import code we don’t intend to use. Next, using your editor, cut
the @app.route('/') line of code and then paste it above the @app.route('/
entry') line near the bottom of your file. Finally, delete the two lines of code that
make up the hello function, as our webapp no longer needs them.

When you’re done making these changes, your program code should look like this:

from flask import Flask, render_template, request
from vsearch import search4letters

app = Flask(__name__)

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

app.run(debug=True)

We no longer need to import
“redirect”, so we’ve removed it
from this import line.

The “hello”
function
has been
removed.

The “entry_page” function now
has two URLs associated with it.

Saving this code (which triggers a reload) allows us to test this new functionality. If
you visit the / URL, the HTML form appears. A quick look at your webapp’s status
messages confirms that processing / now results in one request, as opposed to two (as
was previously the case):

 ...
 * Detected change in 'vsearch4web.py', reloading
 * Restarting with stat
 * Debugger is active!
 * Debugger pin code: 228-903-465
127.0.0.1 - - [24/Nov/2015 16:59:10] "GET / HTTP/1.1" 200 -

As always, the new version of our webapp reloads.
One request, one
response. That’s more
like it. §

www.EBooksWorld.ir

you are here 4 237

building a webapp

Updat ing What We Know
We’ve just spent the last 40 pages creating a small webapp that exposes the
functionality provided by our search4letters function to the World Wide
Web (via a simple two-page website). At the moment, the webapp runs locally on
your computer. In a bit, we’ll discuss deploying your webapp to the cloud, but for
now let’s update what you know:

 � You learned about the Python Package Index
(PyPI), which is a centralized repository for
third-party Python modules. When connected
to the Internet, you can automatically install
packages from PyPI using pip.

 � You used pip to install the Flask micro-web
framework, which you then used to build your
webapp.

 � The __name__ value (maintained by the
interpreter) identifies the currently active
namespace (more on this later).

 � The @ symbol before a function’s name
identifies it as a decorator. Decorators let you
change the behavior of an existing function
without having to change the function’s code. In
your webapp, you used Flask’s @app.route
decorator to associate URLs with Python
functions. A function can be decorated more
than once (as you saw with the do_search
function).

 � You learned how to use the Jinja2 text template
engine to render HTML pages from within your
webapp.

Is that all there is to this chapter?
You’d be forgiven for thinking this chapter doesn’t introduce much new Python. It
doesn’t. However, one of the points of this chapter was to show you just how few
lines of Python code you need to produce something that’s generally useful on
the Web, thanks in no small part to our use of Flask. Using a template technology
helps a lot, too, as it allows you to keep your Python code (your webapp’s logic)
separate from your HTML pages (your webapp’s user interface).

It’s not an awful lot of work to extend this webapp to do more. In fact, you could
have an HTML whiz-kid produce more pages for you while you concentrate on
writing the Python code that ties everything together. As your webapp scales, this
separation of duties really starts to pay off. You get to concentrate on the Python
code (as you’re the programmer on the project), whereas the HTML whiz-kid
concentrates on the markup (as that’s their bailiwick). Of course, you both have to
learn a little bit about Jinja2 templates, but that’s not too difficult, is it?

www.EBooksWorld.ir

238 Chapter 5

gotta love pythonanywhere

Preparing Your Webapp for the Cloud
With your webapp working to specification locally on your computer, it’s
time to think about deploying it for use by a wider audience. There are lots
of options here, with many different web-based hosting setups available to
you as a Python programmer. One popular service is cloud-based, hosted on
AWS, and is called PythonAnywhere. We love it over at Head First Labs.

Like nearly every other cloud-hosted deployment solution, PythonAnywhere
likes to control how your webapp starts. For you, this means PythonAnywhere
assumes responsibility for calling app.run() on your behalf, which means
you no longer need to call app.run() in your code. In fact, if you try to
execute that line of code, PythonAnywhere simply refuses to run your webapp.

A simple solution to this problem would be to remove that last line of code
from your file before deploying to the cloud. This certainly works, but means
you need to put that line of code back in again whenever you run your
webapp locally. If you’re writing and testing new code, you should do so
locally (not on PythonAnywhere), as you use the cloud for deployment only,
not for development. Also, removing the offending line of code effectively
amounts to you having to maintain two versions of the same webapp, one
with and one without that line of code. This is never a good idea (and gets
harder to manage as you make more changes).

It would be nice if there were a way to selectively execute code based on
whether you’re running your webapp locally on your computer or remotely
on PythonAnywhere...

I’ve looked at an awful lot of Python
programs online, and many of them
contain a suite near the bottom that starts
with: if __name__ == '__main__':
Would something like that help here?

Yes, that’s a great suggestion.
That particular line of code is used in lots of
Python programs. It’s affectionately referred to as

“dunder name dunder main.” To understand why
it’s so useful (and why we can take advantage of
it with PythonAnywhere), let’s take a closer look at
what it does, and how it works.

www.EBooksWorld.ir

you are here 4 239

building a webapp

 Dunder Name Dunder Main Up Close

To understand the programming construct suggested at the bottom of the last page, let’s look at
a small program that uses it, called dunder.py. This three-line program begins by displaying
a message on screen that prints the currently active namespace, stored in the __name__
variable. An if statement then checks to see whether the value of __name__ is set to __
main__, and—if it is—another message is displayed confirming the value of __name__ (i.e.,
the code associated with the if suite executes):

print('We start off in:', __name__)
if __name__ == '__main__':
 print('And end up in:', __name__)

The “dunder.py”
program code—all
three lines of it.

Displays the value of “__name__”.

Displays the value
of “__name__”
if it is set to
“__main__”.

Use your editor (or IDLE) to create the dunder.py file,
then run the program at a command prompt to see what
happens. If you’re on Windows, use this command:

C:\> py -3 dunder.py

If you are on Linux or Mac OS X, use this command:

$ python3 dunder.py

No matter which operating system you’re running, the dunder.py program—when executed
directly by Python—produces this output on screen:

We start off in: __main__
And end up in: __main__

When executed
directly by Python, both calls to “print” display output.So far, so good.

Now, look what happens when we import the dunder.py file (which, remember, is also a
module) into the >>> prompt. We’re showing the output on Linux/Mac OS X here. To do the
same thing on Windows, replace python3 (below) with py -3:

$ python3
Python 3.5.1 ...
Type "help", "copyright", "credits" or "license" for more information.
>>> import dunder
We start off in: dunder Look at this: there’s only a single line displayed (as

opposed to two), as “__name__” has been set to
“dunder” (which is the name of the imported module).

Here’s the bit you need to understand: if your program code is executed directly by Python, an
if statement like the one in dunder.py returns True, as the active namespace is __main__.
If, however, your program code is imported as a module (as in the Python Shell prompt example
above), the if statement always returns False, as the value of __name__ is not __main__,
but the name of the imported module (dunder in this case).

www.EBooksWorld.ir

240 Chapter 5

dunder or wonder

Exploit ing Dunder Name Dunder Main
Now that you know what dunder name dunder main does, let’s exploit it to solve the
problem we have with PythonAnywhere wanting to execute app.run() on our
behalf.

It turns out that when PythonAnywhere executes our webapp code, it does so by
importing the file that contains our code, treating it like any other module. If
the import is successful, PythonAnywhere then calls app.run(). This explains
why leaving app.run() at the bottom of our code is such a problem for
PythonAnywhere, as it assumes the app.run() call has not been made, and fails to
start our webapp when the app.run() call has been made.

To get around this problem, wrap the app.run() call in a dunder name dunder
main if statement (which ensures app.run() is never executed when the
webapp code is imported).

Edit vsearch4web.py one last time (in this chapter, anyway) and change the
final line of code to this:

if __name__ == '__main__':
 app.run(debug=True)

This small change lets you continue to execute your webapp locally (where the
app.run() line will execute) as well as deploy your webapp to PythonAnywhere
(where the app.run() line won’t execute). No matter where your webapp runs,
you’ve now got one version of your code that does the right thing.

Deploying to PythonAnywhere (well ... almost)
All that remains is for you to perform that actual deployment to PythonAnywhere’s
cloud-hosted environment.

Note that, for the purposes of this book, deploying your webapp to the cloud
is not an absolute requirement. Despite the fact that we intend to extend
vsearch4web.py with additional functionality in the next chapter, you do
not need to deploy to PythonAnywhere to follow along. You can happily continue
to edit/run/test your webapp locally as we extend it in the next chapter (and
beyond).

However, if you really do want to deploy to the cloud, see Appendix B, which
provides step-by-step instructions on how to complete the deployment on
PythonAnywhere. It’s not hard, and won’t take more than 10 minutes.

Whether you're deploying to the cloud or not, we’ll see you in the next chapter,
where we’ll start to look at some of the options available for saving data from
within your Python programs.

The “app.run()” line of code now only runs when executed directly by Python.

www.EBooksWorld.ir

you are here 4 241

building a webapp

Chapter 5’s Code

from flask import Flask, render_template, request
from vsearch import search4letters

app = Flask(__name__)

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to... web!')

if __name__ == '__main__':
 app.run(debug=True)

from flask import Flask
from vsearch import search4letters

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

@app.route('/search4')
def do_search() -> str:
 return str(search4letters('life, the universe, and everything', 'eiru,!'))

app.run()

print('We start off in:', __name__)
if __name__ == '__main__':
 print('And end up in:', __name__)

This is “hello_flask.py”, our first webapp based on Flask (one of Python’s micro-web framework technologies).

This is “vsearch4web.py”.
This webapp exposed the
functionality provided by our
“search4letters” function to
the World Wide Web. In addition
to Flask, this code exploited
the Jinja2 template engine.

This is “dunder.py”, which
helped us understand the very
handy “dunder name dunder main”
mechanism.

www.EBooksWorld.ir

www.EBooksWorld.ir

this is a new chapter 243

storing and manipulating data6

Where to Put Your Data

Sooner or later, you’ll need to safely store your data somewhere.
And when it comes to storing data, Python has you covered. In this chapter, you’ll learn

about storing and retrieving data from text files, which—as storage mechanisms go—may

feel a bit simplistic, but is nevertheless used in many problem areas. As well as storing and

retrieving your data from files, you’ll also learn some tricks of the trade when it comes to

manipulating data. We’re saving the “serious stuff” (storing data in a database) until the next

chapter, but there’s plenty to keep us busy for now when working with files.

Yes, yes...your data is
safely stored. In fact, I’m
writing down everything as
we speak.

www.EBooksWorld.ir

244 Chapter 6

work that data

Doing Something with Your Webapp’s Data
At the moment, your webapp (developed in Chapter 5) accepts input from
any web browser (in the form of a phrase and some letters), performs a
search4letters call, and then returns any results to the waiting web browser.
Once done, your webapp discards any data it has.

There are a bunch of questions that we could ask of the data our webapp uses.
For instance: How many requests have been responded to? What’s the most common list of
letters? Which IP addresses are the requests coming from? Which browser is being used the
most? and so on, and so forth.

In order to begin answering these (and other) questions, we need to save the
webapp’s data as opposed to simply throwing it away. The suggestion above makes
perfect sense: let’s log data about each web request, then—once we have the
logging mechanism in place—go about answering any questions we have.

So...every web
request arrives with
a value for “phrase”

and “letters”...

...then we
invoke “search4letters”
to produce the results
and send them back...

...and then we just
throw away the data?!? At
the very least, we should be
logging the web request data,

shouldn’t we?

www.EBooksWorld.ir

you are here 4 245

storing & manipulating data

Python Supports Open, Process, Close
No matter the programming language, the easiest way to store data is to save it
to a text file. Consequently, Python comes with built-in support for open, process,
close. This common technique lets you open a file, process its data in some
way (reading, writing, and/or appending data), and then close the file when
you’re done (which saves your changes).

Here’s how to use Python’s open, process, close technique to open a file, process
it by appending some short strings to it, and then close the file. As we’re only
experimenting for now, let’s run our code at the Python >>> shell.

We start by calling open on a file called todos.txt, using append mode, as
our plan is to add data to this file. If the call to open succeeds, the interpreter
returns an object (known as a file stream) which is an alias for the actual file.
The object is assigned to a variable and given the name todos (although you
could use whichever name you wish here):

>>> todos = open('todos.txt', 'a')

If all is OK, “open” returns a file stream, which we’ve assigned to this variable.

Open a file... ...which has this
filename...

...and open the file in “append-mode”.

The todos variable lets you refer to your file in your code (other
programming languages refer to this as a file handle). Now that the file is open,
let’s write to it using print. Note how, below, print takes an extra argument
(file), which identifies the file stream to write to. We have three things to
remember to do (it’s never-ending, really), so we call print three times:

>>> print('Put out the trash.', file=todos)
>>> print('Feed the cat.', file=todos)
>>> print('Prepare tax return.', file=todos)

We print a message... ...to the file stream.

As we have nothing else to add to our to-do list, let’s close the file by calling the
close method, which is made available by the interpreter to every file stream:

>>> todos.close() We’re done, so let’s tidy up after
ourselves by closing the file stream.

If you forget to call close, you could potentially lose data. Remembering to
always call close is important.

Geek Bits

To access the >>> prompt:

• run IDLE on your
computer;

• run the python3
command in a Linux or
Mac OS X terminal; or

• use py -3 at a
Windows command line.

www.EBooksWorld.ir

246 Chapter 6

read what’s written

As you are merely reading from an already written-to file, calling close is less
critical here than when you are writing data. But it’s always a good idea to close a
file when it is no longer needed, so call the close method when you’re done:

Reading Data from an Exist ing File
Now that you’ve added some lines of data to the todos.txt file, let’s look
at the open, process, close code needed to read the saved data from the file and
display it on screen.

Rather than opening the file in append mode, this time you are only
interested in reading from the file. As reading is open’s default mode, you
don’t need to provide a mode argument; the name of the file is all you need
here. We’re not using todos as the alias for the file in this code; instead, we’ll
refer to the open file by the name tasks (as before, you can use whichever
variable name you want to here):

>>> tasks = open('todos.txt')

Open a file... ...which has this filename.

If all is OK, “open” returns a file stream, which we’ve assigned to this variable.

Let’s now use tasks with a for loop to read each individual line from the
file. When we do this, the for loop’s iteration variable (chore) is assigned
the current line of data as read from the file. Each iteration assigns a line
of data to chore. When you use a file stream with Python’s for loop, the
interpreter is smart enough to read a line of data from the file each time the
loop iterates. It’s also smart enough to terminate the loop when there’s no
more data to read:

“Reading” is the
“open” function’s
default mode.

>>> tasks.close() We’re done, so let’s tidy up after
ourselves by closing the file stream.

>>> for chore in tasks:
... print(chore)
...
Put out the trash.

Feed the cat.

File tax return.

The “tasks”
variable is
the file
stream.Think of

“chore” as an
alias for the
line in the file. The output shows the data from

the “todos.txt” file. Note how the
loop ends when we run out of lines
to read.

www.EBooksWorld.ir

you are here 4 247

storing & manipulating data

Q: What’s the deal with the extra newlines on output? The data in the file is three lines long, but the for loop produced six lines
of output on my display. What gives?

A: Yes, the for loop’s output does look strange, doesn’t it? To understand what’s happening, consider that the print function appends
a newline to everything it displays on screen as its default behavior. When you combine this with the fact that each line in the file ends in a
newline character (and the newline is read in as part of the line), you end up printing two newlines: the one from the file together with the one
from print. To instruct print not to include the second newline, change print(chore) to print(chore, end='').
This has the effect of suppressing print’s newline-appending behavior, so the extra newlines no longer appear on screen.

Q: What other modes are available to me when I’m working with data in files?

A: There are a few, which we’ve summarized in the following Geek Bits box. (That’s a great question, BTW.)

Geek Bits

The first argument to open is the name of the file to process. The second argument is optional. It can be set to
a number of different values, and dictates the mode the file is opened in. Modes include “reading,” “writing,” and

“appending.” Here are the most common mode values, where each (except for 'r') creates a new empty file if the file
named in the first argument doesn’t already exist:

 'r' Open a file for reading. This is the default mode and, as such, is optional. When no second argument is
 provided, 'r' is assumed. It is also assumed that the file being read from already exists.
 'w' Open a file for writing. If the file already contains data, empty the file of its data before continuing.
 'a' Open a file for appending. Preserve the file’s contents, adding any new data to the end of the file (compare
 this behavior to 'w').
 'x' Open a new file for writing. Fail if the file already exists (compare this behavior to 'w' and to 'a').

By default, files open in text mode, where the file is assumed to contain lines of textual data (e.g., ASCII or UTF-8). If
you are working with nontextual data (e.g., an image file or an MP3), you can specify binary mode by adding “b” to
any of the modes (e.g., 'wb' means “write to a binary data”). If you include “+“ as part of the second argument, the file
is opened for reading and writing (e.g., 'x+b' means “read from and write to a new binary file”). Refer to the Python
docs for more details on open (including information on its other optional arguments).

I’ve looked at a bunch of Python
projects on GitHub, and most of them

use a “with” statement when opening files.
What’s the deal with that?

The with statement is more convenient.
Although using the open function together with the close
method (with a bit of processing in the middle) works fine, most
Python programmers shun open, process, close in favor of the
with statement. Let’s take some time to find out why.

 247
www.EBooksWorld.ir

248 Chapter 6

gotta love with

A Better Open, Process, Close: “with”
Before we describe why with is so popular, let’s take a look at some code that
uses with. Here is the code we wrote (two pages ago) to read in and display the
current contents of our todos.txt file. Note that we’ve adjusted the print
function call to suppress the extra newline on output:

tasks = open('todos.txt')
for chore in tasks:
 print(chore, end='')
tasks.close()

Open the file,
assigning the
file stream
to a variable.

Perform some processing.

Close the file.

Let’s rewrite this code to use a with statement. These next three lines of code use
with to perform exactly the same processing as the four lines of code (above):

with open('todos.txt') as tasks:
 for chore in tasks:
 print(chore, end='')

Perform some processing (which is the same code as before).

Open the file.

Assign
the file
stream to
a variable.

Notice anything missing? The call to close does not make an appearance.
The with statement is smart enough to remember to call close on your behalf
whenever its suite of code ends.

This is actually much more useful than it initially sounds, as lots of programmers
often forget to call close when they’re done processing a file. This is not such a
big deal when all you’re doing is reading from a file, but when you’re writing to
a file, forgetting to call close can potentially cause data loss or data corruption. By
relieving you of the need to remember to always call close, the with statement
lets you concentrate on what it is you’re actually doing with the data in the open
file.

The “with” statement manages context
The with statement conforms to a coding convention built into Python called the
context management protocol. We’re deferring a detailed discussion of this
protocol until later in this book. For now, all you have to concern yourself with is
the fact that when you use with when working with files, you can forget about
calling close. The with statement is managing the context within which its
suite runs, and when you use with and open together, the interpreter cleans up
after you, calling close as and when required.

Python supports
“open, process, close.”
But most Python
programmers prefer
to use the “with”
statement.

www.EBooksWorld.ir

you are here 4 249

storing & manipulating data

(as
Let’s put what you now know about working with files to use. Here is the current code for your
webapp. Give it another read before we tell you what you have to do:

from flask import Flask, render_template, request
from vsearch import search4letters

app = Flask(__name__)

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

if __name__ == '__main__':
 app.run(debug=True)

Your job is to write a new function, called log_request, which takes two arguments: req and
res. When invoked, the req argument is assigned the current Flask request object, while the
res argument is assigned the results from calling search4letters. The log_request
function’s suite should append the value of req and res (as one line) to a file called vsearch.
log. We’ve got you started by providing the function’s def line. You are to provide the missing
code (hint: use with):

def log_request(req: 'flask_request', res: str) -> None:Write this
function’s
suite here.

This is the
“vsearch4web.py” code from Chapter 5.

www.EBooksWorld.ir

250 Chapter 6

creating the log

Your job was to write a new function, called log_request, which takes two arguments: req
and res. When invoked, the req argument is assigned the current Flask request object, while
the res argument is assigned the results from calling search4letters. The log_
request function’s suite should append the value of req and res (as one line) to a file called
vsearch.log. We got you started—you were to provide the missing code:

def log_request(req: 'flask_request', res: str) -> None:

This annotation may have thrown you a little. Recall that function annotations are meant to be read by other programmers. They are documentation, not executable code: the Python interpreter always ignores them, so you can use any annotation descriptor you like.

This annotation uses
Python’s “None” value
to indicate this function
has no return value.

with open(‘vsearch.log’, ‘a’) as log :
 print(req, res, file=log)

Use “with” to
open “vsearch.log”
in append mode.

Call the “print” BIF to write the values of “req” and “res” to the opened file.

Invoking the logging funct ion
Now that the log_request function exists, when do we invoke it?

Well, for starters, let’s add the log_request code into the vsearch4web.py
file. You can put it anywhere in this file, but we inserted it directly above the do_
search function and its associated @app.route decorator. We did this because
we’re going to invoke it from within the do_search function, and putting it
above the calling function seems like a good idea.

We need to be sure to call log_request before the do_search function ends,
but after the results have been returned from the call to search4letters.
Here’s a snippet of do_search’s code showing the inserted call:

 ...
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 ...

Call the “log_request”
function here.

Note the file stream
is called “log” in this
code.

www.EBooksWorld.ir

you are here 4 251

storing & manipulating data

A Quick Rev iew
Before taking this latest version of vsearch4web.py for a spin, let’s check that your code
is the same as ours. Here’s the entire file, with the latest additions highlighted:

from flask import Flask, render_template, request
from vsearch import search4letters

app = Flask(__name__)

def log_request(req: 'flask_request', res: str) -> None:
 with open('vsearch.log', 'a') as log:
 print(req, res, file=log)

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

if __name__ == '__main__':
 app.run(debug=True)

Here are the latest additions, which
arrange to log each web request to a file called “vsearch.log”.

Take your webapp for a spin...
Start up this version of your webapp (if required) at a command prompt. On Windows, use
this command:

You may have noticed
that none of our webapp’s functions contain
comments. This is a
deliberate omission on our part (as there’s only so
much room on these pages, and something had to
give). Note that any code you download from this
book’s support website
always includes comments.

While on Linux or Mac OS X, use this command:

C:\webapps> py -3 vsearch4web.py

$ python3 vsearch4web.py

With your webapp up and running, let’s log some data via the HTML form.

www.EBooksWorld.ir

252 Chapter 6

log those requests

Test Drive
Use your web browser to submit data to it via the webapp’s HTML form. If you want to follow along
with what we’re doing, submit three searches using the following values for phrase and letters:
 hitch-hiker with aeiou.
 life, the universe, and everything with aeiou.
 galaxy with xyz.
Before you begin, note that the vsearch.log file does not yet exist.

The
first
search

The second
search

www.EBooksWorld.ir

you are here 4 253

storing & manipulating data

It’s tempting to consider using your text editor to view the vsearch.log file’s
contents. But where’s the fun in that? As this is a webapp, let’s provide access to the
logged data via the webapp itself. That way, you’ll never have to move away from
your web browser when interacting with your webapp’s data. Let’s create a new URL,
called /viewlog, which displays the log’s contents on demand.

The third (and final) search

Data is logged (behind the scenes)
Each time the HTML form is used to submit data to the webapp, the log_
request function saves details of the web request and writes the results to the log file.
Immediately after the first search, the vsearch.log file is created in the same folder
as your webapp’s code:

Our file
manager
displays the
current
contents of
our “webapp”
folder.

Here it is: the “vsearch.log”
file.

www.EBooksWorld.ir

254 Chapter 6

one more url

View the Log Through Your Webapp
You’re going to add support for the /viewlog URL to your webapp. When your webapp
receives a request for /viewlog, it should open the vsearch.log file, read in all of its
data, and then send the data to the waiting browser.

Most of what you need to do you already know. Start by creating a new @app.route
line (we’re adding this code near the bottom of vsearch4web.py, just above the
dunder name dunder main line):

@app.route('/viewlog')
We have
a brand
new URL.

Having decided on the URL, next we’ll write a function to go with it. Let’s call our
new function view_the_log. This function won’t take any arguments, and will
return a string to its caller; the string will be concatenation of all of the lines of data
from the vsearch.log file. Here’s the function’s def line:

def view_the_log() -> str:

And we have a brand
new function, which
(according to the
annotation) returns a
string.Now to write the function’s suite. You have to open the file for reading. This is the open

function’s default mode, so you only need the name of the file as an argument to
open. Let’s manage the context within which our file processing code executes using a
with statement:

with open('vsearch.log') as log:

Within the with statement’s suite, we need to read all the lines from the file. Your first
thought might be to loop through the file, reading each line as you go. However, the
interpreter provides a read method, which, when invoked, returns the entire contents
of the file “in one go.” Here’s the single line of code that does just that, creating a new
string called contents:

Open the
log file for
reading.

contents = log.read()

Read the entire file “in one go” and assign it to a variable (which we’ve called “contents”).
With the file read, the with statement’s suite ends (closing the file), and you are now
ready to send the data back to the waiting web browser. This is straightforward:

return contents

With everything put together, you now have all the code you need to
respond to the /viewlog request; it looks like this:

Take the list of
lines in “contents”
and return them.

@app.route('/viewlog')
def view_the_log() -> str:
 with open('vsearch.log') as log:
 contents = log.read()
 return contents

This is all of the code
you need to support the
“/viewlog” URL.

www.EBooksWorld.ir

you are here 4 255

storing & manipulating data

Test Drive
With the new code added and saved, your webapp should automatically reload. You can enter some
new searches if you like, but the ones you ran a few pages ago are already logged. Any new searches
you perform will be appended to the log file. Let’s use the /viewlog URL to take a look at what’s been
saved. Type http://127.0.0.1:5000/viewlog into your browser’s address bar.
Here’s what we saw when we used Safari on Mac OS X (we also checked Firefox and Chrome, and
got the same output):

We’ve run three searches since adding the
logging code, and this looks like three sets of
results. But what’s happened to the request
data? It appears to be missing from this
output?!?

Where to start when things go wrong with your output
When your output doesn’t quite match what you were expecting (which is the case above), it’s best
to start by checking exactly what data the webapp sent you. It’s important to note that what’s just
appeared on screen is a rendering (or interpretation) of the webapp’s data as performed by your web
browser. All the major browsers allow you to view the raw data received with no rendering applied.
This is known as the source of the page, and viewing it can be a useful debugging aid, as well as a
great first step toward understanding what’s going on here.

If you are using Firefox or Chrome, right-click on your browser window and select View Page
Source from the pop-up menu to see the raw data as sent by your webapp. If you are running
Safari, you’ll first need to enable the developer options: open up Safari’s preferences, then switch on
the Show Develop menu in the menu bar option at the bottom of the Advanced tab. Once you do this, you
can return to your browser window, right-click, and then select Show Page Source from the pop-
up menu. Go ahead and view the raw data now, then compare it to what we got (on the next page).

www.EBooksWorld.ir

256 Chapter 6

use the source

Examine the Raw Data with View Source
Remember, the log_request function saves two pieces of data for each
web request it logs: the request object as well as the results of the call to
search4letters. But when you view the log (with /viewlog), you’re only seeing
the results data. Does viewing the source (i.e., the raw data returned from the
webapp) offer any clue as to what happened to the request object?

Here’s what we saw when we used Firefox to view the raw data. The fact that each
request object’s output is colored red is another clue that something is amiss with
our log data:

Data about the request
object has been saved in the
log, but for some reason the
web browser is refusing to
render it on screen.

The explanation as to why the request data is not rendering is subtle, and the fact
that Firefox has highlighted the request data in red helps in understanding what’s
going on. It appears there’s nothing wrong with the actual request data. However,
it seems that the data enclosed in angle brackets (< and >) is upsetting the browser.
When browsers see an opening angle bracket, they treat everything between that
bracket and the matching closing angle bracket as an HTML tag. As <Request>
is not a valid HTML tag, modern browsers simply ignore it and refuse to render
any of the text between the brackets, which is what’s happening here. This solves
the mystery of the disappearing request data. But we still want to be able to see
this data when we view the log using /viewlog.

What we need to do is somehow tell the browser not to treat the angle brackets
surrounding the request object as an HTML tag, but treat them as plain-text
instead. As luck would have it, Flask comes with a function that can help.

www.EBooksWorld.ir

you are here 4 257

storing & manipulating data

It’s Time to Escape (Your Data)
When HTML was first created, its designers knew that some web page designers
would want to display angle brackets (and the other characters that have special
meaning to HTML). Consequently, they came up with the concept known as
escaping: encoding HTML’s special characters so that they could appear on a
webpage but not be interpreted as HTML. A series of translations were defined,
one for each special character. It’s a simple idea: a special character such as < is
defined as <, while > is defined as >. If you send these translations instead
of the raw data, your web browser does the right thing: it displays < and > as
opposed to ignoring them, and displays all the text between them.

Flask includes a function called escape (which is actually inherited from Jinja2).
When provided with some raw data, escape translates the data into its HTML-
escaped equivalent. Let’s experiment with escape at the Python >>> prompt to
get a feel for how it works.

Begin by importing the escape function from the flask module, then call
escape with a string containing none of the special characters:

>>> from flask import escape
>>> escape('This is a Request')
Markup('This is a Request')

>>> escape('This is a <Request>')
Markup('This is a <Request>')

The escape function returns is a Markup object, which—for all intents and
purposes—behaves just like a string. When you pass escape a string containing
any of HTML’s special characters, the translation is done for you, as shown:

Use “escape”
with a normal
string.

Import the
function.

As in the previous example (above), you can also treat this markup object as if it’s
a regular string.

If we can somehow arrange to call escape on the data in the log file, we should
be able to solve the problem we currently have with the nondisplay of the request
data. This should not be hard, as the log file is read “in one go” by the view_
the_log function before being returned as a string:

Use “escape” with
a string containing
some special
characters.

The special
characters have
been escaped (i.e.,
translated).

No change

@app.route('/viewlog')
def view_the_log() -> str:
 with open('vsearch.log') as log:
 contents = log.read()
 return contents

Here’s our log
data (as a
string).

To solve our problem, all we need to do is call escape on contents.

Geek Bits

Flask’s Markup object is
text that has been marked
as being safe within an
HTML/XML context. Markup
inherits from Python’s
built-in unicode string,
and can be used anywhere
you’d use a string.

www.EBooksWorld.ir

258 Chapter 6

escape raw data

Viewing the Ent ire Log in Your Webapp
The change to your code is trivial, but makes a big difference. Add escape to the
import list for the flask module (at the top of your program), then call escape
on the string returned from calling the join method:

from flask import Flask, render_template, request, escape

 ...

@app.route('/viewlog')
def view_the_log() -> str:
 with open('vsearch.log') as log:
 contents = log.read()
 return escape(contents)

Test Drive
Amend your program to import and call escape as shown above, then save your code (so that your
webapp reloads). Next, reload the /viewlog URL in your browser. All of your log data should now
appear on screen. Be sure to view the HTML source to confirm that the escaping is working. Here’s
what we saw when we tested this version of our webapp with Chrome:

Add to
the import
list.

Call“escape”
on the
returned
string.

All the data
from the log
file is now
appearing...

...and the escaping is working, too. Although—to be honest—the request data doesn’t really tell us much, does it?

www.EBooksWorld.ir

you are here 4 259

storing & manipulating data

Learning More About the Request Object
The data in the log file relating to the web request isn’t really all that useful.
Here’s an example of what’s currently logged; although each logged result is
different, each logged web request is showing up as exactly the same:

<Request 'http://localhost:5000/search4' [POST]> {'i', 'e'}

<Request 'http://localhost:5000/search4' [POST]> {'i', 'e', 'u', 'a'}

<Request 'http://localhost:5000/search4' [POST]> {'a'}

Each logged web
request is the same.

Each logged
result is
different.

We’re logging the web request at the object level, but really need to be looking
inside the request and logging some of the data it contains. As you saw earlier in
this book, when you need to learn what something in Python contains, you feed it
to the dir built-in to see a list of its methods and attributes.

Let’s make a small adjustment to the log_request function to log the output
from calling dir on each request object. It’s not a huge change...rather than
passing the raw req as the first argument to print, let’s pass in a stringified
version of the result of calling dir(req). Here’s the new version of log_
request with the change highlighted:

def log_request(req:'flask_request', res:str) -> None:
 with open('vsearch.log', 'a') as log:
 print(str(dir(req)), res, file=log)

We call “dir” on “req”, which produces a list, and then we stringify the list by passing the list to “str”. The resulting string is then saved to the log file along with the value of “res”.

Let’s try out this new logging code to see what difference it makes. Perform the following steps:
1. Amend your copy of log_request to match ours.
2. Save vsearch4log.py in order to restart your webapp.
3. Find and delete your current vsearch.log file.
4. Use your browser to enter three new searches.
5. View the newly created log using the /viewlog URL.

Now: have a good look at what appears in your browser. Does what you now see help at all?

www.EBooksWorld.ir

260 Chapter 6

str dir req

Test Drive
Here’s what we saw after we worked through the five steps from the bottom of the last page. We’re
using Safari (although every other browser shows the same thing):

This all looks
kinda messy.
But look
closely: here’s
the results
of one of
the searches
we performed.

What’s al l this, then?
You can just about pick out the logged results in the above output. The rest of the
output is the result of calling dir on the request object. As you can see, each request
has a lot of methods and attributes associated with it (even when you ignore the dunders
and wonders). It makes no sense to log all of these attributes.

We took a look at all of these attributes, and decided that there are three that we think
are important enough to log:

 req.form: The data posted from the webapp’s HTML form.

 req.remote_addr: The IP address the web browser is running on.

 req.user_agent: The identity of the browser posting the data.

Let’s adjust log_request to log these three specific pieces of data, in addition to the
results of the call to search4letters.

www.EBooksWorld.ir

you are here 4 261

storing & manipulating data

Logging Specif ic Web Request Attributes
As you now have four data items to log—the form details, the remote IP address, the
browser identity, and the results of the call to search4letters—a first attempt at
amending log_request might result in code that looks like this, where each data
item is logged with its own print call:

def log_request(req:'flask_request', res:str) -> None:
 with open('vsearch.log', 'a') as log:
 print(req.form, file=log)
 print(req.remote_addr, file=log)
 print(req.user_agent, file=log)
 print(res, file=log)

Log each data
item with its
own “print”
statement.

This code works, but it has a problem in that each print call appends a newline
character by default, which means there are four lines being logged per web request.
Here’s what the data would look like if the log file used the above code:

ImmutableMultiDict([('letters', 'aeiou'), ('phrase', 'hitch-hiker')])

127.0.0.1

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) ... Safari/601.4.4

{'i', 'e'}

ImmutableMultiDict([('letters', 'aeiou'), ('phrase', 'life, the universe, and everything')])

127.0.0.1

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) ... Safari/601.4.4

{'a', 'e', 'i', 'u'}

ImmutableMultiDict([('letters', 'xyz'), ('phrase', 'galaxy')])

127.0.0.1

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) ... Safari/601.4.4

{'x', 'y'}

There’s a line of data for
each remote IP address.

The data as entered into the HTML form appears on its own line. BTW: the “ImmutableMultiDict” is a Flask-specific version of Python’s dictionary (and it works in the same way).

The browser
is identified
on its own
line.

The results of the call to “search4letters” are clearly shown (each on its own line).
There’s nothing inherently wrong with this as a strategy (as the logged data is easy for
us humans to read). However, consider what you’d have to do when reading this data
into a program: each logged web request would require four reads from the log file—
one for each line of logged data. This is in spite of the fact that the four lines of data
refer to one single web request. As a strategy, this approach seems wasteful. It would be
much better if the code only logged one line per web request.

www.EBooksWorld.ir

262 Chapter 6

dealing with newlines

Log a Single Line of Delimited Data
A better logging strategy may be to write the four pieces of data as one line, while using
an appropriately selected delimiter to separate one data item from the next.

Choosing a delimiter can be tricky, as you don’t want to choose a character that might
actually occur in the data you’re logging. Using the space character as a delimiter is next
to useless (as the logged data contains lots of spaces), and even using colon (:), comma
(,), and semicolon (;) may be problematic given the data being logged. We checked
with the programmers over at Head First Labs, and they suggested using a vertical bar (|)
as a delimiter: it’s easy for us humans to spot, and it’s unlikely to be part of the data we
log. Let’s go with this suggestion and see how we get on.

As you saw earlier, we can adjust print’s default behavior by providing additional
arguments. In addition to the file argument, there’s the end argument, which allows
you to specify an alternate end-of-line value over the default newline.

Let’s amend log_request to use a vertical bar as the end-of-line value, as opposed to
the default newline:

def log_request(req: 'flask_request', res: str) -> None:
 with open('vsearch.log', 'a') as log:
 print(req.form, file=log, end='|')
 print(req.remote_addr, file=log, end='|')
 print(req.user_agent, file=log, end='|')
 print(res, file=log)

Each of
these “print”
statements
replaces the
default newline
with a vertical
bar.This works as expected: each web request now results in a single line of logged data,

with a vertical bar delimiting each logged data item. Here’s what the data looks like in
our log file when we used this amended version of log_request:

ImmutableMultiDict([('letters', 'aeiou'), ('phrase', 'hitch-hiker')])|127.0.0.1|Mozilla/5.0
(Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/601.3.9 (KHTML, like Gecko) Version/9.0.2
Safari/601.3.9|{'e', 'i'}

ImmutableMultiDict([('letters', 'aeiou'), ('phrase', 'life, the universe, and everything')])|12
7.0.0.1|Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/601.3.9 (KHTML, like Gecko)
Version/9.0.2 Safari/601.3.9|{'e', 'u', 'a', 'i'}

ImmutableMultiDict([('letters', 'xyz'), ('phrase', 'galaxy')])|127.0.0.1|Mozilla/5.0
(Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/601.3.9 (KHTML, like Gecko) Version/9.0.2
Safari/601.3.9|{'y', 'x'}

Did you spot the vertical bars used as delimiters? There are three bars, which means we have logged four pieces of data per line.

Each web request is written to its own line (which we’ve
word-wrapped in order to fit on this page).

There were three
web requests, so we
see three lines of
data in the log file.

Geek Bits

Think of a delimiter as a
sequence of one or more
characters performing
the role of a boundary
within a line of text. The
classic example is the
comma character (,) as
used in CSV files.

www.EBooksWorld.ir

you are here 4 263

storing & manipulating data

One Final Change to Our Logging Code
Working with overly verbose code is a pet peeve of many Python programmers. Our
most recent version of log_request works fine, but it’s more verbose than it needs
to be. Specifically, it feels like overkill to give each item of logged data its own print
statement.

The print function has another optional argument, sep, which allows you to
specify a separation value to be used when printing multiple values in a single call to
print. By default, sep is set to a single space character, but you can use any value
you wish. In the code that follows, the four calls to print (from the last page) have
been replaced with a single print call, which takes advantage of the sep argument,
setting it to the vertical bar character. In doing so, we negate the need to specify a
value for end as the print’s default end-of-line value, which is why all mentions of
end have been removed from this code:

def log_request(req: 'flask_request', res: str) -> None:
 with open('vsearch.log', 'a') as log:
 print(req.form, req.remote_addr, req.user_agent, res, file=log, sep='|')

Only one “print” call instead of four

Yes, this line breaks a PEP 8 guideline.
Some Python programmers frown at this last line
of code, as the PEP 8 standard specifically warns
against lines longer than 79 characters. At 80
characters, our line of code is pushing this guideline
a little, but we think it’s a reasonable trade-off given
what we’re doing here.

Remember: strict adherence to PEP 8 is not an
absolute must, as PEP 8 is a style guide, not an
unbreakable set of rules. We think we’re good to go.

Doesn’t PEP 8 have
something to say about
this long line of code?

www.EBooksWorld.ir

264 Chapter 6

log more data

Let’s see what difference this new code makes. Adjust your log_request function to look
like this:

Then perform these four steps:
1. Save vsearch4log.py (which restarts your webapp).
2. Find and delete your current vsearch.log file.
3. Use your browser to enter three new searches.
4. View the newly created log using the /viewlog URL.

Have another good look at your browser display. Is this better than before?

def log_request(req: 'flask_request', res: str) -> None:
 with open('vsearch.log', 'a') as log:
 print(req.form, req.remote_addr, req.user_agent, res, file=log, sep='|')

Test Drive
Having completed the four steps detailed in the above exercise, we ran our latest tests using Chrome.
Here’s what we saw on screen:

There’s certainly a lot less data here than the output
produced by the previous version of “log_request”, but this
is still a bit of a mess...and it’s hard to pick out the four
pieces of logged data (even with all those vertical bars as
delimiters).

www.EBooksWorld.ir

you are here 4 265

storing & manipulating data

From Raw Data to Readable Output
The data displayed in the browser window is in its raw form. Remember, we perform
HTML escaping on the data as read in from the log file but do nothing else before
sending the string to the waiting web browser. Modern web browsers will receive the
string, remove any unwanted whitespace characters (such as extra spaces, newlines,
and so on), then dump the data to the window. This is what’s happening during our
Test Drive. The logged data—all of it—is visible, but it’s anything but easy to read. We
could consider performing further text manipulations on the raw data (in order to
make the output easier to read), but a better approach to producing readable output
might be to manipulate the raw data in such a way as to turn it into a table:

 Form Data Remote_addr User_agent Results

ImmutableMultiDict([(‘phrase’, 127.0.0.1 Mozilla/5.0 (Macintosh; {‘e’, ‘i’}
‘hitch-hiker’), (‘letters’, ‘aeiou’)]) Intel Mac OS X 10_11_2)
 AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/47.0.2526
 .106 Safari/537.36

ImmutableMultiDict([(‘phrase’, 127.0.0.1 Mozilla/5.0 (Macintosh; {‘e’, ‘a’, ‘u’, ‘i’}
‘life, the universe, and everything’), Intel Mac OS X 10_11_2)
(‘letters’, ‘aeiou’)]) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/47.0.2526
 .106 Safari/537.36

ImmutableMultiDict([(‘phrase’, 127.0.0.1 Mozilla/5.0 (Macintosh; {‘x’, ‘y’}
‘galaxy’), (‘letters’, ‘xyz’)]) Intel Mac OS X 10_11_2)
 AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/47.0.2526
 .106 Safari/537.36

ImmutableMultiDict([('phrase', 'hitch-hiker'), ('letters', 'aeiou')])|127.0.0.1|Mozilla/5.0
(Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106
Safari/537.36|{'e', 'i'} ImmutableMultiDict([('phrase', 'life, the universe, and
everything'), ('letters', 'aeiou')])|127.0.0.1|Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36|{'e', 'a', 'u',
'i'} ImmutableMultiDict([('phrase', 'galaxy'), ('letters', 'xyz')])|127.0.0.1|Mozilla/5.0
(Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106
Safari/537.36|{'x', 'y'}

Can we take this (unreadable) raw data...
...and transform it into a table that looks like this?

If our webapp could perform this transformation, then anyone could view the log data
in their web browser and likely make sense of it.

www.EBooksWorld.ir

266 Chapter 6

déjà vu?

Does This Remind You of Anything?
Take another look at what you are trying to produce. To save on space, we’re
only showing the top portion of the table shown on the previous page. Does
what you’re trying to produce here remind you of anything from earlier in
this book?

 Form Data Remote_addr User_agent Results

ImmutableMultiDict([(‘phrase’, 127.0.0.1 Mozilla/5.0 (Macintosh; {‘e’, ‘i’}
‘hitch-hiker’), (‘letters’, ‘aeiou’)]) Intel Mac OS X 10_11_2)
 AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/47.0.2526
 .106 Safari/537.36

Correct me if I'm wrong,
but is that not a lot like my
complex data structure from
the end of Chapter 3?

Yes. That does look like something we’ve seen before.
At the end of Chapter 3, recall that we took the table of data below
and transformed it into a complex data structure—a dictionary of
dictionaries:

Name Gender Occupation Home Planet

Ford Prefect Male Researcher Betelgeuse Seven
Arthur Dent Male Sandwich-Maker Earth
Tricia McMillan Female Mathematician Earth
Marvin Unknown Paranoid Android Unknown

The shape of this table is similar to what we’re hoping to produce above,
but is a dictionary of dictionaries the right data structure to use here?

www.EBooksWorld.ir

you are here 4 267

storing & manipulating data

Use a Dict of Dicts...or Something Else?
The table of data from Chapter 3 fit the dictionary of dictionaries model because
it allowed you to quickly dip into the data structure and extract specific data. For
instance, if you wanted to know Ford Prefect’s home planet, all you had to do was
this:

When it comes to randomly accessing a data structure, nothing beats a dictionary
of dictionaries. However, is this what we want for our logged data?

Let’s consider what we currently have.

Take a closer look at the logged data
Remember, every logged line contains four pieces of data, each separated by
vertical bars: the HTML form’s data, the remote IP address, the identity of the
web browser, and the results of the call to search4letters.

Here’s a sample line of data from our vsearch.log file with each of the
vertical bars highlighted:

people['Ford']['Home Planet']

Access Ford's data... ...then extract the value associated with the “Home Planet" key.

ImmutableMultiDict([('phrase', 'galaxy'), ('letters', 'xyz')])|127.0.0.1|Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36|{'x', 'y'}

The form data
The IP address of
the remote machine

The web browser’s
identity string

The results
of the call to
“search4letters”

When the logged data is read from the vsearch.log file, it arrives in your code
as a list of strings thanks to our use of the readlines method. Because you
probably won’t need to randomly access individual data items from the logged
data, converting the data to a dictionary of dictionaries seems like a bad move.
However, you need to process each line in order, as well as process each individual
data item within each line in order. You already have a list of strings, so you’re half-
way there, as it’s easy to process a list with a for loop. However, the line of data
is currently one string, and this is the issue. It would be easier to process each line
if it were a list of data items, as opposed to one large string. The question is: is it
possible to convert a string to a list?

www.EBooksWorld.ir

268 Chapter 6

split that join

What’s Joined Together Can Be Split Apart
You already know that you can take a list of strings and convert them to a single string
using the “join trick.” Let’s show this once more at the >>> prompt:

>>> names = ['Terry', 'John', 'Michael', 'Graham', 'Eric']
>>> pythons = '|'.join(names)
>>> pythons
'Terry|John|Michael|Graham|Eric'

Thanks to the “join trick,” what was a list of strings is now a single string, with each
list item separated from the next by a vertical bar (in this case). You can reverse this
process using the split method, which comes built in to every Python string:

A list of
individual strings

The “join trick” in action.
A single string with each string from the “names” list concatenated with the next and delimited by a vertical bar

>>> individuals = pythons.split('|')
>>> individuals
['Terry', 'John', 'Michael', 'Graham', 'Eric']

Gett ing to a list of lists from a list of str ings
Now that you have the split method in your coding arsenal, let’s return to the data
stored in the log file and consider what needs to happen to it. At the moment, each
individual line in the vsearch.log file is a string:

Take the string and split it into a list using the given delimiter.
And now we
are back to our
list of strings.

 ...

 with open('vsearch.log') as log:
 contents = log.readlines()
 return escape(''.join(contents))

Your code currently reads all the lines from vsearch.log into a list of strings called
contents. Shown here are the last three lines of code from the view_the_log
function, which read the data from the file and produce the large string:

The last line of the view_the_log function takes the list of strings in contents
and concatenates them into one large string (thanks to join). This single string is then
returned to the waiting web browser.

If contents were a list of lists instead of a list of strings, it would open up the
possibility of processing contents in order using a for loop. It should then be
possible to produce more readable output than what we’re currently seeing on screen.

Open the log file...

...and read all the
lines of log data
into a list called
“contents”.

ImmutableMultiDict([('phrase', 'galaxy'), ('letters', 'xyz')])|127.0.0.1|Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36|{'x', 'y'}

The raw data

www.EBooksWorld.ir

you are here 4 269

storing & manipulating data

When Should the Conversion Occur?
At the moment, the view_the_log function reads all the data from the log file
into a list of strings (called contents). But we’d rather have the data as a list of
lists. The thing is, when’s the “best time” to do this conversion? Should we read
in all the data into a list of strings, then convert it to a list of lists “as we go,” or
should we build the list of lists while reading in each line of data?

The data we need is
already in “contents”, so
let’s convert that into a
list of lists.

I’m not so sure, as that
way we’ll end up processing
the data twice: once when we
read it in, and then again when
we convert it.

The fact that the data is already in contents (thanks to our use of the
readlines method) shouldn’t blind us to the fact that we’ve already looped
through the data once at this point. Invoking readlines may only be a single
call for us, but the interpreter (while executing readlines) is looping through
the data in the file. If we then loop through the data again (to convert the strings
to lists), we’re doubling the amount of looping that’s occurring. This isn’t a big
deal when there’s only a handful of log entries...but it might be an issue when the
log grows in size. The bottom line is this: if we can make do by only looping once, then
let’s do so!

www.EBooksWorld.ir

270 Chapter 6

read split escape

Processing Data: What We Already Know
Earlier in this chapter, you saw three lines of Python code that processed the lines
of data in the todos.txt file:

with open('todos.txt') as tasks:
 for chore in tasks:
 print(chore, end='')

Perform some processing, one line at a time.

Open the file.

Assign
the file
stream to
a variable.

You’ve also seen the split method, which takes a string and converts it to a list
of strings based on some delimiter (defaulting to a space, if none is provided). In
our data, the delimiter is a vertical bar. Let’s assume that a line of logged data is
stored in a variable called line. You can turn the single string in line into a list
of four individual strings—using the vertical bar as the delimiter—with this line
of code:

 four_strings = line.split('|')
This is the name
of the newly
created list Use “split” to break the string into a

list of substrings.

We’re using a vertical bar as the delimiter

As you can never be sure whether the data you’re reading from the log file is
free of any characters that have special meaning to HTML, you’ve also learned
about the escape function. This function is provided by Flask, and converts any
string’s HTML special characters into their equivalent escaped values:

>>> escape('This is a <Request>')
Markup('This is a <Request>')

Use “escape” with
a string containing
HTML special
characters.

And, starting way back in Chapter 2, you learned that you can create a new list by
assigning an empty list to it ([]). You also know that you can assign values to the
end of an existing list by calling the append method, and that you can access the
last item in any list using the [-1] notation:

>>> names = []
>>> names.append('Michael')
>>> names.append('John')
>>> names[-1]
'John'

Create a new, empty list called “names”.

Add some data to the end
of the existing list.

Access the last item in the “names” list.

Armed with this knowledge, see if you can complete the exercise on the next page.

www.EBooksWorld.ir

you are here 4 271

storing & manipulating data

W Here is the view_the_log function’s current code:

@app.route('/viewlog')
def view_the_log() -> 'str':

 return str(contents)

The first
two lines
remain
unchanged.

The function
still returns
a string.

Add your new
code here.

@app.route('/viewlog')
def view_the_log() -> str:
 with open('vsearch.log') as log:
 contents = log.readlines()
 return escape(''.join(contents))

This code reads the data from the log file into a list of strings. Your job is to
convert this code to read the data into a list of lists.

Make sure that the data written to the list of lists is properly escaped, as
you do not want any HTML special characters sneaking through.

Also, ensure that your new code still returns a string to the waiting web
browser.

We’ve got you started—fill in the missing code:

Take your time here. Feel free to experiment at the >>> shell as needed,
and don’t worry if you get stuck—it’s OK to flip the page and look at the
solution.

www.EBooksWorld.ir

272 Chapter 6

list of lists

Here is the view_the_log function’s code:

@app.route('/viewlog')
def view_the_log() -> 'str':

 return str(contents)

@app.route('/viewlog')
def view_the_log() -> str:
 with open('vsearch.log') as log:
 contents = log.readlines()
 return escape(''.join(contents))

Your job was to convert this code to read the data into a list of lists.

You were to ensure that the data written to the list of lists is properly
escaped, as you do not want any HTML special characters sneaking
through.

You were also to ensure that your new code still returns a string to the
waiting web browser.

We’d started for you, and you were to fill in the missing code:

contents = []

 contents[-1].append(escape(item))

with open(‘vsearch.log’) as log:
 for line in log:
 contents.append([])
 for item in line.split(‘|’):

Create a new,
empty list called
“contents”. Open the log file and assign it to a file stream called “log”.

Loop through
each line in the
“log” file stream. Append a new, empty

list to “contents”.

Split the line (based on the vertical bar), then process each item in the resulting “split list”.

Did you
remember to
call “escape”?

Append the escaped data to the end of the list at the end of “contents”.

Don’t worry if this line of code from the above rewrite of the view_the_log
function has your head spinning:

contents[-1].append(escape(item))

The trick to understanding this (initially daunting) line is to read it from the inside
out, and from right to left. You start with the item from the enclosing for loop,
which gets passed to escape. The resulting string is then appended to the list at
the end ([-1]) of contents. Remember: contents is itself a list of lists.

Read this code from the inside out, and from right to left.

www.EBooksWorld.ir

you are here 4 273

storing & manipulating data

Test Drive
Go ahead and change your view_the_log function to look like this:

@app.route('/viewlog')
def view_the_log() -> 'str':
 contents = []
 with open('vsearch.log') as log:
 for line in log:
 contents.append([])
 for item in line.split('|'):
 contents[-1].append(escape(item))
 return str(contents)

Save your code (which causes your webapp to reload), then reload the /viewlog URL in your browser.
Here’s what we saw in ours:

The raw data is back
on the screen...or is it?

Take a closer look at the output
At first glance, the output produced by this new version of view_the_log
looks very similar to what you had before. But it isn’t: this new output is a list
of lists, not a list of strings. This a crucial change. If you can now arrange
to process contents using an appropriately designed Jinja2 template, you
should be able to get pretty close to the readable output required here.

www.EBooksWorld.ir

274 Chapter 6

<table> with jinja2

Generate Readable Output With HTML
Recall that our goal is to produce output that looks better on screen than the
raw data from the last page. To that end, HTML comes with a set of tags
for defining the content of tables, including: <table>, <th>, <tr>, and
<td>. With this in mind, let’s take another look at the top portion of the
table we’re hoping to produce once more. It has one row of data for each line
in the log, arranged as four columns (each with a descriptive title).

You could put the entire table within an HTML <table> tag, with each row
of data having its own <tr> tag. The descriptive titles each get <th> tags,
while each piece of raw data gets its own <td> tag:

 Form Data Remote_addr User_agent Results

ImmutableMultiDict([(‘phrase’, 127.0.0.1 Mozilla/5.0 (Macintosh; {‘e’, ‘i’}
‘hitch-hiker’), (‘letters’, ‘aeiou’)]) Intel Mac OS X 10_11_2)
 AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/47.0.2526
 .106 Safari/537.36

The entire
table goes
within a
<table> tag.

Each row in the
table goes within
a <tr> tag.

Each of the
headings goes
within a <th> tag.

Whenever you find yourself needing to generate any HTML (especially
a <table>), remember Jinja2. The Jinja2 template engine is primarily
designed to generate HTML, and the engine contains some basic
programming constructs (loosely based on Python syntax) that you can use to

“automate” any required display logic you might need.

In the last chapter, you saw how the Jinja2 {{ and }} tags, as well as the
{% block %} tag, allow you to use variables and blocks of HTML as
arguments to templates. It turns out the {% and %} tags are much more
general, and can contain any Jinja2 statement, with one of the supported
statements being a for loop construct. On the next page you’ll find a new
template that takes advantage of Jinja2’s for loop to build the readable
output from the list of lists contained in contents.

Each piece of
data goes within
a <td> tag.

Geek Bits

Here’s a quick review of the HTML
table tags:

<table>: A table.
<tr>: A row of table data.
<th>: A table column heading.
<td>: A table data item (cell).

Each tag has a corresponding end
tag: </table>, </tr>,
</th>, and </td>.

www.EBooksWorld.ir

you are here 4 275

storing & manipulating data

Embed Display Logic in Your Template
Below is a new template, called viewlog.html, which can be used to transform
the raw data from the log file into an HTML table. The template expects the
contents list of lists to be one of its arguments. We’ve highlighted the bits
of this template we want you to concentrate on. Note that Jinja2’s for loop
construct is very similar to Python’s. There are two major differences:

• There’s no need for a colon (:) at the end of the for line (as the %} tag
acts as a delimiter).

• The loop’s suite is terminated with {% endfor %}, as Jinja2 doesn’t
support indentation (so some other mechanism is required).

As you can see, the first for loop expects to find its data in a variable called
the_row_titles, while the second for loop expects its data in something
called the_data. A third for loop (embedded in the second) expects its data to
be a list of items:

{% extends 'base.html' %}

{% block body %}

<h2>{{ the_title }}</h2>

<table>
 <tr>
 {% for row_title in the_row_titles %}
 <th>{{row_title}}</th>
 {% endfor %}
 </tr>
 {% for log_row in the_data %}
 <tr>
 {% for item in log_row %}
 <td>{{item}}</td>
 {% endfor %}
 </tr>
 {% endfor %}
</table>

{% endblock %}

Be sure to place this new template in your webapp’s templates folder prior to use.

To ensure a
consistent look
and feel, this
template inherits
from the same
base template
used throughout
our webapp.

The entire
table goes
within a
<table> tag.

The descriptive
titles (each
within a <th>
tag) get their
own row (the
<tr> tag).

Each individual
item of logged
data is enclosed
within a <td>
tag, and each line
from the log file
has its own <tr>
tag.

Ready Bake
Code

You don’t have to create
 this template yourself.

Download it from
http://python.itcarlow.ie/ed2/.

www.EBooksWorld.ir

http://python.itcarlow.ie/ed2/

276 Chapter 6

work that template

Producing Readable Output with Jinja2
As the viewlog.html template inherits from base.html, you need to
remember to provide a value for the the_title argument and provide a list of
column headings (the descriptive titles) in the_row_titles. And don’t forget
to assign contents to the the_data argument.

The view_the_log function currently looks like this:

@app.route('/viewlog')
def view_the_log() -> 'str':
 contents = []
 with open('vsearch.log') as log:
 for line in log:
 contents.append([])
 for item in line.split('|'):
 contents[-1].append(escape(item))
 return str(contents)

We currently
return a
string to the
waiting web
browser.

You need to call render_template on viewlog.html, and pass it values for
each of the three arguments it expects. Let’s create a tuple of descriptive titles and
assign it to the_row_titles, then assign the value of contents to the_
data. We’ll also provide an appropriate value for the_title before rendering
the template.

With all of that in mind, let’s amend view_the_log (we’ve highlighted the
changes):

@app.route('/viewlog')
def view_the_log() -> 'html':
 contents = []
 with open('vsearch.log') as log:
 for line in log:
 contents.append([])
 for item in line.split('|'):
 contents[-1].append(escape(item))

 titles = ('Form Data', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

Change the annotation to indicate that HTML is being returned (instead of a string).

Create a
tuple of
descriptive
titles.

Go ahead and make these changes to your view_the_log function and then
save them so that Flask restarts your webapp. When you’re ready, view the log
within your browser using the http://127.0.0.1:5000/viewlog URL.

Call “render_template”, providing values for each of the template’s arguments.

Remember:
a tuple is a
read-only list.

www.EBooksWorld.ir

you are here 4 277

storing & manipulating data

Test Drive
Here’s what we saw when we viewed the log using our updated webapp. The page has the same look
and feel as all our other pages, so we are confident that our webapp is using the correct template.
We’re pretty pleased with the result (and we hope you are too), as this looks very similar to what we
were hoping to achieve: readable output.

If you view the source of the above page—right-click on the page, then choose
the appropriate option from the pop-up menu—you’ll see that every single data
item from the log is being given its own <td> tag, each line of data has its own
<tr> tag, and the entire table is within a HTML <table>.

Not only is this
output readable, but
it looks good, too. §

www.EBooksWorld.ir

278 Chapter 6

time for review

The Current State of Our Webapp Code
Let’s pause for a moment and review our webapp’s code. The addition of the logging
code (log_request and view_the_log) has added to our webapp’s codebase, but
everything still fits on a single page. Here’s the code for vsearch4web.py displayed in
an IDLE edit window (which lets you review the code in all its syntax-highlighted glory):

www.EBooksWorld.ir

you are here 4 279

storing & manipulating data

Asking Quest ions of Your Data
Our webapp’s functionality is shaping up nicely, but are we any closer to
answering the questions posed at the start of this chapter: How many requests
have been responded to? What’s the most common list of letters? Which IP addresses are
the requests coming from? Which browser is being used the most?

The last two questions can be somewhat answered by the output displayed
by the /viewlog URL. You can tell where the requests are coming from (the
Remote_addr column), as well as see which web browser is being used
(the User_agent column). But, if you want to calculate which of the major
browsers is used most by users of your site, that’s not so easy. Simply looking
at the displayed log data isn’t enough; you’ll have to perform additional
calculations.

The first two questions cannot be easily answered either. It should be clear
that further calculations must be performed here, too.

All we have to do
is write a bunch more
code to perform these
calculations, right?

Only write more code when you have to.
If all we had available to us was Python, then, yes,
we’d need to write a lot more code to answer these
questions (and any others that might arise). After all, it’s
fun to write Python code, and Python is also great at
manipulating data. Writing more code to answer our
questions seems like a no-brainer, doesn’t it?

Well...other technologies exist that make it easy to
answer the sort of questions we’re posing without us
having to write much more Python code. Specifically,
if we could save the log data to a database, we could
take advantage of the power of the database’s querying
technology to answer almost any question that might
arise.

In the next chapter, you’ll see what’s involved in
amending your webapp to log its data to a database as
opposed to a text file.

www.EBooksWorld.ir

280 Chapter 6

the code

Chapter 6’s Code

tasks = open('todos.txt')
for chore in tasks:
 print(chore, end='')
tasks.close()

with open('todos.txt') as tasks:
 for chore in tasks:
 print(chore, end='')

Remember: they both do
the same thing, but Python
programmers prefer this code
over this.

 ...

def log_request(req: 'flask_request', res: str) -> None:
 with open('vsearch.log', 'a') as log:
 print(req.form, req.remote_addr, req.user_agent, res, file=log, sep='|')

 ...

@app.route('/viewlog')
def view_the_log() -> 'html':
 contents = []
 with open('vsearch.log') as log:
 for line in log:
 contents.append([])
 for item in line.split('|'):
 contents[-1].append(escape(item))
 titles = ('Form Data', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

 ...

Here’s the code we added to the webapp to support logging our web requests to a text file.

We aren’t showing all the “vsearch4web.py”
code here, just the new stuff. (You’ll find
the entire program two pages back.)

www.EBooksWorld.ir

this is a new chapter 281

using a database7

Putting Python’s
DB-API to Use

Storing data in a relational database system is handy.
In this chapter, you’ll learn how to write code that interacts with the popular MySQL database

technology, using a generic database API called DB-API. The DB-API (which comes

standard with every Python install) allows you to write code that is easily transferred from

one database product to the next...assuming your database talks SQL. Although we’ll be

using MySQL, there’s nothing stopping you from using your DB-API code with your favorite

relational database, whatever it may be. Let’s see what’s involved in using a relational

database with Python. There’s not a lot of new Python in this chapter, but using Python to talk

to databases is a big deal, so it’s well worth learning.

Interesting...according
to this, we’re much
better off storing our
data in a database. Yes. I see that.

But...how?

www.EBooksWorld.ir

282 Chapter 7

time for sql

Database-Enabling Your Webapp
The plan for this chapter is to get to the point where you can amend your webapp
to store its log data in a database, as opposed to a text file, as was the case in the last
chapter. The hope is that in doing so, you can then provide answers to the questions
posed in the last chapter: How many requests have been responded to? What’s the most common
list of letters? Which IP addresses are the requests coming from? Which browser is being used the
most?

To get there, however, we need to decide on a database system to use. There are lots
of choices here, and it would be easy to take a dozen pages or so to present a bunch of
alternative database technologies while exploring the pluses and minuses of each. But
we’re not going to do that. Instead, we’re going to stick with a popular choice and use
MySQL as our database technology.

Having selected MySQL, here are the four tasks we’ll work through over the next
dozen pages:

Install the MySQL server1

Install a MySQL database driver for Python2

Create our webapp’s database and tables3

Create code to work with our webapp’s database and tables4

With these four tasks complete, we’ll be in a position to amend the vsearch4web.
py code to log to MySQL as opposed to a text file. We’ll then use SQL to ask and—
with luck—answer our questions.

Q: Do we have to use MySQL here?

A: If you want to follow along with the examples in the remainder
of this chapter, the answer is yes.

Q: Can I use MariaDB instead of MySQL?

A: Yes. As MariaDB is a clone of MySQL, we have no issue with
you using MariaDB as your database system instead of the “official”
MySQL. (In fact, over at Head First Labs, MariaDB is a favorite
among the DevOps team.)

Q: What about PostgreSQL? Can I use that?

A: Emm, eh...yes, subject to the following caveat: if you are
already using PostgreSQL (or any other SQL-based database
management system), you can try using it in place of MySQL.
However, note that this chapter doesn’t provide any specific
instructions related to PostgreSQL (or anything else), so you may
have to experiment on your own when something we show you
working with MySQL doesn’t work in quite the same way with your
chosen database. There’s also the standalone, single-user SQLite,
which comes with Python and lets you work with SQL without the
need for a separate server. That said, which database technology
you use very much depends on what you’re trying to do.

www.EBooksWorld.ir

you are here 4 283

using a database

Task 1: Install the MySQL Server
If you already have MySQL installed on your computer, feel free to move on
to Task 2.

How you go about installing MySQL depends on the operating system you’re
using. Thankfully, the folks behind MySQL (and its close cousin, MariaDB)
do a great job of making the installation process straightforward.

If you’re running Linux, you should have no trouble finding mysql-server
(or mariadb-server) in your software repositories. Use your software
installation utility (apt, aptitude, rpm, yum, or whatever) to install
MySQL as you would any other package.

If you’re running Mac OS X, we recommend installing Homebrew (find out
about Homebrew here: http://brew.sh), then using it to install MariaDB, as in
our experience this combination works well.

For all other systems (including all the various Windows versions), we
recommend you install the Community Edition of the MySQL server,
available from:

We’ll check off each completed task as we work through them.

Install MySQL on
your computer.
Install a MySQL
Python driver.
Create the database
and tables.
Create code to
read/write data.

http://dev.mysql.com/downloads/mysql/

Or, if you want to go with MariaDB, check out:

https://mariadb.org/download/

Be sure to read the installation documentation associated with whichever
version of the server your download and install.

This is going to be
painful, as I’ve never
used MySQL before...

Don’t worry if this is new to you.
We don’t expect you to be a MySQL whiz-kid
while working through this material. We’ll
provide you with everything you need in order
to get each of our examples to work (even if
you’ve never used MySQL before).

If you want to take some time to learn more,
we recommended Lynn Beighley’s excellent
Head First SQL as a wonderful primer.

Note from Marketing: Of all the MySQL books...in all the
world...this is the one we brought to the bar ...eh...office when we first learned MySQL.

Although this is a book
about the SQL query
language, it uses the
MySQL database
management system for
all its examples. Despite
its age, it’s a still great
learning resource.

www.EBooksWorld.ir

http://brew.sh/
http://dev.mysql.com/downloads/mysql/
https://mariadb.org/download/

284 Chapter 7

python and mysql

Install MySQL on
your computer.
Install a MySQL
Python driver.
Create the database
and tables.
Create code to
read/write data.

Introducing Python’s DB-API
With the database server installed, let’s park it for a bit, while we add support for
working with MySQL into Python.

Out of the box, the Python interpreter comes with some support for working
with databases, but nothing specific to MySQL. What’s provided is a standard
database API (application programmer interface) for working with SQL-based
databases, known as DB-API. What’s missing is the driver to connect the DB-
API up to the actual database technology you’re using.

The convention is that programmers use the DB-API when interacting with any
underlying database using Python, no matter what that database technology
happens to be. They do that because the driver shields programmers from
having to understand the nitty-gritty details of interacting with the database’s
actual API, as the DB-API provides an abstract layer between the two. The
idea is that, by programming to the DB-API, you can replace the underlying
database technology as needed without having to throw away any existing code.

We’ll have more to say about the DB-API later in this chapter. Here’s a
visualization of what happens when you use Python’s DB-API:

Geek Bits

Python’s DB-API is defined
in PEP 0247. That said, don’t
feel the need to run off and
read this PEP, as it’s primarily
designed to be used as a
specification by database driver
implementers (as opposed to
being a how-to tutorial).

You write the
Python code you
need, which...

...uses the
standard Python
DB-API, which...

...interacts with the
provided database
driver, which...

...talks to the
underlying database technology.

Some programmers look at this diagram and conclude that using Python’s DB-API
must be hugely inefficient. After all, there are two layers of technology between your
code and the underlying database system. However, using the DB-API allows you to
swap out the underlying database as needed, avoiding any database “lock-in,” which
occurs when you code directly to a database. When you also consider that no two SQL
dialects are the same, using DB-API helps by providing a higher level of abstraction.

Python’s
DB-API

The MySQL-
Connector/Python

Driver

MySQL
Your code

www.EBooksWorld.ir

you are here 4 285

using a database

Install MySQL on
your computer.
Install a MySQL
Python driver.
Create the database
and tables.
Create code to
read/write data.

Task 2: Install a MySQL Database Dri ver for
Python
Anyone is free to write a database driver (and many people do), but it is typical for
each database manufacturer to provide an official driver for each of the programming
languages they support. Oracle, the owner of the MySQL technologies, provides the
MySQL-Connector/Python driver, and that’s what we propose to use in this chapter.
There’s just one problem: MySQL-Connector/Python can’t be installed with pip.

Does that mean we’re out of luck when it comes to using MySQL-Connector/Python
with Python? No, far from it. The fact that a third-party module doesn’t use the
pip machinery is rarely a show-stopper. All we need to do is install the module “by
hand”—it’s a small amount of extra work (over using pip), but not much.

Let’s install the MySQL-Connector/Python driver by hand (bearing in mind there are other
drivers available, such as PyMySQL; that said, we prefer MySQL-Connector/Python, as it’s
the officially supported driver provided by the makers of MySQL).

Begin by visiting the MySQL-Connector/Python download page: https://dev.mysql.com/
downloads/connector/python/. Landing on this web page will likely preselect your
operating system from the Select Platform drop-down menu. Ignore this, and adjust the
selection drop-down to read Platform Independent, as shown here:

Change this
field to

“Platform
Independent”.

Then, go ahead and click either of the Download buttons (typically, Windows users
should download the ZIP file, whereas Linux and Mac OS X users can download the
GZ file). Save the downloaded file to your computer, then double-click on the file to
expand it within your download location.

Don’t worry if your
version is different from
ours: as long as it is at
least this version, all is OK.

www.EBooksWorld.ir

286 Chapter 7

install that driver

Install MySQL on
your computer.
Install a MySQL
Python driver.
Create the database
and tables.
Create code to
read/write data.

Install MySQL-Connector/Python
With the driver downloaded and expanded on your computer, open a terminal
window in the newly created folder (if you’re on Windows, open the terminal window
with Run as Administrator).

On our computer, the created folder is called mysql-connector-python-2.1.3
and was expanded in our Downloads folder. To install the driver into Windows, issue
this command from within the mysql-connector-python-2.1.3 folder:

py -3 setup.py install

On Linux or Mac OS X, use this command instead:

sudo -H python3 setup.py install

No matter which operating system you’re using, issuing either of the above commands
results in a collection of messages appearing on screen, which should look similar to
these:

running install
Not Installing C Extension
running build
running build_py
running install_lib
running install_egg_info
Removing /Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/
mysql_connector_python-2.1.3-py3.5.egg-info
Writing /Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/
mysql_connector_python-2.1.3-py3.5.egg-info

When you install a module with pip, it runs though this same process, but hides these
messages from you. What you’re seeing here is the status messages that indicate that
the installation is proceeding smoothly. If something goes wrong, the resulting error
message should provide enough information to resolve the problem. If all goes well
with the installation, the appearance of these messages is confirmation that MySQL-
Connector/Python is ready to be used.

These paths may be different on your computer. Don’t worry about it if they are.

Q: Should I worry about that “Not Installing C Extension” message?

A: No. Third-party modules sometimes include embedded C code, which can help improve computationally intensive processing. However,
not all operating systems come with a preinstalled C compiler, so you have to specifically ask for the C extension support to be enabled when
installing a module (should you decide you need it). When you don’t ask, the third-party module installation machinery uses (potentially slower)
Python code in place of the C code. This allows the module to work on any platform, regardless of the existence of a C compiler. When a third-
party module uses Python code exclusively, it is referred to as being written in “pure Python.” In the example above, we’ve installed the pure
Python version of the MySQL-Connector/Python driver.

www.EBooksWorld.ir

you are here 4 287

using a database

Install MySQL on
your computer.
Install a MySQL
Python driver.
Create the database
and tables.
Create code to
read/write data.

Task 3: Create Our Webapp’s Database and Tables
You now have the MySQL database server and the MySQL-Connector/Python driver installed
on your computer. It’s time for Task 3, which involves creating the database and the tables
required by our webapp.

To do this, you’re going to interact with the MySQL server using its command-line tool,
which is a small utility that you start from your terminal window. This tool is known as the
MySQL console. Here’s the command to start the console, logging in as the MySQL database
administrator (which uses the root user ID):

mysql -u root -p

If you set an administrator password when you installed the MySQL server, type in that
password after pressing the Enter key. Alternatively, if you have no password, just press
the Enter key twice. Either way, you’ll be taken to the console prompt, which looks like
this (on the left) when using MySQL, or like this (on the right) when using MariaDB:

mysql> MariaDB [None]>

Any commands you type at the console prompt are delivered to the MySQL server for
execution. Let’s start by creating a database for our webapp. Remember: we want to use
the database to store logging data, so the database’s name should reflect this purpose.
Let’s call our database vsearchlogDB. Here’s the console command that creates our
database:

mysql> create database vsearchlogDB;

The console responds with a (rather cryptic) status message: Query OK, 1 row
affected (0.00 sec). This is the console’s way of letting you know that
everything is golden.

Let’s create a database user ID and password specifically for our webapp to use when
interacting with MySQL as opposed to using the root user ID all the time (which
is regarded as bad practice). This next command creates a new MySQL user called
vsearch, uses “vsearchpasswd” as the new user’s password, and gives the vsearch
user full rights to the vsearchlogDB database:

mysql> grant all on vsearchlogDB.* to 'vsearch' identified by 'vsearchpasswd';

A similar Query OK status message should appear, which confirms the creation of this
user. Let’s now log out of the console using this command:

mysql> quit

You’ll see a friendly Bye message from the console before being returned to your
operating system.

Be sure to terminate each command you enter into the MySQL console with a semicolon.

You can use a different
password if you like. Just
remember to use yours
as opposed to ours in the
examples that follow.

www.EBooksWorld.ir

288 Chapter 7

a log table

Install MySQL on
your computer.
Install a MySQL
Python driver.
Create the database
and tables.
Create code to
read/write data.

Decide on a Structure for Your Log Data
Now that you’ve created a database to use with your webapp, you can create any
number of tables within that database (as required by your application). For our
purposes, a single table will suffice here, as all we need to store is the data relating to
each logged web request.

Recall how we stored this data in a text file in the previous chapter, with each line in
the vsearch.log file conforming to a specific format:

...as well as the value of “letters”.

ImmutableMultiDict([('phrase', 'galaxy'), ('letters', 'xyz')])|127.0.0.1|Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36|{'x', 'y'}

We log the value of
the “phrase”...

The IP address of the
computer that submitted the
form data is also logged.

There’s a (rather large) string that describes the web browser being used.

Last—but not least—the actual
results produced by searching for
“letters” in “phrase” are also logged.

At the very least, the table you create needs five fields: for the phrase, letters, IP
address, browser string, and result values. But let’s also include two other fields: a
unique ID for each logged request, as well as a timestamp that records when the
request was logged. As these two latter fields are so common, MySQL provides an
easy way to add this data to each logged request, as shown at the bottom of this page.

You can specify the structure of the table you want to create within the console.
Before doing so, however, let’s log in as our newly created vsearch user using this
command (and supplying the correct password after pressing the Enter key):

Here’s the SQL statement we used to create the required table (called log). Note
that the -> symbol is not part of the SQL statement, as it’s added automatically by
the console to indicate that it expects more input from you (when your SQL runs to
multiple lines). The statement ends (and executes) when you type the terminating
semicolon character, and then press the Enter key:

mysql -u vsearch -p vsearchlogDB

mysql> create table log (
 -> id int auto_increment primary key,
 -> ts timestamp default current_timestamp,
 -> phrase varchar(128) not null,
 -> letters varchar(32) not null,
 -> ip varchar(16) not null,
 -> browser_string varchar(256) not null,
 -> results varchar(64) not null);

This is the
console’s
continuation
symbol.

MySQL will automatically provide data for these fields.

These fields will hold the
data for each request (as
provided in the form data).

Remember: we
set this user’s
password to
“vsearchpasswd”.

www.EBooksWorld.ir

you are here 4 289

using a database

Install MySQL on
your computer.
Install a MySQL
Python driver.
Create the database
and tables.
Create code to
read/write data.

Conf irm Your Table Is Ready for Data
With the table created, we’re done with Task 3.

Let’s confirm at the console that the table has indeed been created with the
structure we require. While still logged into the MySQL console as user
vsearch, issue the describe log command at the prompt:

mysql> describe log;
+----------------+--------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+-------------------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
ts	timestamp	NO		CURRENT_TIMESTAMP	
phrase	varchar(128)	NO		NULL	
letters	varchar(32)	NO		NULL	
ip	varchar(16)	NO		NULL	
browser_string	varchar(256)	NO		NULL	
results	varchar(64)	NO		NULL	
+----------------+--------------+------+-----+-------------------+----------------+

And there it is: proof that the log table exists and has a structure that fits with our
web application’s logging needs. Type quit to exit the console (as you are done
with it for now).

So now I’m ready to add data to
the table, right? My friend who’s an
SQL expert says I can use a bunch of
manual INSERT statements to do that..

Yes, that’s one possibility.
There’s nothing stopping you from manually
typing a bunch of SQL INSERT statements
into the console to manually add data to your
newly created table. But remember: we want
our webapp to add our web request data to the
log table automatically, and this applies to
INSERT statements, too.

To do this, we need to write some Python code
to interact with the log table. And to do that,
we need to learn more about Python’s DB-API.

www.EBooksWorld.ir

290 Chapter 7

python’s db-api

DB-API Up Close, 1 of 3
Recall the diagram from earlier in this chapter that positioned Python’s DB-API in relation to
your code, your chosen database driver, and your underlying database system:

Python’s
DB-API

The MySQL-
Connector/Python

Driver

MySQL
Your code

The promise of using DB-API is that you can replace the driver/database combination with
very minor modifications to your Python code, so long as you limit yourself to only using the
facilities provided by the DB-API.

Let’s review what’s involved in programming to this important Python standard. We are going
to present six steps here.

DB-API Step 1: Def ine your connect ion characterist ics
There are four pieces of information you need when connecting to MySQL: (1) the IP address/name of the
computer running the MySQL server (known as the host), (2) the user ID to use, (3) the password associated
with the user ID, and (4) the name of the database the user ID wants to interact with.

The MySQL-Connector/Python driver allows you to put these connection characteristics into a Python dictionary
for ease of use and ease of reference. Let’s do that now by typing the code in this Up Close into the >>> prompt.
Be sure to follow along on your computer. Here’s a dictionary (called dbconfig) that associates the four
required “connection keys” with their corresponding values:

>>> dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

1. Our server is running on our local
computer, so we use the localhost IP
address for “host”.

2. The “vsearch” user ID from earlier in this chapter is assigned to the “user” key.

3. The “password”
key is assigned the
correct password
to use with our
user ID.

4. The database name—“vsearchlogDB” in
this case—is assigned to the “database” key.

www.EBooksWorld.ir

you are here 4 291

using a database

>>> import mysql.connector

This import makes the MySQL-specific driver available to the DB-API.

DB-API Step 3: Establish a connect ion to the ser ver
Let’s establish a connection to the server by using the DB-API’s connect function to establish our
connection. Let’s save a reference to the connection in a variable called conn. Here’s the call to connect,
which establishes the connection to the MySQL database server (and creates conn):

>>> conn = mysql.connector.connect(**dbconfig)

DB-API Step 4: Open a cursor
To send SQL commands to your database (via the just-opened connection) as well as receive results from your
database, you need a cursor. Think of a cursor as the database equivalent of the file handle from the last chapter
(which lets you communicate with a disk file once it was opened).

Creating a cursor is straightforward: you do so by calling the cursor method included with every connection
object. As with the connection above, we save a reference to the created cursor in a variable (which, in a wild fit
of imaginative creativity, we’ve named cursor):

>>> cursor = conn.cursor()

We are now ready to send SQL commands to the server, and—hopefully—get some results back.

But, before we do that, let’s take a moment to review the steps completed so far. We’ve defined the connection
characteristics for the database, imported the driver module, created a connection object, and created a
cursor. No matter which database you use, these steps are common to all interactions with MySQL (only the
connection characteristics change). Keep this in mind as you interact with your data through the cursor.

Import the driver
for the database
you are using.

Pass in the dictionary of connection characteristics.

Create a cursor to send
commands to the server, and to
receive results.

This call establishes the connection.

Note the strange ** that precedes the single argument to the connect function. (If you’re a C/C++
programmer, do not read ** as “a pointer to a pointer,” as Python has no notion of pointers.) The **
notation tells the connect function that a dictionary of arguments is being supplied in a single variable (in
this case dbconfig, the dictionary you just created). On seeing the **, the connect function expands the
single dictionary argument into four individual arguments, which are then used within the connect function
to establish the connection. (You’ll see more of the ** notation in a later chapter; for now, just use it as is.)

DB-API Step 2: Import your database dri ver
With the connection characteristics defined, it’s time to import our database driver:

www.EBooksWorld.ir

292 Chapter 7

more db-api

DB-API Up Close, 2 of 3
With the cursor created and assigned to a variable, it’s time to interact with the data in your
database using the SQL query language.

DB-API Step 5: Do the SQL thing!
The cursor variable lets you send SQL queries to MySQL, as well as retrieve any results produced by
MySQL’s processing of the query.

As a general rule, the Python programmers over at Head First Labs like to code the SQL they intend to send to
the database server in a triple-quoted string, then assign the string to a variable called _SQL. A triple-quoted
string is used because SQL queries can often run to multiple lines, and using a triple-quoted string temporarily
switches off the Python interpreter’s “end-of-line is the end-of-statement” rule. Using _SQL as the variable
name is a convention among the Head First Labs programmers for defining constant values in Python, but you
can use any variable name (and it doesn’t have to be all uppercase, nor prefixed within an underscore).

Let’s start by asking MySQL for the names of the tables in the database we’re connected to. To do this, assign
the show tables query to the _SQL variable, and then call the cursor.execute function, passing _SQL
as an argument:

>>> _SQL = """show tables"""

>>> cursor.execute(_SQL)
Assign the
SQL query
to a variable.

Send the query in the
“_SQL” variable to MySQL
for execution.

When you type the above cursor.execute command at the >>> prompt, the SQL query is sent to your
MySQL server, which proceeds to execute the query (assuming it’s valid and correct SQL). However, any
results from the query don’t appear immediately; you have to ask for them.

You can ask for results using one of three cursor methods:

• cursor.fetchone retrieves a single row of results.

• cursor.fetchmany retrieves the number of rows you specify.

• cursor.fetchall retrieves all the rows that make up the results.

For now, let’s use the cursor.fetchall method to retrieve all the results from the above query, assigning
the results to a variable called res, then displaying the contents of res at the >>> prompt:

>>> res = cursor.fetchall()

>>> res
[('log',)]

Get all the
data returned
from MySQL.

Display the results.

The contents of res look a little weird, don’t they? You were probably expecting to see a single word here,
as we know from earlier that our database (vsearchlogDB) contains a single table called log. However,
what’s returned by cursor.fetchall is always a list of tuples, even when there’s only a single piece of data
returned (as is the case above). Let’s look at another example that returns more data from MySQL.

www.EBooksWorld.ir

you are here 4 293

using a database

Our next query, describe log, queries for the information about the log table as stored in the database.
As you’ll see below, the information is shown twice: once in its raw form (which is a little messy) and then over
multiple lines. Recall that the result returned by cursor.fetchall is a list of tuples.

Here’s cursor.fetchall in action once more:

>>> _SQL = """describe log"""
>>> cursor.execute(_SQL)
>>> res = cursor.fetchall()
>>> res
[('id', 'int(11)', 'NO', 'PRI', None, 'auto_increment'), ('ts',
'timestamp', 'NO', '', 'CURRENT_TIMESTAMP', ''), ('phrase',
'varchar(128)', 'NO', '', None, ''), ('letters', 'varchar(32)',
'NO', '', None, ''), ('ip', 'varchar(16)', 'NO', '', None, ''),
('browser_string', 'varchar(256)', 'NO', '', None, ''), ('results',
'varchar(64)', 'NO', '', None, '')]

>>> for row in res:
 print(row)

('id', 'int(11)', 'NO', 'PRI', None, 'auto_increment')
('ts', 'timestamp', 'NO', '', 'CURRENT_TIMESTAMP', '')
('phrase', 'varchar(128)', 'NO', '', None, '')
('letters', 'varchar(32)', 'NO', '', None, '')
('ip', 'varchar(16)', 'NO', '', None, '')
('browser_string', 'varchar(256)', 'NO', '', None, '')
('results', 'varchar(64)', 'NO', '', None, '')

It looks a
little messy,
but this
is a list of
tuples.

Take the SQL query...
...then send it to the server...

...and then access the results.

Each tuple
from the
list of
tuples is
now on its
own line.

Take each row in the results...

...and display it on its own line.

The per-row display above may not look like much of an improvement over the raw output, but compare it to
the output displayed by the MySQL console from earlier (shown below). What’s shown above is the same data
as what’s shown below, only now the data is in a Python data structure called res:

mysql> describe log;
+----------------+--------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+-------------------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
ts	timestamp	NO		CURRENT_TIMESTAMP	
phrase	varchar(128)	NO		NULL	
letters	varchar(32)	NO		NULL	
ip	varchar(16)	NO		NULL	
browser_string	varchar(256)	NO		NULL	
results	varchar(64)	NO		NULL	
+----------------+--------------+------+-----+-------------------+----------------+

Look closely. It’s the
same data.

www.EBooksWorld.ir

294 Chapter 7

even more db-api

DB-API Up Close, 3 of 3
Let’s use an insert query to add some sample data to the log table.

It’s tempting to assign the query shown below (which we’ve written over multiple lines) to the _SQL
variable, then call cursor.execute to send the query to the server:

>>> _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 ('hitch-hiker', 'aeiou', '127.0.0.1', 'Firefox', "{'e', 'i'}")"""

>>> cursor.execute(_SQL)

Don’t get us wrong, what’s shown above does work. However, hardcoding the data values in this way is rarely
what you’ll want to do, as the data values you store in your table will likely change with every insert.
Remember: you plan to log the details of each web request to the log table, which means these data values
will change with every request, so hardcoding the data in this way would be a disaster.

To avoid the need to hardcode data (as shown above), Python’s DB-API lets you position “data placeholders” in
your query string, which are filled in with the actual values when you call cursor.execute. In effect, this
lets you reuse a query with many different data values, passing the values as arguments to the query just before
it’s executed. The placeholders in your query are stringed values, and are identified as %s in the code below.

Compare these commands below with those shown above:

>>> _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""

>>> cursor.execute(_SQL, ('hitch-hiker', 'xyz', '127.0.0.1', 'Safari', 'set()'))

There are two things to note above. First, instead of hardcoding the actual data values in the SQL query, we
used the %s placeholder, which tells DB-API to expect a stringed value to be substituted into the query prior
to execution. As you can see, there are five %s placeholders above, so the second thing to note is that cursor.
execute call is going to expect five additional parameters when called. The only problem is that cursor.
execute doesn’t accept just any number of parameters; it accepts at most two.

How can this be?

Looking at the last line of code shown above, it’s clear that cursor.execute accepts the five data values
provided to it (without complaint), so what gives?

Take another, closer look at that line of code. See the pair of parentheses around the data values? The use of
parentheses turns the five data values into a single tuple (containing the individual data values). In effect, the
above line of code supplies two arguments to cursor.execute: the placeholder-containing query, as well as
a single tuple of data values.

So, when the code on this page executes, data values are inserted into the log table, right? Well...not quite.

When composing
your query, use DB-API placeholders
instead of actual data values.

www.EBooksWorld.ir

you are here 4 295

using a database

When you use cursor.execute to send data to a database system (using the insert query), the data may
not be saved to the database immediately. This is because writing to a database is an expensive operation
(from a processing-cycle perspective), so many database systems cache inserts, then apply them all at once
later. This can sometimes mean the data you think is in your table isn’t there yet, which can lead to problems.

For instance, if you use insert to send data to a table, then immediately use select to read it back, the
data may not be available, as it is still in the database system’s cache waiting to be written. If this happens,
you’re out of luck, as the select fails to return any data. Eventually, the data is written, so it’s not lost, but
this default caching behavior may not be what you desire.

If you are happy to take the performance hit associated with a database write, you can force your database
system to commit all potentially cached data to your table using the conn.commit method. Let’s do that now
to ensure the two insert statements from the previous page are applied to the log table. With your data
written, you can now use a select query to confirm the data values are saved:

>>> conn.commit()
>>> _SQL = """select * from log"""
>>> cursor.execute(_SQL)
>>> for row in cursor.fetchall():
 print(row)

(1, datetime.datetime(2016, 3, ..., "{'e', 'i'}")
(2, datetime.datetime(2016, 3, ..., 'set()')

DB-API Step 6: Close your cursor and connect ion
With your data committed to its table, tidy up after yourself by closing the cursor as well as the connection:

>>> cursor.close()
True

>>> conn.close()

Note that the cursor confirms successful closure by returning True, while the connection simply shuts
down. It’s always a good idea to close your cursor and your connection when they’re no longer needed, as
your database system has a finite set of resources. Over at Head First Labs, the programmers like to keep their
database cursors and connections open for as long as required, but no longer.

It’s always a
good idea to tidy up.

From the above you can see that MySQL has automatically determined the correct values to use for id and
ts when data is inserted into a row. The data returned from the database server is (as before) a list of tuples.
Rather than save the results of cursor.fetchall to a variable that is then iterated over, we’ve used
cursor.fetchall directly in a for loop in this code. Also, don’t forget: a tuple is an immutable list and, as
such, supports the usual square bracket access notation. This means you can index into the row variable used
within the above for loop to pick out individual data items as needed. For instance, row[2] picks out the
phrase, row[3] picks out the letters, and row[-1] picks out the results.

We’ve abridged the
output to make it
fit on this page.

“Force” any cached data to be written to the table.
Retrieve the just-written data.

Here’s the “id”
value MySQL
automatically
assigned to this
row...

...and here’s what it filled in for “ts” (timestamp).

www.EBooksWorld.ir

296 Chapter 7

the tasks are done

Install MySQL on
your computer.
Install a MySQL
Python driver.
Create the database
and tables.
Create code to
read/write data.

Task 4: Create Code to Work with Our
Webapp’s Database and Tables
With the six steps of the DB-API Up Close completed, you now have the code needed to
interact with the log table, which means you’ve completed Task 4: Create code to work
with our webapp’s database and tables.

Let’s review the code you can use (in its entirety):
Our task list
is done!

dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

import mysql.connector

conn = mysql.connector.connect(**dbconfig)

cursor = conn.cursor()

cursor.execute(_SQL, ('galaxy', 'xyz', '127.0.0.1', 'Opera', "{'x', 'y'}"))

conn.commit()

cursor.execute(_SQL)

for row in cursor.fetchall():
 print(row)

cursor.close()

conn.close()

_SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""

_SQL = """select * from log"""

Define your
connection
characteristics. Import the database driver.

Establish a
connection
and create
a cursor.

Assign a query to a
string (note the five
placeholder arguments).

Send the query to the server, remembering to provide values for each of the required arguments (in a tuple).
Force the
database
to write
your data.

Retrieve the (just written)
data from the table,
displaying the output row
by row.Tidy up when you’re

done.

With each of the four tasks now complete, you’re ready to adjust your webapp to log
the web request data to your MySQL database system as opposed to a text file (as is
currently the case). Let’s start doing this now.

www.EBooksWorld.ir

you are here 4 297

using a database

_SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""

_SQL = """select * from log"""

Database Magnets
Take another look at the log_request function from the last chapter.

Recall that this small function accepts two arguments: a web request object, and the
results of the vsearch:

_SQL = """select * from log"""

for row in cursor.fe
tchall():

 print(row)

import mysql.connector

def log_request(req: 'flask_request', res: str) -> None:

cursor.execute(_SQL)

cursor = conn.cursor()

conn = mysql.connect
or.connect(**dbconfi

g)

dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',

 'database': 'vsearchlogDB', }

def log_request(req: 'flask_request', res: str) -> None:
 with open('vsearch.log', 'a') as log:
 print(req.form, req.remote_addr, req.user_agent, res, file=log, sep='|')

Your job is to replace this function’s suite with code that logs to your database (as
opposed to the text file). The def line is to remain unchanged. Decide on the magnets
you need from those scattered at the bottom on this page, then position them to
provide the function’s code:

_SQL = """insert into log
 (phrase, letters, ip, browser_string, results)

 values
 (%s, %s, %s, %s, %s)"""

cursor.execute(_SQL, (req.form['phrase'], req.form['letters'], req.remote_addr, req.user_agent.browser, res,))

conn.close()

cursor.close()

conn.commit()

Crikey! What a mess of
magnets. Can you help?

www.EBooksWorld.ir

298 Chapter 7

log to mysql

Database Magnets Solution
You were to take another look at the log_request function from the last chapter:

def log_request(req: 'flask_request', res: str) -> None:

def log_request(req: 'flask_request', res: str) -> None:
 with open('vsearch.log', 'a') as log:
 print(req.form, req.remote_addr, req.user_agent, res, file=log, sep='|')

Your job was to replace this function’s suite with code that logs to your database. The
def line was to remain unchanged. You were to decide which magnets you needed from
those scattered at the bottom on the page.

_SQL = """select * from log"""
for row in cursor.fe

tchall():

 print(row)

import mysql.connector

cursor.execute(_SQL)

cursor = conn.cursor()

conn = mysql.connector.connect(**dbconfig)

dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',

 'database': 'vsearchlogDB', }

_SQL = """insert into log
 (phrase, letters, ip, browser_string, results)

 values
 (%s, %s, %s, %s, %s)"""

cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

cursor.close()

conn.commit()

conn.close()

These magnets
weren’t needed.

Define the connection
characteristics.

Import the driver, then
establish a connection,
and then create a
cursor.

Create a string
containing the
query you want
to use.

Execute the query.

This is new: rather than store
the entire browser string (stored
in “req.user_agent”), we’re only
extracting the name of the
browser. After ensuring

the data is saved,
we’re tidying up by
closing the cursor
and the connection.

www.EBooksWorld.ir

you are here 4 299

using a database

Test Drive
Change the code in your vsearch4web.py file to replace the original log_request function’s
code with that from the last page. When you have saved your code, start up this latest version of your
webapp at a command prompt. Recall that on Windows, you need to use this command:

While on Linux or Mac OS X, use this command:

C:\webapps> py -3 vsearch4web.py

$ python3 vsearch4web.py

Your webapp should start running at this web address:

Use your favorite web browser to perform a few searches to confirm that your webapp runs fine.
There are two points we’d like to make here:
• Your webapp performs exactly as it did before: each search returns a “results page” to the

user.
• Your users have no idea that the search data is now being logged to a database table as

opposed to a text file.
Regrettably, you can’t use the /viewlog URL to view these latest log entries, as the function
associated with that URL (view_the_log) only works with the vsearch.log text file (not
the database). We’ll have more to say about fixing this over the page.
For now, let’s conclude this Test Drive by using the MySQL console to confirm that this newest
version of log_request is logging data to the log table. Open another terminal window and
follow along (note: we’ve reformatted and abridged our output to make it fit on this page):

http://127.0.0.1:5000/

§
$ mysql -u vsearch -p vsearchlogDB
Enter password:

Welcome to MySQL monitor...

mysql> select * from log;
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
| id | ts | phrase | letters | ip | browser_string | results |
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
1	2016-03-09 13:40:46	life, the uni ... ything	aeiou	127.0.0.1	firefox	{'u', 'e', 'i', 'a'}
2	2016-03-09 13:42:07	hitch-hiker	aeiou	127.0.0.1	safari	{'i', 'e'}
3	2016-03-09 13:42:15	galaxy	xyz	127.0.0.1	chrome	{'y', 'x'}
4	2016-03-09 13:43:07	hitch-hiker	xyz	127.0.0.1	firefox	set()
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
4 rows in set (0.0 sec)

mysql> quit
Bye

File Edit Window Help Checking our log DB

Log in to
the MySQL
console. This query asks to see all the data in the “log”

table (your actual data will likely differ).

Remember: we’re only storing the browser name.Don’t forget to quit the console when you’re done.
www.EBooksWorld.ir

300 Chapter 7

saving log entries

Storing Data Is Only Half the Batt le
Having run though the Test Drive on the last page, you’ve now confirmed that your
Python DB-API–compliant code in log_request does indeed store the details of
each web request in your log table.

Take a look at the most recent version of the log_request function once more
(which includes a docstring as its first line of code):

def log_request(req: 'flask_request', res: str) -> None:
 """Log details of the web request and the results."""
 dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

 import mysql.connector

 conn = mysql.connector.connect(**dbconfig)
 cursor = conn.cursor()
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))
 conn.commit()
 cursor.close()
 conn.close()

This new funct ion is a big change
There’s a lot more code in the log_request function now than when it operated on
a simple text file, but the extra code is needed to interact with MySQL (which you’re
going to use to answer questions about your logged data at the end of this chapter), so
this new, bigger, more complex version of log_request appears justified.

However, recall that your webapp has another function, called view_the_log,
which retrieves the data from the vsearch.log log file and displays it in a nicely
formatted web page. We now need to update the view_the_log function’s code to
retrieve its data from the log table in the database, as opposed to the text file.

The question is: what’s the best way to do this?

Experienced Python programmers may well look at this
function’s code and let out a gasp of disapproval. You’ll learn why in a few pages’ time.

www.EBooksWorld.ir

you are here 4 301

using a database

How Best to Reuse Your Database Code?
You now have code that logs the details of each of your webapp’s requests to MySQL.
It shouldn’t be too much work to do something similar in order to retrieve the data
from the log table for use in the view_the_log function. The question is: what’s
the best way to do this? We asked three programmers our question...and got three
different answers.

Let’s quickly cut
and paste that code,
then change it. Done!

I vote we put that
database-handling code
into its own function, then
call it as needed.

Isn’t it clear it’s time we
considered using classes
and objects as the correct
way to handle this type of

reuse?

In its own way, each of these suggestions is valid, if a little suspect (especially the first
one). What may come as a surprise is that, in this case, a Python programmer would
be unlikely to embrace any of these proposed solutions on their own.

www.EBooksWorld.ir

302 Chapter 7

reduce reuse recycle

Consider What You’re Trying to Reuse
Let’s take another look our database code in the log_request function.

It should be clear that there are parts of this function we can reuse when writing
additional code that interacts with a database system. Thus, we’ve annotated the
function’s code to highlight the parts we think are reusable, as opposed to the parts
that are specific to the central idea of what the log_request function actually does:

def log_request(req: 'flask_request', res: str) -> None:
 """Log details of the web request and the results."""
 dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

 import mysql.connector

 conn = mysql.connector.connect(**dbconfig)
 cursor = conn.cursor()

 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))
 conn.commit()
 cursor.close()
 conn.close()

The database connection characteristics are very specific to what we’re doing here, but are likely needed in other places, so should be reusable.
These two
statements
are always
going to be
the same, so
can be reused.

This code is the real “guts”
of what’s going on inside the
function, and can’t be reused
in any meaningful way (as it’s
way too specific to the job at
hand).

These three
statements
are also
always the
same, so can
be reused, too.

Based on this simple analysis, the log_request function has three groups of code
statements:

• statements that can be easily reused (such as the creation of conn and cursor,
as well as the calls to commit and close);

• statements that are specific to the problem but still need to be reusable (such as the
use of the dbconfig dictionary); and

• statements that cannot be reused (such as the assignment to _SQL and the call
to cursor.execute). Any further interactions with MySQL are very likely to
require a different SQL query, as well as different arguments (if any).

www.EBooksWorld.ir

you are here 4 303

using a database

What About That Import?

All this talk of reuse is great...
but did you forget to consider
reusing that “import” statement?

Nope, we didn’t forget.
The import mysql.connector statement
wasn’t forgotten when we considered reusing the
log_request function’s code.

This omission was deliberate on our part, as
we wanted to call out this statement for special
treatment. The problem isn’t that we don’t want to
reuse that statement; it’s that it shouldn’t appear in
the function’s suite!

Be careful when posit ioning your import statements
We mentioned a few pages back that experienced Python programmers may well look
at the log_request function’s code and let out a gasp of disapproval. This is due
to the inclusion of the import mysql.connector line of code in the function’s
suite. And this disapproval is in spite of the fact that our most recent Test Drive clearly
demonstrated that this code works. So, what’s the problem?

The problem has to do with what happens when the interpreter encounters an
import statement in your code: the imported module is read in full, then executed by
the interpreter. This behavior is fine when your import statement occurs outside of a
function, as the imported module is (typically) only read once, then executed once.

However, when an import statement appears within a function, it is read and executed
every time the function is called. This is regarded as an extremely wasteful
practice (even though, as we’ve seen, the interpreter won’t stop you from putting an
import statement in a function). Our advice is simple: think carefully about where
you position your import statements, and don’t put any inside a function.

www.EBooksWorld.ir

304 Chapter 7

setup, do, teardown

Consider What You’re Trying to Do
In addition to looking at the code in log_request from a reuse perspective, it’s also possible
to categorize the function’s code based on when it runs.

The “guts” of the function is the assignment to the _SQL variable and the call to cursor.
execute. Those two statements most patently represent what the function is meant to do,
which—to be honest—is the most important bit. The function’s initial statements define
the connection characteristics (in dbconfig), then create a connection and cursor. This
setup code always has to run before the guts of the function. The last three statements in the
function (the single commit and the two closes) execute after the guts of the function. This is
teardown code, which performs any required tidying up.

With this setup, do, teardown pattern in mind, let’s look at the function once more. Note that we’ve
repositioned the import statement to execute outside of the log_request function’s suite
(so as to avoid any further disapproving gasps):

import mysql.connector

def log_request(req: 'flask_request', res: str) -> None:
 """Log details of the web request and the results."""

 dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

 conn = mysql.connector.connect(**dbconfig)
 cursor = conn.cursor()

 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

 conn.commit()
 cursor.close()
 conn.close()

This is a better place for any import statements (that is, outside the function’s suite).

This is the teardown code, which
runs after the function has
done its thing.

This is the setup code, which runs before the function does its thing.
This code is what
the function
actually does—
it logs a web
request to the
database.

Wouldn’t it be neat if there were a way to reuse this setup, do,
teardown pattern?

www.EBooksWorld.ir

you are here 4 305

using a database

You’ve Seen This Pattern Before
Consider the pattern we just identified: setup code to get ready, followed by code to do
what needs to be done, and then teardown code to tidy up. It may not be immediately
obvious, but in the previous chapter, you encountered code that conforms to this
pattern. Here it is again:

with open('todos.txt') as tasks:
 for chore in tasks:
 print(chore, end='')

Perform some processing.
Open the file.

Assign the file stream to a
variable.

Recall how the with statement manages the context within which the code in its suite
runs. When you’re working with files (as in the code above), the with statement
arranges to open the named file and return a variable representing the file stream. In
this example, that’s the tasks variable; this is the setup code. The suite associated
with the with statement is the do code; here that’s the for loop, which does the
actual work (a.k.a. “the important bit”). Finally, when you use with to open a file,
it comes with the promise that the open file will be closed when the with’s suite
terminates. This is the teardown code.

It would be neat if we could integrate our database programming code into the with
statement. Ideally, it would be great if we could write code like this, and have the
with statement take care of all the database setup and teardown details:

dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

with UseDatabase(dbconfig) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

The good news is that Python provides the context management protocol, which
enables programmers to hook into the with statement as needed. Which brings us to
the bad news...

We still need
to define the
connection
characteristics.

This “with” statement works with databases as opposed to disk files, and returns a cursor for us to work with.

The “do
code” from
the last
page remains unchanged.

Don’t try to run this code, as you’ve yet to write the “UseDatabase” context manager.

www.EBooksWorld.ir

306 Chapter 7

time for class

The Bad News Isn’t Really All That Bad
At the bottom of the last page, we stated that the good news is that Python provides
a context management protocol that enables programmers to hook into the with
statement as and when required. If you learn how to do this, you can then create
a context manager called UseDatabase, which can be used as part of a with
statement to talk to your database.

The idea is that the setup and teardown “boilerplate” code that you’ve just written
to save your webapp’s logging data to a database can be replaced by a single with
statement that looks like this:

The bad news is that creating a context manager is complicated by the fact that you need
to know how to create a Python class in order to successfully hook into the protocol.

Consider that up until this point in this book, you’ve managed to write a lot of usable
code without having to create a class, which is pretty good going, especially when
you consider that some programming languages don’t let you do anything without first
creating a class (we’re looking at you, Java).

However, it’s now time to bite the bullet (although, to be honest, creating a class in
Python is nothing to be scared of).

As the ability to create a class is generally useful, let’s deviate from our current
discussion about adding database code to our webapp, and dedicate the next (short)
chapter to classes. We’ll be showing you just enough to enable you to create the
UseDatabase context manager. Once that’s done, in the chapter after that, we’ll
return to our database code (and our webapp) and put our newly acquired class-writing
abilities to work by writing the UseDatabase context manager.

 ...

with UseDatabase(dbconfig) as cursor:
 ... This “with”

statement is similar to the one used with files and the “open” BIF, except that this one works with a database instead.

www.EBooksWorld.ir

you are here 4 307

using a database

Chapter 7’s Code

import mysql.connector

def log_request(req: 'flask_request', res: str) -> None:
 """Log details of the web request and the results."""

 dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

 conn = mysql.connector.connect(**dbconfig)
 cursor = conn.cursor()

 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))
 conn.commit()
 cursor.close()
 conn.close()

This is the database
code that currently
runs within your webapp

(i.e., the “log_request”
function).

dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

with UseDatabase(dbconfig) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

This is the code that we’d like to be able to write in order to do the same thing as our current code (replacing the suite in the “log_request” function). But don’t try to run this code yet, as it won’t work without the “UseDatabase” context manager.

www.EBooksWorld.ir

www.EBooksWorld.ir

this is a new chapter 309

a little bit of class8

Abstracting Behavior
and State

Classes let you bundle code behavior and state together.
In this chapter, you’re setting your webapp aside while you learn about creating Python

classes. You’re doing this in order to get to the point where you can create a context

manager with the help of a Python class. As creating and using classes is such a useful

thing to know about anyway, we’re dedicating this chapter to them. We won’t cover

everything about classes, but we’ll touch on all the bits you’ll need to understand in order

to confidently create the context manager your webapp is waiting for. Let’s dive in and see

what’s involved.

Well...just lookee here:
all of my state, and all of
your behavior... ...and it’s all in the

one place. Fancy
that!

www.EBooksWorld.ir

310 Chapter 8

context management protocol

Hooking into the “with” Statement
At stated at the end of the last chapter, understanding how to hook your setup
and teardown code into Python’s with statement is straightforward...assuming
you know how to create a Python class.

Despite being well over halfway through this book, you’ve managed to get by
without having to define a class. You’ve written useful and reusable code using
nothing more than Python’s function machinery. There are other ways to write
and organize your code, and object orientation is very popular.

You’re never forced to program exclusively in the object-oriented paradigm when
using Python, and the language is flexible when it comes to how you go about
writing your code. But, when it comes to hooking into the with statement, doing
so through a class is the recommended approach, even though the standard
library comes with support for doing something similar without a class (although
the standard library’s approach is less widely applicable, so we aren’t going to use
it here).

So, to hook into the with statement, you’ll have to create a class. Once you know
how to write classes, you can then create one that implements and adheres to the
context management protocol. This protocol is the mechanism (built into
Python) that hooks into the with statement.

Let’s learn how to create and use classes in Python, before returning to our
context management protocol discussion in the next chapter.

Q: Exactly what type of programming language is Python:
object-oriented, functional, or procedural?

A: That’s a great question, which many programmers moving
to Python eventually ask. The answer is that Python supports
programming paradigms borrowed from all three of these popular
approaches, and Python encourages programmers to mix and
match as needed. This concept can be hard to get your head around,
especially if you come from the perspective where all the code you
write has to be in a class that you instantiate objects from (as in other
programming languages like, for instance, Java).

Our advice is not to let this worry you: create code in whatever
paradigm you’re comfortable with, but don’t discount the others
simply because—as approaches—they appear alien to you.

Q: So...is it wrong to always start by creating a class?

A: No, it isn’t, if that’s what your application needs. You don’t have
to put all your code in classes, but if you want to, Python won’t get in
your way.

So far in this book, we’ve gotten by without having to create a class,
but we’re now at the point where it makes sense to use one to solve
a specific application issue we’re grappling with: how best to share
our database processing code within our webapp. We’re mixing and
matching programming paradigms to solve our current problem, and
that’s OK.

The context
management
protocol lets your
write a class that
hooks into the
“with” statement.

www.EBooksWorld.ir

you are here 4 311

a little bit of class

An Object-Oriented Primer
Before we get going with classes, it’s important to note that we don’t
intend to cover everything there is to know about classes in Python in
this chapter. Our intention is merely to show you enough to enable you
to confidently create a class that implements the context management
protocol.

Therefore, we won’t discuss some topics that seasoned practitioners of
object-oriented programming (OOP) might expect to see here, such as
inheritance and polymorphism (even though Python provides support for
both). That’s because we’re primarily interested in encapsulation when
creating a context manager.

If the jargon in that last paragraph has put you in a blind panic, don’t
worry: you can safely read on without knowing what any of that OOP-
speak actually means.

On the last page, you learned that you need to create a class in order to
hook into the with statement. Before getting to the specifics of how
to do that, let’s look at what constitutes a class in Python, writing an
example class as we go. Once you understand how to write a class, we’ll
return to the problem of hooking into the with statement (in the next
chapter).

A class bundles behavior and state
Using a class lets you bundle behavior and state together in an object.

When you hear the word behavior, think function—that is, a chunk of code
that does something (or implements a behavior, if you prefer).

When you hear the word state, think variables—that is, a place to store
values within a class. When we assert that a class bundles behavior and
state together, we’re simply stating that a class packages functions and
variables.

The upshot of all of the above is this: if you know what a function is and
what variables are, you’re most of the way to understanding what a class
is (as well as how to create one).

Classes have methods and attributes
In Python, you define a class behavior by creating a method.

The word method is the OOP name given to a function that’s defined
within a class. Just why methods aren’t simply known as class functions
has been lost in the mists of time, as has the fact that class variables aren’t
referred to as such—they are known by the name attribute.

 Don’t be
freaked out
by all the
buzzwords
on this page!

If we were to run a competition
to determine the page in this
book with this most buzzwords
on it, this one would win hands-
down. Don’t be put off by all the
jargon used here, though. If you
already know OOP, this should
all make sense. If not, the
really important bits are
shown below. Don’t worry: all
this will become clearer as you
work through the example on the
next few pages.

The class

Methods (a.k.a.
functions)

Attributes (a.k.a.
variables)

A class bundles together
behavior and state.

Behavior

State

www.EBooksWorld.ir

312 Chapter 8

class makes object

Creat ing Objects from Classes
To use a class, you create an object from it (you’ll see an example of this below). This is
known as object instantiation. When you hear the word instantiate, think invoke; that
is, you invoke a class to create an object.

Perhaps surprisingly, you can create a class that has no state or behavior, yet is still a
class as far as Python is concerned. In effect, such a class is empty. Let’s start our class
examples with an empty one and take things from there. We’ll work at the interpreter’s
>>> prompt, and you’re encouraged to follow along.

We begin by creating an empty class called CountFromBy. We do this by prefixing the
class name with the class keyword, then providing the suite of code that implements
the class (after the obligatory colon):

>>> class CountFromBy:
 pass

Note how this class’s suite contains the Python keyword pass, which is Python’s empty
statement (in that it does nothing). You can use pass in any place the interpreter
expects to find actual code. In this case, we aren’t quite ready to fill in the details of the
CountFromBy class, so we use pass to avoid any syntax errors that would normally
result when we try to create a class without any code in its suite.

Now that the class exists, let’s create two objects from it, one called a and another called
b. Note how creating an object from a class looks very much like calling a function:

>>> a = CountFromBy()
>>> b = CountFromBy()

These look like function calls, don’t they?

Classes start
with the “class”
keyword. Here’s the

class suite. The name of the class

Don’t forget the colon.

Create an object by appending parentheses to the class name,
then assign the newly created object to a variable.

Q: When I’m looking at someone else’s code, how do I know if something like CountFromBy() is code that creates an object
or code that calls a function? That looks like a function call to me...

A: That’s a great question. On the face of things, you don’t know. However, there’s a well-established convention in the Python
programming community to name functions using lowercase letters (with underscores for emphasis), while CamelCase (concatenated words,
capitalized) is used to name classes. Following this convention, it should be clear that count_from_by() is a function call, whereas
CountFromBy() creates an object. All is fine just so long as everyone follows this convention, and you’re strongly encouraged to do so,
too. However, if you ignore this suggestion, all bets are off, and most Python programmers will likely avoid you and your code.

“pass” is a valid
statement (i.e., it
is syntactically
correct), but it
does nothing.
Think of it
as an empty
statement.

www.EBooksWorld.ir

you are here 4 313

a little bit of class

Objects Share Behavior but Not State
When you create objects from a class, each object shares the class’s coded
behaviors (the methods defined in the class), but maintains its own copy of any
state (the attributes):

This distinction will make more sense as we flesh out the CountFromBy example.

Def ining what we want CountFromBy to do
Let’s now define what we want the CountFromBy class to actually do (as an empty
class is rarely useful).

Let’s make CountFromBy an incrementing counter. By default, the counter will start
at 0 and be incremented (on request) by 1. We’ll also make it possible to provide an
alternative starting value and/or amount to increment by. This means you’ll be able to
create, for example, a CountFromBy object that starts at 100 and increments by 10.

Let’s preview what the CountFromBy class will be able to do (once we have written
its code). By understanding how the class will be used, you’ll be better equipped to
understand the CountFromBy code as we write it. Our first example uses the class
defaults: start at 0, and increment by 1 on request by calling the increase method.
The newly created object is assigned to a new variable, which we’ve called c:

>>> c = CountFromBy()
>>> c
0
>>> c.increase()
>>> c.increase()
>>> c.increase()
>>> c
3

Create another new object, and assign it to an object called “c”.The
starting
value is 0. Invoke the “increase” method

to increment the value of the
counter by one each time.

After the three calls to the “increase” method,
the value of the object is now three.

Note: this new
“CountFromBy”
class doesn’t
exist just yet.
You’ll create it
in a little bit.

An object

Methods (shared with
all objects created from

the same class)

Attributes (*not* shared
with other objects

created from the same
class)

Behavior

State

Each object created from
the same class can access
the class’s methods (the
shared code). However, each
object maintains its own
copy of the attributes.

www.EBooksWorld.ir

314 Chapter 8

more with objects

Doing More with CountFromBy
The example usage of CountFromBy at the bottom of the last page
demonstrated the default behavior: unless specified, the counter maintained by
a CountFromBy object starts at 0 and is incremented by 1. It’s also possible to
specify an alternative starting value, as demonstrated in this next example, where
the count starts from 100:

>>> d = CountFromBy(100)
>>> d
100
>>> d.increase()
>>> d.increase()
>>> d.increase()
>>> d
103

>>> e = CountFromBy(100, 10)
>>> e
100
>>> for i in range(3):
 e.increase()

>>> e
130

The
starting
value is 100. Invoke the “increase” method

to increment the value of
the counter by one each time.

After the three calls to the “increase” method,
the value of the “d” object is now 103.

When creating this new object, specify the starting value.

As well as specifying the starting value, it’s also possible to specify the amount to
increase by, as shown here, where we start at 100 and increment by 10:

>>> f = CountFromBy(increment=15)
>>> f
0
>>> for j in range(3):
 f.increase()

>>> f
45

Specifies both the starting value as well as the amount to increment by

Invoke the “increase” method three
times within a “for” loop, incrementing
the value of “e” by 10 each time.

“e” starts
at 100,
and ends
up at 130.

In this final example, the counter starts at 0 (the default), but increments by
15. Rather than having to specify (0, 15) as the arguments to the class, this
example uses a keyword argument that allows us to specify the amount to
increment by, while leaving the starting value at the default (0):

Specifies the amount to increment by
As before,
call “increase”
three times.

“f” starts
at 0, and
ends up at
45.

www.EBooksWorld.ir

you are here 4 315

a little bit of class

It’s Worth Repeat ing Ourselves: Objects
Share Behavior but Not State
The previous examples created four new CountFromBy objects: c, d, e, and f, each
of which has access to the increase method, which is a behavior that’s shared by
all objects created from the CountFromBy class. There’s only ever one copy of the
increase method’s code, which all these objects use. However, each object maintains
its own attribute values. In these examples, that’s the current value of the counter,
which is different for each of the objects, as shown here:

>>> c
3
>>> d
103
>>> e
130
>>> f
45

These four “CountFromBy” objects maintain their own attribute values.

Here’s the key point again: the method code is shared, but the attribute data isn’t.

It can be useful to think of a class as a “cookie-cutter template” that is used by a
factory to churn out objects that all behave the same, but have their own data.

Class behavior is
shared by each
of its objects,
whereas state is
not. Each object
maintains its
own state.

The Object
Factory

The factory has been primed with your “CountFromBy” class and is ready to go.

Here are your instantiated objects,
which are packaged to contain the
shared code and their own data.

The “d” objectThe “f” object The “e” object

www.EBooksWorld.ir

316 Chapter 8

methods in action

Invoking a Method: Understand the Details
We stated earlier that a method is a function defined within a class. We also saw examples
of a method from CountFromBy being invoked. The increase method is invoked
using the familiar dot notation:

c.increase()The object The name of the method

Spot the dot.

It is instructive to consider the code the interpreter actually executes (behind the scenes)
when it encounters the above line. Here is the call the interpreter always turns the
above line of code into. Note what happens to c:

CountFromBy.increase(c)

Spot the dot.

The name of the class within which the method is defined The name of the method

The object (to increase)

Does the fact that this happens mean I
can write “CountFromBy.increase(c)” in
my code and it’ll work as if I’d written

“c.increase()”?

Yes, it does. But nobody ever does that.
And neither should you, as the Python interpreter does
this for you anyway...so why write more code to do
something that can be written more succinctly?

Just why the interpreter does this will become clearer as
you learn more about how methods work.

www.EBooksWorld.ir

you are here 4 317

a little bit of class

Method Invocat ion: What Actually Happens
At first sight, the interpreter turning c.increase() into CountFromBy.increase(c)
may look a little strange, but understanding that this happens helps explain why every method
you write takes at least one argument.

It’s OK for methods to take more than one argument, but the first argument always has to
exist in order to take the object as an argument (which, in the example from the last page, is
c). In fact, it is a well-established practice in the Python programming community to give each
method’s first argument a special name: self.

When increase is invoked as c.increase(), you’d imagine the method’s def line should
look like this:

What you write: What Python executes:

d.increase() CountFromBy.increase(d)

The class The method
The
object
name

def increase(self):

It is regarded as very bad form to use something other than the name self in your
class code, even though the use of self does take a bit of getting used to. (Many other
programming languages have a similar notion, although they favor the name this. Python’s
self is basically the same idea as this.)

When you invoke a method on an object, Python arranges for the first argument to be the
invoking object instance, which is always assigned to each method’s self argument. This fact
alone explains why self is so important and also why self needs to be the first argument to
every object method you write. When you invoke a method, you don’t need to supply a value for
self, as the interpreter does this for you:

def increase():

However, defining a method without the mandatory first argument will cause the interpreter to
raise an error when your code runs. Consequently, the increase method’s def line actually
needs to be written as follows:

When writing
code in a
class, think
of “self” as an
alias to the
current object.

Now that you’ve been introduced to the importance of self, let’s take a look at writing the
code for the increase method.

The value of
“d” is assigned
to “self” by the
interpreter.

There’s no need
to supply a
value for “self”.

www.EBooksWorld.ir

318 Chapter 8

adding methods

Adding a Method to a Class
Let’s create a new file to save our class code into. Create countfromby.py, then
add in the class code from earlier in this chapter:

class CountFromBy:
 pass

We’re going to add the increase method to this class, and to do so we’ll remove the
pass statement and replace it with increase’s method definition. Before doing this,
recall how increase is invoked:

c.increase()

Based on this call, you’d be forgiven for assuming the increase method takes no
arguments, as there’s nothing between the parentheses, right? However, this is only
half true. As you just learned, the interpreter transforms the above line of code into
the following call:

CountFromBy.increase(c)

The method code we write needs to take this transformation into consideration. With
all of the above in mind, here’s the def line for the increase method that we’d use
in this class:

class CountFromBy:
 def increase(self) -> None:Methods are just

like functions, so
are defined with
“def”.

The first argument to every method is always “self”, and its value is supplied by the interpreter.
There are no other arguments to the increase method, so we do not need to
provide anything other than self on the def line. However, it is vitally important
that we include self here, as forgetting to results in syntax errors.

With the def line written, all we need to do now is add some code to increase.
Let’s assume that the class maintains two attributes: val, which contains the current
value of the current object, and incr, which contains the amount to increment val
by every time increase is invoked. Knowing this, you might be tempted to add this
incorrect line of code to increase in an attempt to perform the increment:

As with the other functions
in this book, we provide an
annotation for the return value.

Why do you think this line of code is correct, whereas the previous was incorrect?

 val += incr

But here’s the correct line of code to add to the increase method:

class CountFromBy:
 def increase(self) -> None:
 self.val += self.incr

Take the object’s
current value of “val”
and increase it by
the value of “incr”.

www.EBooksWorld.ir

you are here 4 319

a little bit of class

Are You Serious About “se lf”?

Wait a minute...I thought one of Python’s big
wins was that its code is easy to read. I find that
use of “self” anything but easy on the eye, and the
fact that it’s part of classes (which must get a lot
of use) has me thinking: seriously?!?

Don’t worry. Getting used to self won’t take long.
We agree that Python’s use of self does look a little weird...at
first. However, over time, you’ll get used to it, so much so that you’ll
hardly even notice it’s there.

If you completely forget about it and fail to add it to your methods,
you’ll know pretty quickly that something is amiss—the interpreter
will display a slew of TypeErrors informing you that something is
missing, and that something is self.

As to whether or not the use of self makes Python’s class code
harder to read...well, we’re not so sure. In our mind, every time
we see self used as the first argument to a function, our brains
automatically know that we’re looking at a method, not a function.
This, for us, is a good thing.

Think of it this way: the use of self indicates that the code you’re
reading is a method, as opposed to a function (when self is not
used).

www.EBooksWorld.ir

320 Chapter 8

self == object

The Importance of “se lf”
The increase method, shown below, prefixes each of the class’s attributes with
self within its suite. You were asked to consider why this might be:

class CountFromBy:
 def increase(self) -> None:
 self.val += self.incr

You already know that self is assigned the current object by the interpreter
when a method is invoked, and that the interpreter expects each method’s first
argument to take this into account (so that the assignment can occur).

Now, consider what we already know about each object created from a class: it
shares the class’s method code (a.k.a. behavior) with every other object created
from the same class, but maintains its own copy of any attribute data (a.k.a. state).
It does this by associating the attribute values with the object—that is, with self.

Knowing this, consider this version of the increase method, which, as we said
a couple of pages ago, is incorrect:

What’s the deal with using “self” within the method’s suite?

class CountFromBy:
 def increase(self) -> None:
 val += incr

On the face of things, that last line of code seems innocent enough, as all it does
is increment the current value of val by the current value of incr. But consider
what happens when this increase method terminates: val and incr, which
exist within increase, both go out of scope and consequently are destroyed the
moment the method ends.

Ummm...let me just make a note of “going
out of scope” and “destroyed.” I’ll need to
look both of those up later...or did I miss
something?

Whoops. That’s our bad...
We slipped in that statement about scope without
much explanation, didn’t we?

In order to understand what has to happen when
you refer to attributes in a method, let’s first spend
some time understanding what happens to variables
used in a function.

Don’t do this—it won’t
do what you think it
should.

www.EBooksWorld.ir

you are here 4 321

a little bit of class

Coping with Scoping
To demonstrate what happens to variables used within a function, let’s experiment
at the >>> prompt. Try out the code below as you read it. We’ve numbered the
annotations 1 through 8 to guide you as you follow along:

When variables are defined within a function’s suite, they exist while the function
runs. That is, the variables are “in scope,” both visible and usable within the function’s
suite. However, once the function ends, any variables defined within the function are
destroyed—they are “out of scope,” and any resources they used are reclaimed by the
interpreter.

This is what happens to the three variables used within the soundbite function, as
shown above. The moment the function terminates, insider, outsider, and
from_outside cease to exist. Any attempt to refer to them outside the suite of
function (a.k.a. outside the function’s scope) results in a NameError.

1. The “soundbite” function accepts a single argument.

2. A value is
assigned to
a variable
inside the
function.

3. The argument
is assigned to
another variable
inside the function. 4. The

function’s
variables
are used to
display a
message.

5. A value is assigned to a variable called “name”.
6. The “soundbite”
function is invoked.7. After

the function displays the
soundbite,
the value of “name” is still accessible.

8. But none of
the variables used
within the function
are accessible,
as they only
exist within the
function’s suite.

www.EBooksWorld.ir

322 Chapter 8

back to self

An object

Methods (shared with
all objects created from

the same class)

Attributes (*not* shared
with other objects

created from the same
class)

“self” is an
alias to the
object.

The rule is straightforward: if you need to refer to an attribute in your class, you
must prefix the attribute name with self. The value in self as an alias that
points back to the object invoking the method.

In this context, when you see self, think “this object’s.” So, self.val can be
read as “this object’s val.”

Pref ix Your Attribute Names with “se lf”
This function behavior described on the last page is fine when you’re dealing with a
function that gets invoked, does some work, and then returns a value. You typically
don’t care what happens to any variables used within a function, as you’re usually only
interested in the function’s return value.

Now that you know what happens to variables when a function ends, it should be clear
that this (incorrect) code is likely to cause problems when you attempt to use variables
to store and remember attribute values with a class. As methods are functions by
another name, neither val nor incr will survive an invocation of the increase
method if this is how you code increase:

class CountFromBy:
 def increase(self) -> None:
 val += incr

Don’t do this, as these
variables won’t survive
once the method ends.

class CountFromBy:
 def increase(self) -> None:
 self.val += self.incr

This is much better, as “val” and “incr” are now associated with the object thanks to the use of “self”.

However, with methods, things are different. The method uses attribute values that
belong to an object, and the object’s attributes continue to exist after the method
terminates. That is, an object’s attribute values are not destroyed when the
method terminates.

In order for an attribute assignment to survive method termination, the attribute
value has to be assigned to something that doesn’t get destroyed as soon as the
method ends. That something is the current object invoking the method, which is
stored in self, which explains why each attribute value needs to be prefixed with
self in your method code, as shown here:

www.EBooksWorld.ir

you are here 4 323

a little bit of class

Init ialize (Attribute) Values Before Use
All of the discussion of the importance of self sidestepped an important issue: how are
attributes assigned a starting value? As it stands, the code in the increase method—the
correct code, which uses self—fails if you execute it. This failure occurs because in
Python you can’t use a variable before it has been assigned a value, no matter where the
variable is used.

To demonstrate the seriousness of this issue, consider this short session at the >>> prompt.
Note how the first statement fails to execute when either of the variables is undefined:

>>> val += incr
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 val += incr
NameError: name 'val' is not defined

>>> val = 0

>>> val += incr
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in <module>
 val += incr
NameError: name 'incr' is not defined

>>> incr = 1

>>> val += incr

>>> val
1
>>> incr
1
>>>

If you try to execute
code that refers to
uninitialized variables...

...the interpreter complains.
As “val” is undefined, the interpreter
refuses to run the line of code.Assign a value to

“val”, then try again...

...and the
interpreter
complains again!

As “incr” is
undefined, the
interpreter continues
to refuse to run the
line of code.Assign a value to

“incr”, and try again...

...and it worked
this time.

As both “val” and “incr” have values (i.e., they are initialized), the interpreter is happy to use their values without raising a NameError.

No matter where you use variables in Python, you have to initialize them with a starting
value. The question is: how do we do this for a new object created from a Python class?

If you know OOP, the word “constructor” may be popping into your brain right about now.
In other languages, a constructor is a special method that lets you define what happens
when an object is first created, and it usually involves both object instantiation and attribute
initialization. In Python, object instantiation is handled automatically by the interpreter, so
you don’t need to define a constructor to do this. A magic method called __init__ lets
you initialize attributes as needed. Let’s take a look at what dunder init can do.

www.EBooksWorld.ir

324 Chapter 8

__init__ is magic

Dunder “init” Init ializes Attributes
Cast your mind back to the last chapter, when you used the dir built-in function
to display all the details of Flask’s req object. Remember this output?

At the time, we suggested you ignore all those dunders. However, it’s now time
to reveal their purpose: the dunders provide hooks into every class’s standard
behavior.

Unless you override it, this standard behavior is implemented in a class called
object. The object class is built into the interpreter, and every other Python
class automatically inherits from it (including yours). This is OOP-speak for stating
that the dunder methods provided by object are available to your class to use as
is, or to override as needed (by providing your own implementation of them).

You don’t have to override any object methods if you don’t want to. But if, for
example, you want to specify what happens when objects created from your class
are used with the equality operator (==), then you can write your own code for
the __eq__ method. If you want to specify what happens when objects are used
with the greater-than operator (>), you can override the __ge__ method. And
when you want to initialize the attributes associated with your object, you can use
the __init__ method.

As the dunders provided by object are so useful, they’re held in near-mystical
reverence by Python programmers. So much so, in fact, that many Python
programmers refer to these dunders as the magic methods (as they give the
appearance of doing what they do “as if by magic”).

All of this means that if you provide a method in your class with a def line like
the one below, the interpreter will call your __init__ method every time you
create a new object from your class. Note the inclusion of self as this dunder
init’s first argument (as per the rule for all methods in all classes):

The standard
dunder
methods,
available to
all classes, are
known as “the
magic methods.”

def __init__(self):

Despite the strange-looking name, dunder “init” is a method like any other. Remember: you must pass “self” as its first argument.

Look at
all those
dunders!

www.EBooksWorld.ir

you are here 4 325

a little bit of class

Init ializing Attributes with Dunder “init”
Let’s add __init__ to our CountFromBy class in order to initialize the objects
we create from our class.

For now, let’s add an empty __init__ method that does nothing but pass (we’ll
add behavior in just a moment):

class CountFromBy:
 def __init__(self) -> None:
 pass
 def increase(self) -> None:
 self.val += self.incr

At the moment, this dunder “init” doesn’t do anything. However, the use of “self” as its first argument is a BIG CLUE that dunder “init” is a method.

We know from the code already in increase that we can access attributes in our
class by prefixing their names with self. This means we can use self.val and
self.incr to refer to our attributes within __init__, too. However, we want
to use __init__ to initialize our class’s attributes (val and incr). The question
is: where do these initialization values come from and how do their values get into
__init__?

Pass any amount of argument data to dunder “init”
As __init__ is a method, and methods are functions in disguise, you can pass as
many argument values as you like to __init__ (or any method, for that matter).
All you have to do is give your arguments names. Let’s give the argument that we’ll
use to initialize self.val the name v, and use the name i for self.incr.

Let’s add v and i to the def line of our __init__ method, then use the values
in dunder init’s suite to initialize our class attributes, as follows:

class CountFromBy:
 def __init__(self, v: int, i: int) -> None:
 self.val = v
 self.incr = i
 def increase(self) -> None:
 self.val += self.incr

Add “v” and “i” as
arguments to dunder
“init”.

Use the values of “v” and
“i” to initialize the class’s
attributes (which are “self.val”
and “self.incr”, respectively).

If we can now somehow arrange for v and i to acquire values, the latest version
of __init__ will initialize our class’s attributes. Which raises yet another
question: how do we get values into v and i? To help answer this question, we
need to try out this version of our class and see what happens. Let’s do that now.

www.EBooksWorld.ir

326 Chapter 8

try your class

Test Drive
Using the edit window in IDLE, take a moment to update the code in your countfromby.py file
to look like that shown below. When you’re done, press F5 to start creating objects at IDLE’s >>>
prompt:

This may not have been what you were expecting to see. But take a look at the error message (which
is classed as a TypeError), paying particular attention to the message on the TypeError line.
The interpreter is telling us that the __init__ method expected to receive two argument values, v
and i, but received something else (in this case, nothing). We provided no arguments to the class,
but this error message tells us that any arguments provided to the class (when creating a new object)
are passed to the __init__ method.
Bearing this in mind, let’s have another go at creating a CountFromBy object.

Press F5 to
try out the
“CountFromBy”
class in IDLE’s
shell.

The latest
version of our
“CountFromBy”
class.

Create a new
object (called

“g”) from the
class...but when
you do this, you
get an error!

Pressing F5 executes the code in the edit window, which imports the CountFromBy class into the
interpreter. Look at what happens when we try to create a new object from our CountFromBy class:

www.EBooksWorld.ir

you are here 4 327

a little bit of class

Let’s return to the >>> prompt, and create another object (called h) that takes two integer values as
arguments for v and i:

No “TypeError” this time

You can
access the
value of the
“h” object’s
attributes.

Invoking the “increase” method does what you expect it to do. It increments “h.val” by the amount in “h.incr”.

You were probably expecting to see “110” displayed here,
but instead got this (rather cryptic) message instead.

 � When you’re creating objects, any argument values provided to the class are passed to the __init__ method, as
was the case with 100 and 10 above. (Note that v and i cease to exist as soon as dunder init ends, but we aren’t
worried, as their values are safely stored in the object’s self.val and self.incr attributes, respectively.)

 � We can access the attribute values by combining the object’s name with the attribute name. Note how we used
h.val and h.incr to do this. (For those readers coming to Python from a “stricter” OOP language, note that we
did this without having to create getters or setters.)

 � When we use the object name on its own (as in the last interaction with the shell above), the interpreter spits back a
cryptic message. Just what this is (and why this happens) will be discussed next.

What have we learned from this Test Dri ve?

 Here are the main takeaways from this Test Drive:

As you can see above, things work better this time, as the TypeError exception is gone, which
means the h object was created successfully. You can access the values of h’s attributes using
h.val and h.incr, as well as call the object’s increase method. Only when you try to access
the value of h do things get strange again.

www.EBooksWorld.ir

328 Chapter 8

control your repr

Understanding CountFromBy’s Representat ion
When we typed the name of the object into the shell in an attempt to display its current
value, the interpreter produced this output:

<__main__.CountFromBy object at 0x105a13da0>

We described the above output as “strange,” and on first glance, it would certainly
appear to be. To understand what this output means, let’s return to IDLE’s shell and
create yet another object from CountFromBy, which due to our deeply ingrained
unwillingness to rock the boat, we’re calling j.

In the session below, note how the strange message displayed for j is made up of values
that are produced when we call certain built-in functions (BIFs). Follow along with the
session first, then read on for an explanation of what these BIFs do:

Don’t worry if you have a different value here. All will become clear before the end of this page.

The type BIF displays information on the class the object was created from, reporting
(above) that j is a CountFromBy object.

The id BIF displays information on an object’s memory address (which is a unique
identifier used by the interpreter to keep track of your objects). What you see on your
screen is likely different from what is reported above.

The memory address displayed as part of j’s output is the value of id converted
to a hexadecimal number (which is what the hex BIF does). So, the entire message
displayed for j is a combination of type’s output, as well as id’s (converted to
hexadecimal).

A reasonable question is: why does this happen?

In the absence of you telling the interpreter how you want to represent your objects,
the interpreter has to do something, so it does what’s shown above. Thankfully, you can
override this default behavior by coding your own __repr__ magic method.

Override
dunder “repr”
to specify how
your objects are
represented by
the interpreter.

The output for “j” is made up of values produced by some of
Python’s BIFs.

www.EBooksWorld.ir

you are here 4 329

a little bit of class

Def ining CountFromBy’s Representat ion
As well as being a magic method, the __repr__ functionality is also available as
a built-in function called repr. Here’s part of what the help BIF displays when
you ask it to tell you what repr does: “Return the canonical string representation
of the object.” In other words, the help BIF is telling you that repr (and by
extension, __repr__) needs to return a stringified version of an object.

What this “stringified version of an object” looks like depends on what each
individual object does. You can control what happens for your objects by writing
a __repr__ method for your class. Let’s do this now for the CountFromBy
class.

Begin by adding a new def line to the CountFromBy class for dunder repr,
which takes no arguments other than the required self (remember: it’s a
method). As is our practice, let’s also add an annotation that lets readers of our
code know this method returns a string:

 def __repr__(self) -> str:

With the def line written, all that remains is to write the code that returns a string
representation of a CountFromBy object. For our purposes, all we want to do
here is take the value in self.val, which is an integer, and convert it to a string.

Thanks to the str BIF, doing so is straightforward:

Like every other method
you’ll write, this one has to
take into account that the
interpreter always provides
a value for the first
argument.

This lets users of this method know that this function intends to return a string. Remember: using annotations in your code is optional, but helpful.

 def __repr__(self) -> str:
 return str(self.val) Take the value in

“self.val”, turn it
into a string, and
then return it
to this method’s
caller.When you add this short function to your class, the interpreter uses it whenever

it needs to display a CountFromBy object at the >>> prompt. The print BIF
also uses dunder repr to display objects.

Before making this change and taking the updated code for a spin, let’s return
briefly to another issue that surfaced during the last Test Drive.

www.EBooksWorld.ir

330 Chapter 8

countfromby does more

Prov iding Sensible Defaults for CountFromBy
Let’s remind ourselves of the current version of the CountFromBy class’s __init__
method:

 ...
 def __init__(self, v: int, i: int) -> None:
 self.val = v
 self.incr = i
 ...

Recall that when we tried to create a new object from this class without passing values
for v and i, we got a TypeError:

Earlier in this chapter, we specified that we wanted the CountFromBy class to
support the following default behavior: the counter will start at 0 and be incremented
(on request) by 1. You already know how to provide default values to function
arguments, and the same goes for methods, too—assign the default values on the def
line: ...

 def __init__(self, v: int=0, i: int=1) -> None:
 self.val = v
 self.incr = i
 ...

If you make this small (but important) change to your CountFromBy code, then save
the file (before pressing F5 once more), you’ll see that objects can now be created with
this default behavior:

We haven’t specified values to use when initializing the object, so the class provides the default values as specified in dunder “init”.

This all works as expected, with the “increase”
method incremented “i.val” by one each time it’s
invoked. This is the default behavior.

This version of the
dunder “init” method
expects two argument
values to be provided
every time it is invoked.

Yikes! Not good.

As methods are functions, they support the use of default values for arguments (although we’re scoring a B- here for our use of single-character variable names: “v” is the value, whereas “i” is the incrementing value).

www.EBooksWorld.ir

you are here 4 331

a little bit of class

Test Drive
Make sure your class code (in countfromby.py) is the same as ours below. With your class code
loaded into IDLE’s edit window, press F5 to take your latest version of the CountFromBy class for
a spin:

The “k” object
uses the class’s
default values,
which start
at 0 and are
increased by 1.

When you refer to the object at the >>> prompt, or in a call to “print”, the dunder “repr” code runs.

The “m” object
provides
alternative
values for both
defaults.

The “l” object provides
an alternative starting
value, then increments
by 1 each time
“increase” is called.

The “n” object uses a keyword argument to provide an alternative value to increment by (but starts at 0).

This is the
“CountFromBy” class
with the code for
dunder “repr” added.

www.EBooksWorld.ir

332 Chapter 8

classes so far

Classes: What We Know
With the CountFromBy class behaving as specified earlier in this chapter,
let’s review what we now know about classes in Python:

 � Python classes let you share behavior (a.k.a.
methods) and state (a.k.a. attributes).

 � If you remember that methods are functions, and
attributes are variables, you won’t go far wrong.

 � The class keyword introduces a new class in your
code.

 � Creating a new object from a class looks very like a
function call. Remember: to create an object called
mycount from a class called CountFromBy,
you’d use this line of code:

 mycount = CountFromBy()

 � When an object is created from a class, the object
shares the class’s code with every other object
created from the class. However, each object
maintains its own copy of the attributes.

 � You add behaviors to a class by creating methods. A
method is a function defined within a class.

 � To add an attribute to a class, create a variable.

 � Every method is passed an alias to the current object
as its first argument. Python convention insists that
this first argument is called self.

 � Within a method’s suite, referrals to attributes are
prefixed with self, ensuring the attribute’s value
survives after the method code ends.

 � The __init__ method is one of the many magic
methods provided with all Python classes.

 � Attribute values are initialized by the __init__
method (a.k.a. dunder init). This method lets you
assign starting values to your attributes when a new
object is created. Dunder init receives a copy
of any values passed to the class when an object is
created. For example, the values 100 and 10 are
passed into __init__ when this object is created:

 mycount2 = CountFromBy(100, 10)

 � Another magic method is __repr__, which allows
you to control how an object appears when displayed
at the >>> prompt, as well as when used with the
print BIF.

This is all fine and dandy...but
remind me: what was the point
of learning all this class stuff?

We wanted to create a context manager.

We know it’s been a while, but the reason we started down this path
was to learn enough about classes to enable us to create code that
hooks into Python’s context management protocol. If we can
hook into the protocol, we can use our webapp’s database code with
Python’s with statement, as doing so should make it easier to share
the database code, as well as reuse it. Now that you know a bit about
classes, you’re ready to get hooked into the context management
protocol (in the next chapter).

www.EBooksWorld.ir

you are here 4 333

a little bit of class

Chapter 8’s Code

class CountFromBy:

 def __init__(self, v: int=0, i: int=1) -> None:

 self.val = v

 self.incr = i

 def increase(self) -> None:

 self.val += self.incr

 def __repr__(self) -> str:

 return str(self.val)

This is the
code in the
“countfromby.
py” file.

www.EBooksWorld.ir

www.EBooksWorld.ir

this is a new chapter 335

the context management protocol9

Hooking into Python’s
with Statement

Yes, indeed...for a small
fee, we can certainly
manage the context within
which your code runs.

It’s time to take what you’ve just learned and put it to work.
Chapter 7 discussed using a relational database with Python, while Chapter 8 provided

an introduction to using classes in your Python code. In this chapter, both of these

techniques are combined to produce a context manager that lets us extend the with

statement to work with relational database systems. In this chapter, you’ll hook into

the with statement by creating a new class, which conforms to Python’s context

management protocol.

www.EBooksWorld.ir

336 Chapter 9

which is best?

What’s the Best Way to Share Our Webapp’s
Database Code?
During Chapter 7 you created database code in your log_request function that worked,
but you had to pause to consider how best to share it. Recall the suggestions from the end of
Chapter 7:

Let’s quickly cut
and paste that code,
then change it. Done!

I vote we put that
database-handling code
into its own function, then
call it as needed.

Isn’t it clear it’s time we
considered using classes
and objects as the correct
way to handle this type of

reuse?

At the time, we proposed that each of these suggestions was valid, but believed Python
programmers would be unlikely to embrace any of these proposed solutions on their own. We
decided that a better strategy was to hook into the context management protocol using the
with statement, but in order to do that, you needed to learn a bit about classes. They were
the subject of the last chapter. Now that you know how to create a class, it’s time to return to
the task at hand: creating a context manager to share your webapp’s database code.

www.EBooksWorld.ir

you are here 4 337

the context management protocol

Consider What You’re Trying to Do, Rev isited
Below is our database management code from Chapter 7. This code is currently part
of our Flask webapp. Recall how this code connected to our MySQL database, saved
the details of the web request to the log table, committed any unsaved data, and then
disconnected from the database:

import mysql.connector

def log_request(req: 'flask_request', res: str) -> None:
 """Log details of the web request and the results."""

 dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

 conn = mysql.connector.connect(**dbconfig)
 cursor = conn.cursor()

 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

 conn.commit()
 cursor.close()
 conn.close()

This dictionary
details the
database connection characteristics.This bit

uses the
credentials
to connect to
the database,
then creates
a cursor.

Finally, this code tears down the database connection.

This is the code that does the actual work:
it adds the
request data
to the “log”
database table.

How best to create a context manager?
Before getting to the point where you can transform the above code into something
that can be used as part of a with statement, let’s discuss how this is achieved by
conforming to the context management protocol. Although there is support for
creating simple context managers in the standard library (using the contextlib
module), creating a class that conforms to the protocol is regarded as the correct
approach when you’re using with to control some external object, such as a
database connection (as is the case here).

With that in mind, let’s take a look at what’s meant by “conforming to the context
management protocol.”

www.EBooksWorld.ir

338 Chapter 9

enter exit init

Managing Context with Methods
The context management protocol sounds intimidating and scary, but it’s actually
quite simple. It dictates that any class you create must define at least two magic
methods: __enter__ and __exit__. This is the protocol. When you adhere to the
protocol, your class can hook into the with statement.

Dunder “enter” performs setup
When an object is used with a with statement, the interpreter invokes the object’s
__enter__ method before the with statement’s suite starts. This provides an

opportunity for you to perform any required setup code within dunder enter.

The protocol further states that dunder enter can (but doesn’t have to) return a value
to the with statement (you’ll see why this is important in a little bit).

Dunder “exit” does teardown
As soon as the with statement’s suite ends, the interpreter always invokes the object’s
__exit__ method. This occurs after the with’s suite terminates, and it provides an

opportunity for you to perform any required teardown.

As the code in the with statement’s suite may fail (and raise an exception), dunder
exit has to be ready to handle this if it happens. We’ll return to this issue when we
create the code for our dunder exit method later in this chapter.

If you create a class that defines __enter__ and __exit__, the class is
automatically regarded as a context manager by the interpreter and can, as a
consequence, hook into (and be used with) with. In other words, such a class conforms
to the context management protocol, and implements a context manager.

(As you know) dunder “init” init ializes
In addition to dunder enter and dunder exit, you can add other methods to your
class as needed, including defining your own __init__ method. As you know from
the last chapter, defining dunder init lets you perform additional object initialization.
Dunder init runs before __enter__ (that is, before your context manager’s setup code executes).

It’s not an absolute requirement to define __init__ for your context manager (as
__enter__ and __exit__ are all you really need), but it can sometimes be

useful to do so, as it lets you separate any initialization activity from any setup activity.
When we create a context manager for use with our database connections (later in
this chapter), we define __init__ to initialize our database connection credentials.
Doing so isn’t absolutely necessary, but we think it helps to keep things nice and tidy,
and makes our context manager class code easier to read and understand.

If your class
defines dunder
“enter” and
dunder “exit”,
it’s a context
manager.

A protocol is an
agreed procedure
(or set of rules)
that is to be
adhered to.

www.EBooksWorld.ir

you are here 4 339

the context management protocol

What’s required from you
Before we get to creating our very own context manager (with the help of a new class), let’s
review what the context management protocol expects you to provide in order to hook into
the with statement. You must create a class that provides:

1. an __init__ method to perform initialization (if needed);

2. an __enter__ method to do any setup; and

3. an __exit__ method to do any teardown (a.k.a. tidying-up).

Armed with this knowledge, let’s now create a context manager class, writing these methods
one by one, while borrowing from our existing database code as needed.

You’ve Already Seen a Context Manager in
Action
You first encountered a with statement back in Chapter 6 when you used one to
ensure a previously opened file was automatically closed once its associated with
statement terminated. Recall how this code opened the todos.txt file, then
read and displayed each line in the file one by one, before automatically closing
the file (thanks to the fact that open is a context manager):

with open('todos.txt') as tasks:
 for chore in tasks:
 print(chore, end='')

with open('todos.txt') as tasks:
 for chore in tasks:
 print(chore, end='')

1. When the
interpreter
encounters this
“with” statement,
it begins by calling
any dunder “init”
associated with the
call to “open”.

2. As soon as dunder “init” executes, the interpreter calls dunder “enter” to ensure that the result of calling “open” will be assigned to the “tasks” variable.

3. When the “with” statement ends, the interpreter calls

the context manager’s dunder “exit” to tidy up. In this

example, the interpreter ensures that the opene
d file is

closed properly before continuing.

Let’s take another look at this with statement, highlighting where dunder enter,
dunder exit, and dunder init are invoked. We’ve numbered each of the
annotations to help you understand the order the dunders execute in. Note that
we don’t see the initialization, setup, or teardown code here; we just know (and
trust) that those methods run “behind the scenes” when needed:

Your first-ever “with” statement (borrowed from
Chapter 6).

www.EBooksWorld.ir

340 Chapter 9

implementing the protocol

Create a New Context Manager Class
To get going, we need to give our new class a name. Additionally, let’s put our new
class code into its own file, so that we can easily reuse it (remember: when you put
Python code in a separate file it becomes a module, which can be imported into other
Python programs as required).

Let’s call our new file DBcm.py (short for database context manager), and let’s call our
new class UseDatabase. Be sure to create the DBcm.py file in the same folder that
currently contains your webapp code, as it’s your webapp that’s going to import the
UseDatabase class (once you’ve written it, that is).

Using your favorite editor (or IDLE), create a new edit window, and then save the new,
empty file as DBcm.py. We know that in order for our class to conform to the context
management protocol it has to:

1. provide an __init__ method that performs initialization;

2. provide an __enter__ method that includes any setup code; and

3. provide an __exit__ method that includes any teardown code.

For now, let’s add three “empty” definitions for each of these required methods to our
class code. An empty method contains a single pass statement. Here’s the code so far:

Note how at the top of the DBCm.py file we’ve included an import statement, which
includes the MySQL Connector functionality (which our new class depends on).

All we have to do now is move the relevant bits from the log_request function
into the correct method within the UseDatabase class. Well...when we say we, we
actually mean you. It’s time to roll up your sleeves and write some method code.

This is what our
“DBcm.py” file
looks like in IDLE.
At the moment,
it’s made up from
a single “import”
statement,
together with
a class called
“UseDatabase”
that contains
three “empty”
methods.

Remember:
use CamelCase
when naming
a class in
Python.

www.EBooksWorld.ir

you are here 4 341

the context management protocol

Let’s start with the __init__ method, which we’ll use to initialize any
attributes in the UseDataBase class. Based on the usage shown above,
the dunder init method accepts a single argument, which is a dictionary
of connection characteristics called config (which you’ll need to add to
the def line below). Let’s arrange for config to be saved as an attribute
called configuration. Add the code required to save the dictionary to
the configuration attribute to dunder init’s code:

import mysql.connector

class UseDatabase:

 def __init__(self,)

Init ialize the Class with the Database Conf ig
Let’s remind ourselves of how we intend to use the UseDatabase context manager.
Here’s the code from the last chapter, rewritten to use a with statement, which itself
uses the UseDatabase context manager that you’re about to write:

from DBcm import UseDatabase

dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

with UseDatabase(dbconfig) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

This code stays
the same as before.

The context
manager returns
a “cursor”.

The “UseDatabase”
context manager expects
to receive a dictionary
of database connection
characteristics.

Here’s the database connection
characteristics.

Import the context
manager from the
“DBcm.py” file.

Save the configuration
dictionary to an attribute.

Is there
anything
missing
from here?

Complete the
“def” line.

www.EBooksWorld.ir

342 Chapter 9

dunder init done

You started with the __init__ method, which was to initialize any
attributes in the UseDataBase class. The dunder init method accepts
a single argument, which is a dictionary of connection characteristics
called config (which you needed to add to the def line below).
You were to arrange for config to be saved to an attribute called
configuration. You were to add the code required to save the
dictionary to the configuration attribute in dunder init’s code:

import mysql.connector

class UseDatabase:

 def __init__(self,)

config: dict
self.configuration = config

-> None :

The (optional) “None” annotation
confirms that this method has no
return value (which is nice to know), and
the colon terminates the “def” line.

Dunder “init” accepts a single dictionary, which we’re calling “config”.

The value of the “config” argument is assigned to an attribute called “configuration”. Did you remember to prefix the attribute with “self”?

Your context manager begins to take shape
With the dunder init method written, you can move on to coding the dunder enter
method (__enter__). Before you do, make sure the code you’ve written so far
matches ours, which is shown below in IDLE:

Make sure
your dunder
“init”
matches
ours.

www.EBooksWorld.ir

you are here 4 343

the context management protocol

Perform Setup with Dunder “enter”
The dunder enter method provides a place for you to execute the setup code that
needs to be executed before the suite in your with statement runs. Recall the code from
the log_request function that handles this setup:

 ...
 dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

 conn = mysql.connector.connect(**dbconfig)
 cursor = conn.cursor()

 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 ...

Here’s the
setup code
from the
“log_request”
function.

This setup code uses the connection characteristics dictionary to connect to MySQL,
then creates a database cursor on the connection (which we’ll need to send commands
to the database from our Python code). As this setup code is something you’ll do every
time you write code to talk to your database, let’s do this work in your context manager
class instead so that you can more easily reuse it.

The dunder enter method (__enter__) needs to use the configuration
characteristics stored in self.configuration to connect to the
database and create a cursor. Other than the mandatory self argument,
dunder enter takes no other arguments, but needs to return the cursor.
Complete the code for the method below:

def __enter__(self) :

 return

Add the
setup
code here.

Don’t forget to
return the cursor.

Can you
think of an
appropriate
annotation?

www.EBooksWorld.ir

344 Chapter 9

dunder enter done

The dunder enter method (__enter__) uses the configuration
characteristics stored in self.configuration to connect to the
database and create a cursor. Other than the mandatory self argument,
dunder enter takes no other arguments, but needs to return the cursor.
You were to complete the code for the method below:

def __enter__(self) :

 return

Did you remember to
prefix all attributes
with “self”?

Return the cursor.

This
annotation
tells users
of this
class what
they can
expect to
be returned
from this
method.

-> ‘cursor’
self.conn = mysql.connector.connect(**self.configuration)
self.cursor = self.conn.cursor()

self.cursor

Don’t forget to pref ix al l at tributes with “se lf”
You may be surprised that we designated conn and cursor as attributes in dunder
enter (by prefixing each with self). We did this in order to ensure both conn and
cursor survive when the method ends, as both variables are needed in the __
exit__ method. To ensure this happens, we added the self prefix to both the conn
and cursor variables; doing so adds them to the class’s attribute list.

Before you get to writing dunder exit, confirm that your code matches ours:

You’re nearly done.
Only one more
method to write.

Be sure to refer to
“self.configuration”
here as opposed to
“dbconfig”.

www.EBooksWorld.ir

you are here 4 345

the context management protocol

The teardown code is where you do your tidying up. For this context
manager, tidying up involves ensuring any data is committed to the
database prior to closing both the cursor and the connection. Add the
code you think you need to the method below.

def __exit__(self, exc_type, exc_value, exc_trace) :Add the
teardown
code here.

Don’t worry about these arguments for now.

Perform Teardown with Dunder “exit”
The dunder exit method provides a place for you to execute the teardown code
that needs to be run when your with statement terminates. Recall the code from the
log_request function that handles teardown:

 ...
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

 conn.commit()
 cursor.close()
 conn.close() This is the

teardown code.
The teardown code commits any data to the database, then closes the cursor and the
connection. This teardown happens every time you interact with the database, so let’s
add this code to your context manager class by moving these three lines into dunder
exit.

Before you do this, however, you need to know that there’s a complication with dunder
exit, which has to do with handling any exceptions that might occur within the
with’s suite. When something goes wrong, the interpreter always notifies __exit__
by passing three arguments into the method: exec_type, exc_value, and exc_
trace. Your def line needs to take this into account, which is why we’ve added the
three arguments to the code below. Having said that, we’re going to ignore this exception-
handling mechanism for now, but will return to it in a later chapter when we discuss
what can go wrong and how you can handle it (so stay tuned).

www.EBooksWorld.ir

def __exit__(self, exc_type, exc_value, exc_trace) :

346 Chapter 9

dunder exit done

self.conn.close()

The teardown code is where you do your tidying up. For this context
manager, tidying up involves ensuring any data is committed to the
database prior to closing both the cursor and the connection. You were to
add the code you think you need to the method below.

Don’t worry about these arguments for now.

self.conn.commit()
self.cursor.close()

The previously saved attributes are used to commit unsaved data, as well as close the cursor and connection. As always, remember to prefix your attribute names with “self”.

-> None

This annotation confirms that this method has no return value; such annotations are optional but are good practice..

Your context manager is ready for test ing
With the dunder exit code written, it’s now time to test your context manager prior
to integrating it into your webapp code. As has been our custom, we’ll first test this
new code at Python’s shell prompt (the >>>). Before doing this, perform one last check
to ensure your code is the same as ours:

The
completed
“UseDatabase”
context
manager class.

A “real” class would include documentation, but we’ve
removed it from this code to save on space (on this page).

This book’s downloads always include comments.

www.EBooksWorld.ir

you are here 4 347

the context management protocol

Test Drive
With the code for DBcm.py in an IDLE edit window, press F5 to test your context manager:Import the

context manager
class from
the “DBcm.py”
module file.

Put the
connection
characteristics
in a dictionary.

Use the
context
manager to
send some
SQL to the
server and
get some
data back.

The returned data may look a little strange...until you

remember that the “cursor.fetchall” call returns
 a list of

tuples, with each tuple corresponding to a row of results

(as returned from the database).

There’s not much code here, is there?
Hopefully, you’re looking at the code above and deciding there’s not an awful lot
to it. As you’ve successfully moved some of your database handling code into the
UseDatabase class, the initialization, setup, and teardown are now handled “behind
the scenes” by your context manager. All you have to do is provide the connection
characteristics and the SQL query you wish to execute—the context manager does
all the rest. Your setup and teardown code is reused as part of the context manager.
It’s also clearer what the “meat” of this code is: getting data from the database and
processing it. The context manager hides the details of connecting/disconnecting to/
from the database (which are always going to be the same), thereby leaving you free to
concentrate on what you’re trying to do with your data.

Let’s update your webapp to use your context manager.

www.EBooksWorld.ir

348 Chapter 9

update your webapp

Reconsidering Your Webapp Code, 1 of 2
It’s been quite a while since you’ve considered your webapp’s code.

The last time you worked on it (in Chapter 7), you updated the log_request
function to save the webapp’s web request to the MySQL database. The reason we
started down the path to learning about classes (in Chapter 8) was to determine the
best way to share the database code you added to log_request. We now know
that the best way (for this situation) is to use the just-written UseDatabase context
manager class.

In addition to amending log_request to use the context manager, the other
function in the code that we need to amend work with the data in the database is
called view_the_log (which currently works with the vsearch.log text file).
Before we get to amending both of these functions, let’s remind ourselves of the
current state of the webapp’s code (on this page and the next). We’ve highlighted the
bits that need to be worked on:

from flask import Flask, render_template, request, escape
from vsearch import search4letters

import mysql.connector

app = Flask(__name__)

def log_request(req: 'flask_request', res: str) -> None:
 """Log details of the web request and the results."""
 dbconfig = {'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

 conn = mysql.connector.connect(**dbconfig)
 cursor = conn.cursor()
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))
 conn.commit()
 cursor.close()
 conn.close()

This code has to
be amended to use
the “UseDatabase”
context manager.

Your webapp’s
code is in the
“vsearch4web.py”
file in your
“webapp” folder.

We need to
import “DBcm” here instead.

www.EBooksWorld.ir

you are here 4 349

the context management protocol

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 """Extract the posted data; perform the search; return results."""
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 """Display this webapp's HTML form."""
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

@app.route('/viewlog')
def view_the_log() -> 'html':
 """Display the contents of the log file as a HTML table."""
 contents = []
 with open('vsearch.log') as log:
 for line in log:
 contents.append([])
 for item in line.split('|'):
 contents[-1].append(escape(item))
 titles = ('Form Data', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

if __name__ == '__main__':
 app.run(debug=True)

This code needs to be amended to use the data in the database via the “UseDatabase” context manager.

Reconsidering Your Webapp Code, 2 of 2

www.EBooksWorld.ir

350 Chapter 9

updating log_request

Recalling the “log_request” Funct ion
When it comes to amending the log_request function to use the UseDatabase
context manager, a lot of the work has already been done for you (as we showed you
the code we were shooting for earlier).

Take a look at log_request once more. At the moment, the database connection
characteristics dictionary (dbconfig in the code) is defined within log_request.
As you’ll want to use this dictionary in the other function you have to amend (view_
the_log), let’s move it out of the log_request’s function so that you can share it
with other functions as needed:

def log_request(req: 'flask_request', res: str) -> None:

 dbconfig = {'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

 conn = mysql.connector.connect(**dbconfig)
 cursor = conn.cursor()
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))
 conn.commit()
 cursor.close()
 conn.close()

Let’s move this
dictionary out
of the function
so it can be
shared with
other functions
as required.

Rather than move dbconfig into our webapp’s global space, it would be useful if we
could somehow add it to our webapp’s internal configuration.

As luck would have it, Flask (like many other web frameworks) comes with a built-in
configuration mechanism: a dictionary (which Flask calls app.config) allows you to
adjust some of your webapp’s internal settings. As app.config is a regular Python
dictionary, you can add your own keys and values to it as needed, which is what you’ll
do for the data in dbconfig.

The rest of log_request’s code can then be amended to use UseDatabase.

Let’s make these changes now.

www.EBooksWorld.ir

you are here 4 351

the context management protocol

Amending the “log_request” Funct ion
Now that we’ve applied the changes to our webapp, our code looks like this:

Near the top of the file, we’ve replaced the import mysql.connector statement
with an import statement that grabs UseDatabase from our DBcm module. The
DBcm.py file itself includes the import mysql.connector statement in its code,
hence the removal of import mysql.connector from this file (as we don’t want
to import it twice).

We’ve also moved the database connection characteristics dictionary into our webapp’s
configuration. And we’ve amended log_request’s code to use our context manager.

After all your work on classes and context managers, you should be able to read and
understand the code shown above.

Let’s now move onto amending the view_the_log function. Make sure your
webapp code is amended to be exactly like ours above before turning the page.

We changed
the old

“import”
statement
to this
updated one.

We added the
connection
characteristics
dictionary to the webapp’s configuration.

We adjusted
the code to use
“UseDatabase”,
being sure to pass
in the database
configuration
from “app.config”.

www.EBooksWorld.ir

352 Chapter 9

updating view_the_log

Recalling the “v iew_the_log” Funct ion
Let’s take a long, hard look at the code in view_the_log, as it’s been quite a while
since you’ve considered it in detail. To recap, the current version of this function
extracts the logged data from the vsearch.log text file, turns it into a list of lists
(called contents), and then sends the data to a template called viewlog.html:

@app.route('/viewlog')
def view_the_log() -> 'html':

 contents = []
 with open('vsearch.log') as log:
 for line in log:
 contents.append([])
 for item in line.split('|'):
 contents[-1].append(escape(item))

 titles = ('Form Data', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

Grab each line of
data from the file,
and then transform
it into a list of
escaped items, which
are appended to the
“contents” list.

The processed log
data is sent to the
template for display.

Here’s what the output looks like when the viewlog.html template is rendered with
the data from the contents list of lists. This functionality is currently available to
your webapp via the /viewlog URL:

The data from
“contents” is displayed
in the form. Note
how the form
data (“phrase” and
“letters”) is presented
in a single column.

www.EBooksWorld.ir

you are here 4 353

the context management protocol

It’s Not Just the Code That Changes
Before diving in and changing the code in view_the_log to use your context
manager, let’s pause to consider the data as stored in the log table in your database.
When you tested your initial log_request code in Chapter 7, you were able to
log into the MySQL console, then check that the data was saved. Recall this MySQL
console session from earlier:

§
$ mysql -u vsearch -p vsearchlogDB
Enter password:

Welcome to MySQL monitor...

mysql> select * from log;
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
| id | ts | phrase | letters | ip | browser_string | results |
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
1	2016-03-09 13:40:46	life, the uni ... ything	aeiou	127.0.0.1	firefox	{'u', 'e', 'i', 'a'}
2	2016-03-09 13:42:07	hitch-hiker	aeiou	127.0.0.1	safari	{'i', 'e'}
3	2016-03-09 13:42:15	galaxy	xyz	127.0.0.1	chrome	{'y', 'x'}
4	2016-03-09 13:43:07	hitch-hiker	xyz	127.0.0.1	firefox	set()
+----+---------------------+--------------------------+---------+-----------+----------------+----------------------+
4 rows in set (0.0 sec)

mysql> quit
Bye

File Edit Window Help Checking our log DB

If you consider the above data in relation to what’s currently stored in the vsearch.
log file, it’s clear that some of the processing view_the_log does is no longer
needed, as the data is now stored in a table. Here’s a snippet of what the log data looks
like in the vsearch.log file:

ImmutableMultiDict([('phrase', 'galaxy'), ('letters', 'xyz')])|127.0.0.1|Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36|{'x', 'y'}

The log data saved as one long string in the “vsearch.log” file.

The log data saved
in a database table

Some of the code currently in view_the_log is only there because the log data
is currently stored as a collection of long strings (delimited by vertical bars) in the
vsearch.log file. That format worked, but we did need to write extra code to make
sense of it.

This is not the case with data in the log table, as it is “structured by default.” This
should mean you don’t need to perform any additional processing within view_
the_log: all you have to do is extract the data from the table, which—happily—is
returned to you as a list of tuples (thanks to DB-API’s fetchall method).

On top of this, the data in the log table separates the value for phrase from the
value for letters. If you make a small change to your template-rendering code, the
output produced can display five columns of data (as opposed to the current four),
making what the browser displays even more useful and easier to read.

www.EBooksWorld.ir

354 Chapter 9

getting to view_the_log

Amending the “v iew_the_log” Funct ion
Based on everything discussed on the last few pages, you’ve two things to do to amend
your current view_the_log code:

1. Grab the log data from the database table (as opposed to the file).

2. Adjust the titles list to support five columns (as opposed to four).

If you’re scratching your head and wondering why this small list of amendments
doesn’t include adjusting the viewlog.html template, wonder no more: you don’t
need to make any changes to that file, as the current template quite happily processes
any number of titles and any amount of data you send to it.

Here’s the view_the_log function’s current code, which you are about to amend:

@app.route('/viewlog')
def view_the_log() -> 'html':

 contents = []
 with open('vsearch.log') as log:
 for line in log:
 contents.append([])
 for item in line.split('|'):
 contents[-1].append(escape(item))

 titles = ('Form Data', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

As a result of
task #1 above,
this code
needs to be
replaced.

As a result
of task #2
above, this
line needs to
be amended.

Here’s the SQL query you’l l need
Ahead of the next exercise (where you’ll update the view_the_log function), here’s
an SQL query that, when executed, returns all the logged data stored in the webapp’s
MySQL database. The data is returned to your Python code from the database as a list
of tuples. You’ll need to use this query in the exercise on the next page:

select phrase, letters, ip, browser_string, results

from log

www.EBooksWorld.ir

you are here 4 355

the context management protocol

Here’s the view_the_log function, which has to be amended to use
the data in the log table. Your job is to provide the missing code. Be sure
to read the annotations for hints on what you need to do:

@app.route('/viewlog')
def view_the_log() -> 'html':

 with :

 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""

 titles = (, , 'Remote_addr', 'User_agent', 'Results')

 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

Which column
titles are
missing from
here?

Use your context manager here,
and don’t forget the cursor.

Send the query to the server, then fetch the results.

I’m just going to make a note of what’s
going on here. Not only is my new code
shorter than what I had before, it’s easier
for me to understand and read, too.

Yep—that was our goal all along.
By moving the log data into a MySQL database,
you’ve removed the requirement to create, and then
process, a custom text-based file format.
Also, by reusing your context manager, you’ve
simplified your interactions with MySQL when
working in Python. What’s not to like?

www.EBooksWorld.ir

356 Chapter 9

view_the_log done

Here’s the view_the_log function, which has to be amended to use
the data in the log table. Your job was to provide the missing code.

@app.route('/viewlog')
def view_the_log() -> 'html':

 with :

 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""

 titles = (, , 'Remote_addr', 'User_agent', 'Results')

 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

Add in the
correct
column names.

This is the same line of code
from the “log_request” function.

Send the query to the server, then fetch the results. Note the assignment of the fetched data to “contents”.
‘Phrase’

UseDatabase(app.config[‘dbconfig’]) as cursor:

cursor.execute(_SQL)
contents = cursor.fetchall()

‘Letters’

It’s nearly t ime for one last Test Dri ve
Before taking this new version of your webapp for a spin, take a moment to
confirm that your view_the_log function is the same as ours:

www.EBooksWorld.ir

you are here 4 357

the context management protocol

Test Drive
It’s time to take your database-ready webapp for a spin.
Be sure the DBcm.py file is in the same folder as your vsearch4web.py file, then start your
webapp in the usual way on your operating system:

• Use python3 vsearch4web.py on Linux/Mac OS X
• Use py -3 vsearch4web.py on Windows.

Use your browser to go to your webapp’s home page (running at http://127.0.0.1:5000), then enter a
handful of searches. Once you’ve confirmed that the search feature is working, use the
/viewlog URL to view the contents of your log in your browser window.
Although the searches you enter will very likely differ from ours, here’s what we saw in our browser
window, which confirms that everything is working as expected:

This browser output confirms the logged data is being read from the MySQL database when the
/viewlog URL is accessed. This means the code in view_the_log is working—which, incidentally,
confirms the log_request function is working as expected, too, as it’s putting the log data in the
database as a result of every successful search.
Only if you feel the need, take a few moments to log into your MySQL database using the MySQL
console to confirm that the data is safely stored in your database server. (Or just trust us: based on
what our webapp is displaying above, it is.)

www.EBooksWorld.ir

358 Chapter 9

answer those questions

All That Remains...
It’s now time to return to the questions first posed in Chapter 7:

• How many requests have been responded to?

• What’s the most common list of letters?

• Which IP addresses are the requests coming from?

• Which browser is being used the most?

Although it is possible to write Python code to answer these questions, we aren’t going
to in this case, even though we’ve just spent this and the previous two chapters looking
at how Python and databases work together. In our opinion, creating Python code to
answer these types of questions is nearly always a bad move...

So if I’m not going to use Python to
answer these questions, what should
I use instead? I learned a little bit
about databases and SQL while working
through Chapter 7—would SQL queries
be a good fit here?

SQL is definitely the way to go.
These types of “data questions” are best answered
by your database technology’s querying mechanism
(which, in MySQL, is SQL). As you’ll see on the
next page, you’d be unlikely to produce Python code
as quickly as writing the SQL queries you need.

Knowing when to use Python and when not to is
important, as is knowing what sets Python apart
from many other programming technologies. While
most mainstream languages support classes and
objects, few provide anything close to Python’s
context management protocol. (In the next chapter,
you’ll meet another feature that sets Python apart
from many other languages: function decorators.)

Before we get to the next chapter, let’s take a quick
(one page) look at those SQL queries...

www.EBooksWorld.ir

you are here 4 359

the context management protocol

Answering the Data Quest ions
Let’s take the questions first posed in Chapter 7 one by one, answering each with the
help of some database queries written in SQL.

How many requests have been responded to?
If you’re already a SQL dude (or dudette), you may be scoffing at this question,
seeing as it doesn’t really get much simpler. You already know that this most basic of
SQL queries displays all the data in a database table:

Which IP addresses are the requests coming from?
The SQL dudes/dudettes out there are probably thinking “that’s almost too easy”:

select * from log;

To transform this query into one that reports how many rows of data a table has, pass
the * into the SQL function count, as follows:

select count(*) from log;

What’s the most common list of letters?
The SQL query that answers this question looks a little scary, but isn’t really. Here it
is:

We’re *not* showing you the answers here. If you want to see them, you’ll have to run these queries yourself in the MySQL console (see Chapter 7 for a refresh).

select count(letters) as 'count', letters
from log
group by letters
order by count desc
limit 1;

Which browser is being used the most?
The SQL query that answers this question is a slight variation on the query that
answered the second question:

select distinct ip from log;

select browser_string, count(browser_string) as 'count'
from log
group by browser_string
order by count desc
limit 1;

As suggested in Chapter 7,
we always recommend this
book when someone’s first
learning SQL (as well as
updating previous knowledge
that might be a bit rusty).

So there you have it: all your pressing questions answered with a few simple SQL queries.
Go ahead and try them at your mysql> prompt before starting in on the next chapter.

www.EBooksWorld.ir

360 Chapter 9

the code

Chapter 9’s Code, 1 of 2

import mysql.connector

class UseDatabase:

 def __init__(self, config: dict) -> None:
 self.configuration = config

 def __enter__(self) -> 'cursor':
 self.conn = mysql.connector.connect(**self.configuration)
 self.cursor = self.conn.cursor()
 return self.cursor

 def __exit__(self, exc_type, exc_value, exc_trace) -> None:
 self.conn.commit()
 self.cursor.close()
 self.conn.close()

This is the
context
manager code
in “DBcm.py”.

from flask import Flask, render_template, request, escape
from vsearch import search4letters

from DBcm import UseDatabase

app = Flask(__name__)

app.config['dbconfig'] = {'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

def log_request(req: 'flask_request', res: str) -> None:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

This is the first
half of the
webapp code in
“vsearch4web.py”.

www.EBooksWorld.ir

you are here 4 361

the context management protocol

Chapter 9’s Code, 2 of 2

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

@app.route('/viewlog')
def view_the_log() -> 'html':
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""
 cursor.execute(_SQL)
 contents = cursor.fetchall()
 titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

if __name__ == '__main__':
 app.run(debug=True)

This is the second half of the webapp code in “vsearch4web.py”.

www.EBooksWorld.ir

www.EBooksWorld.ir

this is a new chapter 363

function decorators10

Wrapping Functions
As soon as I get done
here, my plan is to
decorate Dad’s walls with
my dirty fingers...

When it comes to augmenting your code, Chapter 9’s context
management protocol is not the only game in town.
Python also lets you use function decorators, a technique whereby you can add code

to an existing function without having to change any of the existing function’s code. If

you think this sounds like some sort of black art, don’t despair: it’s nothing of the sort.

However, as coding techniques go, creating a function decorator is often considered to

be on the harder side by many Python programmers, and thus is not used as often as

it should be. In this chapter, our plan is to show you that, despite being an advanced

technique, creating and using your own decorators is not that hard.

www.EBooksWorld.ir

364 Chapter 10

pause for thought

Your Webapp Is Working Well , But...
You’ve shown the latest version of your webapp to a colleague, and they’re
impressed by what you’ve done. However, they pose an interesting question: is it
wise to let any web user view the log page?

The point they’re making is that anybody who is aware of the /viewlog URL can
use it to view the logged data whether they have your permission or not. In fact, at
the moment, every one of your webapp’s URLs are public, so any web user can
access any of them.

Depending on what you’re trying to do with your webapp, this may or may not
be an issue. However, it is common for websites to require users to authenticate
before certain content is made available to them. It’s probably a good idea to be
prudent when it comes to providing access to the /viewlog URL. The question is:
how do you restrict access to certain pages in your webapp?

Only authent icated users gain access
You typically need to provide an ID and password when you access a website
that serves restricted content. If your ID/password combination match, access
is granted, as you’ve been authenticated. Once you’re authenticated, the system
knows to let you access the restricted content. Maintaining this state (whether
authenticated or not) seems like it might be as simple as setting a switch to True
(access allowed; you are logged in) or False (access forbidden; you are not logged
in).

That sounds straightforward to
me. A simple HTML form can ask for the
user’s credentials, and then a boolean on

the server can be set to “True” or “False” as
needed, right?

It’s a bit more complicated than that.
There’s a twist here (due to the way the Web works)
which makes this idea a tad more complicated
than it at first appears. Let’s explore what this
complication is first (and see how to deal with it)
before solving our restricted access issue.

www.EBooksWorld.ir

you are here 4 365

function decorators

When running as a web
server, I pride myself in
responding quickly...and
forgetting fast. I’m stateless...

The Web Is Stateless
In its most basic form, a web server appears incredibly silly: each and every
request that a web server processes is treated as an independent request,
having nothing whatsoever to do with what came before, nor what comes
after.

This means that sending three quick requests to a web server from your
computer appears as three independent individual requests. This is in spite of
the fact that the three requests originated from the same web browser running
on the same computer, which is using the same unchanging IP address (which
the web server sees as part of the request).

As stated at the top of the page: it’s as if the web server is being silly. Even
though we assume the three requests sent from our computer are related, the
web server doesn’t see things this way: every web request is independent of what
came before it, as well as what comes after.

HTTP is to blame...
The reason web servers behave in this way is due to the protocol that
underpins the Web, and which is used by both the web server and your web
browser: HTTP (the HyperText Transfer Protocol).

HTTP dictates that web servers must work as described above, and the reason
for this has to do with performance: if the amount of work a web server
needs to do is minimized, it’s possible to scale web servers to handle many,
many requests. Higher performance is achieved at the expense of requiring
the web server to maintain information on how a series of requests may be
related. This information—known as state in HTTP (and not related to
OOP in any way)—is of no interest to the web server, as every request is
treated as an independent entity. In a way, the web server is optimized to
respond quickly, but forget fast, and is said to operate in a stateless manner.

Which is all well and good until such time as your webapp needs to remember
something.

Isn’t that what variables are
for: remembering stuff in code?
Surely this is a no-brainer?

If only the Web were that simple.
When your code is running as part of a web
server, its behavior can differ from when you
run it on your computer. Let’s explore this
issue in more detail.

www.EBooksWorld.ir

366 Chapter 10

globals are problematic

Your Web Server (Not Your Computer) Runs
Your Code
When Flask runs your webapp on your computer, it keeps your code in memory at all
times. With this in mind, recall these two lines from the bottom of your webapp’s code,
which we initially discussed at the end of Chapter 5:

if __name__ == '__main__':
 app.run(debug=True)

This if statement checks to see whether the interpreter is executing the code directly
or whether the code is being imported (by the interpreter or by something like
PythonAnywhere). When Flask executes on your computer, your webapp’s code runs
directly, resulting in this app.run line executing. However, when a web server is
configured to execute your code your webapp’s code is imported, and the app.run line
does not run.

Why? Because the web server runs your webapp code as it sees fit. This can involve the
web server importing your webapp’s code, then calling its functions as needed, keeping
your webapp’s code in memory at all times. Or the web server may decide to load/
unload your webapp code as needed, the assumption being that, during periods of
inactivity, the web server will only load and run the code it needs. It’s this second mode
of operation—where the web server loads your code as and when it needs it—that can
lead to problems with storing your webapp’s state in variables. For instance, consider
what would happen if you were to add this line of code to your webapp:

The idea here is that other parts of your webapp can refer to the variable logged_
in in order to determine whether a user is authenticated. Additionally, your code
can change this variable’s value as needed (based on, say, a successful login). As the
logged_in variable is global in nature, all of your webapp’s code can access and set
its value. This seems like a reasonable approach, but has two problems.

Firstly, your web server can unload your webapp’s running code at any time (and
without warning), so any values associated with global variables are likely lost, and
are going to be reset to their starting value when your code is next imported. If a
previously loaded function sets logged_in to True, your reimported code helpfully
resets logged_in to False, and confusion reigns...

Secondly, as it stands, there’s only a single copy of the global logged_in variable in
your running code, which is fine if all you ever plan to have is a single user of your
webapp (good luck with that). If you have two or more users each accessing and/or
changing the value of logged_in, not only will confusion reign, but frustration will
make a guest appearance, too. As a general rule of thumb, storing your webapp’s state
in a global variable is a bad idea.

logged_in = False

if __name__ == '__main__':
 app.run(debug=True)

The “logged_in” variable could be used to
indicate whether a user of your webapp is
logged in or not.

This line of code does NOT execute when this code is imported.

Don’t store
your webapp’s
state in global
variables.

www.EBooksWorld.ir

you are here 4 367

function decorators

It’s Time for a Bit of a Session
As a result of what we learned on the last page, we need two things:

• A way to store variables without resorting to using globals

• A way to keep one webapp user’s data from interferring with another’s

Most webapp development frameworks (including Flask) provide for both of these
requirements using a single technology: the session.

Think of a session as a layer of state spread on top of the stateless Web.

By adding a small piece of identification data to your browser (a cookie), and
linking this to a small piece of identification data on the web server (the session
ID), Flask uses its session technology to keep everything straight. Not only can you
store state in your webapp that persists over time, but each user of your webapp
gets their own copy of the state. Confusion and frustration are no more.

To demonstrate how Flask’s session mechanism works, let’s take a look at a very
small webapp that is saved to a file called quick_session.py. Take a moment
to read the code first, paying particular attention to the highlighted parts. We’ll
discuss what’s going on after you’ve had a chance to read this code:

from flask import Flask, session

app = Flask(__name__)

app.secret_key = 'YouWillNeverGuess'

@app.route('/setuser/<user>')
def setuser(user: str) -> str:
 session['user'] = user
 return 'User value set to: ' + session['user']

@app.route('/getuser')
def getuser() -> str:
 return 'User value is currently set to: ' + session['user']

if __name__ == '__main__':
 app.run(debug=True)

Ready Bake
Code

This is the
“quick_session.py”
code.

Be sure to add
“session” to your
list of imports.

Your secret key
should be hard to
guess.

Manipulate
the data in

“session” as
required.

www.EBooksWorld.ir

368 Chapter 10

gotta love sessions

Flask’s Session Technology Adds State
In order to use Flask’s session technology, you first have to import session from
the flask module, which the quick_session.py webapp you just saw does on
its very first line. Think of session as a global Python dictionary within which you
store your webapp’s state (albeit a dictionary with some added superpowers):

from flask import Flask, session
 ...

 ...
app = Flask(__name__)

app.secret_key = 'YouWillNeverGuess'
 ...

Start by
importing

“session”.
Even though your webapp is still running on the stateless Web, this single import gives
your webapp the ability to remember state.

Flask ensures that any data stored in session exists for the entire time your webapp
runs (no matter how many times your web server loads and reloads your webapp code).
Additionally, any data stored in session is keyed by a unique browser cookie, which
ensures your session data is kept away from that of every other user of your webapp.

Just how Flask does all of this is not important: the fact that it does is. To enable all this
extra goodness, you need to seed Flask’s cookie generation technology with a “secret
key,” which is used by Flask to encrypt your cookie, protecting it from any prying eyes.
Here’s how quick_session.py does this:

 ...
@app.route('/setuser/<user>')
def setuser(user: str) -> str:
 session['user'] = user
 return 'User value set to: ' + session['user']
 ...

Create a new
Flask webapp
in the usual way.

Seed Flask’s cookie-generation
technology with a secret key. (Note:
any string will do here. Although,
like any other password you use, it
should be hard to guess.)

Flask’s documentation suggests picking a secret key that is hard to guess, but any
stringed value works here. Flask uses the string to encrypt your cookie prior to
transmitting it to your browser.

Once session is imported and the secret key set, you can use session in your
code as you would any other Python dictionary. Within quick_session.py, the
/setuser URL (and its associated setuser function) assigns a user-supplied value to the
user key in session, then returns the value to your browser:

The value of the “user” variable
is assigned to
the “user” key
in the “session”
dictionary.

The URL expects to be provided with a value to assign to the “user” variable (you’ll see how this works in a little bit).

Now that we’ve set some session data, let’s look at the code that accesses it.

Find out more about
Flask sessions here:
http://flask.pocoo.org/
docs/0.11/api/#sessions

www.EBooksWorld.ir

http://flask.pocoo.org/docs/0.11/api/#sessions
http://flask.pocoo.org/docs/0.11/api/#sessions
http://flask.pocoo.org/docs/0.11/api/#sessions

you are here 4 369

function decorators

 ...
@app.route('/getuser')
def getuser() -> str:
 return 'User value is currently set to: ' + session['user']

if __name__ == '__main__':
 app.run(debug=True)

Dict ionary Lookup Retrieves State
Now that a value is associated with the user key in session, it’s not hard to
access the data associated with user when you need it.

The second URL in the quick_session.py webapp, /getuser, is associated
with the getuser function. When invoked, this function accesses the value
associated with the user key and returns it to the waiting web browser as part
of the stringed message. The getuser function is shown below, together with
this webapp’s dunder name equals dunder main test (first discussed near the end of
Chapter 5):

Accessing the data in
“session” is not hard. It’s a
dictionary lookup.

As is the custom with all Flask apps, we control when “app.run” executes using this well-established Python idiom.

Time for a Test Dri ve?
It’s nearly time to take the quick_session.py webapp for a spin. However,
before we do, let’s think a bit about what it is we want to test.

For starters, we want to check that the webapp is storing and retrieving the session
data provided to it. On top of that, we want to ensure that more than one user
can interact with the webapp without stepping on any other user’s toes: the session
data from one user shouldn’t impact the data of any other.

To perform these tests, we’re going to simulate multiple users by running multiple
browsers. Although the browsers are all running on one computer, as far as the
web server is concerned, they are all independent, individual connections: the
Web is stateless, after all. If we were to repeat these tests on three physically
different computers on three different networks, the results would be the same,
as all web servers see each request in isolation, no matter where the request
originates. Recall that the session technology in Flask layers a stateful
technology on top of the stateless Web.

To start this webapp, use this command within a terminal on Linux or Mac OS X:

 $ python3 quick_session.py

or use this command at a command prompt on Windows:

 C:\> py -3 quick_session.py

www.EBooksWorld.ir

370 Chapter 10

setting session

Test Drive, 1 of 2
With the quick_session.py webapp up and running, let’s open a Chrome browser and use it
to set a value for the user key in session. We do this by typing /setuser/Alice into the
location bar, which instructs the webapp to use the value Alice for user:

Appending a name to
the end of the URL
tells the webapp to
use “Alice” as the
value for “user”.

The webapp confirms that “Alice” is
the current value of “user” for this browser.

Next, let’s open up the Opera browser and use it to set the value of user to Bob (if you don’t have
access to Opera, use whichever browser is handy, as long as it’s not Chrome):

As with Chrome, we append a name to the URL to set the value of “user”. In this case, we append the name “Bob”.Confirmation
that “user” has
been set to
“Bob” by the
webapp

www.EBooksWorld.ir

you are here 4 371

function decorators

When we opened up Safari (or you can use Edge if you are on Windows), we used the webapp’s other
URL, /getuser, to retrieve the current value of user from the webapp. However, when we did this,
we’re greeted with a rather intimidating error message:

The “/getuser”
URL lets you
check the
current value of
“user”.

Yikes! That’s quite the
error message, isn’t
it? The important bit
is at the top: we have
a “KeyError”, as we
haven’t used Safari to
set a value for “user”
yet. (Remember: we
set a “user” value using
Chrome and Opera, not
Safari.)

Let’s use Safari to set the value of user to Chuck:

Now that we’ve used Safari to
set a value for “user”, the webapp
happily responds with a message
confirming that “Chuck” has been
added to the “session” dictionary.

www.EBooksWorld.ir

372 Chapter 10

getting session

Test Drive, 2 of 2
Now that we’ve used the three browsers to set values for user, let’s confirm that the webapp (thanks
to our use of session) is stopping each browser’s value of user from interfering with any other
browser’s data. Even though we’ve just used Safari to set the value of user to Chuck, let’s see
what its value is in Opera by using the /getuser URL:

Despite the fact that Safari just set
“user” to “Chuck”, the Opera browser
confirms that it still thinks the value of
“user” is “Bob”.

Having confirmed that Opera is showing user’s value as Bob, let’s return to the Chrome browser
window and issue the /getuser URL there. As expected, Chrome confirms that, as far as it’s concerned,
the value of user is Alice:

As expected, Chrome still
thinks the value of “user” is “Alice”.

www.EBooksWorld.ir

you are here 4 373

function decorators

We’ve just used Opera and Chrome to access the value of user using the /getuser URL, which just
leaves Safari. Here’s what we see when we issue /getuser in Safari, which doesn’t produce an error
message this time, as user has a value associated with it now (so, no more KeyError):

Sure enough, Safari
confirms that—as far
as it’s concerned—the
value of “user” is still
“Chuck”.

So...each browser
maintains its own copy of
the “user” value, right?

No, not quite—it all happens in the webapp.
The use of the session dictionary in the webapp enables
the behavior you’re seeing here. By automatically setting a
unique cookie within each browser, the webapp (thanks to
session) maintains a browser-identifiable value of user
for each browser.

From the webapp’s perspective, it’s as if there are multiple
values of user in the session dictionary (keyed by
cookie). From each browser’s perspective, it’s as if there is
only ever one value of user (the one associated with their
individual, unique cookie).

www.EBooksWorld.ir

374 Chapter 10

session @ work

Managing Logins with Sessions
Based on our work with quick_session.py, we know we can store browser-
specific state in session. No matter how many browsers interact with our
webapp, each browser’s server-side data (a.k.a. state) is managed for us by Flask
whenever session is used.

Let’s use this new know-how to return to the problem of controlling web access to
specific pages within the vsearch4web.py webapp. Recall that we want to get
to the point where we can restrict who has access to the /viewlog URL.

Rather than experimenting on our working vsearch4web.py code, let’s
put that code to one side for now and work with some other code, which we’ll
experiment with in order to work out what we need to do. We’ll return to the
vsearch4web.py code once we’ve worked out the best way to approach this.
We can then confidently amend the vsearch4web.py code to restrict access to
/viewlog.

Here’s the code to yet another Flask-based webapp. As before, take some time to
read this code prior to our discussion of it. This is simple_webapp.py:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello from the simple webapp.'

@app.route('/page1')
def page1() -> str:
 return 'This is page 1.'

@app.route('/page2')
def page2() -> str:
 return 'This is page 2.'

@app.route('/page3')
def page3() -> str:
 return 'This is page 3.'

if __name__ == '__main__':
 app.run(debug=True)

Ready Bake
Code

This is “simple_webapp.py”. At this stage in this book, you should have no difficulty reading this code and understanding what this webapp does.

www.EBooksWorld.ir

you are here 4 375

function decorators

Let’s Do Login
The simple_webapp.py code is straightforward: all of the URLs are public in
that they can be accessed by anyone using a browser.

In addition to the default / URL (which results in the hello function executing),
there are three other URLs, /page1, /page2, and /page3 (which invoke similarly
named functions when accessed). All of the webapp’s URLs return a specific
message to the browser.

As webapps go, this one is really just a shell, but will do for our purposes. We’d like
to get to the point where /page1, /page2, and /page3 are only visible to logged-
in users, but restricted to everyone else. We’re going to use Flask’s session
technology to enable this functionality.

Let’s begin by providing a really simple /login URL. For now, we’re not going to
worry about providing an HTML form that asks for a login ID and password. All
we’re going to do here is create some code that adjusts session to indicate that
a successful login has occurred.

Let’s write the code for the /login URL below. In the space shown, provide
code that adjusts session by setting a value for the logged_in key
to True. Additionally, have the URL’s function return the “You are now
logged in” message to the waiting browser:

@app.route('/login')

def do_login() -> str:

 return

Add the
new code
here.

In addition to creating the code for the /login URL, you’ll need to make two other changes to the code to
enable sessions. Detail what you think these changes are here:

1

2

www.EBooksWorld.ir

376 Chapter 10

login ready

You were to write the code for the /login URL below. You were to provide
code that adjusts session by setting a value for the logged_in key
to True. Additionally, you were to have the URL’s function return the “You
are now logged in” message to the waiting browser:

@app.route('/login')

def do_login() -> str:

 return

In addition to creating the code for the /login URL, you needed to make two other changes to the code to
enable sessions. You were to detail what you think these changes were:

1

2

session['logged_in'] = True
'You are now logged in.'

We need to add ‘session’ to the import line at the top of the code.

We need to set a value for this webapp’s secret key.

Set the “logged_in” key in the “session” dictionary to “True”.

Return this message
to the waiting
browser.

Let’s not
forget to
do these.

Amend the webapp’s code to handle logins
We’re going to hold off on testing this new code until we’ve added another
two URLs: /logout and /status. Before you move on, make sure your copy of
simple_webapp.py has been amended to include the changes shown below.
Note: we’re not showing all of the webapp’s code here, just the new bits (which
are highlighted):

from flask import Flask, session

app = Flask(__name__)

 ...

@app.route('/login')
def do_login() -> str:
 session['logged_in'] = True
 return 'You are now logged in.'

app.secret_key = 'YouWillNeverGuessMySecretKey'

if __name__ == '__main__':
 app.run(debug=True)

Remember
to import
“session”.

Set a value for this
webapp’s secret key
(which enables the
use of sessions).

Add the
code for the
“/login” URL.

www.EBooksWorld.ir

you are here 4 377

function decorators

Let’s Do Logout and Status Checking
Adding the code for the /logout and /status URLs is our next task.

When it comes to logging out, one strategy is to set the session dictionary’s
logged_in key to False. Another strategy is to remove the logged_in key
from session altogether. We’re going to go with the second option; the reason
why will become clear after we code the /status URL.

Let’s write the code for the /logout URL, which needs to remove the
logged_in key from the session dictionary, then return the “You are
now logged out” message to the waiting browser. Add your code into the
spaces below:

@app.route('/logout')

def do_logout() -> str:

 return

Add the
logout
code here.

With /logout written, we now turn our attention to /status, which returns one of two messages to the
waiting web browser.

The message “You are currently logged in” is returned when logged_in exists as a value in the
session dictionary (and, by definition, is set to True).

The message “You are NOT logged in” is returned when the session dictionary doesn’t have a
logged_in key. Note that we can’t check logged_in for False, as the /logout URL removes the key
from the session dictionary as opposed to changing its value. (We haven’t forgotten that we still need
to explain why we’re doing things this way, and we’ll get to the explanation in a while. For now, trust that
this is the way you have to code this functionality.)

Let’s write the code for the /status URL in the space below:

@app.route('/status')

def check_status() -> str:

 if

 return

 return

Put your status-
checking code here.

Check if the “logged_in” key exists in the “session” dictionary, then return the appropriate message.

Hint: if you’ve forgotten how to remove a key from a dictionary, type “dir(dict)” at the >>> prompt for a list of available dictionary methods.

www.EBooksWorld.ir

378 Chapter 10

logout status ready

W
You were to write the code for the /logout URL, which needed to remove
the logged_in key from the session dictionary, then return the “You
are now logged out” message to the waiting browser:

@app.route('/logout')

def do_logout() -> str:

 return

 session.pop('logged_in’)
'You are now logged out.’

Use the “pop” method to remove the “logged_in” key from the “session” dictionary.

With /logout written, you were to turn your attention to the /status URL, which returns one of two
messages to the waiting web browser.

The message “You are currently logged in” is returned when logged_in exists as a value in the
session dictionary (and, by definition, is set to True).

The message “You are NOT logged in” is returned when the session dictionary doesn’t have a
logged_in key.

You were to write the code for /status in the space below:

@app.route('/status')

def check_status() -> str:

 if

 return

 return

‘logged_in’ in session:
‘You are currently logged in.’

‘You are NOT logged in.’

Does the “logged_in” key exist in the “session” dictionary?

If yes, return this message.
If no, return
this message.

Amend the webapp’s code
once more
We’re still holding off on testing this
new version of the webapp, but here (on
the right) is a highlighted version of the
code you need to add to your copy of
simple_webapp.py.

Make sure you’ve amended your code to
match ours before getting to the next Test
Drive, which is coming up right after we
make good on an earlier promise.

 ...

@app.route('/logout')
def do_logout() -> str:
 session.pop('logged_in')
 return 'You are now logged out.'

@app.route('/status')
def check_status() -> str:
 if 'logged_in' in session:
 return 'You are currently logged in.'
 return 'You are NOT logged in.'

app.secret_key = 'YouWillNeverGuessMySecretKey'

if __name__ == '__main__':
 app.run(debug=True)

Two new
URL
routes

www.EBooksWorld.ir

you are here 4 379

function decorators

Why Not Check for False?
When you coded the /login URL, you set the logged_in key to True in the session
dictionary (which indicated that the browser was logged into the webapp). However, when
you coded the /logout URL, the code didn’t set the value associated with the logged_
in key to False, as we preferred instead to remove all trace of the logged_in key
from the session dictionary. In the code that handled the /status URL, we checked
the “login status” by determining whether or not the logged_in key existed in the
session dictionary; we didn’t check whether logged_in is False (or True, for that
matter). Which begs the question: why does the webapp not use False to indicate “not logged
in”?

The answer is subtle, but important, and it has to do with the way dictionaries work in
Python. To illustrate the issue, let’s experiment at the >>> prompt and simulate what can
happen to the session dictionary when used by the webapp. Be sure to follow along
with this session, and carefully read each of the annotations:

The above experimentation shows that it is not possible to check a dictionary for a key’s
value until a key/value pairing exists. Trying to do so results in an KeyError. As it’s
a good idea to avoid errors like this, the simple_webapp.py code checks for the
existence of the logged_in key as proof that the browser’s logged in, as opposed to
checking the key’s actual value, thus avoiding the possibility of a KeyError.

Create a new, empty dictionary called “session”.
Try to check for the existence of a “logged_in” value using an “if” statement.
Whoops! The “logged_in” key doesn’t
exist yet, so we get a “KeyError”, and
our code has crashed as a result.
However, if we check for existence using
“in”, our code doesn’t crash (there’s no
“KeyError”) even though the key has no value.
Let’s assign a value to the “logged_in” key.

Checking for existence with “in” still works,
although this time around we get a positive
result (as the key exists and has a value).
Checking with an “if” statement works too (now that the key has a value associated with it). However, if the key is removed from the dictionary (using the “pop” method) this code is once again vulnerable to “KeyError”.

www.EBooksWorld.ir

380 Chapter 10

status login logout

Test Drive
Let’s take the simple_webapp.py webapp for a spin to see how well the /login, /logout, and
/status URLs perform. As with the last Test Drive, we’re going to test this webapp using more than one
browser in order to confirm that each browser maintains its own “login state” on the server. Let’s start
the webapp from our operating system’s terminal:
 On Linux and Mac OS X: python3 simple_webapp.py

 On Windows: py -3 simple_webapp.py

Let’s fire up Opera and check its initial login status by accessing the /status URL. As expected, the
browser is not logged in:

Access the “/status”
URL to determine
whether the browser
is logged in or not. As you’ve only just

started the webapp, and this is your first interaction with it, this message confirms exactly what you’d expect: that you are not logged in.

Let’s simulate logging in, by accessing the /login URL. The message changes to confirm that the login
was successful:

Accessing “/login”
does exactly what
is expected of it.
The browser is
now logged into
the webapp.

www.EBooksWorld.ir

you are here 4 381

function decorators

Now that you are logged in, let’s confirm the status change by accessing the /status URL within Opera.
Doing so confirms that the user of the Opera browser is logged in. If you use Chrome to check the
status, too, you’ll see that the user of Chrome isn’t logged in, which is exactly what we want (as each
user of the webapp—each browser—has its own state maintained by the webapp):

The user of
the Opera
browser is
currently
logged in. The user of the Chrome browser (on the same

computer) is *not* logged in, as your webapp
maintains a separate copy of Chrome’s session data.
This is exactly what we want.

To conclude, let’s access the /logout URL within Opera to tell the webapp that we are logging out of
the session:

Recall that accessing “/logout”
removes the “logged_in” key from
this browser’s “session”, which has
the effect of simulating a logout.

Although we haven’t asked any of our browser’s
users for a login ID or password, the /login, /
logout, and /status URLs allow us to simulate
what would happen to the webapp’s session
dictionary if we were to create the required HTML
form, then hook up the form’s data to a backend

“credentials” database. The details of how this
might happen are very much application-specific,
but the basic mechanism (i.e., manipulating
session) is the same no matter what a specific
webapp might want to do.
Are we now ready to restrict access to the
/page1, /page2, and /page3 URLs?

www.EBooksWorld.ir

382 Chapter 10

ready to restrict?

Can We Now Restrict Access to URLs?

Jim

Joe
Frank

Take a look at this
login code, guys. I think
it’s pretty clear what I
need to do...

Jim: Hey, Frank...what are you stuck on?

Frank: I need to come up with a way to restrict access to the
/page1, /page2, and /page3 URLs...

Joe: It can’t be that hard, can it? You’ve already got the code
you need in the function that handles /status...

Frank: ...and it knows if a user’s browser is logged in or not,
right?

Joe: Yeah, it does. So, all you have to do is copy and paste
that checking code from the function that handles /status
into each of the URLs you want to restrict, and then you’re
home and dry!

Jim: Oh, man! Copy and paste...the web developer’s Achilles’
heel. You really don’t want to copy and paste code like that...
it can only lead to problems down the road.

Frank: Of course! CS 101... I’ll create a function with the
code from /status, then call that function as needed within the
functions that handle the /page1, /page2, and /page3 URLs.
Problem solved.

Joe: I like that idea...and I think it’ll work. (I knew there was
a reason we sat through all those boring CS lectures.)

Jim: Hang on...not so fast. What you’re suggesting with a
function is much better than your copy-and-paste idea, but
I’m still not convinced it’s the best way to go here.

Frank and Joe (together, and incredulously): What’s not to
like?!?!?

Jim: It bugs me that you’re planning to add code to the
functions that handle the /page1, /page2, and /page3 URLs
that has nothing to do with what those functions actually
do. Granted, you need to check whether a user is logged in
before granting access, but adding a function call to do this
to every URL doesn’t sit quite right with me...

Frank: So what’s your big idea, then?

Jim: If it were me, I’d create, then use, a decorator.

Joe: Of course! That’s an even better idea. Let’s do that.

www.EBooksWorld.ir

you are here 4 383

function decorators

Copy-and-Paste Is Rarely a Good Idea
Let’s convince ourselves that the ideas suggested on the last page are not the best
way to approach the problem at hand—namely, how best to restrict access to
specific web pages.

The first suggestion was to copy and paste some of the code from the function
that handles the /status URL (namely, the check_status function). Here’s the
code in question:

@app.route('/status')
def check_status() -> str:
 if 'logged_in' in session:
 return 'You are currently logged in.'
 return 'You are NOT logged in.'

This is the
code to copy
and paste.

This code returns a different message based on whether or not the user’s browser is logged in.

Here’s what the page1 function currently looks like:

@app.route('/page1')
def page1() -> str:
 return 'This is page 1.'

If we copy and paste the highlighted code from check_status into page1,
the latter’s code would end up looking like this:

@app.route('/page1')
def page1() -> str:
 if 'logged_in' in session:
 return 'This is page 1.'
 return 'You are NOT logged in.'

This is the page-
specific functionality.

...then do the page-specific functionality.

Check if the user’s browser
is logged in...

Otherwise, inform the user that they are not logged in.The above code works, but if you were to repeat this copy-and-paste activity
for the /page2 and /page3 URLs (as well as any other URLs you were to add to
your webapp), you’d quickly create a maintenance nightmare, especially when you
consider all the edits you’d have to make should you decide to change how your
login-checking code works (by, maybe, checking a submitted user ID and password
against data stored in a database).

Put shared code into its own funct ion
When you have code that you need to use in many different places, the classic
solution to the maintenance problem inherent in any copy-and-paste “quick fix” is
to put the shared code into a function, which is then invoked as needed.

As such a strategy solves the maintenance problem (as the shared code exists in
only one place as opposed to being copied and pasted willy-nilly), let’s see what
creating a login-checking function does for our webapp.

www.EBooksWorld.ir

384 Chapter 10

use a function

Creat ing a Funct ion Helps, But...
Let’s create a new function called check_logged_in, which, when invoked,
returns True if the user’s browser is currently logged in, and False otherwise.

It’s not a big job (most of the code is already in check_status); here’s how
we’d write this new function:

def check_logged_in() -> bool:
 if 'logged_in' in session:
 return True
 return False

Rather than returning a message, this code returns a boolean based on whether or not the user’s browser is logged in.
With this function written, let’s use it in the page1 function instead of that copied
and pasted code:

@app.route('/page1')
def page1() -> str:
 if not check_logged_in():
 return 'You are NOT logged in.'
 return 'This is page 1.' This code only ever runs

if the user’s browser is
logged in.

Call the “check_logged_in” function to determine the login status, then act accordingly.We’re checking
if we are *not*
logged in.

This strategy is a bit better than copy-and-paste, as you can now change how the
login process works by making changes to the check_logged_in function.
However, to use the check_logged_in function you still have to make similar
changes to the page2 and page3 functions (as well as to any new URLs you
create), and you do that by copying and pasting this new code from page1 into
the other functions... In fact, if you compare what you did to the page1 function
on this page with what you did to page1 on the last page, it’s roughly the same
amount of work, and it’s still copy-and-paste! Additionally, with both of these

“solutions,” the added code is obscuring what page1 actually does.

It would be nice if you could somehow check if the user’s browser is logged in
without having to amend any of your existing function’s code (so as not to obscure
anything). That way, the code in each of your webapp’s functions can remain
directly related to what each function does, and the login status-checking code
won’t get in the way. If only there was a way to do this?

As we learned from our three friendly developers—Frank, Joe, and Jim—a few
pages back, Python includes a language feature that can help here, and it goes by
the name decorator. A decorator allows you to augment an existing function
with extra code, and it does this by letting you change the behavior of the existing
function without having to change its code.

If you’re reading that last sentence and saying: “What?!?!?”, don’t worry: it does
sound strange the first time you hear it. After all, how can you possibly change
how a function works without changing the function’s code? Does it even make
sense to try?

Let’s find out by learning about decorators.

www.EBooksWorld.ir

you are here 4 385

function decorators

You’ve Been Using Decorators All Along
You’ve been using decorators for as long as you’ve written webapps with Flask,
which you started back in Chapter 5.

Here’s the earliest version of the hello_flask.py webapp from that chapter,
which highlights the use of a decorator called @app.route, which comes with
Flask. The @app.route decorator is applied to an existing function (hello in
this code), and the decorator augments the function it precedes by arranging to
call hello whenever the webapp processes the / URL. Decorators are easy to
spot; they’re prefixed with the @ symbol:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello world from Flask!'

app.run()

Here’s the decorator,
which—like all decorators—
is prefixed with the @
symbol.

Note how, as a user of the @app.route decorator, you have no idea how the
decorator works its magic. All you’re concerned with is that the decorator does
what it promises: links a given URL with a function. All of the nitty-gritty, behind-
the-scenes details of how the decorator works are hidden from you.

When you decide to create a decorator, you need to peek under the covers and
(much like when you created a context manager in the last chapter) hook into
Python’s decorator machinery. There are four things that you need to know and
understand to write a decorator:

How to create a function1

How to pass a function as an argument to a function2

How to return a function from a function3

How to process any number and type of function arguments4

You’ve been successfully creating and using your own functions since Chapter
4, which means this list of “four things to know” is really only three. Let’s take
some time to work through items 2 through 4 from this list as we progress toward
writing a decorator of our own.

www.EBooksWorld.ir

386 Chapter 10

functions are objects

Pass a Funct ion to a Funct ion
It’s been a while, but way back in Chapter 2 we introduced the notion that
everything is an object in Python. Although it may sound counterintuitive, the

“everything” includes functions, which means functions are objects, too.

Clearly, when you invoke a function, it runs. However, like everything else in
Python, functions are objects, and have an object ID: think of functions as

“function objects.”

Take a quick look at the short IDLE session below. A string is assigned to a
variable called msg, and then its object ID is reported through a call to the id
built-in function (BIF). A small function, called hello, is then defined. The
hello function is then passed to the id BIF that reports the function’s object ID.
The type BIF then confirms that msg is a string and hello is a function, and
finally hello is invoked and prints the current value of msg on screen:

The “id” BIF reports the
unique object identifier for
any object provided to it. The “type” BIF reports on an object’s type.

We were a little devious in not drawing your attention to this before we had you
look at the above IDLE session, but...did you notice how we passed hello to the
id and type BIFs? We didn’t invoke hello; we passed its name to each of the
functions as an argument. In doing so, we passed a function to a function.

Funct ions can take a funct ion as an argument
The calls to id and type above demonstrate that some of Python’s built-in
functions accept a function as an argument (or to be more precise: a function object).
What a function does with the argument is up to the function. Neither id nor
type invokes the function, although it could have. Let’s see how that works.

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

We’ll check off each completed topic as we work through this material.

www.EBooksWorld.ir

you are here 4 387

function decorators

Invoking a Passed Funct ion
When a function object is passed as an argument to a function, the receiving
function can invoke the passed-in function object.

Here’s a small function (called apply) that takes two arguments: a function object
and a value. The apply function invokes the function object and passes the value
to the invoked function as an argument, returning the results of invoking the
function on the value to the calling code:

If you’re reading this page and wondering when you’d ever need to do something
like this, don’t fret: we’ll get to that when we write our decorator. For now,
concentrate on understanding that it’s possible to pass a function object to a
function, which the latter can then invoke.

Note how apply’s annotations hint that it accepts any function object together
with any value, then returns anything (which is all very generic). A quick test of
apply at the >>> prompt confirms that apply works as expected:

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

The “apply”
function accepts
a function object
as an argument.
The “object”
annotation helps
to confirm our
intention here
(and the use of
the argument
name “func”
is a common
convention).

Any value (of any type) can be passed as the second
argument. Again, the annotations hint at what’s allowed as an argument type here: any object.

The function (passed as an argument) is invoked, with the “value” passed
to it as its only argument. The result of this function call is returned
from the “apply” function.

The “apply”
function runs a
bunch of BIFs
against some
values (and works
as expected).

The “apply” function takes any object for “value”. In this example, it takes itself as “value” and confirms that it’s a function.

In each of these examples, the
first argument to “apply” is assigned to the “func”
argument (above).

www.EBooksWorld.ir

388 Chapter 10

functions inside functions

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

Funct ions Can Be Nested Inside Funct ions
Usually, when you create a function, you take some existing code and make it
reusable by giving it a name, and using the existing code as the function’s suite.
This is the most common function use case. However, what sometimes comes as a
surprise is that, in Python, the code in a function’s suite can be any code, including
code that defines another function (often referred to as a nested or inner function).
Even more surprising is that the nested function can be returned from the outer,
enclosing function; in effect, what gets returned is a function object. Let’s look at a
few examples that demonstrate these other, less common function use cases.

First up is an example that shows a function (called inner) nested inside another
function (called outer). It is not possible to invoke inner from anywhere other
than within outer’s suite, as inner is local in scope to outer:

def outer():
 def inner():
 print('This is inner.')

 print('This is outer, invoking inner.')
 inner()

The “inner”
function is
defined within the
enclosing function’s
suite.

The “inner” function is invoked from
“outer”.

When outer is invoked, it runs all the code in its suite: inner is defined, the call
to the print BIF in outer is executed, and then the inner function is invoked
(which calls the print BIF within inner). Here’s what appears on screen:

This is outer, invoking inner.
This is inner.

When would you ever use this?
Looking at this simple example, you might find it hard to think of a situation
where creating a function inside another function would be useful. However,
when a function is complex and contains many lines of code, abstracting some of
the function’s code into a nested function often makes sense (and can make the
enclosing function’s code easier to read).

A more common usage of this technique arranges for the enclosing function to
return the nested function as its value, using the return statement. This is what
allows you to create a decorator.

So, let’s see what happens when we return a function from a function.

The printed
messages appear in
the order: “outer”
first, then “inner”.

www.EBooksWorld.ir

you are here 4 389

function decorators

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

Return a Funct ion from a Funct ion
Our second example is very similar to the first, but for the fact that the outer
function no longer invokes inner, but instead returns it. Take a look at the code:

def outer():
 def inner():
 print('This is inner.')

 print('This is outer, returning inner.')
 return inner

The “inner”
function is still
defined within
“outer”.

The “return” statement does not invoke “inner”; instead, it returns the “inner” function object to the calling code.
Let’s see what this new version of the outer function does, by returning to the
IDLE shell and taking outer for a spin.

Note how we assign the result of invoking outer to a variable, called i in this
example. We then use i as if it were a function object—first checking its type
by invoking the type BIF, then invoking i as we would any other function (by
appending parentheses). When we invoke i, the inner function executes. In
effect, i is now an alias for the inner function as created inside outer:

The “outer” function is invoked.

The result of
calling “outer”
is assigned
to a variable
called “i”.

We check that “i” is, in fact, a function.

We invoke “i” and—voila!—the
“inner” function’s code executes.

So far, so good. You can now return a function from a function, as well as send a
function to a function. You’re nearly ready to put all this together in your quest to
create a decorator. There’s just one more thing you need to understand: creating a
function that can handle any number and type of arguments. Let’s look at how to
do this now.

www.EBooksWorld.ir

390 Chapter 10

argument lists

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

You’re nearly there.
One more topic to
cover, and then
you’ll be ready to
create a decorator.

Accept ing a List of Arguments
Imagine you have a requirement to create a function (which we’ll call myfunc in
this example) that can be called with any number of arguments. For example, you
might call myfunc like this:

 myfunc(10)

or you might call myfunc like this:

 myfunc()

or you might call myfunc like this:

 myfunc(10, 20, 30, 40, 50, 60, 70)

In fact, you might call myfunc with any number of arguments, with the proviso
that you don’t know ahead of time how many arguments are going to be provided.

As it isn’t possible to define three distinct versions of myfunc to handle each of
the three above invocations, the question becomes: is it possible to accept any number
of arguments in a function?

Use * to accept an arbitrary list of arguments
Python provides a special notation that allows you to specify that a function can
take any number of arguments (where “any number” means “zero or more”).
This notation uses the * character to represent any number, and is combined with
an argument name (by convention, args is used) to specify that a function can
accept an arbitrary list of arguments (even though *args is technically a tuple).

Here’s a version of myfunc that uses this notation to accept any number of
arguments when invoked. If any arguments are provided, myfunc prints their
values to the screen:

One argument

No arguments

Many arguments (which, in this example, are all numbers, but could be anything: numbers, strings, booleans, list.

The “*args”
notation means
“zero or more
arguments.”

Think of “args” as a list of arguments, which can be processed like any other list (even though it’s a tuple).

Think of *
as meaning
“expand to a
list of values.”

Arranges to display the list of argument values on a single linewww.EBooksWorld.ir

you are here 4 391

function decorators

No matter
the number of
arguments provided,
“myfunc” does
the right thing
(i.e., processes
its arguments, no
matter how many).

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

Processing a List of Arguments
Now that myfunc exists, let’s see if it can handle the example invocations from
the last page, namely:

 myfunc(10)
 myfunc()
 myfunc(10, 20, 30, 40, 50, 60, 70)

Here’s another IDLE session that confirms that myfunc is up to the task. No
matter how many arguments we supply (including none), myfunc processes them
accordingly:

When provided with no arguments, “myfunc” does nothing.

You can even mix and match the
types of the values provided, and
“myfunc” still does the right thing.

* works on the way in, too
If you provide a list to myfunc as an argument, the list (despite potentially
containing many values) is treated as one item (i.e., it’s one list). To instruct the
interpreter to expand the list to behave as if each of the list’s items were an
individual argument, prefix the list’s name with the * character when invoking the
function.

Another short IDLE session demonstrates the difference using * can have:

The list is
processed as a
single argument
to the function.

A list of
six integers

When a list is prefixed with “*”, it expands to a list of individual arguments.

www.EBooksWorld.ir

392 Chapter 10

argument dictionaries

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

Accept ing a Dict ionary of Arguments
When it comes to sending values into functions, it’s also possible to provide the
names of the arguments together with their associated values, then rely on the
interpreter to match things up accordingly.

You first saw this technique in Chapter 4 with the search4letters function,
which—you may recall—expects two argument values, one for phrase and
another for letters. When keyword arguments are used, the order in which the
arguments are provided to the search4letters function doesn’t matter:

Like with lists, it’s also possible arrange for a function to accept an arbitrary
number of keyword arguments—that is, keys with values assigned to them (as with
phrase and letters in the above example).

Use ** to accept arbitrary keyword arguments
In addition to the * notation, Python also provides **, which expands to a
collection of keyword arguments. Where * uses args as its variable name (by
convention), ** uses kwargs, which is short for “keyword arguments.” (Note:
you can use names other than args and kwargs within this context, but very
few Python programmers do.)

Let’s look at another function, called myfunc2, which accepts any number of
keyword arguments:

Think of ** as
meaning “expand
to a dictionary of
keys and values.”

Within the function,
“kwargs” behaves
just like any other
dictionary.

The “**” tells
the function to
expect keyword
arguments.

search4letters(letters='xyz', phrase='galaxy')

def search4letters(phrase:str, letters:str='aeiou') -> set:

This is
another
way to
invoke a
function.

This is one
way to
invoke the
function.

Take each key
and value pairing in the dictionary, and display it on screen.

www.EBooksWorld.ir

you are here 4 393

function decorators

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

Processing a Dict ionary of Arguments
The code within myfunc2’s suite takes the dictionary of arguments and processes
them, displaying all the key/value pairings on a single line.

Here’s another IDLE session that demonstrates myfunc2 in action. No matter
how many key/value pairings are provided (including none), myfunc2 does the
right thing:

** works on the way in, too
You probably guessed this was coming, didn’t you? As with *args, when you
use **kwargs it’s also possible to use ** when invoking the myfunc2 function.
Rather than demonstrate how this works with myfunc2, we’re going to remind
you of a prior usage of this technique from earlier in this book. Back in Chapter
7, when you learned how to use Python’s DB-API, you defined a dictionary of
connection characteristics as follows:

Two
keyword
arguments
provided

Providing no arguments
isn’t an issue.

You can provide any number of keyword
arguments, and “myfunc2” does the right thing.

dbconfig = { 'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

When it came time to establish a connection to your waiting MySQL (or
MariaDB) database server, you used the dbconfig dictionary as follows. Notice
anything about the way the dbconfig argument is specified?

conn = mysql.connector.connect(**dbconfig)

By prefixing the dbconfig argument with **, we tell the interpreter to treat the
single dictionary as a collection of keys and their associated values. In effect, it’s as
if you invoked connect with four individual keyword arguments, like this:

Does this look
familiar?

A dictionary of
key/value pairings

conn = mysql.connector.connect('host'='127.0.0.1', 'user'='vsearch',
 'password'='vsearchpasswd', 'database'='vsearchlogDB')

www.EBooksWorld.ir

394 Chapter 10

argument anything

Accept ing Any Number and Type of
Funct ion Arguments
When creating your own functions, it’s neat that Python lets you accept a list of
arguments (using *), in addition to any number of keyword arguments (using **).
What’s even neater is that you can combine the two techniques, which lets you
create a function that can accept any number and type of arguments.

Here’s a third version of myfunc (which goes by the shockingly imaginative
name of myfunc3). This function accepts any list of arguments, any number of
keyword arguments, or a combination of both:

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

The original
“myfunc” works
with any list
of arguments.

The “myfunc2”
function works
with any amount
of key/value pairs.

The “myfunc3”
function works with
any input, whether a
list of arguments, a
bunch of key/value
pairs, or both.

Both
“*args” and
“**kwargs”
appear on
the “def”
line.

This short IDLE session showcases myfunc3:

Works
with no
arguments

Works with a
combination
of a list
and keyword
arguments

Works with a list
Works with
keyword
arguments

www.EBooksWorld.ir

you are here 4 395

function decorators

Pass a function to a
function.
Return a function
from a function.
Process any number/
type of arguments.

A Recipe for Creat ing a Funct ion Decorator
With three items marked in the checklist on the right, you now have an
understanding of the Python language features that allow you to create a
decorator. All you need to know now is how you take these features and combine
them to create the decorator you need.

Just like when you created your own context manager (in the last chapter), creating
a decorator conforms to a set of rules or recipe. Recall that a decorator allows you
to augment an existing function with extra code, without requiring you to change
the existing function’s code (which, we’ll admit, still sounds freaky).

To create a function decorator, you need to know that:

We’re ready to
have a go at
writing our own
decorator.

A decorator is a function
In fact, as far as the interpreter is concerned, your decorator is just another
function, albeit one that manipulates an existing function. Let’s refer to this
existing function as the decorated function from here on in. Having made it
this far in this book, you know that creating a function is easy: use Python’s
def keyword.

1

A decorator takes the decorated function as an argument
A decorator needs to accept the decorated function as an argument. To
do this, you simply pass the decorated function as a function object to your
decorator. Now that you’ve worked through the last 10 pages, you know
that this too is easy: you arrive at a function object by referring to the
function without parentheses (i.e., using just the function’s name).

2

A decorator returns a new function
A decorator returns a new function as its return value. Much like when
outer returned inner (a few pages back), your decorator is going to do
something similar, except that the function it returns needs to invoke the
decorated function. Doing this is—dare we say it?—easy but for one small
complication, which is what Step 4 is all about.

3

A decorator maintains the decorated function’s signature
A decorator needs to ensure that the function it returns takes the same
number and type of arguments as expected by the decorated function.
The number and type of any function’s arguments is known as its
signature (as each function’s def line is unique).

4

It’s time to grab a pencil and put this information to work creating your first decorator.

www.EBooksWorld.ir

396 Chapter 10

what’s the motivation?

Recap: We Need to Restrict Access to
Certain URLs

OK. I think I’m
getting most of this.
But remind me...why am

I doing this again?

We’re trying to
avoid copying and
pasting all that login-
status-checking code.

@app.route('/status')
def check_status() -> str:
 if 'logged_in' in session:
 return 'You are currently logged in.'
 return 'You are NOT logged in.'

We want to avoid
copying and
pasting this code.

Remember: this code returns a different message based on whether or not the user’s browser is logged in.

We’ve been working with the simple_webapp.py code, and we need our
decorator to check to see whether the user’s browser is logged in or not. If it
is logged in, restricted web pages are visible. If the browser isn’t logged in, the
webapp should advise the user to log in prior to viewing any restricted pages.
We’ll create a decorator to handle this logic. Recall the check_status function,
which demonstrates the logic we want our decorator to mimic:

www.EBooksWorld.ir

you are here 4 397

function decorators

Creat ing a Funct ion Decorator
To comply with item 1 in our list, you had to create a new function. Remember:

A decorator is a function
In fact, as far as the interpreter is concerned, your decorator is just another
function, albeit one that manipulates an existing function. Let’s refer to this
existing function as the decorated function from here on in. You know that
creating a function is easy: use Python’s def keyword.

1

Complying with item 2 involves ensuring your decorator accepts a function object
as an argument. Again, remember:

A decorator takes the decorated function as an argument
Your decorator needs to accept the decorated function as an argument.
To do this, you simply pass the decorated function as a function object to
your decorator. You arrive at a function object by referring to the function
without parentheses (i.e., using the function’s name).

2

Let’s put your decorator in its own module (so that you can more easily
reuse it). Begin by creating a new file called checker.py in your text
editor.

You’re going to create a new decorator in checker.py called check_
logged_in. In the space below, provide your decorator’s def line. Hint:
use func as the name of your function object argument:Put the decorator’s

“def” line here.

Q: Does it matter where on my system I create checker.py?

A: Yes. Our plan is to import checker.py into webapps that need it, so you need to ensure that the interpreter can find it when your
code includes the import checker line. For now, put checker.py in the same folder as simple_webapp.py.

www.EBooksWorld.ir

398 Chapter 10

decorator takes shape

def check_logged_in(func):
The “check_logged_in” decorator takes
a single argument: the function object of
the decorated function.

We decided to put your decorator in its own module (so that you can more
easily reuse it).

You began by creating a new file called checker.py in your text editor.

Your new decorator (in checker.py) is called check_logged_in
and, in the space below, you were to provide your decorator’s def line:

That’s almost too easy, isn’t it?
Remember: a decorator is just another function, which takes a function object as an
argument (func in the above def line).

Let’s move on to the next item in our “create a decorator” recipe, which is a little
more involved (but not by much). Recall what you need your decorator to do:

A decorator returns a new function
Your decorator returns a new function as its return value. Just like when
outer returned inner (a few pages back), your decorator is going to do
something similar, except that the function it returns needs to invoke the
decorated function.

3

Earlier in this chapter, you met the outer function, which, when invoked,
returned the inner function. Here’s outer’s code once more:

def outer():
 def inner():
 print('This is inner.')

 print('This is outer, returning inner.')
 return inner

The “inner” function is
nested inside “outer”.All of this code

is in the “outer”
function’s suite.

The “inner” function object is returned as the
result of invoking “outer”. Note the lack of
parentheses after “inner”, as we’re returning a
function object. We are *not* invoking “inner”.

www.EBooksWorld.ir

you are here 4 399

function decorators

Now that you’ve written your decorator’s def line, let’s add some code to
its suite. You need to do four things here.

1. Define a nested function called wrapper that is returned by check_
logged_in. (You could use any function name here, but, as you’ll see in
a bit, wrapper is a pretty good choice.)

2. Within wrapper, add some of the code from your existing check_
status function that implements one of two behaviors based on
whether the user’s browser is logged in or not. To save you the page-flip,
here’s the check_status code once more (with the important bits
highlighted):

def check_logged_in(func):

@app.route('/status')
def check_status() -> str:
 if 'logged_in' in session:
 return 'You are currently logged in.'
 return 'You are NOT logged in.'

3. As per item 3 of our decorator-creating recipe, you need to adjust
the nested function’s code so that it invokes the decorated function (as
opposed to returning the “You are currently logged in” message).

4. With the nested function written, you need to return its function object
from check_logged_in.

Add the required code to check_logged_in’s suite in the spaces
provided below:

1. Define
your nested
function.

4. Don’t forget to return the
nested function.

2 and 3.
Add the
code you
want the
nested
function to execute.

www.EBooksWorld.ir

400 Chapter 10

decorator almost there

With your decorator’s def line written, you were to add some code to its
suite. You needed to do four things:

1. Define a nested function called wrapper that is returned by check_
logged_in.

2. Within wrapper, add some of the code from your existing check_
status function that implements one of two behaviors based on
whether the user’s browser is logged in or not.

 3. As per item 3 of our decorator-creating recipe, adjust the nested
function’s code so that it invokes the decorated function (as opposed to
returning the “You are currently logged in” message).

4. With the nested function written, return its function object from
check_logged_in.

You were to add the required code to check_logged_in’s suite in the
spaces provided:

def check_logged_in(func):
A nested
“def” line
starts the
“wrapper”
function.

Did you remember to return the nested function?

def wrapper():
if ‘logged_in' in session:

return func()
return ‘You are NOT logged in.'

return wrapper

If the user’s
browser is logged in...

...invoke the
decorated function.

If the user’s
browser isn’t
logged in, return an appropriate message.

Can you see why the nested funct ion is called “wrapper”?
If you take a moment to study the decorator’s code (so far), you’ll see that the nested
function not only invokes the decorated function (stored in func), but also augments
it by wrapping extra code around the call. In this case, the extra code is checking to see
if the logged_in key exists within your webapp’s session. Critically, if the user’s
browser is not logged in, the decorated function is never invoked by wrapper.

www.EBooksWorld.ir

you are here 4 401

function decorators

The Final Step: Handling Arguments
We are nearly there—the “guts” of the decorator’s code is in place. What remains
is to ensure the decorator handles the decorated function’s arguments properly, no
matter what they might be. Recall item 4 from the recipe:

A decorator maintains the decorated function’s signature
Your decorator needs to ensure that the function it returns takes the same
number and type of arguments as expected by the decorated function.

4

When a decorator is applied to an existing function, any calls to the existing
function are replaced by calls to the function returned by the decorator. As you
saw in the solution on the previous page, to comply with item 3 of our decorator-
creation recipe, we return a wrapped version of the existing function, which
implements extra code as needed. This wrapped version decorates the existing
function.

But there’s a problem with this, as doing the wrapping on its own is not enough;
the calling characteristics of the decorated function need to be maintained, too.
This means, for instance, that if your existing function accepts two arguments,
your wrapped function also has to accept two arguments. If you could know
ahead of time how many arguments to expect, then you could plan accordingly.
Unfortunately, you can’t know this ahead of time because your decorator can be
applied to any existing function, which could have—quite literally—any number
and type of arguments.

What to do? The solution is to go “generic,” and arrange for the wrapper
function to support any number and type of arguments. You already know how to
do this, as you’ve already seen what *args and **kwargs can do.

Let’s adjust the wrapper function to accept any number and type of
arguments. Let’s also ensure that when func is invoked, it uses the same
number and type of arguments as were passed to wrapper. Add in the
argument code in the spaces provided below:

def check_logged_in(func):

 def wrapper():

 if 'logged_in' in session:

 return func()

 return 'You are NOT logged in.'

 return wrapper

What do you
need to add to
the “wrapper”
function’s
signature?

Remember: *args
and **kwargs
support any
number and type
of arguments.

www.EBooksWorld.ir

402 Chapter 10

a complete decorator

You were to adjust the wrapper function to accept any number and type
of arguments, as well as ensure that, when func is invoked, it uses the
same number and type of arguments as were passed to wrapper:

def check_logged_in(func):

 def wrapper():

 if 'logged_in' in session:

 return func()

 return 'You are NOT logged in.'

 return wrapper

*args, **kwargs

*args, **kwargs

Using a generic signature
does the trick here, as it
supports any number and
type of arguments. Note
how we invoke “func” with
the same arguments supplied
to “wrapper”, no matter
what they are.

We’re done ...or are we?
If you check our decorator-creating recipe, you’d be forgiven for believing that
we’re done. We are...almost. There are two issues that we still need to deal with:
one has to do with all decorators, whereas the other has to do with this specific
one.

Let’s get the specific issue out of the way first. As the check_logged_in
decorator is in its own module, we need to ensure that any modules its code refers
to are also imported into checker.py. The check_logged_in decorator
uses session, which has to be imported from Flask to avoid errors. Handling
this is straightforward, as all you need to do is add this import statement to the
top of checker.py:

 from flask import session

The other issue, which affects all decorators, has to do with how functions identify
themselves to the interpreter. When decorated, and if due care is not taken, a
function can forget its identity, which can lead to problems. The reason why
this happens is very technical and a little exotic, and it requires a knowledge of
Python’s internals that most people don’t need (or want) to know. Consequently,
Python’s standard library comes with a module that handles these details for you
(so you need never worry about them). All you have to do is remember to import
the required module (functools), then call a single function (wraps).

Perhaps somewhat ironically, the wraps function is implemented as a decorator,
so you don’t actually call it, but rather use it to decorate your wrapper function
inside your own decorator. We’ve already gone ahead and done this for you, and
you’ll find the code to the completed check_logged_in decorator at the top
of the next page.

When creating
your own
decorators, always
import, then use,
the “functools”
module’s “wraps”
function.

www.EBooksWorld.ir

you are here 4 403

function decorators

Your Decorator in All Its Glory
Before continuing, make sure your decorator code exactly matches ours:

Be sure
to import
“session” from
the “flask”
module. Import the “wraps” function (which is itself a decorator) from the “functools” module (which is part of the standard library).

Decorate the
“wrapper” function
with the “wraps”
decorator (being sure
to pass “func” as an
argument).

Now that the checker.py module contains a completed check_logged_in
function, let’s put it to use within simple_webapp.py. Here is the current
version of the code to this webapp (which we’re showing here over two columns):

from flask import Flask, session

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello from the simple webapp.'

@app.route('/page1')
def page1() -> str:
 return 'This is page 1.'

@app.route('/page2')
def page2() -> str:
 return 'This is page 2.'

@app.route('/page3')
def page3() -> str:
 return 'This is page 3.'

@app.route('/login')
def do_login() -> str:
 session['logged_in'] = True
 return 'You are now logged in.'

@app.route('/logout')
def do_logout() -> str:
 session.pop('logged_in')
 return 'You are now logged out.'

@app.route('/status')
def check_status() -> str:
 if 'logged_in' in session:
 return 'You are currently logged in.'
 return 'You are NOT logged in.'

app.secret_key = 'YouWillNeverGuess...'

if __name__ == '__main__':
 app.run(debug=True)

Recall that our goal here is to restrict
access to the /page1, /page2, and /page3
URLs, which are currently accessible to
any user’s browser (based on this code).

www.EBooksWorld.ir

404 Chapter 10

work that decorator

Putt ing Your Decorator to Work
Adjusting the simple_webapp.py code to use the check_logged_in
decorator is not difficult. Here’s a list of what needs to happen:

Import the decorator
The check_logged_in decorator needs to be imported from the
checker.py module. Adding the required import statement to the
top of our webapp’s code does the trick here.

1

Remove any unnecessary code
Now that the check_logged_in decorator exists, we no longer have
any need for the check_status function, so it can be removed from
simple_webapp.py.

2

Use the decorator as required
To use the check_logged_in decorator, apply it to any of our
webapp’s functions using the @ syntax.

3

from flask import Flask, session

from checker import check_logged_in

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello from the simple webapp.'

@app.route('/page1')
@check_logged_in
def page1() -> str:
 return 'This is page 1.'

@app.route('/page2')
@check_logged_in
def page2() -> str:
 return 'This is page 2.'

@app.route('/page3')
@check_logged_in
def page3() -> str:
 return 'This is page 3.'

@app.route('/login')
def do_login() -> str:
 session['logged_in'] = True
 return 'You are now logged in.'

@app.route('/logout')
def do_logout() -> str:
 session.pop('logged_in')
 return 'You are now logged out.'

app.secret_key = 'YouWillNeverGuess...'

if __name__ == '__main__':
 app.run(debug=True)

Here’s the code to simple_webapp.py once more, with the three changes
listed above applied. Note how the /page1, /page2, and /page3 URLs now have
two decorators associated with them: @app.route (which comes with Flask),
and @check_logged_in (which you’ve just created):

Apply a decorator to an existing function using the @ syntax.

Don’t forget to apply these
highlighted edits to your
webapp *before* continuing.

www.EBooksWorld.ir

you are here 4 405

function decorators

Test Drive
To convince ourselves that our login-checking decorator is working as required, let’s take the
decorator-enabled version of simple_webapp.py for a spin.
With the webapp running, use a browser to try to access /page1 prior to logging in. After logging in,
try to access /page1 again and then, after logging out, try to access the restricted content once more.
Let’s see what happens:

1. When you first
connect to the
webapp, the home
page appears. 2. Trying to

access “/page1”
results in refusal, as you are not
logged in.

3. Accessing “/login” enables access to
restricted URLs for your browser.

4. Now that your browser is logged in,
you can see “/page1”—success!

5. You log out
from the webapp.

6. As you are no longer
logged in, you can’t see the restricted content on the “/page1” URL anymore.

www.EBooksWorld.ir

406 Chapter 10

gotta love decorators

The Beauty of Decorators
Take another look at the code for your check_logged_in decorator. Note
how it abstracts the logic used to check if a user’s browser is logged in, putting this
(potentially complex) code in one place—inside the decorator—and then making
it available throughout your code, thanks to the @check_logged_in decorator
syntax:

Abstracting code in a decorator makes the code that uses it easier to read.
Consider this usage of our decorator on the /page2 URL:

Note how the page2 function’s code is only concerned with what it needs to do:
display the /page2 content. In this example, the page2 code is a single, simple
statement; it would be harder to read and understand if it also contained the logic
required to check whether a user’s browser is logged in or not. Using a decorator
to separate out the login-checking code is a big win.

This “logic abstraction” is one of the reasons the use of decorators is popular in
Python. Another is that, if you think about it, in creating the check_logged_
in decorator, you’ve managed to write code that augments an existing function with
extra code, by changing the behavior of the existing function without changing its code. When
it was first introduced earlier in this chapter, this idea was described as “freaky.”
But, now that you’ve done it, there’s really nothing to it, is there?

Using a decorator makes this code easier to read.

This code
looks freaky, but isn’t really.

Decorators
aren’t freaky;
they’re fun.

www.EBooksWorld.ir

you are here 4 407

function decorators

Creat ing More Decorators
With the process of creating the check_logged_in decorator behind you, you
can use its code as the basis of any new decorators you create from here on in.

To make your life easier, here’s a generic code template (in the file tmpl_
decorator.py) that you can use as the basis of any new decorators you write:

This code template can be adjusted as needed to suit your needs. All you need
to do is give your new decorator an appropriate name, then replace the three
comments in the template with your decorator’s specific code.

If it makes sense for your new decorator to invoke the decorated function without
returning its results, that’s fine. After all, what you put in your wrapper function
is your code, and you are free to do whatever you want to.

Replace these
comments with your new decorator’s
code.

Q: Aren’t decorators just like the last chapter’s context manager in that they both let me wrap code with additional functionality?

A: That’s a great question. The answer is: yes and no. Yes, both decorators and context managers augment existing code with additional
logic. But no, they are not the same. Decorators are specifically concerned with augmenting existing functions with additional functionality,
whereas context mangers are more interested in ensuring your code executes within a specific context, arranging for code to run before a
with statement as well as ensuring that code always executes after a with statement. You can do something similar with decorators,
but most Python programmers would regard you as a little mad if you were to attempt this. Also, note that your decorator code is under no
obligation to do anything after it invokes the decorated function (as is the case with the check_logged_in decorator, which does
nothing). This decorator behavior is very different from the protocol that context managers are expected to adhere to.

www.EBooksWorld.ir

408 Chapter 10

back to vsearch4web.py

Ah ha! Now that I can restrict
pages for “simple_webapp.py” I
can do much the same thing for

“vsearch4web.py”, too, right?

It’s not a case of
“much the same”: it’s
EXACTLY the same. It’s the
same code; just reuse the
decorator, do_login, and
do_logout functions.

Back to Restrict ing Access to /v iewlog

Now that you’ve created a mechanism that lets you restrict access to certain URLs
in simple_webapp.py, it’s a no-brainer to apply the same mechanism to any
other webapp.

This includes vsearch4web.py, where you had a requirement to restrict access
to the /viewlog URL. All you need to do is copy the do_login and do_logout
functions from simple_webapp.py into vsearch4web.py, import the
checker.py module, and then decorate the view_the_log function with
check_logged_in. Granted, you may want to add some sophistication to
do_login and do_logout (by, perhaps, checking user credentials against those
stored in a database), but—as regards restricting access to certain URLs—the
check_logged_in decorator does most of the heavy lifting for you.

www.EBooksWorld.ir

you are here 4 409

function decorators

What’s Next?
Rather than spend a bunch of pages doing to vsearch4web.py what you’ve
just spent a chunk of time doing to simple_webapp.py, we’re going to leave
adjusting vsearch4web.py for you to do on your own. At the start of the next
chapter, we’ll present an updated version of the vsearch4web.py webapp for
you to compare with yours, as our updated code is used to frame the discussion in
the next chapter.

To date, all of the code in this book has been written under the assumption that
nothing bad ever happens, and nothing ever goes wrong. This was a deliberate
strategy on our part, as we wanted to ensure you had a good grasp of Python
before getting into topics such as error correction, error avoidance, error detection,
exception handling, and the like.

We have now reached the point where we can no longer follow this strategy. The
environments within which our code runs are real, and things can (and do) go
wrong. Some things are fixable (or avoidable), and some aren’t. If at all possible,
you’ll want your code to handle most error situations, only resulting in a crash
when something truly exceptional happens that is beyond your control. In the next
chapter, we look at various strategies for deciding what’s a reasonable thing to do
when stuff goes wrong.

Prior to that, though, here’s a quick review of this chapter’s key points.

 � When you need to store server-side state within a Flask
webapp, use the session dictionary (and don’t forget
to set a hard-to-guess secret_key).

 � You can pass a function as an argument to another
function. Using the function’s name (without the
parentheses) gives you a function object, which can be
manipulated like any other variable.

 � When you use a function object as an argument to a
function, you can have the receiving function invoke the
passed-in function object by appending parentheses.

 � A function can be nested inside an enclosing function’s
suite (and is only visible within the enclosing scope).

 � In addition to accepting a function object as an
argument, functions can return a nested function as a
return value.

 � *args is shorthand for “expand to a list of items.”

 � **kwargs is shorthand for “expand to a dictionary of
keys and values.” When you see “kw,” think “keywords.”

 � Both * and ** can also be used “on the way in,” in that
a list or keyword collection can be passed into a function
as a single (expandable) argument.

 � Using (*args, **kwargs) as a function signature
lets you create functions that accept any number and
type of arguments.

 � Using the new function features from this chapter, you
learned how to create a function decorator, which
changes the behavior of an existing function without the
need to change the function’s actual code. This sounds
freaky, but is quite a bit of fun (and is very useful, too).

www.EBooksWorld.ir

410 Chapter 10

the code

Chapter 10’s Code, 1 of 2
from flask import Flask, session

app = Flask(__name__)

app.secret_key = 'YouWillNeverGuess'

@app.route('/setuser/<user>')
def setuser(user: str) -> str:
 session['user'] = user
 return 'User value set to: ' + session['user']

@app.route('/getuser')
def getuser() -> str:
 return 'User value is currently set to: ' + session['user']

if __name__ == '__main__':
 app.run(debug=True)

This is
“quick_session.py”.

from flask import session

from functools import wraps

def check_logged_in(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 if 'logged_in' in session:
 return func(*args, **kwargs)
 return 'You are NOT logged in.'
 return wrapper

This is “checker.py”, which contains the code to this chapter’s decorator: “check_logged_in”.

from functools import wraps

def decorator_name(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 # 1. Code to execute BEFORE calling the decorated function.

 # 2. Call the decorated function as required, returning its
 # results if needed.
 return func(*args, **kwargs)

 # 3. Code to execute INSTEAD of calling the decorated function.
 return wrapper

This is “tmpl_decorator.py”, which
is a handy decorator-creating
template for you to reuse as you
see fit.

www.EBooksWorld.ir

you are here 4 411

function decorators

Chapter 10’s Code, 2 of 2

from flask import Flask, session

from checker import check_logged_in

app = Flask(__name__)

@app.route('/')
def hello() -> str:
 return 'Hello from the simple webapp.'

@app.route('/page1')
@check_logged_in
def page1() -> str:
 return 'This is page 1.'

@app.route('/page2')
@check_logged_in
def page2() -> str:
 return 'This is page 2.'

@app.route('/page3')
@check_logged_in
def page3() -> str:
 return 'This is page 3.'

@app.route('/login')
def do_login() -> str:
 session['logged_in'] = True
 return 'You are now logged in.'

@app.route('/logout')
def do_logout() -> str:
 session.pop('logged_in')
 return 'You are now logged out.'

app.secret_key = 'YouWillNeverGuessMySecretKey'

if __name__ == '__main__':
 app.run(debug=True)

This is “simple_webapp.py”, which
pulls all of this chapter’s code
together. When you need to
restrict access to specific URLs,
base your strategy on this
webapp’s mechanism.

We think the use of decorators makes this webapp’s code easy to read and understand. Don’t you? §

www.EBooksWorld.ir

www.EBooksWorld.ir

this is a new chapter 413

exception handling11

What to Do When
Things Go Wrong

Things go wrong, all the time—no matter how good your code is.
You’ve successfully executed all of the examples in this book, and you’re likely confident all

of the code presented thus far works. But does this mean the code is robust? Probably not.

Writing code based on the assumption that nothing bad ever happens is (at best) naive. At

worst, it’s dangerous, as unforeseen things do (and will) happen. It’s much better if you’re

wary while coding, as opposed to trusting. Care is needed to ensure your code does what

you want it to, as well as reacts properly when things go south. In this chapter, you’ll not only

see what can go wrong, but also learn what to do when (and, oftentimes, before) things do.

I’ve tested this rope to
destruction...what can
possibly go wrong?

www.EBooksWorld.ir

414 Chapter 11

looking for issues

We’re starting this chapter by diving right in. Presented below is the latest code to the
vsearch4web.py webapp. As you’ll see, we’ve updated this code to use the check_
logged_in decorator from the last chapter to control when the information presented by the
/viewlog URL is (and isn’t) visible to users.
Take as long as you need to read this code, then use a pencil to circle and annotate the parts
you think might cause problems when operating within a production environment. Highlight
everything that you think might cause an issue, not just potential runtime issues or errors.

from flask import Flask, render_template, request, escape, session
from vsearch import search4letters

from DBcm import UseDatabase
from checker import check_logged_in

app = Flask(__name__)

app.config['dbconfig'] = {'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

@app.route('/login')
def do_login() -> str:
 session['logged_in'] = True
 return 'You are now logged in.'

@app.route('/logout')
def do_logout() -> str:
 session.pop('logged_in')
 return 'You are now logged out.'

def log_request(req: 'flask_request', res: str) -> None:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

www.EBooksWorld.ir

you are here 4 415

exception handling

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""
 cursor.execute(_SQL)
 contents = cursor.fetchall()
 titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

app.secret_key = 'YouWillNeverGuessMySecretKey'

if __name__ == '__main__':
 app.run(debug=True)

www.EBooksWorld.ir

416 Chapter 11

identifying issues

You were to take as long as you needed to read the code shown below (which is an updated
version of the vsearch4web.py webapp). Then, using a pencil, you were to circle and
annotate the parts you thought might cause problems when operating within a production
environment. You were to highlight everything you thought might cause an issue, not just
potential runtime issues or errors. (We’ve numbered our annotations for ease of reference.)

from flask import Flask, render_template, request, escape, session
from vsearch import search4letters

from DBcm import UseDatabase
from checker import check_logged_in

app = Flask(__name__)

app.config['dbconfig'] = {'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

@app.route('/login')
def do_login() -> str:
 session['logged_in'] = True
 return 'You are now logged in.'

@app.route('/logout')
def do_logout() -> str:
 session.pop('logged_in')
 return 'You are now logged out.'

def log_request(req: 'flask_request', res: str) -> None:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

3. What happens if executing

these SQL statements takes

a long time?

2. Are these SQL statements protected from nasty web-based attacks such as SQL injection or Cross-site scripting?
1. What happens
if the database
connection fails?

www.EBooksWorld.ir

you are here 4 417

exception handling

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""
 cursor.execute(_SQL)
 contents = cursor.fetchall()
 titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)

app.secret_key = 'YouWillNeverGuessMySecretKey'

if __name__ == '__main__':
 app.run(debug=True)

4. What happens if this call fails?

www.EBooksWorld.ir

418 Chapter 11

the issues

Databases Aren’t Always Available
We’ve identified four potential issues with the vsearch4web.py code, and we
concede that there may be many more, but we’ll worry about these four issues for now.
Let’s consider each of the four issues in more detail (which we do here and on the next
few pages, by simply describing the problems; we’ll work on solutions later in this chapter).
First up is worrying about the backend database:

What happens if the database connection fails?
Our webapp blissfully assumes that the backend database is always
operational and available, but it may not be (for any number of reasons).
At the moment, it is unclear what happens when the database is down,
as our code does not consider this eventuality.

1

Let’s see what happens if we temporarily switch off the backend database. As you can
see below, our webapp loads fine, but as soon as we do anything, an intimidating error
message appears:

Everything
looks OK
here...

...but, when you click
on the “Do it!” button,
the webapp crashes with
an “InterfaceError”.

www.EBooksWorld.ir

you are here 4 419

exception handling

Is our webapp protected from web attacks?
The phrases SQL injection (SQLi) and Cross-site scripting (XSS) should
strike fear in the heart of every web developer. The former allows
attackers to exploit your backend database, while the latter allows them
to exploit your website. There are other web exploits that you’ll need to
worry about, but these are the “big two.”

2

Web Attacks Are a Real Pain
As well as worrying about issues with your backend database, you also need to
worry about nasty individuals trying to do nasty things to your webapp, which
brings us to the second issue:

As with the first issue, let’s see what happens when we try to simulate these exploits
against our webapp. As you can see, it appears we’re ready for both of them:

If you try to inject SQL into the web interface, it has no effect (other than the expected “search4letters” output).

Any attempt to exploit XSS by feeding JavaScript
to the webapp has no effect.

The JavaScript isn’t executed (thankfully); it’s treated just like any other textual data sent to the webapp.

www.EBooksWorld.ir

420 Chapter 11

more issues

Input-Output Is (Somet imes) Slow
At the moment, our webapp communicates with our backend database in an
almost instantaneous manner, and users of our webapp notice little or no delay as
the webapp interacts with the database. But imagine if the interactions with the
backend database took some time, perhaps seconds:

from time import sleep

With the above import statement inserted, edit the log_request function
and insert this line of code before the with statement:

sleep(15)

If you restart your webapp, then initiate a search, there’s a very distinct delay
while your web browser waits for your webapp to catch up. As web delays go, 15
seconds will feel like a lifetime, which will prompt most users of your webapp to
believe something has crashed:

After clicking on the “Do
it!” button, your web
browser waits...and waits...
and waits...and waits...

What happens if something takes a long time?
Perhaps the backend database is on another machine, in another
building, on another continent...what would happen then?

3

Communications with the backend database may take time. In fact, whenever
your code has to interact with something that’s external to it (for example: a file, a
database, a network, or whatever), the interaction can take any amount of time,
the determination of which is usually beyond your control. Despite this lack of
control, you do have to be cognizant that some operations may be lengthy.

To demonstrate this issue, let’s add an artificial delay to our webapp (using the
sleep function, which is part of the standard library’s time module). Add this
line of code to the top of your webapp (near the other import statements):

www.EBooksWorld.ir

you are here 4 421

exception handling

Your Funct ion Calls Can Fail
The final issue identified during this chapter’s opening exercise relates to the
function call to log_request within the do_search function:

What happens if a function call fails?
There’s never a guarantee that a function call will succeed, especially if
the function in question interacts with something external to your code.

4

We’ve already seen what can happen when the backend database is unavailable—
the webapp crashes with an InterfaceError:

Other problems can surface, too. To simulate another error, find the sleep(15)
line you added from the Issue 3 discussion, and replace it with a single statement:
raise. When executed by the interpreter, raise forces a runtime error. If you
try your webapp again, a different error occurs this time:

There’s no
database, so
your webapp
crashes.

Something
else went
wrong, and
your webapp
crashes again.

Before flipping the
page, remove that
call to “raise” from
your code to ensure
the webapp starts
working again.

www.EBooksWorld.ir

422 Chapter 11

what to do?

Considering the Ident if ied Problems
We’ve identified four issues with the vsearch4web.py code. Let’s revisit each
and consider our next steps.

1. Your database connect ion fails
Errors occur whenever an external system your code relies on is unavailable. The
interpreter reported an InterfaceError when this happened. It’s possible to
spot, then react to, these types of errors using Python’s built-in exception-handling
mechanism. If you can spot when an error occurs, you’re then in a position to do
something about it.

2. Your applicat ion is subjected to an attack
Although a case can be made that worrying about attacks on your application
is only of concern to web developers, developing practices that improve
the robustness of the code you write are always worth considering. With
vsearch4web.py, dealing with the “big two” web attack vectors, SQL injection
(SQLi) and Cross-site scripting (XSS), appears to be well in hand. This is more of
a happy accident than by design on your part, as the Jinja2 library is built to
guard against XSS by default, escaping any potentially problematic strings (recall
that the JavaScript we tried to trick our webapp into executing had no effect). As
regards SQLi, our use of DB-API’s parameterized SQL strings (with all those ?
placeholders) ensures—again, thanks to the way these modules were designed—
that your code is protected from this entire class of attack.

3. Your code takes a long t ime to execute
If your code takes a long time to execute, you have to consider the impact on your
user’s experience. If your user doesn’t notice, then you’re likely OK. However, if
your user has to wait, you may have to do something about it (otherwise, your user
may decide the wait isn’t worth it, and go elsewhere).

4. Your funct ion call fails
It’s not just external systems that generate exceptions in the interpreter—your
code can raise exceptions, too. When this happens, you need to be ready to spot
the exception, then recover as needed. The mechanism you use to enable this
behavior is the same one hinted at in the discussion of issue 1, above.

So...where do we start when dealing with these four issues? It’s possible to use the
same mechanism to deal with issues 1 and 4, so that’s where we’ll begin.

Geek Bits

If you want to know
more about SQLi and
XSS, Wikipedia is a great
place to start. See https://
en.wikipedia.org/wiki/
SQL_injection and https://
en.wikipedia.org/wiki/Cross-
site_scripting, respectively.
And remember, there are
all kinds of other types
of attack that can cause
problems for your app;
these are just the two
biggies.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting

you are here 4 423

exception handling

Always Try to Execute Error-Prone Code
When something goes wrong with your code, Python raises a runtime exception.
Think of an exception as a controlled program crash triggered by the interpreter.

As you’ve seen with issues 1 and 4, exceptions can be raised under many different
circumstances. In fact, the interpreter comes with a whole host of built-in
exception types, of which RuntimeError (from issue 4) is only one example.
As well as the built-in exception types, it’s possible to define your own custom
exceptions, and you’ve seen an example of this too: the InterfaceError
exception (from issue 1) is defined by the MySQL Connector module.

To spot (and, hopefully, recover from) a runtime exception, deploy Python’s try
statement, which can help you manage exceptions as they occur at runtime.

To see try in action, let’s first consider a snippet of code that might fail when
executed. Here are three innocent-looking, but potentially problematic, lines of
code for you to consider:

For a complete list of the
built-in exceptions, see
https://docs.python.org/3/
library/exceptions.html.

There’s nothing weird or wonderful
going on here: the named file is
opened, and its data is obtained and
then displayed on screen.

There’s nothing wrong with these three lines of code and—as currently written—
they will execute. However, this code might fail if it can’t access myfile.txt.
Perhaps the file is missing, or your code doesn’t have the necessary file-reading
permissions. When the code fails, an exception is raised:

Whoops!

Let’s start learning what try can do by adjusting the above code snippet to
protect against this FileNotFoundError exception.

When a runtime error occurs, Python displays a “traceback”, which details what went wrong, and where. In this case, the
interpreter thinks the problem is on line 2.

Despite being ugly to look
at, the traceback message is
useful.

www.EBooksWorld.ir

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

424 Chapter 11

try try try

Catching an Error Is Not Enough
When a runtime error occurs, an exception is raised. If you ignore a raised exception
it is referred to as uncaught, and the interpreter will terminate your code, then
display a runtime error message (as shown in the example from the bottom of the last
page). That said, raised exceptions can also be caught (i.e., dealt with) with the try
statement. Note that it’s not enough to catch runtime errors, you also have to decide
what you’re going to do next.

Perhaps you’ll decide to deliberately ignore the raised exception, and keep going...with
your fingers firmly crossed. Or maybe you’ll try to run some other code in place of the
code that crashed, and keep going. Or perhaps the best thing to do is to log the error
before terminating your application as cleanly as possible. Whatever you decide to do,
the try statement can help.

In its most basic form, the try statement allows you to react whenever the execution
of your code results in a raised exception. To protect code with try, put the code
within try’s suite. If an exception occurs, the code in the try’s suite terminates, and
then the code in the try’s except suite runs. The except suite is where you define
what you want to happen next.

Let’s update the code snippet from the last page to display a short message whenever
the FileNotFoundError exception is raised. The code on the left is what you had
previously, while the code on the right has been amended to take advantage of what
try and except have to offer:

Note how the entire code
snippet is indented under
the “try” statement.

This code is indented
under the “except” clause
and only executes if
the “FileNotFoundError”
exception is raised.

The “except” statement is indented to the same level as its associated “try”,
and has its own suite.

Note that what was three lines of code is now six, which may seem wasteful, but isn’t.
The original snippet of code still exists as an entity; it makes up the suite associated
with the try statement. The except statement and its suite is new code. Let’s see
what difference these amendments make.

When a runtime
error is raised, it
can be caught or
uncaught: “try”
lets you catch a
raised error, and
“except” lets you
do something
about it.

www.EBooksWorld.ir

you are here 4 425

exception handling

Test Drive
Let’s take the try...except version of your code snippet for a spin. If myfile.txt exists and
is readable by your code, its contents will appear on screen. If not, a run-time exception is raised.
We already know that myfile.txt does not exist, but now, instead of seeing the ugly traceback
message from earlier, the exception-handling code fires and we’re presented with a friendlier
message (even though our code snippet still crashed):

The first time you ran the code snippet, the
interpreter generated this ugly traceback.

The new version of the code produces
a much friendlier messages thanks to
“try” and “except”.

There can be more than one except ion raised...
This new behavior is better, but what happens if myfile.txt exists but your
code does not have permission to read from it? To see what happens, we created
the file, then set its permissions to simulate this eventuality. Rerunning the new
code produces this output:

Yikes! We’re back to seeing an ugly traceback message, as a “PermissionError” was raised.

www.EBooksWorld.ir

426 Chapter 11

multiple excepts

try Once, but except Many Times
To protect against another exception being raised, simply add another except
suite to your try statement, identifying the exception you’re interested in and
providing whatever code you deem necessary in the new except’s suite. Here’s
another updated version of the code that handles the PermissionError
exception (should it be raised):

In addition to
“FileNotFoundError”
exceptions, this code also
handles a “PermissionError”.

The code in the “except” suites
can do anything.
For now, each
displays a
friendly message.Executing this amended code still results in the PermissionError exception

being raised. However, unlike before, the ugly traceback has been replaced by a much
friendlier message:

This is much better.

This is looking good: you’ve managed to adjust what happens whenever the file you’re
hoping to work with isn’t there (it doesn’t exist), or is inaccessible (you don’t have the
correct permissions). But what happens if an exception is raised that you weren’t
expecting?

www.EBooksWorld.ir

you are here 4 427

exception handling

A Lot of Things Can Go Wrong
Before answering the question posed at the bottom of the last page—what happens if
an exception is raised that you weren’t expecting?—take a look at some of Python 3’s built-
in exceptions (which are copied directly from the Python documentation). Don’t be
surprised if you’re struck by just how many there are:

 ...
Exception
 +-- StopIteration
 +-- StopAsyncIteration
 +-- ArithmeticError
 | +-- FloatingPointError
 | +-- OverflowError
 | +-- ZeroDivisionError
 +-- AssertionError
 +-- AttributeError
 +-- BufferError
 +-- EOFError
 +-- ImportError
 +-- LookupError
 | +-- IndexError
 | +-- KeyError
 +-- MemoryError
 +-- NameError
 | +-- UnboundLocalError
 +-- OSError
 | +-- BlockingIOError
 | +-- ChildProcessError
 | +-- ConnectionError
 | | +-- BrokenPipeError
 | | +-- ConnectionAbortedError
 | | +-- ConnectionRefusedError
 | | +-- ConnectionResetError
 | +-- FileExistsError
 | +-- FileNotFoundError
 | +-- InterruptedError
 | +-- IsADirectoryError
 | +-- NotADirectoryError
 | +-- PermissionError
 | +-- ProcessLookupError
 | +-- TimeoutError
 ...

All the built-
in exceptions
inherit from
a class called
“Exception”.

Here’s the two
exceptions that our code currently handles.

There
are an
awful lot
of these,
aren’t
there?

It would be crazy to try to write a separate except suite for each of these runtime
exceptions, as some of them may never occur. That said, some might occur, so you
do need to worry about them a little bit. Rather than try to handle each exception
individually, Python lets you define a catch-all except suite, which fires whenever a
runtime exception occurs that you haven’t specifically identified.

www.EBooksWorld.ir

428 Chapter 11

catching all exceptions

The Catch-All Except ion Handler
Let’s see what happens when some other error occurs. To simulate just such an
occurrence, we’ve changed myfile.txt from a file into a folder. Let’s see what
happens when we run the code now:

Another exception is raised. You could create an extra except suite that fires when
this IsADirectoryError exception occurs, but let’s specify a catch-all runtime
error instead, which fires whenever any exception (other than the two we’ve already
specified) occurs. To do this, add a catch-all except statement to the end of the
existing code:

Running this amended version of your code gets rid of the ugly traceback, displaying
a friendly message instead. No matter what other exception occurs, this code handles it
thanks to the addition of the catch-all except statement:

Another
exception
has occurred.

This code provides
a catch-all
exception handler.

This looks
better.

This “except”
statement
is “bare”: it
does not refer
to a specific
exception.

www.EBooksWorld.ir

you are here 4 429

exception handling

Haven’t We Just Lost Something?

OK. I get what’s going on here. But
does this code not now hide the fact that
we just had an “IsADirectoryError”? Isn’t
it important to know exactly which error
you’ve encountered?

Ah, yes...good catch.
This latest code has tidied up the output (in
that the ugly traceback is gone), but you’ve
also lost some important information: you no
longer know what the specific issue with your
code was.

Knowing what exception was raised is often
important, so Python lets you get at the data
associated with the most-recent exception
information as it’s being handled. There are two
ways to do this: using the facilities of the sys
module, and using an extension to the try/
except syntax.

Let’s look at both of these techniques.

Q: Is it possible to create a catch-all exception handler that does nothing?

A: Yes. It is often tempting to add this except suite to the bottom of a try statement:

 except:
 pass

Please try not to do this. This except suite implements a catch-all that ignores any other exception (presumedly in the misguided hope
that if something is ignored it might go away). This is a dangerous practice, as—at the very least—an unexpected exception should result in an
error message appearing on screen. So, be sure to always write error-checking code that handles exceptions, as opposed to ignores them.

www.EBooksWorld.ir

430 Chapter 11

what went wrong?

Learning About Except ions from “sys”
The standard library comes with a module called sys that provides access to the
interpreters, internals (a set of variables and functions available at runtime).

One such function is exc_info, which provides information on the exception
currently being handled. When invoked, exc_info returns a three-valued
tuple where the first value indicates the exception’s type, the second details the
exception’s value, and the third contains a traceback object that provides
access to the traceback message (should you need it). When there is no currently
available exception, exc_info returns the Python null value for each of the
tuple values, which looks like this:(None, None, None).

Knowing all of this, let’s experiment at the >>> shell. In the IDLE session that
follows, we’ve written some code that’s always going to fail (as dividing by zero is
never a good idea). A catch-all except suite uses the sys.exc_info function to
extract and display data relating to the currently firing exception:

Be sure to import the “sys” module.
Dividing by zero is *never* a good idea...and when your code
divides by zero an exception occurs

Let’s extract and display the data associated
with the currently occurring exception.

Here’s the data associated with the exception, which confirms that we have an issue with divide-by-zero.

It’s possible to delve deeper into the traceback object to learn more about what
just happened, but this already feels like too much work, doesn’t it? All we really
want to know is what type of exception occurred.

To make this (and your life) easier, Python extends the try/except syntax to
make it convenient to get at the information returned by the sys.exc_info
function, and it does this without you having to remember to import the sys
module, or wrangle with the tuple returned by that function.

Recall from a few pages back that the interpreter arranges exceptions in a
hierarchy, with each exception inheriting from one called Exception. Let’s take
advantage of this hierarchical arrangement as we rewrite our catch-all exception
handler.

 ...
Exception
 +-- StopIteration
 +-- StopAsyncIteration
 +-- ArithmeticError
 | +-- FloatingPointError
 | +-- OverflowError
 | +-- ZeroDivisionError
 +-- AssertionError
 +-- AttributeError
 +-- BufferError
 +-- EOFError
 ...

Recall the
exception hierarchy from earlier.

To learn more
about “sys”, see
https://docs.
python.org/3/
library/sys.html.

www.EBooksWorld.ir

https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/sys.html

you are here 4 431

exception handling

The Catch-All Except ion Handler, Rev isited
Consider your current code, which explicitly identifies the two exceptions you
want to handle (FileNotFoundError and PermissionError), as well as
provides a generic catch-all except suite (to handle everything else):

This code works, but
doesn’t really tell
you much when some
unexpected exception
occurs.

Note how, when referring to a specific exception, we’ve identified the exception by
name after the except keyword. As well as identifying specific exceptions after
except, it’s also possible to identify classes of exceptions using any of the names
in the hierarchy.

For instance, if you’re only interested in knowing that an arithmetic error
has occurred (as opposed to—specifically—a divide-by-zero error), you
could specify except ArithmeticError, which would then catch a
FloatingPointError, an OverflowError, and a ZeroDivisionError
should they occur. Similarly, if you specify except Exception, you’ll catch
any error.

But how does this help...surely you’re already catching all errors with a “bare”
except statement? It’s true: you are. But you can extend the except
Exception statement with the as keyword, which allows you to assign the
current exception object to a variable (with err being a very popular name in
this situation) and create more informative error message. Take a look at another
version of the code, which uses except Exception as:

 ...
Exception
 +-- StopIteration
 +-- StopAsyncIteration
 +-- ArithmeticError
 | +-- FloatingPointError
 | +-- OverflowError
 | +-- ZeroDivisionError
 +-- AssertionError
 +-- AttributeError
 +-- BufferError
 +-- EOFError
 ...

Recall that all the exceptions inherit from “Exception”.

Unlike the “bare” except catch-all shown above, this one arranges for the exception object to be assigned to the “err” variable.
The value of “err” is then
used as part of the friendly
message (as it’s always a good
idea to report all exceptions).

www.EBooksWorld.ir

432 Chapter 11

one last spin

Test Drive
With this—the last of the changes to your try/except code—applied, let’s confirm that everything
is working as expected before returning to vsearch4web.py and applying what you now know
about exceptions to your webapp.
Let’s start with confirming that the code displays the correct message when the file is missing:

If the file exists, but you don’t have permission to access it, a different exception is raised:

Any other exception is handled by the catch-all, which displays a friendly message:

Finally, if all is OK, the try suite runs without error, and the file’s contents appear on screen:

“myfile.txt”
doesn’t exist.

The file
exists, but
you can’t
read it.

Some other
exception has
occurred. In this case, what you
thought was a file is in fact a folder.

Success! No
exceptions
occur, so the
“try” suite runs
to completion.

www.EBooksWorld.ir

you are here 4 433

exception handling

Gett ing Back to Our Webapp Code
Recall from the start of this chapter that we identified an issue with the call to
log_request within vsearch4web.py’s do_search function. Specifically,
we’re concerned about what to do when the call to log_request fails:

 ...
@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)
 ...

4. What happens if this call fails?

Based on our investigations, we learned that this call might fail if the backend
database is unavailable, or if some other error occurs. When an error (of any
type) occurs, the webapp responds with an unfriendly error page, which is likely to
confuse (rather than enlighten) your webapp’s users:

Although it is important to us, the logging of each web request is not something
that our webapp users really care about; all they want to see is the results of their
search. Consequently, let’s adjust the webapp’s code so that it deals with errors
within log_request by handling any raised exceptions silently.

This is not
something you
want your
webapp users
to see.

www.EBooksWorld.ir

434 Chapter 11

don’t make a sound

Silent ly Handling Except ions

Seriously? You’re planning to handle
exceptions raised by “log_request” silently?
Isn’t that just another variant of ignoring
exceptions and hoping they’ll go away?

No: “silently” does not mean “ignore.”
When we suggest handling exceptions silently in this
context, we’re referring to handling any exceptions
raised in such a way that your webapp users don’t
notice. At the moment, your users do notice, as
the webapp crashes with a confusing and—let’s be
honest—scary error page.

Your webapp users don’t need to worry about
log_request failing, but you do. So let’s adjust
your code so that exceptions raised by log_
request aren’t noticed by your users (i.e., they
are silenced), but are noticed by you.

Q: Doesn’t all this try/except stuff just make my code harder to read and understand?

A: It’s true that the example code in this chapter started out as three easy-to-understand lines of Python code, and then we added seven
lines of code, which—on the face of things—have nothing to do with what the first three lines of code are doing. However, it is important to
protect code that can potentially raise an exception, and try/except is generally regarded as the best way to do this. Over time, your
brain will learn to spot the important stuff (the code actually doing the work) that lives in the try suite, and filter out the except suites that
are there to handle exceptions. When trying to understand code that uses try/except, always read the try suite first to learn what the
code does, then look at the except suites if you need to understand what happens when things go wrong.

www.EBooksWorld.ir

you are here 4 435

exception handling

Let’s add some try/except code to do_search’s invocation of the
log_request function. To keep things straightforward, let’s add a catch-
all exception handler around the call to log_request, which, when it
fires, displays a helpful message on standard output (using a call to the
print BIF). In defining a catch-all exception handler, you can suppress
your webapp’s standard exception-handling behavior, which currently
displays the unfriendly error page.

Here’s log_request’s code as it’s currently written:

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

In the spaces below, provide the code that implements a catch-all
exception handler around the call to log_request:

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))

 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

This line of code needs to be protected in case it fails (raising a runtime error).

Don’t forget to call
“log_request” as part
of the code you add.

www.EBooksWorld.ir

436 Chapter 11

catch it all

The plan was to add some try/except code to do_search’s
invocation of the log_request function. To keep things
straightforward, we decided to add a catch-all exception handler around
the call to log_request, which, when it fires, displays a helpful
message on standard output (using a call to the print BIF).

Here’s log_request’s code as currently written:

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 log_request(request, results)
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

In the spaces below, you were to provide the code that implements a
catch-all exception handler around the call to log_request:

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))

 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

try:
log_request(request, results)

except Exception as err:
print(‘***** Logging failed with this error:’, str(err))

The call to “log_request” is moved into the suite associated with a new “try” statement.
This is the
catch-all.

When a runtime error occurs, this
message is displayed on screen for
the admin only. Your user sees
nothing.

www.EBooksWorld.ir

you are here 4 437

exception handling

(Extended) Test Drive, 1 of 3
With the catch-all exception-handling code added to vsearch4web.py, let’s take your webapp for an
extended spin (over the next few pages) to see the difference this new code makes. Previously, when
something went wrong, your user was greeted with an unfriendly error page. Now, however, the error is
handled “silently” by the catch-all code. If you haven’t done so already, run vsearch4web.py, then
use any browser to surf to your webapp’s home page:

 ...
 * Debugger pin code: 184-855-980
127.0.0.1 - - [14/Jul/2016 10:54:31] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [14/Jul/2016 10:54:31] "GET /static/hf.css HTTP/1.1" 200 -
127.0.0.1 - - [14/Jul/2016 10:54:32] "GET /favicon.ico HTTP/1.1" 404 -

On the terminal that’s running your code, you should see something like this:

$ python3 vsearch4web.py
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with fsevents reloader
 * Debugger is active!
 * Debugger pin code: 184-855-980

Your webapp is up and running, waiting to hear fom a browser...

Go ahead
and surf on
over to your
webapp’s home
page.

BTW: Don’t worry about this 404...we haven’t defined a “favicon.ico” file for our webapp (so it gets reported as not found when your browser asks for it).

These 200s confirm that your webapp
is up and running (and serving up its
home page). All is good at this point.

www.EBooksWorld.ir

438 Chapter 11

test test test

(Extended) Test Drive, 2 of 3
In order to simulate an error, we’ve switched off our backend database, which should result in an error
occurring whenever the webapp tries to interact with the database. As our code silently catches all errors
generated by log_request, the webapp user isn’t aware that the logging hasn’t occurred. The catch-
all code has arranged to generate a message on screen describing the problem. Sure enough, when
you enter a phrase and click on the “Do it!” button, the webapp displays the results of your search in the
browser, whereas the webapp’s terminal screen displays the “silenced” error message. Note that, despite
the runtime error, the webapp continues to execute and successfully services the call to /search:

 ...

127.0.0.1 - - [14/Jul/2016 10:54:32] "GET /favicon.ico HTTP/1.1" 404 -
***** Logging failed with this error: 2003: Can't connect to MySQL server on '127.0.0.1:3306'
(61 Connection refused)
127.0.0.1 - - [14/Jul/2016 10:55:55] "POST /search4 HTTP/1.1" 200 -

This message is generated by your catch-all
exception-handling code. The webapp user
doesn’t see it.

Even though an error occurred, the webapp didn’t crash. In other words, the search worked (but the webapp user isn’t aware that the logging failed).
www.EBooksWorld.ir

you are here 4 439

exception handling

In fact, no matter what error occurs when log_request runs, the catch-all code handles it.
We restarted our backend database, then tried to connect with an incorrect username. You can raise this
error by changing the dbconfig dictionary in vsearch4web.py to use vsearchwrong as the
value for user:

 ...
***** Logging failed with this error: 1045 (28000): Access denied for user 'vsearchwrong'@
'localhost' (using password: YES)

 ...
***** Logging failed with this error: 1146 (42S02): Table 'vsearchlogdb.logwrong' doesn't exist

 ...
***** Logging failed with this error: Something awful just happened.

Change the value for user back to vsearch, and then let’s try to access a nonexistent table,
by changing the name of the table in the SQL query used in the log_request function to be
logwrong (instead of log):

Change the name of the table back to log and then, as a final example, let’s add a raise statement to
the log_request function (just before the with statement), which generates a custom exception:

 ...
app.config['dbconfig'] = {'host': '127.0.0.1',
 'user': 'vsearchwrong',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

When your webapp reloads and you perform a search, you’ll see a message like this in your terminal:

def log_request(req: 'flask_request', res: str) -> None:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into logwrong
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 ...

When your webapp reloads and you perform a search, you’ll see a message like this in your terminal:

def log_request(req: 'flask_request', res: str) -> None:
 raise Exception("Something awful just happened.")
 with UseDatabase(app.config['dbconfig']) as cursor:
 ...

When your webapp reloads one last time, and you perform one last search, you’ll see the following
message in your terminal:

(Extended) Test Drive, 3 of 3

www.EBooksWorld.ir

440 Chapter 11

handling more errors

Handling Other Database Errors
The log_request function makes use of the UseDatabase context manager (as
provided by the DBcm module). Now that you’ve protected the call to log_request,
you can rest easy, safe in the knowledge that any issues relating to problems with the
database will be caught (and handled) by your catch-all exception-handling code.

However, the log_request function isn’t the only place where your webapp
interacts with the database. The view_the_log function grabs the logging data
from the database prior to displaying it on screen.

Recall the code for the view_the_log function:

 ...

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""
 cursor.execute(_SQL)
 contents = cursor.fetchall()
 titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)
 ...

This code can fail, too, as it interacts with the backend database. However, unlike
log_request, the view_the_log function is not called from the code in
vsearch4web.py; it’s invoked by Flask on your behalf. This means you can’t write
code to protect the invocation of view_the_log, as it’s the Flask framework that
calls the function, not you.

If you can’t protect the invocation of view_the_log, the next best thing is to
protect the code in its suite, specifically the use of the UseDatabase context
manager. Before considering how to do this, let’s consider what can go wrong:

• The backend database may be unavailable.

• You may not be able to log in to a working database.

• After a successful login, your database query might fail.

• Something else (unexpected) might happen.

This list of problems is similar to those you had to worry about with log_request.

All of this code
needs to be
protected, too.

www.EBooksWorld.ir

you are here 4 441

exception handling

Does “More Errors” Mean “More excepts”?
Knowing what we now know about try/except, we could add some code to the
view_the_log function to protect the use of the UseDatabase context manager:

 ...

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 try:
 with UseDatabase(app.config['dbconfig']) as cursor:
 ...

 except Exception as err:
 print('Something went wrong:', str(err))

The rest of
the function’s
code goes
here.

This catch-all strategy certainly works (after all, that’s what you used with log_
request). However, things can get complicated if you decide to do something other
than implement a catch-all exception handler. What if you decide you need to react
to a specific database error, such as “Database not found”? Recall from the beginning
of this chapter that MySQL reports an InterfaceError exception when this
happens:

You could add an except statement that targets the InterfaceError exception,
but to do this your code also has to import the mysql.connector module, which
defines this particular exception.

On the face of things, this doesn’t seem like a big deal. But it is.

This exception
is raised when
your code
can’t find
the backend
database.

Another
catch-all
exception
handler

www.EBooksWorld.ir

442 Chapter 11

watch your imports

Avoid Tight ly Coupled Code
Let’s assume you’ve decided to create an except statement that protects against your
backend database being unavailable. You could adjust the code in view_the_log to
look something like this:

If you also remember to add import mysql.connector to the top of your code,
this additional except statement works. When your backend database can’t be found,
this additional code allows your webapp to remind you to check that your database is
switched on.

This new code works, and you can see what’s going on here...what’s not to like?

The issue with approaching the problem in this way is that the code in
vsearch4web.py is now very tightly coupled to the MySQL database, and
specifically the use of the MySQL Connector module. Prior to adding this second
except statement, your vsearch4web.py code interacted with your backend
database via the DBcm module (developed earlier in this book). Specifically, the
UseDatabase context manager provides a convenient abstraction that decouples
the code in vsearch4web.py from the backend database. If, at some time in the
future, you needed to replace MySQL with PostgreSQL, the only changes you’d need
to make would be to the DBcm module, not to all the code that uses UseDatabase.
However, when you create code like that shown above, you tightly bind (i.e., couple)
your webapp code to the MySQL backend database because of that import
mysql.connector statement, in addition to your new except statement’s
reference to mysql.connector.errors.InterfaceError.

If you need to write code that tightly couples to your backend database, always
consider putting that code in the DBcm module. This way, your webapp can be written
to use the generic interface provided by DBcm, as opposed to a specific interface that
targets (and locks you into) a specific backend database.

Let’s now consider what moving the above except code into DBcm does for our
webapp.

 ...

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 try:
 with UseDatabase(app.config['dbconfig']) as cursor:
 ...

 except mysql.connector.errors.InterfaceError as err:
 print('Is your database switched on? Error:', str(err))
 except Exception as err:
 print('Something went wrong:', str(err))
 ...

The rest of
the function’s
code still goes
in here.

Add another “except”
statement to handle
a specific exception

www.EBooksWorld.ir

you are here 4 443

exception handling

The DBcm Module, Rev isited
You last looked at DBcm in Chapter 9, when you created that module in order to
provide a hook into the with statement when working with a MySQL database. Back
then, we sidestepped any discussion of error handling (by conveniently ignoring the
issue). Now that you’ve seen what the sys.exc_info function does, you should have
a better idea of what the arguments to UseDatabase’s __exit__ method mean:

import mysql.connector

class UseDatabase:

 def __init__(self, config: dict) -> None:
 self.configuration = config

 def __enter__(self) -> 'cursor':
 self.conn = mysql.connector.connect(**self.configuration)
 self.cursor = self.conn.cursor()
 return self.cursor

 def __exit__(self, exc_type, exc_value, exc_trace) -> None:
 self.conn.commit()
 self.cursor.close()
 self.conn.close()

This is the
context
manager code
in “DBcm.py”.

Now that you’ve seen “exc_info”, it should be clear what these method arguments refer to: exception data.

Recall that UseDatabase implements three methods:

• __init__ provides a configuration opportunity prior to with executing,

• __enter__ executes as the with statement starts, and

• __exit__ is guaranteed to execute whenever the with’s suite terminates.

At least, that’s the expected behavior whenever everything goes to plan. When things
go wrong, this behavior changes.

For instance, if an exception is raised while __enter__ is executing, the with
statement terminates, and any subsequent processing of __exit__ is cancelled. This
makes sense: if __enter__ runs into trouble, __exit__ can no longer assume that
the execution context is initialized and configured correctly (so it’s prudent not to run
the __exit__ method’s code).

The big issue with the __enter__ method’s code is that the backend database may
not be available, so let’s take some time to adjust __enter__ for this possibility,
generating a custom exception when the database connection cannot be established.
Once we’ve done this, we’ll adjust view_the_log to check for our custom
exception instead of the highly database-specific mysql.connector.errors.
InterfaceError.

www.EBooksWorld.ir

444 Chapter 11

your own exception

Creat ing Custom Except ions
Creating your own custom exceptions couldn’t be any easier: decide on an appropriate
name, then define an empty class that inherits from Python’s built-in Exception
class. Once you’ve defined a custom exception, it can be raised with the raise
keyword. And once an exception is raised, it’s caught (and dealt with) by try/
except.

A quick trip to IDLE’s >>> prompt demonstrates custom exceptions in action. In this
example, we’re creating a custom exception called ConnectionError, which we
then raise (with raise), before catching with try/except. Read the annotations in
numbered order, and (if you’re following along) enter the code we’ve typed at the >>>
prompt:

2. “pass” is Python’s empty statement that creates the empty class.
1. Create a
new class called
“ConnectionError”
that inherits from
the “Exception”
class.

3. Raising our new
exception (with
“raise”) results
in a traceback
message.

5. The “ConnectionError” was caught, allowing
us to customize the error message.

4. Catch the
“ConnectionError” exception using
“try/except”.

The empty class isn’t quite empty...
In describing the ConnectionError class as “empty,” we told a little lie.
Granted, the use of pass ensures that there’s no new code associated with the
ConnectionError class, but the fact that ConnectionError inherits from
Python’s built-in Exception class means that all of the attributes and behaviors
of Exception are available in ConnectionError too (making it anything but
empty). This explains why ConnectionError works just as you’d expect it to with
raise and try/except.

www.EBooksWorld.ir

you are here 4 445

exception handling

Let’s adjust the DBcm module to raise a custom ConnectionError
whenever a connection to the backend database fails.

Here’s the current code to DBcm.py. In the spaces provided, add in the
code required to raise a ConnectionError.

import mysql.connector

class UseDatabase:

 def __init__(self, config: dict) -> None:
 self.configuration = config

 def __enter__(self) -> 'cursor':

 self.conn = mysql.connector.connect(**self.configuration)
 self.cursor = self.conn.cursor()
 return self.cursor

 def __exit__(self, exc_type, exc_value, exc_trace) -> None:
 self.conn.commit()
 self.cursor.close()
 self.conn.close()

Define your
custom exception.

Add code
to “raise” a
“ConnnectionError”.

With the code in the DBcm module amended, use your pencil to detail any
changes you’d make to this code from vsearch4web.py in order to
take advantage of the newly defined ConnectionError exception:

from DBcm import UseDatabase
import mysql.connector

 ...

 the_row_titles=titles,

 the_data=contents,)

 except mysql.connector.errors.InterfaceError as err:

 print('Is your database switched on? Error:', str(err))

 except Exception as err:

 print('Something went wrong:', str(err))

 return 'Error'

Use your pencil to
show the changes
you’d make to this
code now that the
“ConnectionError”
exception exists.

1

2

www.EBooksWorld.ir

446 Chapter 11

raising a connectionerror

You were to adjust the DBcm module to raise a custom
ConnectionError whenever a connection to the backend database
fails. You were to adjust the current code to DBcm.py to add in the code
required to raise a ConnectionError.

import mysql.connector

class UseDatabase:

 def __init__(self, config: dict) -> None:
 self.configuration = config

 def __enter__(self) -> 'cursor':

 self.conn = mysql.connector.connect(**self.configuration)
 self.cursor = self.conn.cursor()
 return self.cursor

 def __exit__(self, exc_type, exc_value, exc_trace) -> None:
 self.conn.commit()
 self.cursor.close()
 self.conn.close()

Define the
custom exception
as an “empty”
class that
inherits from
“Exception”.

A new “try/
except”
construct
protects the
database
connection code.

With the code in the DBcm module amended, you were to detail any
changes you’d make to this code from vsearch4web.py in order to
take advantage of the newly defined ConnectionError exception:

from DBcm import UseDatabase
import mysql.connector

 ...

 the_row_titles=titles,

 the_data=contents,)

 except mysql.connector.errors.InterfaceError as err:

 print('Is your database switched on? Error:', str(err))

 except Exception as err:

 print('Something went wrong:', str(err))

 return 'Error'

1

2

class ConnectionError(Exception):
pass

try:

except mysql.connector.errors.InterfaceError as err:
raise ConnectionError(err)

Within the “DBcm.py” code,
refer to the backend
database-specific exceptions
by their full name.

Raise the custom
exception.

, ConnectionError

ConnectionError

You don’t need
to import
“mysql.connector”
anymore (as
“DBcm” does
this for you). Be sure to

import the
“ConnectionError” exception from
“DBcm”.

Change the first
“except” statement
to look for a
“ConnectionError”
as opposed to an

“InterfaceError”.

www.EBooksWorld.ir

you are here 4 447

exception handling

Test Drive
Let’s see what difference this new code makes. Recall that you’ve moved the MySQL-specific
exception-handling code from vsearch4web.py into DBcm.py (and replaced it with code that
looks for your custom ConnectionError exception). Has this made any difference?
Here are the messages that the previous version of vsearch4web.py generated whenever the
backend database couldn’t be found:

 ...
Is your database switched on? Error: 2003: Can't connect to MySQL server on '127.0.0.1:3306'
(61 Connection refused)
127.0.0.1 - - [16/Jul/2016 21:21:51] "GET /viewlog HTTP/1.1" 200 -

 ...
Is your database switched on? Error: 2003: Can't connect to MySQL server on '127.0.0.1:3306'
(61 Connection refused)
127.0.0.1 - - [16/Jul/2016 21:22:58] "GET /viewlog HTTP/1.1" 200 -

And here are the messages that the most recent version of vsearch4web.py generates whenever
the backend database can’t be found:

You’re trying to
trick me, aren’t you?
These error messages
are the same!

Yes. On the face of things, these are the same.
However, although the output from the current and previous
versions of vsearch4web.py appears identical, behind the
scenes things are very different.

If you decide to change the backend database from MySQL to
PostgreSQL, you no longer have to worry about changing any
of the code in vsearch4web.py, as all of your database-
specific code resides in DBcm.py. As long as the changes you
make to DBcm.py maintain the same interface as previous
versions of the module, you can change SQL databases as
often as you like. This may not seem like a big deal now, but if
vsearch4web.py grows to hundreds, thousands, or tens of
thousands of lines of code, its really is a big deal.

www.EBooksWorld.ir

448 Chapter 11

more database issues

What Else Can Go Wrong with “DBcm”?
Even if your backend database is up and running, things can still go wrong.

For example, the credentials used to access the database may be incorrect. If
they are, the __enter__ method will fail again, this time with a mysql.
connector.errors.ProgrammingError.

Or, the suite of code associated with your UseDatabase context manager
may raise an exception, as there’s never a guarantee that it executes correctly. A
mysql.connector.errors.ProgrammingError is also raised whenever
your database query (the SQL you’re executing) contains an error.

The error message associated with an SQL query error is different than the
message associated with the credentials error, but the exception raised is the same:
mysql.connector.errors.ProgrammingError. Unlike with credentials
errors, errors in your SQL results in an exception being raised while the with
statement is executing. This means that you’ll need to consider protecting against
this exception in more than one place. The question is: where?

To answer this question, let’s take another look at DBcm’s code:

import mysql.connector

class ConnectionError(Exception):
 pass

class UseDatabase:
 def __init__(self, config: dict):
 self.configuration = config

 def __enter__(self) -> 'cursor':
 try:
 self.conn = mysql.connector.connect(**self.configuration)
 self.cursor = self.conn.cursor()
 return self.cursor
 except mysql.connector.errors.InterfaceError as err:
 raise ConnectionError(err)

 def __exit__(self, exc_type, exc_value, exc_traceback):
 self.conn.commit()
 self.cursor.close()
 self.conn.close()

This code
can raise a
“ProgrammingError”
exception.

But what about exceptions that occur
within the “with” suite? These happen
after the “__enter__” method ends
but *before* the “__exit__” method
starts.

You might be tempted to suggest that exceptions raised within the
with suite should be handled with a try/except statement
within the with, but such a strategy gets you right back to writing
tightly coupled code. But consider this: when an exception is
raised within with’s suite and not caught, the with statement
arranges to pass details of the uncaught exception into your
context manager’s __exit__ method, where you have the
option of doing something about it.

www.EBooksWorld.ir

you are here 4 449

exception handling

Creat ing More Custom Except ions
Let’s extend DBcm.py to report two additional, custom exceptions.

The first is called CredentialsError and is raised when a ProgrammingError
occurs within the __enter__ method. The second is called SQLError and is raised
when a ProgrammingError is reported to the __exit__ method.

Defining these new exceptions is easy: add two new, empty exception classes to the top
of DBcm.py:

import mysql.connector

class ConnectionError(Exception):
 pass

class CredentialsError(Exception):
 pass

class SQLError(Exception):
 pass

class UseDatabase:
 def __init__(self, configuration: dict):
 self.config = configuration
 ...

Two additional
classes define your two new exceptions.

A CredentialsError can occur during __enter__, so let’s adjust that method’s
code to reflect this. Recall that an incorrect MySQL username or password results in a
ProgrammingError being raised:

 ...
 try:
 self.conn = mysql.connector.connect(**self.config)
 self.cursor = self.conn.cursor()
 return self.cursor
 except mysql.connector.errors.InterfaceError as err:
 raise ConnectionError(err)
 except mysql.connector.errors.ProgrammingError as err:
 raise CredentialsError(err)

 def __exit__(self, exc_type, exc_value, exc_traceback):
 self.conn.commit()
 self.cursor.close()
 self.conn.close()

Add this code to
the “__enter__”
method to deal
with any login issues.

These code changes adjust DBcm.py to raise a CredentialsError exception
when you provide either an incorrect username or password from your code to your
backend database (MySQL). Adjusting vsearch4web.py’s code is your next task.

www.EBooksWorld.ir

450 Chapter 11

catching more exceptions

Are Your Database Credent ials Correct?
With these latest changes made to DBcm.py, let’s now adjust the code in
vsearch4web.py, paying particular attention to the view_the_log function.
However, before doing anything else, add CredentialsError to the list of
imports from DBcm at the top of your vsearch4web.py code:

 ...

from DBcm import UseDatabase, ConnectionError, CredentialsError
 ...

With the import line amended, you next need to add a new except
suite to the view_the_log function. As when you added support for a
ConnectionError, this is a straightforward edit:

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 try:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""
 cursor.execute(_SQL)
 contents = cursor.fetchall()
 titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)
 except ConnectionError as err:
 print('Is your database switched on? Error:', str(err))
 except CredentialsError as err:
 print('User-id/Password issues. Error:', str(err))
 except Exception as err:
 print('Something went wrong:', str(err))
 return 'Error'

Be sure to
import your
new exception.

Add this code to “view_the_log”
to catch when your code uses
the wrong username or password
with MySQL.

There’s really nothing new here, as all you’re doing is repeating what you did
for ConnectionError. Sure enough, if you try to connect to your backend
database with an incorrect username (or password), your webapp now displays an
appropriate message, like this:

 ...
User-id/Password issues. Error: 1045 (28000): Access denied for user 'vsearcherror'@'localhost'
(using password: YES)
127.0.0.1 - - [25/Jul/2016 16:29:37] "GET /viewlog HTTP/1.1" 200 -

Now that your code knows all about “CredentialsError”, you generate an exception-specific error message.
www.EBooksWorld.ir

you are here 4 451

exception handling

Handling SQLError Is Different
Both ConnectionError and CredentialsError are raised due to
problems with the __enter__ method’s code executing. When either exception
is raised, the corresponding with statement’s suite is not executed.

If all is well, your with suite executes as normal.

Recall this with statement from the log_request function, which uses the
UseDatabase context manager (provided by DBcm) to insert data into the
backend database:

 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

We need to worry
about what happens
if something goes
wrong with this
code)i.e., the code
within the “with”
suite).

If (for some reason) your SQL query contains an error, the MySQL Connector
module generates a ProgrammingError, just like the one raised during your
context manager’s __enter__ method. However, as this exception occurs within
your context manager (i.e., within the with statement) and is not caught there, the
exception is passed back to the __exit__ method as three arguments: the type
of the exception, the value of the exception, and the traceback associated with the
exception.

If you take a quick look at DBcm’s existing code for __exit__, you’ll see that the
three arguments are ready and waiting to be used:

 def __exit__(self, exc_type, exc_value, exc_traceback):
 self.conn.commit()
 self.cursor.close()
 self.conn.close()

The three
exception
arguments are
ready for use.

When an exception is raised within the with suite and not caught, the context
manager terminates the with suite’s code, and jumps to the __exit__
method, which then executes. Knowing this, you can write code that checks for
exceptions of interest to your application. However, if no exception is raised, the
three arguments (exc_type, exc_value, and exc_traceback) are all set to
None. Otherwise, they are populated with details of the raised exception.

Let’s exploit this behavior to raise an SQLError whenever something goes wrong
within the UseDatabase context manager’s with suite.

“None” is
Python’s
null value.

www.EBooksWorld.ir

452 Chapter 11

exc_type exc_value exc_traceback

Be Careful with Code Posit ioning
To check whether an uncaught exception has occurred within your code’s with
statement, check the exc_type argument to the __exit__ method within __
exit__’s suite, being careful to consider exactly where you add your new code.

You’re not about to tell me that it
makes a difference where I put my

“exc_type” checking code, are you?

Yes, it does make a difference.
To understand why, consider that your context
manager’s __exit__ method provides a place
where you can put code that is guaranteed to
execute after your with suite ends. That behavior is
part of the context manager protocol, after all.

This behavior needs to hold even when exceptions
are raised within your context manager’s with
suite. Which means that if you plan to add code
to the __exit__ method, it’s best to put it after
any existing code in __exit__, as that way you’ll
still guarantee the method’s existing code executes
(and preserve the semantics of the context manager
protocol).

Let’s take another look at the existing code in the __exit__ method in light of
this code placement discussion. Consider that any code we add needs to raise an
SQLError exception if exc_type indicates a ProgrammingError has occurred:

 def __exit__(self, exc_type, exc_value, exc_traceback):
 self.conn.commit()
 self.cursor.close()
 self.conn.close()If you add code in here,

and that code raises
an exception, the three
existing lines of code
won’t be executed.

Adding code *after* the three existing lines of code ensures “__exit__” does its thing *before* any passed-in exception is dealt with.

www.EBooksWorld.ir

you are here 4 453

exception handling

Raising an SQLError
At this stage, you’ve already added the SQLError exception class to the top of the
DBcm.py file:

import mysql.connector

class ConnectionError(Exception):
 pass

class CredentialsError(Exception):
 pass

class SQLError(Exception):
 pass

class UseDatabase:
 def __init__(self, config: dict):
 self.configuration = config
 ...

Here’s where
you added in
the “SQLError” exception.

With the SQLError exception class defined, all you need to do now is add some
code to the __exit__ method to check whether exc_type is the exception you’re
interested in, and if it is, raise an SQLError. This is so straightforward that
we are resisting the usual Head First urge to turn creating the required code into an
exercise, as no one wants to insult anyone’s intelligence at this stage in this book. So,
here’s the code you need to append to the __exit__ method:

 def __exit__(self, exc_type, exc_value, exc_traceback):
 self.conn.commit()
 self.cursor.close()
 self.conn.close()
 if exc_type is mysql.connector.errors.ProgrammingError:
 raise SQLError(exc_value)

If you want to be extra safe, and do something sensible with any other, unexpected
exception sent to __exit__, you can add an elif suite to the end of the
__exit__ method that reraises the unexpected exception to the calling code:

 ...
 self.conn.close()
 if exc_type is mysql.connector.errors.ProgrammingError:
 raise SQLError(exc_value)
 elif exc_type:
 raise exc_type(exc_value)

If a “ProgrammingError”
occurs, raise an
“SQLError”.

This “elif” raises
any other exception
that might occur.

www.EBooksWorld.ir

454 Chapter 11

no more programmingerror

 ...
Is your query correct? Error: 1146 (42S02): Table 'vsearchlogdb.logerror' doesn't exist
127.0.0.1 - - [25/Jul/2016 21:38:25] "GET /viewlog HTTP/1.1" 200 -

Test Drive
With support for the SQLError exception added to DBcm.py, add another except suite to your
view_the_log function to catch any SQLErrors that occur:

 ...
 except ConnectionError as err:
 print('Is your database switched on? Error:', str(err))
 except CredentialsError as err:
 print('User-id/Password issues. Error:', str(err))
 except SQLError as err:
 print('Is your query correct? Error:', str(err))
 except Exception as err:
 print('Something went wrong:', str(err))
 return 'Error'

Add this code
into the “view_
the_log” function
within your
“vsearch4web.py”
webapp.

Once you save vsearch4web.py, your webapp should reload and be ready for testing. If you try
to execute an SQL query that contains errors, the exception is handled by the above code:

Equally, if something unexpected happens, your webapp’s catch-all code kicks into gear, displaying
an appropriate message:

 ...
Something went wrong: Some unknown exception.
127.0.0.1 - - [25/Jul/2016 21:43:14] "GET /viewlog HTTP/1.1" 200 -

With exception-handling code added to your webapp, no matter what runtime error occurs, your
webapp continues to function without displaying a scary or confusing error page to your users.

If something unexpected happens, your code handles it.

No more generic “ProgrammingError” exceptions from
MySQL Connector, as your custom exception-handling code
catches these errors now.

And the really nice thing about
this is that this code takes the generic

“ProgrammingError” exception provided by
the MySQL Connector module and turns
it into two custom exceptions that have
specific meaning for our webapp.

Yes, it does. And this is very powerful.

www.EBooksWorld.ir

you are here 4 455

exception handling

A Quick Recap: Adding Robustness
Let’s take a minute to remind ourselves of what we set out to do in this chapter.
In attempting to make our webapp code more robust, we had to answer four
questions relating to four identified issues. Let’s review each question and note
how we did:

What happens if the database connection fails?
You created a new exception called ConnectionError that is raised whenever
your backend database can’t be found. You then used try/except to handle a
ConnectionError were it to occur.

1

Is our webapp protected from web attacks?
It was a “happy accident,” but your choice of Flask plus Jinja2, together with Python’s
DB-API specification, protects your webapp from the most notorious of web attacks. So,
yes, your webapp is protected from some web attacks (but not all).

2

What happens if something takes a long time?
We still haven’t answered this question, other than to demonstrate what happens when
your webapp takes 15 seconds to respond to a user request: your web user has to wait (or,
more likely, your web user gets fed up waiting and leaves).

3

What happens if a function call fails?
You used try/except to protect the function call, which allowed you to control what
the user of your webapp sees when something goes wrong.

4

What happens if something takes a long t ime?
When you did the initial exercise at the start of this chapter, this question resulted
from our examination of the cursor.execute calls that occurred in the
log_request and view_the_log functions. Although you’ve already worked
with both of these functions in answering questions 1 and 4, above, you’re not
done with them quite yet.

Both log_request and view_the_log use the UseDatabase context
manager to execute an SQL query. The log_request function writes the
details of the submitted search to the backend database, whereas the view_
the_log function reads from the database.

The question is: what do you do if this write or read takes a long time?

Well, as with a lot of things in the programming world, it depends.

www.EBooksWorld.ir

456 Chapter 11

wait to wait

How to Deal with Wait? It Depends...
How you decide to deal with code that makes your users wait—either on a read, or
on a write—can get complex. So we’re going to pause this discussion and defer a
solution until the next, short chapter.

In fact, the next chapter is so short that it doesn’t warrant its own chapter number
(as you’ll see), but the material it presents is complex enough to justify splitting it
off from this chapter’s main discussion, which presented Python’s try/except
mechanism. So, let’s hang on for a bit before putting to rest issue 3: what happens if
something takes a long time?

You do realize you’re
asking us to wait to deal
with code that waits?

Yes. The irony is not lost on us.
We’re asking you to wait to learn how to
handle “waits” in your code.

But you’ve already learned a lot in this
chapter, and we think it’s important to
take a bit of time to let the try/except
material sink into your brain.

So, we’d like you to pause, and take a short
break...after you’ve cast your eye over the
code seen thus far in this chapter.

www.EBooksWorld.ir

you are here 4 457

exception handling

Chapter 11’s Code, 1 of 3
try:
 with open('myfile.txt') as fh:
 file_data = fh.read()
 print(file_data)
except FileNotFoundError:
 print('The data file is missing.')
except PermissionError:
 print('This is not allowed.')
except Exception as err:
 print('Some other error occurred:', str(err))

This is “try_example.py”.

import mysql.connector

class ConnectionError(Exception):
 pass

class CredentialsError(Exception):
 pass

class SQLError(Exception):
 pass

class UseDatabase:
 def __init__(self, config: dict):
 self.configuration = config

 def __enter__(self) -> 'cursor':
 try:
 self.conn = mysql.connector.connect(**self.configuration)
 self.cursor = self.conn.cursor()
 return self.cursor
 except mysql.connector.errors.InterfaceError as err:
 raise ConnectionError(err)
 except mysql.connector.errors.ProgrammingError as err:
 raise CredentialsError(err)

 def __exit__(self, exc_type, exc_value, exc_traceback):
 self.conn.commit()
 self.cursor.close()
 self.conn.close()
 if exc_type is mysql.connector.errors.ProgrammingError:
 raise SQLError(exc_value)
 elif exc_type:
 raise exc_type(exc_value)

This is the exception-savvy
version of “DBcm.py”.

www.EBooksWorld.ir

458 Chapter 11

the code

Chapter 11’s Code, 2 of 3
from flask import Flask, render_template, request, escape, session
from flask import copy_current_request_context

from vsearch import search4letters

from DBcm import UseDatabase, ConnectionError, CredentialsError, SQLError
from checker import check_logged_in

from time import sleep

app = Flask(__name__)

app.config['dbconfig'] = {'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

@app.route('/login')
def do_login() -> str:
 session['logged_in'] = True
 return 'You are now logged in.'

@app.route('/logout')
def do_logout() -> str:
 session.pop('logged_in')
 return 'You are now logged out.'

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':

 @copy_current_request_context
 def log_request(req: 'flask_request', res: str) -> None:
 sleep(15) # This makes log_request really slow...
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'

This is the version of “vsearch4web.py” that makes your users wait...

The rest of “do_search” is at the top of the next page.

It’s probably a good idea to
protect this “with” statement
in much the same way as
you protected the “with”
statement in “view_the_log”
(on the next page).

www.EBooksWorld.ir

you are here 4 459

exception handling

Chapter 11’s Code, 3 of 3
 results = str(search4letters(phrase, letters))
 try:
 log_request(request, results))
 except Exception as err:
 print('***** Logging failed with this error:', str(err))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 try:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""
 cursor.execute(_SQL)
 contents = cursor.fetchall()
 # raise Exception("Some unknown exception.")
 titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)
 except ConnectionError as err:
 print('Is your database switched on? Error:', str(err))
 except CredentialsError as err:
 print('User-id/Password issues. Error:', str(err))
 except SQLError as err:
 print('Is your query correct? Error:', str(err))
 except Exception as err:
 print('Something went wrong:', str(err))
 return 'Error'

app.secret_key = 'YouWillNeverGuessMySecretKey'

if __name__ == '__main__':
 app.run(debug=True)

This is the
rest of the
“do_search”
function.

www.EBooksWorld.ir

www.EBooksWorld.ir

this is a new chapter 461

a little bit of threading11¾

Dealing with Waiting

Your code can sometimes take a long time to execute.
Depending on who notices, this may or may not be an issue. If some code takes 30

seconds to do its thing “behind the scenes,” the wait may not be an issue. However, if

your user is waiting for your application to respond, and it takes 30 seconds, everyone

notices. What you should do to fix this problem depends on what you’re trying to do (and

who’s doing the waiting). In this short chapter, we’ll briefly discuss some options, then look

at one solution to the issue at hand: what happens if something takes too long?

When they said: “wait,”
I'd no idea this is what
they had in mind...

www.EBooksWorld.ir

462 Chapter 11¾

write wait read wait

Listen, dude, if you
have to wait, there’s
nothing else for it:
you wait...

Maybe how you wait is
different when you’re
writing than when you’re
reading?

Like everything else, it
all depends on what you’re
trying to do, and the user
experience you’re shooting

for...

Wait ing: What to Do?
When you write code that has the potential to make your users wait, you need to
think carefully about what it is you are trying to do. Let’s consider some points of
view.

Maybe it is the case that waiting for a write is different from waiting for a read,
especially as it relates to how your webapp works?

Let’s take another look at the SQL queries in log_request and view_the_
log to see how you’re using them.

www.EBooksWorld.ir

you are here 4 463

a little bit of threading

How Are You Querying Your Database?
In the log_request function, we are using an SQL INSERT to add details of
the request to our backend database. When log_request is called, it waits
while the INSERT is executed by cursor.execute:

def log_request(req: 'flask_request', res: str) -> None:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 try:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""
 cursor.execute(_SQL)
 contents = cursor.fetchall()
 titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)
 except ConnectionError as err:
 ...

At this point, the
webapp “blocks” while
it waits for the
backend database to
do its thing.

The same holds for the view_the_log function, which also waits whenever
the SQL SELECT query is executed:

Your webapp
“blocks” here,
too, while it
waits for the
database.

To save on space, we’re not showing all of the code

for “view_the_log”. The exception-handling code

still goes here.

Both functions block. However, look closely at what happens after the call
to cursor.execute in both functions. In log_request, the cursor.
execute call is the last thing that function does, whereas in view_the_log,
the results of cursor.execute are used by the rest of the function.

Let’s consider the implications of this difference.

Geek Bits

Code that waits for something
external to complete is referred
to as “blocking code,” in that the
execution of your program is
blocked from continuing until
the wait is over. As a general
rule, blocking code that takes a
noticeable length of time is bad.

www.EBooksWorld.ir

464 Chapter 11¾

insert is not select

Database INSERTs and SELECTs Are Different
If you’re reading the title to this page and thinking “Of course they are!”, be assured
that (this late in this book) we haven’t lost our marbles.

Yes: an SQL INSERT is different from an SQL SELECT, but, as it relates to your use of
both queries in your webapp, it turns out that the INSERT in log_request doesn’t
need to block, whereas the SELECT in view_the_log does, which makes the
queries very different.

This is a key observation.

If the SELECT in view_the_log doesn’t wait for the data to return from the
backend database, the code that follows cursor.execute will likely fail (as it’ll have
no data to work with). The view_the_log function must block, as it has to wait for
data before proceeding.

When your webapp calls log_request, it wants the function to log the details of
the current web request to the database. The calling code doesn’t really care when this
happens, just that it does. The log_request function returns no value, nor data; the
calling code isn’t waiting for a response. All the calling code cares about is that the web
request is logged eventually.

Which begs the question: why does log_request force its callers to wait?

Are you about to suggest that
the “log_request” code could
somehow run concurrently
with the webapp’s code?

Yes. That’s our madcap idea.
When users of your webapp enter a new
search, they couldn’t care less that the request
details are logged to some backend database,
so let’s not make them wait while your webapp
does that work.

Instead, let’s arrange for some other process to
do the logging eventually and independently of
the webapp’s main function (which is to allow
your users to perform searches).

www.EBooksWorld.ir

you are here 4 465

a little bit of threading

Doing More Than One Thing at Once
Here’s the plan: you’re going to arrange for the log_request function to
execute independently of your main webapp. To do this, you’re going to adjust
your webapp’s code so each call to log_request runs concurrently. This will
mean that your webapp no longer has to wait for log_request to complete
before servicing another request from another user (i.e., no more delays).

If log_request takes an instant, a few seconds, a minute, or even hours to
execute, your webapp doesn’t care (and neither does your user). What you care
about is that the code eventually executes.

Concurrent code: you have opt ions
When it comes to arranging for some of your application’s code to run
concurrently, Python has a few options. As well as lots of support from third-party
modules, the standard library comes with some built-in goodies that can help here.

One of the most well known is the threading library, which provides a high-
level interface to the threading implementation provided by the operating system
hosting your webapp. To use the library, all you need to do is import the
Thread class from the threading module near the top of your program code:

For the full list of (and
all the details about)
Python’s standard
library concurrency
options, see https://
docs.python.org/3/
library/concurrency.
html.

from threading import Thread

Go ahead and add this line of code near the top of your vsearch4web.py file.

Now the fun starts.

To create a new thread, you create a Thread object, assigning the name of the
function you want the thread to execute to a named argument called target,
and providing any arguments as a tuple to another named argument called args.
The created Thread object is then assigned to a variable of your choosing.

As an example, let’s assume that you have a function called execute_slowly,
which takes three arguments, which we’ll assume are three numbers. The code
that invokes execute_slowly has assigned the three values to variables called
glacial, plodding, and leaden. Here’s how execute_slowly is invoked
normally (i.e., without our worrying about concurrent execution):

execute_slowly(glacial, plodding, leaden)

If execute_slowly takes 30 seconds to do what it has to do, the calling code
blocks and waits for 30 seconds before doing anything else. Bummer.

www.EBooksWorld.ir

https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html

466 Chapter 11¾

gotta love threads

Don’t Get Bummed Out: Use Threads
In the big scheme of things, waiting 30 seconds for the execute_slowly
function to complete doesn’t sound like the end of the world. But, if your user is
sitting and waiting, they’ll be wondering what’s gone wrong.

If your application can continue to run while execute_slowly goes about
its business, you can create a Thread to run execute_slowly concurrently.
Here’s the normal function call once more, together with the code that turns the
function call into a request for threaded execution:

execute_slowly(glacial, plodding, leaden)

from threading import Thread

 ...

t = Thread(target=execute_slowly, args=(glacial, plodding, leaden))

The
original
function
call

Import the
required module
and class near the
top of your code...

...then create a new “Thread” object, which identifies the target function to execute as well as any argument values.

Granted, this use of Thread looks a little strange, but it’s not really. The key
to understanding what’s going on here is to note that the Thread object has
been assigned to a variable (t in this example), and that the execute_slowly
function has yet to execute.

Assigning the Thread object to t prepares it for execution. To ask Python’s
threading technology to run execute_slowly, start the thread like this:

t.start()

At this point, the code that called t.start continues to run. The 30-second
wait that results from running execute_slowly has no effect on the calling
code, as execute_slowly’s execution is handled by Python’s threading
module, not by you. The threading module conspires with the Python
interpreter to run execute_slowly eventually.

When you call “start”, the function
associated with the “t” thread is scheduled
for execution by the “threading” module.

www.EBooksWorld.ir

you are here 4 467

a little bit of threading

When it comes to calling log_request in your webapp code, there’s
only one place you need to look: in the do_search function. Recall that
you’ve already put your call to log_request inside a try/except to
guard against unexpected runtime errors.

Note, too, that we’ve added a 15-second delay—using sleep(15)—to
our log_request code (making it slow). Here’s the current code to
do_search:

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 try:
 log_request(request, results)
 except Exception as err:
 print('***** Logging failed with this error:',
str(err))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

We are going to assume that you have already added from threading
import Thread to the top of your webapp’s code.

Grab your pencil, and in the space provided below, write the code you’d
insert into do_search instead of the standard call to log_request.

Remember: you are to use a Thread object to run log_request, just
like we did with the execute_slowly example from the last page.

Here’s how you
currently invoke
“log_request”.

Add the threading code
you’d use to eventually
execute “log_request”.

www.EBooksWorld.ir

468 Chapter 11¾

threading at work

When it comes to calling log_request in your webapp code, there’s
only one place you need to look: in the do_search function. Recall that
you’ve already put your call to log_request inside a try/except to
guard against unexpected run-time errors.

Note, too, that we’ve added a 15 second delay - using sleep(15) - to
our log_request code (making it slow). Here’s the current code to
do_search:

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 try:
 log_request(request, results)
 except Exception as err:
 print('***** Logging failed with this error:',
str(err))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

We assumed that you had already added from threading import
Thread to the top of your webapp’s code.

In the space provided below, you were to write the code you’d insert into
do_search instead of the standard call to log_request.

You were to use a Thread object to run log_request, just like we did
with the recent execute_slowly example.

Here’s how you
currently invoke
“log_request”.

We’re keeping the “try”
statement (for now).

try:
t = Thread(target=log_request, args=(request, results))

t.start()
except ...

The “except” suite
is unchanged, so we
aren't showing it here.

Just like the earlier example, identify the
target function to run, supply any arguments
it needs, and don’t forget to schedule your
thread to run.

www.EBooksWorld.ir

you are here 4 469

a little bit of threading

Test Drive
With these edits applied to vsearch4web.py, you are ready for another test run. What you’re
expecting to see here is next-to-no wait when you enter a search into your webapp’s search page (as
the log_request code is being run concurrently by the threading module).
Go ahead and give it a go.
Sure enough, the instant you click on the “Do it!” button, your webapp returns with your results. The
assumption is that the threading module is now executing log_request, and waiting however
long it takes to run that function’s code to completion (approximately 15 seconds).
You’re just about to give yourself a pat on the back (for a job well done) when, out of nowhere and
after about 15 seconds, your webapp’s terminal window erupts with error messages, not unlike these:

 ...
127.0.0.1 - - [29/Jul/2016 19:43:31] "POST /search4 HTTP/1.1" 200 -
Exception in thread Thread-6:
Traceback (most recent call last):
 File "vsearch4web.not.slow.with.threads.but.broken.py", line 42, in log_request
 cursor.execute(_SQL, (req.form['phrase'],
 File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/
werkzeug/local.py", line 343, in __getattr__
 ...
 raise RuntimeError(_request_ctx_err_msg)
RuntimeError: Working outside of request context.

This typically means that you attempted to use functionality that needed
an active HTTP request. Consult the documentation on testing for
information about how to avoid this problem.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/threading.py",
line 914, in _bootstrap_inner
 self.run()
 ...
RuntimeError: Working outside of request context.

This typically means that you attempted to use functionality that needed
an active HTTP request. Consult the documentation on testing for
information about how to avoid this problem.

Lots (!!)
more
traceback
messages
here

Take
a look
at this
message.

The last request was a success.

Whoops! An uncaught exception.

And another one...yikes!

If you check your backend database, you’ll learn that the details of your web request were not logged.
Based on the messages above, it appears the threading module isn’t at all happy with your code.
A lot of the second group of traceback messages refer to threading.py, whereas the first group
of traceback messages refer to code in the werkzeug and flask folders. What’s clear is that
adding in the threading code has resulted in a huge mess. What’s going on?

www.EBooksWorld.ir

470 Chapter 11¾

what’s going on?

First Things First: Don’t Panic
Your first instinct may be to back out the code you added to run log_request in its
own thread (and get yourself back to a known good state). But let’s not panic, and let’s
not do that. Instead, let’s take a look at that descriptive paragraph that appeared twice
in the traceback messages:

 ...
This typically means that you attempted to use functionality that needed
an active HTTP request. Consult the documentation on testing for
information about how to avoid this problem.
 ...

This message is coming from Flask, not from the threading module. We know this
because the threading module couldn’t care less about what you use it for, and
definitely has no interest in what you’re trying to do with HTTP.

Let’s take another look at the code that schedules the thread for execution, which we
know takes 15 seconds to run, as that’s how long log_request takes. While you’re
looking at this code, think about what happens during that 15 seconds:

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':
 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 try:
 t = Thread(target=log_request, args=(request, results))
 t.start()
 except Exception as err:
 print('***** Logging failed with this error:', str(err))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

What happens
while this
thread takes
15 seconds to
execute?

The instant the thread is scheduled for execution, the calling code (the do_search
function) continues to execute. The render_template function executes (in the
blink of an eye), and then the do_search function ends.

When do_search ends, all of the data associated with the function (its context) is
reclaimed by the interpreter. The variables request, phrase, letters, title,
and results cease to be. However, the request and results variables are
passed as arguments to log_request, which tries to access them 15 seconds later.
Unfortunately, at that point in time, the variables no longer exist, as do_search has
ended. Bummer.

www.EBooksWorld.ir

you are here 4 471

a little bit of threading

Don’t Get Bummed Out: Flask Can Help
Based on what you’ve just learned, it appears the log_request function (when
executed within a thread) can no longer “see” its argument data. This is due to
the fact that the interpreter has long since cleaned up after itself, and reclaimed
the memory used by these variables (as do_search has ended). Specifically, the
request object is no longer active, and when log_request goes looking for it,
it can’t be found.

So, what can be done? Don’t fret: help is at hand.

I’m just going to pencil you in for next
week, when I know you’re going to ask me
to rewrite the “log_request” function. OK?

There’s really no need for a rewrite.
At first glance, it might appear that you’d need to rewrite
log_request to somehow rely less on its arguments...
assuming that’s even possible. But it turns out that Flask
comes with a decorator that can help here.

The decorator, copy_current_request_context,
ensures that the HTTP request that is active when a
function is called remains active even when the function is
subsequently executed in a thread. To use it, you need to
add copy_current_request_context to the list of
imports at the top of your webapp’s code.

As with any other decorator, you apply it to an existing
function using the usual @ syntax. However, there is a
caveat: the function being decorated has to be defined
within the function that calls it; the decorated function must
be nested inside its caller (as an inner function).

Here’s what we want you to do (after updating the list of imports from Flask):
1. Take the log_request function and nest it inside the do_search function.
2. Decorate log_request with @copy_current_request_context.
3. Confirm that the runtime errors from the last Test Drive have gone away.

www.EBooksWorld.ir

472 Chapter 11¾

panic no more

We asked you to do three things:
1. Take the log_request function and nest it inside the do_search function.
2. Decorate log_request with @copy_current_request_context.
3. Confirm that the runtime errors from the last Test Drive have gone away.

Here’s what our do_search code looks like after we perform tasks 1 and 2 (note: we’ll
discuss task 3 over the page):

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':

 @copy_current_request_context
 def log_request(req: 'flask_request', res: str) -> None:
 sleep(15) # This makes log_request really slow...
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'
 results = str(search4letters(phrase, letters))
 try:
 t = Thread(target=log_request, args=(request, results))
 t.start()
 except Exception as err:
 print('***** Logging failed with this error:', str(err))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

Task 1. The
“log_request”
function is now
defined (nested)
inside the “do_
search” function.

Task 2. The decorator has been
applied to “log_request”.

All of the
rest of this
code remains
unchanged.

Q: Does it still make sense to protect the threaded invocation of log_request with try/except?

A: Not if you are hoping to react to a runtime issue with log_request, as the try/except will have ended before the thread
starts. However, your system may fail trying to create a new thread, so we figure it can’t hurt to leave try/except in do_search.

www.EBooksWorld.ir

you are here 4 473

a little bit of threading

Test Drive
Task 3: Taking this latest version of vsearch4web.py for a spin confirms that the runtime errors
from the last Test Drive are a thing of the past. Your webapp’s terminal window confirms that all is well:

 ...
127.0.0.1 - - [30/Jul/2016 20:42:46] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [30/Jul/2016 20:43:10] "POST /search4 HTTP/1.1" 200 -
127.0.0.1 - - [30/Jul/2016 20:43:14] "GET /login HTTP/1.1" 200 -
127.0.0.1 - - [30/Jul/2016 20:43:17] "GET /viewlog HTTP/1.1" 200 -
127.0.0.1 - - [30/Jul/2016 20:43:37] "GET /viewlog HTTP/1.1" 200 -

No more scary runtime exceptions. All those 200s mean all is well with your webapp. And, 15 seconds after you submit a new search, your webapp eventually logs the details to your backend database WITHOUT requiring your webapp user to wait. §

According to this card, I get to
ask one last question. Is there any
downside to defining “log_request”
within “do_search”?

No. Not in this case.
For this webapp, the log_request function
was only ever called by do_search, so nesting
log_request’s within do_search isn’t an
issue.

If you later decide to invoke log_request
from some other function, you may have an
issue (and you’ll have to rethink things). But, for
now, you’re golden.

www.EBooksWorld.ir

474 Chapter 11¾

one last review

What happens if the database connection fails?1

Is our webapp protected from web attacks?2

What happens if something takes a long time?3

What happens if a function call fails?4

Is Your Webapp Robust Now?
Here are the four questions posed at the start of Chapter 11:

Your webapp now handles a number of runtime exceptions, thanks to your use
of try/except and some custom exceptions that you can raise and catch as
required.

When you know something can go wrong at runtime, fortify your code against
any exceptions that might occur. This improves the overall robustness of your
application, which is a good thing.

Note that there are other areas where robustness could be improved. You spent
a lot of time adding try/except code to view_the_log’s code, which took
advantage of the UseDatabase context manager. UseDatabase is also used
within log_request, and should probably be protected, too (and doing so is
left as a homework exercise for you).

Your webapp is more responsive due to your use of threading to handle a task
that has to be performed eventually, but not right away. This is a good design
strategy, although you do need to be careful not to go overboard with threads: the
threading example in this chapter is very straightforward. However, it is very easy
to create threading code that nobody can understand, and which will drive you
mad when you have to debug it. Use threads with care.

In answering question 3—what happens if something takes a long time?—the use of
threads improved the performance of the database write, but not the database
read. It is a case of just having to wait for the data to arrive after the read, no
matter now long it takes, as the webapp wasn’t able to proceed without the data.

To make the database read go faster (assuming it’s actually slow in the first place),
you may have to look at using an alternative (faster) database setup. But that’s a
worry for another day that we won’t concern ourselves with further in this book.

However, having said that, in the next and last chapter, we do indeed consider
performance, but we’ll be doing so while discussing a topic everyone understands,
and which we’ve already discussed in this book: looping.

www.EBooksWorld.ir

you are here 4 475

a little bit of threading

Chapter 11¾’s Code, 1 of 2
from flask import Flask, render_template, request, escape, session
from flask import copy_current_request_context
from vsearch import search4letters

from DBcm import UseDatabase, ConnectionError, CredentialsError, SQLError
from checker import check_logged_in

from threading import Thread
from time import sleep

app = Flask(__name__)

app.config['dbconfig'] = {'host': '127.0.0.1',
 'user': 'vsearch',
 'password': 'vsearchpasswd',
 'database': 'vsearchlogDB', }

@app.route('/login')
def do_login() -> str:
 session['logged_in'] = True
 return 'You are now logged in.'

@app.route('/logout')
def do_logout() -> str:
 session.pop('logged_in')
 return 'You are now logged out.'

@app.route('/search4', methods=['POST'])
def do_search() -> 'html':

 @copy_current_request_context
 def log_request(req: 'flask_request', res: str) -> None:
 sleep(15) # This makes log_request really slow...
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """insert into log
 (phrase, letters, ip, browser_string, results)
 values
 (%s, %s, %s, %s, %s)"""
 cursor.execute(_SQL, (req.form['phrase'],
 req.form['letters'],
 req.remote_addr,
 req.user_agent.browser,
 res,))

 phrase = request.form['phrase']
 letters = request.form['letters']
 title = 'Here are your results:'

This is the latest and greatest version of “vsearch4web.py”.

The rest of “do_search” is at the top of the next page.

www.EBooksWorld.ir

476 Chapter 11¾

the code

Chapter 11¾’s Code, 2 of 2
 results = str(search4letters(phrase, letters))
 try:
 t = Thread(target=log_request, args=(request, results))
 t.start()
 except Exception as err:
 print('***** Logging failed with this error:', str(err))
 return render_template('results.html',
 the_title=title,
 the_phrase=phrase,
 the_letters=letters,
 the_results=results,)

@app.route('/')
@app.route('/entry')
def entry_page() -> 'html':
 return render_template('entry.html',
 the_title='Welcome to search4letters on the web!')

@app.route('/viewlog')
@check_logged_in
def view_the_log() -> 'html':
 try:
 with UseDatabase(app.config['dbconfig']) as cursor:
 _SQL = """select phrase, letters, ip, browser_string, results
 from log"""
 cursor.execute(_SQL)
 contents = cursor.fetchall()
 # raise Exception("Some unknown exception.")
 titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results')
 return render_template('viewlog.html',
 the_title='View Log',
 the_row_titles=titles,
 the_data=contents,)
 except ConnectionError as err:
 print('Is your database switched on? Error:', str(err))
 except CredentialsError as err:
 print('User-id/Password issues. Error:', str(err))
 except SQLError as err:
 print('Is your query correct? Error:', str(err))
 except Exception as err:
 print('Something went wrong:', str(err))
 return 'Error'

app.secret_key = 'YouWillNeverGuessMySecretKey'

if __name__ == '__main__':
 app.run(debug=True)

This is the
rest of the
“do_search”
function.

www.EBooksWorld.ir

this is a new chapter 477

advanced iteration12

Looping Like Crazy

It’s often amazing how much time our programs spend in loops.
This isn’t a surprise, as most programs exist to perform something quickly a whole heap

of times. When it comes to optimizing loops, there are two approaches: (1) improve the

loop syntax (to make it easier to specify a loop), and (2) improve how loops execute (to

make them go faster). Early in the lifetime of Python 2 (that is, a long, long time ago), the

language designers added a single language feature that implements both approaches,

and it goes by a rather strange name: comprehension. But don’t let the strange name

put you off: by the time you’ve worked through this chapter, you’ll be wondering how you

managed to live without comprehensions for so long.

I’ve just had the most
wonderful idea: what if
I could make my loops
go faster?

www.EBooksWorld.ir

478 Chapter 12

flights data

Bahamas Buzzers Have Places to Go
To learn what loop comprehensions can do for you, you’re going to take a look at
some “real” data.

Operating out of Nassau on New Providence Island, Bahamas Buzzers provides
island-hopping flights to some of the larger island airports. The airline has
pioneered just-in-time flight scheduling: based on the previous day’s demand, the
airline predicts (which is just a fancy term for “guesses”) how many flights they
need the next day. At the end of each day, the BB Head Office generates the next
day’s flight schedule, which ends up in a text-based CSV (comma-separated value) file.

Here’s what tomorrow’s CSV file contains:

TIME,DESTINATION
09:35,FREEPORT
17:00,FREEPORT
09:55,WEST END
19:00,WEST END
10:45,TREASURE CAY
12:00,TREASURE CAY
11:45,ROCK SOUND
17:55,ROCK SOUND

This is a standard CSV file,
with the first line given over
to header information. It all
looks OK except for the fact
that everything’s UPPERCASE
(which is a little “old school”).

Geek Bits

Learn more about the CSV format here:
https://en.wikipedia.org/wiki/Comma-
separated_values.

The header tells us to expect two columns of data: one representing times, the other destinations.

The rest of the
CSV file contains
the actual flight
data.

Head Office calls this CSV file buzzers.csv.

If you were asked to read the data from the CSV file and display it on screen,
you’d use a with statement. Here’s what we did at IDLE’s >>> prompt, after
using Python’s os module to change into the folder that contains the file:

Set this
to the
folder
you’re
using. The raw

CSV data
from the
file.

The “read” method slurps up all of the characters in the file in one go.

We’ve places
to go, people to
see...

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values

you are here 4 479

advanced iteration

Reading CSV Data As Lists
The CSV data, in its raw form, is not very useful. It would be more useful if you
could read and break apart each line at the comma, making it easier to get at the
data.

Although it is possible to do this “breaking apart” with hand-crafted Python code
(taking advantage of the string object’s split method), working with CSV data
is such a common activity that the standard library comes with a module named
csv that can help.

Here’s another small for loop that demonstrates the csv module in action.
Unlike the last example, where you used the read method to grab the entire
contents of the file in one go, in the code that follows, csv.reader is used to read
the CSV file one line at a time within the for loop. On each iteration, the for loop
assigns each line of CSV data to a variable (called line), which is then displayed
on screen:

This looks better:
each line of data
from the CSV
file has been
turned into a list.

Open the file using “with”...

...then read
the data a line
at a time with
“csv.reader”.

The csv module is doing quite a bit of work here. Each line of raw data is being
read from the file, then “magically” turned into a two-item list.

In addition to the header information (from the first line of the file) being
returned as a list, each individual flight time and destination pair also gets its own
list. Take note of the type of the individual data items returned: everything is a
string, even though the first item in each list (clearly) represents a time.

The csv module has a few more tricks up its sleeve. Another interesting function
is csv.DictReader. Let’s see what that does for you.

www.EBooksWorld.ir

480 Chapter 12

csv to dictionary

Reading CSV Data As Dict ionaries
Here’s code similar to the last example, but for the fact that this new code uses csv.
DictReader as opposed to csv.reader. When DictReader is used, the data
from the CSV file is returned as a collection of dictionaries, with the keys for each
dictionary taken from the CSV file’s header line, and the values taken from each of the
subsequent lines. Here’s the code:

TIME,DESTINATION
09:35,FREEPORT
17:00,FREEPORT
09:55,WEST END
19:00,WEST END
10:45,TREASURE CAY
12:00,TREASURE CAY
11:45,ROCK SOUND
17:55,ROCK SOUND

Recall: the
raw data in
the file looks
like this.

The
keys

The values

Using “csv.DictReader” is a simple change, but it makes a big difference. What was lines of lists (last time) are now lines of dictionaries.

There is no doubt that this is powerful stuff: with a single call to DictReader, the
csv module has transformed the raw data in your CSV file into a collection of Python
dictionaries.

But imagine you’ve been tasked with converting the raw data in the CSV file based on
the following requirements:

Convert the flight times from 24-hour format to AM/PM format1

Convert the destinations from UPPERCASE to Titlecase2

In and of themselves, these are not difficult tasks. However, when you consider the raw
data as a collection of lists or a collection of dictionaries, they can be. So, let’s write
a custom for loop to read the data into a single dictionary that can then be used to
perform these conversions with a lot less fuss.

www.EBooksWorld.ir

you are here 4 481

advanced iteration

Let’s Back Up a Lit t le Bit
Rather than use csv.reader or csv.DictReader, let’s roll our own code
to convert the raw data in the CSV file into a single dictionary, which we can then
manipulate to perform the required conversions.

We’ve had a chat with the Head Office folks over at Bahamas Buzzers, and they’ve told us
they’re very happy with the conversions we have in mind, but would still like the data
kept in its “raw form,” as that’s how their antiquated departures board expects its data
to arrive: 24-hour format for flight times, and all UPPERCASE for destinations.

You could perform conversions on the raw data in your single dictionary, but let’s
ensure that the conversions are performed on copies of the data, not the actual raw
data as read in. Although it’s not totally clear at the moment, the noises coming out of
Head Office seem to indicate that whatever code you create may have to interface with
some existing systems. So, rather than face the prospect of converting the data back
into its raw form, let’s read it into a single dictionary as is, then convert to copies as
required (while leaving the raw data in the original dictionary untouched).

It’s not an awful lot of work (over and above what you had to do with the csv module)
to read the raw data into a dictionary. In the code below, the file is opened, and the
first line is read and ignored (as we don’t need the header info). A for loop then reads
each line of raw data, splitting it in two at the comma, with the flight time being used
as your dictionary key, and the destination used as your dictionary value.

TIME,DESTINATION
09:35,FREEPORT
17:00,FREEPORT
09:55,WEST END
19:00,WEST END
10:45,TREASURE CAY
12:00,TREASURE CAY
11:45,ROCK SOUND
17:55,ROCK SOUND

The raw data

Can you break each line in two, using the comma as the delimiter?

Open the
file as
before. Ignore the

header info.
Create a new,
empty dictionary
called “flights”.

Process
each line.

Break apart the line at the comma, which returns two values: the key (flight time) and value (destination).

Assign destination to flight time.

Display the contents
of the dictionary,
which looks a little
messed up until...

...the “pretty-
printing” library
produces more
human-friendly
output.

The inclusion
of the newline
character looks
a little strange,
doesn’t it?

www.EBooksWorld.ir

482 Chapter 12

no to newlines

Stripping , Then Split t ing , Your Raw Data
The latest with statement used the split method (included with all string
objects) to break the line of raw data in two. What’s returned is a list of strings,
which the code individually assigns to the k and v variables. This multivariable
assignment is possible due to the fact that you have a tuple of variables on the left
of the assignment operator, as well as code that produces a list of values on the
right of the operator (remember: tuples are immutable lists):

 ...

k, v = line.split(',')

 ...

A tuple of
variables
on the
left

Code that produces a list
of values on the right

Another string method, strip, removes whitespace from the beginning and end
of an existing string. Let’s use it to remove the unwanted trailing newline from the
raw data before preforming the split.

Here’s one final version of our data-reading code. We create a dictionary called
flights, which uses the flight times as keys and the destinations (without the
newline) as values:

Geek Bits

Whitespace: the
following characters are
considered whitespace
in strings: space, \t, \n,
and \r.

This code strips the
line, then splits it, to
produce the data in
the format required.

What if you switched the order of the methods in your code, like so:

 line.split(',').strip()

What do you think would happen?

You may not have spotted this, but the order of the rows in the dictionary different from what’s in the data file. This happens because dictionaries do NOT maintain insertion order. Don’t worry about this for now.

TIME,DESTINATION
09:35,FREEPORT
17:00,FREEPORT
09:55,WEST END
19:00,WEST END
10:45,TREASURE CAY
12:00,TREASURE CAY
11:45,ROCK SOUND
17:55,ROCK SOUND

When you string methods together like this, it’s called a “method chain.”
www.EBooksWorld.ir

you are here 4 483

advanced iteration

Be Careful When Chaining Method Calls
Some programmers don’t like the fact that Python’s method calls can be chained
together (as strip and split were in the last example), because such chains can be
hard to read the first time you see them. However, method chaining is popular among
Python programmers, so you’ll likely run across code that uses this technique “in the
wild.” Care is needed, however, as the order of the method calls is not interchangeable.

As an example of what can go wrong, consider this code (which is very similar to what
came before). Whereas before the order was strip, then split, this code calls
split first, then tries to call strip. Look what happens:

The order of this method
chain has
flipped from what you used before.

The interpreter
is not happy, and
crashes with an
“AttributeError”.

To understand what’s going on here, consider the type of the data to the right of the
assignment operator as the above method chain executes.

Before anything happens, line is a string. Calling split on a string returns a list
of strings, using the argument to split as a delimiter. What started out as a string
(line) has dynamically morphed into a list, which then has another method invoked
against it. In this example, the next method is strip, which expects to be invoked on
a string, not a list, so the interpreter raises an AttributeError, as lists don’t have a
method called strip.

The method chain from the previous page does not suffer from this issue:
 ...

line.strip().split(',')
 ...

With this code, the interpreter starts out with a string (in line), which has any
leading/trailing whitespace removed by strip (yielding another string), which
is then split into a list of strings based on the comma delimiter. There’s no
AttributeError, as the method chain doesn’t violate any typing rules.

www.EBooksWorld.ir

484 Chapter 12

transforming data

Transforming Data into the Format You Need
Now that the data is in the flights dictionary, let’s consider the data manipulations
BB Head Office has asked you to perform.

The first is to perform the two conversions identified earlier in this chapter, creating a
new dictionary in the process:

Convert the flight times from 24-hour format to AM/PM format1

Convert the destinations from UPPERCASE to Titlecase2

Applying these two transformations to the flights dictionary allows you to turn the
dictionary on the left into the one on the right:

{'09:35': 'FREEPORT',

 '09:55': 'WEST END',

 '10:45': 'TREASURE CAY',

 '11:45': 'ROCK SOUND',

 '12:00': 'TREASURE CAY',

 '17:00': 'FREEPORT',

 '17:55': 'ROCK SOUND',

 '19:00': 'WEST END'}

{'09:35AM': 'Freeport',

 '09:55AM': 'West End',

 '10:45AM': 'Treasure Cay',

 '11:45AM': 'Rock Sound',

 '12:00PM': 'Treasure Cay'

 '05:00PM': 'Freeport',

 '05:55PM': 'Rock Sound',

 '07:00PM': 'West End' }

The flight times are converted from 24-hour format, to AM/PM format.

The destinations
are converted
from UPPERCASE
to Titlecase.

Note that the data in both dictionaries has the same meaning, it’s just the
representation that’s changed. Head Office needs the second dictionary, as they feel that
its data is more universally understandable, as well as friendlier; Head Office thinks all-
UPPERCASE is akin to shouting.

At the moment, the data in both dictionaries has a single line for each flight time/
destination combination. Although Head Office will be happy when you’ve transformed
the dictionary on the left into the dictionary on the right, they’ve also suggested that
it would be really useful if the data could be presented with single destinations as keys
and a list of flight times as values—that is, a single row of data for each destination.
Let’s look at how that dictionary would appear before embarking on coding the
required manipulations.

www.EBooksWorld.ir

you are here 4 485

advanced iteration

Transforming into a Dict ionary Of Lists
Once the data in flights has been transformed, Head Office wants you to perform
this second manipulation (discussed at the bottom of the last page):

{'09:35AM': 'Freeport',

 '09:55AM': 'West End',

 '10:45AM': 'Treasure Cay',

 '11:45AM': 'Rock Sound',

 '12:00PM': 'Treasure Cay'

 '05:00PM': 'Freeport',

 '05:55PM': 'Rock Sound',

 '07:00PM': 'West End' }

{'Freeport': ['09:35AM', '05:00PM'],

 'Rock Sound': ['11:45AM', '05:55PM'],

 'Treasure Cay': ['10:45AM', '12:00PM'],

 'West End': ['09:55AM', '07:00PM']}

What were keys
become lists of values.

What were values become keys.

Think about the data wrangling that’s needed here ...
There’s a bit of work required to get from the raw data in the CSV file to the
dictionary of lists shown above on the right. Take a moment to think about how you’d
go about doing this using the Python you already know.

If you’re like most programmers, it won’t take you long to work out that the for loop
is your friend here. As Python’s main looping mechanism, for has already helped you
extract the raw data from the CSV file and populate the flights dictionary:

with open('buzzers.csv') as data:
 ignore = data.readline()
 flights = {}
 for line in data:
 k, v = line.strip().split(',')
 flights[k] = v

This is a classic use of
“for”, and a hugely popula

r
programming idiom in Python.

It’s tempting to suggest that this code be amended to perform the transformations to
the raw data as it is read from the CSV file—that is, prior to adding rows of data to
flights. But recall the Head Office’s request that the raw data remain untouched in
flights: any transformations need to be applied to a copy of the data. This makes
things more complex, but not by much.

www.EBooksWorld.ir

486 Chapter 12

basic converts first

Let’s Do the Basic Conversions
At the moment, the flights dictionary contains flight times in 24-hour format as its
keys, with UPPERCASE strings representing destinations as its values. You have two
initial conversions to perform:

Convert the flight times from 24-hour format to AM/PM format1

Convert the destinations from UPPERCASE to Titlecase2

Conversion #2 is easy, so let’s do that one first. Once data is in a string, simply call the
string’s title method, as this IDLE session demonstrates:

>>> s = "I DID NOT MEAN TO SHOUT."
>>> print(s)
I DID NOT MEAN TO SHOUT.
>>> t = s.title()
>>> print(t)
I Did Not Mean To Shout.

The “title”
method returns
a copy of the
data in “s”.

This is much friendlier than before.

Conversion #1 involves a bit more work.

If you think about it for a minute, things get quite involved when it comes to
converting 19:00 into 7:00PM. However, this is only the case when you look at the
19:00 data as a string. You’d need to write a lot of code to do the conversion.

If you instead consider that 19:00 is a time, you can take advantage of the
datetime module that is included as part of Python’s standard library. This module’s
datetime class can take a string (like 19:00) and convert it to its equivalent AM/
PM format using two prebuilt functions and what’s known as string format specifiers.
Here’s a small function, called convert2ampm, which uses the facilities of the
datetime module to perform the conversion you need:

from datetime import datetime

def convert2ampm(time24: str) -> str:
 return datetime.strptime(time24, '%H:%M').strftime('%I:%M%p')

Ready Bake
Code

For more on string
format specifiers,
see https://docs.
python.org/3/
library/datetime.
html#strftime-and-
strptime-behavior.

Given a time in 24-hour format (as a
string), this method chain converts it
into a string in AM/PM format.

www.EBooksWorld.ir

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

you are here 4 487

advanced iteration

Let’s put the conversion techniques from the last page to work.

Below is the code that reads the raw data from the CSV file, populating
the flights dictionary as it goes. The convert2ampm function is also
shown.

Your job is to write a for loop that takes the data in flights and
converts the keys to AM/PM format, and the values to Titlecase. A new
dictionary, called flights2, is created to hold the converted data. Use
your pencil to add the for loop code in the space provided.

Hint: when processing a dictionary with a for loop, recall that the
items method returns the key and value for each row (as a tuple) on each
iteration.

from datetime import datetime
import pprint

def convert2ampm(time24: str) -> str:
 return datetime.strptime(time24, '%H:%M').strftime('%I:%M%p')

with open('buzzers.csv') as data:
 ignore = data.readline()
 flights = {}
 for line in data:
 k, v = line.strip().split(',')
 flights[k] = v

pprint.pprint(flights)
print()

flights2 = {}

pprint.pprint(flights2)

Define the
conversion function.

Grab the data
from the file.

Add your “for”
loop here.

Pretty-print the “flights2” dictionary to
confirm that the conversions are working.

Pretty-print the “flights” dictionary prior to performing the conversions.

The new dictionary, called
“flights2”, starts out empty.

www.EBooksWorld.ir

488 Chapter 12

convert then run

Your job was to write a for loop that takes the data in flights and
converts the keys to AM/PM format, and the values to Titlecase. You were
to create a new dictionary, called flights2, to hold the converted data,
and you were to add the for loop code in the space provided.

from datetime import datetime
import pprint

def convert2ampm(time24: str) -> str:
 return datetime.strptime(time24, '%H:%M').strftime('%I:%M%p')

with open('buzzers.csv') as data:
 ignore = data.readline()
 flights = {}
 for line in data:
 k, v = line.strip().split(',')
 flights[k] = v

pprint.pprint(flights)
print()

flights2 = {}

pprint.pprint(flights2)

We saved all
of this code
in a file called
“do_convert.py”.

for k, v in flights.items():
flights2[convert2ampm(k)] = v.title()

Test Drive
If you execute the above program, two dictionaries are displayed on screen (which we’re showing
below, side by side). The conversions work, although the ordering in each dictionary differs, as the
interpreter does not maintain insertion order when you populate a new dictionary with data:

The “items”
method returns
each row from
the “flights”
dictionary.

On each iteration, the key (in “k”) is converted to AM/PM format, then used as the new dictionary’s key.

The value (in “v”) is
converted to Titlecase,
then assigned to the
converted key.

{'09:35': 'FREEPORT',
 '09:55': 'WEST END',
 '10:45': 'TREASURE CAY',
 '11:45': 'ROCK SOUND',
 '12:00': 'TREASURE CAY',
 '17:00': 'FREEPORT',
 '17:55': 'ROCK SOUND',
 '19:00': 'WEST END'}

{'05:00PM': 'Freeport',
 '05:55PM': 'Rock Sound',
 '07:00PM': 'West End',
 '09:35AM': 'Freeport',
 '09:55AM': 'West End',
 '10:45AM': 'Treasure Cay',
 '11:45AM': 'Rock Sound',
 '12:00PM': 'Treasure Cay'}

This is
“flights2”.

This is
“flights”.

The raw data is
transformed.

www.EBooksWorld.ir

you are here 4 489

advanced iteration

Did You Spot the Pattern in Your Code?
Take another look at the program you’ve just executed. There’s a very common
programming pattern used twice in this code. Can you spot it?

from datetime import datetime
import pprint

def convert2ampm(time24: str) -> str:
 return datetime.strptime(time24, '%H:%M').strftime('%I:%M%p')

with open('buzzers.csv') as data:
 ignore = data.readline()
 flights = {}
 for line in data:
 k, v = line.strip().split(',')
 flights[k] = v

pprint.pprint(flights)
print()

flights2 = {}
for k, v in flights.items():
 flights2[convert2ampm(k)] = v.title()

pprint.pprint(flights2)

If you answered: “the for loop,” you’re only half-right. The for loop is part of the
pattern, but take another look at the code that surrounds it. Spot anything else?

from datetime import datetime
import pprint

def convert2ampm(time24: str) -> str:
 return datetime.strptime(time24, '%H:%M').strftime('%I:%M%p')

with open('buzzers.csv') as data:
 ignore = data.readline()
 flights = {}
 for line in data:
 k, v = line.strip().split(',')
 flights[k] = v

pprint.pprint(flights)
print()

flights2 = {}
for k, v in flights.items():
 flights2[convert2ampm(k)] = v.title()

pprint.pprint(flights2)

Each of the “for”
loops is preceded by
the creation of a new,
empty data structure
(e.g., a dictionary).

Each of the “for” loop’s suites contains code that adds data to the new data structure, based on the processing of some existing data.

www.EBooksWorld.ir

490 Chapter 12

spot the pattern

Spott ing the Pattern with Lists
The examples on the last page highlighted the programming pattern as it relates to
dictionaries: start with a new, empty dictionary, then use a for loop to process an
existing dictionary, generating data for a new dictionary as you go:

flights2 = {}
for k, v in flights.items():
 flights2[convert2ampm(k)] = v.title()

The new,
initially empty,
dictionary

The existing dictionary

The existing data is used
to generate keys and
values, which are inserted
into the new dictionary.

A regular
“for” loop
processes the
existing data.

This pattern also makes an appearance with lists, where it is easier to spot. Take a
look at this IDLE session, where the keys (i.e., the flight times) and the values (i.e., the
destinations) are extracted from the flights dictionary as lists, then converted into
new lists using the programming pattern (numbered 1 through 4 in the annotations):

1. Start
with a new,
empty list.

1. Start
with a new,
empty list.

2. Iterate
through each of
the flight times.

2. Iterate
through each of
the destinations.

3. Append the
converted data
to the new list.

3. Append the converted data to the new list.4. View the
new list’s
data.

4. View the
new list’s
data.

This pattern is used so often that Python provides a convenient shorthand notation for
it called the comprehension. Let’s see what’s involved in creating a comprehension.

www.EBooksWorld.ir

you are here 4 491

advanced iteration

Convert ing Patterns into Comprehensions
Let’s take the most recent for loop that processed the destinations as our
example. Here it is again:

destinations = []

for dest in flights.values():

 destinations.append(dest.title())
1. Start
with a new,
empty list.

2. Iterate through
each of the
destinations.

3. Append the converted data to the new list.
Python’s built-in comprehension feature lets you rework the above three lines
of code as a single line.

To convert the above three lines into a comprehension, we’re going to step
through the process, building up to the complete comprehension.

Begin by starting with a new, empty list, which is assigned to a new variable (which
we’re calling more_dests in this example):

more_dests = []
1. Start with a new,
empty list (and give
it a name).

Specify how the existing data (in flights in this example) is to be iterated over
using the familiar for notation, and place this code within the new list’s square
brackets (note the absence of the colon at the end of the for code):

more_dests = [for dest in flights.values()]

2. Iterate through each
of the destinations.

Note that
there’s NO
colon here.

To complete the comprehension, specify the transformation to be applied to the
data (in dest), and put this transformation before the for keyword (note the
absence of the call to append, which is assumed by the comprehension):

more_dests = [dest.title() for dest in flights.values()]

3. Append the converted data to the new
list, without actually calling “append”.

And that’s it. The single line of code at the bottom of this page is functionally
equivalent to the three lines of code at the top. Go ahead and run this line of code
at your >>> prompt to convince yourself that the more_dests list contains the
same data as the destinations list.

www.EBooksWorld.ir

492 Chapter 12

alternative to for

Take a Closer Look at the Comprehension
Let’s look at the comprehension in a little more detail. Here’s the original three
lines of code as well as the single-line comprehension that performs the same task.

Remember: both versions produce new lists (destinations and more_
dests) that have exactly the same data:

destinations = []

for dest in flights.values():

 destinations.append(dest.title())

more_dests = [dest.title() for dest in flights.values()]

destinations = []

for dest in flights.values():

 destinations.append(dest.title())

more_dests = [dest.title() for dest in flights.values()]

It’s also possible to pick out the parts of the original three lines of code and see
where they’ve been used in the comprehension:

If you spot this pattern in other code, you can easily turn it into a comprehension.
For example, here’s some code from earlier (which produces the list of AM/PM
flight times) reworked as a comprehension:

flight_times = []

for ft in flights.keys():

 flight_times.append(convert2ampm(ft))

fts2 = [convert2ampm(ft) for ft in flights.keys()]

These do the
same thing.

www.EBooksWorld.ir

you are here 4 493

advanced iteration

What’s the Big Deal?

These comprehensions look hard to
understand. I’m pretty happy using a “for”
loop when I need to do something like this. Is
learning how to write comprehensions really
worth the effort?

Yes. We think it’s well worth the effort.
There are two main reasons why taking the time to
understand comprehensions pays off.

Firstly, as well as requiring less code (which means
comprehensions are easier on your fingers), the Python
interpreter is optimized to run comprehensions as
quickly as possible. This means comprehensions
execute faster than the equivalent for loop code.

Secondly, comprehensions can be used in places where
for loops can’t. In fact, you’ve already seen this, as all
the comprehensions presented so far in this chapter
have appeared to the right of the assignment operator,
which is something a regular for loop can’t do. This
can be surprisingly useful (as you’ll see as this chapter
progresses).

Comprehensions aren’t just for lists
The comprehensions you’ve seen so far have created new lists, so each is known
as a list comprehension (or listcomp for short). If your comprehension creates
a new dictionary, it’s known as a dictionary comprehension (dictcomp).
And, so as not to leave any data structure out, you can also specify a set
comprehension (setcomp).

There’s no such thing as a tuple comprehension; we’ll explain why later in this chapter.

First, though, let’s take a look at a dictionary comprehension.

www.EBooksWorld.ir

494 Chapter 12

dictionary comprehensions

Specifying a Dict ionary Comprehension
Recall the code from earlier in this chapter that read the raw data from the CSV
file into a dictionary called flights. This data was then transformed into a new
dictionary called flights2, which is keyed by AM/PM flight times and uses

“titlecased” destinations as values:

 ...

flights2 = {}
for k, v in flights.items():
 flights2[convert2ampm(k)] = v.title()

 ...

This code conforms to the “comprehension pattern.”

Let’s rework these three lines of code as a dictionary comprehension.

Start by assigning a new, empty dictionary to a variable (which we are calling
more_flights):

more_flights = {}

Specify how the existing data (in flights) is to be iterated over using the for
loop notation (being sure not to include the usual trailing colon):

more_flights = {for k, v in flights.items()}

To complete the dictcomp, specify how the new dictionary’s keys and values
relate to each other. The for loop at the top of the page produces the key by
converting it to an AM/PM flight time using the convert2ampm function,
while the associated value is turned into titlecase thanks to the string’s title
method. An equivalent dictcomp can do the same thing and, as with listcomps,
this relationship is specified to the left of the dictcomp’s for keyword. Note the
inclusion of the colon separating the new key from the new value:

more_flights = {convert2ampm(k): v.title() for k, v in flights.items()}

1. Start with a new,
empty dictionary.

2. Iterate through each
of the keys and values
from the existing data.

Note that
there’s NO
colon here.

3. Associate the converted key with
its “titlecased” value (and note the
use of the colon here).

And there it is: your first dictionary comprehension. Go ahead and take it for a
spin to confirm that it works.

www.EBooksWorld.ir

you are here 4 495

advanced iteration

Extend Comprehensions with Filters
Let’s imagine you need only the converted flight data for Freeport.

Reverting to the original for loop, you’d likely extend the code to include an if
statement that filters based on the current value in v (the destination), producing code
like this:

just_freeport = {}
for k, v in flights.items():
 if v == 'FREEPORT':
 just_freeport[convert2ampm(k)] = v.title()

The flight data is only converted
and added to the “just_freeport”
dictionary if it relates to the
Freeport destination.

If you execute the above loop code at the >>> prompt, you’ll end up with just two
rows of data (representing the two scheduled flights to Freeport as contained in the
raw data file). This shouldn’t be surprising, as using an if in this way to filter data is
a standard technique. It turns out that such filters can be used with comprehensions,
too. Simply take the if statement (minus the colon) and tack it onto the end of your
comprehension. Here’s the dictcomp from the bottom of the last page:

TIME,DESTINATION
09:35,FREEPORT
17:00,FREEPORT
09:55,WEST END
19:00,WEST END
10:45,TREASURE CAY
12:00,TREASURE CAY
11:45,ROCK SOUND
17:55,ROCK SOUND

The raw
data

more_flights = {convert2ampm(k): v.title() for k, v in flights.items()}

And here’s a version of the same dictcomp with the filter added:

just_freeport2 = {convert2ampm(k): v.title() for k, v in flights.items() if v == 'FREEPORT'}

If you execute this filtered dictcomp at your >>> prompt, the data in the newly
created just_freeport2 dictionary is identical to the data in just_freeport.
Both just_freeport and just_freeport2’s data is a copy of the original data
in the flights dictionary.

Granted, the line of code that produces just_freeport2 looks intimidating.
Many programmers new to Python complain that comprehensions are hard to
read. However, recall that Python’s usual end-of-line-means-end-of-statement rule is
switched off whenever code appears between a bracket pair, so you can rewrite any
comprehension over multiple lines to make it easier to read, like so:

The flight data is only converted and added to the “just_freeport2” dictionary if it relates to the Freeport destination.

just_freeport3 = {convert2ampm(k): v.title()

 for k, v in flights.items()

 if v == 'FREEPORT'}

You’ll need to get used to reading those one-line comprehensions. That said, Python programmers are increasingly writing longer comprehensions over multiple lines (so you’ll see this syntax, too).

www.EBooksWorld.ir

496 Chapter 12

a quick review

Recall What You Set Out to Do
Now that you’ve seen what comprehensions can do for you, let’s revisit the required
dictionary manipulations from earlier in this chapter to see how we’re doing. Here’s
the first requirement:

{'09:35': 'FREEPORT',

 '09:55': 'WEST END',

 '10:45': 'TREASURE CAY',

 '11:45': 'ROCK SOUND',

 '12:00': 'TREASURE CAY',

 '17:00': 'FREEPORT',

 '17:55': 'ROCK SOUND',

 '19:00': 'WEST END'}

{'09:35AM': 'Freeport',

 '09:55AM': 'West End',

 '10:45AM': 'Treasure Cay',

 '11:45AM': 'Rock Sound',

 '12:00PM': 'Treasure Cay'

 '05:00PM': 'Freeport',

 '05:55PM': 'Rock Sound',

 '07:00PM': 'West End' }

Convert from 24-hour format to AM/PM format.

Convert from
UPPERCASE to
Titlecase.

Given the data in the flights dictionary, you’ve seen that the following dictionary
comprehension performs the above conversions in one line of code, assigning the copied
data to a new dictionary called fts here:

fts = {convert2ampm(k): v.title() for k, v in flights.items()}

The second manipulation (listing flight times per destination) is a little more involved.
There’s a bit more work to do due to the fact that the data manipulations are more
complex:

{'09:35AM': 'Freeport',

 '09:55AM': 'West End',

 '10:45AM': 'Treasure Cay',

 '11:45AM': 'Rock Sound',

 '12:00PM': 'Treasure Cay'

 '05:00PM': 'Freeport',

 '05:55PM': 'Rock Sound',

 '07:00PM': 'West End' }

{'Freeport': ['09:35AM', '05:00PM'],

 'Rock Sound': ['11:45AM', '05:55PM'],

 'Treasure Cay': ['10:45AM', '12:00PM'],

 'West End': ['09:55AM', '07:00PM']}

What were keys
become lists of values.

What were values become keys.

www.EBooksWorld.ir

you are here 4 497

advanced iteration

Before starting to work on the second manipulation, let’s pause for a bit to see
how well the comprehension material is seeping into your brain.

You’ve been tasked with transforming the three for loops on this page into
comprehensions. As you do, don’t forget to test your code in IDLE (before
flipping the page and peeking at our solutions). In fact, before you try to write
the comprehensions, execute these loops and see what they do. Write your
comprehension solutions in the spaces provided.

data = [1, 2, 3, 4, 5, 6, 7, 8]

evens = []

for num in data:
 if not num % 2:
 evens.append(num)

data = [1, 'one', 2, 'two', 3, 'three', 4, 'four']

words = []

for num in data:
 if isinstance(num, str):
 words.append(num)

data = list('So long and thanks for all the fish'.split())

title = []

for word in data:
 title.append(word.title())

The % operator is Python’s modulo operator, which works as follows: given two numbers, divide the first by the second, then return the remainder.

The “isinstance” BIF checks to see whether a
variable refers to an object of a certain t

ype.

1

2

3

www.EBooksWorld.ir

498 Chapter 12

comprehending the solutions

You were to grab your pencil, and pop your thinking cap on. For each
of these three for loops, you were tasked with transforming them
into comprehensions, being sure to test your code in IDLE.

data = [1, 2, 3, 4, 5, 6, 7, 8]

evens = []

for num in data:
 if not num % 2:
 evens.append(num)

data = [1, 'one', 2, 'two', 3, 'three', 4, 'four']

words = []

for num in data:
 if isinstance(num, str):
 words.append(num)

data = list('So long and thanks for all the fish'.split())

title = []

for word in data:
 title.append(word.title())

evens = [num for num in data if not num % 2]

words = [num for num in data if isinstance(num, str)]

title = [word.title() for word in data]

These four lines of loop code (which populate “evens”) become one line of comprehension.

Again, this four-line loop
is reworked as a one-
line comprehension.

You should find this
one the easiest of the
three (as it contains no
filter).

1

2

3

www.EBooksWorld.ir

you are here 4 499

advanced iteration

Deal with Complexity the Python Way
With your comprehension practice session behind you, let’s experiment at the >>>
prompt to work out what has to happen to the data in the fts dictionary in order to
transform it into what’s required.

Before writing any code, take another look at the required transformation. Notice how
the keys in the new dictionary (on the right) are a list of unique destinations taken
from the values in the fts dictionary (on the left):

{'09:35AM': 'Freeport',

 '09:55AM': 'West End',

 '10:45AM': 'Treasure Cay',

 '11:45AM': 'Rock Sound',

 '12:00PM': 'Treasure Cay'

 '05:00PM': 'Freeport',

 '05:55PM': 'Rock Sound',

 '07:00PM': 'West End' }

{'Freeport': ['09:35AM', '05:00PM'],

 'Rock Sound': ['11:45AM', '05:55PM'],

 'Treasure Cay': ['10:45AM', '12:00PM'],

 'West End': ['09:55AM', '07:00PM']}

This is the
“fts” dictionary.

It turns out that producing those four unique destinations is very straightforward.
Given that you have the data on the left in a dictionary called fts, you can access all
of the values using fts.values, then feed that to the set BIF to remove duplicates.
Let’s store the unique destinations in a variable called dests:

>>> dests = set(fts.values())
>>> print(dests)
{'Freeport', 'West End', 'Rock Sound', 'Treasure Cay'}

Grab all of the
values in “fts”,
then feed them
to the “set” BIF.
This gets you the
data you need. Here are the four unique destinations, which you can use as the new dictionary’s keys.

Now that you have a way to get the unique destinations, it’s time to grab the flight
times associated with those destinations. This data is also in the fts dictionary.

Before turning the page, have a think about how you’d go about extracting the flight
times given each unique destination.

In fact, don’t worry about extracting all the flight times for every destination; just work
out how to do it for West End first.

Destinations
become keys.

www.EBooksWorld.ir

500 Chapter 12

west end only

{'09:35AM': 'Freeport',

 '09:55AM': 'West End',

 '10:45AM': 'Treasure Cay',

 '11:45AM': 'Rock Sound',

 '12:00PM': 'Treasure Cay'

 '05:00PM': 'Freeport',

 '05:55PM': 'Rock Sound',

 '07:00PM': 'West End' }

Extract a Single Dest inat ion’s Flight Times
Let’s start by extracting the flight time data for a single destination, namely West End.
Here’s the data you need to extract:

You need to turn
these keys in a list
of values.

As before, pull up the >>> prompt and get to work. Given the fts dictionary, you can
extract the West End flight times using code like this:

>>> wests = []
>>> for k, v in fts.items():
 if v == 'West End':
 wests.append(k)

>>> print(wests)
['09:55AM', '07:00PM']

On seeing this code, you should hear little alarm bells ringing in your brain, as this
for loop is surely a candidate for reworking as a list comprehension, right?

That for loop becomes this equivalent listcomp:

1. Start with a
new, empty list. 2. Extract the keys and values from the “fts” dictionary.3. Filter the data on destination

“West End”. 4. Append the “West
End” flight times to
the “wests” list.

It worked! Here’s
the data you need.

>>> wests2 = [k for k, v in fts.items() if v == 'West End']

>>> print(wests2)
['09:55AM', '07:00PM']

It also worked!
Here’s the
data you need.

What was four lines of code is now one, thanks to your use of a listcomp.

Now that you know how to extract this data for one
specific destination, let’s do it for all the destinations.

www.EBooksWorld.ir

you are here 4 501

advanced iteration

Extract Flight Times for All Dest inat ions
You now have this code, which extracts the set of unique destinations:

dests = set(fts.values())

And you also have this listcomp, which extracts the list of flight times for a given
destination (in this example, that destination is West End):

wests2 = [k for k, v in fts.items() if v == 'West End']

To extract the list of flights times for all of the destinations, you need to combine these
two statements (within a for loop).

In the code that follows, we’ve dispensed with the need for the dests and west2
variables, preferring to use the code directly as part of the for loop. We no longer
hardcode West End, as the current destination is in dest (within the listcomp):

>>> for dest in set(fts.values()):
 print(dest, '->', [k for k, v in fts.items() if v == dest])

Treasure Cay -> ['10:45AM', '12:00PM']
West End -> ['07:00PM', '09:55AM']
Rock Sound -> ['05:55PM', '11:45AM']
Freeport -> ['09:35AM', '05:00PM']

The unique
destinations

The unique
destinations

The flight times
for the “West
End” destination

The flight
times for the
destination
referred to by
the current value
of “dest”.

The fact that we’ve just written a for loop that appears to conform to our
comprehension pattern starts our brain’s little bell ringing again. Let’s try to suppress
that ringing for now, as the code you’ve just experimented with at your >>> prompt
displays the data we need...but what you really need is to store the data in a new
dictionary. Let’s create a new dictionary (called when) to hold this newly extracted
data. Head back to your >>> prompt and adjust the above for loop to use when:

>>> when = {}
>>> for dest in set(fts.values()):
 when[dest] = [k for k, v in fts.items() if v == dest]

>>> pprint.pprint(when)
{'Freeport': ['09:35AM', '05:00PM'],
 'Rock Sound': ['05:55PM', '11:45AM'],
 'Treasure Cay': ['10:45AM', '12:00PM'],
 'West End': ['07:00PM', '09:55AM']}

Here it is: the
data you need,
in a dictionary
called “when”.

1. Start with
a new, empty
dictionary.

2. Extract the unique
set of destinations.

3. Update the
“when” dictionary with the flight
times.

If you’re like us, your little brain bell (that you’ve been trying to suppress) is likely
ringing loudly and driving you crazy as you look at this code.

www.EBooksWorld.ir

502 Chapter 12

gotta love comprehensions

That Fee ling You Get...
...when a single line of code starts to look like magic.

Switch off your brain bell, then take another look at the code that makes up your most
recent for loop:

when = {}
for dest in set(fts.values()):
 when[dest] = [k for k, v in fts.items() if v == dest]

when2 = {dest: [k for k, v in fts.items() if v == dest] for dest in set(fts.values())}

This code conforms to the pattern that makes it a potential target for reworking as a
comprehension. Here’s the above for loop code reworked as a dictcomp that extracts
a copy of the data you need into a new dictionary called when2:

It looks like magic, doesn’t it?

This is the most complex comprehension you’ve seen so far, due mainly to the fact that
the outer dictcomp contains an inner listcomp. That said, this dictcomp showcases one
of the features that set comprehensions apart from the equivalent for loop code: you
can put a comprehension almost anywhere in your code. The same does not hold for
for loops, which can only appear as statements in your code (that is, not as part of
expressions).

Of course, that’s not to say you should always do something like this:

when = {}
for dest in set(fts.values()):
 when[dest] = [k for k, v in fts.items() if v == dest]

when2 = {dest: [k for k, v in fts.items() if v == dest] for dest in set(fts.values())}

These do the
same thing.

Be warned: a dictionary comprehension containing an embedded list comprehension
is hard to read the first time you see it.

However, with repeated exposure, comprehensions do get easier to read and
understand, and—as stated earlier in this chapter—Python programmers use them
a lot. Whether you use comprehensions is up to you. If you are happier with the for
loop code, use that. If you like the look of comprehensions, use them...just don’t feel
you have to.

www.EBooksWorld.ir

you are here 4 503

advanced iteration

Test Drive
Before moving on, let’s put all of this comprehension code into our do_convert.py file. We can
then run the code in this file (using IDLE) to see that the conversions and transformations that are
required by Bahamas Buzzers are occurring as required. Confirm that your code is the same as ours,
then execute the code to confirm that everything is working to specification.

1. The original,
raw data, as
read in from the
CSV data file.
This is “flights”.

3. The list of flight times per destination (extracted from “fts”). This is “when”.

2. The raw
data, copied and transformed into AM/PM format and Titlecase. This is “fts”.

We’re
flying now!

www.EBooksWorld.ir

504 Chapter 12

ask questions

Q: So...let me get this straight: a comprehension is just
syntactic shorthand for a standard looping construct?

A: Yes, specifically the for loop. A standard for loop and
its equivalent comprehension do the same thing. It’s just that the
comprehension tends to execute considerably faster.

Q: When will I know when to use a list comprehension?

A: There are no hard and fast rules here. Typically, if you are
producing a new list from an existing one, have a good look at your
loop code. Ask yourself if the loop is a candidate for conversion to
an equivalent comprehension. If the new list is “temporary” (that
is, used once, then thrown away), ask yourself if an embedded list
comprehension would be better for the task at hand. As a general
rule, you should avoid introducing temporary variables into your code,
especially if they’re only used once. Ask yourself if a comprehension
can be used instead.

Q: Can I avoid comprehensions altogether?

A: Yes, you can. However, they tend to see quite a bit of use
within the wider Python community, so unless your plan is to never
look at anyone else’s code, we’d suggest taking the time to become
familiar with Python’s comprehension technology. Once you get used
to seeing them, you’ll wonder how you ever lived without them. Did
we mention that they are fast?

Q: Yes, I get that, but is speed such a big deal nowadays? My
laptop is super-fast and it runs my for loops quick enough.

A: That’s an interesting observation. It’s true that today we have
computers that are vastly more powerful than anything that’s come
before. It’s also true that we spend a lot less time trying to eke out
every last CPU cycle from our code (because, let’s face it: we don’t
have to anymore). However, when presented with a technology that
offers a performance boost, why not use it? It’s a small bit of effort for
a big return in performance.

I find a really strong cup of coffee (with
a little something in it) helps me get my
head around most comprehensions. By the
way, do they work with sets and tuples?

That’s a great question.
And the answer is: yes and no.

Yes, it is possible to create and use a set
comprehension (although, to be honest, you
will encounter them only very rarely).

And, no, there’s no such thing as a
“tuple comprehension.” We’ll get to
why this is after we’ve shown you set
comprehensions in action.

www.EBooksWorld.ir

you are here 4 505

advanced iteration

The Set Comprehension in Act ion
A set comprehensions (or setcomp for short) allows you to create a new set in one
line of code, using a construct that’s very similar to the list comprehension syntax.

What sets a setcomp apart from a listcomp is that the set comprehension is
surrounded by curly braces (unlike the square brackets around a listcomp). This
can be confusing, as dictcomps are surrounded by curly braces, too. (One wonders
what came over the Python core developers when they decided to do this.)

A literal set is surrounded by curly braces, as are literal dictionaries. To tell them
apart, look for the colon character used as a delimiter in dictionaries, as the colon
has no meaning in sets. The same advice applies to quickly determining whether a
curly-braced comprehension is a dictcomp or a setcomp: look for the colon. If it’s
there, you’re looking at a dictcomp. If not, it’s a setcomp.

Here’s a quick set comprehension example (which hearkens back to an earlier
example in this book). Given a set of letters (in vowels), and a string (in
message), the for loop as well as its equivalent setcomp produce the same
result— a set of the vowels found in message:

vowels = {'a', 'e', 'i', 'o', 'u'}
message = "Don't forget to pack your towel."

found = set()
for v in vowels:
 if v in message:
 found.add(v)

found2 = { v for v in vowels if v in message }

The setcomp follows
the same pattern as
the listcomp.

Note the use of curly braces here,
as this comprehension produces a set
when executed by the interpreter

Take a few moments to experiment with the code on this page at your >>> prompt.
Because you already know what listcomps and dictcomps can do, getting your
head around set comprehensions isn’t that tricky. There’s really nothing more to
them than what’s on this page.

www.EBooksWorld.ir

506 Chapter 12

spot that comprehension

How to Spot a Comprehension
As you become more familiar with the look of comprehension code, they become
easier to spot and understand. Here’s a good general rule for spotting list
comprehensions:

If you spot code surrounded by [and], then you are
looking at a list comprehension.

This rule can be generalized as follows:

If you spot code surrounded by brackets (curly or
square), then you are likely looking at a comprehension.

Why the use of the word “likely”?

In addition to code being surrounded by [], comprehensions can also, as you’ve
seen, be surrounded by {}. When code is surrounded by [and], you are looking
at a list comprehension. When code is surrounded by { and }, you are looking at
either a set or a dictionary comprehension. A dictcomp is easy to spot thanks to
its use of the colon character as a delimiter.

However, code can also appear between (and), which is a special case, even
though you’d be forgiven for suggesting that code surrounded by parentheses
must surely be a tuple comprehension. You’d be forgiven, but wrong: “tuple
comprehensions” don’t exist, even though you can put code between (and).
After the “fun” you’ve been having with comprehensions so far in this chapter, you
may be thinking: could this get any weirder?

[...code...] { ...code... } (...code...)

I’m a list
comprehension.

I’m a special
case.

I’m either a set
or a dictionary
comprehension.

Let’s conclude this chapter (and this book) by exploring what’s going on with
code that appears between (and). It’s not a “tuple comprehension,” but it is
obviously allowed, so what is it?

www.EBooksWorld.ir

you are here 4 507

advanced iteration

What About “Tuple Comprehensions”?
Python’s four built-in data structures (tuples, lists, sets, and dictionaries) can be put to
many uses. However, all but tuples can be created via a comprehension.

Why is this?

It turns out that the idea of a “tuple comprehension” doesn’t really make sense. Recall
that tuples are immutable: once a tuple is created, it cannot be changed. This also
means that it’s not possible to generate a tuple’s values in code, as this short IDLE
session shows:

Create a new,
empty tuple. Try to dynamically

add data to the
tuple.

You can’t append to an existing
tuple, as it is
immutable.

There’s nothing weird or wonderful going on here, as this is the behavior expected
from tuples: once one exists, it cannot be changed. This fact alone should be enough
to rule out using a tuple within any sort of comprehension. But take a look at this
interaction at the >>> prompt. The second loop differs from the first in the smallest
of ways: the square brackets around the listcomp (in the first loop) have been replaced
with parentheses (in the second):

This for loop and list
comprehension combination displays
each of the list’s values tripled.
You know this is a listcomp, as
that’s code inside square brackets.

But look at this. The parentheses makes this look like a “tuple comprehension”—but you know such a thing is impossible. Yet the loop still produces the expected output. Weird, eh?

What gives? Both
loops generate
the same results.

www.EBooksWorld.ir

508 Chapter 12

generate your data

Parentheses Around Code == Generator
When you come across something that looks like a listcomp but is surrounded by
parentheses, you’re looking at a generator:

for i in (x*3 for x in [1, 2, 3, 4, 5]):
 print(i) A generator can

be used anywhere a listcomp is used, and produces the same results.

This looks like a
listcomp, but isn’t:
it’s a generator.

As you saw at the bottom of the last page, when you replace a listcomp’s surrounding
square brackets with parentheses, the results are the same; that is, the generator and
the listcomp produce the same data.

However, they do not execute in the same way.

If you’re scratching your head at the previous sentence, consider this: when a listcomp
executes, it produces all of its data prior to any other processing occurring. Taken
in the context of the example at the top of this page, the for loop doesn’t start
processing any of the data produced by the listcomp until the listcomp is done. This
means that a listcomp that takes a long time to produce data delays any other code
from running until the listcomp concludes.

With a small list of data items (as shown above), this is not a big issue.

But imagine your listcomp is required to work with a list that produces 10 million items
of data. You’ve now got two issues: (1) you have to wait for the listcomp to process
those 10 million data items before doing anything else, and (2) you have to worry that the
computer running your listcomp has enough RAM to hold all that data in memory
while the listcomp executes (10 million individual pieces of data). If your listcomp
runs out of memory, the interpreter terminates (and your program is toast).

Generators produce data items one at a t ime...
When you replace your listcomp’s square brackets with parentheses, the listcomp
becomes a generator, and your code behaves differently.

Unlike a listcomp, which must conclude before any other code can execute, a
generator releases data as soon as the data is produced by the generator’s code. This
means if you generate 10 million data items, the interpreter only needs enough
memory to hold one data item (at a time), and any code that’s waiting to consume the
data items produced by the generator executes immediately; that is, there’s no waiting.

There’s nothing quite like an example to understand the difference using a generator
can make, so let’s perform a simple task twice: once with a listcomp, then again with a
generator.

Listcomps and
generators
produce the
same results,
but operate
in a very
different way.

www.EBooksWorld.ir

you are here 4 509

advanced iteration

Using a Listcomp to Process URLs
To demonstrate the difference using a generator can make, let’s perform a task using a
listcomp (before rewriting the task as a generator).

As has been our practice throughout this book, let’s experiment with some code at
the >>> prompt that uses the requests library (which lets you programmatically
interact with the Web). Here’s a small interactive session that imports the requests
library, defines a three-item tuple (called urls), and then combines a for loop with
a listcomp to request each URL’s landing page, before processing the web response
returned.

To understand what’s going on here, you need to follow along on your computer.

Define a tuple of URLs. Feel free to
substitute your own URLs here. Just be
sure to define at least three.

The “for” loop contains a listcomp, which, for each of the URLs in “urls”, gets the website’s landing page.

With each response received,
display the size of the
returned landing page (in
bytes), the HTTP status
code, and the URL used.

Nothing weird or wonderful here. The output produced is exactly what’s expected.

If you’re following along on your computer, you will experience a noticeable delay
between entering the for loop code and seeing the results. When the results appear,
they are displayed in one go (all at once). This is because the listcomp works through
each of the URLs in the urls tuple before making any results available to the for
loop. The outcome? You have to wait for your output.

Note that there’s nothing wrong with this code: it does what you want it to, and
the output is correct. However, let’s rework this listcomp as a generator to see the
difference it makes. As mentioned above, be sure to follow along on your computer as
you work through the next page (so you can see what happens).

Download
“requests” from
PyPI using the
“pip” command.

www.EBooksWorld.ir

510 Chapter 12

gotta love generators

Using a Generator to Process URLs
Here’s the example from the last page reworked as a generator. Doing so is easy;
simply replace the listcomp’s square brackets with parentheses:

An important change: replace the square brackets with parentheses.

A short moment after entering the above for loop, the first result appears:

Then, a moment later, the next line of results appear:

Then—finally—a few moments later, the last results line appears (and the for loop ends):

The first URL’s response

The second URL’s response

The third, and final, URL’s response

www.EBooksWorld.ir

you are here 4 511

advanced iteration

Using a Generator: What Just Happened?
If you compare the results produced by your listcomp to those produced by your
generator, they are identical. However, the behavior of your code isn’t.

The listcomp waits for all of its data to be produced before feeding any data
to the waiting for loop, whereas the generator releases data as soon as it
becomes available. This means the for loop that uses the generator is much more
responsive, as opposed to the listcomp (which makes you wait).

If you’re thinking this isn’t really that big a deal, imagine if the URLs tuple was
defined with one hundred, one thousand, or one million URLs. Further, imagine
that the code processing the response is feeding the processed data to another
process (perhaps a waiting database). As the number of URLs increases, the
listcomp’s behavior becomes worse compared to that of the generator.

So...does this
mean I should always
use a generator over a
listcomp?

No. We wouldn’t say that.
Don’t misunderstand: the fact
that generators exist is great, but
this doesn’t mean you’ll want to
replace all of your listcomps with
an equivalent generator. Like a lot
of things in programming, which
approach you use depends on what
you’re trying to do.

If you can afford to wait, then
listcomps are fine; otherwise,
consider using a generator.

One interesting usage of generators is to embed them within a function. Let’s take
a look at encapsulating your just-created generator in a function.

www.EBooksWorld.ir

512 Chapter 12

generator functions rock

Def ine What Your Funct ion Needs to Do
Let’s imagine that you want to take your requests generator and turn it into a
function. You’ve decided to package the generator within a small module you’re
writing, and you want other programmers to be able to use it without having to
know or understand generators.

Here’s your generator code once more:

import requests

urls = ('http://headfirstlabs.com', 'http://oreilly.com', 'http://twitter.com')

for resp in (requests.get(url) for url in urls):
 print(len(resp.content), '->', resp.status_code, '->', resp.url)

Import any required libraries.

Define a tuple
of URLs. The generator (remember:

looks like a listcomp, but is
surrounded by parentheses)

Let’s create a function that encapsulates this code. The function, which is called
gen_from_urls, takes a single argument (a tuple of URLs), and returns a tuple
of results for each URL. The returned tuple contains three values: the length of
the URL’s content, the HTTP status code, and the URL the response came from.

Assuming gen_from_urls exists, you want other programmers to be able to
execute your function as part of a for loop, like this:

from url_utils import gen_from_urls

urls = ('http://headfirstlabs.com', 'http://oreilly.com', 'http://twitter.com')

for resp_len, status, url in gen_from_urls(urls):
 print(resp_len, status, url)

Although this new code does not look all that different from the code at the top of
the page, note that programmers using gen_from_urls have no clue (nor do
they need to know) that you’re using requests to talk to the Web. Nor do they
need to know that you’re using a generator. All of your implementation details
and choices are hidden behind that easy-to-understand function call.

Let’s see what’s involved in writing gen_from_urls so that it can generate the
data you need.

Process the
generated data.

Process the data. Call the function
on each iteration
of the “for” loop.

Import the function from your module.

Define a
tuple of
URLs.

www.EBooksWorld.ir

you are here 4 513

advanced iteration

Yield to the Power of Generator Funct ions
Now that you know what the gen_from_urls function needs to do, let’s go about
writing it. Begin by creating a new file called url_utils.py. Edit this file, then add
import requests as its first line of code.

The function’s def line is straightforward, as it takes a single tuple on the way in, and
returns a tuple on output (note how we’ve included type annotations to make this
explicit for users of our generator function). Go ahead and add the function’s def line
to the file, like so:

import requests

def gen_from_urls(urls: tuple) -> tuple:

The function’s suite is the generator from the last page, and the for line is a simple
copy-and-paste:

import requests

def gen_from_urls(urls: tuple) -> tuple:
 for resp in (requests.get(url) for url in urls):

The next line of code needs to “return” the result of that GET request as performed
by the requests.get function. Although it’s tempting to add the following line as
the for’s suite, please don’t do this:

return len(resp.content), resp.status_code, resp.url

When a function executes a return statement, the function terminates. You don’t want
this to happen here, as the gen_from_urls function is being called as part of a
for loop, which is expecting a different tuple of results each time the function’s called.

But, if you can’t execute return, what are you to do?

Use yield instead. The yield keyword was added to Python to support the
creation of generator functions, and you can use it anywhere a return is used.
When you do, your function morphs into a generator function that can be “called”
from any iterator, which, in this case, is from within your for loop:

import requests

def gen_from_urls(urls: tuple) -> tuple:
 for resp in (requests.get(url) for url in urls):
 yield len(resp.content), resp.status_code, resp.url

After
importing

“requests”,
define your
new function.

Add in your “for”
loop line with the
generator.

Use “yield” to return each line of results from the GET
response to the waiting “for” loop. Remember: DON’T use “return”.

Let’s take a closer look at what’s going on here.

www.EBooksWorld.ir

514 Chapter 12

generator functions at work

Tracing Your Generator Funct ion, 1 of 2
To understand what happens when your generator function runs, let’s trace the
execution of the following code:

from url_utils import gen_from_urls

urls = ('http://talkpython.fm', 'http://pythonpodcast.com', 'http://python.org')

for resp_len, status, url, in gen_from_urls(urls):
 print(resp_len, '->', status, '->', url)

Define a
tuple of
URLs.

Import your
generator
function.

Use your generator
function as part of a
“for” loop.

The first two lines of code are simple enough: the function is imported, and a tuple of
URLs is defined.

The fun starts on the next line of code, when the gen_from_urls generator
function is invoked. Let’s refer to this for loop as “the calling code”:

for resp_len, status, url, in gen_from_urls(urls):

The interpreter jumps to the gen_from_urls function, and starts to execute its
code. The tuple of URLs is copied into the function’s sole argument, and then the
generator function’s for loop executes:

def gen_from_urls(urls: tuple) -> tuple:
 for resp in (requests.get(url) for url in urls):
 yield len(resp.content), resp.status_code, resp.url

The for loop contains the generator, which takes the first URL in the urls tuple and
sends a GET request to the identified server. When the HTTP response is returned
from the server, the yield statement executes.

This is where things get interesting (or weird, depending on your point of view).

Rather than executing, then moving on to the next URL in the urls tuple (i.e.,
continuing with the next iteration of gen_from_urls’s for loop), yield passes
its three pieces of data back to the calling code. Rather than terminating, the gen_
from_urls function generator now waits, as if in suspended animation...

The calling code’s “for”
loop communicates
with the generator
function’s “for” loop.

www.EBooksWorld.ir

you are here 4 515

advanced iteration

At this point, you’ve exhausted your tuple of URLs, so the generator function and the
calling code’s for loop both terminate. It’s as if the two pieces of code were taking
turns to execute, passing data between themselves on each turn.

Let’s see this in action at the >>> prompt. It’s now time for one last Test Drive.

 print(resp_len, '->', status, '->', url)

Tracing Your Generator Funct ion, 2 of 2
When the data (as passed back by yield) arrives at the calling code, the for loop’s
suite executes. As the suite contains a single call to the print BIF, that line of code
executes and displays the results from the first URL on screen:

34591 -> 200 -> https://talkpython.fm/

34591 -> 200 -> https://talkpython.fm/
19468 -> 200 -> http://pythonpodcast.com/
47413 -> 200 -> https://www.python.org/

34591 -> 200 -> https://talkpython.fm/
19468 -> 200 -> http://pythonpodcast.com/

The calling code’s for loop then iterates, calling gen_from_urls again...sort of.

This is almost what happens. What actually happens is that gen_from_urls is
awakened from its suspended animation, then continues to run. The for loop within
gen_from_urls iterates, takes the next URL from the urls tuple, and contacts the
server associated with the URL. When the HTTP response is returned from the server,
the yield statement executes, passing its three pieces of data back to the calling code
(which the function accesses via the resp object):

As before, rather than terminating, the gen_from_urls generator function now
waits once more, as if in suspended animation...

When the data (as passed back by yield) arrives at the calling code, the for loop’s
suite executes print once more, displaying the second set of results on screen:

 yield len(resp.content), resp.status_code, resp.url

The calling code’s for loop iterates, “calling” gen_from_urls once more, which
results in your generator function awakening again. The yield statement is executed,
results are returned to the calling code, and the display updates again:

The three yielded pieces of data are taken from the “resp” object returned
by the “requests” library’s “get” method.

www.EBooksWorld.ir

516 Chapter 12

don’t be sad

Test Drive
In this, the last Test Drive in this book, let’s take your generator function for a spin. As has been our
practice all along, load your code into an IDLE edit window, then press F5 to exercise the function at
the >>> prompt. Follow along with our session (below):

The first example below shows gen_from_urls being called as part of a for loop. As expected,
the output is the same as that obtained a few pages back.
The second example below shows gen_from_urls being used as part of a dictcomp. Note how
the new dictionary only needs to store the URL (as a key) and the size of the landing page (as the
value). The HTTP status code is not needed in this example, so we tell the interpreter to ignore it
using Python’s default variable name (which is a single underscore character):

Here’s the
“gen_from_urls”
generator function
in the “url_utils.py”
module.

Pass the tuple
of URLs to
the generator
function.

Each line of
results appears,
after a short
pause, as the data
is generated by
the function.

The underscore tells the code to ignore the yielded HTTP status code value.

This dictcomp
associates the
URL with the
length of its
landing page.

Pretty-printing the “url_res” dictionary confirms
that the generator function can be used within a
dictcomp (as well as within a “for” loop).
www.EBooksWorld.ir

you are here 4 517

advanced iteration

Concluding Remarks
The use of comprehensions and generator functions is often regarded as an advanced
topic in the Python world. However, this is mainly due to the fact that these features
are missing from other mainstream programming languages, which means that
programmers moving to Python sometimes struggle with them (as they have no
existing point of reference).

That said, over at Head First Labs, the Python programming team loves comprehensions
and generators, and believes that with repeated exposure, specifying the looping
constructs that use them becomes second nature. They can’t imagine having to do
without them.

Even if you find the comprehension and generator syntax weird, our advice is to
stick with them. Even if you dismiss the fact that they are more performant than the
equivalent for loop, the fact that you can use comprehensions and generators in
places where you cannot use a for loop is reason enough to take a serious look at
these Python features. Over time, and as you become more familiar with their syntax,
opportunities to exploit comprehensions and generators will present themselves as
naturally as those that tell your programming brain to use a function here, a loop
there, a class over here, and so on. Here’s a review of what you were introduced to in
this chapter:

 � When it comes to working with data in files, Python has
options. As well as the standard open BIF, you can
use the facilities of the standard library’s csv module to
work with CSV-formatted data.

 � Method chains allow you to perform processing on
data in one line of code. The string.strip().
split() chain is seen a lot in Python code.

 � Take care with how you order your method chains.
Specifically, pay attention to the type of data returned
from each method (and ensure type compatibility is
maintained).

 � A for loop used to transform data from one format to
another can be reworked as a comprehension.

 � Comprehensions can be written to process existing lists,
dictionaries, and sets, with list comprehensions being

the most popular variant “in the wild.” Seasoned Python
programmers refer to these constructs as listcomps,
dictcomps, and setcomps.

 � A listcomp is code surrounded by square brackets,
while a dictcomp is code surrounded by curly braces
(with colon delimiters). A setcomp is also code
surrounded by curly braces (but without the dictcomp’s
colon).

 � There’s no such thing as a “tuple comprehension,” as
tuples are immutable (so it makes no sense to try to
dynamically create one).

 � If you spot comprehension code surrounded by
parentheses, you’re looking at a generator (which can
be turned into a function that itself uses yield to
generate data as needed).

As this chapter concludes (and, by definition, the core content of this book), we
have one final question to ask you. Take a deep breath, then flip the page.

www.EBooksWorld.ir

518 Chapter 12

gotta love whitespace

One Final Quest ion
OK. Here goes, our final question to you: at this stage in this book, do you even notice
Python’s use of significant whitespace?

The most common complaint heard from programmers new to Python is its use of
whitespace to signify blocks of code (instead of, for instance, curly braces). But, after a
while, your brain tends not to notice anymore.

This is not an accident: Python’s use of significant whitespace was intentional on the
part of the language’s creator.

It was deliberately done this way, because code is read more than it’s written.
This means code that conforms to a consistent and well-known look and feel is easier
to read. This also means that Python code written 10 years ago by a complete stranger
is still readable by you today because of Python’s use of whitespace.

This is a big win for the Python community, which makes it a big win for you, too.

www.EBooksWorld.ir

you are here 4 519

advanced iteration

Chapter 12’s Code

from datetime import datetime
import pprint

def convert2ampm(time24: str) -> str:
 return datetime.strptime(time24, '%H:%M').strftime('%I:%M%p')

with open('buzzers.csv') as data:
 ignore = data.readline()
 flights = {}
 for line in data:
 k, v = line.strip().split(',')
 flights[k] = v

pprint.pprint(flights)
print()

fts = {convert2ampm(k): v.title() for k, v in flights.items()}

pprint.pprint(fts)
print()

when = {dest: [k for k, v in fts.items() if v == dest] for dest in set(fts.values())}

pprint.pprint(when)
print()

import requests

def gen_from_urls(urls: tuple) -> tuple:
 for resp in (requests.get(url) for url in urls):
 yield len(resp.content), resp.status_code, resp.url

This is “do_convert.py”.

This is “url_utils.py”.

www.EBooksWorld.ir

520 Chapter 12

so long (and thanks for all the fish)

It’s been a blast having
you with us here on Lake
Python. Come back soon
and often. We love it when
you drop by.

You’re on your way!
We’re sad to see you leave, but nothing would make us happier than you taking what you’ve learned about Python in
this book and putting it to use. You’re at the start of your Python journey, and there’s always more to learn. Of course, you’re
not quite done with this book just yet. There’s the five (yes: five!) appendixes to work through. We promise they’re not that
long, and are well worth the effort. And, of course, there’s the index—let’s not forget about the index!
We hope you’ve had as much fun learning about Python as we’ve had writing this book for you. It’s been a blast. Enjoy!

It’s Time to Go…

www.EBooksWorld.ir

this is an appendix 521

Doris, I’ve got great news: the
latest Python installers are a
breeze to work with.

appendix a: installation

Installing Python

First things first: let’s get Python installed on your computer.
Whether you’re running on Windows, Mac OS X, or Linux, Python’s got you covered. How

you install it on each of these platforms is specific to how things work on each of these

operating systems (we know...a shocker, eh?), and the Python community works hard

to provide installers that target all the popular systems. In this short appendix, you’ll be

guided through installing Python on your computer.

www.EBooksWorld.ir

522 Appendix A

works on windows

The version number
you’re installing is
likely different
from this. Don’t
worry, yours is the
latest version and
installs in the same
way.

This is really
important:
be sure to
turn on this
option before
clicking on

“Install Now”
at this dialog.

Install Python 3 on Windows
Unless you (or someone else) has installed the Python interpreter onto your
Windows PC, it is unlikely to be preinstalled. Even if it is, let’s install the
latest and greatest version of Python 3 into your Windows computer now.

If you already have a version of Python 3 installed, it’ll be upgraded. If you
have Python 2 installed, Python 3 will install alongside it (but won’t interfere
with your Python 2 in any way). And if you don’t have any version of Python
yet, well, you soon will!

Download, then install
Point your browser to www.python.org, and then click the Downloads tab.

Two large buttons will appear, offering the choice of the latest version of
Python 3 or Python 2. Click on the Python 3 button. Go ahead and save the
file for download when prompted. After a little while, the download will
complete. Locate the downloaded file in your Downloads folder (or wherever
you saved it), then double-click on the file to start the install.

A standard Windows installation process begins. By and large, you can click on
Next at each of the prompts, except for this one (shown below), where you’ll
want to pause to make a configuration change to ensure Add Python 3.5 to Path
is selected; this ensures Windows can find the interpreter whenever it needs to:

Note: As this book hurtles
toward its date with
the printing press, the
next version of Python 3
(release 3.6) is due out. As
this won’t be until the end
of 2016 (a mere handful of
weeks *after* this book
publishes), we’re showing 3.5
in these screenshots. Don’t
worry about matching the
version we have here. Go
ahead and download/install
the latest.

www.EBooksWorld.ir

www.python.org

you are here 4 523

appendix a: installation

Check Python 3 on Windows
Now that the Python interpreter is installed on your Windows machine, let’s run a
few checks to confirm all is OK.

For starters, you should have a new group on your Start menu under All Programs.
We’ve included what it looks like on one of the Head First Labs’ Windows 7
machines. Yours should look similar. If it doesn’t, you may need to redo the
installation. Windows 8 users (or higher) should also have a new group similar to
this.

The Python
installer adds a
new group to your
All Programs list.

Let’s examine the items in the Python 3.5 group from
the bottom up.

The Python 3.5 Modules Docs option provides access
to all of the documentation included with all of the
installed modules that are available within your Python
system. You’ll be learning lots about modules as you
work through this book, so you don’t need to worry
about doing anything with this option right now.

The Python 3.5 Manuals option opens the entire set of Python language
documentation in the standard Windows help utility. This material is a copy of the
Python 3 documentation available on the Web.

The Python 3.5 option fires up a text-based interactive command prompt, >>>, which
is used to experiment with code as you write it. We’ll have more to say about the >>>
prompt starting from Chapter 1. If you have clicked on this option to try it out and
are now at a loss as to what to do, type quit() to escape back to Windows.

The final option, IDLE (Python 3.5), runs the Python integrated development
environment, which is called IDLE. This is a very simple IDE that provides access to
Python’s >>> prompt, a passable text editor, the Python debugger, and the Python
documentation. We’ll be using IDLE a lot in this book, starting in Chapter 1.

It’s Python 3 on Windows, sort of...
Python’s heritage is on Unix and Unix-like systems, and this can sometimes come
through when you’re working in Windows. For instance, some software that is
assumed to exist by Python isn’t always available by default on Windows, so to get the
most out of Python, programmers on Windows often have to install a few extra bits
and pieces. Let’s take a moment to install one such bonus piece to demonstrate how
these missing bits can be added when needed.

www.EBooksWorld.ir

524 Appendix A

windows need pyreadline

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\Head First>
C:\Users\Head First> pip install pyreadline
Downloading/unpacking pyreadline
 ...
 ...
 ...
Successfully installed pyreadline
Cleaning up...
C:\Users\Head First>

File Edit Window Help InstallingPyReadLine

Add to Python 3 on Windows
Sometimes programmers using the Windows version of Python feel like they
are being short-changed: some of the features assumed (by Python) on those
other platforms are “missing” from Windows.

Thankfully, some enterprising programmers have written third-party modules
that can be installed into Python, thus providing the missing functionality.
Installing any of these modules involves only a little bit of work at the
Windows command prompt.

As an example, let’s add Python’s implementation of the popular readline
functionality to your Windows version of Python. The pyreadline module
provides a Python version of readline, effectively plugging this particular
hole in any default Windows installation.

Open up a Windows command prompt and follow along. Here, we’re going
to use a software installation tool (included in Python 3.5) to install the
pyreadline module. The tool is called pip, short for “Python Index
Project,” named after the work that spawned pip’s creation.

At the Windows command prompt, type pip install pyreadline:

You’ll see lots of
messages here.

This is what you need to type into the command prompt.

If you see this message, all is OK.

And with that, pyreadline is installed and ready to go on Windows.

You can now flip back to Chapter 1 to get started with some sample Python
code.

Make sure you are
connected to the
Internet before
issuing this command.

Geek Bits

The readline library
implements a set of functions
that provide interactive text-
editing facilities (typically
at command lines). The
pyreadline module
provides a Python interface to
readline.

www.EBooksWorld.ir

you are here 4 525

appendix a: installation

Install Python 3 on Mac OS X (macOS)
Python 2 comes preinstalled on Mac OS X by default. But this is no use to us,
as we want to use Python 3 instead. Thankfully, when you visit the Python
website (http://www.python.org), it is smart enough to work out that you’re
using a Mac. Hover your mouse over the Download tab, then click the 3.5.x
button to download the Mac installer for Python. Select the latest version of
Python 3, download its package, and then install in the usual “Mac way.”

Just keep clicking
until it’s installed.

A standard Mac
OS X installation
program for
Python 3.5.2 and
above. If you have
a more recent
release than what
we’re showing
here, that’s fine—
install away!

Using a package manager
On Macs, it is also possible to use one of the popular open source package
managers, namely Homebrew or MacPorts. If you have never used either of
these package managers, feel free to skip this little section and jump over to
the top of the next page. If, however, you are already using either of these
package managers, here are the commands you need to install Python 3 on
your Mac from inside a terminal window:

• On Homebrew, type brew install python3.

• On MacPorts type port install python3.

And that’s it: you’re golden. Python 3 is ready for action on Mac OS X—let’s
take a look at what gets installed.

www.EBooksWorld.ir

526 Appendix A

set your path

Check and Conf igure Python 3 on Mac OS X
To see if the install succeeded on Mac OS X, click on the Applications icon on your
dock, then look for the Python 3 folder.

Click on the Python 3 folder and you’ll see a bunch of icons (below).

The Python 3 folder on Mac OS X
The first option, IDLE, is by far the most useful,
and it is how you will interact with Python 3 most
of the time while learning the language. Choosing
this option opens Python’s integrated development
environment called IDLE. This is a very simple IDE
that provides access to Python’s >>> interactive
prompt, a passable text editor, the Python debugger,
and the Python documentation. We’ll be using IDLE
a lot in this book.

The Python Documentation.html option opens a local
copy of Python’s entire documentation in HTML
within your default browser (without requiring you to
be online).

The Python Launcher option is automatically run
by Mac OS X whenever you double-click on an
executable file containing Python code. Although this
may be useful for some, at Head First Labs we rarely
use it, but it’s still nice to know it’s there if we ever do
need it.

The last option, Update Shell Profile.command, updates
the configuration files on Mac OS X to ensure the
location of the Python interpreter and its associated
utilities are correctly added to your operating system’s
path. You can click on this option now to run this
command, then forget about ever having to run it
again—once is enough.

You’re ready to run on Mac OS X
And with that, you’re all set on Mac OS X.

You can now skip back to Chapter 1 and get started.

The Python 3 folder
from within the
Applications folder on
Mac OS X.

In the Dock, click the
Applications icon, and
then select the Python
3 folder.

www.EBooksWorld.ir

you are here 4 527

appendix a: installation

Install Python 3 on Linux
If you are running a recent distribution of your favorite Linux, the really great
news is that you most likely have Python 2 and Python 3 already installed.

Here’s a quick way to ask the Python interpreter to fess up its currently
installed version number; open up a command line and type:

$ python3 -V
3.5.2

Be careful: that’s
an UPPERCASE

“v”.

How cool is that?
Our Linux has the
latest Python 3
installed.

If, after you issue this command, Linux complains that it can’t find python3,
you need to install a copy. How you do this depends on the Linux distribution
you are running.

If your Linux is one based on the popular Debian or Ubuntu distribution (as is
the one we use at Head First Labs), you can use the apt-get utility to install
Python 3. Here’s the command to use:

$ sudo apt-get install python3 idle3

If you are running a yum-based or rpm-based distribution, use the equivalent
command for those systems. Or fire up your favorite Linux GUI and use your
distribution’s GUI-based package manager to select python3 and idle3
for installation. On many Linux systems, the Synaptic Package Manager is a
popular choice here, as are any number of GUI-based software installers.

After installing Python 3, use the command from the top of this page to check
that all is OK.

No matter which distribution you use, the python3 command gives you
access to the Python interpreter at the command line, whereas the idle3
command gives you access to the GUI-based integrated development
environment called IDLE. This is a very simple IDE that provides access to
Python’s >>> interactive prompt, a passable text editor, the Python debugger,
and the Python documentation.

We’ll be using the >>> prompt and IDLE a lot in this book, starting in
Chapter 1, which you can flip back to now.

Be sure to select
the “python3” and
“idle3” packages
for installation on
Linux.

www.EBooksWorld.ir

www.EBooksWorld.ir

this is an appendix 529

I can deploy my webapp to the
cloud in about 10 minutes?!?!? I
don’t believe it...

appendix b: pythonanywhere

Deploying Your Webapp

At the end of Chapter 5, we claimed that deploying your webapp
to the cloud was only 10 minutes away.
It’s now time to make good on that promise. In this appendix, we are going to take you through

the process of deploying your webapp on PythonAnywhere, going from zero to deployed in

about 10 minutes. PythonAnywhere is a favorite among the Python programming community,

and it’s not hard to see why: it works exactly as you’d expect it to, has great support for Python

(and Flask), and—best of all—you can get started hosting your webapp at no cost. Let’s check

out PythonAnywhere.

www.EBooksWorld.ir

530 Appendix B

getting ready

Step 0: A Lit t le Prep
At the moment, you have your webapp code on your computer in a folder
called webapp, which contains the vsearch4web.py file and the static
and templates folders (as shown below). To prepare all this stuff for
deployment, create a ZIP archive file of everything in your webapp folder,
and call the archive file webapp.zip:

base.html entry.html results.html

static

templates

webapp

vsearch4web.py

hf.css

ZIP this folder
(and its contents)
into an archive
called “webapp.zip”.

In addition to webapp.zip, you also need to upload and install the
vsearch module from Chapter 4. For now, all you need to do is locate the
distribution file that you created back then. On our computer, the archive
file is called vsearch-1.0.tar.gz and it’s stored in our mymodules/
vsearch/dist folder (on Windows, the file is likely called vsearch-
1.0.zip).

You don’t need to do anything with either archive file right now. Just make a
note of where both archive files are on your computer so that they are easy to
find when you upload them to PythonAnywhere. Feel free to grab a pencil and
scribble down each archive file’s location here:

webapp.zip

vsearch-1.0.tar.gz

This is “vsearch.zip” instead if you’re on Windows.

Recall from Chapter 4 that Python’s “setuptools” module creates ZIPs on Windows, and .tar.gz files on everything else.

www.EBooksWorld.ir

appendix b: pythonanywhere

 531

Step 1: Sign Up for PythonAnywhere
This step couldn’t be any easier. Surf over to pythonanywhere.com, then click on
the Pricing & signup link:

Start here.

Click on the big, blue button to create a Beginner account, then fill in the details on the signup form:

This is the
“free signup” option.

Fill in this form.

If all is well, the PythonAnywhere dashboard appears. Note: you are both registered and signed in at this point:

The
PythonAnywhere
dashboard. Note
the five tabs
available to you.

www.EBooksWorld.ir

http://pythonanywhere.com

532 Appendix B

upload your code

Step 2: Upload Your Files to the Cloud
Click on the Files tab to view the folders and files available to you:

Here
are your
folders. Here are the files in your

home folder.

Click here.

Use the Upload a file option to locate and upload the two archive files from Step 0:

Use this
option to
upload each
of your
archive files.

When you’re done uploading, both
archive files
should appear on the list of files in your home folder.

You’re now ready to extract and install these two uploaded archive files, and you’ll do that during
Step 3. To get ready, click the Open a bash console here link at the top right of the above page. This
opens up a terminal window in your browser window (on PythonAnywhere).

You’re going to click this link in a moment.

www.EBooksWorld.ir

you are here 4 533

appendix b: pythonanywhere

Step 3: Extract and Install Your Code
When you click the Open a bash console here link, PythonAnywhere responds by replacing the Files
dashboard with a browser-based Linux console (command prompt). You’re going to issue a few
commands to extract and install the vsearch module as well as your webapp’s code within
this console. Begin by installing vsearch into Python as a “private module” (i.e., just for your
use) using this command (be sure to use vsearch-1.0.zip if you’re on Windows):

python3 -m pip install vsearch-1.0.tar.gz --user “--user” ensures
the “vsearch”
module is installed
for your use only.
PythonAnywhere
does not allow you
to install a module
for everyone’s use
(just your own).

Run the
command.

Success!

With the vsearch module successfully installed, it’s time to turn your attention to your
webapp’s code, which has to be installed into the mysite folder (which already exists on your
PythonAnywhere home folder). To do this, you need to issue two commands:

unzip webapp.zip
mv webapp/* mysiteUnpack your

webapp’s
code...

...then move
the code into the “mysite” folder.

You should
see messages
similar to
these.

www.EBooksWorld.ir

534 Appendix B

flask on pythonanywhere

Step 4: Create a Starter Webapp, 1 of 2
With Step 3 done, return to the PythonAnywhere dashboard and select the Web tab, where
PythonAnywhere invites you to create a new starter webapp. You’ll do this, then swap out the
starter’s webapp code for your own. Note that each Beginner account gets one webapp for
free; if you want more, you’ll have to upgrade to a paid account. Luckily—for now—you
only need the one, so let’s keep going by clicking Add a new web app:

Click here.

As you are using a free account, your webapp is going to run on the site name shown on the
next screen. Click the Next button to proceed with PythonAnywhere’s suggested site name:

Click this button to
keep going.

PythonAnywhere
lists your site’s
name here.

Click Next to continue with this step.

www.EBooksWorld.ir

you are here 4 535

appendix b: pythonanywhere

Step 4: Create a Starter Webapp, 2 of 2
PythonAnywhere supports more than one Python web framework, so the next screen offers
you a choice among the many supported systems. Pick Flask, then select the version of
Flask and Python you wish to deploy to. As of this writing, Python 3.4 and Flask 0.10.1
are the most up-to-date versions supported by PythonAnywhere, so go with that combination
unless a newer combination is offered (in which case, pick the newer one instead):

Select “Flask” for your webapp, then choose the most up-to-date Python/Flask combination.

You’re nearly there. The next screen
offers to create a quickstart Flask webapp.
Go ahead and do that now by accepting
the values on this page and clicking on
the Next button to continue:

Click here.

You don’t need to click “Next” here. As soon as you choose the combination you want, this screen appears.

www.EBooksWorld.ir

536 Appendix B

import your module

Step 5: Conf igure Your Webapp
With Step 4 complete, you are presented with the Web dashboard. Don’t be tempted to click that big,
green button just yet—you haven’t told PythonAnywhere about your code yet, so hold off on running
anything for now. Instead, click in the long link to the right of the WSGI configuration file label:

It’s tempting, but
DON’T click this
button just yet.

Click this link instead.

Clicking that long link loads your newly created Flask webapp’s configuration file into PythonAnywhere’s
web-based text editor. At the end of Chapter 5, we told you that PythonAnywhere imports your webapp
code before invoking app.run() for you. This is the file that supports that behavior. However, it
needs to be told to reference your code, not the code in the starter app, so you need to edit the last line
of this file (as shown below), and then click Save:

Change the last line of this file
to reference your “vsearch4web”
module.

The
“Save”
button

www.EBooksWorld.ir

you are here 4 537

appendix b: pythonanywhere

Step 6: Take Your Cloud-Based Webapp for a Spin!
Be sure to save your changed configuration file, then return to the Web tab on the dashboard. It is
now time to click on that big, tempting, green button. Go for it!

After but a brief moment, your webapp appears in your browser, and it works exactly as it did when
you ran it locally, only now anybody with an Internet connection and a web browser can use it too:

And with that, you’re done. The webapp you developed in Chapter 5 has been deployed to
PythonAnywhere’s cloud (in less than 10 minutes). There’s lots more to PythonAnywhere than what’s shown
in this short appendix, so feel free to explore and experiment. At some point, remember to return
the PythonAnywhere dashboard and log out. Note that, despite your logging out, your webapp keeps
running in the cloud until you tell it otherwise. That’s pretty cool, isn’t it?

We’re looking good for input and output in the cloud.

Anyone can use this web address to interact with your webapp.

www.EBooksWorld.ir

www.EBooksWorld.ir

this is an appendix 539

I think we have a problem here.
There are a whole bunch of

things they didn’t cover.

appendix c: top ten things we didn’t cover

There’s Always More
to Learn

It was never our intention to try to cover everything.
This book’s goal was always to show you enough Python to get you up to speed as quickly

as possible. There’s a lot more we could’ve covered, but didn’t. In this appendix, we

discuss the top 10 things that—given another 600 pages or so—we would’ve eventually

gotten around to. Not all of the 10 things will interest you, but quickly flip through them

just in case we’ve hit on your sweet spot, or provided an answer to that nagging question.

All the programming technologies in this appendix come baked in to Python and its

interpreter.

www.EBooksWorld.ir

540 Appendix C

legacy code woes

1. What About Python 2?
As of this book’s publication date (late 2016) there are two mainstream flavors of
Python in widespread use. You already know quite a bit about Python 3, as that’s the
flavor you’ve used throughout this book.

All new language developments and enhancements are being applied to Python 3,
which is on a 12- to 18-month minor release cycle. Release 3.6 is due before 2016 ends,
and you can expect 3.7 to arrive late in 2017 or early in 2018.

Python 2 has been “stuck” at release 2.7 for some time now. This has to do with the
fact that the Python core developers (the people who guide the development of Python)
decided that Python 3 was the future, and that Python 2 should quietly go away. There
were solid technical reasons for this approach, but no one really expected things to take
so long. After all, Python 3—the future of the language—first appeared in late 2008.

An entire book could be written on what’s happened since late 2008 until now. Suffice
it to say, Python 2 stubbornly refused to go away. There was (and still is) a huge
installed base of Python 2 code and developers, with some domains dragging their
heels when it comes to upgrading. There’s a very simple reason for why this is: Python
3 introduced a handful of enhancements that broke backward compatibility. Put
another way: there’s lots of Python 2 code that will not run unchanged in Python 3 (even
though, at a first glance, it can be hard to tell Python 2 code from Python 3 code). Also,
many programmers simply believed Python 2 was “good enough,” and didn’t upgrade.

Recently (over the last year), there’s been a sea change. The switching rate from 2 to 3
appears to be increasing. Some very popular third-party modules have released Python
3–compatible versions, and this is having a positive effect on Python 3 adoption.
Additionally, the Python core developers keep adding extra goodness to Python 3, making
it a more attractive programming language over time. The practice of “backporting”
the cool new features from 3 to 2 has stopped with 2.7, and although bug and security
fixes are still being applied, the Python core developers have announced that this activity
will stop in 2020. The clock is ticking for Python 2.

Here’s the common advice offered when you’re trying to decide whether 3 or 2 is right
for you:

If you’re starting a new project, use Python 3.

You need to resist the urge to create more legacy code in Python 2, especially if you’re
starting with a blank slate. If you have to maintain some existing Python 2 code,
what you know about 3 carries over: you’ll certainly be able to read the code and
understand it (it’s still Python, regardless of the major version number). If there are
technical reasons why the code has to remain running in Python 2, then so be it. If,
however, the code can be ported to Python 3 without too much fuss, then we believe
the gain is worth the pain, as Python 3 is the better language, and is the future.

I’m just some of the
Python 2 code that’s out
there. There’s lots and
lots of code like me.

www.EBooksWorld.ir

you are here 4 541

appendix c: top ten things we didn’t cover

2. Virtual Programming Environments
Let’s imagine you have two clients, one with Python code that relies on one
version of a third-party module, and another that relies on a different version of
the same third-party module for their code. And, of course, you’re the poor soul
who has to maintain both projects’ code.

Doing so on one computer can be problematic, as the Python interpreter doesn’t
support the installation of different versions of third-party modules.

That said, help is at hand thanks to Python’s notion of virtual environments.

A virtual environment lets you create a new, clean Python environment
within which you can run your code. You can install third-party modules into
one virtual environment without impacting another, and you can have as many
virtual environments as you like on your computer, switching between them by
activating the one you want to work on. As each virtual environment can maintain
its own copy of whatever third-party modules you wish to install, you can use two
different virtual environments, one for each of your client projects discussed above.

Before doing so, however, you have to make a choice: use the virtual environment
technology, called venv, that ships with Python 3’s standard library, or install the
virtualenv module from PyPI (which does the same thing as venv, but has
more bells and whistles). It’s best if you make an informed choice.

To learn more about venv, check out its documentation page:

 https://docs.python.org/3/library/venv.html

To find out what virtualenv offers over and above venv, start here:

 https://pypi.org/project/virtualenv/

Whether you use virtual environments for your projects is a personal choice. Some
programmers swear by them, refusing to write any Python code unless it’s within
a virtual environment. This may be a bit of an extreme stance, but to each their
own.

We chose not to cover virtual environments in the main body of this book. We feel
virtual environments are—if you need them—a total godsend, but we don’t yet
believe every Python programmer needs to use one for everything they do.

We recommend you slowly back away from people who say that you aren’t a
proper Python programmer unless you use virtualenv.

I’m pretty sure I’ve
solved my multiple third-
party module problem...
all I had to do was read
all of these.

All he had to do was use
a virtual environment.

www.EBooksWorld.ir

https://docs.python.org/3/library/venv.html
https://pypi.org/project/virtualenv/

542 Appendix C

everything’s an object

3. More on Object Orientat ion
If you’ve read through this entire book, by now you’ll (hopefully) appreciate what’s
meant by this phrase: “In Python, everything’s an object.”

Python’s use of objects is great. It generally means that things work the way you
expect them to. However, the fact that everything’s an object does not mean that
everything has to belong to a class, especially when it comes to your code.

In this book, we didn’t learn how to create our own class until we needed one in
order to create a custom context manager. Even then, we only learned as much as
was needed, and nothing more. If you’ve come to Python from a programming
language that insists all your code resides in a class (with Java being the classic
example), the way we’ve gone about things in this book may be disconcerting.
Don’t let this worry you, as Python is much less strict than Java (for instance) when
it comes to how you go about writing your programs.

If you decide to create a bunch of functions to do the work you need to do, then
have at it. If your brain thinks in a more functional way, Python can help here
too with the comprehension syntax, tipping its hat to the world of functional
programming. And if you can’t get away from the fact that your code needs to
reside in a class, Python has full-featured object-oriented-programming syntax
built right in.

If you do end up spending a lot of time creating classes, check out the following:

• @staticmethod: A decorator that lets you create a static function
within a class (which does not receive self as its first argument).

• @classmethod: A decorator that lets you create a class method that
expects a class as its first object (usually referred to as cls), not self.

• @property: A decorator that allows you to redesignate and use a
method as if it were an attribute.

• __slots__: A class directive that (when used) can greatly improve
the memory efficiency of the objects created from your class (at the
expense of some flexibility).

To learn more about any of these, consult the Python docs (https://docs.python.
org/3/). Or check out some of our favorite Python books (discussed in the next
appendix).

OK, chaps...let’s
think about this for
a moment. Does that
code really need to be

in a class?

www.EBooksWorld.ir

https://docs.python.org/3/
https://docs.python.org/3/

you are here 4 543

appendix c: top ten things we didn’t cover

4. Formats for Strings and the Like
The recurring example application used in this book displayed its output in a web
browser. This allowed us to defer any output formatting to HTML (specifically, we
used the Jinja2 module included with Flask). In doing so, we sidestepped one area
where Python shines: text-based string formatting.

Let’s say you have a string that needs to contain values that won’t be known until
your code runs. You want to create a message (msg) that contains the values so
you can perform some later processing (perhaps you’re going to print the message
on screen, include the message within an HTML page you’re creating with Jinja2,
or tweet the message to your 3 million followers). The values your code generates
at runtime are in two variables: price (the price of the item in question) and
tag (a catchy marketing tagline). You have a few options here:

• Build the message you need using concatenation (the + operator).

• Use old-style string formats (using the % syntax).

• Take advantage of every string’s format method to build your message.

Here’s a short >>> session showing each of these techniques in action (bearing in
mind that you, having worked through this book, already concur with what the
generated message is telling you):

The %s and %f
format specifiers are
as old as the hills...but,
hey, like me, they still

work.

Which of these techniques you use is a personal preference, although there’s a
bit of a push on to encourage the use of the format method over the other two
(see PEP 3101 at https://www.python.org/dev/peps/pep-3101/). You’ll find code
in the wild that uses one technique over the other, and sometimes (and not at all
helpfully) mixes all three. To learn more, start here:

 https://docs.python.org/3/library/string.html#formatspec

You already
knew this,
right? §

www.EBooksWorld.ir

https://www.python.org/dev/peps/pep-3101/
https://docs.python.org/3/library/string.html#formatspec

544 Appendix C

the sorted BIF rocks

Learn more about how to sort with Python from this wonderful HOWTO:

 https://docs.python.org/3/howto/sorting.html#sortinghowto

5. Gett ing Things Sorted
Python has wonderful built-in sorting capabilities. Some of the built-in data
structures (lists, for example) contain sort methods that can be used to perform
in-place ordering of your data. However, it is the sorted BIF that makes Python
truly special (as this BIF works with any of the built-in data structures).

In the IDLE session below, we first define a small dictionary (product), which
we then process with a succession of for loops. The sorted BIF is exploited to
control the order in which each for loop receives the dictionary’s data. Follow
along on your computer while you read the annotations:

Define the dictionary (remember: insertion order is *not* maintained)
Print
out the
dictionary
on screen.

The raw data
looks sorted by
value, but isn’t
really (this is more
luck than anything
else).

Adding a call to “sorted” sorts
the dictionary by key, which
may or may not be what you
want here.

“B” comes before “P”, which comes before “V”. Sorting by keys—the default—works.

The addition of the
“key” argument lets
you sort by value.

The output is
ordered from lowest
to highest price.

Adding the “reverse”
argument flips the
sort order.

The output is now
ordered from highest
to lowest price.

BIF is short
for “built-in
function.”

www.EBooksWorld.ir

https://docs.python.org/3/howto/sorting.html#sortinghowto

you are here 4 545

appendix c: top ten things we didn’t cover

6. More from the Standard Library
Python’s standard library is full of goodness. It’s always a worthy exercise to take 20
minutes every once in a while to review what’s available, starting here:

 https://docs.python.org/3/library/index.html

If what you need is in the standard library, don’t waste your precious time rewriting
it. Use (and/or extend) what’s already available. In addition to the Python docs, Doug
Hellmann has ported his popular Module of the Week material over to Python 3. Find
Doug’s excellent material here:

 https://pymotw.com/3/

We’ve reviewed a few of our favorite standard library modules below. Note that we can’t
stress enough how important it is to know what’s in the standard library, as well as what
all the provided modules can do for you.

collect ions
This module provides importable data structures, over and above the built-in list, tuple,
dictionary, and set. There’s lots to like in this module. Here’s an abbreviated list of
what’s in collections:

• OrderedDict: A dictionary that maintains insertion order.

• Counter: A class that makes counting things almost too easy.

• ChainMap: Combines one or more dictionaries and makes them appear
as one.

i tertools
You already know Python’s for loop is great, and when reworked as a comprehension,
looping is crazy cool. This module, itertools, provides a large collection of tools
for building custom iterations. This module has a lot to offer, but be sure to also check
out product, permutations, and combinations (and once you do, sit back
and thank your lucky stars you didn’t have to write any of that code).

functools
The functools library provides a collection of higher-order functions (functions
that take function objects as arguments). Our favorite is partial, which lets you

“freeze” argument values to an existing function, then invoke the function with a new
name of your choosing. You won’t know what you’re missing until you try it.

Yes, yes...I get
the joke, and it’s
very droll: “batteries
included,” right?

www.EBooksWorld.ir

https://pymotw.com/3/

546 Appendix C

doing many things

7. Running Your Code Concurrent ly
In Chapter 11¾, you used a thread to solve a waiting problem. Threads are not the
only game in town when it comes to running code concurrently within your programs,
although, to be honest, threads are the most used and abused of all of the available
techniques. In this book, we deliberately kept our use of threads as simple as possible.

There are other technologies available to you when you find yourself in a situation
where your code has to do more than one thing at once. Not every program needs
these types of services, but it is nice to know that Python has a bunch of choices in this
area should the need arise.

In addition to the threading module, here are some modules worth checking out
(and we also refer you back one page to #6, as Doug Hellmann has some great posts on
some of these modules):

• multiprocessing: This module allows you to spawn multiple Python
processes, which—if you have more than one CPU core—can spread your
computational load across many CPUs.

• asyncio: Lets you specify concurrency via the creation and specification
of coroutines. This is a relatively new addition to Python 3, so—for many
programmers—it’s a very new idea (and the jury is still out).

• concurrent.futures: Lets you manage and run a collection of tasks
concurrently.

Which of these is right for you is a question you’ll be able to answer once you’ve tried
each of them with some of your code.

New keywords: async and await
The async and await keywords were added in Python 3.5, and provide a standard
way to create coroutines.

The async keyword can be used in front of the existing for, with, and def
keywords (with the def usage receiving the most attention to date). The await
keyword can be used in front of (almost) any other code. As of the end of 2016,
async and await are very new, and Python programmers the world over are only
just beginning to explore what they can do with them.

The Python docs have been updated with information on these new keywords, but,
for our money, you’ll find the best descriptions of their use (and the craziness that
using them induces) by searching YouTube for anything on the topic by David Beazley.
Be warned: David’s talks are always excellent, but do tend to lean toward the more
advanced topics in the Python language ecosystem.

David’s talks on Python’s GIL are regarded as classics by many, and his books are great
too; more on this in Appendix E.

You do realize there’s only
one of me, right? Yet you
expect me to perform and
understand multiple computing

tasks at once?!?!?

Geek Bits

“GIL” stands for “Global
Interpreter Lock”. The GIL is
an internal mechanism used
by the interpreter to ensure
stability. Its continued use
within the interpreter is the
subject of much discussion
and debate within the
Python community.

www.EBooksWorld.ir

you are here 4 547

appendix c: top ten things we didn’t cover

8. GUIs with Tkinter (and Fun with Turt les)
Python comes with a complete library called tkinter (the Tk interface) for building
cross-platform GUIs. You may not realize it, but you’ve been using an application from
the very first chapter of this book that is built with tkinter: IDLE.

What’s neat about tkinter is that it comes preinstalled (and ready for use) with every
Python installation that includes IDLE (i.e., nearly all of them). Despite this, tkinter
doesn’t receive the use (and love) it deserves, as many believe it to be unnecessarily
clunky (compared to some third-party alternatives). Nevertheless, and as IDLE
demonstrates, it is possible to produce useful and usable programs with tkinter.
(Did we mention that tkinter comes preinstalled and ready for use?)

One such usage is the turtle module (which is also part of the standard library). To
quote the Python docs: Turtle graphics is a popular way for introducing programming to
kids. It was part of the original Logo programming language developed by Wally Feurzig and
Seymour Papert in 1966. Programmers (i.e., mainly kids, but fun for newbies, too) can
use commands like left, right, pendown, penup, and so on to draw on a GUI
canvas (provided by tkinter).

Here’s a small program, which has been adapted ever so slightly from the example that
comes with the turtle docs:

And when this small turtle program is executed, a thing of beauty is drawn and
appears on screen:

As well as showing “turtle” in
action, this small program
also demonstrates the use
of Python’s “while” loop and
“break” statement. They work
exactly as you’d expect them
to, but don’t see nearly as much
action as the “for” loop and
comprehensions.

We know you can do better than this, so why not give “turtle” a try?

www.EBooksWorld.ir

548 Appendix C

test test test

9. It’s Not Over ’Til It’s Tested
This book has barely mentioned automated testing, aside from a passing nod to
the py.test tool for checking conformance to PEP 8 (at the end of Chapter
4). This is not because we think automated testing isn’t important. We think
automated testing is very important. It is such an important topic that
entire books are dedicated to it.

That said, in this book, we avoided automated testing tools on purpose. This
has nothing to do with how we feel about automated testing (it really is
very important). However, when you are first learning to program in a new
programming language, introducing automated testing can confuse more than
it clarifies, as the creation of tests assumes a good understanding of the thing
being tested, and if that “thing” happens to be a new programming language that
you’re learning...well, you can see where we’re going with this, can’t you? It’s a bit
like the chicken and the egg. Which comes first: learning to code, or learning how
to test the code you’re learning?

Of course, now that you’re a bona-fide Python programmer, you can take the
time to understand how Python’s standard library makes it easy to test your code.
There are two modules to look at (and consider):

• doctest: This module lets you embed your tests in your module’s
docstrings, which isn’t as weird as it sounds and is very useful.

• unittest: You may have already used a “unittest” library with
another programming language, and Python comes with its very own
version (which works exactly as you’d expect it to).

The doctest module is adored by those who use it. The unittest module
works like most other “unittest” libraries in other languages, and a lot of Python
programmers complain that it’s not pythonic enough. This has led to the creation
of the hugely popular py.test (which we talk more about in the next appendix).

Don’t you dare flip on over to the
next page before you’ve thought about

how you’d use Python’s automated
testing tools to check the correctness

of the code you write.

Hey, don’t look at me...
I didn’t put that there.

www.EBooksWorld.ir

you are here 4 549

appendix c: top ten things we didn’t cover

10. Debug , Debug , Debug
You’d be forgiven for thinking that the vast majority of Python programmers
revert to adding print calls to their code when something goes wrong. And you
wouldn’t be far off: it’s a popular debugging technique.

Another is experimenting at the >>> prompt, which—if you think about it—is
very like a debugging session without the usual debugging chores of watching
traces and setting up breakpoints. It is impossible to quantify how productive the
>>> prompt makes Python programmers. All we know is this: if a future release
of Python decides to remove the interactive prompt, things will get ugly.

If you have code that’s not doing what you think it should, and the addition of
print calls as well as experimenting at the >>> prompt have left you none the
wiser, consider using Python’s included debugger: pdb.

It’s possible to run the pdb debugger directly from your operating system’s
terminal window, using a command like this (where myprog.py is the program
you need to fix):

 python3 -m pdb myprog.py

It’s also possible to interact with pdb from the >>> prompt, which is as close an
instantiation of “the best of both worlds” as we think you’ll ever come across.
The details of how this works, as well as a discussion of all the usual debugger
commands (set a breakpoint, skip, run, etc.) are in the docs:

 https://docs.python.org/3/library/pdb.html

The pdb technology is not an “also ran,” nor was it an afterthought; it’s a
wonderfully feature-full debugger for Python (and it comes built-in).

Make sure
a working
understanding of
Python’s “pdb”
debugger is part
of your toolkit.

As always, Windows users need to use “py -3” instead of “python3”. (That’s “py”, space, then minus 3).

You can learn all
about traces and
breakpoints by
working through
the “pdb” docs.

www.EBooksWorld.ir

https://docs.python.org/3/library/pdb.html

www.EBooksWorld.ir

this is an appendix 551

No matter the job at hand,
the most important thing I
do is to make sure I’m using

the right tools.

appendix d: top ten projects not covered

Even More Tools,
Libraries, and Modules

We know what you’re thinking as you read this appendix’s title.
Why on Earth didn’t they make the title of the last appendix: The Top Twenty Things We

Didn’t Cover? Why another 10? In the last appendix, we limited our discussion to stuff that

comes baked in to Python (part of the language’s “batteries included”). In this appendix, we

cast the net much further afield, discussing a whole host of technologies that are available

to you because Python exists. There’s lots of good stuff here and—just like with the last

appendix—a quick perusal won’t hurt you one single bit.

www.EBooksWorld.ir

552 Appendix D

ipython ipython ipython

1. Alternat ives to >>>
Throughout this book we’ve happily worked at Python’s built-in >>> prompt,
either from within a terminal window or from within IDLE. In doing so, we hope
we’ve demonstrated just how effective using the >>> prompt can be when you’re
experimenting with ideas, exploring libraries, and trying out code.

There are lots of alternatives to the built-in >>> prompt, but the one that gets the
most attention is called ipython, and if you find yourself wishing you could do more
at the >>> prompt, ipython is worth a look. It is very popular with many Python
programmers, but is especially popular within the scientific community.

To give you an idea of what ipython can do compared to the plain ol’ >>> prompt,
consider this short interactive ipython session:

Your code is color-coded.

With “ipython”
installed, start it
at your operating
system’s command line.

You can easily tell which output
goes with which input (thanks
to numbered prompts).

Find out more about ipython at https://ipython.org.

There are other >>> alternatives, but the only other one that’s a match (in our view)
for what ipython has to offer is ptpython (more information can be found here:
https://pypi.org/project/ptpython/). If you like working within a text-based terminal
window, but are looking for something a bit more “full screen” than ipython, take a
look at ptpython. You won’t be disappointed.

As with all third-
party modules, you
can use “pip” to
install both “ipython”
and “ptpython”.

Pssst! Since discovering “ptpython”, Paul has used it every day.
www.EBooksWorld.ir

https://ipython.org/
https://pypi.org/project/ptpython/

you are here 4 553

appendix d: top ten projects not covered

2. Alternat ives to IDLE
We’re not afraid to state this: we have a soft spot for IDLE. We really like the fact
that Python not only comes with a capable >>> prompt, but also ships with a
passable cross-platform GUI-based editor and debugger. There are few other
mainstream programming languages that provide anything similar as part of
their default install.

Regrettably, IDLE gets a fair amount of flack in the Python community, as it
stacks up poorly against some of the more capable “professional” offerings. We
think this is an unfair comparison, as IDLE was never designed to compete in that
space. IDLE’s main goal is to get new users up and going as quickly as possible,
and it does this in spades. Consequently, we feel IDLE should be celebrated more
in the Python community.

IDLE aside, if you need a more professional IDE, you have choices. The most
popular in the Python space include:

• Eclipse: https://www.eclipse.org

• PyCharm: https://www.jetbrains.com/pycharm/

• WingWare: https://wingware.com

Eclipse is a completely open source technology, so won’t cost you more than the
download. If you’re already an Eclipse fan, its support for Python is very good.
But, if you aren’t currently using Eclipse, we wouldn’t recommend its use to you,
due to the existence of PyCharm and WingWare.

Both PyCharm and WingWare are commercial products, with “community
versions” available for download at no cost (but with some restrictions). Unlike
Eclipse, which targets many programming languages, both PyCharm and
WingWare target Python programmers specifically and, like all IDEs, have great
support for project work, links to source code management tools (like git), support
for teams, links to the Python docs, and so on. We encourage you to try both,
then make your choice.

If IDEs aren’t for you, fear not: all of the world’s major text editors offer
excellent language support to Python programmers.

What does Paul use?
Paul’s text editor of choice is vim (Paul uses MacVim on his development
machines). When working on Python projects, Paul supplements his use of vim
with ptpython (when experimenting with code snippets), and he’s also a fan of
IDLE. Paul uses git for local version control.

For what it’s worth, Paul doesn’t use a full-featured IDE, but his students love
PyCharm. Paul also uses (and recommends) Jupyter Notebook, which is discussed
next.

Mr. PyCharm Mr. WingWare

I’ll drink to that!

Well, WingWare,
between the two of
us, we have the Python
IDE world covered.

www.EBooksWorld.ir

https://www.eclipse.org/
https://www.jetbrains.com/pycharm/
https://wingware.com/

554 Appendix D

jupyter jupyter jupyter

3. Jupyter Notebook: The Web-Based IDE
In item #1, we drew your attention to ipython (which is an excellent >>>
alternative). From the same project team comes Jupyter Notebook (previously known
as iPython Notebook).

Jupyter Notebook can be described as the power of ipython in an interactive
web page (which goes by the generic name of “notebook”). What’s amazing
about Jupyter Notebook is that your code is editable and runnable from within the
notebook, and—if you feel the need—you can add text and graphics, too.

Here’s some code from Chapter 12 running within a Jupyter Notebook. Note how
we’ve added textual descriptions to the notebook to indicate what’s going on:

Learn more about Jupyter Notebook from its website (http://jupyter.org), and use pip
to install it onto your computer, then start exploring. You will be glad you did.
Jupyter Notebook is a killer Python application.

The next generation of Jupyter Notebook is called Jupyter Lab, and it was in “alpha” as work on this book was concluding. Keep an eye out for the Jupyter Lab project: it’s going to be something rather special.

www.EBooksWorld.ir

http://jupyter.org/

you are here 4 555

appendix d: top ten projects not covered

4. Doing Data Science
When it comes to Python adoption and usage, there’s one domain that
continues to experience explosive growth: the world of data science.

This is not an accident. The tools available to data scientists using Python are
world class (and the envy of many other programming communities). What’s
great for non–data scientists is that the tools favored by the data folks have
wide applicability outside the Big Data landscape.

Entire books have been (and continue to be) written about using Python
within the data science space. Although you may think this advice biased, the
books on this subject from O’Reilly Media are excellent (and plentiful). O’Reilly
Media has made a business out of spotting where the technology industry is
heading, then ensuring there’s plenty of great, high-quality learning material
available to those wanting to learn more.

Here’s just a selection of some of the libraries and modules available to you if
you do data science (or any other science calculations, for that matter). If data
science isn’t your thing, check out this stuff anyway—there’s lots to like here:

• bokeh: A set of technologies for publishing interactive graphics
on web pages.

• matplotlib/seaborn: A comprehensive set of graphing
modules (which integrates with ipython and Jupyter Notebook).

• numpy: Among other things, allows you to efficiently store and
manipulate multidimensional data. If you’re a fan of matrices,
you’ll love numpy.

• scipy: A set of scientific modules optimized for numerical data
analysis, which complements and expands upon what’s provided
by numpy.

• pandas: If you are coming to Python from the R language, then
you’ll feel right at home with pandas, which provides optimized
analysis data structures and tools (and is built on top of numpy
and matplotlib). The need to use pandas is what brings a
lot of data folk to the community (and long may this continue).
pandas is another killer Python application.

• scikit-learn: A set of machine learning algorithms and
technologies implemented in Python.

Note: most of these libraries and modules are pip-installable.

The best place to start learning about the intersection of Python and data
science is the PyData website: http://pydata.org. Click on Downloads, then marvel
at what’s available (all as open source). Have fun!

Note from Marketing: This means they got our memo. §

Sacrebleu! They
dare to ask me how I know
my soup recipe’s the best?!?
Why...I ran a quick pandas data
analysis, then published it in a
Jupyter Notebook. Voilà—now

everyone knows.

www.EBooksWorld.ir

http://pydata.org/

556 Appendix D

alternatives to flask

5. Web Development Technologies
Python is very strong in the web space, but Flask (with Jinja2) isn’t the only game
in town when it comes to building server-side webapps (even though Flask is a
very popular choice, especially if your needs are modest).

The best-known technology for building webapps with Python is Django. It
wasn’t used in this book due to the fact that (unlike Flask) you have to learn
and understand quite a bit before you create your first Django webapp (so, for a
book like this, which concentrates on teaching the basics of Python well, Django
is a poor fit). That said, there’s a reason Django is so popular among Python
programmers: it’s really, really good.

If you class yourself as a “web developer,” you should take the time to (at the very
least) work through Django’s tutorial. In doing so, you’ll be better informed as to
whether you’ll stick with Flask or move to Django.

If you do move to Django, you’ll be in very good company: Django is such a large
community within the wider Python community that it’s able to sustain its own
conference: DjangoCon. To date, DjangoCon has occurred in the US, Europe, and
Australia. Here are some links to learn more:

• Djanjo’s landing page (which has a link to the tutorial):
 https://www.djangoproject.com

• DjangoCon US:
 https://djangocon.us

• DjangoCon Europe:
 https://djangocon.eu

• DjangoCon Australia:
 http://djangocon.com.au

But wait, there’s more
As well as Flask and Django, there are other web frameworks (and we know we’ll
neglect to mention somebody’s favorite). Those we hear the most about include:
Pyramid, TurboGears, web2py, CherryPy, and Bottle. Find a more complete list on the
Python wiki:

 https://wiki.python.org/moin/WebFrameworks

Django is the web
framework for
perfectionists with
deadlines—like us!

www.EBooksWorld.ir

https://www.djangoproject.com/
https://djangocon.us/
https://djangocon.us/
http://djangocon.com.au/
https://wiki.python.org/moin/WebFrameworks

appendix d: top ten projects not covered

6. Working with Web Data
In Chapter 12, we briefly used the requests library to demonstrate just how cool
our generator was (compared to its equivalent comprehension). Our decision to use
requests was no accident. If you ask most Python developers working with the Web
what their favorite PyPI module is, the majority responds with one word: “requests.”

The requests module lets you work with HTTP and web services via a simple, yet
powerful, Python API. Even if your day job doesn’t involve working directly with
the Web, you’ll learn a lot just from looking at the code for requests (the entire
requests project is regarded as a master class in how to do things the Python way).

Find out more about requests here:

 http://docs.python-requests.org/en/master/

Scrape that web data!
As the Web is primarily a text-based platform, Python has always worked well in that
space, and the standard library has modules for working with JSON, HTML, XML,
and the other similar text-based formats, as well as all the relevant Internet protocols.
See the following sections of the Python docs for a list of modules that come with the
standard library and are of most interest to web/Internet programmers:

• Internet Data Handling:
 https://docs.python.org/3/library/netdata.html

• Structured Markup Processing Tools:
 https://docs.python.org/3/library/markup.html

• Internet Protocols and Support:
 https://docs.python.org/3/library/internet.html

If you find yourself having to work with data that’s only available to you via a static
web page, you’ll likely want to scrape that data (for a quick scraping primer, see https://
en.wikipedia.org/wiki/Web_scraping). Python has two third-party modules that will save
you lots of time:

• Beautiful Soup:
 https://www.crummy.com/software/BeautifulSoup/

• Scrapy:
 http://scrapy.org

Try both, see which one solves your problem best, and then get on with whatever else
needs doing.

PyPI: The Python
Package Index lives
at https://pypi.org/.

Soup? Soup! Did
somebody mention soup?
And they said it was
“beautiful”... mon dieu.

www.EBooksWorld.ir

http://docs.python-requests.org/en/master/
https://docs.python.org/3/library/netdata.html
https://docs.python.org/3/library/markup.html
https://docs.python.org/3/library/internet.html
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping
https://www.crummy.com/software/BeautifulSoup/
http://scrapy.org/
https://pypi.org/

558 Appendix D

more than mysql

7. More Data Sources
To keep things as real as possible (while trying to keep it simple), we used MySQL
as our database backend in this book. If you spend a lot of time working with
SQL (regardless of the database vendor you favor), then stop whatever you’re
doing and take two minutes to use pip to install sqlalchemy—it may be your
best two-minute installation ever.

The sqlalchemy module is to SQL geeks what requests is to web geeks:
indispensable. The SQL Alchemy project provides a high-level, Python-inspired
set of technologies for working with tabular data (as stored in the likes of MySQL,
PostgreSQL, Oracle, SQL Server, and so on). If you liked what we did with the DBcm
module, you’re going to love SQL Alchemy, which bills itself as the database toolkit
for Python.

Find out more about the project at:

 http://www.sqlalchemy.org

There’s more to querying data than SQL
Not all the data you’ll ever need is in an SQL database, so there will be times
when SQL Alchemy won’t do. NoSQL database backends are now accepted as a
valid addition to any data center, with MongoDB serving as the classic example as
well as the most popular choice (even though there are many).

If you end up working with data that’s being presented to you as JSON, or in a
nontabular (yet structured) format, MongoDB (or something similar) may be just
what you’re looking for. Find out more about MongoDB here:

 https://www.mongodb.com

And check out the Python support for programming MongoDB using the
pymongo database driver from the PyMongo documentation page:

 https://api.mongodb.com/python/current/

No matter where
our data is—in an SQL
or NoSQL data store—
Python and its third-party

modules do the trick.

www.EBooksWorld.ir

http://www.sqlalchemy.org/
https://www.mongodb.com/
https://api.mongodb.com/python/current/

you are here 4 559

appendix d: top ten projects not covered

8. Programming Tools
No matter how good you think your code is, bugs happen.

When they do, Python has lots to help you: the >>> prompt, the pdb
debugger, IDLE, print statements, unittest, and doctest. When these
options aren’t enough, there are some third-party modules that might help.

Sometimes, you’ll make a classic mistake that everyone else has made before
you. Or perhaps you’ve forgotten to import some required module, and the
problem doesn’t crop up until you’re showing off how great your code is to a
room full of strangers (whoops).

To help avoid this type of thing, get PyLint, Python’s code analysis tool:

 https://www.pylint.org

PyLint takes your code and tells you what might be wrong with it before you
run it for the first time.

If you use PyLint on your code before you run it in front of a room full of
strangers, it may very well prevent blushing. PyLint might also hurt your
feelings, as no one likes to be told their code is not up to scratch. But the
pain is worth the gain (or maybe that should be: the pain is better than the public
embarrassment).

More help with test ing , too
In Appendix C, #9, we discussed the built-in support Python provides for
automated testing. There are other such tools, too, and you already know that
py.test is one of them (as we used it earlier in this book to check our code
for PEP 8 compliance).

Testing frameworks are like web frameworks: everyone has their favorite. That
said, more Python programmers than not favor py.test, so we’d encourage
you to take a closer look:

 http://doc.pytest.org/en/latest/

I think someone’s a little
confused. I was told to “clean
up the lint”...but I think they
meant for me to use PyLint
to clean up your code. What a
mess...if only you’d written a

py.test first, eh?

www.EBooksWorld.ir

https://www.pylint.org/
http://doc.pytest.org/en/latest/

560 Appendix D

kivy kivy kivy

9. Kivy: Our Pick for “Coolest Project Ever”
One area where Python is not as strong as it could be is in the world of mobile touch
devices. There are a lot of reasons why this is (which we aren’t going to get into here).
Suffice it to say, at the time of publication, it is still a challenge to create an Android or
iOS app with Python alone.

One project is attempting to make progress in this area: Kivy.

Kivy is a Python library that allows for the development of applications that use
multitouch interfaces. Pop on over to the Kivy landing page to see what’s on offer:

 https://kivy.org

Once there, click on the Gallery link and sit back for a moment while the page loads. If
a project grabs your eye, click on the graphic for more information and a demo. While
you view the demo, keep the following in mind: everything you are looking at was coded with
Python. The Blog link has some excellent material, too.

What’s really cool is that your Kivy user interface code is written once, then deployed
on any supported platform unchanged.

If you are looking around for a Python project to contribute to, consider donating
your time to Kivy: it’s a great project, has a great team working on it, and is technically
challenging. If nothing else, you won’t be bored.

A snapshot of Kivy’s
landing page form
2016 showing one of
their deployments: a
fully immersive touch
interface experience.

www.EBooksWorld.ir

https://kivy.org/

you are here 4 561

appendix d: top ten projects not covered

10. Alternat ive Implementat ions
You already know from item #1 in Appendix C that there’s more than one Python
language release (Python 2 and Python 3). This means that there’s at least two Python
interpreters: one that runs Python 2 code, and one that runs Python 3 code (which
is the one we’ve used throughout this book). When you download and install one
of the Python interpreters from the Python website (like you did in Appendix A), the
interpreter is referred to as the CPython reference implementation. CPython is the version
of Python distributed by the Python core developers, and takes its name from the fact that
it’s written in portable C code: it’s designed to be easily ported to other computing
platforms. As you saw in Appendix A, you can download installers for Windows and Mac
OS X, as well as find the interpreter preinstalled within your favorite Linux distribution.
All of these interpreters are based on CPython.

Python is open source, so anyone is free to take CPython and change it in any way
they wish. Developers can also take the Python language and implement their own
interpreter for it in whichever programming language they wish, using whichever
compiler techniques they like, running on whatever platform they’re using. Although
doing all of this is not for the faint of heart, plenty of developers do this (some of
them describe it as “fun”). Here are short descriptions and links to some of the more
active projects:

• PyPy (pronounced “pie-pie”) is a experimental compiler testbed for Python 2
(with Python 3 support on the way). PyPy takes your Python code and runs
it through a just-in-time compilation process, producing a final product that
runs faster than CPython in many instances. Find out more here:

 http://pypy.org

• IronPython is a version of Python 2 for the .NET platform:

 http://ironpython.net

• Jython is a version of Python 2 that runs on Java’s JVM:

 http://www.jython.org

• MicroPython is a port of Python 3 for use on the pyboard microcontroller, which
is no bigger than your two thumbs side by side, and may well be the coolest
little thing you’ve ever seen. Take a look:

 http://micropython.org

Despite all these alternative Python interpreters, the majority of Python programmers
remain happy with CPython. Increasingly, more developers are choosing Python 3.

I’m open source and
written in C. You’ll find
me everywhere!

www.EBooksWorld.ir

http://pypy.org/
http://ironpython.net/
http://www.jython.org/
http://micropython.org/

www.EBooksWorld.ir

this is an appendix 563

appendix e: getting involved

The Python Community

Python is much more than a great programming language.
It’s a great community, too. The Python Community is welcoming, diverse, open, friendly,

sharing, and giving. We’re just amazed that no one, to date, has thought to put that

on a greeting card! Seriously, though, there’s more to programming in Python than the

language. An entire ecosystem has grown up around Python, in the form of excellent

books, blogs, websites, conferences, meetups, user groups, and personalities. In this

appendix, we take a survey of the Python community and see what it has to offer. Don’t

just sit around programming on your own: get involved!

No, no...there’s no one
else here. They’ve all gone
to PyCon.

www.EBooksWorld.ir

564 Appendix E

gotta love guido

BDFL: Benevolent Dictator for Life
Guido van Rossum is a Dutch programmer whose gift to the world is the Python
programming language (which he started as a “hobby” in the last 1980s). The ongoing
development and direction of the language is set by the Python core developers, of which
Guido is but one (albeit a very important one). Guido’s title of Benevolent Dictator for Life is in
recognition of the central role he continues to play in the day-to-day life of Python. If you
see the letters BDFL in relation to Python, that’s a reference to Guido.

Guido is on the record as stating that the name “Python” is a nod (and a wink) toward the
British television comedy troupe Monty Python’s Flying Circus, which helps explain the use of
the name spam for many of the variables referred to in the Python docs.

Despite Guido’s leading role, he does not own Python: nobody does. However, the interests
of the language are protected by the PSF.

PSF: The Python Sof t ware Foundat ion
The PSF is a nonprofit organization that looks after the interests of Python, and is run by
a nominated/elected board of directors. The PSF promotes and sponsors the continued
development of the language. This is from the PSF’s mission statement:

The mission of the Python Software Foundation is to promote, protect, and advance the Python
programming language, and to support and facilitate the growth of a diverse and international
community of Python programmers.

Anyone can join the PSF and get involved. See the PSF website for details:

 https://www.python.org/psf/

One of the PSF’s major activities is involvement in (and the underwriting of) the annual
Python conference: PyCon.

PyCon: The Python Conference
Anyone can attend (and speak at) PyCon. In 2016, Portland, Oregon, hosted the
conference, with thousands of Python developers in attendance (the previous two PyCons
were held in Montreal, Canada). PyCon is the largest Python conference, but not the only
one. You’ll find Python conferences across the globe, ranging in size from small, regional
conferences (tens of attendees), through national conferences (hundreds of attendees), up
to the likes of EuroPython (thousands of attendees).

To see if there’s a PyCon near you, search for the word “PyCon” together with the name
of your nearest city (or the country you live in). Chances are, you’ll be pleasantly surprised
by what you find. Attending a local PyCon is a great way to meet and interact with like-
minded developers. Many of the talks and sessions at the various PyCons are recorded: pop
over to YouTube and type “PyCon” for an idea of what’s available to view.

Have your say:
join the PSF.

Get involved:
attend PyCon.

www.EBooksWorld.ir

you are here 4 565

appendix e: getting involved

A Tolerant Community: Respect for Diversity
Of all the programming conferences that exist today, PyCon was one of the first to
introduce and insist on a Code of Conduct. You can read the 2016 Code of Conduct
here:

 https://us.pycon.org/2016/about/code-of-conduct/

Such a development is a very good thing. More and more, the smaller regional PyCons
are adopting the Code of Conduct, too, which is also very welcome. A community
grows to be strong and inclusive when there are clear guidelines about what’s
acceptable and what isn’t, and the Code of Conduct helps to make sure all the world’s
PyCons are as welcoming as they can be.

In addition to striving to ensure everyone is welcome, a number of initiatives attempt
to increase the representation of specific groups within the Python community,
especially where—traditionally—such groups have been underrepresented. The
best-known of these is PyLadies, which was established per their mission to help “more
women become active participants and leaders in the Python open source community.”
If you’re lucky, there’s a PyLadies “chapter” near you: find out by starting your search
from the PyLadies website:

 http://www.pyladies.com

Just like the Python community, PyLadies started out small, but has very quickly grown
to have global reach (which is truly inspirational).

Come for the language, stay for the community
Many programmers new to Python comment on how inclusive the Python community
is. A lot of this attitude stems from Guido’s guiding hand and example: firm, yet
benevolent. There are other leading lights, too, and plenty of inspirational stories.

It doesn’t get much more inspirational than Naomi Ceder’s talk at EuroPython (which
was repeated at other regional conferences, including PyCon Ireland). Here’s a link to
Naomi’s talk, which we encourage you to watch:

 https://www.youtube.com/watch?v=cCCiA-IlVco

Naomi’s talk surveys a life in Python, and discusses how the community supports
diversity, and how there’s always more work for everyone to do.

One way to learn more about a community is to listen to some of the podcasts
generated by its participants. We discuss two Python podcasts next.

Encourage
and support
diversity
within the
Python
community.

www.EBooksWorld.ir

https://us.pycon.org/2016/about/code-of-conduct/
http://www.pyladies.com/
https://www.youtube.com/watch?v=cCCiA-IlVco

566 Appendix E

listen and learn

Python Podcasts
There are podcasts on everything these days. Within the Python community, there
are two we feel are well worth subscribing and listening to. Whether it’s something
to listen to while driving, cycling, running, or chilling out, these podcasts are both
deserving of your attention:

• Talk Python to Me: https://talkpython.fm

• Podcast.__init__: http://pythonpodcast.com

Follow both of these podcasts on Twitter, tell your friends about them, and give
the producers of these podcasts your full support. Both Talk Python To Me and
Podcast.__init__ are produced by regular members of the Python community for
the benefit of all of us (and not for profit).

Python Newslet ters
If podcasts aren’t your thing, but you still want to keep up with what’s happening
in the Python world, there are three weekly newsletters that can help:

• Pycoder’s Weekly: http://pycoders.com

• Python Weekly: http://www.pythonweekly.com

• Import Python: http://importpython.com/newsletter

These curated newsletters provide links to all types of material: blogs, vlogs,
articles, books, videos, talks, new modules, and projects. And their weekly
announcements arrive right to your email inbox. So, go ahead and sign up.

As well as a foundation, multiple conferences, subgroups like PyLadies, codes of
conduct, recognition of diversity, podcasts, and newsletters, Python also has its
very own notion of Zen.

There’s nothing
quite like working out
to the Python-related
podcasts.

Reciting the Zen of
Python helps me get in

the zone...

www.EBooksWorld.ir

https://talkpython.fm/
http://pythonpodcast.com/
http://pycoders.com/
http://www.pythonweekly.com/
http://importpython.com/newsletter

you are here 4 567

appendix e: getting involved

Code is read more
than it’s written...

The Zen of Python
Many moons ago, Tim Peters (one of Python’s early leading lights) sat
down and wondered: what is it that makes Python Python?

The answer came to Tim as The Zen of Python, which you can read
by starting any version of the interpreter and typing the following
incantation into the >>> prompt:

import this

We’ve done this for you, and shown the output of the above line of code
in the screenshot at the bottom of this page. Be sure to read The Zen of
Python at least once a month.

Many have tried to compress The Zen of Python into something a little
easier to digest. None other than xkcd has given it a go. If you’re
connected to the Internet, type this line of code into your >>> prompt to
see (quite literally) how xkcd got on:

import antigravity

Remember: read this *at least* once a month.

www.EBooksWorld.ir

568 Appendix E

to read next

Is that it? You can’t
finish off without giving me
some recommendation on
what I should read next.

Which Book Should I Read Next?

www.EBooksWorld.ir

you are here 4 569

appendix e: getting involved

Our Favorite Python Books
As Python has grown in popularity, the number of books devoted to the
language has blossomed. Of all the books out there, there are two we regard as
indispensable.

We mentioned David Beazley’s work
in an earlier appendix. In this book,
David teams up with Brian K. Jones
to document a wonderful collection
of Python coding recipes. If you
find yourself wondering how you
do something in Python, wonder no
more: look up the answer in Python
Cookbook.

If deep-dives are more your thing, read this excellent book. There’s a lot in here, but it’s all good (and you’ll be a better Python programmer for the experience).

www.EBooksWorld.ir

www.EBooksWorld.ir

This is the index 571

Index

Symbols
>>>. See Python Shell

<> (angle brackets) 256–257

= (assignment operator) 13, 55, 72–74

\ (backslash) 77

^ (caret) 192

: (colon). See colon (:)

, (comma) 54, 123, 134

+ (concatenation operator) 543

{} (curly braces). See curly braces {}

-= (decrement operator) 106

/ (forward slash) 207

+= (increment operator) 106, 318

* (multiplication operator) 87

* notation 390–391

** notation 392–393

() (parentheses). See parentheses ()

[] (square brackets). See square brackets []

@ symbol 207

symbol 147

% syntax 214, 543

| (vertical bar) 262

A
Alt-P key combination (Linux/Windows) 31, 118

angle brackets 256–257

annotations (function) 162–163

append method 58–59, 72, 270

app.run() function 207, 211, 217

apt-get utility 527

*args keyword 390, 401

arguments
about 147, 154–155
adding multiple 165
any number and type of 394
by-address argument passing 184, 186–187
by-reference argument passing 184, 186–187
by-value argument passing 184–185, 187
dictionary of 392–393
function decorators 223, 390–395, 401
interpreter processing 148
list of 390
methods and 317, 319–320, 322
positional versus keyword assignment 171
specifying default values for 170

arrays. See lists
arrow symbol 162–163

assignment operator 13, 55, 72–74

assignment statements 13–14

associative arrays. See dictionaries

asterisks 390–393

asyncio module 546

async keyword 546

AttributeError exception 483

attributes (state)
about 49
classes and 311–312, 322
dictionary lookup retrieves 369
displaying 30
Flask’s session technology and 368
initializing values 323–325

www.EBooksWorld.ir

the index

572 index

methods and 322
objects and 313, 315, 322

authentication 364

automated testing 548

automatic reloading webapps 227

await keyword 546

B
backslash 77

BDFL (Benevolent Dictator for Life) 564

Beazley, David 546, 569

behavior. See methods (behavior)

BIF (built-in functions) 161

binary mode 247

blocks of code. See suites of code

bokeh library 555

bool built-in function 156–158

boolean values 116

by-address argument passing 184, 186–187

by-reference argument passing 184, 186–187

by-value argument passing 184–185

C
call-by-reference semantics 184, 186

call-by-value semantics 184–185

CamelCase 312

caret 192

case sensitivity and conventions 116, 312

cd command 175

Ceder, Naomi 565

ChainMap class 545

classes
about 311–312
attributes and 311–312, 322
creating 310
defining functionality of 313–314

empty 312, 444
methods and 311–312, 318
naming 312
objects and 312–313
with statement and 305, 310, 337–338

class keyword 312

@classmethod decorator 542

client error messages 222

close method 245–246

Code of Conduct 565

collections module 545

colon (:)
blocks of code and 16–17
comprehensions and 506
dictionaries and 98, 123, 506
functions and 149, 162
lists and 76

combinations function (itertools module) 545

comma 54, 123, 134

command-line, running Python from 175–177, 190

comments 147

comparison operators 13, 15

compilation 7

comprehensions. See also specific types of loops
about 493, 504, 517
Bahama Buzzers example 478–517
converting patterns into 491
dictionary 493–496, 499–502, 506
examining 492
list 493–496, 504, 506, 508–511
reading CSV data as dictionaries 480–484
reading CSV data as lists 479
set 504–505
spotting patterns 489–490
transforming data 484–486
tuples and 504, 507

concatenation operator 543

concurrency options 465

concurrent.futures module 546

www.EBooksWorld.ir

the index

you are here 4 573

connect function 291

constant lists (tuples) 51

constructor methods 323

contextlib module 337

context management protocol
about 305–306, 310, 338–339
creating a context manager 337, 339
creating a context manager class 340
exception handling and 440–441
function decorators and 407
initializing context manager class 338–342
performing set-up 338–340, 343–344
performing tear-down 338–340, 345
readdressing webapp code 348–358
testing context manager 346–347

control statements 16

copy method 73

Counter class 545

CPython 561

Cross-site Scripting (XSS) 419, 422

CSV data
Bahamas Buzzers example 478–482
reading as dictionaries 480–484
reading as lists 479

csv module 479

Ctrl-C key combination 210, 220

Ctrl-P key combination (Mac) 31, 118

curly braces { }
blocks of code and 16
comprehensions and 506
dictionaries and 104, 137–139
sets and 123
template engines 214

current working directory 9–10, 174

cursor method 291–295, 463–464

D
database-enabling webapps

creating code to work with database and tables 296

creating database and tables 287–295
exception handling and 418, 420, 422, 440
installing MySQL-Connector/Python 286
installing MySQL datebase driver 285
installing MySQL server 283
introducing Python’s DB API 284
reusing database code 301–306
sharing code. See context management protocol
storing data 300

Data Science 555

data structures
built-in 13, 50, 161
complex 135–142, 266–267
copying 73
dictionaries. See dictionaries
lists. See lists
sets. See sets
tuples. See tuples

datetime module 8, 11, 486

day attribute (date.today) 11

DB-API , 281, 284, xvi

debugging 224, 549

decorators, function. See function decorators

decrement operator 106

default values for arguments 170–171

def statement
about 147, 149
async keyword and 546
default values for arguments 170
positional versus keyword assignment 171

delimiters 77, 262, 506

describe log command 289, 293

dictionaries
about 52, 103
of arguments 392–393
checking for membership in 117–119
dictionaries within 136–140
dynamic 114
easy to read 97
empty 104, 136, 161

www.EBooksWorld.ir

the index

574 index

frequency counts in 102–106, 131
growing at run-time 101
iterating over 107
iterating over keys and values 108
iterating over rows of data 110
key/value pairs and 52, 96, 115–120
of lists 485–486
reading CSV data as 480–484
specifying ordering on output 109–110
spotting in code 98
spotting pattern with 489
square brackets and 99–101

dictionary comprehensions 493–496, 499–502, 506

difference method 125, 127

dir built-in function 30, 259–260, 324

distribution packages 178–182

Django framework 203, 556

docstring
about 147
adding 151, 168
adding information to 162
updating 165

doctest module 548

documenting functions 162–163

dot-notation syntax 29, 58, 316

dunder name 206, 238–239, 324–325, 338–345

duplicate objects, sets and 53, 59

dynamic assignment of variables 13, 48–49

dynamic dictionaries 114

dynamic lists 50–51, 62

E
Eclipse IDE 553

edit window 3–8, 57, 150–151

elif statement 17

else statement 16–17, 117

embedded dictionaries 136–140

embedded suites of code 18

empty classes 312, 444

empty dictionaries 104, 136, 161

empty lists 55, 58, 161

empty sets 160–161

empty statements 312

empty strings 157

empty tuples 161

Enter key 22–24

__enter__ method 338–340, 443

environ attribute (os module) 10

environment variables 10

escape characters 77, 257

escape function (flask module) 257–258, 270

escape function (html module) 11

Exception class 427

exception handling. See also specific exceptions
built-in exceptions 427
catch-all exception handler 428, 431
context manager and 440–441
creating custom exceptions 444–447
databases and 418, 420, 422, 440, 448–455
functions and 421–422
import mechanisms 29
indentation errors 45
misspelled variables 45
output display and 255
PEP 8 failure messages 191–192
run-time and 115–121, 423–424, 474
syntax errors 5, 57
webapps and 255, 418–420, 422, 433, 437–439
with statement and 443, 451–452

executing code. See also run-time
Alt-P key combination for 31, 118
Ctrl-P key combination for 31, 118
F5 key for 4, 6, 151
interpreter processing in 8
invoking functions 150
pausing execution 20, 28
running concurrently 546

www.EBooksWorld.ir

the index

you are here 4 575

running immediately 7, 22
running multiple times 20

__exit__ method 338–340, 443, 452–453

extend method 64

extends directive (Jinja2) 214

F
F5 key 4, 6, 151

False value 156–157

FileNotFoundError exception 423–424, 431

Flask class 205, 217

Flask framework
about 203, 556
accessing HTML form data 226
associating function with multiple URLs 236
creating webapp objects 206
debugging mode 224
installing 202
Jinja2 template engine 214–215, 229–230, 274, 276
Markup object 257
rendering templates from 217
request object 226–227, 259
running webapps 204–205
session mechanism 367–368
testing webapps 220–221
threading and 471

flask module
escape function 257–258, 270
Flask class 205, 217
session dictionary 368–379

for loop. See also comprehensions
about 20, 24–27, 504
lists and 86–88, 479
slices and 87
spotting patterns in 489–490

format method 543

formatting
data 484–486
strings 543

form dictionary (Flask) 226

<form> tag 222

forward slash 207

frequency counts
about 102–103, 131
incrementing 105
initializing 105
selecting data structure 104
updating 105–106

function decorators
about 209, 385
adding 217–218
adjusting behaviors 207
arguments and 223, 390–395, 401
components in writing 385–394
context managers and 407
creating 395–410
URLs and 207, 209, 211, 218, 223, 396, 408

function objects 386–389, 395, 397–398

functions. See also arguments (functions); See also specific
functions

about 9, 147–148
best practice for 153
built-in 161
creating 149, 166–169
documenting 162–163
editing 150–151
embedding generators within 511–516
exception handling and 421–422
importing 9, 28–29
invoking 150
invoking passed functions 387
methods and 316, 322
modules and 9, 173
multiple URLs 236
naming 149, 165, 312
nested 388, 400
passing to functions 386
returning from functions 389
returning results 156–159
reusing code with 146, 173

www.EBooksWorld.ir

the index

576 index

sharing 173
string quote characters 152
troubleshooting 184, 187
variables and 321–322

functools module 402, 545

G
generators 508, 510

getcwd function (os module) 9–10

GET method (HTTP) 222–223

global variables 366

H
hashes. See dictionaries

Hellman, Doug 545–546

help command 31, 41, 66

Homebrew package manager 283, 525

HTML forms
access with Flask 226
building 213–215
displaying 218
producing results 229–230
redirecting to avoid unwanted errors 234–235
rendering templates from Flask 216–217
testing template code 219–221

html module 11

HTTP (HyperText Transfer Protocol)
status codes 222
web servers and 366

I
id built-in function 328

IDLE (Python IDE) 3–7, 203, 553

if statement 16–17, 117–119

ImmutableMultiDict dictionary 261

ImportError exception 176–177

import statement
about 9, 28–29
Flask framework and 205
interpreter search considerations 174–177
positioning 303
sharing modules witth 173
threading module and 465
Zen of Python 567

increment operator 106, 318

indentation levels for suites 18, 45

indenting suites of code
about 15–18, 40
for functions 147
for loops 24, 27

index values, lists and 63, 75

informational messages 222

__init__ method 323–327, 330, 338–340, 443

inner functions 388, 400

in operator
about 15
dictionaries and 115–119
lists and 56, 59
sets and 125

input built-in function 60

insert method 65

INSERT statement (SQL) 289, 463–464

InterfaceError exception 423, 441, 443

interpreter (Python)
about 7–8
alternative implementations 561
asking for help 31, 41
case sensitivity 116
dictionary keys and 108
functions and 148
identifying operating system 10
identifying site-package locations 174
internal ordering used by 52, 108
running from command-line 175–177
syntax errors 5, 57

www.EBooksWorld.ir

the index

you are here 4 577

whitespace and 40

intersection method 125, 128, 159, 167

ipython shell 552

IronPython project 561

isoformat function (datetime module) 11

items method 110

itertools module 545

J
Java VM 7

Jinja2 template engine
about 214–215, 229
calculating data needed 230
readable output with 274, 276

join method 67, 258, 268

Jones, Brian K. 569

Jupyter Notebook IDE 554

Jython project 561

K
keyboard shortcuts 27

KeyError exception 115–121

key/value pairs (dictionaries)
about 52, 96
adding 101
creating on the fly 115–120
interpreter processing and 108

keyword assignment of arguments 171

Kivy library 560

**kwargs keyword 392–393, 401

L
len built-in function 58

level of indentation for suites 18

list built-in function 42, 126

list comprehensions 493, 504, 506, 508–511

lists
about 13, 50–51, 54, 89
assignment operators 13, 55, 72–74
checking for membership in 15, 56, 59
copying existing 72
creating literally 55
dictionaries of 485–486
dynamic 50–51, 62
empty 55, 58, 161
extending with objects 64
growing at run-time 58
iterating over a sequence of objects 24–25
of arguments 390–391
popping objects off 63
reading CSV data as 479
removing objects from 62
slice notation 77–81, 85
sorted 126
spotting in code 54
spotting pattern with 490
square bracket notation 13, 54, 66, 74–80, 85
starting and stopping with 78
stepping with 79
tuples and 51, 132
when not to use 90–91
working with 56, 71
working within edit window 5

literal lists 54–55

localhost 211

logins/logouts 374–381, 384

logs and logging. See also database-enabling webapps
determining structure for 288
dir built-in function and 259–260
examining raw data 256
open, process, close technique 250, 253
single line of delimited data 262
updating webapps 350–356
viewing through webapps 254, 258

loopback address 211

loop comprehensions. See comprehensions

loops. See specific types of loops

www.EBooksWorld.ir

the index

578 index

M
MacPorts package manager 525

maps. See dictionaries

MariaDB 282–283

Markup object (Flask) 257

matplotlib/seaborn modules 555

memory management 62

messages, HTTP status codes 222, 235

methods (behavior)
about 49
arguments and 317, 319–320, 322
attributes and 322
chaining method calls 483
classes and 311–312, 318
decorators adjusting 207
functions and 316, 322
invoking 316–317
objects and 313, 315, 322
running webapp 208

MicroPython project 561

modules
about 8
adding to site-packages 178
creating 173
functions and 9, 173
ImportError exception 176–177
importing 29, 173–174
sharing code 183
third party 12

MongoDB 558

month attribute (date.today) 11

multiplication operator 87

multiprocessing module 546

MySQL
benefits of 358
DB-API and 284
exception handling and 418, 420, 422, 440, 448–455
installing MySQL-Connector/Python driver 285–286

installing MySQL server 283
querying considerations 462–463

MySQL console 287

N
NameError exception 321

namespaces 29

__name__ value 206

naming conventions 5

nested functions 388, 400

newsletters (Python) 566

Not Found message 208

not in operator 59, 118–119

numbers
assigning to variables 48
generating randomly 20, 30–31

numpy package 555

O
object class 324

object instantiation 312, 323

object-oriented programming (OOP) 311, 324, 542

objects
about 48–53
attributes and 313, 315, 322
classes and 312–313
creating 312, 323
defining representation of 328–329
duplicate 53, 59
extending lists with 64
function 386–389, 395, 397–398
key/value pairs and 96
methods and 313, 315, 322
popping off lists 63
removing from lists 62
sequence of 24–25, 124
webapp 206

open function 245–246

www.EBooksWorld.ir

the index

you are here 4 579

opening editing window 3

open, process, close technique
about 245
invoking logging function 250, 253
reading data from existing files 246
with statement and 247–248

operating system, identifying for interpreter 10

operators
assignment 13, 55, 72–74
checking for membership with 15, 56, 59, 117–119
comparison 13, 15
concatenation 543
decrement 106
increment 106, 318
multiplication 87
super 15
ternary 117

ordered data structures 50–51

OrderedDict dictionary 545

os module
about 9
environ attribute 10
getcwd function 9–10
platform attribute 10
usage example 10–11

output display
exception handling and 255
Python Shell and 22
raw data to readable 265–266, 274
readable via Jinja2 276
specifying dictionary ordering for 109–110

P
pandas tools 555

parentheses ()
comprehensions and 506
function arguments in 149
object instantiation and 312
return statement and 158
tuples in 132, 134

partial function 545

pass keyword 312

pausing execution 20, 28

pdb debugger 549

pep8 plug-in 189–190

PEP (Python Enhancement Protocol)
about 153
DB-API specification 284
line length standard 263
testing for compliance 188–193, 548

PermissionError exception 426, 431

permutations function (itertools module) 545

Peters, Tim 567

pip (Package Installer for Python)
downloading requests library 509
installing Flask 202
installing packages with 182
installing pep8 plug-in 189–190
installing pyreadline module 524
installing pytest testing framework 189–190

platform attribute (os module) 10

podcasts (Python) 566

pop method 63

positional assignment of arguments 171

PostgreSQL 282

POST method (HTTP) 222–223

pprint function (pprint module) 139

pprint module 139

print built-in function
about 15
accessing dictionary data values 108
default behavior 247
displaying objects 329
identifying Python version 10
optional arguments 263

product function (itertools module) 545

programming tools 559

prompt (Python Shell). See Python Shell

www.EBooksWorld.ir

the index

580 index

protocol port number 204, 211

PSF (Python Software Foundation) 564

ptpython REPL 553

PyCharm IDE 553

py command 175, 190

PyCon (Python Conference) 564

PyLint tool 559

pymongo database driver 558

PyPI (Python Package Index) 183, 202, 557

PyPy project 561

pyreadline module 524

pytest testing framework 189–190

py.test tool 548, 559

Python 2 540

Python 3
about 310
installing on Linux 527
installing on Mac OS X 525–526
installing on Windows 522–524
usage recommendations 540

PythonAnywhere
about 529
configuring webapps 536
creating starter webapp 534–535
extracting and installing code 533
preparing webapps 530
signing up for 531
testing deployed webapp 537
uploading files to the cloud 238, 240, 532

Python community , xxvi–xxx

Python Core Developers 561

Python Packaging Authority 183

Python Shell
about 4
accessing prompt within 10, 21–22
alternatives to 552
asking for help 31, 41
copying code to editor 57

experimenting at 21, 23–32
recalling last commands typed 31
running interpreter from 175–177
terminating statements with Enter key 24

Q
quit command 175

quotation marks
comments and 147
strings and 77, 152

R
Ramalho, Luciano 569

randint function (random module) 20, 30–31, 174

random module 20, 30–31, 174

random number generation 20, 30–31

range built-in function 25, 40–42

reading
CSV data as dictionaries 80
CSV data as lists 479
data from existing files 246

README.txt file 179–181

redirect function (Flask) 234–235

redirection messages 222

remove method 62

render_template function (Flask) 217–218, 234

REPL tool 4, 553

request object (Flask) 226–227, 259–260, 324

requests library 509, 557

requests module 557–558

results, functions returning 156–159

return keyword 147

return statement
about 156
parentheses and 158
returning multiple values 159
returning one value 158

www.EBooksWorld.ir

the index

you are here 4 581

return values (functions)
about 156
interpreter processing 148
variable scope and 322

route decorator
about 209
adding 217–218
adjusting behaviors 207
optional arguments 223

run-time
exception handling 115–121, 423–424, 474
growing dictionaries at 101
growing lists at 58

RuntimeError exception 423

S
scikit-learn tools 555

scipy modules 555

scope of variables 321–322

SELECT statement (SQL) 464

self argument 317, 319–320, 322

sequence of objects 24–25, 124

server error messages 222

session dictionary (flask module) 368–379

sessions
about 367
managing logins/logouts with 374–381
state and 368–373

set built-in function 124–125, 160–161, 167

set comprehensions 504–505

setdefault method 119–121

sets
about 53, 123
combining 125–126
commonality between 125, 128
creating efficiently 124
creating from sequences 124
difference between 125, 127
duplicate objects and 53, 59, 123

empty 160–161
spotting in code 123

setup function (setuptools module) 179

setuptools module 178–179

single-object tuples 134

site-packages 174, 177–179

sleep function (time module) 20, 28

slice notation
for loop and 87–88
lists and 77–81, 85

__slots__ directive 542

sorted built-in function
about 544
dictionaries and 109–110
sets and 123, 126

spaces versus tabs 40

split method 268, 270, 479, 482–483

sqlalchemy module 558

SQLError exception 453–454

SQL injection (SQLi) 419, 422

SQLite 282

square brackets []
comprehensions and 506
dictionaries and 99–101, 141
lists and 13, 54, 66, 74–80, 85
tuples and 133

standard library
about 9, 10, 146
additional information 12, 545, 547
cautions adding/removing modules 178
concurrency options 465
identifying locations 174
usage examples 8, 10–11

start value 41, 76, 78

state. See attributes (state)

statements
assignment 13–14
control 16
displaying output 22

www.EBooksWorld.ir

the index

582 index

empty 312
reusability of 302
terminating with Enter key 22–24
try...except 424–431, 434, 441–442

@staticmethod decorator 542

status codes (HTTP) 222

step value 41, 76, 79

stop value 41, 76, 78

storing data
in databases and tables, xvi–xxxviii
in data structures, xii–xxxviii
in text files 245

strftime function (time module) 11

strings
assigning to variables 48
empty 157
formatting 543
iterating a specific number of times 24–25
joining together 67, 258, 268
key/value pairs and 96
quotation marks and 77, 152
splitting apart 268
turning into list of letters 78
whitespace and 482

strip method 482–483

submodules 8

success messages 222, 235

sudo command 190, 202, 527

suites of code
comments in 147
embedded suites within 18
functions and 147
indentation levels and 18
indenting 15–18, 24, 27, 40
looping 20, 24–27
running multiple times 20
unindenting 27

super operators 15

syntax errors 5, 57, 312

sys module 10, 429–430

T
tables 288–289, 296. See also dictionaries

<table> tag 274

tabs versus spaces 40

<td> tag 274

template engines
about 213–215
embedding display logic in 275
preparing to run code 219–221
relating to web pages 216
rendering from Flask 217–218

ternary operator 117

testing developer tools 189–190, 548

text files, saving data to 245

text mode 247

Thread class 465–466

threading library 465

threading module 465, 469–470, 546

<th> tag 274

time module 11, 20, 28

tkinter library 547

today function (datetime module) 11

trailing whitespace 40

<tr> tag 274

True value 156–157

try...except statements 424–431, 434, 441–442

tuples
about 51, 132–133
comprehensions and 504, 507
empty 161
lists and 51, 132
single-object 134
spotting in code 132

turtle module 547

www.EBooksWorld.ir

the index

you are here 4 583

type built-in function 132, 328

TypeError exception 319, 326–327, 330

type hints (annotations) 162–163

U
unindenting suites of code 27

union method 125–126

unittest module 548

unordered data structures 52–53

URLs
function decorators and 207, 209, 211, 218, 223, 396,

408
functions with multiple 236
processing with generators 510–511
processing with list comprehensions 509
restricting access to 382–383, 396, 408

V
van Rossum, Guido 39, 564

variables
assigning objects to 48–49
assigning values to 13, 48–49
displaying values of 22
dynamic assignment of 13, 48–49
environment 10
functions and 321–322
global 366
initializing values 323–325
misspelling 45
scope of 321–322
usage example 13

venv technology 541

version, identifying 10

vertical bar 262

vim text editor 553

virtualenv module 541

virtual programming environments 541

W
web applications. See also database-enabling webapps

adding finishing touch 234
adding robustness to 455
automatic reloading 227
calculating data needed 230
creating Flask webapp object 206
deploying with PythonAnywhere 529–537
edit/stop/start/test cycle 224–225
exception handling and 255, 418–420, 422, 433,

437–439
exposing functionality to the Web 209–210
function decorators 207, 209, 211, 218, 223
functions with multiple URLs 236
global variables and 366
handling posted data 223
how they work 198–199
HTML forms 213–221, 226
HTTP status codes 222
installing and using Flask 202–203
preparing for the cloud 238–240
producing results as HTML 229–230
redirecting to avoid unwanted errors 235
request data in 227
restarting 210, 220
running behaviors 208
running for first time 204–205
stopping 210, 220
testing 210, 220
updating 348–349
viewing logs 254
web development technologies 556
what do we want them to do 200, 212
what happens on the web server 201

web development technologies 556

web servers
about 365–366
HTTP status codes and 222
webapp process and 198, 201, 366

while loop 24

whitespace 40, 192, 482, 518

www.EBooksWorld.ir

the index

584 index

WingWare IDE 553

with statement
classes and 305, 310, 337–338
context management protocol and 339
exception handling and 443, 451–452
open, process, close technique and 247–248
split method and 482
viewing logs through webapps 254

wonder name 206

wraps function (functools module) 401

X
xkcd webcomic 567

XSS (Cross-site Scripting) 419, 422

Y
year attribute (date.today) 11

Z
Zen of Python 567

ZIP files 180

www.EBooksWorld.ir

	Title page
	Copyright
	Table of Contents
	Intro
	Chapter 1: The Basics
	Chapter 2: List Data
	Chapter 3: Structured Data
	Chapter 4: Code Reuse
	Chapter 5: Building a Webapp
	Chapter 6: Storing and Manipulating Data
	Chapter 7: Using a Database
	Chapter 8: A Little Bit of Class
	Chapter 9: The Context Management Protocol
	Chapter 10: Function Decorators
	Chapter 11: Exception Handling
	Chapter 11 3/4: A Little Bit of Threading
	Chapter 12: Advanced Iteration
	Appendix A: Installation
	Appendix B: pythonanywhere
	Appendix C: Top Ten Things We Didn't Cover
	Appendix D: Top Ten Projects Not Covered
	Appendix E: Getting Involved
	Index

